Science.gov

Sample records for affect carbon exchange

  1. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance?

    PubMed Central

    Liebel, Heiko T.; Bidartondo, Martin I.; Gebauer, Gerhard

    2015-01-01

    Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant. Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field. Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot. Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source. PMID:25538109

  2. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors.

    PubMed

    Marek, Michal V; Janouš, Dalibor; Taufarová, Klára; Havránková, Kateřina; Pavelka, Marian; Kaplan, Věroslav; Marková, Irena

    2011-05-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. PMID:21345558

  3. How do increasing background concentrations of tropospheric ozone affect peatland plant growth and carbon gas exchange?

    NASA Astrophysics Data System (ADS)

    Williamson, Jennifer L.; Mills, Gina; Hayes, Felicity; Jones, Timothy; Freeman, Chris

    2016-02-01

    In this study we have demonstrated that plants originating from upland peat bogs are sensitive to increasing background concentrations of ozone. Peatland mesocosms from an upland peat bog in North Wales, UK were exposed to eight levels of elevated background ozone in solardomes for 4 months from May to August, with 24 h mean ozone concentrations ranging from 16 to 94 ppb and cumulative AOT024hr ranging from 45.98 ppm h to 259.63 ppm h. Our results show that plant senescence increased with increasing exposure to ozone, although there was no significant effect of increasing ozone on plant biomass. Assessments of carbon dioxide and methane fluxes from the mesocosms suggests that there was no change in carbon dioxide fluxes over the 4 month exposure period but that methane fluxes increased as cumulative ozone exposure increased to a maximum AOT 024hr of approximately 120 ppm h and then decreased as cumulative ozone exposure increased further.

  4. Modeling Carbon Exchange

    NASA Technical Reports Server (NTRS)

    Sellers, Piers

    2012-01-01

    Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.

  5. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?

    PubMed

    Schenk, Stephan; Kesselmeier, Jürgen; Anders, Ernst

    2004-06-21

    We have extended our investigations of the carbonic anhydrase (CA) cycle with the model system [(H(3)N)(3)ZnOH](+) and CO(2) by studying further heterocumulenes and catalysts. We investigated the hydration of COS, an atmospheric trace gas. This reaction plays an important role in the global COS cycle since biological consumption, that is, uptake by higher plants, algae, lichens, and soil, represents the dominant terrestrial sink for this gas. In this context, CA has been identified by a member of our group as the key enzyme for the consumption of COS by conversion into CO(2) and H(2)S. We investigated the hydration mechanism of COS by using density functional theory to elucidate the details of the catalytic cycle. Calculations were first performed for the uncatalyzed gas phase reaction. The rate-determining step for direct reaction of COS with H(2)O has an energy barrier of deltaG=53.2 kcal mol(-1). We then employed the CA model system [(H(3)N)(3)ZnOH](+) (1) and studied the effect on the catalytic hydration mechanism of replacing an oxygen atom with sulfur. When COS enters the carbonic anhydrase cycle, the sulfur atom is incorporated into the catalyst to yield [(H(3)N)(3)ZnSH](+) (27) and CO(2). The activation energy of the nucleophilic attack on COS, which is the rate-determining step, is somewhat higher (20.1 kcal mol(-1) in the gas phase) than that previously reported for CO(2). The sulfur-containing model 27 is also capable of catalyzing the reaction of CO(2) to produce thiocarbonic acid. A larger barrier has to be overcome for the reaction of 27 with CO(2) compared to that for the reaction of 1 with CO(2). At a well-defined stage of this cycle, a different reaction path can emerge: a water molecule helps to regenerate the original catalyst 1 from 27, a process accompanied by the formation of thiocarbonic acid. We finally demonstrate that nature selected a surprisingly elegant and efficient group of reactants, the [L(3)ZnOH](+)/CO(2)/H(2)O system, that helps

  6. Carbon dioxide exchange of a pepperweed (Lepidium latifolium L.) infestation: How do flowering and mowing affect canopy photosynthesis and autotrophic respiration?

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Detto, M.; Runkle, B. R. K.; Teh, Y. A.; Silver, W. L.; Kelly, M.; Baldocchi, D. D.

    2011-03-01

    The net ecosystem carbon dioxide (CO2) exchange of invasive plant infestations, such as perennial pepperweed (Lepidium latifolium L.), is not well understood. A characteristic feature of pepperweed's phenological cycle is its small white flowers during secondary inflorescence. Pepperweed flowering causes uniform reflectance over the visible range of the electromagnetic spectrum, thus decreasing the amount of energy absorbed by the canopy and available for photosynthesis. Little is known about how pepperweed flowering and control measures such as mowing affect canopy photosynthesis and autotrophic respiration (FAR) and thus ecosystem respiration. To examine this question, we analyzed CO2 flux measurements made with eddy covariance over a pepperweed infestation in California, covering three growing seasons. Unmowed pepperweed caused the site to be almost CO2 neutral (2007: -28 g C m-2 period-1) or a net source (2009: 129 g C m-2 period-1), mostly because of reduced maximum photosynthetic capacity by 13 (2007) and 17 μmol m-2 s-1 (2009) due to flowering during the plant's prime photosynthetic period. Reference FAR at 10°C was reduced by 2 μmol m-2 s-1 in 2007 and 2009. Mowing during early flowering reversed the attenuating effects of pepperweed flowering, causing the site to act as a net CO2 sink (2008: -174 g C m-2 period-1) mainly due to prolonged photosynthetic CO2 uptake over the plant's early vegetative growth phase. Our results highlight the tight link between pepperweed's prominent key phenological phase and applied control measures, which together exert dominant control over the infestation's CO2 source-sink strength.

  7. Testing the Grandchildren's Received Affection Scale using Affection Exchange Theory.

    PubMed

    Mansson, Daniel H

    2013-04-01

    The purpose of this study was to test the Grandchildren's Received Affection Scale (GRAS) using Affection Exchange Theory (Floyd, 2006). In accordance with Affection Exchange Theory, it was hypothesized that grandchildren's scores on the Trait Affection Received Scale (i.e., the extent to which individuals by nature receive affection) would be related significantly and positively to their reports of received affection from their grandparents (i.e., their scores on the GRAS). Additionally, a research question was asked to explore if grandchildren's received affection from their grandparents is dependent on their grandparent's biological sex or lineage (i.e., maternal vs paternal). Thus, young adult grandchildren (N = 422) completed the GRAS and the Trait Affection Received Scale. The results of zero-order Pearson correlational analyses provided support for the hypothesis, whereas the results of MANOVAs tests only partially support extant grandparent-grandchild theory and research. These findings broaden the scope of Affection Exchange Theory and also bolster the GRAS's utility in future grandparent-grandchild affectionate communication research. PMID:23833883

  8. FACTORS AFFECTING AIR EXCHANGE IN TWO HOUSES

    EPA Science Inventory

    Air exchange rate is critical to determining the relationship between indoor and outdoor concentrations of hazardous pollutants. Approximately 150 air exchange experiments were completed in two residences: a two-story detached house located in Redwood City, CA and a three-story...

  9. Carbon nanotube heat-exchange systems

    DOEpatents

    Hendricks, Terry Joseph; Heben, Michael J.

    2008-11-11

    A carbon nanotube heat-exchange system (10) and method for producing the same. One embodiment of the carbon nanotube heat-exchange system (10) comprises a microchannel structure (24) having an inlet end (30) and an outlet end (32), the inlet end (30) providing a cooling fluid into the microchannel structure (24) and the outlet end (32) discharging the cooling fluid from the microchannel structure (24). At least one flow path (28) is defined in the microchannel structure (24), fluidically connecting the inlet end (30) to the outlet end (32) of the microchannel structure (24). A carbon nanotube structure (26) is provided in thermal contact with the microchannel structure (24), the carbon nanotube structure (26) receiving heat from the cooling fluid in the microchannel structure (24) and dissipating the heat into an external medium (19).

  10. Trophic cascade alters ecosystem carbon exchange

    PubMed Central

    Strickland, Michael S.; Hawlena, Dror; Reese, Aspen; Bradford, Mark A.; Schmitz, Oswald J.

    2013-01-01

    Trophic cascades—the indirect effects of carnivores on plants mediated by herbivores—are common across ecosystems, but their influence on biogeochemical cycles, particularly the terrestrial carbon cycle, are largely unexplored. Here, using a 13C pulse-chase experiment, we demonstrate how trophic structure influences ecosystem carbon dynamics in a meadow system. By manipulating the presence of herbivores and predators, we show that even without an initial change in total plant or herbivore biomass, the cascading effects of predators in this system begin to affect carbon cycling through enhanced carbon fixation by plants. Prolonged cascading effects on plant biomass lead to slowing of carbon loss via ecosystem respiration and reallocation of carbon among plant aboveground and belowground tissues. Consequently, up to 1.4-fold more carbon is retained in plant biomass when carnivores are present compared with when they are absent, owing primarily to greater carbon storage in grass and belowground plant biomass driven largely by predator nonconsumptive (fear) effects on herbivores. Our data highlight the influence that the mere presence of predators, as opposed to direct consumption of herbivores, can have on carbon uptake, allocation, and retention in terrestrial ecosystems. PMID:23776213

  11. Carbon dioxide control in an open system that measures canopy gas exchanges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric carbon dioxide concentration affects both C3 carbon net assimilation as well as crop water use. Methods for measuring whole canopy gas exchange responses under carbon dioxide enrichment are needed for breeding programs aiming to develop crop cultivars resistant to stresses like drought i...

  12. Carbon cycling and gas exchange in soils

    SciTech Connect

    Trumbore, S.E.

    1989-01-01

    This thesis summaries three independent projects, each of which describes a method which can be used to study the role of soils in regulating the atmospheric concentrations of CO{sub 2} and other trace gases. The first chapter uses the distribution of natural and bomb produced radiocarbon in fractionated soil organic matter to quantify the turnover of carbon in soils. A comparison of {sup 137}Cs and {sup 14}C in the modern soil profiles indicates that carbon is transported vertically in the soil as dissolved organic material. The remainder of the work reported is concerned with the use of inert trace gases to explore the physical factors which control the seasonal to diel variability in the fluxes of CO{sub 2} and other trace gases from soils. Chapter 2 introduces a method for measuring soil gas exchange rates in situ using sulfur hexafluoride as a purposeful tracer. The measurement method uses standard flux box technology, and includes simultaneous determination of the fluxes and soil atmosphere concentrations of CO{sub 2} and CH{sub 4}. In Chapter 3, the natural tracer {sup 222}Rn is used as an inert analog for exchange both in the soils and forest canopy of the Amazon rain forest.

  13. Global simulation of the carbon isotope exchange of terrestrial ecosystems

    NASA Astrophysics Data System (ADS)

    Ito, A.; Terao, Y.; Mukai, H.

    2009-12-01

    There remain large uncertainties in our quantification of global carbon cycle, which has close interactions with the climate system and is subject to human-induced global environmental change. Information on carbon isotopes is expected to reduce the uncertainty by providing additional constraints on net atmosphere-ecosystem exchange. This study attempted to simulate the dynamics of carbon isotopes at the global scale, using a process-based terrestrial ecosystem model: Vegetation Integrative SImulator for Trace gases (VISIT). The base-model of carbon cycle (Sim-CYCLE, Ito 2003) has already considered stable carbon isotope composition (13C/12C), and here radioactive carbon isotope (14C) was included. The isotope ratios characterize various aspects of terrestrial carbon cycle, which is difficult to be constrained by sole mass balance. For example, isotopic discrimination by photosynthetic assimilation is closely related with leaf stomatal conductance and composition of C3 and C4 plant in grasslands. Isotopic disequilibrium represents mean residence time of terrestrial carbon pools. In this study, global simulations (spatial resolution 0.5-deg, time-step 1-month) were conducted during the period 1901 to 2100 on the basis of observed and projected atmospheric CO2, climate, and land-use conditions. As anthropogenic CO2 accumulates in the atmosphere, heavier stable carbon isotope (13C) was diluted, while radioactive carbon isotope (14C) is strongly affected by atomic bomb experiments mainly in the 1950s and 1960s. The model simulated the decadal change in carbon isotope compositions. Leaf carbon with shorter mean residence time responded rapidly to the atmospheric change, while plant stems and soil humus showed substantial time-lag, leading to large isotopic disequilibrium. In the future, the isotopic disequilibrium was estimated to augment, due to accelerated rate of anthropogenic CO2 accumulation. Spatial distribution of stable isotope composition (12C/13C, or d13C) was

  14. [Ecosystem carbon exchange in Artemisia ordosica shrubland of Ordos Plateau in two different precipitation years].

    PubMed

    Gao, Li; Dong, Ting-Ting; Wang, Yu-Qing; Yan, Zhi-Jian; Baoyin, Tao-ge-tao; Wang, Hui; Dai, Ya-Ting

    2014-08-01

    Characteristics of ecosystem carbon exchange and its impact factors in Artemisia ordosica shrubland in 2011 (low precipitation) and 2012 (high precipitation), Ordos Plateau, were studied using eddy covariance methods. The results showed that the diurnal dynamics of ecosystem carbon exchange could be expressed as single-peak and double-peak curves in the two different precipitation years. In 2011, three carbon absorption peaks and three carbon release peaks of ecosystem carbon exchange presented in the growing season. In 2012, four carbon absorption peaks and one carbon release peak appeared in the growing season. The A. ordosica shrubland was a net carbon sink from June to September and a carbon source in October in 2011. In 2012, A. ordosica shrubland was a net carbon sink in the whole growing season. The amount of carbon fixed by A. ordosica shrubland in the growing season in 2012 was 268.90 mg CO2 x m(-2) x s(-1) higher than that in 2011. The ecosystem carbon exchange of A. ordosica shrubland was controlled by PAR (photosynthetically active radiation) on the day scale, and affected by both abiotic (precipitation and soil water content) and biotic (aboveground net primary, productivity) factors on the growing season scale. PMID:25509064

  15. Budgeting Ecosystem - Atmosphere Carbon Exchange in a Subarctic Birch Forest

    NASA Astrophysics Data System (ADS)

    Heliasz, M.; Johansson, T.; Mastepanov, M.; Callaghan, T. V.; Christensen, T. R.

    2008-12-01

    The overarching objective of this project is to work towards a better understanding of ecosystem-atmosphere interactions in a composite subarctic landscape with a focus on measurements and modeling of carbon cycling in birch forest environments. In this presentation we document the interactions between the birch forest (Betula pubescens ssp. czerepanovii) ecosystem and the atmosphere both in terms of greenhouse gas and energy exchanges. The study provides new information on climatic controls of interannual variability in annual carbon and energy exchange. This information is complimented with studies of the effects of insect outbreak disturbance on these annual budgets. Carbon flux data produced since 2003 shows that during the first year of measurements the forest acted as a large net sink of atmospheric carbon. However, during the growing season of 2004 the area was severely affected by an extreme outbreak of the autumnal moth (Epirrita autumnata) resulting in total defoliation of the forest over large areas. This caused the same forest stand to act as a net source of CO2 even during the peak growing season. During the summer of 2008, as part of a special campaign under the International Polar Year, the larger scale variability of the subarctic birch forest carbon fluxes was documented. A mobile eddy covariance tower provided seasonal measurements from six different locations in the catchment of lake Tornetrask which can be compared with longer term, inter-annual data from two permanent flux towers operating continuously in the vicinity of the village of Abisko. The sites were chosen to document possible differences in CO2 fluxes depending on the time since last defoliation which was in 2004 in some areas. Also sites were chosen with different types of birch forest (monocormic, polycormic) and at greatly varying distances to the oceanic influence from the Norwegian coast. This poster will present and discuss preliminary CO2 flux data from all these different

  16. Microchannel Heat Exchangers with Carbon Dioxide

    SciTech Connect

    Zhao, Y.; Ohadi, M.M.; Radermacher, R.

    2001-09-15

    significantly. However, under such conditions, air side pressure drop also increases when moisture condensation occurs. An increase in airflow rate also increases the overall heat transfer coefficient. Air side pressure drop mainly depends on airflow rate. For the gas cooler, a significant portion of the heat transfer occurred in the first heat exchanger module on the refrigerant inlet side. The temperature and pressure of CO{sub 2} significantly affect the heat transfer and fluid flow characteristics due to some important properties (such as specific heat, density, and viscosity). In the transcritical region, performance of CO{sub 2} strongly depends on the operating temperature and pressure. Semi-empirical models were developed for predictions of CO{sub 2} evaporator and gas cooler system capacities. The evaporator model introduced two new factors to account for the effects of air-side moisture condensate and refrigerant outlet superheat. The model agreed with the experimental results within {+-}13%. The gas cooler model, based on non-dimensional parameters, successfully predicted the experimental results within {+-}20%. Recommendations for future work on this project include redesigning headers and/or introducing flow mixers to avoid flow mal-distribution problems, devising new defrosting techniques, and improving numerical models. These recommendations are described in more detail at the end of this report.

  17. What Affects Clinicians’ Usage of Health Information Exchange?

    PubMed Central

    Rudin, R.; Volk, L.; Simon, S.; Bates, D.

    2011-01-01

    Background The ability to electronically exchange health information among healthcare providers holds enormous promise to improve care coordination and reduce costs. Provider-to-provider data exchange is an explicit goal of the American Recovery and Reinvestment Act of 2009 and may be essential for the long-term success of the Affordable Care Act of 2010. However, little is known about what factors affect clinicians’ usage of health information exchange (HIE) functionality. Objective To identify factors that affect clinicians’ HIE usage - in terms of frequency of contributing data to and accessing data from aggregate patient records - and suggest policies for fostering its usage. Methods We performed a qualitative study using grounded theory by interviewing clinician-users and HIE staff of one operational HIE which supported aggregate patient record functionality. Fifteen clinicians were interviewed for one hour each about what factors affect their HIE usage. Five HIE staff were asked about technology and training issues to provide context. Interviews were recorded, transcribed and analyzed. Recruitment excluded clinicians with little or no familiarity with the HIE and was restricted to one community and a small number of specialties. Results Clinicians were motivated to access the HIE by perceived improvements in care quality and time savings, but their motivation was moderated by an extensive list of factors including gaps in data, workflow issues and usability issues. HIE access intensities varied widely by clinician. Data contribution intensities to the HIE also varied widely and were affected by billing concerns and time constraints. Conclusions Clinicians, EHR and HIE product vendors and trainers should work toward integrating HIE into clinical workflows. Policies should create incentives for HIE organizations to assist clinicians in using HIE, develop measures of HIE contributions and accesses, and create incentives for clinicians to contribute data to

  18. Carbon dioxide exchange and growth of a pine plantation

    SciTech Connect

    Murphy, Jr, C E

    1981-01-01

    The exchange of materials between the atmosphere and terrestrial ecosystem is important to an understanding of the cycling of essential elements, the deposition of mateials from the atmosphere and the entrance of pollutants into the forest ecosystems. This paper reports the results of measurements of carbon dioxide exchange in a vigorously growing pine plantation. Measurement data were incorporated into a model used to estimate annual carbon dioxide exchange and measured annual biomass accumulation in the same plantation were used to determine a carbon dioxide to biomass conversion efficiency. Carbon dioxide exchange was 10.5 metric tons per hectare and biomass accumulation was 4.5 metric tons per hectare. The conversion efficiency of cabon dioxide to biomass is about 25% less than the theoretical chemical conversion efficiency. 27 refs., 8 figs.

  19. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, Richard D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of harged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same compositionbut different sequence.

  20. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, R. D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/ Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence.

  1. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    PubMed Central

    2010-01-01

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion−hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence. PMID:20481592

  2. A multiple chamber, semicontinuous, crop carbon dioxide exchange system: design, calibration, and data interpretation

    NASA Technical Reports Server (NTRS)

    van Iersel, M. W.; Bugbee, B.

    2000-01-01

    Long-term, whole crop CO2 exchange measurements can be used to study factors affecting crop growth. These factors include daily carbon gain, cumulative carbon gain, and carbon use efficiency, which cannot be determined from short-term measurements. We describe a system that measures semicontinuously crop CO2 exchange in 10 chambers over a period of weeks or months. Exchange of CO2 in every chamber can be measured at 5 min intervals. The system was designed to be placed inside a growth chamber, with additional environmental control provided by the individual gas exchange chambers. The system was calibrated by generating CO2 from NaHCO3 inside the chambers, which indicated that accuracy of the measurements was good (102% and 98% recovery for two separate photosynthesis systems). Since the systems measure net photosynthesis (P-net, positive) and dark respiration(R-dark, negative), the data can be used to estimate gross photosynthesis, daily carbon gain, cumulative carbon gain, and carbon use efficiency. Continuous whole-crop measurements are a valuable tool that complements leaf photosynthesis measurements. Multiple chambers allow for replication and comparison among several environmental or cultural treatments that may affect crop growth. Example data from a 2 week study with petunia (Petunia x hybrida Hort. Vilm.-Andr.) are presented to illustrate some of the capabilities of this system.

  3. Fouling of carbon steel heat exchanger caused by iron bacteria

    SciTech Connect

    Starosvetsky, J.; Armon, R.; Starosvetsky, D. ); Groysman, A.

    1999-01-01

    A carbon steel heat exchanger installed in a reverse osmosis unit failed after 1 1/2 years from start-up as a result of tubes, lids, tube sheets, and connection pipes clogging from rust deposits. Chemical analysis of cooling water and scraped precipitates, as well laboratory screening of the deposits for bacteria, revealed that activity of iron-oxidizing bacteria present in cooling water could lead to heat exchanger blockage.

  4. Carbon-Fiber Brush Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Knowles, Timothy R.

    2004-01-01

    Velvetlike and brushlike pads of carbon fibers have been proposed for use as mechanically compliant, highly thermally conductive interfaces for transferring heat. A pad of this type would be formed by attaching short carbon fibers to either or both of two objects that one desires to place in thermal contact with each other. The purpose of using a thermal-contact pad of this or any other type is to reduce the thermal resistance of an interface between a heat source and a heat sink.

  5. Isotopic exchange of carbon-bound hydrogen over geologic timescales

    NASA Astrophysics Data System (ADS)

    Sessions, Alex L.; Sylva, Sean P.; Summons, Roger E.; Hayes, John M.

    2004-04-01

    The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating sedimentary organic matter raises numerous questions about the exchange of carbon-bound hydrogen over geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review of relevant literature data along with new data from several pilot studies to investigate such issues. Published experimental estimates of exchange rates between organic hydrogen and water indicate that at warm temperatures (50-100°C) exchange likely occurs on timescales of 10 4 to 10 8 yr. Incubation experiments using organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new and highly sensitive method for measuring exchange at low temperatures. Comparison of δD values for isoprenoid and n-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in young (<1 Ma), cool sediments, but strong evidence for exchange in ancient (>350 Ma) rocks. Specific rates of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the presence of catalytic mineral surfaces, and perhaps even enzymatic activity. Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will be depleted in D relative to water by ˜75 to 140‰ at equilibrium (30°C). Thus large differences in δD between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of cholestene with D 2O

  6. Carbon banks: an efficient means to exchange sequestered carbon.

    PubMed

    Esuola, Adeyemi G; Weersink, Alfons

    2006-01-01

    Carbon sequestration is one of the options that can be used to reduce atmospheric carbon, but its use in an offset market is complicated by the temporary nature of sequestered carbon and the risks associated with carbon release and price. In this paper a carbon bank is proposed to handle these problems. The bank is both an aggregator and a risk bearer. Sink generators deposit their credits with the bank and are paid for maintaining their "savings" with the bank. The carbon bank is also the source where large-scale emitters can come and buy either a temporary or permanent credit and pay the bank in return for the credit and services provided. The advantages of the bank over alternative institutional designs include lower transaction costs, flexible carbon credits and price, and lower risk to risk-averse parties. The carbon bank could be an effective means to deal with many of the unresolved issues within the forthcoming Canadian offset system. PMID:16825473

  7. Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the hypothesis that diurnal changes in terrestrial CO2 exchange are driven exclusively by the direct effect of the physical environment on plant physiology. We failed to corroborate this assumption, finding instead large diurnal fluctuations in whole ecosystem carbon assimilation across a ...

  8. Variability of Carbon Exchanges Between Two Contrasting Northern Peatlands

    NASA Astrophysics Data System (ADS)

    Roulet, N. T.; Nilsson, M.

    2008-12-01

    Northern peatland contain about one quarter of the world's terrestrial carbon. It appears that many peatlands still remains a small, but persistent sinks of carbon dioxide and sources of methane. The sink strength is small compared to actively growing boreal forests but equal to the Holocene average peatland carbon accumulation. This suggests that the function of northern peatlands, with regard to C sequestration, has not change relative to the Holocene average uptake. In contrast to forested ecosystems there have been few long-term continuous measurements of the components of the C balance of peatlands ecosystems. In addition to measurements of net ecosystem exchange and net methane emission (or uptake), the C balance of peatlands requires accurate estimates of the loss of carbon dissolved in runoff. Multi-year measurements of these three major exchanges have been made in contrasting northern peatlands: Mer Bleue, a raised ombrotrophic bog located at the boreal - temperate boundary in eastern Canada, and Degero Stormyr, a mineral poor, oligotrophic fen located in northern Sweden. Despite very different plant communities and moisture regimes the long-term average NEE, methane exchange and net loss of carbon dissolved in water are surprisingly similar in these two systems. However, Mer Bleue has a much greater inter-annual variability in the exchanges than does Degero Stormyr peatland. The difference in exchanges appears related to differences in the variability in moisture supply to the vegetation layer and water storage in the peat. In the early 1990s, the eminent peatland ecologist, Eville Gorham estimated, with few observations, the relative importance of the C balance components of northern peatlands. The multi-year records indicate that these early estimates with reasonable good within an order of magnitude.

  9. Measuring and Modeling Component and Whole-System Carbon Exchange

    SciTech Connect

    Paul Bolstad

    2006-11-01

    We measured ecosystem/atmospheric carbon exchange through a range of methods covering a range of scales. We measured carbon (C) pool and flux for a number of previously poorly quantified ecosystems, developed measurement and modeling methods, and applied these to substantially increase the accuracy and reduce uncertainty in ecosystem/atmospheric C exchange at a range of scales. It appears most upland forests are weak to strong carbon sinks, and status depends largely on disturbance history and age. Net flux from wetland ecosystems appears to be from weak sinks to moderate sources of C to the atmosphere. We found limited evidence for a positive feedback of warming/drying to increased ecosystem C emissions. We further developed multi-source integration and modeling methods, including multiple towers, to scale estimates to landscapes and larger regions.

  10. Transient ion exchange of anion exchange membranes exposed to carbon dioxide

    NASA Astrophysics Data System (ADS)

    Myles, Timothy D.; Grew, Kyle N.; Peracchio, Aldo A.; Chiu, Wilson K. S.

    2015-11-01

    A common issue with anion exchange membranes (AEMs) is carbon dioxide contamination which causes a conversion from the hydroxide form to a mixed carbonate/bicarbonate form. In the mixed ionic form the membrane suffers from lower conductivity due to the larger and heavier ions having a lower mobility. The purpose of this study is to develop a theoretical model of the transient ion exchange process and elucidate the nature of the conversion of the AEM from a hydroxide form to a carbonate/bicarbonate form. Experimental data available from the literature providing the anion concentrations versus time are used for comparison. The prevalent mechanisms are discussed and the governing equations are cast in a dimensionless form. Extensions are then made to conductivity predictions.

  11. Climate control of terrestrial carbon exchange across biomes and continents

    SciTech Connect

    Ricciuto, Daniel M; Gu, Lianhong

    2010-07-01

    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45 N). The sensitivity of NEE to mean annual temperature breaks down at ~ 16 C (a threshold value of mean annual temperature), above which no further increase of CO2 uptake with temperature was observed and dryness influence overrules temperature influence.

  12. Carbon dioxide retention and carbon exchange on unsaturated Quaternary sediments

    USGS Publications Warehouse

    Striegl, R.G.; Armstrong, D.E.

    1990-01-01

    Retention of CO2 on three air-dried and partly water-saturated glacial and eolian sediments was measured at 20??C for a range in, PCO2 that commonly occurs in unsaturated zones. Ratios of the relative losses of CO2 and 14CO2 from a surrogate atmosphere overlying the sediments were 1:1 for the dry condition. For the wet condition, those relative losses were generally {precedes above single-line equals sign} 1:2, indicating bicarbonateion formation and C-isotope exchange. Mass losses of CO2 per surface area of sediment were similar for dry and wet conditions; however, CO2 losses for the wet condition were 8 to 17 times greater than losses predicted by calcite equilibria. Occurrence of this comparatively large reservoir of immobile, exchangeable C in unsaturated zones can cause alteration of the C-isotope composition of soil CO2 and of dissolved inorganic C in interstitial water, and needs to be considered when modeling 14CO2 movement in the unsaturated zone or when interpreting radiocarbon ages of infiltrating water. ?? 1990.

  13. Defaunation affects carbon storage in tropical forests

    PubMed Central

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F.; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro

    2015-01-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  14. Defaunation affects carbon storage in tropical forests.

    PubMed

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  15. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  16. In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon

    NASA Astrophysics Data System (ADS)

    Alam, Todd M.; Osborn Popp, Thomas M.

    2016-08-01

    High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.

  17. In-pore exchange and diffusion of carbonate solvent mixtures in nanoporous carbon

    DOE PAGESBeta

    Alam, Todd M.; Osborn Popp, Thomas M.

    2016-06-04

    High resolution magic angle spinning (HRMAS) 1H NMR spectroscopy has been used to resolve different surface and in-pore solvent environments of ethylene carbonate (EC) and dimethyl carbonate (DMC) mixtures absorbed within nanoporous carbon (NPC). Two dimensional (2D) 1H HRMAS NMR exchange measurements revealed that the inhomogeneous broadened in-pore resonances have pore-to-pore exchange rates on the millisecond timescale. Pulsed-field gradient (PFG) NMR diffusometry revealed the in-pore self-diffusion constants for both EC and DMC were reduced by up to a factor of five with respect to the diffusion in the non-absorbed solvent mixtures.

  18. Carbon dioxide exchange in a temperate grassland ecosystem

    NASA Technical Reports Server (NTRS)

    Kim, Joon; Verma, Shashi B.

    1990-01-01

    Carbon dioxide exchange was measured, using the eddy correlation technique, over a tallgrass prairie in northeastern Kansas, U.S.A., during a six-month period in 1987. The diurnal patterns of daytime and nocturnal CO2 fluxes are presented on eight selected days. These days were distributed throughout most of the growing season and covered a wide range of meteorological and soil water conditions. The midday CO2 flux reached a maximum of 1.3 mg/sq m (ground area)/s during early July and was near zero during the dry period in late July. The dependence of the daytime carbon dioxide exchange on pertinent controlling variables, particularly photosynthetically active radiation, vapor pressure deficit, and soil water content is discussed. The nocturnal CO2 flux (soil plus plant respiration) averaged -0.4 m sq m (ground area)/s during early July and was about -0.2 mg sq/m during the dry period.

  19. Mill Scale Corrosion and Prevention in Carbon Steel Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Sharma, Pankaj; Roy, Himadri

    2015-10-01

    The cause of material degradation of an ASTM A-124 grade carbon steel tube belonging to a heat exchanger has been investigated. Visual examination, followed by an in-depth microstructural characterization using optical microscopy, energy dispersive X-ray, and scanning electron microscopy, was carried out for understanding the primary cause of material degradation. Based on the results of an extensive examination as well as the background information provided on the heat exchanger, it was determined that the steel tubes were predominantly damaged by the mechanism of crevice corrosion facilitated by the presence of mill scale. It is concluded that the heat exchanger tubes were not properly investigated for defects after their fabrication. Based on the situation, the proper cleaning method was selected for preventing further corrosion in the system. A chemical cleaning process was designed using acid pickling along with an inhibitor and a surfactant.

  20. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  1. Black Carbon Increases Cation Exchange Capcity in Soils

    SciTech Connect

    Liang,B.; Lehmann, J.; Solomon, D.; Kinyangi, J.; Grossman, J.; ONeill, B.; Skjemstad, J.; Thies, J.; Luizao, F.; et al.

    2006-01-01

    Black Carbon (BC) may significantly affect nutrient retention and play a key role in a wide range of biogeochemical processes in soils, especially for nutrient cycling. Anthrosols from the Brazilian Amazon (ages between 600 and 8700 yr BP) with high contents of biomass-derived BC had greater potential cation exchange capacity (CEC measured at pH 7) per unit organic C than adjacent soils with low BC contents. Synchrotron-based near edge X-ray absorption fine structure (NEXAFS) spectroscopy coupled with scanning transmission X-ray microscopy (STXM) techniques explained the source of the higher surface charge of BC compared with non-BC by mapping cross-sectional areas of BC particles with diameters of 10 to 50 {micro}m for C forms. The largest cross-sectional areas consisted of highly aromatic or only slightly oxidized organic C most likely originating from the BC itself with a characteristic peak at 286.1 eV, which could not be found in humic substance extracts, bacteria or fungi. Oxidation significantly increased from the core of BC particles to their surfaces as shown by the ratio of carboxyl-C/aromatic-C. Spotted and non-continuous distribution patterns of highly oxidized C functional groups with distinctly different chemical signatures on BC particle surfaces (peak shift at 286.1 eV to a higher energy of 286.7 eV) indicated that non-BC may be adsorbed on the surfaces of BC particles creating highly oxidized surface. As a consequence of both oxidation of the BC particles themselves and adsorption of organic matter to BC surfaces, the charge density (potential CEC per unit surface area) was greater in BC-rich Anthrosols than adjacent soils. Additionally, a high specific surface area was attributable to the presence of BC, which may contribute to the high CEC found in soils that are rich in BC.

  2. Management practices affects soil carbon dioxide emission and carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural practices contribute about 25% of total anthropogenic carbon dioxide emission, a greenhouse gas responsible for global warming. Soil can act both as sink or source of atmospheric carbon dioxide. Carbon dioxide fixed in plant biomass through photosynthesis can be stored in soil as organi...

  3. Scaling of Carbon Exchange from the Leaf to the Region

    NASA Astrophysics Data System (ADS)

    Reck, R. A.; Ustin, S. L.; Paw U, K. T.

    2002-05-01

    More detailed understanding of regional carbon budgets are necessary to predict impacts of climate change on ecosystems and biological/biophysical feedbacks to the climate system. Typically, current models dealing with carbon exchange employ sophisticated descriptions of some processes, reflecting the expertise of the model originators, but rely on greatly simplified descriptions of other potentially important processes outside the expertise and discipline of the original model authors. For example, the community regional scale meteorological model MM5, supported by NCAR (the National Center for Atmospheric Research), can be used for carbon exchange, but it has very primitive micrometeorological/biometeorological surface process descriptions, virtually no biogeochemistry, and no mechanisms to change land cover type categories during an analysis (e.g., in response to land use, fire, etc.). The current generation biogeochemical models as CASA, Biome-BGC, and Century have moderately sophisticated biogeochemistry, and physiological models with stomatal functioning e.g., SiB2 allow for some biological feedbacks, but these models still have insufficient attention paid to the process description of the atmosphere-biosphere interaction. In our study, state-of-the art regional scale meteorological models (MM5), micro/biometeorological models (the UCD ACASA model based on higher-order closure solutions to turbulent exchange equations), multi-layer soil models, and biogeochemical models (CASA and Biome-BGC) are being linked together to describe the scaling of carbon response to environmental change from the leaf level to the regional level. Comparison of these sophisticated linked models to the same linked system with one or more of the models simplified to the descriptions as discussed above, allow research into which processes are critical, and therefore which process require more sophisticated descriptions. In addition, the linked models presumably provide the most

  4. Factors affecting the behavior of unburned carbon upon steam activation

    NASA Astrophysics Data System (ADS)

    Lu, Zhe

    The main objective of this study is to investigate the factors that could affect the behavior of unburned carbon samples upon steam activation. Through this work, the relationships among the factors that could influence the carbon-steam reaction with the surface area of the produced activated carbon were explored. Statistical analysis was used to relate the chemical and physical properties of the unburned carbon to the surface area of the activated carbon. Six unburned carbons were selected as feedstocks for activated carbon, and marked as UCA through UCF. The unburned carbons were activated using steam at 850°C for 90 minutes, and the surface areas of their activated counterparts were measured using N2 adsorption isotherms at 77K. The activated carbons produced from different unburned carbon precursors presented different surface areas at similar carbon burn-off levels. Moreover, in different carbon burn-off regions, the sequences for surface area of activated carbons from different unburned carbon samples were different. The factors that may affect the carbon-steam gasification reactions, including the concentration of carbon active sites, the crystallite size of the carbon, the intrinsic porous structure of carbon, and the inorganic impurities, were investigated. All unburned carbons investigated in this study were similar in that they showed the very broad (002) and (10 ) carbon peaks, which are characteristic of highly disordered carbonaceous materials. In this study, the unburned carbon samples contained about 17--48% of inorganic impurities. Compared to coals, the unburned carbon samples contain a larger amount of inorganic impurities as a result of the burn-off, or at lease part, of the carbon during the combustion process. These inorganic particles were divided into two groups in terms of the way they are associated with carbon particles: free single particles, and particles combined with carbon particles. As indicated from the present work, unburned

  5. Impact of Willow Invasion on Vegetation Water and Carbon Exchange in the Florida Everglades

    NASA Astrophysics Data System (ADS)

    Budny, M. L.; Benscoter, B.

    2014-12-01

    Southern coastal willow (Salix caroliniana) is native to the Florida Everglades, commonly found on drier landforms like levees and tree islands. Shortened periods of inundation due to water management have led to the encroachment and expansion of these shrubs in sawgrass (Cladium jamaicense) marsh communities. The broadleaf willow is morphologically and physiologically different from the graminoid sedge sawgrass, with possible consequence for microhabitat conditions and ecosystem function. Willow is often assumed to have greater rates of transpiration, thereby affecting wetland water management, and may have concurrent differences in photosynthesis and carbon exchange. However, the ecophysiological impact of the willow invasion has not been quantified. We assessed differences in plant water and carbon exchange between willow and sawgrass at Blue Cypress Conservation Area, an impounded sawgrass peatland within the St. John's River Water Management District (SJRWMD). Plant transpiration and net CO2 exchange (photosynthesis and autotrophic respiration) were measured on fully expanded, non-damaged leaves of sawgrass and willow using a portable infrared gas analyzer (LI-6400XT, LI-COR, Lincoln, NE, U.S.A.). The results obtained from this study will provide a better understanding of ecophysiological changes that occur within marsh communities with shrub expansion, which will have cascading impacts on soil accretion and turnover, microclimate, and water quality Understanding the implications of willow expansion will improve landscape models of wetland water and carbon exchange as well as inform water management decisions.

  6. Climate indices strongly influence old-growth forest carbon exchange

    DOE PAGESBeta

    Wharton, Sonia; Falk, Matthias

    2016-04-13

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (FNEE) at Wind River AmeriFlux was –32 ± 84 g C m–2 yr–1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannualmore » variability is high (>300 g C m–2 yr–1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean FNEE = –90 g C m–2 yr–1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean FNEE = +17 g C m–2 yr–1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (FANPP) is associated with cool phases of both the PNA and PDO. Furthermore, these measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.« less

  7. Climate indices strongly influence old-growth forest carbon exchange

    NASA Astrophysics Data System (ADS)

    Wharton, Sonia; Falk, Matthias

    2016-04-01

    We present a decade and a half (1998–2013) of carbon dioxide fluxes from an old-growth stand in the American Pacific Northwest to identify ecosystem-level responses to Pacific teleconnection patterns, including the El Niño/Southern Oscillation (ENSO). This study provides the longest, continuous record of old-growth eddy flux data to date from one of the longest running Fluxnet stations in the world. From 1998 to 2013, average annual net ecosystem exchange (F NEE) at Wind River AmeriFlux was ‑32 ± 84 g C m‑2 yr‑1 indicating that the late seral forest is on average a small net sink of atmospheric carbon. However, interannual variability is high (>300 g C m‑2 yr‑1) and shows that the stand switches from net carbon sink to source in response to climate drivers associated with ENSO. The old-growth forest is a much stronger sink during La Niña years (mean F NEE = ‑90 g C m‑2 yr‑1) than during El Niño when the stand turns carbon neutral or into a small net carbon source (mean F NEE = +17 g C m‑2 yr‑1). Forest inventory data dating back to the 1930s show a similar correlation with the lower frequency Pacific North American (PNA) and Pacific Decadal Oscillation (PDO) whereby higher aboveground net primary productivity (F ANPP) is associated with cool phases of both the PNA and PDO. These measurements add evidence that carbon exchange in old-growth stands may be more sensitive to climate variability across shorter time scales than once thought.

  8. Climate-induced tree mortality: earth system consequences for carbon, energy, and water exchanges

    NASA Astrophysics Data System (ADS)

    Adams, H. D.; Macalady, A.; Breshears, D. D.; Allen, C. D.; Luce, C.; Royer, P. D.; Huxman, T. E.

    2010-12-01

    One of the greatest uncertainties in global environmental change is predicting changes in feedbacks between the biosphere and atmosphere that could present hazards to current earth system function. Terrestrial ecosystems, and in particular forests, exert strong controls on the global carbon cycle and influence regional hydrology and climatology directly through water and surface energy budgets. Widespread, rapid, drought- and infestation-triggered tree mortality is now emerging as a phenomenon affecting forests globally and may be linked to increasing temperatures and drought frequency and severity. We demonstrate the link between climate-sensitive tree mortality and risks of altered earth system function though carbon, water, and energy exchange. Tree mortality causes a loss of carbon stocks from an ecosystem and a reduction sequestration capacity. Recent research has shown that the 2000s pinyon pine die-off in the southwest US caused the loss of 4.6 Tg of aboveground carbon stocks from the region in 5 years, far exceeding carbon loss from other disturbances. Widespread tree mortality in British Columbia resulted in the loss of 270 Tg of carbon, shifting affected forestland from a carbon sink to a source, and influenced Canadian forest policy on carbon stocks. Tree mortality, as an immediate loss of live tree cover, directly alters albedo, near-ground solar radiation, and the relative contributions of evaporation and transpiration to total evapotranspiration. Near-ground solar radiation, an important ecosystem trait affecting soil heating and water availability, increased regionally following the pinyon pine die-off. Conversely, forest canopy loss with tree mortality, is expected to increase regional albedo, especially for forests which experience winter snow cover, potentially offsetting the climate forcing of terrestrial carbon releases to the atmosphere. Initial hydrological response to die-off is likely a reduction in evapotranspiration, which can increase

  9. How Glassy States Affect Brown Carbon Production?

    NASA Astrophysics Data System (ADS)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( < 20% RH) at 293 K. Optical properties and the AMS spectra were measured for toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  10. Daily Social Exchanges and Affect in Middle and Later Adulthood: The Impact of Loneliness and Age

    ERIC Educational Resources Information Center

    Russell, Alissa; Bergeman, C. S.; Scott, Stacey B.

    2012-01-01

    Although daily social exchanges are important for well-being, it is unclear how different types of exchanges affect daily well-being, as well as which factors influence the way in which individuals react to their daily social encounters. The present study included a sample of 705 adults aged 31 to 91, and using Multilevel Modeling analyses…

  11. Environmental Controls and Management Effects on Ecosystem Carbon Exchange in Two Grazed Temperate Grasslands

    NASA Astrophysics Data System (ADS)

    Ni Choncubhair, O.; Humphreys, J.; Lanigan, G.

    2013-12-01

    Temperate grasslands constitute over 30% of the Earth's naturally-occurring biomes and make an important contribution towards the partial mitigation of anthropogenic greenhouse gas emissions by terrestrial ecosystems. Accumulation of carbon (C) in grassland systems predominantly takes place in below-ground repositories, enhanced by the presence of a stable soil environment with low carbon turnover rates, active rhizodeposition and high levels of residue and organic inputs. However, this C sequestration is strongly influenced by soil characteristics and climatic variables. Furthermore, in managed pasture systems, carbon exchange across the soil-atmosphere boundary is additionally affected by management activities, such as biomass removal, grazing events and the deposition or application of organic amendments. These biotic and abiotic factors contribute greatly towards the large uncertainty associated with the carbon balance of grassland ecosystems and demand further analysis. In the present study, the controls and drivers of carbon dynamics in two rotationally-grazed grasslands in Ireland were examined. The sites experience similar temperate climatic regimes but differ in soil texture classification and stocking rate. Eddy covariance measurements of net ecosystem exchange of carbon were complemented by regular assessment of standing biomass, leaf cover, harvest exports and organic amendment inputs. Our study showed that mild weather conditions and an extended growing season sustained net C accumulation at both sites for at least ten months of the year. Despite differing soil drainage characteristics, winter fluxes of net carbon exchange and its component fluxes, gross photosynthesis and ecosystem respiration, were highly comparable between the two sites. Management practices during the active growing season exerted a strong influence on both the direction and the rate of C exchange in the grassland systems, with a strong dependence, however, on the timing and

  12. DAILY SOCIAL EXCHANGES AND AFFECT IN MIDDLE AND LATER ADULTHOOD: THE IMPACT OF LONELINESS AND AGE*

    PubMed Central

    RUSSELL, ALISSA; BERGEMAN, C. S.; SCOTT, STACEY B.

    2013-01-01

    Although daily social exchanges are important for well-being, it is unclear how different types of exchanges affect daily well-being, as well as which factors influence the way in which individuals react to their daily social encounters. The present study included a sample of 705 adults aged 31 to 91, and using Multilevel Modeling analyses investigated whether loneliness or age moderate the relationship between daily affect and daily social exchanges with family and friends. Results indicated differences between events involving family and those involving friends. Furthermore, lonelier individuals benefitted more from positive events than less lonely adults but were not more negatively reactive to negative events. Moreover, results suggested that older adults’ affect is more independent of both positive and negative social events compared to younger people. Implications are discussed for the importance of daily social exchanges, daily social stress vulnerability, and the influences of loneliness across middle and later adulthood. PMID:22950350

  13. How does subsurface characterization affect simulations of hyporheic exchange?

    PubMed

    Ward, Adam S; Gooseff, Michael N; Singha, Kamini

    2013-01-01

    We investigated the role of increasingly well-constrained geologic structures in the subsurface (i.e., subsurface architecture) in predicting streambed flux and hyporheic residence time distribution (RTD) for a headwater stream. Five subsurface realizations with increasingly resolved lithological boundaries were simulated in which model geometries were based on increasing information about flow and transport using soil and geologic maps, surface observations, probing to depth to refusal, seismic refraction, electrical resistivity (ER) imaging of subsurface architecture, and time-lapse ER imaging during a solute tracer study. Particle tracking was used to generate RTDs for each model run. We demonstrate how improved characterization of complex lithological boundaries and calibration of porosity and hydraulic conductivity affect model prediction of hyporheic flow and transport. Models using hydraulic conductivity calibrated using transient ER data yield estimates of streambed flux that are three orders of magnitude larger than uncalibrated models using estimated values for hydraulic conductivity based on values published for nearby hillslopes (10(-4) vs. 10(-7) m(2)/s, respectively). Median residence times for uncalibrated and calibrated models are 10(3) and 10(0) h, respectively. Increasingly well-resolved subsurface architectures yield wider hyporheic RTDs, indicative of more complex hyporheic flowpath networks and potentially important to biogeochemical cycling. The use of ER imaging to monitor solute tracers informs subsurface structure not apparent from other techniques, and helps to define transport properties of the subsurface (i.e., hydraulic conductivity). Results of this study demonstrate the value of geophysical measurements to more realistically simulate flow and transport along hyporheic flowpaths. PMID:22289021

  14. Spatial variability in plant species composition and peatland carbon exchange

    NASA Astrophysics Data System (ADS)

    Goud, E.; Moore, T. R.; Roulet, N. T.

    2015-12-01

    Plant species shifts in response to global change will have significant impacts on ecosystem carbon (C) exchange and storage arising from changes in hydrology. Spatial variation in peatland C fluxes have largely been attributed to the spatial distribution of microhabitats that arise from variation in surface topography and water table depth, but little is known about how plant species composition impacts peatland C cycling or how these impacts will be influenced by changing environmental conditions. We quantified the effect of species composition and environmental variables on carbon dioxide (CO2) and methane (CH4) fluxes over 2 years in a temperate peatland for four plant communities situated along a water table gradient from ombrotrophic bog to beaver pond. We hypothesized that (i) spatial heterogeneity in species composition would drive predictable spatial heterogeneity in C fluxes due to variation in plant traits and ecological tolerances, and (ii) increases in peat temperature would increase C fluxes. Species had different effects on C fluxes primarily due to differences in leaf traits. Differences in ecological tolerances among communities resulted in different rates of CO2 exchange in response to changes in water table depth. There was an overall reduction in ecosystem respiration (ER), gross primary productivity (GPP) and CH4 flux in response to colder peat temperatures in the second year, and the additive effects of a deeper water table in the bog margin and pond sites further reduced flux rates in these areas. These results demonstrate that different plant species can increase or decrease the flux of C into and out of peatlands based on differences in leaf traits and ecological tolerances, and that CO2 and CH4 fluxes are sensitive to changes in soil temperature, especially when coupled with changes in moisture availability.

  15. The sensitivity of carbon exchanges in Great Plains grasslands to precipitation variability

    NASA Astrophysics Data System (ADS)

    Petrie, M. D.; Brunsell, N. A.; Vargas, R.; Collins, S. L.; Flanagan, L. B.; Hanan, N. P.; Litvak, M. E.; Suyker, A. E.

    2016-02-01

    In the Great Plains, grassland carbon dynamics differ across broad gradients of precipitation and temperature, yet finer-scale variation in these variables may also affect grassland processes. Despite the importance of grasslands, there is little information on how fine-scale relationships compare between them regionally. We compared grassland C exchanges, energy partitioning and precipitation variability in eight sites in the eastern and western Great Plains using eddy covariance and meteorological data. During our study, both eastern and western grasslands varied between an average net carbon sink and a net source. Eastern grasslands had a moderate vapor pressure deficit (VPD = 0.95 kPa) and high growing season gross primary productivity (GPP = 1010 ± 218 g C m-2 yr-1). Western grasslands had a growing season with higher VPD (1.43 kPa) and lower GPP (360 ± 127 g C m-2 yr-1). Western grasslands were sensitive to precipitation at daily timescales, whereas eastern grasslands were sensitive at monthly and seasonal timescales. Our results support the expectation that C exchanges in these grasslands differ as a result of varying precipitation regimes. Because eastern grasslands are less influenced by short-term variability in rainfall than western grasslands, the effects of precipitation change are likely to be more predictable in eastern grasslands because the timescales of variability that must be resolved are relatively longer. We postulate increasing regional heterogeneity in grassland C exchanges in the Great Plains in coming decades.

  16. Atmosphere-Biosphere Exchange of Methane, Carbon Dioxide, and Ozone

    NASA Astrophysics Data System (ADS)

    Fan, Song-Miao

    1991-02-01

    The atmosphere-biosphere exchange was measured for CO_2 and O_3 in a tropical rain forest in the wet season of 1987, and for CO_2, CH_4 , and O_3 in a subarctic tundra in summer 1988. Photosynthesis and respiration were found to be in approximate balance in the rain forest. Net ecosystem uptake of CO_2 in the forest increased with intensity of light in the range of measurements. It is suggested that photosynthesis of a well-watered forest is primarily controlled by photosynthetically active radiation. Changes in the distribution of cloud cover, associated for example with El Nino, might induce globally significant changes in primary productivity and carbon storage. Soil moisture controls in tundra the distribution and association of vegetation types and the atmosphere -biosphere exchange of CO_2, although light intensity also influences the daily and seasonal net exchange of CO_2. Methane fluxes from the subarctic tundra averaged 25 +/- 1 (SE) mgCH_4/m ^2/d, representing 6 percent the net uptake of carbon for the 30 days of measurement. Wet meadow tundra emitted CH_4 at rates substantially higher than upland tundra. Lakes and lake margins are important sources of methane; lake emissions were dependent on surface wind speed. A global methane emission from tundra ecosystems is estimated to be ~ 11 megatons CH_4 per year based on this measurement, a small fraction (~ 3%) of the global source. Ozone deposition fluxes averaged ~ 1.0 times 10^ {11} molecules cm^{ -2}s^{-1} in the tropical forest and in the arctic tundra, similar in magnitude to the estimated mean stratospheric input. Ozone deposition fluxes were proportional to O_3 concentrations in the surface layer and regulated by turbulent transport and stomatal activity. Day-time ozone concentrations and deposition velocities measured at ~10 m above canopy averaged ~5 ppb and 1.8 cm s^ {-1} over the tropical forest and ~25 ppb and 0.25 cm s^{ -1} over the subarctic tundra, respectively. These results imply that

  17. Resource quality affects carbon cycling in deep-sea sediments.

    PubMed

    Mayor, Daniel J; Thornton, Barry; Hay, Steve; Zuur, Alain F; Nicol, Graeme W; McWilliam, Jenna M; Witte, Ursula F M

    2012-09-01

    Deep-sea sediments cover ~70% of Earth's surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of (13)C-labelled diatoms and faecal pellets to a cold water (-0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth. PMID:22378534

  18. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling

    NASA Astrophysics Data System (ADS)

    Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.

  19. Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications

    NASA Astrophysics Data System (ADS)

    Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.

    2015-12-01

    Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many

  20. Calcium carbonate does not affect imatinib pharmacokinetics in healthy volunteers

    PubMed Central

    Tawbi, Hussein; Christner, Susan M.; Lin, Yan; Johnson, Matthew; Mowrey, Emily T.; Cherrin, Craig; Chu, Edward; Lee, James J.; Puhalla, Shannon; Stoller, Ronald; Appleman, Leonard R.; Miller, Brian M.; Beumer, Jan H.

    2013-01-01

    Purpose Imatinib mesylate (Gleevec®/Glivec®), has revolutionized the treatment of chronic myeloid leukemias (CML) and gastrointestinal stromal tumors (GIST), and there is evidence for an exposure response relationship. Calcium carbonate is increasingly used as a calcium supplement and in the setting of gastric upset associated with imatinib therapy. Calcium carbonate could conceivably elevate gastric pH and complex imatinib, thereby influencing imatinib absorption and exposure. We aimed to evaluate whether use of calcium carbonate has a significant effect on imatinib pharmacokinetics. Methods Eleven healthy subjects were enrolled in a 2-period, open-label, single-institution, randomized cross-over, fixed-schedule study. In one period, each subject received 400 mg of imatinib p.o.. In the other period, 4000 mg calcium carbonate (Tums Ultra®) was administered p.o. 15 min before 400 mg of imatinib. Plasma concentrations of imatinib and its active N-desmethyl metabolite CGP74588 were assayed by LC-MS; data were analyzed non-compartmentally, and compared after log transformation. Results Calcium carbonate administration did not significantly affect the imatinib area under the plasma concentration versus time curve (AUC) (41.2 μg/mL•h alone versus 40.8 μg/mL•h with calcium carbonate, P=0.99), maximum plasma concentration (Cmax) (2.35 μg/mL alone versus 2.39 μg/mL with calcium carbonate, P=0.89). Conclusions Our results indicate that the use of calcium carbonate does not significantly affect imatinib pharmacokinetics. PMID:24170263

  1. Carbon monoxide poisoning of proton-exchange membrane fuel cells

    SciTech Connect

    Rodrigues, A.; Amphlett, J.C.; Mann, R.F.; Peppley, B.A.; Roberge, P.R.

    1997-12-31

    The platinum-alloy catalyst used in proton-exchange membrane (PEM) fuel cell anodes is highly susceptible to carbon monoxide (CO) poisoning. CO reduces the catalyst activity by blocking active catalyst sites normally available for hydrogen chemisorption and dissociation. The reaction kinetics at the anode catalyst surface can be used to estimate the decrease in cell voltage due to various levels of CO contamination in the inlet fuel streams on PEM fuel cell performance have been reviewed and analyzed in an attempt to further understand the electrochemical properties of the CO adsorption process. A fuel cell performance model of bipolar, Nafion 117 PEM fuel cell stack has been developed which predicts equilibrium cell output voltage as a function of current density and partial pressure of CO. The model contains both empirical and mechanistic parameters and evolved from a steady-state electrochemical model for a PEM fuel cell fed with a CO-free anode gas. Reaction kinetics and equilibrium surface coverage have been incorporated into the electrochemical model to predict the decrease in fuel cell performance at equilibrium. The effects of CO were studied at various concentrations of CO in hydrogen as the anode feed gas. Literature data were used to develop the model parameters and the resulting model is used to compare the model-predicted voltages, with and without CO, to data found in the literature.

  2. Carbon monoxide exchange and partitioning of a managed mountain meadow

    NASA Astrophysics Data System (ADS)

    Wohlfahrt, G.; Hammerle, A.; Kitz, F.; Spielmann, F.

    2015-12-01

    With an average mole fraction of 100 ppb carbon monoxide (CO) plays a critical role in atmospheric chemistry and thus has an indirect global warming potential. While sources/sinks of CO on land at least partially cancel out each other, the magnitude of CO sources and sinks is highly uncertain. Even if direct CO fluxes from/to land ecosystems are very much likely clearly lower in magnitude compared to anthropogenic emissions, biomass burning, emissions from chemical precursors and the OH sink, it may be premature to neglect any direct contributions of land ecosystems to the CO budget. In addition, changes in global climate and resulting changes in global productivity may require re-evaluating older data and assumptions. One major reason for the large uncertainty is a general scarcity of empirical data. An additional factor contributing to the uncertainty is the lack of ecosystem-scale CO exchange measurements, i.e. CO flux data that encompass all sources and sinks within an ecosystem. Here we present data on continuous eddy covariance measurements of CO-fluxes above a managed mountain grassland in combination with soil chamber flux measurements, within- and above-canopy concentration profiles and an inverse Lagrangian analysis to disentangle sinks and sources of CO. Preliminary results show the grassland ecosystem to be a net source for CO during daytime, with increasing flux rates at higher solar radiation. At night, if at all, the meadow is a slight sink for CO. The same holds true for soil flux measurements.

  3. Multiyear high-resolution carbon exchange over European croplands from the integration of observed crop yields into CarbonTracker Europe

    NASA Astrophysics Data System (ADS)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; de Wit, Allard; Peters, Wouter

    2016-04-01

    Carbon exchange over croplands plays an important role in the European carbon cycle over daily-to-seasonal time scales. Not only do crops occupy one fourth of the European land area, but their photosynthesis and respiration are large and affect CO2 mole fractions at nearly every atmospheric CO2 monitoring site. A better description of this crop carbon exchange in our CarbonTracker Europe data assimilation system - which currently treats crops as unmanaged grasslands - could strongly improve its ability to constrain terrestrial carbon fluxes. Available long-term observations of crop yield, harvest, and cultivated area allow such improvements, when combined with the new crop-modeling framework we present. This framework can model the carbon fluxes of 10 major European crops at high spatial and temporal resolution, on a 12x12 km grid and 3-hourly time-step. The development of this framework is threefold: firstly, we optimize crop growth using the process-based WOrld FOod STudies (WOFOST) agricultural crop growth model. Simulated yields are downscaled to match regional crop yield observations from the Statistical Office of the European Union (EUROSTAT) by estimating a yearly regional parameter for each crop species: the yield gap factor. This step allows us to better represent crop phenology, to reproduce the observed multiannual European crop yields, and to construct realistic time series of the crop carbon fluxes (gross primary production, GPP, and autotrophic respiration, Raut) on a fine spatial and temporal resolution. Secondly, we combine these GPP and Raut fluxes with a simple soil respiration model to obtain the total ecosystem respiration (TER) and net ecosystem exchange (NEE). And thirdly, we represent the horizontal transport of carbon that follows crop harvest and its back-respiration into the atmosphere during harvest consumption. We distribute this carbon using observations of the density of human and ruminant populations from EUROSTAT. We assess the model

  4. The Relationships between Clan Culture, Leader-Member Exchange, and Affective Organizational Commitment

    ERIC Educational Resources Information Center

    Short, Emily Carter

    2013-01-01

    As colleges and universities face the challenge of transitioning to a scheme of funding based on student retention and graduation rates, it is imperative that all variables that can effect enrollment be considered. This study focused on the relationships between clan culture, leader-member exchange, and affective organizational commitment.…

  5. Mother-Toddler Affect Exchanges and Children's Mastery Behaviours during Preschool Years

    ERIC Educational Resources Information Center

    Wang, Jun; Morgan, George A.; Biringen, Zeynep

    2014-01-01

    This study examined the longitudinal relations of mother-child affect exchanges at 18?months with children's mastery motivation at 39?months. Observation and questionnaire data were collected from mother-child dyads when children were 18?months; 43 mothers again rated their children's mastery motivation at 39?months. Results suggested…

  6. Carbon mass-balance modeling and carbon isotope exchange processes in the Curonian Lagoon

    NASA Astrophysics Data System (ADS)

    Barisevičiūtė, Rūta; Žilius, Mindaugas; Ertürk, Ali; Petkuvienė, Jolita

    2016-04-01

    The Curonian lagoon one of the largest coastal lagoons in Europe is located in the southeastern part of the Baltic Sea and lies along the Baltic coast of Lithuania and the Kaliningrad region of Russia. It is influenced by a discharge of the Nemunas and other smaller rivers and saline water of the Baltic Sea. The narrow (width 0.4 km, deep 8-14 m) Klaipėda Strait is the only way for fresh water run-off and brackish water intrusions. This research is focused on carbon isotope fractionations related with air - water exchange, primary production and organic carbon sedimentation, mineralization and uptake from both marine and terrestrial sources.

  7. Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest

    USGS Publications Warehouse

    Myers-Smith, I. H.; McGuire, A.D.; Harden, J.W.; Chapin, F. S., III

    2007-01-01

    We measured CO2 and CH4 exchange from the center of a Sphagnum-dominated permafrost collapse, through an aquatic most, and into a recently burned black spruce forest on the Tanana River floodplain in interior Alaska. In the anomalously dry growing season of 2004, both the collapse and the surrounding burned area were net sink, s for CO2, with a mean daytime net ecosystem exchange of -1.4 ??mol CO2 m-2 s-1, while the moat was a CH4 source with a mean flux of 0.013 ??mol CH4 m-2 s-1. Regression analyses identified temperature as the dominant factor affecting intragrowing season variation in CO2 exchange and soil moisture as the primary control influencing CH4 emissions. CH4 emissions during the wettest portion of the growing season were four times higher than during the driest periods. If temperatures continue to warm, peatlahd vegetation will likely expand with permafrost degradation, resulting in greater carbon accumulation and methane emissions for the landscape as a whole. Copyright 2007 by the American Geophysical Union.

  8. Estuary Turbulence and Air-Water Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Orton, Philip Mark

    The mixing of constituents between estuarine bottom and surface waters or between estuarine surface waters and the atmosphere are two topics of growing interest, in part due to the potentially important role of estuaries in global carbon budgets. These two types of mixing are typically driven by turbulence, and a research project was developed to improve the scientific understanding of atmospheric and tidal controls on estuary turbulence and airwater exchange processes. Highlights of method development and field research on the Hudson River estuary include several deployments of bottom mounted current profilers to quantify the turbulent kinetic energy (TKE) budget, and construction and deployment of an instrumented catamaran that makes autonomous measurements of air-water CO2 exchange (FCO2), water TKE dissipation at 50 cm depth (epsilon50), and other physical properties just above and below the air-water interface. On the Hudson, wind correlates strongly with epsilon50, but surface water speed and airwater heat flux also have moderate correlations with epsilon50. In partially mixed estuaries such as the Hudson, as well as salt wedge estuaries, baroclinic pressure forcing typically causes spring ebb tides to have much stronger upper water column shear than flood tides. The Hudson data are used to show that this shear leads to local shear instability and stronger near-surface turbulence on spring ebbs. Also, buoyancy budget terms are compared to demonstrate how water-to-air heat fluxes can influence stratification and indirectly influence epsilon50. Looking more closely at the role of wind forcing, it is demonstrated that inland propagation of the sea breeze on warm sunny days leads to arrival in phase with peak solar forcing at seaward stations, but several hours later at up-estuary stations. Passage of the sea breeze front raises the air-water CO2 flux by 1-2 orders of magnitude, and drives epsilon50 comparable to spring tide levels in the upper meter of the water

  9. How life affects the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1992-01-01

    Developing a quantitative understanding of the biogeochemical cycles of carbon as they have worked throughout Earth history on various time scales, how they have been affected by biological evolution, and how changes in the carbon content of ocean and atmosphere may have affected climate and the evolution of life are the goals of the research. Theoretical simulations were developed that can be tuned to reproduce such data as exist and, once tuned, can be used to predict properties that have not yet been observed. This is an ongoing process, in which models and results are refined as new data and interpretations become available and as understanding of the global system improves. Results of the research are described in several papers which were published or submitted for publication. These papers are summarized. Future research plans are presented.

  10. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  11. Carbon monoxide exchange and partitioning of a managed mountain meadow

    NASA Astrophysics Data System (ADS)

    Hammerle, Albin; Kitz, Florian; Spielmann, Felix; Gerdel, Katharina; Wohlfahrt, Georg

    2016-04-01

    With an average mole fraction of 100 ppb carbon monoxide (CO) plays a critical role in atmospheric chemistry and thus has an indirect global warming potential. While sources/sinks of CO on land at least partially cancel out each other, the magnitude of CO sources and sinks is highly uncertain. Even if direct CO fluxes from/to land ecosystems are very much likely clearly lower in magnitude compared to anthropogenic emissions, biomass burning, emissions from chemical precursors and the OH sink, it may be premature to neglect any direct contributions of land ecosystems to the CO budget. In addition, changes in global climate and resulting changes in global productivity may require re-evaluating older data and assumptions. One major reason for the large uncertainty is a general scarcity of empirical data. An additional factor contributing to the uncertainty is the lack of ecosystem-scale CO exchange measurements, i.e. CO flux data that encompass all sources and sinks within an ecosystem. Here we present data on continuous eddy covariance measurements of CO-fluxes above a managed mountain grassland in combination with soil chamber flux measurements, within- and above-canopy concentration profiles and an inverse Lagrangian analysis to disentangle sinks and sources of CO. Results show the grassland ecosystem to be a net source for CO during daytime, with increasing flux rates at higher solar radiation. At night, if at all, the meadow is a slight sink for CO. The same holds true regarding the soil flux measurements. Additionally, a two-month rainout experiment revealed hardly any differences in CO soil fluxes between rainout- and control-plots unless extremely dry conditions were reached.

  12. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone

    NASA Astrophysics Data System (ADS)

    Butterworth, Brian J.; Miller, Scott D.

    2016-07-01

    Direct carbon dioxide flux measurements using eddy covariance from an icebreaker in the high-latitude Southern Ocean and Antarctic marginal ice zone are reported. Fluxes were combined with the measured water-air carbon dioxide partial pressure difference (ΔpCO2) to compute the air-sea gas transfer velocity (k, normalized to Schmidt number 660). The open water data showed a quadratic relationship between k (cm h-1) and the neutral 10 m wind speed (U10n, m s-1), kopen = 0.245 U10n2 + 1.3, in close agreement with decades old tracer-based results and much lower than cubic relationships inferred from previous open ocean eddy covariance studies. In the marginal ice zone, the effective gas transfer velocity decreased in proportion to sea ice cover, in contrast with predictions of enhanced gas exchange in the presence of sea ice. The combined open water and marginal ice zone results affect the calculated magnitude and spatial distribution of Southern Ocean carbon flux.

  13. Leader-member exchange and affective organizational commitment: the contribution of supervisor's organizational embodiment.

    PubMed

    Eisenberger, Robert; Karagonlar, Gokhan; Stinglhamber, Florence; Neves, Pedro; Becker, Thomas E; Gonzalez-Morales, M Gloria; Steiger-Mueller, Meta

    2010-11-01

    In order to account for wide variation in the relationship between leader-member exchange and employees' affective organizational commitment, we propose a concept termed supervisor's organizational embodiment (SOE), which involves the extent to which employees identify their supervisor with the organization. With samples of 251 social service employees in the United States (Study 1) and 346 employees in multiple Portuguese organizations (Study 2), we found that as SOE increased, the association between leader-member exchange and affective organizational commitment became greater. This interaction carried through to in-role and extra-role performance. With regard to antecedents, we found in Study 1 that supervisor's self-reported identification with the organization increased supervisor's expression of positive statements about the organization, which in turn increased subordinates' SOE. PMID:20718516

  14. Terrestrial carbon cycle affected by non-uniform climate warming

    NASA Astrophysics Data System (ADS)

    Xia, Jianyang; Chen, Jiquan; Piao, Shilong; Ciais, Philippe; Luo, Yiqi; Wan, Shiqiang

    2014-03-01

    Feedbacks between the terrestrial carbon cycle and climate change could affect many ecosystem functions and services, such as food production, carbon sequestration and climate regulation. The rate of climate warming varies on diurnal and seasonal timescales. A synthesis of global air temperature data reveals a greater rate of warming in winter than in summer in northern mid and high latitudes, and the inverse pattern in some tropical regions. The data also reveal a decline in the diurnal temperature range over 51% of the global land area and an increase over only 13%, because night-time temperatures in most locations have risen faster than daytime temperatures. Analyses of satellite data, model simulations and in situ observations suggest that the impact of seasonal warming varies between regions. For example, spring warming has largely stimulated ecosystem productivity at latitudes between 30° and 90° N, but suppressed productivity in other regions. Contrasting impacts of day- and night-time warming on plant carbon gain and loss are apparent in many regions. We argue that ascertaining the effects of non-uniform climate warming on terrestrial ecosystems is a key challenge in carbon cycle research.

  15. Rapid exchange between atmospheric CO2 and carbonate anion intercalated within magnesium rich layered double hydroxide.

    PubMed

    Sahoo, Pathik; Ishihara, Shinsuke; Yamada, Kazuhiko; Deguchi, Kenzo; Ohki, Shinobu; Tansho, Masataka; Shimizu, Tadashi; Eisaku, Nii; Sasai, Ryo; Labuta, Jan; Ishikawa, Daisuke; Hill, Jonathan P; Ariga, Katsuhiko; Bastakoti, Bishnu Prasad; Yamauchi, Yusuke; Iyi, Nobuo

    2014-10-22

    The carbon cycle, by which carbon atoms circulate between atmosphere, oceans, lithosphere, and the biosphere of Earth, is a current hot research topic. The carbon cycle occurring in the lithosphere (e.g., sedimentary carbonates) is based on weathering and metamorphic events so that its processes are considered to occur on the geological time scale (i.e., over millions of years). In contrast, we have recently reported that carbonate anions intercalated within a hydrotalcite (Mg0.75Al0.25(OH)2(CO3)0.125·yH2O), a class of a layered double hydroxide (LDH), are dynamically exchanging on time scale of hours with atmospheric CO2 under ambient conditions. (Ishihara et al., J. Am. Chem. Soc. 2013, 135, 18040-18043). The use of (13)C-labeling enabled monitoring by infrared spectroscopy of the dynamic exchange between the initially intercalated (13)C-labeled carbonate anions and carbonate anions derived from atmospheric CO2. In this article, we report the significant influence of Mg/Al ratio of LDH on the carbonate anion exchange dynamics. Of three LDHs of various Mg/Al ratios of 2, 3, or 4, magnesium-rich LDH (i.e., Mg/Al ratio = 4) underwent extremely rapid exchange of carbonate anions, and most of the initially intercalated carbonate anions were replaced with carbonate anions derived from atmospheric CO2 within 30 min. Detailed investigations by using infrared spectroscopy, scanning electron microscopy, powder X-ray diffraction, elemental analysis, adsorption, thermogravimetric analysis, and solid-state NMR revealed that magnesium rich LDH has chemical and structural features that promote the exchange of carbonate anions. Our results indicate that the unique interactions between LDH and CO2 can be optimized simply by varying the chemical composition of LDH, implying that LDH is a promising material for CO2 storage and/or separation. PMID:25275963

  16. Whole ecosystem estimates of carbon exchange and storage in a New England salt marsh

    NASA Astrophysics Data System (ADS)

    Forbrich, I.; Giblin, A.

    2013-12-01

    Salt marshes are wetlands situated at the interface of land and ocean. They are among the most productive ecosystems worldwide and store substantial amounts of carbon as peat. Their long-term stability is dependent on sediment accretion and carbon accumulation to avoid submergence when sea level is rising. Currently, estimates of carbon storage in salt marshes are uncertain because our understanding of the coupling between marsh plant productivity and carbon release to the adjacent ocean is limited. To evaluate the capacity to store carbon as well as the resilience of the ecosystem, long-term studies of carbon cycling considering both vertical and lateral fluxes are necessary. To study the net exchange between marsh and atmosphere, we chose the non-intrusive eddy covariance which allows nearly continuous half hourly flux measurements of net ecosystem exchange (NEE) on the ecosystem scale. Since spring 2012, we have been investigating the marsh-atmosphere exchange of carbon dioxide (CO2) at a Spartina patens high marsh at the Plum Island Ecosystems Long-Term Ecological Research site. Seasonal dynamics of CO2 exchange during summer were controlled by the phenology of S. patens. Preliminary estimates for seasonal carbon storage range from 185 to 228 g C m-2 (5/1/2012 to 10/31/2012). During the winter months we observed small fluxes, but carbon uptake still occurred during the day. We attribute this to microalgae productivity. Winter carbon release is estimated to be approximately 130 g C m-2 (12/6/2012 to 4/30/2013), when uptake by microalgae is not taken into account. This emphasizes the relevance of transitional and cold season carbon cycling for the carbon storage capacity of northern salt marshes, since a large proportion of fixed carbon is released during these periods. Direct tidal effects on the marsh-atmosphere carbon exchange are visible especially during monthly spring tides, when both daytime carbon uptake and night time respiration were reduced during

  17. Carbon charge exchange analysis in the ITER-like wall environment

    SciTech Connect

    Menmuir, S.; Giroud, C.; Hawkes, N. C.; Biewer, T. M.; Coffey, I. H.; Delabie, E.; Sertoli, M.

    2014-11-15

    Charge exchange spectroscopy has long been a key diagnostic tool for fusion plasmas and is well developed in devices with Carbon Plasma-Facing Components. Operation with the ITER-like wall at JET has resulted in changes to the spectrum in the region of the Carbon charge exchange line at 529.06 nm and demonstrates the need to revise the core charge exchange analysis for this line. An investigation has been made of this spectral region in different plasma conditions and the revised description of the spectral lines to be included in the analysis is presented.

  18. Determining Regional Arctic Tundra Carbon Exchange: A Bottom-Up Approach

    NASA Technical Reports Server (NTRS)

    Huemmrich, Fred

    2006-01-01

    This viewgraph presentation reviews the carbon atmospheric exchange with Arctic tundra. In the Arctic the ecosystem has been a net carbon sink. The project investigates the question of how might climate warming effect high latitude ecosystems and the Earth ecosystems and how to measure the changes.

  19. Primary and secondary effects of climate variability on carbon and water exchange in a managed subalpine Eucalyptus forest.

    NASA Astrophysics Data System (ADS)

    van Gorsel, Eva; Berni, Jose. A. J.; Briggs, Peter; Cabello-Leblic, Arancha; Chasmer, Laura; Cleugh, Helen A.; Hacker, Joerg; Hantson, Stijn; Haverd, Vanessa; Hughes, Dale; Hopkinson, Chris; Keith, Heather; Kljun, Natascha; Leuning, Ray; Yebra, Marta; Zegelin, Steve

    2013-04-01

    Climate variability and change, ecosystem disturbance and land management operate over a large range of temporal and spatial scales and lead to variability in carbon and water fluxes. Diagnosing the climate controls over these fluxes is not simple but key to improving prediction and understanding of water and carbon cycle-climate interactions. We use a novel technique to investigate the variability of the fluxes from daily to multiannual timescales. We rank direct controlling factors of climate on water use and carbon uptake (changes in radiation, temperature, humidity) and indirect factors (disturbance triggered by changes in climate conditions). Direct climate impacts depend on the time scale under consideration but are generally strongest on the annual time scale. To investigate the spatio-temporal variability caused by disturbance we use NDVI and albedo. They provide information on status and dynamics of the vegetation and we find that the whole area within Bago State Forest that was classified as native Eucalyptus forest (305.05 km2) was affected by a disturbance by insect attack. This disturbance affected tree species differently, led to a reduced photosynthetically active leaf area, reduced canopy conductance and hence photosynthetic capacity. The reduced net carbon uptake of the trees was evident as reduced biomass increment and increased mortality was observed. Net ecosystem exchange measurements at the Tumbarumba flux tower indicate that the ecosystem turned from a generally strong carbon sink to a source. We further find that the coherence between albedo and carbon and water exchange is strong on annual and multi-annual time scales. At a multi-annual time scale, carbon and water fluxes are coherent with the multivariate El Niño index.

  20. Decoupling in the land-atmosphere for carbon exchange during severe droughts

    NASA Astrophysics Data System (ADS)

    Combe, Marie; Vilà-Guerau de Arellano, Jordi; Ouwersloot, Huug G.; Peters, Wouter

    2015-04-01

    When analyzing the terrestrial carbon cycle, a strong focus is generally placed on its surface drivers (e.g. leaf area index and soil moisture). However, free-tropospheric conditions and processes occurring at the top of the atmospheric boundary layer (ABL), like subsidence or cloud formation, can strongly impact entrainment fluxes and the surface energy balance, which in turn affect the atmospheric CO2 mole fraction and surface CO2 uptake. The free-tropospheric state and ABL-top processes are controlled by large-scale meteorological conditions, and can change drastically during for instance severe droughts. To quantify the importance of these upper-atmospheric processes for the carbon cycle, we perform a sensitivity analysis across a range of meteorological conditions inspired by field observations. We use a conceptual model that represents the daytime surface fluxes of carbon, water and energy for a maize field, coupled to the dynamics of a convective boundary layer. We find that the importance of upper-atmosphere conditions for the atmospheric CO2 budget is strengthened under low soil moisture conditions, exceeding the influence of surface fluxes by a factor of four or more. Under these conditions the surface carbon, water, and energy exchange get decoupled from the atmosphere, and the surface energy is directed mainly towards sensible heat, which increases both the direct and entrainment heating of the ABL. This in turn contributes to further soil moisture depletion and thus forms a positive drought feedback. The occurrence of a decoupled state in our conceptual model strongly depends on how we parameterize soil moisture stress. Since the soil moisture stress parameterization impacts the rate of day-to-day soil moisture depletion under prolonged drought conditions, it is key to modeling drought situations and heat waves. We show how the decoupling, drought feedback and atmospheric CO2 budget differ under various parameterizations for soil moisture stress.

  1. Carbon exchange by establishing biofuel crops in Central Illinois

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grass biofuels may contribute to long-term carbon sequestration in soils, thereby providing a broad range of environmental benefits at multiple scales. To quantify those benefits, the carbon balance was investigated over three perennial grass biofuel crops miscanthus (Miscanthus giganteus)...

  2. Changes in Carbon Storage and Net Carbon Exchange After a Shelterwood Harvest at Howland Forest, Maine

    NASA Astrophysics Data System (ADS)

    Scott, N. A.; Rodrigues, C. A.; Hughes, H.; Lee, J. T.; Davidson, E. A.; Dail, D. B.; Goltz, S. M.; Malerba, P.; Hollinger, D. Y.

    2003-12-01

    While many forests are actively sequestering carbon, little research has examined the direct effects of forest management practices on carbon sequestration. This is a critical issue in North America, where a large proportion of forests are managed. At the Howland Forest in Maine, we are using eddy covariance, biometric techniques and modeling to evaluate changes in carbon storage following a shelterwood cut that removed just under 30% of aboveground biomass. This management regime is becoming increasingly common throughout the region. Prior to harvest, the stand contained about 76 Mg C ha-1 (30 m2ha-1 basal area) in above- and below-ground live biomass. Harvesting removed about 15 Mg C ha-1 (SEM=2.1), and created about 5.3 Mg C ha-1 (SEM=1.1) of aboveground and 5.2 Mg C ha-1 (SEM=0.7) of root/stump detritus. Leaf-area index and litterfall declined by about 40% with harvest. Approximately half of the harvested wood was used for paper products (half-life of 3.5 years) and half for longer-lived wood products (half-life of 45 years). In a nearby, unharvested stand, eddy covariance measurements indicated that net ecosystem exchange (NEE) averages about 1.8 Mg C ha-1 y-1. A comparison of NEE at unharvested and harvested stands, both pre- and post-harvest, indicated that NEE declined following the harvest by about 18%, which is less than expected based on basal area and LAI changes. Both daily uptake and nocturnal respiration declined after harvest. Soil respiration declined slightly with harvest, suggesting no major soil C loss after harvest; harvesting had little effect on soil moisture and temperature. When decay of paper and wood products is included in a preliminary carbon budget, we predict that the forest will be a net C source to the atmosphere for at least 5 years, assuming pre-harvest growth rates of trees. How quickly the carbon balance becomes positive will depend largely on whether post-harvest tree growth rates increase.

  3. Carbon exchange of an old-growth eastern hemlock (Tsuga canadensis) forest in central New England.

    PubMed

    Hadley, Julian L; Schedlbauer, Jessica L

    2002-11-01

    Carbon (C) exchange of an approximately 200-year-old eastern hemlock (Tsuga canadensis L.) forest in central Massachusetts, USA, was estimated from mid-October 2000 through October 2001 based on eddy covariance measurements and statistical modeling from microclimatic data. Measurements were made in 68% of the hours during the year of study, with > 50% coverage in all months except December and August. Data were filtered by wind direction and atmospheric turbulence to remove invalid measurements. Analysis of filtered data showed that photosynthetically active radiation (PAR) was significant in predicting C exchange, except during the winter. Daily minimum air temperature affected C exchange in autumn and winter, whereas time of day, water vapor pressure deficit and air temperature had significant effects on C storage in spring, summer and fall. Most C storage in the stand occurred in April through July and in October 2001, with maximum rates in April and May. Persistent cold weather prevented C storage in December through March. In early spring 2001, C uptake was sensitive to nocturnal frost: daily minimum air temperatures below 0 degrees C reduced C fixation, and minima below -5 degrees C caused its virtual cessation. Soil temperature was a poor predictor of C balance during this period. In August, high soil and air temperatures (averaging 16.7 and 21.1 degrees C, respectively) drove high ecosystem respiration, which approximately balanced C uptake. These patterns show potential for stimulated C storage in hemlock forests in a warmer climate with fewer spring and autumn frosts, but reduced C storage during warmer summers. Estimated annual C storage was 3.0 Mg ha(-1), which is higher than for younger coniferous and deciduous forests during earlier years in the northeastern USA. Long-term data are needed to determine if the estimated high C storage in this hemlock forest is a result of interannual climate variation or an effect of forest composition. PMID:12414368

  4. Estimation of Net Ecosystem Carbon Exchange for the Conterminous United States by Combining MODIS and AmeriFlux Data 1961

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the...

  5. Modeling Net Ecosystem Carbon Exchange of Alpine Grasslands with a Satellite-Driven Model

    PubMed Central

    Zhao, Yuping; Zhang, Xianzhou; Fan, Yuzhi; Shi, Peili; He, Yongtao; Yu, Guirui; Li, Yingnian

    2015-01-01

    Estimate of net ecosystem carbon exchange (NEE) between the atmosphere and terrestrial ecosystems, the balance of gross primary productivity (GPP) and ecosystem respiration (Reco) has significant importance for studying the regional and global carbon cycles. Using models driven by satellite data and climatic data is a promising approach to estimate NEE at regional scales. For this purpose, we proposed a semi-empirical model to estimate NEE in this study. In our model, the component GPP was estimated with a light response curve of a rectangular hyperbola. The component Reco was estimated with an exponential function of soil temperature. To test the feasibility of applying our model at regional scales, the temporal variations in the model parameters derived from NEE observations in an alpine grassland ecosystem on Tibetan Plateau were investigated. The results indicated that all the inverted parameters exhibit apparent seasonality, which is in accordance with air temperature and canopy phenology. In addition, all the parameters have significant correlations with the remote sensed vegetation indexes or environment temperature. With parameters estimated with these correlations, the model illustrated fair accuracy both in the validation years and at another alpine grassland ecosystem on Tibetan Plateau. Our results also indicated that the model prediction was less accurate in drought years, implying that soil moisture is an important factor affecting the model performance. Incorporating soil water content into the model would be a critical step for the improvement of the model. PMID:25849325

  6. Environmental variation, vegetation distribution, carbon dynamics and water/energy exchange at high latitudes

    USGS Publications Warehouse

    McGuire, A.D.; Wirth, C.; Apps, M.; Beringer, J.; Clein, J.; Epstein, H.; Kicklighter, D.W.; Bhatti, J.; Chapin, F. S., III; De Groot, B.; Efremov, D.; Eugster, W.; Fukuda, M.; Gower, T.; Hinzman, L.; Huntley, B.; Jia, G.J.; Kasischke, E.; Melillo, J.; Romanovsky, V.; Shvidenko, A.; Vaganov, E.; Walker, D.

    2002-01-01

    The responses of high latitude ecosystems to global change involve complex interactions among environmental variables, vegetation distribution, carbon dynamics, and water and energy exchange. These responses may have important consequences for the earth system. In this study, we evaluated how vegetation distribution, carbon stocks and turnover, and water and energy exchange are related to environmental variation spanned by the network of the IGBP high latitude transects. While the most notable feature of the high latitude transects is that they generally span temperature gradients from southern to northern latitudes, there are substantial differences in temperature among the transects. Also, along each transect temperature co-varies with precipitation and photosynthetically active radiation, which are also variable among the transects. Both climate and disturbance interact to influence latitudinal patterns of vegetation and soil carbon storage among the transects, and vegetation distribution appears to interact with climate to determine exchanges of heat and moisture in high latitudes. Despite limitations imposed by the data we assembled, the analyses in this study have taken an important step toward clarifying the complexity of interactions among environmental variables, vegetation distribution, carbon stocks and turnover, and water and energy exchange in high latitude regions. This study reveals the need to conduct coordinated global change studies in high latitudes to further elucidate how interactions among climate, disturbance, and vegetation distribution influence carbon dynamics and water and energy exchange in high latitudes.

  7. Carbon cycle: A hump in ocean-air exchange

    NASA Astrophysics Data System (ADS)

    Reddy, Christopher M.

    2016-06-01

    Semivolatile organic compounds from fossil fuels or incomplete combustion are ubiquitous. A suite of circumglobal measurements of their oceanic and atmospheric concentrations reveals large carbon fluxes through the deposition of these compounds.

  8. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    EPA Science Inventory

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around &ldq...

  9. Seasonal carbon dioxide exchange between the regolith and atmosphere of Mars - Experimental and theoretical studies

    NASA Technical Reports Server (NTRS)

    Fanale, F. P.; Salvail, J. R.; Banerdt, W. B.; Saunders, R. S.; Johansen, L. A.

    1982-01-01

    CO2 penetration rate measurements have been made through basalt-clay soils under conditions simulating the penetration of the cap-induced seasonal CO2 pressure wave through the topmost regolith of Mars, and results suggest that existing theoretical models for the diffusion of a gas through a porous and highly adsorbing medium may be used to assess the importance of the Martian seasonal regolith-atmosphere CO2 exchange. The maximum effect of thermally driven exchange between the topmost seasonally (thermally) affected regolith and the atmosphere shows that, while this may be of greater importance than the isothermal exchange, the thermally driven exchange would be recognizable only if the pressure wave from CO2 exchanged at high latitudes did not propagate atmospherically faster than the rate at which the exchange itself occurred. This is an unreasonable assumption.

  10. Carbon nano-chain and carbon nano-fibers based gas diffusion layers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kannan, Arunachala M.; Munukutla, Lakshmi

    Gas diffusion layers (GDL) for proton exchange membrane fuel cell have been developed using a partially ordered graphitized nano-carbon chain (Pureblack ® carbon) and carbon nano-fibers. The GDL samples' characteristics such as, surface morphology, surface energy, bubble-point pressure and pore size distribution were characterized using electron microscope, inverse gas chromatograph, gas permeability and mercury porosimetry, respectively. Fuel cell performance of the GDLs was evaluated using single cell with hydrogen/air at ambient pressure, 70 °C and 100% RH. The GDLs with combination of vapor grown carbon nano-fibers with Pureblack carbon showed significant improvement in mechanical robustness as well as fuel cell performance. The micro-porous layer of the GDLs as seen under scanning electron microscope showed excellent surface morphology showing the reinforcement with nano-fibers and the surface homogeneity without any cracks.

  11. Carbon dioxide control in an open system that measures canopy gas exchanges

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atmospheric carbon dioxide concentration ([CO2]) effects both C3 net assimilation (A) as well as crop water use. Methods for measuring whole canopy gas exchange responses under [CO2] enrichment are needed for breeding programs aiming to develop crop cultivars resistant to stresses like drought in a...

  12. Commonalities of carbon dioxide exchange in semiarid regions with monsoon and Mediterranean climates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semiarid ecosystems with monsoon climates receive precipitation during the warm season while Mediterranean systems are characteristically wet in the cool season and dry in the summer. Comparing biosphere-atmosphere carbon exchange across these two climate regimes can yield information about the int...

  13. Ozone affects gas exchange, growth and reproductive development in Brassica campestris (Wisconsin fast plants).

    PubMed

    Black, V J; Stewart, C A; Roberts, J A; Black, C R

    2007-01-01

    Exposure to ozone (O(3)) may affect vegetative and reproductive development, although the consequences for yield depend on the effectiveness of the compensatory processes induced. This study examined the impact on reproductive development of exposing Brassica campestris (Wisconsin Fast Plants) to ozone during vegetative growth. Plants were exposed to 70 ppb ozone for 2 d during late vegetative growth or 10 d spanning most of the vegetative phase. Effects on gas exchange, vegetative growth, reproductive development and seed yield were determined. Impacts on gas exchange and foliar injury were related to pre-exposure stomatal conductance. Exposure for 2 d had no effect on growth or reproductive characteristics, whereas 10-d exposure reduced vegetative growth and reproductive site number on the terminal raceme. Mature seed number and weight per pod and per plant were unaffected because seed abortion was reduced. The observation that mature seed yield per plant was unaffected by exposure during the vegetative phase, despite adverse effects on physiological, vegetative and reproductive processes, shows that indeterminate species such as B. campestris possess sufficient compensatory flexibility to avoid reductions in seed production. PMID:17803646

  14. Carbon exchange between the mantle and the crust and its effect upon the atmosphere: Today compared to Archean time

    NASA Technical Reports Server (NTRS)

    Desmarais, D.

    1986-01-01

    Paleobiologists now recognize that the Earth's biosphere has been profoundly affected by geologic processes. One very important process is the dissipation of heat which has been generated by radioactivity and/or stored within the earth. Heat flow is responsible for crustal movements and therefore it is the principal architect for constructing the environments (e.g. shallow marine, continental, etc.) wherein life developed and flourished. Heat flow has also influenced the movements of volatile elements (e.g. C, N, H, S, rare gases, etc.) both within the Earth's crust and between the crust and mantle. The inventory of these elements in the Earth's crust is important, not just because some of them constitute the building blocks of organic matter, but also because they influence the biosphere's climate. The purpose of this work is to evaluate how the decline of heat flow over the course of the Earth's history has influenced the carbon inventory in the Earth's crust. Such an evaluation must first consider whether the rate at which carbon is presently being exchanged between the mantle and crust is sufficient to play an important role in controlling the crustal inventory. Secondly, this exchange of carbon must be reevaluated in the context of the Precambrian Earth's environment. One very important consideration is that the upper mantle was perhaps 300 C hotter 3 b.y. ago than it is today.

  15. How do land management practices affect net ecosystem CO2 exchange of an invasive plant infestation?

    NASA Astrophysics Data System (ADS)

    Sonnentag, O.; Detto, M.; Runkle, B.; Kelly, M.; Baldocchi, D. D.

    2009-12-01

    Ecosystem gas and energy exchanges of invasive plant infestations under different land management practices have been subject of few studies and thus little is known. Our goal is to characterize seasonal changes in net ecosystem CO2 exchange (NEE) through the processes of photosynthesis (GEP) and ecosystem respiration (Reco) of a grassland used as pasture yet infested by perennial pepperweed (Lepidium latifolium) in California’s Sacramento-San Joaquin River Delta. We analyze eddy-covariance supported by environmental and canopy-scale hyperspectral reflectance measurements acquired in 2007-2009. Our study covers three summer drought periods with slightly different land management practices. Over the study period the site was subject to year-round grazing, and in 2008 the site was additionally mowed. Specific questions we address are a) how does pepperweed flowering affect GEP, b) does a mowing event affect NEE mainly through GEP or Reco, and c) can the combined effects of phenology and mowing on pepperweed NEE potentially be tracked using routinely applied remote sensing techniques? Preliminary results indicate that pepperweed flowering drastically decreases photosynthetic CO2 uptake due to shading by the dense arrangement of white flowers at the canopy top, causing the infestation to be almost CO2 neutral. In contrast, mowing causes the infestation to act as moderate net CO2 sink, mainly due to increased CO2 uptake during regrowth. We demonstrate that spectral regions other than commonly-used red and near-infrared might be more promising for pepperweed monitoring because of its spectral uniqueness during the flowering phase. Our results have important implications for land-use land-cover (LULC) change studies when biological invasions and their management alter ecosystem structure and functioning but not necessarily the respective LULC class.

  16. Deep South Atlantic carbonate chemistry and increased interocean deep water exchange during last deglaciation

    NASA Astrophysics Data System (ADS)

    Yu, Jimin; Anderson, Robert F.; Jin, Zhangdong; Menviel, Laurie; Zhang, Fei; Ryerson, Fredrick J.; Rohling, Eelco J.

    2014-04-01

    Carbon release from the deep ocean at glacial terminations is a critical component of past climate change, but the underlying mechanisms remain poorly understood. We present a 28,000-year high-resolution record of carbonate ion concentration, a key parameter of the global carbon cycle, at 5-km water depth in the South Atlantic. We observe similar carbonate ion concentrations between the Last Glacial Maximum and the late Holocene, despite elevated concentrations in the glacial surface ocean. This strongly supports the importance of respiratory carbon accumulation in a stratified deep ocean for atmospheric CO2 reduction during the last ice age. After ˜9 μmol/kg decline during Heinrich Stadial 1, deep South Atlantic carbonate ion concentration rose by ˜24 μmol/kg from the onset of Bølling to Pre-boreal, likely caused by strengthening North Atlantic Deep Water formation (Bølling) or increased ventilation in the Southern Ocean (Younger Drays) or both (Pre-boreal). The ˜15 μmol/kg decline in deep water carbonate ion since ˜10 ka is consistent with extraction of alkalinity from seawater by deep-sea CaCO3 compensation and coral reef growth on continental shelves during the Holocene. Between 16,600 and 15,000 years ago, deep South Atlantic carbonate ion values converged with those at 3.4-km water depth in the western equatorial Pacific, as did carbon isotope and radiocarbon values. These observations suggest a period of enhanced lateral exchange of carbon between the deep South Atlantic and Pacific Oceans, probably due to an increased transfer of momentum from southern westerlies to the Southern Ocean. By spreading carbon-rich deep Pacific waters around Antarctica for upwelling, invigorated interocean deep water exchange would lead to more efficient CO2 degassing from the Southern Ocean, and thus to an atmospheric CO2 rise, during the early deglaciation.

  17. Development of Carbon Sequestration Options by Studying Carbon Dioxide-Methane Exchange in Hydrates

    NASA Astrophysics Data System (ADS)

    Horvat, Kristine Nicole

    Gas hydrates form naturally at high pressures (>4 MPa) and low temperatures (<4 °C) when a set number of water molecules form a cage in which small gas molecules can be entrapped as guests. It is estimated that about 700,000 trillion cubic feet (tcf) of methane (CH4) exist naturally as hydrates in marine and permafrost environments, which is more than any other natural sources combined as CH4 hydrates contain about 14 wt% CH4. However, a vast amount of gas hydrates exist in marine environments, which makes gas extraction an environmental challenge, both for potential gas losses during extraction and the potential impact of CH4 extraction on seafloor stability. From the climate change point of view, a 100 ppm increase in atmospheric carbon dioxide (CO2) levels over the past century is of urgent concern. A potential solution to both of these issues is to simultaneously exchange CH4 with CO 2 in natural hydrate reserves by forming more stable CO2 hydrates. This approach would minimize disturbances to the host sediment matrix of the seafloor while sequestering CO2. Understanding hydrate growth over time is imperative to prepare for large scale CH4 extraction coupled with CO2 sequestration. In this study, we performed macroscale experiments in a 200 mL high-pressure Jerguson cell that mimicked the pressure-temperature conditions of the seafloor. A total of 13 runs were performed under varying conditions. These included the formation of CH4 hydrates, followed by a CO2 gas injection and CO2 hydrate formation followed by a CH4 gas injection. Results demonstrated that once gas hydrates formed, they show "memory effect" in subsequent charges, irrespective of the two gases injected. This was borne out by the induction time data for hydrate formation that reduced from 96 hours for CH4 and 24 hours for CO2 to instant hydrate formation in both cases upon injection of a secondary gas. During the study of CH4-CO2 exchange where CH4 hydrates were first formed and CO2 gas was

  18. Regional Carbon Dioxide and Water Vapor Exchange Over Heterogeneous Terrain

    NASA Technical Reports Server (NTRS)

    Mahrt, Larry J.

    2005-01-01

    In spite of setbacks due to forest fires, eviction after a change of landowners and unanticipated need to upgrade and replace much of the instrumentation, substantial progress has been made during the past three years, resulting in major new findings. Although most of the results are in manuscript form, three papers have been published and a fourth was recently submitted. The data has been subjected to extensive quality control. Extra attention has been devoted to the influence of tilt rotation and flux-calculation method, particularly with respect to nocturnal fluxes. Previous/standard methods for calculating nocturnal fluxes with moderate and strong stability are inadequate and lead to large random fluxes errors for individual records, due partly to inadvertent inclusion of mesoscale motions that strongly contaminant the estimation of fluxes by weak turbulence. Such large errors are serious for process studies requiring carbon dioxide fluxes for individual records, but are substantially reduced when averaging fluxes over longer periods as in calculation of annual NEE budgets. We have employed a superior method for estimating fluxes in stable conditions with a variable averaging width . Mesoscale fluxes are generally unimportant except for events and are generally not systematic or predictable. Mesoscale or regional models of our region are not able to reproduce important aspects of the diurnally varying wind field

  19. Boreal forests and atmosphere - Biosphere exchange of carbon dioxide

    NASA Technical Reports Server (NTRS)

    D'Arrigo, Rosanne; Jacoby, Gordon C.; Fung, Inez Y.

    1987-01-01

    Two approaches to investigating the role of boreal forests in the global carbon cycle are presented. First, a tracer support model which incorporates the normalized-difference vegetation index obtained from advanced, very high resolution radiometer radiances was used to simulate the annual cycle of CO2 in the atmosphere. Results indicate that the seasonal growth of the combined boreal forests of North America and Eurasia accounts for about 50 percent of the mean seasonal CO2 amplitude recorded at Pt. Barrow, Alaska and about 30 percent of the more globally representative CO2 signal at Mauna Loa, Hawaii. Second, tree-ring width data from four boreal treeline sites in northern Canada were positively correlated with Pt. Barrow CO2 drawdown for the period 1971-1982. These results suggest that large-scale changes in the growth of boreal forests may be contributing to the observed increasing trend in CO2 amplitude. They further suggest that tree-ring data may be applicable as indices for CO2 uptake and remote sensing estimates of photosynthetic activity.

  20. Salt marsh-atmosphere exchange of energy, water vapor, and carbon dioxide: Effects of tidal flooding and biophysical controls

    NASA Astrophysics Data System (ADS)

    Moffett, Kevan B.; Wolf, Adam; Berry, Joe A.; Gorelick, Steven M.

    2010-10-01

    The degree to which short-duration, transient floods modify wetland-atmosphere exchange of energy, water vapor, and carbon dioxide (CO2) is poorly documented despite the significance of flooding in many wetlands. This study explored the effects of transient floods on salt marsh-atmosphere linkages. Eddy flux, micrometeorological, and other field data collected during two tidal phases (daytime versus nighttime high tides) quantified the salt marsh radiation budget, surface energy balance, and CO2 flux. Analysis contrasted flooded and nonflooded and day and night effects. The salt marsh surface energy balance was similar to that of a heating-dominated sparse crop during nonflooded periods but similar to that of an evaporative cooling-dominated, well-watered grassy lawn during flooding. Observed increases in latent heat flux and decreases in net ecosystem exchange during flooding were proportional to flood depth and duration, with complete CO2 flux suppression occurring above some flood height less than the canopy height. Flood-induced changes in the salt marsh energy balance were dominated by changes in sensible heat flux, soil heat flux, and surface water heat storage. Parameters suitable for predicting the salt marsh surface energy balance were obtained by calibrating common models (e.g., Penman-Monteith, Priestley-Taylor, and pan coefficient). Biophysical controls on salt marsh-atmosphere exchange were identified following calibration of models describing the coupling of canopy photosynthesis and stomatal conductance in the salt marsh. The effects of flooding on salt marsh-atmosphere exchange are temporary but strongly affect the marsh water, carbon, and energy balance despite their short duration.

  1. Boreal forest soil erosion and soil-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Harden, J. W.; O'Donnell, J.; Sierra, C. A.

    2013-12-01

    Erosion may become an increasingly important agent of change in boreal systems with climate warming, due to enhanced ice wedge degradation and increases in the frequency and intensity of stand-replacing fires. Ice wedge degradation can induce ground surface subsidence and lateral movement of mineral soil downslope, and fire can result in the loss of O horizons and live roots, with associated increases in wind- and water-promoted erosion until vegetation re-establishment. It is well-established that soil erosion can induce significant atmospheric carbon (C) source and sink terms, with the strength of these terms dependent on the fate of eroded soil organic carbon (SOC) and the extent to which SOC oxidation and production characteristics change with erosion. In spite of the large SOC stocks in the boreal system and the high probability that boreal soil profiles will experience enhanced erosion in the coming decades, no one has estimated the influence of boreal erosion on the atmospheric C budget, a phenomenon that can serve as a positive or negative feedback to climate. We employed an interactive erosion model that permits the user to define 1) profile characteristics, 2) the erosion rate, and 3) the extent to which each soil layer at an eroding site retains its pre-erosion SOC oxidation and production rates (nox and nprod=0, respectively) vs. adopts the oxidation and production rates of previous, non-eroded soil layers (nox and nprod=1, respectively). We parameterized the model using soil profile characteristics observed at a recently burned site in interior Alaska (Hess Creek), defining SOC content and turnover times. We computed the degree to which post-burn erosion of mineral soil generates an atmospheric C sink or source while varying erosion rates and assigning multiple values of nox and nprod between 0 and 1, providing insight into the influence of erosion rate, SOC oxidation, and SOC production on C dynamics in this and similar profiles. Varying nox and nprod

  2. Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands

    PubMed Central

    Schmitt, M.; Bahn, M.; Wohlfahrt, G.; Tappeiner, U.; Cernusca, A.

    2011-01-01

    Changes in land use and management have been strongly affecting mountain grassland, however, their effects on the net ecosystem exchange of CO2 (NEE) and its components have not yet been well documented. We analysed chamber-based estimates of NEE, gross primary productivity (GPP), ecosystem respiration (R) and light use efficiency (LUE) of six mountain grasslands differing in land use and management, and thus site fertility, for the growing seasons of 2002 to 2008. The main findings of the study are that: (1) land use and management affected seasonal NEE, GPP and R, which all decreased from managed to unmanaged grasslands; (2) these changes were explained by differences in leaf area index (LAI), biomass and leaf-area-independent changes that were likely related to photosynthetic physiology; (3) diurnal variations of NEE were primarily controlled by photosynthetically active photon flux density and soil and air temperature; seasonal variations were associated with changes in LAI; (4) parameters of light response curves were generally closely related to each other, and the ratio of R at a reference temperature/ maximum GPP was nearly constant across the sites; (5) similarly to our study, maximum GPP and R for other grasslands on the globe decreased with decreasing land use intensity, while their ratio remained remarkably constant. We conclude that decreasing intensity of management and, in particular, abandonment of mountain grassland lead to a decrease in NEE and its component processes. While GPP and R are generally closely coupled during most of the growing season, GPP is more immediately and strongly affected by land management (mowing, grazing) and season. This suggests that management and growing season length, as well as their possible future changes, may play an important role for the annual C balance of mountain grassland. PMID:23293657

  3. Volatile Exchange between Undamaged Plants - a New Mechanism Affecting Insect Orientation in Intercropping

    PubMed Central

    Ninkovic, Velemir; Dahlin, Iris; Vucetic, Andja; Petrovic-Obradovic, Olivera; Glinwood, Robert; Webster, Ben

    2013-01-01

    Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms. PMID:23922710

  4. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat

    PubMed Central

    Zhu, Min; Shabala, Lana; Cuin, Tracey A; Huang, Xin; Zhou, Meixue; Munns, Rana; Shabala, Sergey

    2016-01-01

    Salinity stress tolerance in durum wheat is strongly associated with a plant’s ability to control Na+ delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na+ from the xylem, thus limiting the rates of Na+ transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na+/H+ exchanger in both root cortical and stelar tissues. Net Na+ efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na+/H+ exchanger) and was mirrored by net H+ flux changes. TdSOS1 relative transcript levels were 6–10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na+ content. One enhances the retrieval of Na+ back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na+ loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na+ delivery to the shoot. PMID:26585227

  5. Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat.

    PubMed

    Zhu, Min; Shabala, Lana; Cuin, Tracey A; Huang, Xin; Zhou, Meixue; Munns, Rana; Shabala, Sergey

    2016-02-01

    Salinity stress tolerance in durum wheat is strongly associated with a plant's ability to control Na(+) delivery to the shoot. Two loci, termed Nax1 and Nax2, were recently identified as being critical for this process and the sodium transporters HKT1;4 and HKT1;5 were identified as the respective candidate genes. These transporters retrieve Na(+) from the xylem, thus limiting the rates of Na(+) transport from the root to the shoot. In this work, we show that the Nax loci also affect activity and expression levels of the SOS1-like Na(+)/H(+) exchanger in both root cortical and stelar tissues. Net Na(+) efflux measured in isolated steles from salt-treated plants, using the non-invasive ion flux measuring MIFE technique, decreased in the sequence: Tamaroi (parental line)>Nax1=Nax2>Nax1:Nax2 lines. This efflux was sensitive to amiloride (a known inhibitor of the Na(+)/H(+) exchanger) and was mirrored by net H(+) flux changes. TdSOS1 relative transcript levels were 6-10-fold lower in Nax lines compared with Tamaroi. Thus, it appears that Nax loci confer two highly complementary mechanisms, both of which contribute towards reducing the xylem Na(+) content. One enhances the retrieval of Na(+) back into the root stele via HKT1;4 or HKT1;5, whilst the other reduces the rate of Na(+) loading into the xylem via SOS1. It is suggested that such duality plays an important adaptive role with greater versatility for responding to a changing environment and controlling Na(+) delivery to the shoot. PMID:26585227

  6. A model-data fusion analysis for examining the response of carbon exchange to environmental variation in crop field

    NASA Astrophysics Data System (ADS)

    Yokozawa, M.; Sakurai, G.; Ono, K.; Mano, M.; Miyata, A.

    2011-12-01

    Agricultural activities, cultivating crops, managing soil, harvesting and post-harvest treatments, are not only affected from the surrounding environment but also change the environment reversely. The changes in environment, temperature, radiation and precipitation, brings changes in crop productivity. On the other hand, the status of crops, i.e. the growth and phenological stage, change the exchange of energy, H2O and CO2 between crop vegetation surface and atmosphere. Conducting the stable agricultural harvests, reducing the Greenhouse Effect Gas (GHG) emission and enhancing carbon sequestration in soil are preferable as a win-win activity. We conducted model-data fusion analysis for examining the response of cropland-atmosphere carbon exchange to environmental variation. The used model consists of two sub models, paddy rice growth sub-model and soil decomposition sub-model. The crop growth sub-model mimics the rice plant growth processes including formation of reproductive organs as well as leaf expansion. The soil decomposition sub-model simulates the decomposition process of soil organic carbon. Assimilating the data on the time changes in CO2 flux measured by eddy covariance method, rice plant biomass, LAI and the final yield with the model, the parameters were calibrated using a stochastic optimization algorithm with a particle filter. The particle filter, which is one of Monte Carlo filters, enable us to evaluating time changes in parameters based on the observed data until the time and to make prediction of the system. Iterative filtering and prediction with changing parameters and/or boundary condition enable us to obtain time changes in parameters governing the crop production as well as carbon exchange. In this paper, we applied the model-data fusion analysis to the two datasets on paddy rice field sites in Japan: only a single rice cultivation, and a single rice and wheat cultivation. We focused on the parameters related to crop production as well as

  7. A high-altitude balloon platform to measure regional carbon dioxide exchange from agricultural systems

    NASA Astrophysics Data System (ADS)

    Potosnak, M. J.; Pocs, M.; Bouche, A.; Roberts, K.; Goedde, C.; Beck-Winchatz, B.

    2014-12-01

    Biosphere-atmosphere exchanges of carbon dioxide are an important component of the global carbon cycle, and understanding current exchanges is crucial for predicting future uptake of anthropogenic carbon dioxide. Agricultural systems in the Midwestern United States cover a large area and have the potential to influence the future carbon budget of the United States. Biosphere-atmosphere exchanges of carbon dioxide are typically measured at the ecosystem level using the eddy covariance technique that covers a relatively small spatial area. Top-down approaches using a global network of carbon dioxide concentration measurements provide relatively coarse spatial information. High altitude balloons (HABs) are an inexpensive platform for sounding the vertical structure and composition of the atmosphere that can bridge the spatial gap between these two other techniques. The HAB platform will also complement new satellite measurements of carbon dioxide from the Orbiting Carbon Observatory-2. In the first-generation approach of the HAB technique, a single balloon is launched, and a vertical profile of carbon dioxide is recorded during the balloon's ascent. The balloon bursts between 11 and 14 km altitude, and a second profile of carbon dioxide is obtained during the descent. The difference in carbon dioxide concentration is computed as a function of altitude, which is converted to a molar difference by accounting for the temperature and pressure profile of the atmosphere, and then a flux is obtained by summing the molar differences and dividing by the time difference between ascent and descent. The second-generation approach uses two balloons and compares their ascent profiles. This is an improvement, since the balloon can travel 100 km due to the strength of the jet stream, making it difficult to compare ascent and descent profiles. The technique works best on days with a well-developed convective boundary layer. During peak growing season, uptake rates of -30 to -50

  8. The chemical precipitation of nickel on ion exchangers and active carbons

    NASA Astrophysics Data System (ADS)

    Khorol'Skaya, S. V.; Zolotukhina, E. V.; Polyanskii, L. N.; Peshkov, S. V.; Kravchenko, T. A.; Krysanov, V. A.

    2010-12-01

    The chemical precipitation of nickel in the form of poorly soluble precipitates in ion exchanger matrices and on active carbons from solutions of nickel chloride and chemical nickel plating electrolytes was studied. The sorption of nickel ions from a solution of nickel chloride occurs most effectively on Purolite D24002 macroporous chelate forming ion exchanger, KU-23-15/100 sulfo cation exchanger, and KU-2-8 gel sulfo cation exchanger. Nickel enters sulfo cation exchangers in the form of counterions, and is adsorbed on Purolite D24002 largely because of complex formation. The subsequent precipitation of nickel in the solid state in matrix pores liberates ionogenic centers, which allows repeated sorption cycles to be performed. After three chemical precipitation cycles under static conditions, the amount of nickel is higher by 170-250% than the ion exchange capacity of the sorbents. The electrolyte of chemical nickel plating contains nickel predominantly in the form of negatively charged and neutral complexes with glycine, which cannot form bonds with the matrices under study. It is therefore reasonable to perform sorption at decreased solution pH values.

  9. Effects of Fire on Ecosystem Carbon Exchange in Siberian Larch Forest

    NASA Astrophysics Data System (ADS)

    Natali, S.; Alexander, H. D.; Davydov, S. P.; Loranty, M. M.; Mack, M. C.; Zimov, N.

    2014-12-01

    Fire frequency and severity have been increasing across the Arctic, and fires are expected to intensify as the climate becomes warmer and dryer. Fire plays a prominent role in global carbon cycling through direct emissions of greenhouse gases from organic matter combustion as well as through indirect effects of vegetation changes and permafrost thaw, both of which can impact ecosystem carbon exchange over timescales ranging from years to centuries. We examined the indirect effects of fire (i.e., years to decades timescales) on ecosystem carbon exchange in Siberian larch (Larix cajanderi) forests underlain by continuous permafrost and carbon-rich yedoma deposits. We measured understory net ecosystem exchange (NEE) and ecosystem respiration (Reco) from experimental burns, and from larch stands of varying stand densities occurring within a 75-yr burn scar in the vicinity of Cherskiy, Russia. The plot-level (4 m2) experimental burns were conducted in 2012 and comprise four burn treatments based on residual soil organic layer (SOL) depths: control, low severity (> 8 cm), moderate severity (5-8 cm), and high severity (2-5 cm). After three growing seasons, thaw depth was 6%, 11% and 30% deeper in the low, mid, and high severity burn plots compared to control. Immediately following the burns, Reco declined and was related to burn severity; Reco in the mid and high severity plots was fourfold lower than in low severity and control. In the second and third growing seasons, understory Reco continued to be lower in the burn plots relative to control, but effects of burn severity varied across measurement years. While Reco declined as a result of fire, there was a greater net release of CO2 (i.e., NEE) from the burn plots compared to control because there was limited carbon uptake by the regenerating plant community. In the 75-yr burn, we found that variation in stand density, which was likely related to fire severity, significantly impacted understory CO2 exchange through

  10. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Schlesinger, W.H.; Mullins, G.L.; Runion, G.B.

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  11. A Carbon Flux Super Site. New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling

    SciTech Connect

    Leclerc, Monique Y.

    2014-11-17

    This final report presents the main activities and results of the project “A Carbon Flux Super Site: New Insights and Innovative Atmosphere-Terrestrial Carbon Exchange Measurements and Modeling” from 10/1/2006 to 9/30/2014. It describes the new AmeriFlux tower site (Aiken) at Savanna River Site (SC) and instrumentation, long term eddy-covariance, sodar, microbarograph, soil and other measurements at the site, and intensive field campaigns of tracer experiment at the Carbon Flux Super Site, SC, in 2009 and at ARM-CF site, Lamont, OK, and experiments in Plains, GA. The main results on tracer experiment and modeling, on low-level jet characteristics and their impact on fluxes, on gravity waves and their influence on eddy fluxes, and other results are briefly described in the report.

  12. Structure and Metal Exchange in the Cadmium Carbonic anhydrase of Marine Diatoms

    SciTech Connect

    Xu,Y.; Feng, l.; Jeffrey, P.; Shi, Y.; Morel, F.

    2008-01-01

    Carbonic anhydrase, a zinc enzyme found in organisms from all kingdoms, catalyses the reversible hydration of carbon dioxide and is used for inorganic carbon acquisition by phytoplankton. In the oceans, where zinc is nearly depleted, diatoms use cadmium as a catalytic metal atom in cadmium carbonic anhydrase (CDCA). Here we report the crystal structures of CDCA in four distinct forms: cadmium-bound, zinc-bound, metal-free and acetate-bound. Despite lack of sequence homology, CDCA is a structural mimic of a functional {beta}-carbonic anhydrase dimer, with striking similarity in the spatial organization of the active site residues. CDCA readily exchanges cadmium and zinc at its active site--an apparently unique adaptation to oceanic life that is explained by a stable opening of the metal coordinating site in the absence of metal. Given the central role of diatoms in exporting carbon to the deep sea, their use of cadmium in an enzyme critical for carbon acquisition establishes a remarkable link between the global cycles of cadmium and carbon.

  13. Continuous In-situ Measurements of Carbonyl Sulfide (OCS) and Carbon Dioxide Isotopes to Constrain Ecosystem Carbon and Water Exchanges

    NASA Astrophysics Data System (ADS)

    Rastogi, B.; Still, C. J.; Noone, D. C.; Berkelhammer, M. B.; Whelan, M.; Lai, C. T.; Hollinger, D. Y.; Gupta, M.; Leen, J. B.; Huang, Y. W.

    2015-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf- level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from four heights as well as the soil to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere for the growing season. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings also seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  14. Using radium and carbon isotopes to evaluate the biogeochemical impact of boundary exchanges in the North Sea

    NASA Astrophysics Data System (ADS)

    Burt, William; Thomas, Helmuth; Hagens, Mathilde; Brenner, Heiko; Pätsch, Johannes

    2014-05-01

    The North Sea is one of the most studied coastal regions on the planet, yet inputs of carbon and nutrients from the boundaries of the system remain an area of uncertainty in for both the observational and numerical modeling communities alike. Diagenetic reactions within sediments and subsequent sediment-water column exchange provide inputs of dissolved inorganic carbon (DIC), alkalinity (AT) and nutrients (NO3-, PO43-) to the water column throughout the North Sea. In the shallow parts of the North Sea, additional sedimentary inputs from mudflats combined with freshwater inputs from the adjacent European landmass provide a substantial input of dissolved constituents into the Southern North Sea. This study aims to explore the biogeochemical impacts of such boundary exchanges in the North Sea using an extensive suite of water column samples collected in September, 2011. The dominant controls of the stable carbon isotope signature of DIC (δ13CDIC) are determined and isolated. These include in-situ biological activity, and land-based signals, which can affect the paleo records found in shelf sediment cores. These investigations can guide modelling studies to assess the impacts of changing river loads on the biogeochemistry of coastal waters. The sediments and the coastline are also a well-defined source of Radium isotopes (224Ra, 223Ra, 228Ra). The dispersion of longer-lived 228Ra into the North Sea from the coastline can be used to calculate the offshore transport of numerous carbon, nutrient and metal species. Meanwhile the seafloor provides the dominant source of 224Ra, thus a strong relationship between Ra and Alkalinity provides a signature of sedimentary AT release.

  15. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Yu, G.-R.; Zhang, L.-M.; Sun, X.-M.; Wen, X.-F.; Han, S.-J.; Yan, J.-H.

    2010-02-01

    Clouds can significantly affect carbon exchange process between forest ecosystems and the atmosphere by influencing the quantity and quality of solar radiation received by ecosystem's surface and other environmental factors. In this study, we analyzed the effects of cloudiness on net ecosystem exchange of carbon dioxide (NEE) in a temperate broad-leaved Korean pine mixed forest at Changbaishan (CBS) and a subtropical evergreen broad-leaved forest at Dinghushan (DHS), based on the flux data obtained during June-August from 2003 to 2006. The results showed that the response of NEE of forest ecosystems to photosynthetically active radiation (PAR) differed under clear skies and cloudy skies. Compared with clear skies, the light-saturated maximum photosynthetic rate (Pec,max) at CBS under cloudy skies during mid-growing season (from June to August) increased by 34%, 25%, 4% and 11% in 2003, 2004, 2005 and 2006, respectively. In contrast, Pec,max of the forest ecosystem at DHS was higher under clear skies than under cloudy skies from 2004 to 2006. When the clearness index (kt) ranged between 0.4 and 0.6, the NEE reached its maximum at both CBS and DHS. However, the NEE decreased more dramatically at CBS than at DHS when kt exceeded 0.6. The results indicate that cloudy sky conditions are beneficial to net carbon uptake in the temperate forest ecosystem and the subtropical forest ecosystem. Under clear skies, vapor pressure deficit (VPD) and air temperature increased due to strong light. These environmental conditions led to greater decrease in gross ecosystem photosynthesis (GEP) and greater increase in ecosystem respiration (Re) at CBS than at DHS. As a result, clear sky conditions caused more reduction of NEE in the temperate forest ecosystem than in the subtropical forest ecosystem. The response of NEE of different forest ecosystems to the changes in cloudiness is an important factor that should be included in evaluating regional carbon budgets under climate change

  16. Typhoons exert significant but differential impact on net carbon ecosystem exchange of subtropical mangrove ecosystems in China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2014-06-01

    Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but litter information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during typhoon season. Daily total NEE values were decreased by 26-50% following some typhoons (e.g. W28-Nockten, W35-Molave and W35-Lio-Fan), but were significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings not only indicate that mangrove ecosystems have strong resilience to the frequent typhoon disturbances, but also demonstrate the damage of increasing typhoon intensity and frequency on subtropical mangrove ecosystems under future global climate change scenarios.

  17. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. PMID:27076055

  18. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.

    PubMed

    Li, Haibo; Gao, Yang; Pan, Likun; Zhang, Yanping; Chen, Yiwei; Sun, Zhuo

    2008-12-01

    A novel membrane capacitive deionization (MCDI) device, integrating both the advantages of carbon nanotubes and carbon nanofibers (CNTs-CNFs) composite film and ion-exchange membrane, was proposed with high removal efficiency, low energy consumption and low cost. The CNTs-CNFs film was synthesized by low pressure and low temperature thermal chemical vapor deposition. Several experiments were conducted to compare desalination performance of MCDI with capacitive deionization (CDI), showing that salt removal of the MCDI system was 49.2% higher than that of the CDI system. The electrosorption isotherms of MCDI and CDI show both of them follow Langmuir adsorption, indicating no change in adsorption behavior when ion-exchange membranes are introduced into CDI system. The better desalination performance of MCDI than that of CDI is due to the minimized ion desorption during electrosorption. PMID:18929385

  19. Effects of electron exchange-correlation potential on electrostatic oscillations in single-walled carbon nanotubes

    SciTech Connect

    Khan, S. A. Hassan, Sunia

    2014-05-28

    Using macroscopic quantum hydrodynamic formulation, we study the dispersion properties of electrostatic electron plasma oscillations in single-walled carbon nanotubes. The electrons and ions are considered uniformly distributed over the cylindrical surface of a nanotube thus forming a two-component (electron-ion) quantum plasma system. Electron degeneracy via Fermi-Dirac statistics as well as electron exchange and correlation effects is taken into account. It is found that the quantum (Bohm) potential arising due to fermionic nature of electrons and exchange-correlations effects has significant impact on the wave. The frequency of wave is influenced by variation in azimuthal index and radius of the nanotube. The results are analyzed numerically for typical systems for relatively longer wavelength waves and possible consequences are discussed. The results can be important in general understanding of the role of exchange-correlation potential in quantum hydrodynamic treatment of charge-carriers in nanotubes.

  20. Correlation between charge transfer and exchange coupling in carbon-based magnetic materials

    SciTech Connect

    Nguyen, Anh Tuan; Nguyen, Van Thanh; Nguyen, Huy Sinh; Pham, Thi Tuan Anh; Do, Viet Thang; Dam, Hieu Chi

    2015-10-15

    Several forms of carbon-based magnetic materials, i.e. single radicals, radical dimers, and alternating stacks of radicals and diamagnetic molecules, have been investigated using density-functional theory with dispersion correction and full geometry optimization. Our calculated results demonstrate that the C{sub 31}H{sub 15} (R{sub 4}) radical has a spin of ½. However, in its [R{sub 4}]{sub 2} dimer structure, the net spin becomes zero due to antiferromagnetic spin-exchange between radicals. To avoid antiferromagnetic spin-exchange of identical face-to-face radicals, eight alternating stacks, R{sub 4}/D{sub 2m}/R{sub 4} (with m = 3-10), were designed. Our calculated results show that charge transfer (Δn) between R{sub 4} radicals and the diamagnetic molecule D{sub 2m} occurs with a mechanism of spin exchange (J) in stacks. The more electrons that transfer from R{sub 4} to D{sub 2m}, the stronger the ferromagnetic spin-exchange in stacks. In addition, our calculated results show that Δn can be tailored by adjusting the electron affinity (E{sub a}) of D{sub 2m}. The correlation between Δn, E{sub a}, m, and J is discussed. These results give some hints for the design of new ferromagnetic carbon-based materials.

  1. Effects of temperature, moisture, and permafrost thaw on ecosystem carbon exchange in Alaskan tundra.

    NASA Astrophysics Data System (ADS)

    Natali, S.; Schuur, E. A.; Webb, E.

    2012-12-01

    Carbon has been accumulating in northern high latitude ecosystems for thousands of years because cold and moist conditions have protected soil organic matter from microbial decomposition. Over the past several decades, warming surface air temperatures have been accompanied by thawing of the perennially frozen permafrost layer where much of the accumulated carbon is stored. In addition to its role in carbon storage, permafrost regulates surface hydrology by restricting vertical water flow, thereby maintaining a water table that remains close to the ground surface. In the absence of the permafrost layer, enhanced water drainage will result in increased water table depth and decreased soil moisture. The biological availability of permafrost carbon may increase in a warmer and drier soil environment, as is expected for the region of this study. To determine the effects of warming temperatures and changes in soil moisture on ecosystem carbon exchange, we established a water table drawdown experiment within the footprint of the Carbon in Permafrost Experimental Heating Research (CiPEHR) project, an ecosystem warming experiment in Interior Alaska that warms air and soil temperatures and degrades permafrost. Here we present ecosystem carbon balance results from combined warming and moisture manipulation treatments at the CiPEHR project. Soil warming increased soil temperature by 2-3o C and resulted in a 10% increase in growing season thaw depth. Surprisingly, the additional 2 kg of thawed soil C m-2 in the warmed plots did not increase net growing season CO2 loss from this ecosystem. In contrast, soil warming and permafrost thaw increased growing season CO2 uptake, which was a result of both higher net primary productivity and an inhibition of microbial decomposition by soil saturation at the base of the active layer. The drying treatment (i.e., water table drawdown) decreased soil moisture by 25%, which led to an increase in ecosystem respiration and decrease in net

  2. Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

    NASA Astrophysics Data System (ADS)

    Shoemaker, W. B.; Anderson, F.; Barr, J. G.; Graham, S. L.; Botkin, D. B.

    2015-04-01

    Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric-ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for 2 years. Links between water and C cycles are also examined at these three sites, as are methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake from the atmosphere both monthly and annually, as indicated by the net ecosystem exchange (NEE) of carbon dioxide (CO2). For this study, NEE is the difference between photosynthesis and respiration, with negative values representing uptake from the atmosphere that is retained in the ecosystem or transported laterally via overland flow (unmeasured for this study). Atmospheric C uptake (NEE) was greatest at the Cypress Swampp (-900 to -1000 g C m2 yr-1), moderate at the Pine Upland (-650 to -700 g C m2 yr-1) and least at the Dwarf Cypress (-400 to -450 g C m2 yr-1). Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and flooding, which suppressed heterotrophic soil respiration. We also note that changes in the satellite-derived enhanced vegetation index (EVI) served as a useful surrogate for changes in NEE at these forested wetland sites.

  3. Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Anderson, Frank E.; Barr, Jordan G.; Graham, Scott L.; Botkin, Daniel B.

    2015-01-01

    Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric–ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for 2 years. Links between water and C cycles are also examined at these three sites, as are methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake from the atmosphere both monthly and annually, as indicated by the net ecosystem exchange (NEE) of carbon dioxide (CO2). For this study, NEE is the difference between photosynthesis and respiration, with negative values representing uptake from the atmosphere that is retained in the ecosystem or transported laterally via overland flow (unmeasured for this study). Atmospheric C uptake (NEE) was greatest at the Cypress Swampp (−900 to −1000 g C m2 yr−1), moderate at the Pine Upland (−650 to −700 g C m2 yr−1) and least at the Dwarf Cypress (−400 to −450 g C m2 yr−1). Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and flooding, which suppressed heterotrophic soil respiration. We also note that changes in the satellite-derived enhanced vegetation index (EVI) served as a useful surrogate for changes in NEE at these forested wetland sites.

  4. Climate Effects on Carbon and Water Exchange of Young and Intermediate-growth Ponderosa Pine Ecosystems in Central Oregon

    NASA Astrophysics Data System (ADS)

    Kurpius, M. R.; Irvine, J.; Law, B. E.; Unsworth, M. H.

    2002-12-01

    Carbon and water fluxes were measured continuously by eddy covariance above young- and intermediate-aged ponderosa pine (Pinus ponderosa Dougl. Ex P. and C. Laws.) stands in a seasonally semiarid environment in central Oregon. Ecophysiological measurements of processes contributing to fluxes were also made (soil CO2 effluxes, transpiration). The young stand (YS) is ~17 years old, and has a total LAI of 1.5, with 40% of the leaf area in understory shrubs. The intermediate stand (IS), ~1.5 km from the YS, is ~56 years old, with total LAI ~3.1 (5% in understory shrubs). Our goal was to examine how seasonal weather patterns and age-related site characteristics affect CO2 and H2O exchange at these sites. Throughout the measurement period, water vapor exchange for both sites was similar in magnitude and trend. Net ecosystem exchange (NEE) was similar in magnitude (-1 to +1 mmol m-2 s-1) for both sites from January 2002 through March. As the rainy season ended, carbon uptake at both sites increased in April, and reached a maximum in early June. Early summer daytime mean NEE was greater at the IS (-6 to -8 mmol m-2 s-1) than at the YS (-3 to -4 mmol m-2 s-1). While the YS had higher summer soil CO2 efflux during this period, NEE remained higher at the IS due to higher GEP. Air temperature, vapor pressure deficit (VPD), and incident PAR were similar at both sites, but greater snow cover at the IS resulted in twice the soil moisture of the YS until July, when both sites reached low values (12% and 9%, respectively). A combination of higher leaf area and soil moisture likely accounts for higher early summer carbon uptake at the IS. NEE became strongly correlated with VPD in June as soil moisture levels were rapidly declining. VPD caused lowered NEE at both sites but the IS decreased more substantially than the YS and by mid-July NEE at both sites was -2 to -4 mmol m-2 s-1. Even with the diminished carbon uptake at the IS due to the strong coupling between VPD and NEE, we

  5. Net carbon exchange across the Arctic tundra-boreal forest transition in Alaska 1981-2000

    USGS Publications Warehouse

    Thompson, Catharine Copass; McGuire, A.D.; Clein, J.S.; Chapin, F. S., III; Beringer, J.

    2006-01-01

    Shifts in the carbon balance of high-latitude ecosystems could result from differential responses of vegetation and soil processes to changing moisture and temperature regimes and to a lengthening of the growing season. Although shrub expansion and northward movement of treeline should increase carbon inputs, the effects of these vegetation changes on net carbon exchange have not been evaluated. We selected low shrub, tall shrub, and forest tundra sites near treeline in northwestern Alaska, representing the major structural transitions expected in response to warming. In these sites, we measured aboveground net primary production (ANPP) and vegetation and soil carbon and nitrogen pools, and used these data to parameterize the Terrestrial Ecosystem Model. We simulated the response of carbon balance components to air temperature and precipitation trends during 1981-2000. In areas experiencing warmer and dryer conditions, Net Primary Production (NPP) decreased and heterotrophic respiration (R H ) increased, leading to a decrease in Net Ecosystem Production (NEP). In warmer and wetter conditions NPP increased, but the response was exceeded by an increase in R H ; therefore, NEP also decreased. Lastly, in colder and wetter regions, the increase in NPP exceeded a small decline in R H , leading to an increase in NEP. The net effect for the region was a slight gain in ecosystem carbon storage over the 20 year period. This research highlights the potential importance of spatial variability in ecosystem responses to climate change in assessing the response of carbon storage in northern Alaska over the last two decades. ?? Springer 2005.

  6. Modeling Karst Ecosystem-Atmosphere CO2 Exchange: The Importance of Ventilation for Carbonate Geochemistry

    NASA Astrophysics Data System (ADS)

    Roland, M.; Serrano-Ortiz, P.; Godderis, Y.; Kowalski, A. S.; Janssens, I.

    2011-12-01

    Global carbonate weathering is considered a small carbon flux when compared with biogenic CO2 fluxes. This is, however, a question of time and space. In karst regions, it has been shown that biogenic fluxes are not always dominant. CO2 exchange patterns have been reported there that cannot be explained by biological processes: disproportionate outgassing during daytime or nighttime CO2 uptake during periods when all vegetation is senescent. These phenomena have previously been attributed to carbonate weathering reactions or biocrust activity, but their associated CO2 exchange rates are considered too small [Serrano-Ortiz et al., 2010]. Here, we report a novel mechanism through which carbonate weathering, exacerbated by subterranean ventilation, dominates the diel pattern of land-atmosphere CO2 exchange in karst areas. Ventilation is an efficient air mass transfer process (including pressure pumping, deep penetration of eddies and thermal expansion of air) that occurs in all porous media, when pores are connected and not blocked by water. Due to its high porosity and the presence of caves, fissures and cracks, karts systems are very prone to ventilation. When soil CO2 concentrations are rapidly brought into disequilibrium by ventilation, CO2 fluxes associated with carbonate weathering can exceed those associated with biological activity. The biology-based standardized partitioning schemes that are used by a large community of scientists, are then no longer applicable and gas exchange measurements fail to reveal any information on the biological activity. By incorporating ventilation processes into the mineral weathering model WITCH [Goddéris et al., 2006], we were able to quantify the contribution of carbonate geochemistry to the synoptic CO2 fluxes on karst ecosystems. [1] Goddéris, Y., L. M. Francois, A. Probst, J. Schott, D. Moncoulon, D. Labat, and D. Viville (2006), Modelling weathering processes at the catchment scale: The WITCH numerical model, Geochim

  7. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    DOEpatents

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  8. The sexual erotic market as an analytical framework for understanding erotic-affective exchanges in interracial sexually intimate and affective relationships.

    PubMed

    Vigoya, Mara Viveros

    2015-01-01

    This paper examines the way in which erotic-affective exchanges in interracial relationships have been analysed in Latin America. It considers how race, gender and class operate within a market of values such that erotic, affective and economic status are shaped by racial, gender and class hierarchies. In this paper I analyse historical and social arrangements that embody the region's political economy of race and sex. Such a perspective allows me to address the simultaneous co-existence of socio-racial exclusion and inclusion and the repressive and productive effects of power, attraction and anxiety as aspects of lived experiences in relation to sexuality. From there, I outline an analytical framework that references an erotic or pleasure-based market in which capital and other resources are exchanged from a structural perspective stressing relationship alliances. I conclude by identifying the scope and limits of such an approach. PMID:25431884

  9. Justice at the millennium, a decade later: a meta-analytic test of social exchange and affect-based perspectives.

    PubMed

    Colquitt, Jason A; Scott, Brent A; Rodell, Jessica B; Long, David M; Zapata, Cindy P; Conlon, Donald E; Wesson, Michael J

    2013-03-01

    Although a flurry of meta-analyses summarized the justice literature at the turn of the millennium, interest in the topic has surged in the decade since. In particular, the past decade has witnessed the rise of social exchange theory as the dominant lens for examining reactions to justice, and the emergence of affect as a complementary lens for understanding such reactions. The purpose of this meta-analytic review was to test direct, mediating, and moderating hypotheses that were inspired by those 2 perspectives, to gauge their adequacy as theoretical guides for justice research. Drawing on a review of 493 independent samples, our findings revealed a number of insights that were not included in prior meta-analyses. With respect to social exchange theory, our results revealed that the significant relationships between justice and both task performance and citizenship behavior were mediated by indicators of social exchange quality (trust, organizational commitment, perceived organizational support, and leader-member exchange), though such mediation was not apparent for counterproductive behavior. The strength of those relationships did not vary according to whether the focus of the justice matched the target of the performance behavior, contrary to popular assumptions in the literature, or according to whether justice was referenced to a specific event or a more general entity. With respect to affect, our results showed that justice-performance relationships were mediated by positive and negative affect, with the relevant affect dimension varying across justice and performance variables. Our discussion of these findings focuses on the merit in integrating the social exchange and affect lenses in future research. PMID:23458336

  10. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  11. Land use affects the resistance and resilience of carbon dynamics of mountain grassland to extreme drought

    NASA Astrophysics Data System (ADS)

    Ingrisch, Johannes; Karlowsky, Stefan; Hasibeder, Roland; Anadon-Rosell, Alba; Augusti, Angela; Scheld, Sarah; König, Alexander; Gleixner, Gerd; Bahn, Michael

    2015-04-01

    Climatic extremes like droughts are expected to occur more frequently and to be more severe in a future climate and have been shown to strongly affect the carbon (C) cycle. Few studies have so far explored how the management intensity of ecosystems and land-use changes alter C cycle responses to extreme climatic events. In many mountain areas land-use changes have been taking place at a rapid pace and have altered plant species composition and biogeochemical cycles. It is still unknown whether and how abandonment of mountain grasslands affects the resistance and the resilience of carbon dynamics to extreme drought. We carried out an in situ experiment to test the hypothesis that abandonment increases the resistance of grassland C dynamics to extreme drought, but decreases its resilience (i.e. post-drought recovery). In a common garden experiment at a mountain meadow in the Austrian Central Alps we exposed large intact monoliths from the meadow and a nearby abandoned grassland to extreme drought conditions during the main growth period in late spring. We measured above- and belowground productivity and net ecosystem exchange and its components over the course of the drought and during the recovery to assess and quantify their resistance and resilience. Furthermore, we analysed the coupling of the two major ecosystem CO2 fluxes, photosynthesis and soil respiration, as based on 13CO2 pulse labelling campaigns at peak drought and during post-drought recovery using isotope laser spectroscopy. Four weeks of early season drought induced a strong decrease of aboveground biomass at the mountain meadow, whereas no effect was observed for the abandoned grassland. At peak drought gross primary productivity was reduced at both grasslands compared to the respective controls, but with a stronger decrease at the meadow (80%) compared to the abandoned grassland (60%). The same pattern was observed for ecosystem respiration. However, the effect was less pronounced compared to carbon

  12. Observation of large enhancements of charge exchange cross sections with neutron-rich carbon isotopes

    NASA Astrophysics Data System (ADS)

    Tanihata, I.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Toki, H.; Vargas, J.; Winfield, J. S.; Weick, H.

    2016-04-01

    Production cross sections of nitrogen isotopes from high-energy (˜ 950 MeV per nucleon) carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes (A = 12 to 19). The fragment separator FRS at GSI was used to deliver C-isotope beams. The cross sections of the production of N-isotopes were determined by charge measurements of forward-going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge-exchange (Cex) reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and/or Fermi transition strength at low excitation energies for neutron-rich carbon isotopes. It was also observed that the Cex cross sections were enhanced much more strongly for neutron-rich isotopes in the C-target data.

  13. Exchange of carbon dioxide by a deciduous forest: Response to interannual climate variability

    SciTech Connect

    Goulden, M.L.; Munger, J.W.; Fan, S.M.; Daube, B.C.; Wofsy, S.C.

    1996-03-15

    The annual net uptake of CO{sub 2} by a deciduous forest in New England varied from 1.4 to 2.8 metric tons of carbon per hectare between 1991 and 1995. Carbon sequestration was higher than average in 1991 because of increased photosynthesis and in 1995 because of decreased respiration. Interannual shifts in photosynthesis were associated with the timing of leaf expansion and senescence. Shifts in annual respiration were associated with anomalies in soil temperature, deep snow in winter, and drought in summer. If this ecosystem is typical of northern biomes, interannual climate variations on seasonal time scales may modify annual CO{sub 2} exchange in the Northern Hemisphere by 1 gigaton of carbon or more each year. 26 refs., 4 figs., 1 tab.

  14. Carbon exchange between the atmosphere and subtropical forested cypress and pine wetlands

    NASA Astrophysics Data System (ADS)

    Shoemaker, W. B.; Barr, J. G.; Botkin, D. B.; Graham, S. L.

    2014-11-01

    Carbon dioxide exchange between the atmosphere and forested subtropical wetlands is largely unknown. Here we report a first step in characterizing this atmospheric-ecosystem carbon (C) exchange, for cypress strands and pine forests in the Greater Everglades of Florida as measured with eddy covariance methods at three locations (Cypress Swamp, Dwarf Cypress and Pine Upland) for one year. Links between water and C cycles are examined at these three sites, and methane emission measured only at the Dwarf Cypress site. Each forested wetland showed net C uptake (retained in the soil and biomass or transported laterally via overland flow) from the atmosphere monthly and annually. Net ecosystem exchange (NEE) of carbon dioxide (CO2) (difference between photosynthesis and respiration, with negative values representing net ecosystem uptake) was greatest at the Cypress Swamp (-1000 g C m-2 year-1), moderate at the Pine Upland (-900 g C m-2 year-1), and least at the Dwarf Cypress (-500 g C m-2 year-1). Methane emission was a negligible part of the C (12 g C m-2 year-1) budget when compared to NEE. However, methane (CH4) production was considerable in terms of global warming potential, as about 20 g CH4 emitted per m2 year was equivalent to about 500 g CO2 emitted per m2 year}. Changes in NEE were clearly a function of seasonality in solar insolation, air temperature and water availability from rainfall. We also note that changes in the satellite-derived enhanced-vegetation index (EVI) served as a useful surrogate for changes in net and gross atmospheric-ecosystem C exchange at these forested wetland sites.

  15. Continuous In-situ Measurements of Carbonyl Sulfide to Constrain Ecosystem Carbon and Water Exchange

    NASA Astrophysics Data System (ADS)

    Rastogi, B.; Kim, Y.; Berkelhammer, M. B.; Noone, D. C.; Lai, C. T.; Hollinger, D. Y.; Bible, K.; Leen, J. B.; Gupta, M.; Still, C. J.

    2014-12-01

    Understanding the processes that control the terrestrial exchange of carbon and water are critical for examining the role of forested ecosystems in changing climates. A small but increasing number of studies have identified Carbonyl Sulfide (OCS) as a potential tracer for photosynthesis. OCS is hydrolyzed by an irreversible reaction in leaf mesophyll cells that is catalyzed by the enzyme, carbonic anhydrase. Leaf-level field and greenhouse studies indicate that OCS uptake is controlled by stomatal activity and that the ratio of OCS and CO2 uptake is reasonably constant. Existing studies on ecosystem OCS exchange have been based on laboratory measurements or short field campaigns and therefore little information on OCS exchange in a natural ecosystem over longer timescales is available. The objective of this study is to further assess the stability of OCS as a tracer for canopy photosynthesis in an active forested ecosystem and also to assess its utility for constraining transpiration, since both fluxes are mediated by canopy stomatal conductance. An off-axis integrated cavity output spectroscopy analyzer (Los Gatos Research Inc.) was deployed at the Wind River Experimental Forest in Washington (45.8205°N, 121.9519°W). Canopy air was sampled from three heights to measure vertical gradients of OCS within the canopy, and OCS exchange between the forest and the atmosphere. Here we take advantage of simultaneous measurements of the stable isotopologues of H2O and CO2 at corresponding heights as well as NEE (Net Ecosystem Exchange) from eddy covariance measurements to compare GPP (Gross Primary Production) and transpiration estimates from a variety of independent techniques. Our findings seek to allow assessment of the environmental and ecophysicological controls on evapotranspiration rates, which are projected to change in coming decades, and are otherwise poorly constrained.

  16. Time-filtered inverse modeling of land-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Geyer, Nicholas M.

    The sources and sinks of biospheric carbon dioxide represent one of the least understood and most critical processes in carbon science. Since the 1990's, carbon dioxide inversion models have estimated the magnitude, location, and uncertainty of carbon sources and sinks. These inversions are underconstrained statistical problems that employ aggressive statistical regularizations in both space and time to estimate quantities like net ecosystem exchange (NEE) on weekly timescales over fine spatial scales. This study developed and tested a new regularization that leverages the available observational information toward a small number of estimates associated with the longer-lived slowly varying biospheric processes, which control time-averaged sources and sinks of carbon dioxide. This approach multiplicatively adjusts the longer lived component fluxes, gross primary production (GPP) and total respiration (RESP), using several timescale harmonics. This methodology was tested by estimating adjustments to either net or component fluxes from Simple Biosphere Model 4 (SiB4) using observational data from 8 different eddy-covariance flux towers selected from the North American Carbon Program (NACP) site synthesis dataset. The time-filtering methodology was robustly capable of accurately estimating both net and component fluxes given high observational uncertainty. Furthermore, the methodology was flexible of correctly producing estimates of all three fluxes when given a component flux as an additional observational constraint.

  17. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China

    NASA Astrophysics Data System (ADS)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2014-10-01

    Typhoons are very unpredictable natural disturbances to subtropical mangrove forests in Asian countries, but little information is available on how these disturbances affect ecosystem level carbon dioxide (CO2) exchange of mangrove wetlands. In this study, we examined short-term effect of frequent strong typhoons on defoliation and net ecosystem CO2 exchange (NEE) of subtropical mangroves, and also synthesized 19 typhoons during a 4-year period between 2009 and 2012 to further investigate the regulation mechanisms of typhoons on ecosystem carbon and water fluxes following typhoon disturbances. Strong wind and intensive rainfall caused defoliation and local cooling effect during the typhoon season. Daily total NEE values decreased by 26-50% following some typhoons (e.g., W28-Nockten, W35-Molave and W35-Lio-Fan), but significantly increased (43-131%) following typhoon W23-Babj and W38-Megi. The magnitudes and trends of daily NEE responses were highly variable following different typhoons, which were determined by the balance between the variances of gross ecosystem production (GEP) and ecosystem respiration (RE). Furthermore, results from our synthesis indicated that the landfall time of typhoon, wind speed and rainfall were the most important factors controlling the CO2 fluxes following typhoon events. These findings indicate that different types of typhoon disturbances can exert very different effects on CO2 fluxes of mangrove ecosystems and that typhoon will likely have larger impacts on carbon cycle processes in subtropical mangrove ecosystems as the intensity and frequency of typhoons are predicted to increase under future global climate change scenarios.

  18. Carbon dioxide and water vapour exchange in a tropical dry forest as influenced by the North American Monsoon System (NAMS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand the effects and relationship between precipitation, net ecosystem carbon dioxide (NEE) and water vapor exchange (ET), we report a study conducted in the tropical dry forest (TDF) in the northwest of Mexico. Ecosystem gas exchange was measured using the eddy correlation technique...

  19. Factors affecting the adsorption of chromium (VI) on activated carbon

    SciTech Connect

    Yavuz, R.; Orbak, I.; Karatepe, N.

    2006-09-15

    The aim of this investigation was to determine the adsorption behavior of chromium (VI) on two different activated carbon samples produced from Tuncbilek lignite. The effects of the initial chromium (VI) concentration (250-1000 mg/L), temperature (297-323 K) and pH (2.0-9.5) on adsorption were investigated systematically. The effectiveness of the parameters on chromium adsorption was found to be in the order of pH, the initial Cr(VI) concentration and the temperature. Increasing the pH from 2.0 to 9.5 caused a decrease in adsorption. However, the adsorption was increased by increasing the initial Cr(VI) concentration and temperature. The multilinear mathematical model was also developed to predict the Cr(VI) adsorption on activated carbon samples within the experimental conditions.

  20. Measurement of pion double charge exchange on carbon-13, carbon-14, magnesium-26, and iron-56

    SciTech Connect

    Seidl, P.A.

    1985-02-01

    Cross sections for the /sup 13,14/C,/sup 26/Mg,/sup 56/Fe(..pi../sup +/,..pi../sup -/)/sup 13,14/O,/sup 26/Si,/sup 56/Ni reactions were measured with the Energetic Pion Channel and Spectrometer at the Clinton P. Anderson Meson Physics Facility for 120 less than or equal to T/sub ..pi../ less than or equal to 292 MeV and 0 less than or equal to theta less than or equal to 50. The double isobaric analog states (DIAS) are of primary interest. In addition, cross sections for transitions to /sup 14/O(0/sup +/, 5.92 MeV), /sup 14/O(2/sup +/, 7.77 MeV), /sup 56/Ni(gs), /sup 13/O(gs), and /sup 13/O(4.21 MeV) are presented. The /sup 13/O(4.21 MeV) state is postulated to have J/sup ..pi../ = 1/2/sup -/. The data are compared to previously measured double-charge-exchange cross sections on other nuclei, and the systematics of double charge exchange on T greater than or equal to 1 target nuclei leading to the DIAS are studied. Near the ..delta../sub 33/ resonance, cross sections for the DIAS transitions are in disagreement with calculations in which the reaction is treated as sequential charge exchange through the free pion-nucleon amplitude, while for T/sub ..pi../ > 200 MeV the anomalous features of the 164 MeV data are not apparent. This is evidence for significant higher order contributions to the double-charge-exchange amplitude near the reasonable energy. Two theoretical approaches that include two nucleon processes are applied to the DIAS data. 64 references.

  1. Hydrology affects carbon storage potential of prairie potholes

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-06-01

    Prairie potholes, the small, dynamic, unconnected ponds that dot central Canada as well as parts of the north central United States, can store significant amounts of soil nutrients that can be transformed to carbon dioxide and other greenhouse gases. Scientists would like to better understand how these regions could contribute to climate warming, but there are challenges, given the large heterogeneity in greenhouse gas emissions over the prairie pothole landscape.

  2. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation

    SciTech Connect

    B. E. Law; E. Falgeb; L. Guc; D. D. Baldocchic; P. Bakwind; P. Berbigiere; K. Davisf; A. J. Dolmang; M. Falkh; J. D. Fuentesi; A. Goldsteinc; A. Granierj; A. Grellek; D. Hollingerl; I. A. Janssensm; P. Jarvisn; N. O. Jenseno; G. Katulp; Y. Mahliq; G. Matteuccir; T. Meyerss; R. Monsont; W. Mungeru; W. Oechelv; R. Olsonw; K. Pilegaardx; K. T. Paw Uh; H. Thorgeirssony; R. Valentinir; S. Vermaz; T. Vesalaa1; K. Wilsons; S. Wofsyu

    2002-12-02

    The objective of this research was to compare seasonal and annual estimates of CO2 and water vapor exchange across sites in forests, grasslands, crops, and tundra that are part of an international network called FLUXNET, and to investigating the responses of vegetation to environmental variables. FLUXNETs goals are to understand the mechanisms controlling the exchanges of CO2, water vapor and energy across a spectrum of time and space scales, and to provide information for modeling of carbon and water cycling across regions and the globe. At a subset of sites, net carbon uptake (net ecosystem exchange, the net of photosynthesis and respiration) was greater under diffuse than under direct radiation conditions, perhaps because of a more efficient distribution of non-saturating light conditions for photosynthesis, lower vapor pressure deficit limitation to photosynthesis, and lower respiration associated with reduced temperature. The slope of the relation between monthly gross ecosystem production and evapotranspiration was similar between biomes, except for tundra vegetation, showing a strong linkage between carbon gain and water loss integrated over the year (slopes=3.4 g CO2/kg H2O for grasslands, 3.2 for deciduous broadleaf forests, 3.1 for crops, 2.4 for evergreen conifers, and 1.5 for tundra vegetation). The ratio of annual ecosystem respiration to gross photosynthesis averaged 0.83, with lower values for grasslands, presumably because of less investment in respiring plant tissue compared with forests. Ecosystem respiration was weakly correlated with mean annual temperature across biomes, in spite of within site sensitivity over shorter temporal scales. Mean annual temperature and site water balance explained much of the variation in gross photosynthesis. Water availability limits leaf area index over the long-term, and inter-annual climate variability can limit carbon uptake below the potential of the leaf area present.

  3. Different carbon sources affect PCB accumulation by marine bivalves.

    PubMed

    Laitano, M V; Silva Barni, M F; Costa, P G; Cledón, M; Fillmann, G; Miglioranza, K S B; Panarello, H O

    2016-02-01

    Pampean creeks were evaluated in the present study as potential land-based sources of PCB marine contamination. Different carbon and nitrogen sources from such creeks were analysed as boosters of PCB bioaccumulation by the filter feeder bivalve Brachidontes rodriguezii and grazer limpet Siphonaria lessoni. Carbon of different source than marine and anthropogenic nitrogen assimilated by organisms were estimated through their C and N isotopic composition. PCB concentration in surface sediments and mollusc samples ranged from 2.68 to 6.46 ng g(-1) (wet weight) and from 1074 to 4583 ng g(-1) lipid, respectively, reflecting a punctual source of PCB contamination related to a landfill area. Thus, despite the low flow of creeks, they should not be underestimated as contamination vectors to the marine environment. On the other hand, mussels PCB bioaccumulation was related with the carbon source uptake which highlights the importance to consider this factor when studying PCB distribution in organisms of coastal systems. PMID:26606107

  4. Stability of Intercellular Exchange of Biochemical Substances Affected by Variability of Environmental Parameters

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Budinčević, Mirko; Balaž, Igor; Mihailović, Anja

    Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.

  5. Carbon and water vapour exchange in a recently burned east boreal jack pine stand, Quebec, Canada

    NASA Astrophysics Data System (ADS)

    Nugent, K.; Strachan, I. B.

    2013-12-01

    The circumpolar boreal forest is an extensive carbon (C) reservoir, storing an estimated 88 petagrams (Pg) of C in vegetation biomass with an additional 471 PgC residing within the soil itself. In the North American boreal, fire disturbance acts as the main stand-renewing agent along an approximate 100-year return interval. However, recent studies suggest that fire intensity and severity are increasing, driven by disproportionate climate warming of the northern latitudes. While estimates of direct C emissions from combustion are becoming more accurate, indirect loss due to post-fire effects on decomposition and regeneration has only recently become a focus of research. Paradoxically, it has been estimated that post-fire C releases are in the order of three times the amount directly released during initial combustion. In this study, we examine carbon and water exchange in a 6-year old, post-burn, jack pine stand located in the eastern James Bay region of the Canadian boreal; an area currently under-represented in fire studies. Over 1.5 years, covering two growing seasons and the spring and fall transitions, we measured net CO2 and energy exchange at the ecosystem level using an eddy covariance tower, and supplemented this with chamber measurements of soil respiration. At this stage of recovery, while demonstrating diurnal and seasonal patterns of exchange, overall the site was a net source of C and water to the atmosphere with brief periods of C sink.

  6. Ecosystem carbon exchange in response to locust outbreaks in a temperate steppe.

    PubMed

    Song, Jian; Wu, Dandan; Shao, Pengshuai; Hui, Dafeng; Wan, Shiqiang

    2015-06-01

    It is predicted that locust outbreaks will occur more frequently under future climate change scenarios, with consequent effects on ecological goods and services. A field manipulative experiment was conducted to examine the responses of gross ecosystem productivity (GEP), net ecosystem carbon dioxide (CO2) exchange (NEE), ecosystem respiration (ER), and soil respiration (SR) to locust outbreaks in a temperate steppe of northern China from 2010 to 2011. Two processes related to locust outbreaks, natural locust feeding and carcass deposition, were mimicked by clipping 80 % of aboveground biomass and adding locust carcasses, respectively. Ecosystem carbon (C) exchange (i.e., GEP, NEE, ER, and SR) was suppressed by locust feeding in 2010, but stimulated by locust carcass deposition in both years (except SR in 2011). Experimental locust outbreaks (i.e., clipping plus locust carcass addition) decreased GEP and NEE in 2010 whereas they increased GEP, NEE, and ER in 2011, leading to neutral changes in GEP, NEE, and SR across the 2 years. The responses of ecosystem C exchange could have been due to the changes in soil ammonium nitrogen, community cover, and aboveground net primary productivity. Our findings of the transient and neutral changes in ecosystem C cycling under locust outbreaks highlight the importance of resistance, resilience, and stability of the temperate steppe in maintaining reliable ecosystem services, and facilitate the projections of ecosystem functioning in response to natural disturbance and climate change. PMID:25663332

  7. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, S. E.; Shurpali, N. J.; Peltola, O.; Mammarella, I.; Hyvönen, N.; Maljanen, M.; Räty, M.; Virkajärvi, P.; Martikainen, P. J.

    2015-10-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinaceae L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured during three years using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the studied period, cumulative NEE was -575 g C m-2. When compared to the published data for RCG on an organic soil, the cultivation of this crop on a mineral soil had higher capacity to take up CO2 from the atmosphere.

  8. Estimating Carbon Stocks and Atmospheric Exchange of Depressional Marshes on the Central Florida Landscape

    NASA Astrophysics Data System (ADS)

    Benscoter, B.; McClellan, M. D.; Benavides, V.; Harshbarger, D.; Comas, X.

    2014-12-01

    Depressional marshes are ubiquitous throughout central and south Florida. Often distributed within a matrix of sandy pine flatwoods and hammocks, these wetlands have a seasonally variable water table, alternating between inundation and complete drydown. Though these landforms are typically small individually, they comprise a substantial component of the landscape and provide vital habitat for an array of flora and fauna. Given their fluctuating hydrology, conditions for soil and plant carbon (C) exchange mechanisms can vary greatly both spatially and temporally. In this study, we are developing a C budget for depressional marsh landforms by assessing ecosystem carbon exchange along an ecotone gradient and quantifying belowground C stocks using non-invasive geophysical methods (ground penetrating radar, GPR) at the Disney Wilderness Preserve (DWP) in Kissimmee, FL, USA. Using a series of closed chambers transecting the marsh from the center outward into the surrounding flatwoods, we are quantifying the effects of seasonal water table change on the magnitude of C exchange. Three dimensional GPR surveys were used to quantify peat layer thickness, and were constrained with direct core sampling to verify subsurface lithology and to assess peat C content. Using the relationship between landform surface area and belowground C volume, we assessed the cumulative C storage in depressional marshes across the DWP landscape. In conjunction with a nearby eddy covariance tower and seasonal hydrologic data, these response functions will help to evaluate the contribution of these small but widespread landscape features on regional C cycling.

  9. Cation exchange resin nanocomposites based on multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fathy, Mahmoud; Abdel Moghny, Th.; Awad Allah, Ahmed Elsayed; Alblehy, AbdElhamid

    2014-01-01

    Carbon nanotubes (CNTs) are of great interest due to their potential applications in different fields such as water treatment and desalination. The increasing exploitation of multi-walled carbon nanotubes (MWCNTs) into many industrial processes has raised considerable concerns for environmental applications. The interactions of soluble salt with MWNCTs influence in the total salt content in saline water. In this work, we synthesized two cation exchange resins nano composites from polystyrene divinylbenzene copolymer (PSDVB) and pristine MWNCTs. The prepared compounds were characterized using infra red spectroscopy, thermal stability, X-ray diffraction, and electro scan microscope. Also, the ion capacities of prepared cation exchange resins were determined by titration. Based on the experimental results, it was found that the thermal stability of prepared nanocomposites in the presence of MWNCTs increased up to 617 °C. The X-ray of PSDVB and its sulfonated form exhibits amorphous pattern texture structure, whereas the nano composite exhibits amorphous structure with indication peak at 20° and 26° for the PSDVB and MWCNTs, respectively. The ion-exchange capacity increased from 225.6 meq/100 g to 466 mg/100 g for sulfonated PSDVB and sulfonated PSDVB MWNCTs-pristine, respectively.

  10. Year-long carbon dioxide exchange above a broadleaf deciduous forest in Sapporo, Northern Japan

    NASA Astrophysics Data System (ADS)

    Nakai, Y.; Kitamura, K.; Suzuki, S.; Abe, S.

    2003-04-01

    This paper reports the results of a full year (2000) of measurements of CO2 flux at a successional forest of mature birch and growing oak with Sasa-bamboo in Sapporo, Japan. Eddy covariance fluxes of CO2 were obtained using a closed-path infrared gas analyzer. Changes in CO2 storage under the eddy-flux measurement level were quantified using vertical profiles of the CO2 concentration. Seasonal variations in net CO2 exchange between the forest and the atmosphere are discussed in terms of both phenological developments of the forest canopy and micrometeorological variables. To estimate the annual exchange of CO2, the net CO2 exchange data both during periods of poor turbulence and during periods of missing data were replaced by simple parametric models based on measurements of soil temperatures and photosynthetically active radiation. The corrected annual carbon sequestration estimate was 260 g C m-2. The estimates of annual gross carbon gain and loss at the forest were 1120 and 860 g C m-2.

  11. Multiwalled Carbon Nanotube Dispersion Methods Affect Their Aggregation, Deposition, and Biomarker Response

    EPA Science Inventory

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT...

  12. Multi-model terrestrial and oceanic carbon exchange estimates from data assimilation in GEOCARBON

    NASA Astrophysics Data System (ADS)

    van der Laan-Luijkx, I.; Peters, W.; Peylin, P.; Dolman, A. J.; Gerbig, C.; Zaehle, S.; Rödenbeck, C.; Schürmann, G. J.; Scholze, M.; Kaminski, T.; Williams, M. D.; Bloom, A. A.; Toque, N.; Dobricic, S.; Vichi, M.; Masina, S.; Bertino, L.; Heinze, C.; Gloor, E.

    2012-12-01

    The European Union FP7 project GEOCARBON aims to synthesize existing observations, data products, and models that inform on the recent carbon balance of the oceans and terrestrial biosphere. One of its components specifically employs data assimilation techniques to optimally combine observations and process models. To capture the large range of carbon exchange estimates that is often possible within the limited observational constraints, a wide variety of methods and models is included in GEOCARBON. A significant effort is made to quantitatively assess the outcome of each data assimilation system, to identify robust features across methods, and to synthesize multi-model results into a final estimate of land and ocean carbon exchange, and its uncertainty. We will present the first results from data assimilation of a variety of observations (atmospheric CO2 mole fractions, surface ocean pCO2, ocean chlorophyll, biomass surveys, and eddy-covariance CO2 fluxes) in a variety of systems (atmospheric inversions, biosphere model optimizations, ocean CCDAS) using a variety of techniques (4dVar, ensemble kalman filtering). Our first analyses will focus on independent evaluation of the results and quantification of the uncertainties on our estimates.

  13. Anywhere the Wind Blows does Really Matter to Net Ecosystem Carbon Exchange.

    NASA Astrophysics Data System (ADS)

    Montaldo, Nicola; Oren, Ram

    2013-04-01

    Mistral wind (from North-west direction) affects climate of western Mediterranean basin. Coming from north -east, it crosses France, Sardinia and finally reaches South Italy. Recent studies showed that climate change is affecting wind speed and directions. In particular, in the case of the Mistral over the Mediterranean area a decrease of the wind speed and changes of the wind direction in the Summer months are predicted using global climate models. We point out that these climate changes can affect land surface fluxes -- evapotranspiration (ET) and carbon exchanges (Fc). Indeed, considering data from an eddy covariance tower in Sardinia (Italy) we show that wind direction and velocity represent larger scale weather conditions affecting land surface fluxes independently of footprint properties in what might be a confounding fashion, requiring extra care in linking footprint properties to flux rates. Hence, we demonstrate that more important can be the large scale (e.g., regional) impact of the wind direction and speed on land surface fluxes. The island of Sardinia is strongly representative of the Mediterranean region. We consider a representative case study site within the Flumendosa river basin on Sardinia in Orroli, a mixed grass-woodland site on a shallow soil. During 2004 - 2007 a micrometeorological towers with eddy covariance instrumentation monitored land surface fluxes of energy, water, and CO2. In Sardinia Mistral is characterized by the highest wind speed (> 3 m/s). Analyzing meteorological conditions under Mistral over Sardinia we observe a decrease of the air temperature and vapor pressure deficit (VPD). We concentrate on the Summer period during which air temperature and light are not limiting factors of ET and Fc. We distinguish the surprising effect of the mistral on ET and Fc. At the Orroli site the Summer 2005 was characterized by a soil moisture drying due to a small rain event at the end of June followed by an extreme dry period until September

  14. Growing Season Carbon Dioxide Exchange in Flooded Non-Mulching and Non-Flooded Mulching Cotton

    PubMed Central

    Li, Zhi-guo; Zhang, Run-hua; Wang, Xiu-jun; Chen, Fang; Tian, Chang-yan

    2012-01-01

    There is much interest in the role that agricultural practices might play in sequestering carbon to help offset rising atmospheric CO2 concentrations. However, limited information exists regarding the potential for increased carbon sequestration of different management strategies. The objective of this study was to quantify and contrast carbon dioxide exchange in traditional non-mulching with flooding irrigation (TF) and plastic film mulching with drip irrigation (PM) cotton (Gossypium hirsutum L.) fields in northwest China. Net primary productivity (NPP), soil heterotrophic respiration (Rh) and net ecosystem productivity (NEP) were measured during the growing seasons in 2009 and 2010. As compared with TF, PM significantly increased the aboveground and belowground biomass and the NPP (340 g C m−2 season−1) of cotton, and decreased the Rh (89 g C m−2 season−1) (p<0.05). In a growing season, PM had a higher carbon sequestration in terms of NEP of ∼ 429 g C m−2 season−1 than the TF. These results demonstrate that conversion of this type of land use to mulching practices is an effective way to increase carbon sequestration in the short term in cotton systems of arid areas. PMID:23226376

  15. Carbon composite bipolar plate for high-temperature proton exchange membrane fuel cells (HT-PEMFCs)

    NASA Astrophysics Data System (ADS)

    Lee, Dongyoung; Lee, Dai Gil

    2016-09-01

    A carbon/epoxy composite bipolar plate is an ideal substitute for the brittle graphite bipolar plate for lightweight proton exchange membrane fuel cells (PEMFCs) because of its high specific strength and stiffness. However, conventional carbon/epoxy composite bipolar plates are not applicable for high-temperature PEMFCs (HT-PEMFCs) because these systems are operated at higher temperatures than the glass transition temperatures of conventional epoxies. Therefore, in this study, a cyanate ester-modified epoxy is adopted for the development of a carbon composite bipolar plate for HT-PEMFCs. The composite bipolar plate with exposed surface carbon fibers is produced without any surface treatments or coatings to increase the productivity and is integrated with a silicone gasket to reduce the assembly cost. The developed carbon composite bipolar plate exhibits not only superior electrical properties but also high thermo-mechanical properties. In addition, a unit cell test is performed, and the results are compared with those of the conventional graphite bipolar plate.

  16. Time-Filtered Inverse Modeling of Land-Atmosphere Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Geyer, N. M.; Denning, S.; Haynes, K. D.

    2015-12-01

    The sources and sinks of biospheric carbon dioxide represent one of the least understood and most critical processes in carbon science. Since the 1990's, carbon dioxide inversion models have estimated the magnitude, location, and uncertainty of carbon sources and sinks. These inversions are underconstrained estimation problems that employ aggressive statistical regularizations in both space and time to estimate quantities like net ecosystem exchange (NEE) on weekly timescales over fine spatial scales. We developed and tested a new method focusing observational constraints on estimation of corrections to slowly varying biospheric processes, which control time-averaged sources and sinks. Rather than estimate weekly additive corrections to NEE, we estimate persistent multiplicative biases to time mean and several seasonal harmonics of gross primary production (GPP) and total respiration (RESP). We tested the new method by estimating corrections to simulated component fluxes from the Simple Biosphere Model 4 (SiB4) using observations from 8 different eddy-covariance flux towers selected from the North American Carbon Program (NACP) site synthesis dataset. The time-filtering method correctly estimates of both the net and component fluxes and is more robust to observational uncertainty than a control experiment meant to represent current global inversions. Furthermore, the new method is flexible enough to separately estimate component fluxes (GPP and RESP) using additional observational constraints even with a high degree of uncertainty.

  17. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  18. Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest

    NASA Astrophysics Data System (ADS)

    Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.

    2015-07-01

    The vegetation-atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year eddy covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (Lund-Potsdam-Jena General Ecosystem Simulator; LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all timescales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated

  19. Modelling short-term variability in carbon and water exchange in a temperate Scots pine forest

    NASA Astrophysics Data System (ADS)

    Vermeulen, M. H.; Kruijt, B. J.; Hickler, T.; Kabat, P.

    2015-02-01

    Vegetation - atmosphere carbon and water exchange at one particular site can strongly vary from year to year, and understanding this interannual variability in carbon and water exchange (IAVcw) is a critical factor in projecting future ecosystem changes. However, the mechanisms driving this IAVcw are not well understood. We used data on carbon and water fluxes from a multi-year Eddy Covariance study (1997-2009) in a Dutch Scots pine forest and forced a process-based ecosystem model (LPJ-GUESS) with local data to, firstly, test whether the model can explain IAVcw and seasonal carbon and water exchange from direct environmental factors only. Initial model runs showed low correlations with estimated annual gross primary productivity (GPP) and annual actual evapotranspiration (AET), while monthly and daily fluxes showed high correlations. The model underestimated GPP and AET during winter and drought events. Secondly, we adapted the temperature inhibition function of photosynthesis to account for the observation that at this particular site, trees continue to assimilate at very low atmospheric temperatures (up to daily averages of -10 °C), resulting in a net carbon sink in winter. While we were able to improve daily and monthly simulations during winter by lowering the modelled minimum temperature threshold for photosynthesis, this did not increase explained IAVcw at the site. Thirdly, we implemented three alternative hypotheses concerning water uptake by plants in order to test which one best corresponds with the data. In particular, we analyse the effects during the 2003 heatwave. These simulations revealed a strong sensitivity of the modelled fluxes during dry and warm conditions, but no single formulation was consistently superior in reproducing the data for all time scales and the overall model-data match for IAVcw could not be improved. Most probably access to deep soil water leads to higher AET and GPP simulated during the heat wave of 2003. We conclude that

  20. [Carbon exchange of Chinese boreal forest during its growth season and related regulation mechanisms].

    PubMed

    Zhou, Li-yan; Jia, Bing-rui; Zhou, Guang-sheng; Zeng, Wei; Wang, Yu

    2010-10-01

    Based on the two-year continuous observation on the carbon exchange of Chinese boreal forest during its growth seasons in 2007 and 2008 by the method of open path eddy covariance, this paper analyzed the seasonal dynamics of the gross ecosystem productivity (GEP), ecosystem respiration (Re), and net ecosystem carbon exchange (NEE) of the forest, with related regulation mechanisms approached. The GEP, Re, and NEE of the forest reached to their maximum in the vigorous growth period from late June to mid August, but the dates of the maximum appeared differed. The mean daily GEP, Re, and NEE were 19.45, 15.15, and -1.45 g CO2 x m(-2) x d(-1) in 2007, and 17.67, 14.11, and -1.37 g CO2 x m(-2) x d(-1) in 2008, respectively. The intensity of the carbon exchange during growth season was obviously stronger in 2007 than in 2008, possibly due to the higher mean air temperature (12.46 degrees C in 2007 vs. 11.04 degrees C in 2008) and the higher mean photosynthetically active radiation (PAR) (697 micromol x m(-2) x s(-1) in 2007 vs. 639 micromol x m(-2) x s(-1) in 2008). The GEP had close linear relationships with air temperature and PAR, and the correlation coefficient of GEP and air temperature was around 0.55 (P<0.01). The Re was mainly controlled by air temperature, with the correlation coefficient being 0.66-0.72 (P<0.01), and the NEE was mainly controlled by PAR, with the correlation coefficient being 0.59-0.63 (P<0.01). PMID:21328928

  1. Carbon dioxide exchange of a perennial bioenergy crop cultivation on a mineral soil

    NASA Astrophysics Data System (ADS)

    Lind, Saara E.; Shurpali, Narasinha J.; Peltola, Olli; Mammarella, Ivan; Hyvönen, Niina; Maljanen, Marja; Räty, Mari; Virkajärvi, Perttu; Martikainen, Pertti J.

    2016-03-01

    One of the strategies to reduce carbon dioxide (CO2) emissions from the energy sector is to increase the use of renewable energy sources such as bioenergy crops. Bioenergy is not necessarily carbon neutral because of greenhouse gas (GHG) emissions during biomass production, field management and transportation. The present study focuses on the cultivation of reed canary grass (RCG, Phalaris arundinacea L.), a perennial bioenergy crop, on a mineral soil. To quantify the CO2 exchange of this RCG cultivation system, and to understand the key factors controlling its CO2 exchange, the net ecosystem CO2 exchange (NEE) was measured from July 2009 until the end of 2011 using the eddy covariance (EC) method. The RCG cultivation thrived well producing yields of 6200 and 6700 kg DW ha-1 in 2010 and 2011, respectively. Gross photosynthesis (GPP) was controlled mainly by radiation from June to September. Vapour pressure deficit (VPD), air temperature or soil moisture did not limit photosynthesis during the growing season. Total ecosystem respiration (TER) increased with soil temperature, green area index and GPP. Annual NEE was -262 and -256 g C m-2 in 2010 and 2011, respectively. Throughout the study period from July 2009 until the end of 2011, cumulative NEE was -575 g C m-2. Carbon balance and its regulatory factors were compared to the published results of a comparison site on drained organic soil cultivated with RCG in the same climate. On this mineral soil site, the RCG had higher capacity to take up CO2 from the atmosphere than on the comparison site.

  2. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  3. Black Carbon Vertical Profiles Strongly Affect its Radiative Forcing Uncertainty

    SciTech Connect

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, Susanne E.; Berntsen, T.; Bian, Huisheng; Bellouin, N.; Diehl, T.; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kinne, Stefan; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, Xiaohong; Penner, Joyce E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, Kai

    2013-03-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  4. Carbon dioxide exchange in a semidesert grassland through drought-induced vegetation change

    NASA Astrophysics Data System (ADS)

    Scott, Russell L.; Hamerlynck, Erik P.; Jenerette, G. Darrel; Moran, M. Susan; Barron-Gafford, Greg A.

    2010-09-01

    Global warming may intensify the hydrological cycle and lead to increased drought severity and duration, which could alter plant community structure and subsequent ecosystem water and carbon dioxide cycling. We report on the net ecosystem exchange of carbon dioxide (NEE) of a semidesert grassland through a severe drought which drove succession from native bunchgrasses to forbs and to eventual dominance by an exotic bunchgrass. We monitored NEE and energy fluxes using eddy covariance coupled with meteorological and soil moisture variables for 6 years at a grassland site in southeastern Arizona, USA. Seasonal NEE typically showed a springtime carbon uptake after winter-spring periods of average rainfall followed by much stronger sink activity during the summer rainy season. The two severe drought years (2004 and 2005) resulted in a net release of carbon dioxide (25 g C m-2) and widespread mortality of native perennial bunchgrasses. Above average summer rains in 2006 alleviated drought conditions, resulting in a large flush of broad-leaved forbs and negative total NEE (-55 g C m-2 year-1). Starting in 2007 and continuing through 2009, the ecosystem became increasingly dominated by the exotic grass, Eragrostis lehmanniana, and was a net carbon sink (-47 to -98 g C m-2 year-1) but with distinct annual patterns in NEE. Rainfall mediated by soils was the key driver to water and carbon fluxes. Seasonal respiration and photosynthesis were strongly dependent on precipitation, but photosynthesis was more sensitive to rainfall variation. Respiration normalized by evapotranspiration showed no interannual variation, while normalized gross ecosystem production (i.e., water use efficiency) was low during drought years and then increased as the rains returned and the E. lehmanniana invasion progressed. Thus, when dry summer conditions returned in 2009, the potential for ecosystem carbon accumulation was increased and the ecosystem remained a net sink unlike similar dry years when

  5. In vitro adsorption removal of paraquat by activated carbon and cation exchange resin

    SciTech Connect

    Kitakouji, M.; Miyoshi, T.; Tanada, M.S.; Nakamura, T. )

    1989-06-01

    With the modernization of agriculture, environmental pollution and accidental poisoning by agricultural chemicals have become a great social problem. With the remarkable increase in the amount of paraquat used, the number of deaths by swallowing of paraquat has also increased in recent years. Presently, an effective antidote and treatment for paraquat poisoning is not available. For primary treatment, administration of an adsorbent is done at the same time as gastrointestinal lavage. As an adsorbent for paraquat poisoning, the efficacy of activated carbon, Fuller's Earth, bentonite, and a cation exchange resin have been reported. In this work, the authors discuss the adsorption characteristics of paraquat in artificial gastric juice and normal saline solution.

  6. Reduced impact logging minimally alters tropical rainforest carbon and energy exchange

    PubMed Central

    Miller, Scott D.; Goulden, Michael L.; Hutyra, Lucy R.; Keller, Michael; Saleska, Scott R.; Wofsy, Steven C.; Figueira, Adelaine Michela Silva; da Rocha, Humberto R.; de Camargo, Plinio B.

    2011-01-01

    We used eddy covariance and ecological measurements to investigate the effects of reduced impact logging (RIL) on an old-growth Amazonian forest. Logging caused small decreases in gross primary production, leaf production, and latent heat flux, which were roughly proportional to canopy loss, and increases in heterotrophic respiration, tree mortality, and wood production. The net effect of RIL was transient, and treatment effects were barely discernable after only 1 y. RIL appears to provide a strategy for managing tropical forest that minimizes the potential risks to climate associated with large changes in carbon and water exchange. PMID:22087005

  7. The role of carbon in fungal nutrient uptake and transport: implications for resource exchange in the arbuscular mycorrhizal symbiosis.

    PubMed

    Fellbaum, Carl R; Mensah, Jerry A; Pfeffer, Philip E; Kiers, E Toby; Bücking, Heike

    2012-11-01

    The arbuscular mycorrhizal (AM) symbiosis, which forms between plant hosts and ubiquitous soil fungi of the phylum Glomeromycota, plays a key role for the nutrient uptake of the majority of land plants, including many economically important crop species. AM fungi take up nutrients from the soil and exchange them for photosynthetically fixed carbon from the host. While our understanding of the exact mechanisms controlling carbon and nutrient exchange is still limited, we recently demonstrated that (i) carbon acts as an important trigger for fungal N uptake and transport, (ii) the fungus changes its strategy in response to an exogenous supply of carbon, and that (iii) both plants and fungi reciprocally reward resources to those partners providing more benefit. Here, we summarize recent research findings and discuss the implications of these results for fungal and plant control of resource exchange in the AM symbiosis. PMID:22990447

  8. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  9. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, O.; Ricart, A. M.; Lavery, P. S.; Mateo, M. A.; Arias-Ortiz, A.; Masque, P.; Steven, A.; Duarte, C. M.

    2015-11-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3 to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3 to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stores were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). Also, sediment accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3 to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8 and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypotheses that Corg storage in seagrass soils is influenced by interactions of biological (e.g. meadow productivity, cover and density), chemical (e.g. recalcitrance of Corg stocks) and physical (e.g. hydrodynamic energy and sediment accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  10. Carbon Exchange and Water Use in Karst Landscapes: Impact of Woody Encroachment

    NASA Astrophysics Data System (ADS)

    Heilman, J. L.; Litvak, M. E.

    2008-05-01

    Woody plant invasion into grasslands and savannas, and its impact on water use are critical issues in karst landscapes because 25% of the world's population obtains its water from karst aquifers. It is well documented that woody encroachment increases carbon sequestration, but its impact on water use is less clear. It is widely presumed that woody plants increase evapotranspiration (ET), in part because deep root systems provide access to a more stable supply of water than what is available to grasses. If this is true, woody encroachment should reduce the sensitivity of carbon exchange and ET to rainfall pulses and water deficits, and vulnerability to drought. Since 2004, we have been investigating, via eddy covariance, carbon exchange and water use on a grassland, a savanna with approximately 35% woody cover, and a dense live oak-Ashe juniper forest on the karst Edwards Plateau in south and west central Texas. The Plateau is a 93,000 km2 karst ecoregion that is dominated by live oak-Ashe juniper savannas underlain by mixed C3/C4 grasses, and soils are generally shallow. The Plateau contains the Edwards Aquifer which supplies drinking water to over 2 million people, and is home to a number of threatened and endangered species, many of them aquatic. Populations of juniper are expanding due to suppression of wildfires, and public funds are being spent to remove juniper in an attempt to increase water availability. Our measurements show large differences in carbon sequestration among the ecosystems (highest in savanna and lowest in grassland), and small differences in ET (~0.2 mm day-1 higher in the forest than in the grassland). We attribute increased ET to increases in net radiation, and proportionally greater partitioning of available energy into sensible heat flux at the expense of latent heat flux. We found little differences in response of carbon exchange and ET to rainfall and water deficits, regardless of the amount of woody cover, intensity of rainfall, or

  11. Factors affecting ex-situ aqueous mineral carbonation using calcium and magnesium silicate minerals

    SciTech Connect

    Gerdemann, Stephen J.; Dahlin, David C.; O'Connor, William K.; Penner, Larry R.; Rush, G.E.

    2004-01-01

    Carbonation of magnesium- and calcium-silicate minerals to form their respective carbonates is one method to sequester carbon dioxide. Process development studies have identified reactor design as a key component affecting both the capital and operating costs of ex-situ mineral sequestration. Results from mineral carbonation studies conducted in a batch autoclave were utilized to design and construct a unique continuous pipe reactor with 100% recycle (flow-loop reactor). Results from the flow-loop reactor are consistent with batch autoclave tests, and are being used to derive engineering data necessary to design a bench-scale continuous pipeline reactor.

  12. Long-term influence of tillage and fertilization on net carbon dioxide exchange rate on two soils with different textures.

    PubMed

    Feiziene, Dalia; Feiza, Virginijus; Slepetiene, Alvyra; Liaudanskiene, Inga; Kadziene, Grazina; Deveikyte, Irena; Vaideliene, Asta

    2011-01-01

    The importance of agricultural practices to greenhouse gas mitigation is examined worldwide. However, there is no consensus on soil organic carbon (SOC) content and CO emissions as affected by soil management practices and their relationships with soil texture. No-till (NT) agriculture often results in soil C gain, though, not always. Soil net CO exchange rate (NCER) and environmental factors (SOC, soil temperature [T], and water content [W]), as affected by soil type (loam and sandy loam), tillage (conventional, reduced, and NT), and fertilization, were quantified in long-term field experiments in Lithuania. Soil tillage and fertilization affected total CO flux (heterotrophic and autotrophic) through effect on soil SOC sequestration, water, and temperature regime. After 11 yr of different tillage and fertilization management, SOC content was 23% more in loam than in sandy loam. Long-term NT contributed to 7 to 27% more SOC sequestration on loam and to 29 to 33% more on sandy loam compared with reduced tillage (RT) or conventional tillage (CT). Soil water content in loam was 7% more than in sandy loam. Soil gravimetric water content, averaged across measurement dates and fertilization treatments, was significantly less in NT than CT and RT in both soils. Soil organic carbon content and water storage capacity of the loam and sandy loam soils exerted different influences on NCER. The NCER from the sandy loam soil was 13% greater than that from the loam. In addition, NCER was 4 to 9% less with NT than with CT and RT systems on both loam and sandy loam soils. Application of mineral NPK fertilizers promoted significantly greater NCER from loam but suppressed NCER by 15% from sandy loam. PMID:22031561

  13. Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E.; Denning, S.; Paustian, K.; Baker, I.; Schaefer, K.; Verma, S.; Meyers, T.; Bernacchi, C. J.; Suyker, A.; Fischer, M.

    2009-06-01

    Croplands are man-made ecosystems that have high net primary productivity during the growing season of crops, thus impacting carbon and other exchanges with the atmosphere. These exchanges play a major role in nutrient cycling and climate change related issues. An accurate representation of crop phenology and physiology is important in land-atmosphere carbon models being used to predict these exchanges. To better estimate time-varying exchanges of carbon, water, and energy of croplands using the Simple Biosphere (SiB) model, we developed crop-specific phenology models and coupled them to SiB. The coupled SiB-phenology model (SiBcrop) replaces remotely-sensed NDVI information, on which SiB originally relied for deriving Leaf Area Index (LAI) and the fraction of Photosynthetically Active Radiation (fPAR) for estimating carbon dynamics. The use of the new phenology scheme within SiB substantially improved the prediction of LAI and carbon fluxes for maize, soybean, and wheat crops, as compared with the observed data at several AmeriFlux eddy covariance flux tower sites in the US mid continent region. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon uptake (especially for maize) and day to day variability in carbon exchange. Biomass predicted by SiBcrop had good agreement with the observed biomass at field sites. In the future, we will predict fine resolution regional scale carbon and other exchanges by coupling SiBcrop with RAMS (the Regional Atmospheric Modeling System).

  14. Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands

    NASA Astrophysics Data System (ADS)

    Lokupitiya, E.; Denning, S.; Paustian, K.; Baker, I.; Schaefer, K.; Verma, S.; Meyers, T.; Bernacchi, C.; Suyker, A.; Fischer, M.

    2009-02-01

    Croplands are man-made ecosystems that have high net primary productivity during the growing season of crops, thus impacting carbon and other exchanges with the atmosphere. These exchanges play a~major role in nutrient cycling and climate change related issues. An accurate representation of crop phenology and physiology is important in land-atmosphere carbon models being used to predict these exchanges. To better estimate time-varying exchanges of carbon, water, and energy of croplands using the Simple Biosphere (SiB) model, we developed crop-specific phenology models and coupled them to SiB. The coupled SiB-phenology model (SiBcrop) replaces remotely-sensed NDVI information, on which SiB originally relied for deriving Leaf Area Index (LAI) and the fraction of Photosynthetically Active Radiation (fPAR) for estimating carbon dynamics. The use of the new phenology scheme within SiB substantially improved the prediction of LAI and carbon fluxes for maize, soybean, and wheat crops, as compared with the observed data at several AmeriFlux eddy covariance flux tower sites in the US mid continent region. SiBcrop better predicted the onset and end of the growing season, harvest, interannual variability associated with crop rotation, day time carbon uptake (especially for maize) and day to day variability in carbon exchange. Biomass predicted by SiBcrop had good agreement with the observed biomass at field sites. In the future, we will predict fine resolution regional scale carbon and other exchanges by coupling SiBcrop with RAMS (the Regional Atmospheric Modeling System).

  15. Long-Term Tillage Affects on Soil Aggregation and Carbon Sequestration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous cultivation affects soil structure due to the destruction of soil aggregates and the lost of soil organic carbon (SOC). Different management practices, such as different tillage applications, affect the formation and the stabilization of soil aggregates through management effects on SOC l...

  16. Improvement in high temperature proton exchange membrane fuel cells cathode performance with ammonium carbonate

    NASA Astrophysics Data System (ADS)

    Song, Ying; Wei, Yu; Xu, Hui; Williams, Minkmas; Liu, Yuxiu; Bonville, Leonard J.; Russell Kunz, H.; Fenton, James M.

    Proton exchange membrane (PEM) fuel cells with optimized cathode structures can provide high performance at higher temperature (120 °C). A "pore-forming" material, ammonium carbonate, applied in the unsupported Pt cathode catalyst layer of a high temperature membrane electrode assembly enhanced the catalyst activity and minimized the mass-transport limitations. The ammonium carbonate amount and Nafion ® loading in the cathode were optimized for performance at two conditions: 80 °C cell temperature with 100% anode/75% cathode R.H. and 120 °C cell temperature with 35% anode/35% cathode R.H., both under ambient pressure. A cell with 20 wt.% ammonium carbonate and 20 wt.% Nafion ® operating at 80 °C and 120 °C presented the maximum cell performance. Hydrogen/air cell voltages at a current density of 400 mA cm -2 using the Ionomem/UConn membrane as the electrolyte with a cathode platinum loading of 0.5 mg cm -2 were 0.70 V and 0.57 V at the two conditions, respectively. This was a 19% cell voltage increase over a cathode without the "pore-forming" ammonium carbonate at the 120 °C operating condition.

  17. Ecosystem Warming Affects Vertical Distribution of Leaf Gas Exchange Properties and Water Relations of Spring Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vertical distribution of gas exchange and water relations responses to full-season in situ infrared (IR) warming were evaluated for hard red spring wheat (Triticum aestivum L. cv. Yecora Rojo) grown in an open field in a semiarid desert region of the Southwest USA. A Temperature Free-Air Contro...

  18. Nitrogen and phosphorus leaching as affected by gypsum amendment and exchangeable calcium and magnesium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The movement of N and P from the soil by leaching contributes to losses from agricultural land and represents an important environmental and human health concern. The objective of this study was to evaluate the effect of gypsum amendment and the resultant impact of different levels of exchangeable C...

  19. Seasonal Precipitation Variability Effects on Carbon Exchange in a Tropical Dry Forest of Northwest Mexico

    NASA Astrophysics Data System (ADS)

    Verduzco, V.; Garatuza-Payan, J.; Yépez, E. A.; Watts, C. J.; Rodriguez, J. C.; Robles-Morua, A.; Vivoni, E. R.

    2015-12-01

    The Tropical Dry Forest (TDF) cover a large area in tropical and subtropical regions in the Americas and its productivity is thought to have an important contribution to the atmospheric carbon fluxes. However, due to this ecosystem complex dynamics, our understanding about the mechanisms controlling net ecosystem exchange is limited. In this study, five years of continue water and carbon fluxes measurements from eddy covariance complemented with remotely sensed vegetation greenness were used to investigate the ecosystem carbon balance of a TDF in the North American Monsoon region under different hydro climatic conditions. We identified a large CO2 efflux at the start of the summer season that is strongly related to the preceding winter precipitation and greenness. Since this CO2 efflux occurs prior to vegetation green-up, we infer a predominant heterotrophic control owed to high decomposition of accumulated labile soil organic matter from prior growing season. Overall, ecosystem respiration has an important effect on the net ecosystem production over the year, but can be overwhelmed by the strength of the primary productivity during the monsoon season. Precipitation characteristics during the monsoon have significant controls on sustaining carbon fixation in the TDF ecosystem into the fall season. A threshold of ~350 to 400 mm of summer precipitation was identify to switch the annual carbon balance in the TDF ecosystem from a net source (+102 g C/m2/yr) to a net sink (-249 g C/m2/yr). This research points at the needs for understanding the potential effects of changing seasonal precipitation patterns on ecosystem dynamics and carbon sequestration in subtropical regions.

  20. Preparation, Characterization and Anion Exchange Properties of Polypyrrole/Carbon Nanotube Nanocomposite

    SciTech Connect

    Cui, Xiaoli; Engelhard, Mark H.; Lin, Yuehe

    2006-02-01

    In this study, polypyrrole (PPy) thin film was electrodeposited on carbon nanotube (CNT) backbones by applying a constant deposition potential in solution with 0.1 M pyrrole with different electrolytes such as NaCl, NaNO3, or NaClO4. The hybrid films were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and cyclic voltammetry. SEM images revealed the nanostructrure of PPy film generated on CNTs surface. The electrochemical and anion exchange properties of PPy-CNT composite film have been investigated. Nanostructured composite thin films of polypyrrole/CNTs were studied by cyclic voltammetry between 0.4 and -0.8 V in aqueous solution to evaluate their cycling stability and capacity for electrically switched anion exchange. It is found that the PPy/CNTs nanocomposites can improve the anion exchange capacity and stability of the PPy-CNTs composite film, which may be attributed to the nanostructure of the polypyrrole film, which offer the high aspect ratio of the film and ease of diffusion of anions in the nanostructured film, and the interaction between CNTs and PPy.

  1. Anion Exchange Capacity As a Mechanism for Deep Soil Carbon Storage in Variable Charge Soils

    NASA Astrophysics Data System (ADS)

    Dietzen, C.; James, J. N.; Ciol, M.; Harrison, R. B.

    2014-12-01

    Soil is the most important long-term sink for carbon (C) in terrestrial ecosystems, containing more C than plant biomass and the atmosphere combined. However, soil has historically been under-represented in C cycling literature, especially in regards to information about subsurface (>1.0 m) layers and processes. Previous research has indicated that Andisols with large quantities of noncrystalline, variable-charge minerals, including allophane, imogolite, and ferrihydrite, contain more C both in total and at depth than other soil types in the Pacific Northwest. The electrostatic charge of variable-charge soils depends on pH and is sometimes net positive, particularly in acid conditions, such as those commonly developed under the coniferous forests of the Pacific Northwest. However, even soils with a net negative charge may contain a mixture of negative and positive exchange sites and can hold some nutrient anions through the anion exchange capacity. To increase our understanding of the effects of variable-charge on soil organic matter stabilization, deep sampling is under way at the Fall River Long-Term Soil Productivity Site in western Washington. This site has a deep, well-drained soil with few rocks, which developed from weathered basalt and is classified as an Andisol of the Boistfort Series. Samples have been taken to a depth of 3 m at eight depth intervals. In addition to analyzing total soil C, these soils will be analyzed to determine functional groups present, cation exchange capacity, anion exchange capacity, and non-crystalline mineral content. These data will be analyzed to determine any correlations that may exist between these mineralogical characteristics, total soil C, and types of functional groups stored at depth. The most abundant organic functional groups, including carboxylic and phenolic groups, are anionic in nature, and soil positive charge may play an important role in binding and stabilizing soil organic matter and sequestering C.

  2. Simultaneous blood-tissue exchange of oxygen, carbon dioxide, bicarbonate, and hydrogen ion.

    PubMed

    Dash, Ranjan K; Bassingthwaighte, James B

    2006-07-01

    A detailed nonlinear four-region (red blood cell, plasma, interstitial fluid, and parenchymal cell) axially distributed convection-diffusion-permeation-reaction-binding computational model is developed to study the simultaneous transport and exchange of oxygen (O2) and carbon dioxide (CO2) in the blood-tissue exchange system of the heart. Since the pH variation in blood and tissue influences the transport and exchange of O2 and CO2 (Bohr and Haldane effects), and since most CO2 is transported as HCO3(-) (bicarbonate) via the CO2 hydration (buffering) reaction, the transport and exchange of HCO3(-) and H+ are also simulated along with that of O2 and CO2. Furthermore, the model accounts for the competitive nonlinear binding of O2 and CO2 with the hemoglobin inside the red blood cells (nonlinear O2-CO2 interactions, Bohr and Haldane effects), and myoglobin-facilitated transport of O2 inside the parenchymal cells. The consumption of O2 through cytochrome-c oxidase reaction inside the parenchymal cells is based on Michaelis-Menten kinetics. The corresponding production of CO2 is determined by respiratory quotient (RQ), depending on the relative consumption of carbohydrate, protein, and fat. The model gives a physiologically realistic description of O2 transport and metabolism in the microcirculation of the heart. Furthermore, because model solutions for tracer transients and steady states can be computed highly efficiently, this model may be the preferred vehicle for routine data analysis where repetitive solutions and parameter optimization are required, as is the case in PET imaging for estimating myocardial O2 consumption. PMID:16775761

  3. A tonoplast Glu/Asp/GABA exchanger that affects tomato fruit amino acid composition.

    PubMed

    Snowden, Christopher J; Thomas, Benjamin; Baxter, Charles J; Smith, J Andrew C; Sweetlove, Lee J

    2015-03-01

    Vacuolar accumulation of acidic metabolites is an important aspect of tomato fruit flavour and nutritional quality. The amino acids Asp and Glu accumulate to high concentrations during ripening, while γ-aminobutyrate (GABA) shows an approximately stoichiometric decline. Given that GABA can be catabolised to form Glu and subsequently Asp, and the requirement for the fruit to maintain osmotic homeostasis during ripening, we hypothesised the existence of a tonoplast transporter that exports GABA from the vacuole in exchange for import of either Asp or Glu. We show here that the tomato vacuolar membrane possesses such a transport property: transport of Glu across isolated tonoplast vesicle membranes was trans-stimulated in counterexchange mode by GABA, Glu and Asp. We identified SlCAT9 as a candidate protein for this exchanger using quantitative proteomics of a tonoplast-enriched membrane fraction. Transient expression of a SlCAT9-YFP fusion in tobacco confirmed a tonoplast localisation. The function of the protein was examined by overexpression of SlCAT9 in transgenic tomato plants. Tonoplast vesicles isolated from transgenic plants showed higher rates of Glu and GABA transport than wild-type (WT) only when assayed in counterexchange mode with Glu, Asp, or GABA. Moreover, there were substantial increases in the content of all three cognate amino acids in ripe fruit from the transgenic plants. We conclude that SlCAT9 is a tonoplast Glu/Asp/GABA exchanger that strongly influences the accumulation of these amino acids during fruit development. PMID:25602029

  4. How choices in exchange design for states could affect insurance premiums and levels of coverage.

    PubMed

    Blavin, Fredric; Blumberg, Linda J; Buettgens, Matthew; Holahan, John; McMorrow, Stacey

    2012-02-01

    The Affordable Care Act gives states the option to create health insurance exchanges from which individuals and small employers can purchase health insurance. States have considerable flexibility in how they design and implement these exchanges. We analyze several key design options being considered, using the Urban Institute's Health Insurance Policy Simulation Model: creating separate versus merged small-group and nongroup markets, eliminating age rating in these markets, removing the small-employer credit, and setting the maximum number of employees for firms in the small-group market at 50 versus 100 workers. Among our findings are that merging the small-group and nongroup markets would result in 1.7 million more people nationwide participating in the exchanges and, because of greater affordability of nongroup coverage, approximately 1.0 million more people being insured than if the risk pools were not merged. The various options generate relatively small differences in overall coverage and cost, although some, such as reducing age rating bands, would result in higher costs for some people while lowering costs for others. These cost effects would be most apparent among people who purchase coverage without federal subsidies. On the whole, we conclude that states can make these design choices based on local support and preferences without dramatic repercussions for overall coverage and cost outcomes. PMID:22323158

  5. How does wind-throw disturbance affect the carbon budget of an upland spruce forest ecosystem?

    NASA Astrophysics Data System (ADS)

    Lindauer, Matthias; Schmid, Hans Peter; Grote, Rüdiger; Mauder, Matthias; Wolpert, Benjamin; Steinbrecher, Rainer

    2014-05-01

    Forests, especially in mid-latitudes are generally designated as large carbon sinks. However, stand-replacing disturbance events like fires, insect-infestations, or severe wind-storms can shift an ecosystem from carbon sink to carbon source within short time and keep it as this for a long time. In Addition, extreme weather situations which promote the occurrence of ecosystem disturbances are likely to increase in the future due to climate change. The development and competition of different vegetation types (spruce vs. grass) as well as soil organic matter (SOM), and their contribution to the net ecosystem exchange (NEE), in such disturbed forest ecosystems are largely unknown. In a large wind-throw area (ca. 600 m diameter, due to cyclone Kyrill in January 2007) within a mature upland spruce forest, where dead-wood has not been removed, in the Bavarian Forest National Park (Lackenberg, 1308 m a.s.l., Bavaria, Germany), fluxes of CO2, water vapor and energy have been measured with the Eddy Covariance (EC) method since 2009. Model simulations (MoBiLE) were used to estimate the GPP components from trees and grassland as well as to differentiate between soil and plant respiration, and to get an idea about the long term behavior of the ecosystems carbon exchange. For 2009, 2010, 2011, 2012, and 2013 estimates of annual Net Ecosystem Exchange (NEE) showed that the wind-throw was a marked carbon source. However, the few remaining trees and newly emerging vegetation (grass, sparse young spruce, etc.) lead to an already strong Gross Ecosystem Production (GEP). Model simulations conformed well with the measurements. To our knowledge, we present the worldwide first long-term measurements of NEE within a non-cleared wind-throw-disturbed forest ecosystem.

  6. Central European afforested pine stand carbon exchange in the contexts of climate change

    NASA Astrophysics Data System (ADS)

    Ziemblinska, Klaudia; Chojnicki, Bogdan H.; Urbaniak, Marek; Olejnik, Janusz

    2015-04-01

    Even though there have been several studies concerning the carbon cycle or the net CO2 exchange between coniferous forests (both temperate and boreal) and the atmosphere, little is known about carbon dioxide dynamics in afforested pine areas in central part of Europe. Since January 2008 we have carried out continuous measurements of net ecosystem exchange (NEE) between a 62-year-old afforested pine stand near the town of Tuczno in north-western Poland, using the open-path eddy-covariance system. The site is incorporated into the international Fluxnet network (PL-Tcz). The pine stands of similar age and structure are both the most representative forest types and the most effective sinks in terms of CO2 in Poland. Our analysis indicated that the stand was a very productive forest, which has sequestered 32.25 t of carbon dioxide per ha within 5 years (2008-2009 and 2011-2013). The climatic conditions during this period represented mostly warm part of temperature-precipitation combinations (i.e. warm dry, warm wet, cold dry, cold wet conditions as compared to multiyear means). The average annual net ecosystem production (NEP) during this period was equal to 645 g C m-2 and ranging from 765 to 494 g C m-2 in 2009 and 2012 respectively. We assumed that interannual variations in total NEP among investigated years were mainly resulted from ecosystem photosynthesis (GEP), since deliverables from the 5-years-mean GEP value were much higher than that of respiration (R). The annual NEP decreasing tendency was found and it was more likely determined by weather conditions than stand ageing - decreasing spring temperature seemed to be the main reason. If this trend will continue in the future the productivity of investigated afforested pine stand will most probably decrease, although further studies are needed to investigate the response of such ecosystem to climatic conditions from cooler and drier part of temperature-precipitation combinations.

  7. Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998

    USGS Publications Warehouse

    Wickland, K.P.; Striegl, R.G.; Mast, M.A.; Clow, D.W.

    2001-01-01

    Carbon dioxide (CO2) and methane (CH4) exchange between the atmosphere and a subalpine wetland located in Rocky Mountain National Park, Colorado, at 3200 m elevation were measured during 1996-1998. Respiration, net CO2 flux, and CH4 flux were measured using the closed chamber method during snow-free periods and using gas diffusion calculations during snow-covered periods. The ranges of measured flux were 1.2-526 mmol CO2 m-2 d-1 (respiration), -1056-100 mmol CO2 m-2 d-1 (net CO2 exchange), and 0.1-36.8 mmol CH4 m-2 d-1 (a positive value represents efflux to the atmosphere). Respiration and CH4 emission were significantly correlated with 5 cm soil temperature. Annual respiration and CH4 emission were modeled by applying the flux-temperature relationships to a continuous soil temperature record during 1996-1998. Gross photosynthesis was modeled using a hyperbolic equation relating gross photosynthesis, photon flux density, and soil temperature. Modeled annual flux estimates indicate that the wetland was a net source of carbon gas to the atmosphere each of the three years: 8.9 mol C m-2 yr-1 in 1996, 9.5 mol C m-2 yr-1 in 1997, and 9.6 mol C m-2 yr-1 in 1998. This contrasts with the long-term carbon accumulation of ???0.7 mol m-2 yr-1 determined from 14C analyses of a peat core collected from the wetland.

  8. Satellite observation of tropical forest seasonality: spatial patterns of carbon exchange in Amazonia

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Saatchi, Sassan S.; Yang, Yan; Myneni, Ranga B.; Frankenberg, Christian; Chowdhury, Diya; Bi, Jian

    2015-08-01

    Determining the seasonality of terrestrial carbon exchange with the atmosphere remains a challenge in tropical forests because of the heterogeneity of ecosystem and climate. The magnitude and spatial variability of this flux are unknown, particularly in Amazonia where empirical upscaling approaches from spatially sparse in situ measurements and simulations from process-based models have been challenged in recent scientific literature. Here, we use satellite proxy observations of canopy structure, skin temperature, water content, and optical properties over a period of 10 years (2000-2009) to constrain and quantify the spatial pattern and seasonality of carbon exchange of Amazonian forests. We identify nine regions through an optimized cluster approach with distinct leaf phenology synchronized with either water or light availability and corresponding seasonal cycles of gross primary production (GPP), covering more than 600 million ha of remaining old growth forests of Amazonia. We find South and Southwestern regions show strong seasonality of GPP with a peak in the wet season; while from Central Western to Northeastern Amazonia cover three regions with rising GPP in the dry season. The remaining four regions have significant but weak seasonality. These patterns agree with satellite florescence observations, a better proxy for photosynthetic activity. Our results suggest that only one-third of the patterns can be explained by the spatial autocorrelation caused by intra-annual variability of climate over Amazonia. The remaining two-thirds of variations are due to biogeography of the Amazon basin driven by forest composition, structure, and nutrients. These patterns, for the first time, provide a complex picture of seasonal changes of tropical forests related to photosynthesis and influenced by water, light, and stomatal responses of trees that can improve modeling of regional carbon cycle and future prediction of impacts of climate change.

  9. Multiple independent constraints help resolve net ecosystem carbon exchange under nutrient limitation

    NASA Astrophysics Data System (ADS)

    Thornton, P. E.; Metcalfe, D.; Oren, R.; Ricciuto, D. M.

    2014-12-01

    The magnitude, spatial distribution, and variability of land net ecosystem exchange of carbon (NEE) are important determinants of the trajectory of atmospheric carbon dioxide concentration. Independent observational constraints provide important clues regarding NEE and its component fluxes, with information available at multiple spatial scales: from cells, to leaves, to entire organisms and collections of organisms, to complex landscapes and up to continental and global scales. Experimental manipulations, ecosystem observations, and process modeling all suggest that the components of NEE (photosynthetic gains, and respiration and other losses) are controlled in part by the availability of mineral nutrients, and that nutrient limitation is a common condition in many biomes. Experimental and observational constraints at different spatial scales provide a complex and sometimes puzzling picture of the nature and degree of influence of nutrient availability on carbon cycle processes. Photosynthetic rates assessed at the cellular and leaf scales are often higher than the observed accumulation of carbon in plant and soil pools would suggest. We infer that a down-regulation process intervenes between carbon uptake and plant growth under conditions of nutrient limitation, and several down-regulation mechanisms have been hypothesized and tested. A recent evaluation of two alternative hypotheses for down-regulation in the light of whole-plant level flux estimates indicates that some plants take up and store extra carbon, releasing it to the environment again on short time scales. The mechanism of release, either as additional autotrophic respiration or as exudation belowground is unclear, but has important consequences for long-term ecosystem state and response to climate change signals. Global-scale constraints from atmospheric concentration and isotopic composition data help to resolve this question, ultimately focusing attention on land use fluxes as the most uncertain

  10. [Net CO2 exchange and carbon isotope flux in Acacia mangium plantation].

    PubMed

    Zou, Lu-Liu; Sun, Gu-Chou; Zhao, Ping; Cai, Xi-An; Zeng, Xiao-Ping; Wang, Quan

    2009-11-01

    By using stable carbon isotope technique, the leaf-level 13C discrimination was integrated to canopy-scale photosynthetic discrimination (Deltacanopy) through weighted the net CO2 assimilation (Anet) of sunlit and shaded leaves and the stand leaf area index (L) in an A. mangium plantation, and the carbon isotope fluxes from photosynthesis and respiration as well as their net exchange flux were obtained. There was an obvious diurnal variation in Deltacanopy, being lower at dawn and at noon time (18.47 per thousand and 19.87 per thousand, respectively) and the highest (21.21 per thousand) at dusk. From the end of November to next May, the Deltacanopy had an increasing trend, with an annual average of (20.37 +/- 0.29) per thousand. The carbon isotope ratios of CO2 from autotrophic respiration (excluding daytime foliar respiration) and heterotrophic respiration were respectively (- 28.70 +/- 0.75) per thousand and (- 26.75 +/- 1.3) per thousand in average. The delta13 C of nighttime ecosystem-respired CO2 in May was the lowest (-30.14 per thousand), while that in November was the highest (-28.01 per thousand). The carbon isotope flux of CO2 between A. mangium forest and atmosphere showed a midday peak of 178.5 and 217 micromol x m(-2) x s(-1) x per thousand in May and July, with the daily average of 638.4 and 873.2 micromol x m(-2) x s(-1) x per thousand, respectively. The carbon isotope flux of CO2 absorbed by canopy leaves was 1.6-2.5 times higher than that of CO2 emitted from respiration, suggesting that a large sum of CO2 was absorbed by A. mangium, which decreased the atmospheric CO2 concentration and improved the environment. PMID:20135988

  11. Hydroxyl-Exchanged Nanoporous Ionic Copolymer toward Low-Temperature Cycloaddition of Atmospheric Carbon Dioxide into Carbonates.

    PubMed

    Guo, Zengjing; Cai, Xiaochun; Xie, Jingyan; Wang, Xiaochen; Zhou, Yu; Wang, Jun

    2016-05-25

    An ionic copolymer catalyst with nanopores, large surface area, high ionic density, and superior basicity was prepared via the radical copolymerization of amino-functionalized ionic liquid bromide and divinylbenzene, followed with a hydroxyl exchange for removing bromonium. Evaluated in chemical fixation of CO2 with epoxides into cyclic carbonates in the absence of any solvent and basic additive, the nanoporous copolymer catalyst showed high and stable activity, superior to various control catalysts including the halogen-containing analogue. Further, high yields were obtained over a wide scope of substrates including aliphatic long carbon-chain alkyl epoxides and internal epoxide, even under atmospheric pressure and less than 100 °C for the majority of the substrates. On the basis of in situ Fourier transform infrared (FT-IR) investigation and density functional theory (DFT) calculation for the reaction intermediates, we proposed a possible reaction mechanism accounting for the superior catalytic activity of the ionic copolymer. The specifically prepared ionic copolymer material of this work features highly stable, noncorrosive, and sustainable catalysis and, thus, may be a new possibility for efficient chemical fixation of CO2 since it is an environmentally friendly, metal-free solid catalyst. PMID:27142654

  12. The hygric hypothesis does not hold water: abolition of discontinuous gas exchange cycles does not affect water loss in the ant Camponotus vicinus.

    PubMed

    Lighton, John R B; Turner, Robbin J

    2008-02-01

    The discontinuous gas exchange cycle (DGC) of insects and other tracheate arthropods temporally decouples oxygen uptake and carbon dioxide emission and generates powerful concentration gradients for both gas species between the outside world and the tracheal system. Although the DGC is considered an adaptation to reduce respiratory water loss (RWL) - the "hygric hypothesis" - it is absent from many taxa, including xeric ones. The "chthonic hypothesis" states that the DGC originated as an adaptation to gas exchange in hypoxic and hypercapnic, i.e. underground, environments. If that is the case then the DGC is not the ancestral condition, and its expression is not necessarily a requirement for reducing RWL. Here we report a study of water loss rate in the ant Camponotus vicinus, measured while its DGC was slowly eliminated by gradual hypoxia (hypoxic ramp de-DGCing). Metabolic rate remained constant. The DGC ceased at a mean P(O2) of 8.4 kPa. RWL in the absence of DGCs was not affected until P(O2) declined below 3.9 kPa. Below that value, non-DGC spiracular regulation failed, accompanied by a large increase in RWL. Thus, the spiracular control strategy of the DGC is not required for low RWL, even in animals that normally express the DGC. PMID:18245633

  13. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. PMID:25084579

  14. Canopy development, CO(2) exchange and carbon balance of a modeled agroforestry tree.

    PubMed

    Nygren, P; Kiema, P; Rebottaro, S

    1996-09-01

    We developed a whole-canopy CO(2) exchange simulation model to study effects of pruning on the carbon balance of trees. Model inputs include global short-wave radiation, photosynthetic photon flux density (PFD), air temperature, time series of the development of canopy diameter, height and total leaf area during the simulation period and local geographical and atmospheric parameters. Canopy structure is derived stochastically from the time series of canopy development and growth functions of individual phytoelements. The PFD incident on a phytoelement is computed from the average gap frequency of the canopy and the binary random probability of sunflecks on the phytoelement. Instantaneous CO(2) assimilation rate of each phytoelement is computed from PFD and phytoelement age. Assimilation rates are integrated over space and time to estimate whole-canopy CO(2) assimilation. The model was used to study carbon balance in five sources of the leguminous agroforestry tree Erythrina poeppigiana (Walpers) O.F. Cook during two 6-month pruning intervals. The canopy description appeared to be realistic. According to the simulations, cumulative assimilation did not provide enough carbon for tree growth until two months after pruning, indicating dependence of tree growth on reserve carbohydrates. The two most productive sources, which had the most open canopies, were the most dependent on reserve carbohydrates after pruning. PMID:14871680

  15. Influence of matrix diffusion and exchange reactions on radiocarbon ages in fissured carbonate aquifers

    SciTech Connect

    Maloszewski, P. ); Zuber, A. )

    1991-08-01

    The parallel fissure model coupled with the equation of diffusion into the matrix and with exchange reaction equations has been used to derive a simple formula for estimating the influence of matrix porosity and reaction parameters on the determination of radiocarbon ages in fissured carbonate rocks. Examples of evidently too great radiocarbon ages in carbonate formations, which are not explainable by models for the initial {sup 14}C corrections, can easily be explained by this formula. Parameters obtained for a chalk formation from a known multitracer experiment combined with a pumping test suggest a possibility of {sup 14}C ages more than three orders of magnitude greater than the ages which would be observed if the radiocarbon transport took place only in the mobile water in the fissures. It is shown that contrary to the solute movement on a small scale and with a variable input, the large-scale movement, characteristic for the {sup 14}C dating, does not necessarily require the knowledge of kinetic parameters, because they may be replaced by the distribution coefficient. Discordant tritium and {sup 14}C concentrations are commonly interpreted as a proof of mixing either in the aquifer or at the discharge site. For fissured carbonate formations, however, an alternative explanation is given by the derived model showing a considerable delay of {sup 14}C with respect to nonsorbable tracers.

  16. Land use change and carbon exchange in the tropics. I. Detailed estimates for Costa Rice, Panama, Peru, and Bolivia

    SciTech Connect

    Hall, C.A.S.; Detwiler, R.P.; Bogdonoff, P.; Underhill, S.

    1985-01-01

    This group, composed of modelers working in conjunction with tropical ecologists, has produced a simulation model that quantifies the net carbon exchange between tropical vegetation and the atmosphere due to land use change. The model calculates this net exchange by combining estimates of land use change with several estimates of the carbon stored in tropical vegetation and general assumptions about the fate of cleared vegetation. In this report, the authors use estimates of land use and carbon of land use and carbon storage organized into six life zone (sensu Holdridge) categories to calculate the exchange between the atmosphere and the vegetation of four tropical countries. Their analyses of these countries indicate that this life zone approach has several advantages because (a) the carbon content of vegetation varies significantly among life zones, (b) much of the land use change occurs in life zones of only moderate carbon storage, and (c) the fate of cleared vegetation varies among life zones. Their analyses also emphasize the importance of distinguishing between temporary and permanent land use change, as the recovery of vegetation on abandoned areas decreases the net release of carbon due to clearing. They include sensitivity analysis of those factors that they found to be important but are difficult to quantify at present.

  17. Factors affecting the impact toughness of low carbon bainitic weld metal

    SciTech Connect

    Blackburn, J.M.; Vassilaros, M.; Fox, A.

    1996-12-31

    Welds were produced using the GMA and GTA welding processes with 100% argon and 95% argon-5% CO{sub 2} shielding gases. This resulted in different microstructures and varying levels of strength, chemistry and toughness. The factors affecting CVN impact toughness were determined. The resulting toughness was dependent upon the strength, carbon content, the average size and amount of non-metallic inclusions, and metallurgical structure. Improvement in toughness occurred with decreasing strength, carbon content, inclusion size, volume fraction of inclusions, and amount of as deposited columnar structure. When these factors were minimized, the low carbon bainitic weld metal exhibited toughness behavior similar to that of tempered martensite.

  18. Carbon Dioxide Gas Exchange Through the Snowpack and Its Contribution to the Ecosystem Carbon Budget in a High-Elevation, Subalpine Forest

    NASA Astrophysics Data System (ADS)

    Seok, B.; Liptzin, D.; Chowanski, K.; Hueber, J.; Williams, M.; Helmig, D.

    2007-12-01

    Snow cover significantly affects microbial activity in the soil underneath by influencing both respiration and soil nitrification and denitrification processes. Past studies have shown how this can alter ecosystem carbon budgets as climate change continues. In our project, we measured winter carbon flux from the soil through the snowpack near treeline at a 3345 m asl site in the Niwot Ridge Long-Term Ecological Research area in the Colorado Rocky Mountains for 3 winter seasons (2004 - 2006). Fick's law of diffusion was applied to calculate the carbon flux from measurements of gradients in gas concentrations and snowpack density. We also analyzed the influence of wind-pumping (or pressure-pumping) on carbon flux calculation, which Fick's law ignores. Generally, flux calculations using Fick's law without incorporating wind-pumping effects gave us an underestimate of the true carbon flux. We measured maximum snow depth at our study site to be 1.9 m in 2005 and 2.1 m in 2006. The total wintertime seasonal CO2 loss was 8.89 mol m-2 for 2004 and 7.48 mol m-2 for 2005. These values are about 2 times larger than those observed at a lower elevation (3021 m asl) flux tower approximately 3 miles from our site (4.03 mol m-2 from 2003 winter season), which is within a closed canopy forest dominated by subalpine fir, Engelmann spruce, and lodgepole pine.1 This and similar research presented previously have been done in high altitude alpine regions. We are now continuing our work at the University of Michigan Biological Station Ameriflux site, which is a low elevation (219 m asl) lake-side region near Pellston, MI to further study the environmental factors that determine the CO2 gas exchange through the snowpack. 1 Monson, R. K., S. P. Burns, M. W. Williams, A. C. Delany, M. Weintraub, and D. A. Lipson (2006), The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest, Global Biogeochem. Cycles, 20, GB3030, doi:10

  19. Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia

    NASA Technical Reports Server (NTRS)

    Glenny, R. W.; Robertson, H. T.; Hlastala, M. P.

    2000-01-01

    To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI(2)) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI(2) infusion. The lungs were subsequently excised, dried inflated, and diced into approximately 2-cm(3) pieces (n = 1,208-1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI(2) infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI(2) infusion. Alveolar-arterial O(2) differences did not change with PGI(2) infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.

  20. Biological Apatite Formed from Polyphosphate and Alkaline Phosphatase May Exchange Oxygen Isotopes from Water through Carbonate

    NASA Astrophysics Data System (ADS)

    Omelon, S. J.; Stanley, S. Y.; Gorelikov, I.; Matsuura, N.

    2011-12-01

    The oxygen isotopic composition in bone mineral phosphate is known to reflect the local water composition, environmental humidity, and diet1. Once ingested, biochemical processes presumably equilibrate PO43- with "body water" by the many biochemical reactions involving PO43- 2. Blake et al. demonstrated that enzymatic release of PO43- from organophosphorus compounds, and microbial metabolism of dissolved orthophosphate, significantly exchange the oxygen in precipitated apatite within environmental water3,4, which otherwise does not exchange with water at low temperatures. One of the enzymes that can cleave phosphates from organic substrates is alkaline phosphastase5, the enzyme also associated with bone mineralization. The literature often states that the mineral in bone in hydroxylapatite, however the mineral in bone is carbonated apatite that also contains some fluoride6. Deprotonation of HPO32- occurs at pH 12, which is impossibly high for biological system, and the predominate carbonate species in solution at neutral pH is HCO3-. To produce an apatite mineral without a significant hydroxyl content, it is possible that apatite biomineralization occurs through a polyphosphate pathway, where the oxygen atom required to transform polyphosphate into individual phosphate ions is from carbonate: [PO3-]n + CO32- -> [PO3-]n-1 + PO43- + CO2. Alkaline phosphatase can depolymerise polyphosphate into orthophosphate5. If alkaline phosphatase cleaves an oxygen atom from a calcium-carbonate complex, then there is no requirement for removing a hydrogen atom from the HCO3- or HPO43- ions of body water to form bioapatite. A mix of 1 mL of 1 M calcium polyphosphate hydogel, or nano-particles of calcium polyphosphate, and amorphous calcium carbonate were reacted with alkaline phosphatase, and maintained at neutral to basic pH. After two weeks, carbonated apatite and other calcium phosphate minerals were identified by powder x-ray diffraction. Orthophosphate and unreacted

  1. Assessment of Pan-Arctic Soil Moisture, Surface Temperature, and Net Ecosystem Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Nirala, M. L.; Kimball, J.; Njoku, E.; McDonald, K.; Chan, S.; Jones, L.; Oechel, W.; Running, S.

    2006-05-01

    In this paper, we discuss the application of Moderate Resolution Imaging Spectroradiometer (MODIS), Leaf Area Index (LAI), Gross Primary Production (GPP), and Advanced Microwave Scanning Radiometer - EOS (AMSR-E) brightness temperature and soil moisture to derived Net Ecosystem Carbon Exchange (NEE). We also compare the satellite-derived results with ground-based tower CO2 eddy flux observations and Biome- BGC ecosystem process model simulations using site meteorology. We found that AMSR-E brightness temperature-derived surface temperatures compare favorably with site-based temperatures and that sensitivity to air and soil temperatures depend on wavelength, snow cover, freeze-thaw conditions, and the sub-grid scale extent of open water. The surface temperature estimations using the emissivity lookup table approach showed good agreement, as compared to observations on most sites. AMSR-E L3 soil moisture data showed large discrepancies relative to site-based ecosystem model simulations and limited site observations. The soil moisture differences were larger in winter than summer. Satellite-derived carbon model results were consistent with site-based CO2 flux tower observations and detailed ecosystem process model (BIOME-BGC) simulations. The carbon model represents NEE seasonal variability and regional patterns, and the NEE is highly sensitive to LAI, which determines the optimal soil decomposition rate. NEE is a residual of two fluxes: GPP and respiration. Small changes in component fluxes yielded large changes in annual NEE and predicted carbon source/sink behavior, especially for relatively low productivity sites, such as tundra. This work was performed at The University of Montana and the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

  2. Exchange interactions of spin-active metallofullerenes in solid-state carbon networks

    NASA Astrophysics Data System (ADS)

    Zaka, Mujtaba; Warner, Jamie H.; Ito, Yasuhiro; Morton, John J. L.; Rümmeli, Mark H.; Pichler, Thomas; Ardavan, Arzhang; Shinohara, Hisanori; Briggs, G. Andrew D.

    2010-02-01

    The electron paramagnetic resonance (EPR) of spin-active metallofullerenes (MFs) La@C82 and Sc@C82 diluted in solid-state C60 crystalline matrices with molar concentrations varying from 0.4% to 100% are investigated. For dilute concentrations, the hyperfine structure of the MFs is resolved, and as the concentration increases exchange narrowing is observed leading to a single peak in the EPR. Sc@C82 MFs are inserted into single-walled carbon nanotubes to form peapods with concentrations of 10% and 0.1%, diluted with C60 . For the case of peapods containing 10% Sc@C82 a strong narrow peak is observed in X -band CW EPR, but not pulsed measurements. Peapods containing Ce@C82 MFs are prepared and these also show similar CW EPR to the Sc@C82 , indicating the peak arises from charge transfer with the SWNT.

  3. Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications.

    PubMed

    Liu, Hai; Gong, Chunli; Wang, Jie; Liu, Xiaoyan; Liu, Huanli; Cheng, Fan; Wang, Guangjin; Zheng, Genwen; Qin, Caiqin; Wen, Sheng

    2016-01-20

    Silica-coated carbon nanotubes (SCNTs), which were obtained by a simple sol-gel method, were utilized in preparation of chitosan/SCNTs (CS/SCNTs) composite membranes. The thermal and oxidative stability, morphology, mechanical properties, water uptake and proton conductivity of CS/SCNTs composite membranes were investigated. The insulated and hydrophilic silica layer coated on CNTs eliminates the risk of electronic short-circuiting and enhances the interaction between SCNTs and chitosan to ensure the homogenous dispersion of SCNTs, although the water uptake of CS/SCNTs membranes is reduced owing to the decrease of the effective number of the amino functional groups of chitosan. The CS/SCNTs composite membranes are superior to the pure CS membrane in thermal and oxidative stability, mechanical properties and proton conductivity. The results of this study suggest that CS/SCNTs composite membranes exhibit promising potential for practical application in proton exchange membranes. PMID:26572483

  4. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of 3P atomic carbon with propene

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-01

    We investigated the dynamics of the reaction of 3P atomic carbon with propene (C3H6) at reactant collision energy 3.8 kcal mol-1 in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C4H5, C4H4, C3H3, and CH3 were observed and attributed to exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a 3P carbon atom to the C=C bond of propene, cyclic complex c-H2C(C)CHCH3 undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H2CCCHCH3. Both the isomers of H2CCCHCH3 in turns decompose to C4H5 + H and C3H3 + CH3. A portion of C4H5 that has enough internal energy further decomposes to C4H4 + H. The three exit channels C4H5 + H, C4H4 + 2H, and C3H3 + CH3 have average translational energy releases 13.5, 3.2, and 15.2 kcal mol-1, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH3-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of 3P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  5. Assessing net ecosystem carbon exchange of U S terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations

    SciTech Connect

    Zhuang, Qianlai; Law, Beverly E.; Baldocchi, Dennis; Ma, Siyan; Chen, Jiquan; Richardson, Andrew; Melillo, Jerry; Davis, Ken J.; Hollinger, D.; Wharton, Sonia; Falk, Matthias; Paw, U. Kyaw Tha; Oren, Ram; Katulk, Gabriel G.; Noormets, Asko; Fischer, Marc; Verma, Shashi; Suyker, A. E.; Cook, David R.; Sun, G.; McNulty, Steven G.; Wofsy, Steve; Bolstad, Paul V; Burns, Sean; Monson, Russell K.; Curtis, Peter; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; Meyers, Tilden; Oechel, Walter C.; Schmid, H. P.; Scott, Russell L.; Torn, Margaret S.

    2011-01-01

    More accurate projections of future carbon dioxide concentrations in the atmosphere and associated climate change depend on improved scientific understanding of the terrestrial carbon cycle. Despite the consensus that U.S. terrestrial ecosystems provide a carbon sink, the size, distribution, and interannual variability of this sink remain uncertain. Here we report a terrestrial carbon sink in the conterminous U.S. at 0.63 pg C yr 1 with the majority of the sink in regions dominated by evergreen and deciduous forests and savannas. This estimate is based on our continuous estimates of net ecosystem carbon exchange (NEE) with high spatial (1 km) and temporal (8-day) resolutions derived from NEE measurements from eddy covariance flux towers and wall-to-wall satellite observations from Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the U.S. terrestrial ecosystems could offset a maximum of 40% of the fossil-fuel carbon emissions. Our results show that the U.S. terrestrial carbon sink varied between 0.51 and 0.70 pg C yr 1 over the period 2001 2006. The dominant sources of interannual variation of the carbon sink included extreme climate events and disturbances. Droughts in 2002 and 2006 reduced the U.S. carbon sink by 20% relative to a normal year. Disturbances including wildfires and hurricanes reduced carbon uptake or resulted in carbon release at regional scales. Our results provide an alternative, independent, and novel constraint to the U.S. terrestrial carbon sink.

  6. Quantifying Typhoon Impact on Net Carbon Ecosystem Exchange in a Sub-tropical Mangrove Ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, H.; Lu, W.; Yan, G.; Yang, S.; Lin, G.

    2011-12-01

    Although typhoon is a natural disturbance for mangrove forests, research of typhoon impact on net carbon ecosystem exchange (NEE) of mangrove wetlands has not reached final conclusion. In this study we investigated possible effects of typhoons with different forces on the NEE of a subtropical mangrove forest in Fujian, China (117°23'E, 23°55'N). In 2010, Typhoon Lionrock, Fanapi and Megi made landfall with a speed of 23, 35 and 38 m s-1 near our mangrove field station in Zhangjiang Estuary National Mangrove Nature Reserve on September 2, September 20 and October 23, respectively. In October 2009, total of 16 litter traps and an eddy covariance system were instated at this field station. Litter production was monitored at the biweekly intervals while the NEE was measured continuously. The litter production and NEE values were compared before and after each typhoon landed. Strong winds and torrential rains from these typhoons caused the amount of litter production more than double over the same period a year before when there was no typhoon landing. Moreover, about 5~25% green leaves and twigs were found in the litter traps after the typhoons, indicating significant defoliation by the typhoons. Typhoon Lionrock and Fanapi did not significantly reduce NEE, while Typhoo Fanapi reduced gross ecosystem production (GEP) by about 12%. However, NEE was increased by Typhoon Megi, which resulted from lower daily ecosystem respiration (Re) following the typhoon. Our results indicate that, although theses typhoons caused significant defoliation, they had little effect on ecosystem carbon exchange over the short periods following the typhoons.

  7. Estimating Terrestrial Carbon Exchange from Space: How Often and How Well?

    NASA Technical Reports Server (NTRS)

    Knox, Robert G.; Hall, Forrest G.; Huemmrich, Karl F.; Gervin, Janette C.

    2003-01-01

    Data from a new space mission measuring integrated light-use efficiency could provide a breakthrough in understanding of global carbon, water, and energy dynamics, and greatly improve the accuracy of model predictions for terrestrial carbon cycles and climate. Over the past decade, Gamon and others have shown that changes in photo-protective pigments are sensitive indicators of declines in light-use efficiency of plants and plant canopies. The requirements for integrated diurnal measurements from space need to be defined, before a space mission can be formulated successfully using this concept. We used towerbased CO2 flux data as idealized proxies for remote measurements, examining their sampling properties. Thousands of half-hourly CO2 flux measurements are needed before their average begins to converge on an average annual net CO2 exchange. Estimates of daily integrated fluxes (i.e., diurnal curves) are more statistically efficient, especially if the spacing between measured days is quasiregular, rather than random. Using a few measurements per day one can distinguish among days with different net CO2 exchanges. Fluxes sampled between mid-morning to mid-afternoon are more diagnostic than early morning or late afternoon measurements. Similar results (correlation >0.935) were obtained using 2 measurements per day with high accuracy ([:plusmn:]5%), 3 measurements per day with medium accuracy ([:plusmn:] 10%), or 5 measurements per day at lower accuracy ([:plusmn:]20%). An observatory in a geosynchronous or near-geosynchronous orbit could provide appropriate observations, as could a multi-satellite constellation in polar orbits, but there is a potential trade-off between the required number of observations per day and quality of each observation.

  8. Control of discontinuous gas exchange in Samia cynthia: effects of atmospheric oxygen, carbon dioxide and moisture.

    PubMed

    Terblanche, John S; Marais, Elrike; Hetz, Stefan K; Chown, Steven L

    2008-10-01

    The evolution of discontinuous gas exchange (DGE) in insects is highly controversial. Adaptive hypotheses which have obtained experimental support include a water savings mechanism for living in dry environments (hygric hypothesis), a reduction in oxidative damage due to a high-performance oxygen delivery system (oxidative damage hypothesis), and the need for steep intratracheal partial pressure gradients to exchange gases under the hypercapnic and/or hypoxic conditions potentially encountered in subterranean environments (chthonic hypothesis). However, few experimental studies have simultaneously assessed multiple competing hypotheses within a strong inference framework. Here, we present such a study at the species level for a diapausing moth pupa, Samia cynthia. Switching gas conditions from controlled normoxic, normocapnic and intermediate humidity to either high or low oxygen, high or low moisture, elevated carbon dioxide, or some combination of these, revealed that DGE was abandoned under all conditions except high oxygen, and high or low gas moisture levels. Thus, support is found for the oxidative damage hypothesis when scored as maintenance of DGE. Modulation of DGE under either dry or hyperoxic conditions suggested strong support for the oxidative damage hypothesis and some limited support for the hygric hypothesis. Therefore, this study demonstrates that the DGE can be maintained and modulated in response to several environmental variables. Further investigation is required using a strong-inference, experimental approach across a range of species from different habitats to determine how widespread the support for the oxidative damage hypothesis might be. PMID:18840661

  9. Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Kim, J.; Hong, J.; Lim, J.-H.

    2010-05-01

    Considering the feedback in radiation, temperature, and soil moisture with alterations in rainfall patterns, the influence of the changing monsoon on Net Ecosystem CO2 Exchange (NEE) can be critical to the estimation of carbon balance in Asia. In this paper, we examined CO2 fluxes measured by the eddy covariance method from 2004 to 2008 in two major ecosystems in the KoFlux sites in Korea, i.e., the Gwangneung Deciduous forest (GDK) and the Haenam Farmland (HFK). Our objectives were to identify the repeatability of the mid-season depression of NEE encountered at the two sites based on the single-year observation, and to further scrutinize its cause, effect, and interannual variability by using multi-year observations. In both GDK and HFK sites, the mid-season depression of NEE was reproduced each year but with different timing, magnitude, and mechanism. At the GDK site, a predominant factor causing the mid-season depression was a decreased solar radiation and the consequent reduction in Gross Primary Productivity (GPP) during the summer monsoon period. At the HFK site, however, the monsoonal effect was less pronounced and the apparent mid-season depression was mainly a result of the management practices such as cultivation of spring barley and rice transplantation. Other flux observation sites in East Asia also showed a decline in radiation but with a lesser degree during the monsoon season, resulting in less pronounced depression in NEE. In our study, the observed depressions in NEE caused both GDK and HFK sites to become a weaker carbon sink or even a source in the middle of the growing season. On average, the GDK site (with maximum leaf area index of ~5) was a weak carbon sink with NEE of -84 gC m-2 y-1. Despite about 20% larger GPP (of 1321 gC m-2y-1) in comparison with the GDK site, the HFK site (with maximum leaf area index of 3-4) was a weaker carbon sink with NEE of -58 gC m-2 y-1 because of greater ecosystem respiration (of 1263 gC m-2 y-1). These NEE

  10. Carbon Input and Soil Carbon Dioxide Emission Affected by Land Use and Management Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land use and management practices may influence C inputs and soil CO2 emission, a greenhouse gas responsible for global warming. Carbon inputs and soil CO2 emission were monitored from crop- and grassland with various irrigation and cropping systems from 2006 to 2008 in western North Dakota, USA. Tr...

  11. Effect of nano-silica spheres template on CO2 capture of exchange resin-based nanoporous carbons.

    PubMed

    Meng, Long-Yue; Park, Soo-Jin

    2013-01-01

    In this work, a nanoporous carbon-based adsorbent with a higher specific surface area was directly prepared from polystyrene-based cation exchange resin (PCER) by carbonization of a mixture of nano-silica spheres. The silica/PCER composites were carbonized at 1173 K with different silica/PCER ratios. The effects of nano-silica spheres content on the pore structures of nanoporous carbons were investigated by N2 full isotherms. The CO2 capture capacity was measured by CO2 isothermal adsorption at 298 K and 1 bar. From the results, it was found that the nano-silica spheres/PCER ratio had a major influence on the CO2 capture capacity and the textural properties of the prepared nanoporous carbons. The specific surface area and total pore volume, as well as the pore size of the nanoporous carbons increased with increasing silica/PCER ratio. PMID:23646745

  12. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  13. Carbonate mineral dissolution and the impacts of flood water exchange between conduit and matrix

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Screaton, E.; Gulley, J. D.; Martin, J. B.

    2012-12-01

    Studies of flow and dissolution in karst aquifers have traditionally focused on conduits, and contributions from matrix sources have been generally ignored. This conceptual model works for limestone that has been deeply buried and had its matrix permeability obliterated by cementation (telogenetic) so that most aquifer recharge occurs by conduits. In limestone that has not been deeply buried (eogenetic), however, high matrix permeability is preserved, resulting in greater degrees of interaction between conduit and matrix porosity than occurs in telogenetic limestone. Interactions between conduit and matrix porosity, and how these interactions affect flow and dissolution within aquifers, is particularly important in karst aquifers subject to dynamic changes in head gradients between conduits and aquifers. These exchanges are particularly prevalent in transitional areas between confined and unconfined aquifer conditions. In such transitional areas, allogenic runoff from confining units can increase river stages on adjacent unconfined aquifers faster than infiltration of local rainfall can increase groundwater heads. As a result, normal hydraulic gradients between the aquifer and rivers are reversed, causing river water to flow into springs. Simultaneously, rapid increases in conduit hydraulic head will also reverse gradients between the conduit and the aquifer, driving exchange from the conduit to the matrix. Because allogenic runoff is highly undersaturated with respect to calcite after storm events, dissolution resulting from this exchange can be extensive. The magnitude of dissolution that occurs is a function of the calcite saturation state of the allogenic runoff, the surface area of the limestone in contact with the water, and the time that water remains in contact with the limestone. In eogenetic aquifers, the magnitude of dissolution that occurs during spring reversals should be higher than in telogenetic aquifers because of their elevated matrix

  14. Infrared warming affects intrarow soil carbon dioxide efflux during early vegetative growth of spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global warming will likely affect carbon cycles in agricultural soils. Our objective was to deploy infrared (IR) warming to characterize the effect of global warming on soil temperature (Ts), volumetric soil-water content ('s), and intrarow soil CO2 efflux (Fs) of an open-field spring wheat (Triticu...

  15. Soil Aggregation and Carbon Sequestration as affected by Long-Term Tillage Practices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In agricultural systems, soil structure is an important property that mediates many soil physical and biological processes and controls soil organic carbon (SOC) content. Cultivation affects soil structure due to the destruction of soil aggregates and the lost of SOC. Different management practices...

  16. Estimating net ecosystem exchange of carbon using the normalized difference vegetation index and an ecosystem model

    SciTech Connect

    Veroustraete, F.; Patyn, J.; Myneni, R.B.

    1996-10-01

    The evaluation and prediction of changes in carbon dynamics at the ecosystem level is a key issue in studies of global change. An operational concept for the determination of carbon fluxes for the Belgian territory is the goal of the presented study. The approach is based on the integration of remotely sensed data into ecosystem models in order to evaluate photosynthetic assimilation and net ecosystem exchange (NEE). Remote sensing can be developed as an operational tool to determine the fraction of absorbed photosynthetically active radiation (fPAR). A review of the methodological approach of mapping fPAR dynamics at the regional scale by means of NOAA11-AVHRR/2 data for the year 1990 is given. The processing sequence from raw radiance values to fPAR is presented. An interesting aspect of incorporating remote sensing derived fPAR in ecosystem models is the potential for modeling actual as opposed to potential vegetation. Further work should prove whether the concepts presented and the assumptions made in this study are valid.

  17. Dynamics of carbon dioxide exchange of a wheat community grown in a semi-closed environment

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1989-01-01

    A wheat (Triticum aestivum Yecora Rojo) community was grown in the semi-closed conditions of the NASA/KSC Biomass Production Chamber (BPC). Experiments were conducted to determine whole community carbon dioxide exchange rates as influenced by growth and development, carbon dioxide concentration, time within the photoperiod, irradiance, and temperature. Plants were grown at a population of about 1500 per sq meter using a 20 hour light/4 hour dark daily regime. Light was supplied by HPS vapor lamps and irradiance was maintained in the range of 590 to 675 mu mol per sq meter. The temperature regime was 20 C light/16 C dark and nutrients were supplied hydroponically as a thin film. Fractional interception of PPF by the community increased rapidly during growth reaching a maximum of 0.96, 24 days after planting. This time corresponded to canopy closure and maximum rates of net photosynthesis (NP). Net daily CO2 utilization rates were calculated to day 48 and a 4th order regression equation integrated to obtain total moles of CO2 fixed by the community. This procedure may be useful for monitoring and prediction of biomass yields in a closed ecology life support system (CELSS).

  18. Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility

    NASA Astrophysics Data System (ADS)

    Bai, Yuhong; Zhang, Yi; Zhang, Jingping; Mu, Qingxin; Zhang, Weidong; Butch, Elizabeth R.; Snyder, Scott E.; Yan, Bing

    2010-09-01

    Soluble carbon nanotubes show promise as materials for in vivo delivery and imaging applications. Several reports have described the in vivo toxicity of carbon nanotubes, but their effects on male reproduction have not been examined. Here, we show that repeated intravenous injections of water-soluble multiwalled carbon nanotubes into male mice can cause reversible testis damage without affecting fertility. Nanotubes accumulated in the testes, generated oxidative stress and decreased the thickness of the seminiferous epithelium in the testis at day 15, but the damage was repaired at 60 and 90 days. The quantity, quality and integrity of the sperm and the levels of three major sex hormones were not significantly affected throughout the 90-day period. The fertility of treated male mice was unaffected; the pregnancy rate and delivery success of female mice that mated with the treated male mice did not differ from those that mated with untreated male mice.

  19. How does the Porosity of Interstellar Ice Affect Chemical Complexity and Deuteration Exchange?

    NASA Astrophysics Data System (ADS)

    Fraser, Helen Jane; Noble, Jennifer; Hill, Catherine Rachel; Bowron, Daniel; Youngs, Tristan; Loerting, Thomas; Mitteldorfer, Christian; Millar, James; Elkind, Pavel; Cousan, Stephane; Lui, Yuan; Ojamae, Lars

    2015-08-01

    The porosity of interstellar water ice, Amorphous Solid Water (ASW), greatly enhances the ability of ice to uptake, then release small gas adsorbates. This provides the strongest evidence that interstellar ices must be porous, accounting for the differences between predicted and observed gas-phase abundances, and provides a mechanism to enhance reagent diversity for complex chemistry in the ice. However, no dangling OH (d-OH) bond features, to-date associated with ice porosity, have been reported in interstellar ice spectra, so some conclude that interstellar ices must be non-porous, given that the d-OH spectra disappear in laboratory studies when ASW is energetically processed. But are d-OH features and gas-uptake reliable experimental measures of ice porosity? Here we combine fundamental studies of ASW with observational data to determine ASW porosity and understand its role in the chemical evolution of interstellar ices.We show upper-limit detections of d-OH in observational spectra towards a handful of sources (Fraser et al (2015)). Laboratory experiments on selective irradiation of d-OH features (Noble et al (2013), (2014)), combined with quantum chemical calculations (Lui et al (2015)), show that the d-OH bonds probe the density of defect sites in the surface and sub-surface structure. Consequently surfaces with d-OH bonds are significantly more reactive and therefore promote chemical complexity across extra-terrestrial regions where they are found, but do not reflect ice porosity.Our neutron scattering data show that ASW ices actually contain cylindrical pores of around 10 Å diameter (Mitteldorfer et al (2014)). The pore collapse process can only be initiated by long range molecular diffusion at T > 121 K, and follows complex kinetics (Hill et al (2015a); such effects can be reproduced by molecular dynamics simulations of ASW ice-heating (Elkind et al (2015): Miller et al (2015)), and are directly linked to deuteration exchange. We explain the implications

  20. Carbon dioxide exchange of drained, harvested and restored peatlands in eastern Canada

    NASA Astrophysics Data System (ADS)

    Glatzel, S.; Moore, T.; Basiliko, N.; Marinier, M.; Roulet, N.

    2003-04-01

    In Canada, 1 x 10^6 t of bog peat are harvested every year. Nowadays, nearly all the peat is harvested by the vacuum method, leaving upon abandonment large areas of peat which are slow to revegetate. Attempts are being made to restore harvested peatlands by raising the water table, applying straw mulch and a layer of surface peat as a source of seeds and Sphagnum. We examined the effect of drainage, harvesting and restoration of peat bogs on the exchange of carbon dioxide between the surface and the atmosphere at a series of sites in Rivière du Loup, Québec, and Shippagan, New Brunswick. At each location, carbon dioxide (CO2) fluxes were determined by chambers at sites representing an undisturbed bog, active harvesting, abandoned sites with varying degrees of natural revegetation and vacuum-harvested sites which had been revegetated experimentally. Estimates of seasonal and site fluxes were made from modeling of individual measurements and plant cover type. The undisturbed sites showed relatively small seasonal losses of CO2. Drainage and harvesting increased CO2 emissions to about 200 g C m-2 season-1. Experimental revegetation, which was accompanied by the emergence of Eriophorum spissum (cottongrass), increased CO2 losses. This effect is most pronounced during the early stages of restoration and is greater in Rivière du Loup than in Shippagan. Despite its effect on CO2 emissions, cottongrass is an important early succession stage of revegetation, establishing microbial populations and creating micro-habitats which favor the colonization of mosses and shrubs. At old, manually block cut sites that have been abandoned 25 to 30 years ago, vegetation cover was similar to that found in natural bogs, and 10 to 30 cm new peat has developed above the harvested surface. Still, CO2 exchange data shows that these sites are losing carbon. Thus, despite the establishment of a vegetation cover at some sites in less than 10 years, there is little evidence to suggest that in

  1. Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The encroachment of woody plants into historical semiarid grasslands has important ecohydrological and socioeconomic consequences. In this paper, we document the biosphere-atmosphere exchange of water and carbon dioxide that occurred from 2004 through 2007 over a semiarid, warm-season savanna in sou...

  2. COMBINED USE OF ION EXCHANGE RESINS AND GRANULAR ACTIVATED CARBON FOR THE CONTROL OF ORGANIC MATTER AND DISINFECTION BY PRODUCTS

    EPA Science Inventory

    The use of anion exchange resin as a pretreatment step to granular activated carbon is evaluated. erformance is evaluated by DOC, SAC, TOXFP, and THMFP parameters. hio River water and Palm Beach groundwater are used. he results show that resin pretreatment is significant in exten...

  3. Novel Hybrid Materials with High Stability for Electrically Switched Ion Exchange: Carbon Nanotubes/Polyaniline/Nickel Hexacyanoferrate Nanocomposites

    SciTech Connect

    Lin, Yuehe; Cui, Xiaoli

    2005-04-21

    A novel and stable carbon nanotubes /polyaniline /nickel hexacyanoferrates composite film has been synthesized with electrodeposition method, and the possibility for removing cesium through an electrically switched ion exchange has been evaluated in a mixture containing NaNO3 and CsNO3.

  4. The Exchange Relationship between Work-Family Enrichment and Affective Commitment: the Moderating Role of Gender.

    PubMed

    Marques, António Manuel; Chambel, Maria José; Pinto, Inês

    2015-01-01

    Workers' perception that their job experience enriches their family life has been considered a mechanism that explains their positive attitudes toward the organization where they work. However, because women and men live their work and family differently, gender may condition this relationship between the work-family enrichment and workers' attitudes. With a sample of 1885 workers from one Portuguese bank, with 802 women, the current study investigated the relationship between work-family enrichment and organizational affective commitment as well as the role of sex as a moderator of this relationship. The hypotheses were tested by using regression analysis. The results indicated that the perception held by workers that their work enriches their family is positively correlated with their affective commitment toward the organization. Furthermore, the data revealed that this relationship is stronger for women than for men. Study results have implications for management, particularly for human resource management, enhancing their knowledge about the relationship of work-family enrichment and workers' affective commitment toward organization. PMID:26037591

  5. Two perspectives on the coupled carbon, water and energy exchange in the planetary boundary layer

    NASA Astrophysics Data System (ADS)

    Combe, M.; Vilà-Guerau de Arellano, J.; Ouwersloot, H. G.; Jacobs, C. M. J.; Peters, W.

    2015-01-01

    Understanding the interactions between the land surface and the atmosphere is key to modelling boundary-layer meteorology and cloud formation, as well as carbon cycling and crop yield. In this study we explore these interactions in the exchange of water, heat and CO2 in a cropland-atmosphere system at the diurnal and local scale. To that end, we couple an atmospheric mixed-layer model (MXL) to two land-surface schemes developed from two different perspectives: while one land-surface scheme (A-gs) simulates vegetation from an atmospheric point of view, the other (GECROS) simulates vegetation from a carbon-storage point of view. We calculate surface fluxes of heat, moisture and carbon, as well as the resulting atmospheric state and boundary-layer dynamics, over a maize field in the Netherlands, on a day for which we have a rich set of observations available. Particular emphasis is placed on understanding the role of upper-atmosphere conditions like subsidence in comparison to the role of surface forcings like soil moisture. We show that the atmospheric-oriented model (MXL-A-gs) outperforms the carbon storage-oriented model (MXL-GECROS) on this diurnal scale. We find this performance is partly due to the difference of scales at which the models were made to run. Most importantly, this performance strongly depends on the sensitivity of the modelled stomatal conductance to water stress, which is implemented differently in each model. This sensitivity also influences the magnitude of the surface fluxes of CO2, water and heat (surface control) and subsequently impacts the boundary-layer growth and entrainment fluxes (upper atmosphere control), which alter the atmospheric state. These findings suggest that observed CO2 mole fractions in the boundary layer can reflect strong influences of both the surface and upper-atmosphere conditions, and the interpretation of CO2 mole fraction variations depends on the assumed land-surface coupling. We illustrate this with a sensitivity

  6. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park

    USGS Publications Warehouse

    Barr, Jordan G.; Engel, Vic; Fuentes, Jose D.; Zieman, Joseph C.; O'Halloran, Thomas L.; Smith, Thomas J., III; Anderson, Gordon H.

    2010-01-01

    We report on net ecosystem production (NEP) and key environmental controls on net ecosystem exchange (NEE) of carbon dioxide (CO2) between a mangrove forest and the atmosphere in the coastal Florida Everglades. An eddy covariance system deployed above the canopy was used to determine NEE during January 2004 through August 2005. Maximum daytime NEE ranged from -20 to -25 μmol (CO2) m-2 s-1 between March and May. Respiration (Rd) was highly variable (2.81 ± 2.41 μmol (CO2) m-2 s-1), reaching peak values during the summer wet season. During the winter dry season, forest CO2 assimilation increased with the proportion of diffuse solar irradiance in response to greater radiative transfer in the forest canopy. Surface water salinity and tidal activity were also important controls on NEE. Daily light use efficiency was reduced at high (>34 parts per thousand (ppt)) compared to low (d by ~0.9 μmol (CO2) m-2 s-1 and nighttime Rd by ~0.5 μmol (CO2) m-2 s-1. The forest was a sink for atmospheric CO2, with an annual NEP of 1170 ± 127 g C m-2 during 2004. This unusually high NEP was attributed to year-round productivity and low ecosystem respiration which reached a maximum of only 3 g C m-2 d-1. Tidal export of dissolved inorganic carbon derived from belowground respiration likely lowered the estimates of mangrove forest respiration. These results suggest that carbon balance in mangrove coastal systems will change in response to variable salinity and inundation patterns, possibly resulting from secular sea level rise and climate change.

  7. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    NASA Astrophysics Data System (ADS)

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J.; McGuire, A. David; Hastings, Alan; Schimel, David S.

    2012-09-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U · τE · ?, where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  8. Ecosystem carbon storage capacity as affected by disturbance regimes: a general theoretical model

    NASA Astrophysics Data System (ADS)

    Weng, E.; Luo, Y.; Wang, W.; Wang, H.; Hayes, D. J.; McGuire, A. D.; Hastings, A.; Schimel, D.

    2012-12-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x]=UτE λ/(λ+sτ1) , where U is ecosystem carbon influx, τE is ecosystem carbon residence time, and τ1 is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval (λ) and the mean disturbance severity (s). It is a Michaelis-Menten type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model , for example, approximately 1.8 Pg C will be lost in the high latitude regions of North America (>45°N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of 21st century, which will require around 12% increases in NPP to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  9. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  10. Water level changes affect carbon turnover and microbial community composition in lake sediments

    PubMed Central

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-01-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  11. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    PubMed

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  12. Sink-source characteristics of two distinctly different forest species as affected by elevated carbon dioxide

    SciTech Connect

    Pushnik, J.C.; Florv, W.B.; Demaree, R.S. ); Anderson, P.D.; Houpis J.L.J. )

    1993-05-01

    The basic physiology and biochemistry of photosynthesis is being correlated with the leaf level processes and morphology of the Sierra Nevada varieties of Taxus brevifolia and Pinus ponderosa in an attempt to identify control mechanisms of carbohydrate partitioning. We are evaluating sink/source relationships in terms of carbon assimilation (gas-exchange (A[ci] curves and temperature effects); RuBPCase activity, chloroplast structure, integrity, and distributions, stomatal densities, internal leaf organization); transport functions (sucrose-phosphate synthetase (SPS) activity); long-term sink (immunoelectron microscopic detection of taxol). The results of these investigations suggest carbon acquisition characteristics are similar among the conifers, but with distinct differences in carboxylation efficiencies, SPS activity, needle starch content/chloroplast, and vascular tissue areas. These baseline characteristics are currently being evaluated in response to elevated CO[sub 2].

  13. Carbon nanodots as ligand exchange probes in Au@C-dot nanobeacons for fluorescent turn-on detection of biothiols.

    PubMed

    Mandani, Sonam; Sharma, Bhagwati; Dey, Deepa; Sarma, Tridib K

    2015-02-01

    Au nanoparticle-carbon dot core-shell (Au@C-dot) nanocomposite was synthesized in aqueous medium at room temperature using the carbon dots as reducing agents themselves. The carbon nanodots also function as an effective stabilizer by forming a thin layer surrounding Au nanoparticles (Au NPs) similar to self-assembled monolayers. Ligand exchange with thiol containing biomolecules resulted in the release of carbon dots from the Au NP surface leading to an enhancement of fluorescence. Simultaneously the agglomeration of Au NPs stimulated by the interaction of biothiols led to changes in the surface plasmon properties of Au NPs. A detailed spectroscopic investigation revealed a combination of static and dynamic quenching being involved in the process. Thus, the Au nanoparticle-carbon dot composite could be used as a dual colorimetric and fluorometric sensor for biothiols ranging from amino acids, peptides, proteins, enzymes etc. with a detection limit of 50 nM. PMID:25520240

  14. Hydrologic Treatments Affect Gaseous Carbon Loss From Organic Soils, Twitchell Island, California, October 1995-December 1997

    USGS Publications Warehouse

    Miller, Robin L.; Hastings, Lauren; Fujii, Roger

    2000-01-01

    Subsidence of organic soils in the Sacramento-San Joaquin Delta, California, has increased the potential for levee failure and flooding in the region. Because oxidation of the peat soils is a primary cause of subsidence, reversion of affected lands to wetlands has been proposed as a mitigation tool. To test this hypothesis, three 10 x 10 meter enclosures were built on Twitchell Island in the Delta and managed as different wetland habitats. Emissions of carbon dioxide and methane were measured in situ from October 1995 through December 1997, from the systems that developed under the different water-management treatments. Treatments included a seasonal control (SC) under current island management conditions; reverse flooding (RF), where the land is intentionally flooded from early dry season until midsummer; permanent shallow flooding (F); and a more deeply flooded, open-water (OW) treatment. Hydrologic treatments affected microbial processes, plant community and temperature dynamics which, in turn, affected carbon cycling. Water-management treatments with a period of flooding significantly decreased gaseous carbon emissions compared to the seasonal control. Permanent flooding treatments showed significantly higher methane fluxes than treatments with some period of aerobic conditions. Shallow flooding treatments created conditions that support cattail [Typha species (spp.)] marshes, while deep flooding precluded emergent vegetation. Carbon inputs to the permanent shallow flooding treatment tended to be greater than the measured losses. This suggests that permanent shallow flooding has the greatest potential for managing subsidence of these soils by generating organic substrate more rapidly than is lost through decomposition. Carbon input estimates of plant biomass compared to measurements of gaseous carbon losses indicate the potential for mitigation of subsidence through hydrologic management of the organic soils in the area.

  15. Dissolved organic carbon in the South China Sea and its exchange with the Western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Wu, Kai; Dai, Minhan; Chen, Junhui; Meng, Feifei; Li, Xiaolin; Liu, Zhiyu; Du, Chuanjun; Gan, Jianping

    2015-12-01

    Based on a large and high quality dataset of total organic carbon (TOC, an approximation of dissolved organic carbon) collected from three cruises in spring, fall and winter in 2009-2011, we examined the distribution of TOC and its seasonality in the oligotrophic regime of the Northern South China Sea (NSCS) as well as its exchanges with the West Philippine Sea (WPS) in the Northwest Pacific Ocean through the Luzon Strait, the only deep channel linking the South China Sea (SCS) and the Pacific Ocean. Surface TOC concentration in the slope and basin areas of the NSCS varied from 65 to 75 μmol L-1 with relatively high values in the northeast part (southwest of Taiwan Island) in spring, and in the eastern parts of the NSCS during fall and winter. The TOC inventory in the upper 100 m of the water column ranged from 6.0-7.5 mol m-2 with a similar distribution pattern as the surface TOC concentration. There were two most significant differences in the TOC profiles between the SCS and the WPS. One was in the upper 200 m, where more TOC was accumulated in the WPS; the other was in the intermediate layer at ~1000-1500 m, where the gradient of TOC concentration was still persistent below 1000 m in the SCS, a feature which did not exist in the WPS. At this intermediate layer, there also appeared an excess of TOC in the SCS as compared with that in the WPS. The TOC concentration below 2000 m in the SCS was identical to that in the Northwestern Pacific, both of which were ~40 μmol L-1 without significant difference among stations and seasons, suggesting that this deep water TOC was homogeneously distributed in the deep SCS basin owing to the fast replenishment of the deep water from the WPS. We adopted an isopycnal mixing model to derive the water proportion contributed respectively from the SCS and Kuroshio along individual isopycnal plane and examined the impact of the Kuroshio intrusion on the TOC in the NSCS. The upper 100 m TOC inventory in the NSCS was overall

  16. Permafrost-Affected Soils of the Russian Arctic and their Carbon Pools

    NASA Astrophysics Data System (ADS)

    Zubrzycki, S.; Kutzbach, L.; Pfeiffer, E.-M.

    2014-02-01

    Permafrost-affected soils have accumulated enormous pools of organic matter during the Quaternary Period. The area occupied by these soils amounts to more than 8.6 million km2, which is about 27% of all land areas north of 50° N. Therefore, permafrost-affected soils are considered to be one of the most important cryosphere elements within the climate system. Due to the cryopedogenic processes that form these particular soils and the overlying vegetation that is adapted to the arctic climate, organic matter has accumulated to the present extent of up to 1024 Pg (1 Pg = 1015 g = 1 Gt) of soil organic carbon stored within the uppermost three meters of ground. Considering the observed progressive climate change and the projected polar amplification, permafrost-affected soils will undergo fundamental property changes. Higher turnover and mineralization rates of the organic matter are consequences of these changes, which are expected to result in an increased release of climate-relevant trace gases into the atmosphere. As a result, permafrost regions with their distinctive soils are likely to trigger an important tipping point within the global climate system, with additional political and social implications. The controversy of whether permafrost regions continue accumulating carbon or already function as a carbon source remains open until today. An increased focus on this subject matter, especially in underrepresented Siberian regions, could contribute to a more robust estimation of the soil organic carbon pool of permafrost regions and at the same time improve the understanding of the carbon sink and source functions of permafrost-affected soils.

  17. Carbon nanodots as ligand exchange probes in Au@C-dot nanobeacons for fluorescent turn-on detection of biothiols

    NASA Astrophysics Data System (ADS)

    Mandani, Sonam; Sharma, Bhagwati; Dey, Deepa; Sarma, Tridib K.

    2015-01-01

    Au nanoparticle-carbon dot core-shell (Au@C-dot) nanocomposite was synthesized in aqueous medium at room temperature using the carbon dots as reducing agents themselves. The carbon nanodots also function as an effective stabilizer by forming a thin layer surrounding Au nanoparticles (Au NPs) similar to self-assembled monolayers. Ligand exchange with thiol containing biomolecules resulted in the release of carbon dots from the Au NP surface leading to an enhancement of fluorescence. Simultaneously the agglomeration of Au NPs stimulated by the interaction of biothiols led to changes in the surface plasmon properties of Au NPs. A detailed spectroscopic investigation revealed a combination of static and dynamic quenching being involved in the process. Thus, the Au nanoparticle-carbon dot composite could be used as a dual colorimetric and fluorometric sensor for biothiols ranging from amino acids, peptides, proteins, enzymes etc. with a detection limit of 50 nM.Au nanoparticle-carbon dot core-shell (Au@C-dot) nanocomposite was synthesized in aqueous medium at room temperature using the carbon dots as reducing agents themselves. The carbon nanodots also function as an effective stabilizer by forming a thin layer surrounding Au nanoparticles (Au NPs) similar to self-assembled monolayers. Ligand exchange with thiol containing biomolecules resulted in the release of carbon dots from the Au NP surface leading to an enhancement of fluorescence. Simultaneously the agglomeration of Au NPs stimulated by the interaction of biothiols led to changes in the surface plasmon properties of Au NPs. A detailed spectroscopic investigation revealed a combination of static and dynamic quenching being involved in the process. Thus, the Au nanoparticle-carbon dot composite could be used as a dual colorimetric and fluorometric sensor for biothiols ranging from amino acids, peptides, proteins, enzymes etc. with a detection limit of 50 nM. Electronic supplementary information (ESI) available

  18. Unmasking the effect of a precipitation pulse on the biological processes composing Net Ecosystem Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Lopez-Ballesteros, Ana; Sanchez-Cañete, Enrique P.; Serrano-Ortiz, Penelope; Oyonarte, Cecilio; Kowalski, Andrew S.; Perez-Priego, Oscar; Domingo, Francisco

    2015-04-01

    Drylands occupy 47.2% of the global terrestrial area and are key ecosystems that significantly determine the inter-annual variability of the global carbon balance. However, it is still necessary to delve into the functional behavior of arid and semiarid ecosystems due to the complexity of drivers and interactions between underpinning processes (whether biological or abiotic) that modulate net ecosystem CO2 exchange (NEE). In this context, water inputs are crucial to biological organisms survival in arid ecosystems and frequently arrive via rain events that are commonly stochastic and unpredictable (i.e. precipitation pulses) and strongly control arid land ecosystem structure and function. The eddy covariance technique can be used to investigate the effect of precipitation pulses on NEE, but provide limited understanding of what exactly happens after a rain event. The chief reasons are that, firstly, we cannot measure separately autotrophic and heterotrophic components, and secondly, the partitioning techniques widely utilized to separate Gross Primary Production and Total Ecosystem Respiration, do not work properly in these water-limited ecosystems, resulting in biased estimations of plant and soil processes. Consequently, it is essential to combine eddy covariance measurements with other techniques to disentangle the different biological processes composing NEE that are activated by a precipitation pulse. Accordingly, the main objectives of this work were: (i) to quantify the contribution of precipitation pulse events to annual NEE using the eddy covariance technique in a semiarid steppe located in Almería (Spain), and (ii) to simulate a realistic precipitation pulse in order to understand its effect on the ecosystem, soil and plant CO2 exchanges by using a transitory-state closed canopy chamber, soil respiration chambers and continuous monitoring CO2 sensors inserted in the subsoil. Preliminary results showed, as expected, a delay between soil and plant

  19. Drought Legacy and the Impacts on the Amazon Forest Carbon Exchange

    NASA Astrophysics Data System (ADS)

    Saatchi, S. S.

    2015-12-01

    Sassan Saatchi1,2, Yifan Yu1, Xiang Xu2, Luiz Aragao3, Liana Anderson31Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA2Institute of Environment and Sustainability, University of California, Los Angeles, CA 90045. USA3 Remote Sensing Division, National Institute for Space Research, São José dos Campos, Brazil, 12227-010, BrazilRecent Amazonian droughts have drawn attention to the vulnerability of tropical forests to climate perturbations. Ground and satellite observations of 2005 and 2010 mega-droughts have shown an increase in fire occurrence and tree mortality during the period of drought. Here, we use a combination of satellite observations over a period of about 15 years to examine the legacy of the droughts in terms of impacts on the ecological structure and function of the forests in years following the droughts and the subsequent carbon exchange. Using data from microwave satellite sensors of rainfall, canopy backscatter (2000-2014) and GRACE and GOSAT, we show that the 2005 drought has a legacy of 2-5 years in western Amazonia, by increasing the disturbance in canopy trees and impacting the gross primary production of the forest significantly. Amazonian forests, particularly in the southern region were again impacted by the 2010 mega-drought, causing a legacy of 2-4 years with potential decrease in GPP and productivity observed by GOSAT fluorescence. The persistent of low canopy water content observed by a joint QSCAT and OceanSAT observations were linked to a delay in recharging of the hydrological system observed by GRACE over a period of 2-5 years. The results suggest that Amazonian forests with distinct dry seasons in southern and western regions of the basin are potentially more vulnerable to droughts compared to regions with less seasonality. The long recovery time from the 2005 and 2010 droughts suggests that the occurence of droughts in Amazonia at 5-10 year frequency may lead to long-term alteration of the

  20. Continental sources, transoceanic transport, and interhemispheric exchange of carbon monoxide over the Pacific

    NASA Astrophysics Data System (ADS)

    Staudt, A. C.; Jacob, D. J.; Logan, J. A.; Bachiochi, D.; Krishnamurti, T. N.; Sachse, G. W.

    2001-12-01

    The Pacific Exploratory Mission to the Tropics phase B (PEM-Tropics B) aircraft campaign in March-April 1999 surveyed the chemical composition of the Pacific atmosphere from 35°N to 35°S and up to 12 km altitude. We use these observations in combination with a global three-dimensional model driven by assimilated meteorological observations to investigate the transport of northern hemispheric pollutants over the Pacific. We focus on carbon monoxide (CO) and tag it in the model by its region of origin. The model reproduces the observed large-scale latitudinal, longitudinal, and vertical gradients of CO concentrations over the Pacific. Biomass burning in Southeast Asia, which was particularly intense in spring 1999, contributed most of the CO enhancements observed in the free troposphere over the northern tropical Pacific but played only a minor role in the boundary layer. Fossil fuel combustion in Europe and Asia contributed most of the observed CO enhancements in the boundary layer over the North Pacific; the European influence dominated over Asian influence north of 35°N. European influence over the Pacific is particularly strong in spring because of wintertime accumulation of CO at high latitudes. North American pollution made little contribution to CO anywhere over the Pacific. Circulation of Eurasian industrial pollution around the Pacific High and into the trade winds produced a tropical "river of pollution" flowing in the lower troposphere from the northeastern to the western equatorial Pacific and in the vicinity of the South Pacific Convergence Zone. This pathway, however, made little contribution to interhemispheric exchange. Elevated concentrations observed for CO and other northern hemispheric tracers in the upper troposphere over the southeastern Pacific provide evidence for efficient interhemispheric exchange through a narrow region of upper tropospheric westerlies in the eastern equatorial Pacific (the "westerly duct"). We find that this westerly

  1. Climatic Versus Biotic Constraints on Carbon and Water Fluxes in Seasonally Drought-affected Ponderosa Pine Ecosystems. Chapter 2

    NASA Technical Reports Server (NTRS)

    Schwarz, P. A.; Law, B. E.; Williams, M.; Irvine, J.; Kurpius, M.; Moore, D.

    2005-01-01

    We investigated the relative importance of climatic versus biotic controls on gross primary production (GPP) and water vapor fluxes in seasonally drought-affected ponderosa pine forests. The study was conducted in young (YS), mature (MS), and old stands (OS) over 4 years at the AmeriFlux Metolius sites. Model simulations showed that interannual variation of GPP did not follow the same trends as precipitation, and effects of climatic variation were smallest at the OS (50%), and intermediate at the YS (<20%). In the young, developing stand, interannual variation in leaf area has larger effects on fluxes than climate, although leaf area is a function of climate in that climate can interact with age-related shifts in carbon allocation and affect whole-tree hydraulic conductance. Older forests, with well-established root systems, appear to be better buffered from effects of seasonal drought and interannual climatic variation. Interannual variation of net ecosystem exchange (NEE) was also lowest at the OS, where NEE is controlled more by interannual variation of ecosystem respiration, 70% of which is from soil, than by the variation of GPP, whereas variation in GPP is the primary reason for interannual changes in NEE at the YS and MS. Across spatially heterogeneous landscapes with high frequency of younger stands resulting from natural and anthropogenic disturbances, interannual climatic variation and change in leaf area are likely to result in large interannual variation in GPP and NEE.

  2. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  3. Does deciduous tree species identity affect carbon storage in temperate soils?

    NASA Astrophysics Data System (ADS)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  4. A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation.

    PubMed

    Berthrong, Sean T; Jobbágy, Esteban G; Jackson, Robert B

    2009-12-01

    Afforestation, the conversion of non-forested lands to forest plantations, can sequester atmospheric carbon dioxide, but the rapid growth and harvesting of biomass may deplete nutrients and degrade soils if managed improperly. The goal of this study is to evaluate how afforestation affects mineral soil quality, including pH, sodium, exchangeable cations, organic carbon, and nitrogen, and to examine the magnitude of these changes regionally where afforestation rates are high. We also examine potential mechanisms to reduce the impacts of afforestation on soils and to maintain long-term productivity. Across diverse plantation types (153 sites) to a depth of 30 cm of mineral soil, we observed significant decreases in nutrient cations (Ca, K, Mg), increases in sodium (Na), or both with afforestation. Across the data set, afforestation reduced soil concentrations of the macronutrient Ca by 29% on average (P < 0.05). Afforestation by Pinus alone decreased soil K by 23% (P < 0.05). Overall, plantations of all genera also led to a mean 71% increase of soil Na (P < 0.05). Mean pH decreased 0.3 units (P < 0.05) with afforestation. Afforestation caused a 6.7% and 15% (P < 0.05) decrease in soil C and N content respectively, though the effect was driven principally by Pinus plantations (15% and 20% decrease, P < 0.05). Carbon to nitrogen ratios in soils under plantations were 5.7-11.6% higher (P < 0.05). In several regions with high rates of afforestation, cumulative losses of N, Ca, and Mg are likely in the range of tens of millions of metric tons. The decreases indicate that trees take up considerable amounts of nutrients from soils; harvesting this biomass repeatedly could impair long-term soil fertility and productivity in some locations. Based on this study and a review of other literature, we suggest that proper site preparation and sustainable harvest practices, such as avoiding the removal or burning of harvest residue, could minimize the impact of afforestation on

  5. Tree species affect cation exchange capacity (CEC) and cation binding properties of organic matter in acid forest soils.

    PubMed

    Gruba, Piotr; Mulder, Jan

    2015-04-01

    Soil organic matter (SOM) in forest soil is of major importance for cation binding and acid buffering, but its characteristics may differ among soils under different tree species. We investigated acidity, cation exchange properties and Al bonding to SOM in stands of Scots pine, pedunculate oak, Norway spruce, European beech and common hornbeam in southern Poland. The content of total carbon (Ct) was by far the major contributor to total cation exchange capacity (CECt) even in loamy soils and a strong relationship between Ct and CECt was found. The slope of the regression of CECt to Ct increased in the order hornbeam≈oak

  6. Ectomycorrhizae influences on CO/sub 2/ exchange and carbon allocation in Pinus

    SciTech Connect

    Kidd, F.A.

    1983-01-01

    Although the importance of mycorrhizal fungi in nutrient ion absorption is relatively well documented, little is known concerning the energy cost required of the host plant for the maintenance of the nurient-absorbing area provided by the mycorrhizae. The objective of this research was to gain further knowledge on how the basic physiological processes of photosynthesis and respiration, as well as allocation of carbon compounds, may be stimulated in host Pinus seedlings through source-sink relationships resulting from mycorrhizae. Seedlings of four Pinus species with 50-75% short root infection by three mycorrhizae species had a rate of net photosynthesis 3X as great as that of noninfected plants. The increase in CO/sub 2/ fixation appeared linear with respect to fungal infection as percentage short root infection increased from zero to 75%. When other parameters of seedling growth and morphology, i.e. shoot and root dry weight, dark respiration rates, and foliar concentration of nitrogen, were correlated with net photosynthetic rate, only mycorrhizae infection demonstrated a statistically significant (P < 0.05) influence on increasing host CO/sub 2/ exchange. Partitioning of current photosynthate was examined by pulse-labeling Pinus taeda L. with /sup 14/CO/sub 2/ at each of six time intervals. Although the stimulation of photosynthesis and allocation of current photosynthate to the root system by mycorrhizae formation was consistent with the source-sink concept of sink demand, foliar N and P concentrations were also greater in mycorrhizal plants.

  7. Large interannual variability in net ecosystem carbon dioxide exchange of a disturbed temperate peatland.

    PubMed

    Aslan-Sungur, Guler; Lee, Xuhui; Evrendilek, Fatih; Karakaya, Nusret

    2016-06-01

    Peatland ecosystems play an important role in the global carbon (C) cycle as significant C sinks. However, human-induced disturbances can turn these sinks into sources of atmospheric CO2. Long-term measurements are needed to understand seasonal and interannual variability of net ecosystem CO2 exchange (NEE) and effects of hydrological conditions and their disturbances on C fluxes. Continuous eddy-covariance measurements of NEE were conducted between August 2010 and April 2014 at Yenicaga temperate peatland (Turkey), which was drained for agricultural usage and for peat mining until 2009. Annual NEE during the three full years of measurement indicated that the peatland acted as a CO2 source with large interannual variability, at rates of 246, 244 and 663 g Cm(-2)yr(-1) for 2011, 2012, and 2013 respectively, except for June 2011, and May to July 2012. The emission strengths were comparable to those found for severely disturbed tropical peatlands. The peak CO2 emissions occurred in the dry summer of 2013 when water table level (WTL) was below a threshold value of -60 cm and soil water content (SCW) below a threshold value of 70% by volume. Water availability index was found to have a stronger explanatory power for variations in monthly ecosystem respiration (ER) than the traditional water status indicators (SCW and WTL). Air temperature, evapotranspiration and vapor pressure deficient were the most significant variables strongly correlated with NEE and its component fluxes of gross primary production and ER. PMID:26950633

  8. Carbon dioxide and water exchange of a soybean stand grown in the biomass production chamber

    NASA Technical Reports Server (NTRS)

    Corey, Kenneth A.

    1990-01-01

    Soybean plants were grown under metal halide lamps in NASA's biomass production chamber (BPC). Experiments were conducted to determine whole stand rates of carbon dioxide exchange and transpiration as influenced by time of day, CO2 concentration, irradiance, and temperature. Plants were grown at a population of 24 plants/sq m, a daily cycle of 12 hr light/12 hr dark, and average temperature regime of 26 C light/20 C dark, and a CO2 concentration enriched and maintained at 1000 ppm during the photoperiod. A distinct diurnal pattern in the rate of stand transpiration was measured at both ambient and enriched (1000 ppm) concentration of CO2. Data generated in this study represent true whole stand responses to key developmental and environmental variables and will be valuable in database construction for future working CELSS. Crop growth studies in the BPC were conducted with a high degree of environmental control, gas tightness during growth, and have used large plant stands. These characteristics have placed it in a unique position internationally as a research tool and as a preprototype subcomponent to a fully integrated CELSS. The results from the experiments are presented.

  9. Experimental and Numerical Investigation of Supercritical Carbon dioxide compact heat exchanger

    NASA Astrophysics Data System (ADS)

    Fatima, Roma; Kurizenga, Alan; Anderson, Mark; Ranjan, Devesh

    2009-11-01

    The use of super-critical carbon dioxide is gaining importance because of its use in Brayton cycles, to increase the cycle efficiency and reduce the initial capital investment, for high temperature energy conversion system. In order to reduce the capital cost, one improvement which was thought, is the use of compact, highly efficient, diffusion bonded heat exchangers for the regenerators. In this presentation we will focus on the experimental measurements of heat transfer and pressure drop characteristics within mini-channels. Two test section channel geometries were studied: a straight channel and a zigzag channel. Both configurations are 0.5m in length and constructed out of 316 stainless steel with a series of nine parallel 1.9mm semi-circular channels. The zigzag configuration has an angle of 115 degrees with an effective length of ˜0.58m. Heat transfer measurements were conducted for varying ranges of inlet temperatures, pressures, and mass flow rates. Numerical simulations have been performed using Fluent 12.0 to complement our experimental program. This is an ongoing program and we will be showing our recent progress we have made in last six months.

  10. Calculation Method for Exciton Wavefunctions with Electron--Hole Exchange Interaction: Application to Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ajiki, Hiroshi

    2013-05-01

    A new method for calculating exciton wavefunctions in the presence of a long-range electron--hole (e--h) exchange interaction (EXI) is presented. The e--h EXI arises, for example, for cross-polarized excitons in a single-walled carbon nanotube (SWNT). Cross-polarized excitons have previously been calculated as an eigenvalue problem of a Bethe--Salpeter equation (BSE) within the Tamm--Dancoff-type approximation (TDA). The resulting wavefunctions provide quite different absorption spectra in comparison with those calculated in the self-consistent-field method [S. Uryu and T. Ando, J. Phys.: Conf. Ser. 302 (2011) 012004]. Although the self-consistent-field method is more reliable, exciton wavefunctions cannot be obtained from this method. A general method is derived here to obtain exciton wavefunctions that take the e--h EXI into account within the TDA, and the method is applied to the cross-polarized excitons of a SWNT. The absorption spectra calculated from the resulting exciton wavefunctions agree well with the spectra calculated from the self-consistent-field method within a rotating-wave approximation.

  11. Measurement of labile copper in wine by medium exchange stripping potentiometry utilising screen printed carbon electrodes.

    PubMed

    Clark, Andrew C; Kontoudakis, Nikolaos; Barril, Celia; Schmidtke, Leigh M; Scollary, Geoffrey R

    2016-07-01

    The presence of copper in wine is known to impact the reductive, oxidative and colloidal stability of wine, and techniques enabling measurement of different forms of copper in wine are of particular interest in understanding these spoilage processes. Electrochemical stripping techniques developed to date require significant pretreatment of wine, potentially disturbing the copper binding equilibria. A thin mercury film on a screen printed carbon electrode was utilised in a flow system for the direct analysis of labile copper in red and white wine by constant current stripping potentiometry with medium exchange. Under the optimised conditions, including an enrichment time of 500s and constant current of 1.0μA, the response range was linear from 0.015 to 0.200mg/L. The analysis of 52 red and white wines showed that this technique generally provided lower labile copper concentrations than reported for batch measurement by related techniques. Studies in a model system and in finished wines showed that the copper sulfide was not measured as labile copper, and that loss of hydrogen sulfide via volatilisation induced an increase in labile copper within the model wine system. PMID:27154696

  12. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    SciTech Connect

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine

  13. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    A. Patel; K. Artyushkova; P. Atanassov; V. Colbow; M. Dutta; D. Harvey; S. Wessel

    2012-04-30

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  14. Investigating the effects of proton exchange membrane fuel cell conditions on carbon supported platinum electrocatalyst composition and performance

    SciTech Connect

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Colbow, Vesna; Dutta, Monica; Harvey, Davie; Wessel, Silvia

    2012-04-01

    Changes that carbon-supported platinum electrocatalysts undergo in a proton exchange membrane fuel cell environment were simulated by ex situ heat treatment of catalyst powder samples at 150 #2;C and 100% relative humidity. In order to study modifications that are introduced to chemistry, morphology, and performance of electrocatalysts, XPS, HREELS and three-electrode rotating disk electrode experiments were performed. Before heat treatment, graphitic content varied by 20% among samples with different types of carbon supports, with distinct differences between bulk and surface compositions within each sample. Following the aging protocol, the bulk and surface chemistry of the samples were similar, with graphite content increasing or remaining constant and Pt-carbide decreasing for all samples. From the correlation of changes in chemical composition and losses in performance of the electrocatalysts, we conclude that relative distribution of Pt particles on graphitic and amorphous carbon is as important for electrocatalytic activity as the absolute amount of graphitic carbon present

  15. The role of snow cover affecting boreal-arctic soil freeze-thaw and carbon dynamics

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Rawlins, M. A.; Moghaddam, M.; Euskirchen, E. S.

    2015-10-01

    Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (~ 0.8-1.3 days decade-1) in the mean annual snow cover extent and frozen-season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with a detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to climate warming and changes in snow cover conditions in the pan-Arctic region over the past 3 decades (1982-2010). Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD) cm, corresponding to widespread warming. Warming promotes vegetation growth and soil heterotrophic respiration particularly within surface soil layers (≤ 0.2 m). The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m) soil layers, especially in colder climate zones (mean annual T ≤ -10 °C). Our results demonstrate the important control of snow cover on northern soil freeze-thaw and soil carbon decomposition processes and the necessity of considering both warming and a change in precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.

  16. Ion-exchange and hydrophobic interactions affecting selectivity for neutral and charged solutes on three structurally similar agglomerated ion-exchange and mixed-mode stationary phases.

    PubMed

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-11-25

    The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC - strong anion exchange, Thermo Fisher Scientific IonPac CS10--strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed logP values of 0.38-0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18

  17. Carbon dioxide in the atmosphere: isotopic exchange with ozone and its use as a tracer in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Yung, Y. L.; Lee, A. Y.; Irion, F. W.; DeMore, W. B.; Wen, J.

    1997-01-01

    Atmospheric heavy ozone is enriched in the isotopes 18O and 17O. The magnitude of this enhancement, of the order of 100%, is very large compared with that commonly known in atmospheric chemistry and geochemistry. The heavy oxygen atom in heavy ozone is therefore useful as a tracer of chemical species and pathways that involve ozone or its derived products. As a test of the isotopic exchange reactions, we successfully carry out a series of numerical experiments to simulate the results of the laboratory experiments performed by Wen and Thiemens [1993] on ozone and CO2. A small discrepancy between the experimental and the model values for 17O exchange is also revealed. The results are used to compute the magnitude of isotopic exchange between ozone and carbon dioxide via the excited atom O(1D) in the middle atmosphere. The model for 18O is in good agreement with the observed values.

  18. Kinetic bottlenecks to chemical exchange rates for deep-sea animals II: Carbon dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-11-01

    Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑CO2] etc.) as the critical variable and with a major focus on carbonate shell dissolution. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyze the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas since, as with gas exchange of CO2 at the air-sea interface, the influence of the ensemble of reactions within the CO2-HCO3--CO32- acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and flow rate under typical oceanic concentrations.The effect of these reactions can be described by an enhancement factor. For organisms, this means mechanically increasing flow over their surface to thin the boundary layer as is required to alleviate O2 stress seems not necessary to facilitate CO2 efflux. Nevertheless the elevated pCO2 cost most likely is non-zero. Regionally as with O2 the combination of T, P, and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth. But the net result is that, for the problem of gas exchange with the bulk ocean, the combination of an increasing T combined with declining O2 poses a greater challenge to marine life than does increasing CO2. The relationships developed here allow a more accurate prediction of the impacts on marine life

  19. On The Temporal Dynamics Of Coupled Water And Carbon Exchange: Implications For Predictions Over Meteorological And Climate Time Scales.

    NASA Astrophysics Data System (ADS)

    Albertson, J. D.; Williams, C. A.; Scanlon, T. M.

    2002-12-01

    Short term water and carbon exchanges between vegetation and the atmosphere are strongly coupled through the stomatal function of plants. These high-frequency exchange rates are modulated by the lower-frequency variability in vegetation cover, as it responds to changes in forcing, such as water availability, across a range of time scales. Furthermore, the relative fractions of the dominant plant functional groups on the landscape possess different sensitivities and strategies (i.e. niches) with respect to environmental variables. An example of this is the classical difference in rooting depth (reservoir size) and wilting points of herbaceous and woody vegetation. Therefore, low frequency changes in the vegetation structure have clear mechanistic impacts on the functional behavior of the landscape in the context of water and carbon cycling. In this talk we highlight the interplay between functional dynamics and structural dynamics, with a focus on water and carbon exchange in a semi-arid context. We explore field data and remotely sensed data collected along the Kalahari Transect in southern Africa to gain insights into the processes and there effects on diurnal, inter-storm, seasonal, and inter-annual time scales. In particular, we highlight the hydrological implications of the contrasting frequency response of grasses and woody vegetation in water-limited systems.

  20. On the temporal dynamics of coupled water and carbon exchange: implications for predictions over meteorological and climate time scales

    NASA Astrophysics Data System (ADS)

    Albertson, J.; Scanlon, T.; Williams, C.

    2003-04-01

    Short term water and carbon exchanges between vegetation and the atmosphere are strongly coupled through the stomatal function of plants. These high-frequency exchange rates are modulated by the lower-frequency variability in vegetation cover, as it responds to changes in forcing, such as water availability, across a range of time scales. Furthermore, the relative fractions of the dominant plant functional groups on the landscape possess different sensitivities and strategies (i.e. niches) with respect to environmental variables. An example of this is the classical difference in rooting depth (reservoir size) and wilting points of herbaceous and woody vegetation. Therefore, low frequency changes in the vegetation structure have clear mechanistic impacts on the functional behavior of the landscape in the context of water and carbon cycling. In this talk we highlight the interplay between functional dynamics and structural dynamics, with a focus on water and carbon exchange in a semi-arid context. We explore field data and remotely sensed data collected along the Kalahari Transect in southern Africa to gain insights into the processes and there effects on diurnal, inter-storm, seasonal, and inter-annual time scales. In particular, we highlight the hydrological implications of the contrasting frequency response of grasses and woody vegetation in water-limited systems.

  1. Carbon dioxide and methane exchange at a cool-temperate freshwater marsh

    NASA Astrophysics Data System (ADS)

    Strachan, Ian B.; Nugent, Kelly A.; Crombie, Stephanie; Bonneville, Marie-Claude

    2015-06-01

    Freshwater marshes have been shown to be strong sinks for carbon dioxide (CO2) on an annual basis relative to other wetland types; however it is likely that these ecosystems are also strong emitters of methane (CH4), reducing their carbon (C) sequestration potential. Multiyear C balances in these ecosystems are necessary therefore to determine their contribution to the global C cycle. Despite this, the number of multiyear studies in marshes is few, with, to the best of our knowledge, only one other Northern marsh C balance reported. This study presents five years of eddy covariance flux measurements of CO2, and four years of warm-season chamber measurements of CH4 at a cool-temperate Typha angustifolia marsh. Annual average cumulative net ecosystem exchange of CO2 (NEE) at the marsh was -224 ± 54 g C m-2 yr-1 (±SD) over the five-year period, ranging from -126 to -284 g C m-2 yr-1. Enhancement of the ecosystem respiration during warmer spring, autumn and winter periods appeared the strongest determinant of annual NEE totals. Warm season fluxes of CH4 from the Typha vegetation (avg. 1.0 ± 1.2 g C m-2 d-1) were significantly higher than fluxes from the water surface (0.5 ± 0.4 g C m-2 d-1) and unvegetated mats (0.2 ± 0.2 g C m-2 d-1). Air temperature was a primary driver of all CH4 fluxes, while water table was not a significant correlate as water levels were always at or above the vegetative mat surfaces. Weighting by the surface cover proportion of water and vegetation yielded a net ecosystem CH4 emission of 127 ± 19 g C m-2 yr-1. Combining CO2 and CH4, the annual C sink at the Mer Bleue marsh was reduced to -97 ± 57 g C m-2 yr-1, illustrating the importance of accounting for CH4 when generating marsh C budgets.

  2. Improved determination of daytime net ecosystem exchange of carbon dioxide at croplands

    NASA Astrophysics Data System (ADS)

    Zhao, P.; Lüers, J.

    2012-03-01

    The eddy-covariance technique is applied worldwide to acquire information about carbon exchange between a variety of ecosystems and atmosphere, but the data acquisition only covers, on average, two-thirds of the whole year due to system failures and data rejection. Therefore, data must be corrected and data gaps must be filled to provide seasonal or annual budgets. The gap-filing strategies, however, are still under discussion within the research community. Presently the major gap-filling methods work quite well for long-time running sites over slow-developing biosphere surfaces such as long-living evergreen forests, but difficulties appear for short-living and fast-growing croplands. In this study we developed a new Multi-Step Error Filter procedure to gain good-quality data as input for different parameterizations of the light response function of plants for two cropland sites (rice and potatoes), and we could prove that the conventional temperature binning approach is inadequate. The presented time-window scheme showed best results with a four-day time window for the potato field and an eight-day time window for the rice field. The influence of vapor pressure deficit was tested as well, but in our case it plays a minor role at both the potato and the rice fields with the exception of the early growing stage of the potatoes. Completing our research, we suggest an innovative method by introducing a Leaf Area Index factor to capture the seasonal vegetation development. With this method we are now able to fill the large gaps between observation periods when conventional methods are invalid.

  3. Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest.

    PubMed

    Dunn, Allison L; Wofsy, Steven C; v H Bright, Alfram

    2009-03-01

    We measured soil climate and the turbulent fluxes of CO2, H2O, heat, and momentum on short towers (2 m) in a 160-yr-old boreal black spruce forest in Manitoba, Canada. Two distinct land cover types were studied: a Sphagnum-dominated wetland, and a feathermoss (Pleurozium and Hylocomium)-dominated upland, both lying within the footprint of a 30-m tower, which has measured whole-forest carbon exchange since 1994. Peak summertime uptake of CO2, was higher in the wetland than for the forest as a whole due to the influence of deciduous shrubs. Soil respiration rates in the wetland were approximately three times larger than in upland soils, and 30% greater than the mean of the whole forest, reflecting decomposition of soil organic matter. Soil respiration rates in the wetland were regulated by soil temperature, which was in turn influenced by water table depth through effects on soil heat capacity and conductivity. Warmer soil temperatures and deeper water tables favored increased heterotrophic respiration. Wetland drainage was limited by frost during the first half of the growing season, leading to high, perched water tables, cool soil temperatures, and much lower respiration rates than observed later in the growing season. Whole-forest evapotranspiration increased as water tables dropped, suggesting that photosynthesis in this forest was rarely subject to water stress. Our data indicate positive feedback between soil temperature, seasonal thawing, heterotrophic respiration, and evapotranspiration. As a result, climate warming could cause covariant changes in soil temperature and water table depths that may stimulate photosynthesis and strongly promote efflux of CO2 from peat soils in boreal wetlands. PMID:19323205

  4. What Drives the Phenology of Carbon Exchange in an Australian Temperate Woodland?

    NASA Astrophysics Data System (ADS)

    Pendall, E.; Resco de Dios, V.; Cleverly, J. R.; Isaac, P. R.; Renchon, A.; Barton, C. V.; Boer, M. M.; Tissue, D.; Maier, C.

    2015-12-01

    Temperate, broadleaved evergreen woodlands dominated by Eucalyptus species are adapted to a wide range of moisture conditions. However, these ecosystems can be susceptible to extremes of environmental stress, including droughts and heat waves. We evaluated climatic drivers of carbon and water exchange using eddy covariance techniques for over two years in a dry sclerophyll woodland near Sydney, Australia. We found that the strongest net C uptake by this ecosystem occurred during the winter months (June through August), and that precipitation and minimum air temperature were the most important environmental drivers of net uptake. Ecosystem respiration was highest during summer as soil drought was alleviated by frequent thunderstorm events, and lowest during winter due to drier soil and cooler temperatures. Gross primary production was independent of surface soil moisture but was constrained by high VPD during summer. Highest water and light use efficiencies for GPP were observed during winter. This study demonstrates the importance of strong stomatal regulation of dry Eucalyptus woodlands in limiting summer uptake, and warm-season rain in enhancing soil organic matter decomposition, leading to net C losses during summer. The temporal patterns of CO2 fluxes in this mild temperate forest are unusual in comparison to other temperate forests. By persisting through unfavourable conditions and growing in response to favourable conditions during any season, the phenology of C dynamics in temperate sclerophyll woodlands can resemble that of drier ecosystems. The climatic drivers of net C uptake by these woodlands should be considered for evaluating vulnerability to extreme climate events that might limit their productivity as well as ecosystem C storage.

  5. Comparison of net ecosystem carbon exchange estimation in a mixed temperate forest using field eddy covariance and MODIS data.

    PubMed

    Wang, Yuandong; Tang, Xuguang; Yu, Lianfang; Hou, Xiyong; Munger, J William

    2016-01-01

    Quantification of net ecosystem carbon exchange (NEE) between the atmosphere and vegetation is of great importance for regional and global studies of carbon balance. The eddy covariance technique can quantify carbon budgets and the effects of environmental controls for many forest types across the continent but it only provides integrated CO2 flux measurements within tower footprints and need to be scaled up to large areas in combination with remote sensing observations. In this study we compare a multiple-linear regression (MR) model which relates enhanced vegetation index and land surface temperature derived from the moderate resolution imaging spectroradiometer (MODIS), and photosynthetically active radiation with the site-level NEE, for estimating carbon flux exchange between the ecosystem and the environment at the deciduous-dominated Harvard Forest to three other methods proposed in the literature. Six years (2001-2006) of eddy covariance and MODIS data are used and results show that the MR model has the best performance for both training (2001-2004, R (2) = 0.84, RMSE = 1.33 g Cm(-2) day(-1)) and validation (2005-2006, R (2) = 0.76, RMSE = 1.54 g Cm(-2) day(-1)) datasets comparing to the other ones. It provides the potential to estimate carbon flux exchange across different ecosystems at various time intervals for scaling up plot-level NEE of CO2 to large spatial areas. PMID:27186455

  6. Leaf-level gas exchange and scaling-up of forest understory carbon fixation rates with a ``patch-scale'' canopy model

    NASA Astrophysics Data System (ADS)

    Wedler, M.; Geyer, R.; Heindl, B.; Hahn, S.; Tenhunen, J. D.

    1996-03-01

    During the Hartheim experiment (HartX) 1992, conducted in the Upper Rhine Valley, Germany, we estimated water vapor flux from the understory by several methods as reported in Wedler et al. (this issue). We also examined the photosynthetic gas exchange of the dominant understory species Brachypodium pinnatum, Carex alba, and Carex flacca at the leaf level with an CO2/H2O porometer. A mechanisticallybased leaf gas exchange model was parameterized for these understory species and validated via the measured diurnal courses of carbon dioxide exchange. Leaf CO2 gas exchange was scaled-up to patch- and then to stand-level utilizing the leaf gas exchange model as a component of the canopy light interception/energy balance model GAS-FLUX, and by further considering variation in vegetation “patch-type” distribution, patch-specific spatial structure, patch-type leaf area index, and microclimate beneath the tree canopy. At patch-level, C. alba exhibited the lowest net CO2 uptake of ca. 75 mmol m-2 d-1 due to a low leaf-level photosynthetic capacity, whereas net CO2 fixation of B. pinnatum- and C. flacca-patches was approx. 178 and 184 mmol m-2 d-1, respectively. Highest CO2 uptake was estimated for mixed patches where B. pinnatum grew together with the sedge species C. alba or C. flacca. Scaling-up of leaf gas exchange to stand level resulted in an estimated average rate of total CO2 fixation by the graminoid understory patches of approximately 93 mmol m-2 d-1 during the HartX period. The conservative gas exchange behavior of C. alba at Hartheim and its apparent success in space capture seems to affect overall functioning of this pine forest ecosystem by limiting understory CO2 uptake. The CO2 uptake by the understory is approximately 20% of stand total CO2 uptake. CO2 uptake fluxes mirror the relative differences in water loss from the understory and crown layer during the HartX period. Comparative measurements indicate that understory vegetation in spruce and pine

  7. Carbon availability affects diurnally controlled processes and cell morphology of Cyanothece 51142.

    PubMed

    Stöckel, Jana; Elvitigala, Thanura R; Liberton, Michelle; Pakrasi, Himadri B

    2013-01-01

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142. PMID:23457634

  8. Carbon Availability Affects Diurnally Controlled Processes and Cell Morphology of Cyanothece 51142

    PubMed Central

    Stöckel, Jana; Elvitigala, Thanura R.; Liberton, Michelle; Pakrasi, Himadri B.

    2013-01-01

    Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria to convert solar energy and high concentrations of CO2 efficiently into biomass and renewable energy sources has sparked substantial interest in using flue gas from coal-burning power plants as a source of inorganic carbon. However, in order to guide further advances in this area, a better understanding of the metabolic changes that occur under conditions of high CO2 is needed. To determine the effect of high CO2 on cell physiology and growth, we analyzed the global transcriptional changes in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air. We found a concerted response of genes related to photosynthesis, carbon metabolism, respiration, nitrogen fixation, ribosome biosynthesis, and the synthesis of nucleotides and structural cell wall polysaccharides. The overall response to 8% CO2 in Cyanothece 51142 involves different strategies, to compensate for the high C/N ratio during both phases of the diurnal cycle. Our analyses show that high CO2 conditions trigger the production of carbon-rich compounds and stimulate processes such as respiration and nitrogen fixation. In addition, we observed that high levels of CO2 affect fundamental cellular processes such as cell growth and dramatically alter the intracellular morphology. This study provides novel insights on how diurnal and developmental rhythms are integrated to facilitate adaptation to high CO2 in Cyanothece 51142. PMID:23457634

  9. Seismic signatures of carbonate caves affected by near-surface absorptions

    NASA Astrophysics Data System (ADS)

    Rao, Ying; Wang, Yanghua

    2015-12-01

    The near-surface absorption within a low-velocity zone generally has an exponential attenuation effect on seismic waves. But how does this absorption affect seismic signatures of karstic caves in deep carbonate reservoirs? Seismic simulation and analysis reveals that, although this near-surface absorption attenuates the wave energy of a continuous reflection, it does not alter the basic kinematic shape of bead-string reflections, a special seismic characteristic associated with carbonate caves in the Tarim Basin, China. Therefore, the bead-strings in seismic profiles can be utilized, with a great certainty, for interpreting the existence of caves within the deep carbonate reservoirs and for evaluating their pore spaces. Nevertheless, the difference between the central frequency and the peak frequency is increased along with the increment in the absorption. While the wave energy of bead-string reflections remains strong, due to the interference of seismic multiples generated by big impedance contrast between the infill materials of a cave and the surrounding carbonate rocks, the central frequency is shifted linearly with respect to the near-surface absorption. These two features can be exploited simultaneously, for a stable attenuation analysis of field seismic data.

  10. Biogenic carbon fluxes from global agricultural production and consumption: Gridded, annual estimates of net ecosystem carbon exchange

    NASA Astrophysics Data System (ADS)

    Wolf, J.; West, T. O.; le Page, Y.; Thomson, A. M.

    2014-12-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate globally consistent bottom-up estimates for carbon monitoring and model input. We quantify agricultural carbon fluxes associated with annual (starting in 1961) crop net primary productivity (NPP), harvested biomass, and human and livestock consumption and emissions, with estimates of uncertainty, by applying region- and species-specific carbon parameters to annual crop, livestock, food and trade inventory data, and generate downscaled, gridded (0.05 degree resolution) representations of these fluxes. In 2011, global crop NPP was 5.25 ± 0.46 Pg carbon (excluding root exudates), of which 2.05 ± 0.051 Pg carbon was harvested as primary crops; an additional 0.54 Pg of crop residue carbon was collected for livestock fodder. In 2011, total livestock feed intake was 2.42 ± 0.21 Pg carbon, of which 2.31 ± 0.21 Pg carbon was emitted as carbon dioxide and 0.072 ± 0.005 Pg carbon was emitted as methane. We estimate that livestock grazed 1.18 Pg carbon from non-crop lands in 2011, representing 48.5 % of global total feed intake. In 2009, the latest available data year, we estimate global human food intake (excluding seafood and orchard fruits and nuts) at 0.52 ± 0.03 Pg carbon, with an additional 0.24 ± 0.01 Pg carbon of food supply chain losses. Trends in production and consumption of agricultural carbon between 1961 and recent years, such as increasing dominance of oilcrops and decreasing percent contribution of pasturage to total livestock feed intake, are discussed, and accounting of all agricultural carbon was done for the years 2005 and 2009. Gridded at 0.05 degree resolution, these quantities represent local uptake and release of agricultural biogenic carbon (e.g. biomass production and removal, residue and manure inputs to soils) and may be used with other gridded data to help estimate current and future changes in soil organic carbon.

  11. Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer.

    PubMed

    Kim, Yu-Jin; Choi, Jae-Hwan

    2010-02-01

    A composite carbon electrode coated with a cation-exchange polymer, crosslinked poly(vinyl alcohol) with sulfosuccinic acid, was fabricated to enhance the desalination performance of a capacitive deionization (CDI) system. The electrochemical properties of the prepared electrode were characterized by impedance spectroscopy, and desalination experiments were carried out at various operating conditions using a CDI cell with carbon electrodes only, and a membrane-capacitive-deionization (MCDI) cell including a coated-carbon electrode, to evaluate the effect of the coated-carbon electrode on desalination performance. The electrical resistance of the coated electrode was increased by a small amount over the uncoated electrode, but the capacitance was improved by the coating. In the CDI cell, the salt-removal efficiencies were in the range of 50-67%, while the efficiencies increased to 75-85% for the MCDI cell. Depending on the operating conditions, the salt-removal and current efficiencies of the MCDI cell were enhanced by 27-56% and 69-95%, respectively, compared to the CDI cell. The enhanced efficiency for the MCDI cell was attributed to the selective transport of cations between the electrode surface and bulk solution due to the cation-exchange coating layer. PMID:19896691

  12. Ecosystem-Atmosphere Exchange of Carbon, Water and Energy over a Mixed Deciduous Forest in the Midwest

    SciTech Connect

    Danilo Dragoni; Hans Peter Schmid; C.S.B. Grimmond; J.C. Randolph; J.R. White

    2012-12-17

    During the project period we continued to conduct long-term (multi-year) measurements, analysis, and modeling of energy and mass exchange in and over a deciduous forest in the Midwestern United States, to enhance the understanding of soil-vegetation-atmosphere exchange of carbon. At the time when this report was prepared, results from nine years of measurements (1998 - 2006) of above canopy CO2 and energy fluxes at the AmeriFlux site in the Morgan-Monroe State Forest, Indiana, USA (see Table 1), were available on the Fluxnet database, and the hourly CO2 fluxes for 2007 are presented here (see Figure 1). The annual sequestration of atmospheric carbon by the forest is determined to be between 240 and 420 g C m-2 a-1 for the first ten years. These estimates are based on eddy covariance measurements above the forest, with a gap-filling scheme based on soil temperature and photosynthetically active radiation. Data gaps result from missing data or measurements that were rejected in qua)lity control (e.g., during calm nights). Complementary measurements of ecological variables (i.e. inventory method), provided an alternative method to quantify net carbon uptake by the forest, partition carbon allocation in each ecosystem components, and reduce uncertainty on annual net ecosystem productivity (NEP). Biometric datasets are available on the Fluxnext database since 1998 (with the exclusion of 2006). Analysis for year 2007 is under completion.

  13. Fly ash addition affects microbial biomass and carbon mineralization in agricultural soils.

    PubMed

    Nayak, A K; Kumar, Anjani; Raja, R; Rao, K S; Mohanty, Sangita; Shahid, Mohammad; Tripathy, Rahul; Panda, B B; Bhattacharyya, P

    2014-02-01

    The microbial biomass carbon (MBC) and carbon mineralization of fly ash (FA) amended soil at (0 %, 1.25 %, 2.5 %, 5 %, 10 % and 20 % FA; v/v) was investigated under laboratory conditions for 120 days at 60 % soil water-holding capacity and 25 ± 1°C temperature. The results demonstrated that soil respiration and microbial activities were not suppressed up to 2.5 % FA amendment and these activities decreased significantly at 10 % and 20 % FA treatment with respect to control. Application of 10 % and 20 % FA treated soils showed a decreasing trend of soil MBC with time; and the decrease was significant throughout the period of incubation. The study concluded that application of FA up to 2.5 % can thus be safely used without affecting the soil biological activity and thereby improve nutrient cycling in agricultural soils. PMID:24362819

  14. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth.

    PubMed

    Moreaux, Virginie; Lamaud, Eric; Bosc, Alexandre; Bonnefond, Jean-Marc; Medlyn, Belinda E; Loustau, Denis

    2011-09-01

    The effects of management practices on energy, water and carbon exchanges were investigated in a young pine plantation in south-west France. In 2009-10, carbon dioxide (CO(2)), H(2)O and heat fluxes were monitored using the eddy covariance and sap flow techniques in a control plot (C) with a developed gorse layer, and an adjacent plot that was mechanically weeded and thinned (W). Despite large differences in the total leaf area index and canopy structure, the annual net radiation absorbed was only 4% lower in plot W. We showed that higher albedo in this plot was offset by lower emitted long-wave radiation. Annual evapotranspiration (ET) from plot W was 15% lower, due to lower rainfall interception and transpiration by the tree canopy, partly counterbalanced by the larger evaporation from both soil and regrowing weedy vegetation. The drainage belowground from plot W was larger by 113 mm annually. The seasonal variability of ET was driven by the dynamics of the soil and weed layers, which was more severely affected by drought in plot C. Conversely, the temporal changes in pine transpiration and stem diameter growth were synchronous between sites despite higher soil water content in the weeded plot. At the annual scale, both plots were carbon sinks, but thinning and weeding reduced the carbon uptake by 73%: annual carbon uptake was 243 and 65 g C m(-2) on plots C and W, respectively. Summer drought dramatically impacted the net ecosystem exchange: plot C became a carbon source as the gross primary production (GPP) severely decreased. However, plot W remained a carbon sink during drought, as a result of decreases in both GPP and ecosystem respiration (R(E)). In winter, both plots were carbon sources, plots C and W emitting 67.5 and 32.4 g C m(-2), respectively. Overall, this study highlighted the significant contribution of the gorse layer to mass and energy exchange in young pine plantations. PMID:21724584

  15. Synthesis of mesoporous carbon-silica-polyaniline and nitrogen-containing carbon-silica films and their corrosion behavior in simulated proton exchange membrane fuel cells environment

    NASA Astrophysics Data System (ADS)

    Wang, Tao; He, Jianping; Sun, Dun; Guo, Yunxia; Ma, Yiou; Hu, Yuan; Li, Guoxian; Xue, Hairong; Tang, Jing; Sun, Xin

    In this study, polyaniline is deposited onto mesoporous carbon-silica-coated 304 stainless steel using electropolymerization method. Variation of the electropolymerization time and applied potential can affect the growth of polyaniline, and lead to different structural and electrochemical properties of the films. Nitrogen-containing groups are successfully introduced onto the mesoporous carbon-silica film by pyrolyzing treatment under N 2 atmosphere and the electrical conductivity is improved observably compared with the carbon-silica film. The electrochemical properties of the mesoporous carbon-silica-polyaniline films and nitrogen-containing carbon-silica composite films are examined by using potentiodynamic polarization, potentiostatic polarization and electrochemical impedance spectroscopy. The corrosion tests in 0.5 M H 2SO 4 system display that the carbon-silica-polyaniline films show the optimal protective performance. However, according to potentiostatic polarization process, nitrogen-containing carbon-silica film with a water contact angle 95° is extremely stable and better for the protection of stainless steel in simulated fuel cell environment compared to carbon-silica-polyaniline film. Therefore, the nitrogen-containing carbon-silica-coated 304 stainless steel is a promising candidate for bipolar plate materials in PEMFCs.

  16. Factors affecting the chemical exchange saturation transfer of Creatine as assessed by 11.7 T MRI.

    PubMed

    Saito, Shigeyoshi; Mori, Yuki; Tanki, Nobuyoshi; Yoshioka, Yoshichika; Murase, Kenya

    2015-01-01

    Chemical exchange saturation transfer (CEST) is a new contrast enhancement approach for imaging exogenous or endogenous substances such as creatine (Cr), amide protons, and glutamate in the human body. An increase in field strength is beneficial for CEST imaging because of the increased chemical shift and longer longitudinal relaxation time (T1). In high-field magnetic resonance imaging (MRI), establishing and evaluating the CEST effect is important for optimizing the magnetization transfer (MT) saturation radio frequency (RF) pulses. In this study, the CEST effect on Cr was evaluated at different concentrations in pH phantoms by appropriately selecting MT saturation RF pulses using 11.7 T MRI. The results showed that the CEST efficiency increased gradually with increasing applied saturation RF pulse power and that it was affected by the number of saturation RF pulses and their bandwidths. However, spillover effects were observed with higher saturation RF pulse powers. In conclusion, we successfully performed in vitro Cr CEST imaging under optimized conditions of MT saturation RF pulses. PMID:25477238

  17. Placental Hypoxia Developed During Preeclampsia Induces Telocytes Apoptosis in Chorionic Villi Affecting The Maternal-Fetus Metabolic Exchange.

    PubMed

    Bosco, Cleofina Becerra; Díaz, Eugenia Guerra; Gutierrez, Rodrigo Rojas; González, Jaime Montero; Parra-Cordero, Mauro; Rodrigo, Ramón Salinas; Barja, Pilar Yañez

    2016-01-01

    Telocytes (TC) are a new type of stromal cells initially found and studied in digestive and extra- digestive organs. These cells have a small cell body with 2 to 5 thin and extremely long cytoplasmic prolongations named telopodes. In recent years, TC have also been described in placental chorionic villi, located in a strategical position between the smooth muscle cells from fetal vessels and the myofibroblasts in the stromal villi. Unlike other organs, the placenta is not innervated and considering the strategic location of TC is has been postulated that TC function would be related to signal transduction mechanisms involved in the regulation of the fetal vessels blood flow, as well as in the shortening/lengthening of the chorionic villi, providing the necessary rhythmicity to the process of maternal/fetal metabolic exchange. Preeclampsia (PE) is a systemic syndrome that affects 4%-6% of pregnancies worldwide. It is characterized by a placental state of ischemia-hypoxia which triggers an oxidative stress stage with the concomitant production of reactive oxygen species (ROS) leading to an increase in the degree of placental apoptosis. Placental vascular tone is regulated by the vasodilator nitric oxide (NO) and, in PE cases, NO is diverted towards the formation of peroxynitrite, a powerful oxidative agent whose activity leads to an increase of placental apoptosis degree that compromises TC and myofibroblasts, a key feature we would like to emphasize in this work. PMID:25643124

  18. How do leader-member exchange quality and differentiation affect performance in teams? An integrated multilevel dual process model.

    PubMed

    Li, Alex Ning; Liao, Hui

    2014-09-01

    Integrating leader-member exchange (LMX) research with role engagement theory (Kahn, 1990) and role system theory (Katz & Kahn, 1978), we propose a multilevel, dual process model to understand the mechanisms through which LMX quality at the individual level and LMX differentiation at the team level simultaneously affect individual and team performance. With regard to LMX differentiation, we introduce a new configural approach focusing on the pattern of LMX differentiation to complement the traditional approach focusing on the degree of LMX differentiation. Results based on multiphase, multisource data from 375 employees of 82 teams revealed that, at the individual level, LMX quality positively contributed to customer-rated employee performance through enhancing employee role engagement. At the team level, LMX differentiation exerted negative influence on teams' financial performance through disrupting team coordination. In particular, teams with the bimodal form of LMX configuration (i.e., teams that split into 2 LMX-based subgroups with comparable size) suffered most in team performance because they experienced greatest difficulty in coordinating members' activities. Furthermore, LMX differentiation strengthened the relationship between LMX quality and role engagement, and team coordination strengthened the relationship between role engagement and employee performance. Theoretical and practical implications of the findings are discussed. PMID:25000359

  19. Carbon Exchange of Central New England Deciduous Forests: Variability Related to Age and Topography

    NASA Astrophysics Data System (ADS)

    Hadley, J. L.; Kuzeja, P. S.; Schedlbauer, J. L.; Munger, J. W.

    2004-12-01

    Forests in much of the northeastern U.S. occur in hilly or mountainous terrain and vary widely in age, due to forest harvesting and natural disturbances. Sites in the NE U.S. with relatively long-term C exchange records represent two very different major tree species associations (boreal coniferous forest and oak-maple dominated deciduous forest) but cover relatively little variation in topography and age. All of the forests measured are in somewhat low-lying areas and are fairly mature, ranging from 65 to >120 years in age. Data are needed from younger forests and forests with higher slope position in order to accurately estimate forest C storage in the NE U.S. In May 2002 we began the first eddy covariance (EC) measurements in a higher deciduous forest, about 1.1 km from the Harvard Forest Environmental Measurement Site (HFEMS), where C exchange has been measured since 1991. The higher site has similar tree species composition to HFEMS, but most trees within 300 m of the higher eddy covariance tower (and some beyond) originated after a fire in 1957. Wind direction and nocturnal turbulence strongly affect EC data at the higher site. With wind between 30 and 210 o from N, we observe large apparent C effluxes (>30 µmol m-2 s-1) at night, and sometimes during the day. Such large C effluxes have very seldom been observed at HFEMS, and at the higher site we interpret them as artifacts generated by lee-slope turbulence, due to airflow over forest that is 20-30 m higher than the point of EC measurements. With other wind directions, nocturnal C flux at the higher site increases with increasing turbulence. We attribute this to cold air drainage on the long approximately 10% slope to the W and NW. This inference is supported by very low measured C fluxes when air 20 cm from the ground is > 1.5 oC colder than air above the canopy. Accordingly, at the higher site we only accept C flux data if wind direction is between 215 and 360o and u* > 0.35 m/s. Under these conditions

  20. Net Ecosystem Carbon Exchange and Evapotranspiration After the Felling of an Eucalyptus Forest

    NASA Astrophysics Data System (ADS)

    Pita, Gabriel; Rodrigues, Abel; Mateus, Antonio; Pereira, Santos J.

    2011-01-01

    Espirra site (38o38’N,8o36’W) is located in a 300ha Eucalyptus globulus plantation, with a Mediterranean type climate with a mean annual precipitation of 709mm and a mean annual air temperature of 15.9oC. The plantation was established in 1986 with about 1100 trees ha-1. A 33m observation tower was installed in 2002, with an eddy covariance system. A harvesting of trees was made at the end of the 2nd rotation period, from November to December 2006. During the last four years of the second rotation the coppice were 20m height. Harvesting was planned in order to initiate a new 12 year productive cycle. In October 2008 a first thinning was made in three fourths of emerging stems from stumps. At this stage the forest trees had a mean height of 6m. During the period of analyses the total annual precipitation has varied between a minimum of 248mmYr-1 (2005) to a maximum of 796mm Yr-1 (2007), pattern typical of a Mediterranean climate. The diminution of precipitation (and also how it is distributed along the year) affects the forest uptake of Carbon .The GPP and the TER show lower values in dry years, both in the adult forest as in the young one. The GPP of the growing eucalyptus has been affected by the dry year but also by the thinning that took place in Oct 2008. The Ecosystem total respiration shows high values after the felling ( the same order of magnitude as the forest before the felling) due to the leaves and branches that were left over the soil after the harvesting. Three years after the felling the GPP of the young forest is 61% the value of the adult forest (mean value, excluding the dry year). The seasonal pattern of TER is similar before and after the felling, but in the young forest the GPP is lower and the NEE becomes positive in winter time. In an annual base the growing eucalyptus forest only in the first year after felling was a source of carbon.

  1. Experimental analysis on effective factors affecting carbon dioxide storage as hydrate in a consolidated sedimentary rock

    NASA Astrophysics Data System (ADS)

    Ahn, T.; Lee, J.; Park, C.; Jang, I.

    2012-12-01

    This paper investigated the reservoir properties and the injection rate affecting carbon dioxide storage as hydrate, which observed pressure and temperature at both formation and equilibrium conditions. One of typical issues was leakage to accomplish permanent carbon dioxide storage in underground geological formations. The sequestration of carbon dioxide as hydrate could settle down this matter because of its rigid lattice of cages. Two different experiments were carried out; first was isochoric experiments to analyze the effects of water saturation and pore size distribution on forming the hydrate. The other was isobaric to examine the injection rate of carbon dioxide. Three kinds of consolidated Berea sandstone were used with different water saturation(39~80%) and pore size distribution(5~10μm). The isochoric experiments were carried out under the ranges of pressure and temperature, from 15 to 35 bar and from 263 to 285 Kelvin, respectively. The experimental conditions of the isobaric were the constant pressure 24.7±0.6 bar, the temperature ranged from 271 to 301 Kelvin, and the injection rate varied from 10 to 275 sccm/min. At the viewpoint of reservoir properties, the isochoric experiments showed that the higher initial-water-saturation and the smaller average pore-size could play an inhibitor on forming the hydrate. The effect of water saturation was negligible below 274 Kelvin. Both of them were insignificant at the equilibrium condition. In the case of injection-related property, the isobaric experiments showed that the higher injection rate could make it difficult to form the hydrate. These results confirmed that the prevention of hydrate plugging near wellbore required the higher water saturation and injection rate. This experimental study could be useful to determine the adequate places for carbon dioxide disposal taking advantages of hydrate cap and also to set the operational strategy without any hydrate plugging near wellbore.

  2. Rod phototransduction modulated by bicarbonate in the frog retina: roles of carbonic anhydrase and bicarbonate exchange.

    PubMed Central

    Donner, K; Hemilä, S; Kalamkarov, G; Koskelainen, A; Shevchenko, T

    1990-01-01

    1. Effects on rod phototransduction following manipulation of retinal CO2-HCO3- and H+ fluxes were studied in dark-adapted retinas of the frog and the tiger salamander. 2. Rod photoresponses to brief flashes of light were recorded from the isolated sensory retina as electroretinogram mass receptor potentials and from isolated rods by the suction-pipette technique. The experimental treatments were: (1) varying [CO2] + [HCO3-] in the perfusion fluid: (2) applying acetazolamide (AAA), which inhibits the enzyme carbonic anhydrase (CA); and (3) applying 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) which blocks exchange mechanisms transporting HCO3- across cell membranes. 3. The concentration of the internal transmitter of the rods, cyclic GMP, was biochemically determined from the rod outer segment layer of retinas that had been incubated in the same solutions as were used for perfusion in the electrophysiological experiments. 4. The introduction of 6 mM-sodium bicarbonate to replace half the buffer of a nominally CO2-HCO3(-)-free (12 mM-phosphate or HEPES, [Na+] constant) Ringer solution doubled the cyclic GMP concentration in the rod outer segment layer and increased the saturating response amplitude and the relative sensitivity of rods in the intact retina. 5. The introduction of 0.5 mM-AAA into bicarbonate-containing Ringer solution accelerated the growth of saturated responses and sensitivity. Incubation of the retina in AAA-bicarbonate Ringer solution elevated the concentration of cyclic GMP ninefold compared with the phosphate control. 6. No effects of switching to bicarbonate-AAA Ringer solution were observed in the photocurrent of isolated rods drawn into suction pipettes with only the outer segment protruding into the perfusion fluid. The target of AAA is probably the CA-containing Müller cell. 7. The introduction of DIDS into the perfusate (at normal pH 7.5) set off a continuous decay of photoresponses which finally abolished light sensitivity

  3. Lanthanide-Catalyzed Reversible Alkynyl Exchange by Carbon-Carbon Single-Bond Cleavage Assisted by a Secondary Amino Group.

    PubMed

    Shao, Yinlin; Zhang, Fangjun; Zhang, Jie; Zhou, Xigeng

    2016-09-12

    Lanthanide-catalyzed alkynyl exchange through C-C single-bond cleavage assisted by a secondary amino group is reported. A lanthanide amido complex is proposed as a key intermediate, which undergoes unprecedented reversible β-alkynyl elimination followed by alkynyl exchange and imine reinsertion. The in situ homo- and cross-dimerization of the liberated alkyne can serve as an additional driving force to shift the metathesis equilibrium to completion. This reaction is formally complementary to conventional alkyne metathesis and allows the selective transformation of internal propargylamines into those bearing different substituents on the alkyne terminus in moderate to excellent yields under operationally simple reaction conditions. PMID:27510403

  4. Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities.

    PubMed

    Velzeboer, I; Peeters, E T H M; Koelmans, A A

    2013-07-01

    To date, chronic effect studies with manufactured nanomaterials under field conditions are scarce. Here, we report in situ effects of 0, 0.002, 0.02, 0.2, and 2 g/kg multiwalled carbon nanotubes (MWCNTs) in sediment on the benthic community composition after 15 months of exposure. Effects observed after 15 months were compared to those observed after 3 months and to community effects of another carbonaceous material (activated carbon; AC), which was simultaneously tested in a parallel study. Redundancy analysis with variance partitioning revealed a total explained variance of 51.7% of the variation in community composition after 15 months, of which MWCNT dose explained a statistically significant 9.9%. By stepwise excluding the highest MWCNT concentrations in the statistical analyses, MWCNT effects were shown to be statistically significant already at the lowest dose investigated, which can be considered environmentally relevant. We conclude that despite prolonged aging, encapsulation, and burial, MWCNTs can affect the structure of natural benthic communities in the field. This effect was similar to that of AC observed in a parallel experiment, which however was applied at a 50 times higher maximum dose. This suggests that the benthic community was more sensitive to MWCNTs than to the bulk carbon material AC. PMID:23713543

  5. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  6. Charge Exchange Produced Emission of Carbon in the Iron M-shell Dominated 150-200 Å Extreme Ultraviolet Region

    NASA Astrophysics Data System (ADS)

    Lepson, Jaan K.; Beiersdorfer, Peter; Bitter, Manfred; Roquemore, A. Lane; Kaita, Robert

    2015-08-01

    We report on emission spectra in the extreme ultraviolet region 150-200 Å recorded at the National Spherical Torus Experiment (NSTX). This region is typically dominated by M-shell iron emission that is used extensively for solar observations, e.g. Hinode and the Solar Dynamics Observatory, and stellar atmospheres, e.g., the Extreme Ultraviolet Explorer (EUVE). We find that significant emission occurs from several heretofore unmeasured lines, which can persist throughout the plasma duration. We attribute these lines to emission from K-shell carbon ions (C V and C VI). Spectral modeling of collisional excitation fails to account for these lines, but modeling of charge exchange provides a good match with the observation. Our spectral model shows that the lines are formed by charge exchange of bare and hydrogenlike carbon with neutral hydrogen. The high abundance of bare and hydrogenlike carbon in the solar wind suggests that these lines may be formed in the heliosphere and may be part of the soft X-ray background. They may thus be observed by energy dispersive instruments, such as microcalorimeters.This work was supported by the DOE General Plasma Science program. Work was performed by Lawrence Livermore National Laboratory and Princeton Plasma Physics Laboratory under the auspices of the U. S. Department of Energy under Contracts DEAC52-07NA27344 and DE-AC02-09CH11466.

  7. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils.

    PubMed

    Barrett, M; Khalil, M I; Jahangir, M M R; Lee, C; Cardenas, L M; Collins, G; Richards, K G; O'Flaherty, V

    2016-04-01

    The nitrite reductase (nirS and nirK) and nitrous oxide reductase-encoding (nosZ) genes of denitrifying populations present in an agricultural grassland soil were quantified using real-time polymerase chain reaction (PCR) assays. Samples from three separate pedological depths at the chosen site were investigated: horizon A (0-10 cm), horizon B (45-55 cm), and horizon C (120-130 cm). The effect of carbon addition (treatment 1, control; treatment 2, glucose-C; treatment 3, dissolved organic carbon (DOC)) on denitrifier gene abundance and N2O and N2 fluxes was determined. In general, denitrifier abundance correlated well with flux measurements; nirS was positively correlated with N2O, and nosZ was positively correlated with N2 (P < 0.03). Denitrifier gene copy concentrations per gram of soil (GCC) varied in response to carbon type amendment (P < 0.01). Denitrifier GCCs were high (ca. 10(7)) and the bac:nirK, bac:nirS, bac:nir (T) , and bac:nosZ ratios were low (ca. 10(-1)/10) in horizon A in all three respective treatments. Glucose-C amendment favored partial denitrification, resulting in higher nir abundance and higher N2O fluxes compared to the control. DOC amendment, by contrast, resulted in relatively higher nosZ abundance and N2 emissions, thus favoring complete denitrification. We also noted soil depth directly affected bacterial, archaeal, and denitrifier abundance, possibly due to changes in soil carbon availability with depth. PMID:26762934

  8. Ion Uptake in Tall Fescue as Affected by Carbonate, Chloride, and Sulfate Salinity

    PubMed Central

    Han, Lei; Gao, Yang; Li, Deying

    2014-01-01

    Turfgrass nutrient uptake may be differentially affected by different salts. The objective of this study was to compare nutrient uptake in tall fescue (Festuca arundinacea Schreb.) as affected by carbonate, chloride, and sulfate under iso-osmotic, iso-Na+ strength conditions. ‘Tar Heel II’ and ‘Wolfpack’ cultivars were subjected to NaCl, Na2CO3, Na2SO4, CaCl2, NaCl+ CaCl2, Na2CO3+ CaCl2, and Na2SO4+ CaCl2, in the range of 0 to 225 mM. There was no cultivar difference regarding K, Na, Mg, and Mn content in shoots. ‘Tar Heel II’ had higher shoot Ca content than ‘Wolfpack’, which were 6.9 and 5.7 g kg−1, respectively. In general, K+/Na+ ratio decreased with increasing salt concentrations, which reached <1 at about 87.5 mM in Na2CO3 treatment. All salt treatments decreased Mg content in shoot tissues, especially in Na2CO3 and treatments containing CaCl2. Both Ca and Mg content in shoot were higher in the NaCl treatment than the Na2SO4 and Na2CO3 treatments. All salt treatments except Na2CO3 had higher Mn content in shoots compared to the control. In conclusion, nutrient uptake was differently affected by carbonate, chloride, and sulfate which are different in pH, electrical conductivity (EC), and osmotic potential at the same concentration. Adding Ca to the sodium salts increased Ca content and balanced K+/Na+ in shoots, but did not increase Mg content, which was below sufficient level. Maintaining Mg content in shoots under salinity stress was recommended. The physiological impact of elevated Mn content in shoot under salinity stress requires further study. PMID:24626173

  9. Carbon corrosion of proton exchange membrane fuel cell catalyst layers studied by scanning transmission X-ray microscopy

    NASA Astrophysics Data System (ADS)

    Hitchcock, Adam P.; Berejnov, Viatcheslav; Lee, Vincent; West, Marcia; Colbow, Vesna; Dutta, Monica; Wessel, Silvia

    2014-11-01

    Scanning Transmission X-ray Microscopy (STXM) at the C 1s, F 1s and S 2p edges has been used to investigate degradation of proton exchange membrane fuel cell (PEM-FC) membrane electrode assemblies (MEA) subjected to accelerated testing protocols. Quantitative chemical maps of the catalyst, carbon support and ionomer in the cathode layer are reported for beginning-of-test (BOT), and end-of-test (EOT) samples for two types of carbon support, low surface area carbon (LSAC) and medium surface area carbon (MSAC), that were exposed to accelerated stress testing with upper potentials (UPL) of 1.0, 1.2, and 1.3 V. The results are compared in order to characterize catalyst layer degradation in terms of the amounts and spatial distributions of these species. Pt agglomeration, Pt migration and corrosion of the carbon support are all visualized, and contribute to differing degrees in these samples. It is found that there is formation of a distinct Pt-in-membrane (PTIM) band for all EOT samples. The cathode thickness shrinks due to loss of the carbon support for all MSAC samples that were exposed to the different upper potentials, but only for the most aggressive testing protocol for the LSAC support. The amount of ionomer per unit volume significantly increases indicating it is being concentrated in the cathode as the carbon corrosion takes place. S 2p spectra and mapping of the cathode catalyst layer indicates there are still sulfonate groups present, even in the most damaged material.

  10. Annual sums of carbon dioxide exchange over a heterogeneous urban landscape through machine learning based gap-filling

    NASA Astrophysics Data System (ADS)

    Menzer, Olaf; Meiring, Wendy; Kyriakidis, Phaedon C.; McFadden, Joseph P.

    2015-01-01

    A small, but growing, number of flux towers in urban environments measure surface-atmospheric exchanges of carbon dioxide by the eddy covariance method. As in all eddy covariance studies, obtaining annual sums of urban CO2 exchange requires imputation of data gaps due to low turbulence and non-stationary conditions, adverse weather, and instrument failures. Gap-filling approaches that are widely used for measurements from towers in natural vegetation are based on light and temperature response models. However, they do not account for key features of the urban environment including tower footprint heterogeneity and localized CO2 sources. Here, we present a novel gap-filling modeling framework that uses machine learning to select explanatory variables, such as continuous traffic counts and temporal variables, and then constrains models separately for spatially classified subsets of the data. We applied the modeling framework to a three year time series of measurements from a tall broadcast tower in a suburban neighborhood of Minneapolis-Saint Paul, Minnesota, USA. The gap-filling performance was similar to that reported for natural measurement sites, explaining 64% to 88% of the variability in the fluxes. Simulated carbon budgets were in good agreement with an ecophysiological bottom-up study at the same site. Total annual carbon dioxide flux sums for the tower site ranged from 1064 to 1382 g C m-2 yr-1, across different years and different gap-filling methods. Bias errors of annual sums resulting from gap-filling did not exceed 18 g C m-2 yr-1 and random uncertainties did not exceed ±44 g C m-2 yr-1 (or ±3.8% of the annual flux). Regardless of the gap-filling method used, the year-to-year differences in carbon exchange at this site were small. In contrast, the modeled annual sums of CO2 exchange differed by a factor of two depending on wind direction. This indicated that the modeled time series captured the spatial variability in both the biogenic and

  11. Influence of preadsorption of organic vapors on the sorption capacity of macroporous anion exchanges for carbon dioxide

    SciTech Connect

    Kats, B.M.; Artyushin, G.A.; Malinovskii, E.K.

    1986-08-01

    This paper examines the influence of preadsorption of vapors of organic compounds (acetic acid, methanol, ethanol, butanol, hexanol, acetone, xylene, benzene, dioxane, toluene, dibutyl phthalate, cyclohexane, butyl acetate, ethylene chlorohydrin) on the equilibrium capacity for carbon dioxide of the weakly basic macroporous anion exchanger AN-511, made by amination, using diethylenetriamine, of the chloromethylated macroporous copolymer of styrene with divinylbenzene (with n-decane as the blowing agent). It is shown that preadsorption of the vapors lowers the sorption capacity of halohydrocarbons for CO/sub 2/.

  12. Nonlinear optical vibrations of single-walled carbon nanotubes. 1. Energy exchange and localization of low-frequency oscillations

    NASA Astrophysics Data System (ADS)

    Smirnov, V. V.; Manevitch, L. I.; Strozzi, M.; Pellicano, F.

    2016-06-01

    We present the results of analytical study and molecular dynamics simulation of low energy nonlinear non-stationary dynamics of single-walled carbon nanotubes (CNTs). New phenomena of intense energy exchange between different parts of CNT and weak energy localization in the excited part of CNT are analytically predicted in the framework of the continuum shell theory. Their origin is clarified by means of the concept of Limiting Phase Trajectory, and the analytical results are confirmed by the molecular dynamics simulation of simply supported CNTs.

  13. Simulating carbon dioxide exchange rates of deciduous tree species: evidence for a general pattern in biochemical changes and water stress response

    PubMed Central

    Reynolds, Robert F.; Bauerle, William L.; Wang, Ying

    2009-01-01

    Background and Aims Deciduous trees have a seasonal carbon dioxide exchange pattern that is attributed to changes in leaf biochemical properties. However, it is not known if the pattern in leaf biochemical properties – maximum Rubisco carboxylation (Vcmax) and electron transport (Jmax) – differ between species. This study explored whether a general pattern of changes in Vcmax, Jmax, and a standardized soil moisture response accounted for carbon dioxide exchange of deciduous trees throughout the growing season. Methods The model MAESTRA was used to examine Vcmax and Jmax of leaves of five deciduous trees, Acer rubrum ‘Summer Red’, Betula nigra, Quercus nuttallii, Quercus phellos and Paulownia elongata, and their response to soil moisture. MAESTRA was parameterized using data from in situ measurements on organs. Linking the changes in biochemical properties of leaves to the whole tree, MAESTRA integrated the general pattern in Vcmax and Jmax from gas exchange parameters of leaves with a standardized soil moisture response to describe carbon dioxide exchange throughout the growing season. The model estimates were tested against measurements made on the five species under both irrigated and water-stressed conditions. Key Results Measurements and modelling demonstrate that the seasonal pattern of biochemical activity in leaves and soil moisture response can be parameterized with straightforward general relationships. Over the course of the season, differences in carbon exchange between measured and modelled values were within 6–12 % under well-watered conditions and 2–25 % under water stress conditions. Hence, a generalized seasonal pattern in the leaf-level physiological change of Vcmax and Jmax, and a standardized response to soil moisture was sufficient to parameterize carbon dioxide exchange for large-scale evaluations. Conclusions Simplification in parameterization of the seasonal pattern of leaf biochemical activity and soil moisture response of

  14. Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese

    PubMed Central

    Huang, De-Jia; Yang, Shyi-Kuen

    2016-01-01

    This study was conducted to investigate the effect of nocturnal light pulses (NLPs) on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control) or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day), whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate (CO2 PR) was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05) the mean and minimal CO2 PR during both the daytime and nighttime. Both the mean and minimal CO2 PR during the daytime were significantly higher (p<0.05) than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal CO2 PR were higher during the daytime than during the nighttime. PMID:26950871

  15. Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese.

    PubMed

    Huang, De-Jia; Yang, Shyi-Kuen

    2016-03-01

    This study was conducted to investigate the effect of nocturnal light pulses (NLPs) on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control) or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day), whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate (CO2 PR) was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05) the mean and minimal CO2 PR during both the daytime and nighttime. Both the mean and minimal CO2 PR during the daytime were significantly higher (p<0.05) than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal CO2 PR were higher during the daytime than during the nighttime. PMID:26950871

  16. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    PubMed Central

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  17. Potassium nutrition and water availability affect phloem transport of photosynthetic carbon in eucalypt trees

    NASA Astrophysics Data System (ADS)

    Epron, Daniel; Cabral, Osvaldo; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo; Trivelin, Paulo; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2015-04-01

    Potassium fertilisation strongly affects growth and carbon partitioning of eucalypt on tropical soil that are strongly weathered. In addition, potassium fertilization could be of great interest in mitigating the adverse consequences of drought in planted forests, as foliar K concentrations influence osmotic adjustment, stomatal regulation and phloem loading. Phloem is the main pathway for transferring photosynthate from source leaves to sink organs, thus controlling growth partitioning among the different tree compartments. But little is known about the effect of potassium nutrition on phloem transport of photosynthetic carbon and on the interaction between K nutrition and water availability. In situ 13C pulse labelling was conducted on tropical eucalypt trees (Eucalyptus grandis L.) grown in a trial plantation with plots in which 37% of throughfall were excluded (about 500 mm/yr) using home-made transparent gutters (-W) or not (+W) and plots that received 0.45 mol K m-2 applied as KCl three months after planting (+K) or not (-K). Three trees were labelled in each of the four treatments (+K+W, +K-W, -K+W and -K-W). Trees were labelled for one hour by injecting pure 13CO2 in a 27 m3 whole crown chamber. We estimated the velocity of carbon transfer in the trunk by comparing time lags between the uptake of 13CO2 and its recovery in trunk CO2 efflux recorded by off axis integrated cavity output spectroscopy (Los Gatos Research) in two chambers per tree, one just under the crown and one at the base of the trunk. We analyzed the dynamics of the label recovered in the foliage and in the phloem sap by analysing carbon isotope composition of bulk leaf organic matter and phloem extracts using an isotope ratio mass spectrometer. The velocity of carbon transfer in the trunk and the initial rate 13C disappearance from the foliage were much higher in +K trees than in -K trees with no significant effect of rainfall. The volumetric flow of phloem, roughly estimated by multiplying

  18. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis; Ma, Siyan; Law, Beverly E.; Richardson, Andrew D; Chen, Jiquan; Oren, Ram

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration s (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale.We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000 2004 and 2005 2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  19. Estimation of Net Ecosystem Carbon Exchange for the Conterminous UnitedStates by Combining MODIS and AmeriFlux Data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Law, Beverly E.; Richardson, Andrew D.; Chen, Jiquan; Oren, Ram; Starr, Gregory; Noormets, Asko; Ma, Siyan; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.; Bolstad, Paul V.; Burns, Sean P.; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Falk, Matthias; Fischer, Marc L.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Litvak, Marcy; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Oechel, Walter C.; U, Kyaw Tha Paw; Schmid, Hans Peter; Scott, Russell L.; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.

    2009-03-06

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely-sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board NASA's Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a regression tree approach. The predictive model was trained and validated using NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE reasonably well at the site level. We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day period in 2005 using spatially-explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets for large areas.

  20. Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data

    SciTech Connect

    Xiao, Jingfeng; Zhuang, Qianlai; Baldocchi, Dennis D.; Bolstad, Paul V.; Burns, Sean P.; Chen, Jiquan; Cook, David R.; Curtis, Peter S.; Drake, Bert G.; Foster, David R.; Gu, Lianhong; Hadley, Julian L.; Hollinger, David Y.; Katul, Gabriel G.; Law, Beverly E.; Litvak, Marcy; Ma, Siyan; Martin, Timothy A.; Matamala, Roser; McNulty, Steve; Meyers, Tilden P.; Monson, Russell K.; Munger, J. William; Noormets, Asko; Oechel, Walter C.; Oren, Ram; Richardson, Andrew D.; Schmid, Hans Peter; Scott, Russell L.; Starr, Gregory; Sun, Ge; Suyker, Andrew E.; Torn, Margaret S.; Paw, Kyaw; Verma, Shashi B.; Wharton, Sonia; Wofsy, Steven C.

    2008-10-01

    Eddy covariance flux towers provide continuous measurements of net ecosystem carbon exchange (NEE) for a wide range of climate and biome types. However, these measurements only represent the carbon fluxes at the scale of the tower footprint. To quantify the net exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for regions or continents, flux tower measurements need to be extrapolated to these large areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectrometer (MODIS) instrument on board the National Aeronautics and Space Administration's (NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a predictive NEE model using a modified regression tree approach. The predictive model was trained and validated using eddy flux NEE data over the periods 2000-2004 and 2005-2006, respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then applied the model to the continental scale and estimated NEE for each 1 km x 1 km cell across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS data. The model generally captured the expected spatial and seasonal patterns of NEE as determined from measurements and the literature. Our study demonstrated that our empirical approach is effective for scaling up eddy flux NEE measurements to the continental scale and producing wall-to-wall NEE estimates across multiple biomes. Our estimates may provide an independent dataset from simulations with biogeochemical models and inverse modeling approaches for examining the spatiotemporal patterns of NEE and constraining terrestrial carbon budgets over large areas.

  1. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns

    USGS Publications Warehouse

    Haack, S.K.; Garchow, H.; Klug, M.J.; Forney, L.J.

    1995-01-01

    We determined factors that affect responses of bacterial isolates and model bacterial communities to the 95 carbon substrates in Biolog microliter plates. For isolates and communities of three to six bacterial strains, substrate oxidation rates were typically nonlinear and were delayed by dilution of the inoculum. When inoculum density was controlled, patterns of positive and negative responses exhibited by microbial communities to each of the carbon sources were reproducible. Rates and extents of substrate oxidation by the communities were also reproducible but were not simply the sum of those exhibited by community members when tested separately. Replicates of the same model community clustered when analyzed by principal- components analysis (PCA), and model communities with different compositions were clearly separated un the first PCA axis, which accounted for >60% of the dataset variation. PCA discrimination among different model communities depended on the extent to which specific substrates were oxidized. However, the substrates interpreted by PCA to be most significant in distinguishing the communities changed with reading time, reflecting the nonlinearity of substrate oxidation rates. Although whole-community substrate utilization profiles were reproducible signatures for a given community, the extent of oxidation of specific substrates and the numbers or activities of microorganisms using those substrates in a given community were not correlated. Replicate soil samples varied significantly in the rate and extent of oxidation of seven tested substrates, suggesting microscale heterogeneity in composition of the soil microbial community.

  2. Prediction of carbon steel heat-affected zone microstructure induced by electroslag cladding

    SciTech Connect

    Li, M.V.; Atteridge, D.G.

    1994-12-31

    One of the major concerns in developing electroslag cladding technique is the mechanical properties of the clad heat-affected zone. During the cladding operation, the base metal adjacent to the clad deposit undergoes intensive heating and fast cooling. Mechanical properties of this area are different from, and in most cases inferior to, those of the base metal due to the formation of undesirable microstructure which results from the thermal cycle. To optimize mechanical properties of clad components, steps must be taken to optimize the HAZ microstructure, which is determined by the cladding heat input, geometry of the components, chemistry of the steel, and the thermodynamics and kinetics of phase transformations. There are four main methods for predicting HAZ hardness and microstructure: weld simulation experiments, CCT diagrams, regression analysis based on the carbon equivalents of steels and hardenability studies, and the computational models based on phase transformationkineticss and thermodynamics. The computational approach was adopted in the study to predict the carbon steel HAZ microstructure evolution during electroslag cladding because it is a general approach applicable to a wide range of chemical compositions and welding conditions. The computation model in the study incorporates a grain growth model and a model for austenite decomposition. The empirical grain growth kinetics models and the reaction kinetics model for austenite decomposition originally proposed by Kirkaldy and Venugopalan were calibrated with experimental studies and then coded into a computer program to predict microstructure development. Reasonable agreement was observed between the computer predictions and experimental observations; discrepanciesweree also discussed.

  3. Factors affecting the efficiency of carbon monoxide photoproduction in the St. Lawrence estuarine system (Canada).

    PubMed

    Zhang, Yong; Xie, Huixiang; Chen, Guohua

    2006-12-15

    This study examined the effects of water temperature and the origin (terrestrial vs marine) and light history of chromophoric dissolved organic matter (CDOM) on the apparent quantum yields of carbon monoxide (CO) photoproduction for water samples collected along a salinity gradient (salinity range: 0-33) in the St. Lawrence estuarine system (Canada). The solar insolation-weighted mean apparent quantum yield of CO (phico) decreased as much as fourfold with increasing salinity and showed a strong positive correlation with the dissolved organic carbon-specific absorption coefficient at 254 nm. This suggests that terrestrial CDOM is more efficient at photochemically producing CO than is marine algae-derived CDOM and that aromatic moieties are likely involved in this photoprocess. CDOM photobleaching, mainly at the very early stage, dramatically decreased phico (by up to 6.4 times) for low-salinity samples, but photobleaching had little effect on the most marine sample. For a 20 degree C increase in temperature, phico increased by approximately 70% for low-salinity samples and 30-40% for saline samples. This study demonstrates that water temperature, as well as the CDOM's origin and light history, strongly affect the efficiency of CO photoproduction. These factors should be taken into account in modeling the photochemical fluxes of CO and other related CDOM photoproducts on varying spatiotemporal scales. PMID:17256526

  4. Soil Organic Carbon Pools and Stocks in Permafrost-Affected Soils on the Tibetan Plateau

    PubMed Central

    Dörfer, Corina; Kühn, Peter; Baumann, Frank; He, Jin-Sheng; Scholten, Thomas

    2013-01-01

    The Tibetan Plateau reacts particularly sensitively to possible effects of climate change. Approximately two thirds of the total area is affected by permafrost. To get a better understanding of the role of permafrost on soil organic carbon pools and stocks, investigations were carried out including both discontinuous (site Huashixia, HUA) and continuous permafrost (site Wudaoliang, WUD). Three organic carbon fractions were isolated using density separation combined with ultrasonic dispersion: the light fractions (<1.6 g cm−3) of free particulate organic matter (FPOM) and occluded particulate organic matter (OPOM), plus a heavy fraction (>1.6 g cm−3) of mineral associated organic matter (MOM). The fractions were analyzed for C, N, and their portion of organic C. FPOM contained an average SOC content of 252 g kg−1. Higher SOC contents (320 g kg−1) were found in OPOM while MOM had the lowest SOC contents (29 g kg−1). Due to their lower density the easily decomposable fractions FPOM and OPOM contribute 27% (HUA) and 22% (WUD) to the total SOC stocks. In HUA mean SOC stocks (0–30 cm depth) account for 10.4 kg m−2, compared to 3.4 kg m−2 in WUD. 53% of the SOC is stored in the upper 10 cm in WUD, in HUA only 39%. Highest POM values of 36% occurred in profiles with high soil moisture content. SOC stocks, soil moisture and active layer thickness correlated strongly in discontinuous permafrost while no correlation between SOC stocks and active layer thickness and only a weak relation between soil moisture and SOC stocks could be found in continuous permafrost. Consequently, permafrost-affected soils in discontinuous permafrost environments are susceptible to soil moisture changes due to alterations in quantity and seasonal distribution of precipitation, increasing temperature and therefore evaporation. PMID:23468904

  5. Carbon exchange fluxes over peatlands in Western Siberia: Possible feedback between land-use change and climate change.

    PubMed

    Fleischer, Elisa; Khashimov, Ilhom; Hölzel, Norbert; Klemm, Otto

    2016-03-01

    The growing demand for agricultural products has been leading to an expansion and intensification of agriculture around the world. More and more unused land is currently reclaimed in the regions of the former Soviet Union. Driven by climate change, the Western Siberian grain belt might, in a long-term, even expand into the drained peatland areas to the North. It is crucial to study the consequences of this land-use change with respect to the carbon cycling as this is still a major knowledge gap. We present for the first time data on the atmosphere-ecosystem exchange of carbon dioxide and methane of an arable field and a neighboring unused grassland on peat soil in Western Siberia. Eddy covariance measurements were performed over one vegetation period. No directed methane fluxes were found due to an effective drainage of the study sites. The carbon dioxide fluxes appeared to be of high relevance for the global carbon and greenhouse gas cycles. They showed very site-specific patterns resulting from the development of vegetation: the persistent plants of the grassland were able to start photosynthesizing soon after snow melt, while the absence of vegetation on the managed field lead to a phase of emissions until the oat plants started to grow in June. The uptake peak of the oat field is much later than that of the grassland, but larger due to a rapid plant growth. Budgeting the whole measurement period, the grassland served as a carbon sink, whereas the oat field was identified to be a carbon source. The conversion from non-used grasslands on peat soil to cultivated fields in Western Siberia is therefore considered to have a positive feedback on climate change. PMID:26748007

  6. Water management controls net carbon exchange in drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta, CA

    NASA Astrophysics Data System (ADS)

    Hatala, J.; Detto, M.; Sonnentag, O.; Verfaillie, J. G.; Baldocchi, D. D.

    2011-12-01

    Draining peatlands for agricultural cultivation creates an ecosystem shift with some of the fastest rates and largest magnitudes of carbon loss attributable to land-use change, yet peatland drainage is practiced around the world due to the high economic benefit of fertile soil. The Sacramento-San Joaquin Delta in California was drained at the end of the 19th century for agriculture and human settlement, and as a result, has lost 5-8m of peat soil due to oxidation. To reverse subsidence and capture carbon, there is increasing interest in converting drained agricultural land-uses back to flooded conditions to inhibit further peat oxidation. However, this method remains relatively untested at the landscape-scale. This study analyzed the short-term effects of drained to flooded land-use conversion on the balance of carbon, water, and energy over two years at two landscapes in the Delta. We used the eddy covariance method to compare CO2, CH4, H2O, and energy fluxes under the same meteorological conditions in two different land-use types: a drained pasture grazed by cattle, and a flooded newly-converted rice paddy. By analyzing differences in the fluxes from these two land-use types we determined that water management and differences in the plant canopy both play a fundamental role in governing the seasonal pattern and the annual budgets of CO2 and CH4 fluxes at these two sites. While the pasture was a source of carbon to the atmosphere in both years, the rice paddy captured carbon through NEE, even after considering losses from CH4. Especially during the fallow winter months, flooding the soil at the rice paddy inhibited loss of CO2 through ecosystem respiration when compared with the carbon exchange from the drained pasture.

  7. Growth, carbon dioxide exchange and mineral accumulation in potatoes grown at different magnesium concentrations

    NASA Technical Reports Server (NTRS)

    Cao, W.; Tibbitts, T. W.

    1992-01-01

    Plants of Norland potatoes (Solanum tuberosum L.) were maintained for 42 days at Mg concentrations of 0.05, 0.125, 0.25, 1, 2, and 4 mM in a nonrecirculating nutrient film system under controlled environment. With the increased Mg supply from 0.05 to 4 mM, Mg concentrations in the leaves of the 42-day old plants increased significantly from 1.1 to 11.2 mg g-1 dry weight. Plant leaf area and plant and tuber dry weights increased with increased Mg concentrations up to 1 mM in solution or 6.7 mg g-1 in leaves, and then decreased with further increases in Mg concentrations. Rates of CO2 assimilation measured on leaflets in situ at ambient and various intercellular CO2 concentrations were consistently lower at 0.05 and 4 mM Mg than at other Mg treatments, which may indicate decreased photosynthetic activity in mesophyll tissues at the lowest and highest Mg concentrations. Dark respiration rates in leaves were highest at 0.05 and 4 mM Mg, lowest at 0.25 and 1 mM Mg, and intermediate at 0.125 and 2 mM Mg. The different Mg treatments also influenced accumulation of other minerals in leaves. Leaf concentrations of Ca and Mn decreased with increased Mg supply except that Ca and Mn were lower at 0.05 mM than at 0.125 mM Mg. Leaf K concentrations were lower at 1, 2 and 4 mM Mg than at other Mg treatments. Foliar concentrations of P, Fe, Zn, and Cu had small but inconsistent variation with different Mg concentrations. Leaf concentrations of N, S, and B were similar at different Mg concentrations. This study demonstrates that various Mg nutrition, along with altered accumulation of other nutrients, could regulate dry matter production in potatoes by affecting not only leaf area but also leaf carbon dioxide assimilation and respiration.

  8. Growth, carbon dioxide exchange and mineral accumulation in potatoes grown at different magnesium concentrations.

    PubMed

    Cao, W; Tibbitts, T W

    1992-01-01

    Plants of Norland potatoes (Solanum tuberosum L.) were maintained for 42 days at Mg concentrations of 0.05, 0.125, 0.25, 1, 2, and 4 mM in a nonrecirculating nutrient film system under controlled environment. With the increased Mg supply from 0.05 to 4 mM, Mg concentrations in the leaves of the 42-day old plants increased significantly from 1.1 to 11.2 mg g-1 dry weight. Plant leaf area and plant and tuber dry weights increased with increased Mg concentrations up to 1 mM in solution or 6.7 mg g-1 in leaves, and then decreased with further increases in Mg concentrations. Rates of CO2 assimilation measured on leaflets in situ at ambient and various intercellular CO2 concentrations were consistently lower at 0.05 and 4 mM Mg than at other Mg treatments, which may indicate decreased photosynthetic activity in mesophyll tissues at the lowest and highest Mg concentrations. Dark respiration rates in leaves were highest at 0.05 and 4 mM Mg, lowest at 0.25 and 1 mM Mg, and intermediate at 0.125 and 2 mM Mg. The different Mg treatments also influenced accumulation of other minerals in leaves. Leaf concentrations of Ca and Mn decreased with increased Mg supply except that Ca and Mn were lower at 0.05 mM than at 0.125 mM Mg. Leaf K concentrations were lower at 1, 2 and 4 mM Mg than at other Mg treatments. Foliar concentrations of P, Fe, Zn, and Cu had small but inconsistent variation with different Mg concentrations. Leaf concentrations of N, S, and B were similar at different Mg concentrations. This study demonstrates that various Mg nutrition, along with altered accumulation of other nutrients, could regulate dry matter production in potatoes by affecting not only leaf area but also leaf carbon dioxide assimilation and respiration. PMID:11537503

  9. Elevated atmospheric carbon dioxide concentration affects interactions between Spodoptera exigua (Lepidoptera: Noctuidae) larvae and two host plant species outdoors

    SciTech Connect

    Caulfield, F.; Bunce, J.A. )

    1994-08-01

    Beet armyworm, Spodoptera exigua (Huebner), larvae were placed on sugarbeet (Beta vulgaris L.) and pigweed (Amaranthus hybridus L.) plants in outdoor chambers in which the plants were growing at either the ambient ([approximately] 350 [mu]l liter[sup [minus]1]) or ambient plus 350 [mu]l liter[sup [minus]1] ([approximately] 700 [mu]l liter[sup [minus]1]) carbon dioxide concentration. A series of experiments was performed to determine if larvae reduced plant growth differently at the two carbon dioxide concentrations in either species and if the insect growth or survival differed with carbon dioxide concentration. Leaf nitrogen, water, starch, and soluble carbohydrate contents were measured to assess carbon dioxide concentration effects on leaf quality. Insect feeding significantly reduced plant growth in sugarbeet plants at 350 [mu]l liter[sup [minus]1] but not at 700 [mu]l liter[sup [minus]1] nor in pigweed at either carbon dioxide concentration. Larval survival was greater on sugarbeet plants at the elevated carbon dioxide concentration. Increased survival occurred only if the insects were at the elevated carbon dioxide concentration and consumed leaf material grown at the elevated concentration. Leaf quality was only marginally affected by growth at elevated carbon dioxide concentration in these experiments. The results indicate that in designing experiments to predict effects of elevated atmospheric carbon dioxide concentrations on plant-insect interactions, both plants and insects should be exposed to the experimental carbon dioxide concentrations, as well as to as realistic environmental conditions as possible.

  10. Proton exchange membrane fuel cell reversible performance loss induced by carbon monoxide produced during operation

    NASA Astrophysics Data System (ADS)

    Decoopman, B.; Vincent, R.; Rosini, S.; Paganelli, G.; Thivel, P.-X.

    2016-08-01

    Cyclic voltammetry measurements at the anode have been carried out and reveal the presence of carbon monoxide in steady-state operation, with pure hydrogen. Experiments have been performed both in single cell and in stack to find out its origin. The contamination of the anode catalyst is partly due the reverse-water gas shift (RWGS) with carbon dioxide from the cathode. However, this study shows a temperature-activated and time-related corrosion mechanism which appears under humidified hydrogen. Due to this degradation mechanism, a reversible 25 mV-loss of performances is observed and can be recovered by oxidizing carbon monoxide on the anode.

  11. Proton exchange membrane fuel cell reversible performance loss induced by carbon monoxide produced during operation

    NASA Astrophysics Data System (ADS)

    Decoopman, B.; Vincent, R.; Rosini, S.; Paganelli, G.; Thivel, P.-X.

    2016-08-01

    Cyclic voltammetry measurements at the anode have been carried out and reveal the presence of carbon monoxide in steady-state operation, with pure hydrogen. Experiments have been performed both in single cell and in stack to find out its origin. The contamination of the anode catalyst is partly due the reverse-water gas shift (RWGS) with carbon dioxide from the cathode. However, this study shows a temperature-activated and time-related corrosion mechanism which appears under humidified hydrogen. Due to this degradation mechanism, a reversible 25 mV-loss of performances is observed and can be recovered by oxidizing carbon monoxide on the anode.

  12. Responses of ecosystem carbon dioxide exchange to nitrogen addition in a freshwater marshland in Sanjiang Plain, Northeast China.

    PubMed

    Zhang, Lihua; Song, Changchun; Nkrumah, Philip N

    2013-09-01

    It has widely been documented that nitrogen (N) stimulates plant growth and net primary production. But how N affects net ecosystem CO2 exchange (NEE) is still dispute. We conduct an experimental study to assess the response of NEE to N addition in a freshwater marsh. Experimental treatments involved elevated N and control treatments on triplicate 1 m(2) plots. Gas exchange, air temperature, plant biomass and leaf area as well as N% of leaf were measured from 2004 to 2005. The results indicated that N addition initially decreased the CO2 sequestration but the trend changed in the second year. It was concluded that N addition enhanced the greenhouse effect in marshland as far as global warming potential (GWP) is concerned. This increase was attributed to a substantial increase in CH4 and N2O emissions after N addition. We recommended long-term studies to further clarify the effect of N addition on NEE. PMID:23727568

  13. DETERMINING CARBON ISOTOPE SIGNATURES FROM MICROMETEOROLOGICAL MEASUREMENTS: IMPLICATIONS FOR STUDYING BIOSPHERE-ATMOSPHERE EXCHANGE PROCESSES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years considerable effort has been focused on combining micrometeorological and stable isotope techniques to elucidate and study biosphere-atmosphere exchange processes. At the ecosystem scale, these methods are increasingly being used to address a number of challenging problems, including...

  14. Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Meadow Steppe

    PubMed Central

    Wang, Yunbo; Jiang, Qi; Yang, Zhiming; Sun, Wei; Wang, Deli

    2015-01-01

    A changing precipitation regime and increasing nitrogen deposition are likely to have profound impacts on arid and semiarid ecosystem C cycling, which is often constrained by the timing and availability of water and nitrogen. However, little is known about the effects of altered precipitation and nitrogen addition on grassland ecosystem C exchange. We conducted a 3-year field experiment to assess the responses of vegetation composition, ecosystem productivity, and ecosystem C exchange to manipulative water and nitrogen addition in a meadow steppe. Nitrogen addition significantly stimulated aboveground biomass and net ecosystem CO2 exchange (NEE), which suggests that nitrogen availability is a primary limiting factor for ecosystem C cycling in the meadow steppe. Water addition had no significant impacts on either ecosystem C exchange or plant biomass, but ecosystem C fluxes showed a strong correlation with early growing season precipitation, rather than whole growing season precipitation, across the 3 experimental years. After we incorporated water addition into the calculation of precipitation regimes, we found that monthly average ecosystem C fluxes correlated more strongly with precipitation frequency than with precipitation amount. These results highlight the importance of precipitation distribution in regulating ecosystem C cycling. Overall, ecosystem C fluxes in the studied ecosystem are highly sensitive to nitrogen deposition, but less sensitive to increased precipitation. PMID:26010888

  15. ISOTOPIC EXCHANGE BETWEEN CARBON DIOXIDE AND OZONE VIA O('D) IN THE STRATOSPHERE

    EPA Science Inventory

    We propose a novel mechanism for isotopic exchange between CO2 and O3 via O(1D) + CO2 - CO3 followed by CO3 - CO2 + O(3P). ne dimensional model calculation shows that mechanism can account for the enrichment in 18 O in the stratospheric CO2 observed by Gamo et al. [1989], using t...

  16. Productivity and carbon dioxide exchange of the leguminous crops: Estimates from flux tower measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net CO2 exchange data on legume crops at 17 flux tower sites in North America and 3 sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration using a light-response function method, resulting in new estimates of ecosystem-scale ec...

  17. Net carbon exchange in grapevine canopies responds rapidly to timing and extent of regulated deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whole-canopy net CO2 exchange (NCEC) was measured at key stages during fruit development in grapevines (Vitis vinifera L.) managed under an industry standard practice of regulated deficit irrigation (RDI). A commercial vineyard was subjected to three regimens of RDI: 1) standard practice (RDIS), whe...

  18. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    SciTech Connect

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi; Wada, Kei; Daifuku, Takashi; Yoneda, Yasuko; Fukuyama, Keiichi; Sako, Yoshihiko

    2013-11-08

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys{sup 295} and His{sup 261}. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His{sup 261}, which coordinates one of the Fe atoms with Cys{sup 295}, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys{sup 295}, we constructed CODH-II variants. Ala substitution for the Cys{sup 295} substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys{sup 295} indirectly and His{sup 261} together affect Ni-coordination in the C-cluster.

  19. Exchange of Surfactant by Natural Organic Matter on the Surfaces of Multi-Walled Carbon Nanotubes

    EPA Science Inventory

    The increasing production and applications of multi-walled carbon nanotubes (MWCNTs) have elicited concerns regarding their release and potential adverse effects in the environment. To form stable aqueous MWCNTs suspensions, surfactants are often employed to facilitate dispersion...

  20. Hemlock woolly adelgid (Adelges tsugae) infestation affects water and carbon relations of eastern hemlock (Tsuga canadensis) and Carolina hemlock (Tsuga caroliniana).

    PubMed

    Domec, Jean-Christophe; Rivera, Laura N; King, John S; Peszlen, Ilona; Hain, Fred; Smith, Benjamin; Frampton, John

    2013-07-01

    Hemlock woolly adelgid (HWA) is an exotic insect pest causing severe decimation of native hemlock trees. Extensive research has been conducted on the ecological impacts of HWA, but the exact physiological mechanisms that cause mortality are not known. Water relations, anatomy and gas exchange measurements were assessed on healthy and infested eastern (Tsuga canadensis) and Carolina (Tsuga caroliniana) hemlock trees. These data were then used in a mechanistic model to test whether the physiological responses to HWA infestation were sufficiently significant to induce changes in whole-plant water use and carbon uptake. The results indicated coordinated responses of functional traits governing water relations in infested relative to healthy trees. In response to HWA, leaf water potential, carbon isotope ratios, plant hydraulic properties and stomatal conductance were affected, inducing a reduction in tree water use by > 40% and gross primary productivity by 25%. Anatomical changes also appeared, including the activation of traumatic cells. HWA infestation had a direct effect on plant water relations. Despite some leaf compensatory mechanisms, such as an increase in leaf hydraulic conductance and nitrogen content, tree water use and carbon assimilation were diminished significantly in infested trees, which could contribute to tree mortality. PMID:23560452

  1. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest.

    PubMed

    Berry, Z Carter; White, Joseph C; Smith, William K

    2014-05-01

    In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected. PMID:24835239

  2. Quantifying the effect size of changing environmental controls on carbon release from permafrost-affected soils

    NASA Astrophysics Data System (ADS)

    Schaedel, C.; Bader, M. K. F.; Schuur, E. A. G.; Bracho, R. G.; Capek, P.; De Baets, S. L.; Diakova, K.; Ernakovich, J. G.; Hartley, I. P.; Iversen, C. M.; Kane, E. S.; Knoblauch, C.; Lupascu, M.; Natali, S.; Norby, R. J.; O'Donnell, J. A.; Roy Chowdhury, T.; Santruckova, H.; Shaver, G. R.; Sloan, V. L.; Treat, C. C.; Waldrop, M. P.

    2014-12-01

    High-latitude surface air temperatures are rising twice as fast as the global mean, causing permafrost to thaw and thereby exposing large quantities of previously frozen organic carbon (C) to microbial decomposition. Increasing temperatures in high latitude ecosystems not only increase C emissions from previously frozen C in permafrost but also indirectly affect the C cycle through changes in regional and local hydrology. Warmer temperatures increase thawing of ice-rich permafrost, causing land surface subsidence where soils become waterlogged, anoxic conditions prevail and C is released in form of anaerobic CO2 and CH4. Although substrate quality, physical protection, and nutrient availability affect C decomposition, increasing temperatures and changes in surface and sub-surface hydrology are likely the dominant factors affecting the rate and form of C release from permafrost; however, their effect size on C release is poorly quantified. We have compiled a database of 24 incubation studies with soils from active layer and permafrost from across the entire permafrost zone to quantify a) the effect size of increasing temperatures and b) the changes from aerobic to anaerobic environmental soil conditions on C release. Results from two different meta-analyses show that a 10°C increase in temperature increased C release by a factor of two in boreal forest, peatland and tundra ecosystems. Under aerobic incubation conditions, soils released on average three times more C than under anaerobic conditions with large variation among the different ecosystems. While peatlands showed similar amounts of C release under aerobic and anaerobic soil conditions, tundra and boreal forest ecosystems released up to 8 times more C under anoxic conditions. This pan-arctic synthesis shows that boreal forest and tundra soils will have a larger impact on climate change when newly thawed permafrost C decomposes in an aerobic environment compared to an anaerobic environment even when

  3. Post-clearcut dynamics of carbon, water and energy exchanges in a midlatitude temperate, deciduous broadleaf forest environment.

    PubMed

    Williams, Christopher A; Vanderhoof, Melanie K; Khomik, Myroslava; Ghimire, Bardan

    2014-03-01

    Clearcutting and other forest disturbances perturb carbon, water, and energy balances in significant ways, with corresponding influences on Earth's climate system through biogeochemical and biogeophysical effects. Observations are needed to quantify the precise changes in these balances as they vary across diverse disturbances of different types, severities, and in various climate and ecosystem type settings. This study combines eddy covariance and micrometeorological measurements of surface-atmosphere exchanges with vegetation inventories and chamber-based estimates of soil respiration to quantify how carbon, water, and energy fluxes changed during the first 3 years following forest clearing in a temperate forest environment of the northeastern US. We observed rapid recovery with sustained increases in gross ecosystem productivity (GEP) over the first three growing seasons post-clearing, coincident with large and relatively stable net emission of CO2 because of overwhelmingly large ecosystem respiration. The rise in GEP was attributed to vegetation changes not environmental conditions (e.g., weather), but attribution to the expansion of leaf area vs. changes in vegetation composition remains unclear. Soil respiration was estimated to contribute 44% of total ecosystem respiration during summer months and coarse woody debris accounted for another 18%. Evapotranspiration also recovered rapidly and continued to rise across years with a corresponding decrease in sensible heat flux. Gross short-wave and long-wave radiative fluxes were stable across years except for strong wintertime dependence on snow covered conditions and corresponding variation in albedo. Overall, these findings underscore the highly dynamic nature of carbon and water exchanges and vegetation composition during the regrowth following a severe forest disturbance, and sheds light on both the magnitude of such changes and the underlying mechanisms with a unique example from a temperate, deciduous

  4. On-line stable isotope gas exchange reveals an inducible but leaky carbon concentrating mechanism in Nannochloropsis salina.

    PubMed

    Hanson, David T; Collins, Aaron M; Jones, Howland D T; Roesgen, John; Lopez-Nieves, Samuel; Timlin, Jerilyn A

    2014-09-01

    Carbon concentrating mechanisms (CCMs) are common among microalgae, but their regulation and even existence in some of the most promising biofuel production strains is poorly understood. This is partly because screening for new strains does not commonly include assessment of CCM function or regulation despite its fundamental role in primary carbon metabolism. In addition, the inducible nature of many microalgal CCMs means that environmental conditions should be considered when assessing CCM function and its potential impact on biofuels. In this study, we address the effect of environmental conditions by combining novel, high frequency, on-line (13)CO2 gas exchange screen with microscope-based lipid characterization to assess CCM function in Nannochloropsis salina and its interaction with lipid production. Regulation of CCM function was explored by changing the concentration of CO2 provided to continuous cultures in airlift bioreactors where cell density was kept constant across conditions by controlling the rate of media supply. Our isotopic gas exchange results were consistent with N. salina having an inducible "pump-leak" style CCM similar to that of Nannochloropsis gaditana. Though cells grew faster at high CO2 and had higher rates of net CO2 uptake, we did not observe significant differences in lipid content between conditions. Since the rate of CO2 supply was much higher for the high CO2 conditions, we calculated that growing cells bubbled with low CO2 is about 40 % more efficient for carbon capture than bubbling with high CO2. We attribute this higher efficiency to the activity of a CCM under low CO2 conditions. PMID:24844569

  5. Role of understory vegetation in decadal variation of water and carbon dioxide exchange over larch forest of eastern Siberia

    NASA Astrophysics Data System (ADS)

    Kotani, Ayumi; Ohta, Takeshi; Iijima, Yoshihiro; Maximov, Trofim

    2016-04-01

    This study investigated evapotranspiration and carbon dioxide exchange by the eddy covariance methods over larch-dominated forests in the middle part of the Lena basin, eastern Siberia. Forest ecosystem in this region is characterized by low precipitation, a short growing season, and extensive permafrost. Seasonal thawing permafrost supplies soil water, which is prevented to infiltrating by an impermeable frozen layer, and supports forest development. A decadal observation of hydro-meteorological variables shows inter-annual variability including extreme environmental conditions such as unusually wet active layer, which was maintained for a few years. Some mature larch trees locating poor drainage area suffered wet damage, while young birch and willow trees developed and herbs with water tolerance expanded. Compared to fluxes of the whole ecosystem, those based on the understory layer changed through the study period due to increase biomass and change of inside canopy environments; plentiful light and soil water, and enhanced turbulent mixing. Evapotranspiration from the understory layer increased and contribution to the whole forest flux reached 60%. Although this layer always acts as carbon dioxide source in seasonal average through the study period, source strength weaken and changed to temporal sink in the early summer. On contrast, contribution of the larch layer, in spite of remaining uncertainty in quantity, decreased in both of evapotranspiration and carbon dioxide uptake. Interactions between larch and understory support maintenance of this forest ecosystem. Decline of larch contribution is made up by understory growing, resulting in relatively stable whole forest exchange rate at least until this wet event.

  6. Using Light-Use and Production Efficiency Models to Predict Photosynthesis and Net Carbon Exchange During Forest Canopy Disturbance

    SciTech Connect

    Cook, Bruce D.; Bolstad, Paul V.; Martin, Jonathan G.; Heinsch, Faith A.; Davis, Kenneth J.; Wang, Weiguo; Desai, Ankur R.; Teclaw, Ron

    2007-11-13

    Vegetation growth models have been coupled with data from remotely sensed imagery and surface meteorological networks to monitor terrestrial production and ecosystem-atmosphere carbon exchange across a wide range of spatial and temporal scales (e.g., MODIS, CASA, GLO-PEM). Many of these diagnostic models are based on a light-use efficiency equation and two-component model of whole-plant growth and maintenance respiration, which have been parameterized for functionally distinct vegetation types and biomes. This study was designed to assess the robustness of these parameters for predicting interannual plant growth and carbon exchange, and more specifically, to address inconsistencies that may arise during forest disturbances and loss of canopy foliage. A model based on the MODIS MOD17 algorithm was parameterized for a mature upland hardwood forest by inverting CO2 flux tower observations during years when the canopy was not disturbed, and used to make predictions during a year when the canopy was 37% defoliated by forest tent caterpillars. To accurately capture interannual variability during all years, algorithms needed to be modified to scale for the effects of diffuse radiation and loss of leaf area. Photosynthesis and respiration model parameters were found to be robust at daily and annual time scales, and differences in net ecosystem production in the presence and absence of large numbers of defoliating insects was approximately 2 g C m-2 d-1 and <23 g C m-2 y-1. Canopy disturbance events such as insect defoliations are common in temperate forests of North America, and failure to account for cyclical outbreaks of forest tent caterpillars in this stand could add an uncertainty of approximately 4 to 13% in long-term predictions of carbon sequestration.

  7. Quantifying Fast and Slow Responses of Terrestrial Carbon Exchange across a Water Availability Gradient in North American Flux Sites

    NASA Astrophysics Data System (ADS)

    Biederman, J. A.; Scott, R. L.; Goulden, M.

    2014-12-01

    Climate change is predicted to increase the frequency and severity of water limitation, altering terrestrial ecosystems and their carbon exchange with the atmosphere. Here we compare site-level temporal sensitivity of annual carbon fluxes to interannual variations in water availability against cross-site spatial patterns over a network of 19 eddy covariance flux sites. This network represents one order of magnitude in mean annual productivity and includes western North American desert shrublands and grasslands, savannahs, woodlands, and forests with continuous records of 4 to 12 years. Our analysis reveals site-specific patterns not identifiable in prior syntheses that pooled sites. We interpret temporal variability as an indicator of ecosystem response to annual water availability due to fast-changing factors such as leaf stomatal response and microbial activity, while cross-site spatial patterns are used to infer ecosystem adjustment to climatic water availability through slow-changing factors such as plant community and organic carbon pools. Using variance decomposition, we directly quantify how terrestrial carbon balance depends on slow- and fast-changing components of gross ecosystem production (GEP) and total ecosystem respiration (TER). Slow factors explain the majority of variance in annual net ecosystem production (NEP) across the dataset, and their relative importance is greater at wetter, forest sites than desert ecosystems. Site-specific offsets from spatial patterns of GEP and TER explain one third of NEP variance, likely due to slow-changing factors not directly linked to water, such as disturbance. TER and GEP are correlated across sites as previously shown, but our site-level analysis reveals surprisingly consistent linear relationships between these fluxes in deserts and savannahs, indicating fast coupling of TER and GEP in more arid ecosystems. Based on the uncertainty associated with slow and fast factors, we suggest a framework for improved

  8. Seasonal and interannual variations of carbon exchange over a rice-wheat rotation system on the North China Plain

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Li, Dan; Gao, Zhiqiu; Tang, Jianwu; Guo, Xiaofeng; Wang, Linlin; Wan, Bingcheng

    2015-10-01

    Rice-wheat (R-W) rotation systems are ubiquitous in South and East Asia, and play an important role in modulating the carbon cycle and climate. Long-term, continuous flux measurements help in better understanding the seasonal and interannual variation of the carbon budget over R-W rotation systems. In this study, measurements of CO2 fluxes and meteorological variables over an R-W rotation system on the North China Plain from 2007 to 2010 were analyzed. To analyze the abiotic factors regulating Net Ecosystem Exchange (NEE), NEE was partitioned into gross primary production (GPP) and ecosystem respiration. Nighttime NEE or ecosystem respiration was controlled primarily by soil temperature, while daytime NEE was mainly determined by photosythetically active radiation (PAR). The responses of nighttime NEE to soil temperature and daytime NEE to light were closely associated with crop development and photosynthetic activity, respectively. Moreover, the interannual variation in GPP and NEE mainly depended on precipitation and PAR. Overall, NEE was negative on the annual scale and the rotation system behaved as a carbon sink of 982 g C m-2 per year over the three years. The winter wheat field took up more CO2 than the rice paddy during the longer growing season, while the daily NEE for wheat and rice were -2.35 and -3.96 g C m-2, respectively. After the grain harvest was subtracted from the NEE, the winter wheat field became a moderately strong carbon sink of 251-334 g C m-2 per season, whereas the rice paddy switched to a weak carbon sink of 107-132 per season.

  9. Restricted Inter-ocean Exchange and Attenuated Biological Export Caused Enhanced Carbonate Preservation in the PETM Ocean

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Boudreau, B. P.; Dickens, G. R.; Sluijs, A.; Middelburg, J. J.

    2015-12-01

    Carbon dioxide (CO2) release during the Paleocene-Eocene Thermal Maximum (PETM, 55.8 Myr BP) acidified the oceans, causing a decrease in calcium carbonate (CaCO3) preservation. During the subsequent recovery from this acidification, the sediment CaCO3 content came to exceed pre-PETM values, known as over-deepening or over-shooting. Past studies claim to explain these trends, but have failed to reproduce quantitatively the time series of CaCO3 preservation. We employ a simple biogeochemical model to recreate the CaCO3 records preserved at Walvis Ridge of the Atlantic Ocean. Replication of the observed changes, both shallowing and the subsequent over-deepening, requires two conditions not previously considered: (1) limited deep-water exchange between the Indo-Atlantic and Pacific oceans and (2) a ~50% reduction in the export of CaCO3 to the deep sea during acidification. Contrary to past theories that attributed over-deepening to increased riverine alkalinity input, we find that over-deepening is an emergent property, generated at constant riverine input when attenuation of CaCO3 export causes an unbalanced alkalinity input to the deep oceans (alkalinization) and the development of deep super-saturation. Restoration of CaCO3 export, particularly in the super-saturated deep Indo-Atlantic ocean, later in the PETM leads to greater accumulation of carbonates, ergo over-shooting, which returns the ocean to pre-PETM conditions over a time scale greater than 200 kyr. While this feedback between carbonate export and the riverine input has not previously been considered, it appears to constitute an important modification of the classic carbonate compensation concept used to explain oceanic response to acidification.

  10. Carbon Sources and Sinks of North America as Affected by Major Drought Events During the Past 30 Years

    NASA Astrophysics Data System (ADS)

    Mekonnen, Z. A.; Grant, R. F.

    2015-12-01

    The North American (NA) terrestrial biosphere has been a long-term carbon sink but impacts of climate extremes such as drought on ecosystem carbon exchange remained largely uncertain. Here, changes in biospheric carbon fluxes with recent climate change and impacts of the major droughts of the past 30 years on continental carbon cycle across NA were studied using a comprehensive mathematical process model, ecosys. In test of these model responses at continental scale, the spatial anomalies from long-term (1980 - 2010) means in modeled leaf area indices (LAI), fully prognostic in the model, during major drought events in 1988 and 2002 agreed well with those in AVHRR NDVI (geographically weighted regression, R2 = 0.84 in 1988, 0.71 in 2002). NA modeled net ecosystem productivity (NEP) declined by 92% (0.50 Pg C yr-1) and 90% (0.49 Pg C yr-1) from the long-term mean (+0.54 Pg C yr-1), in 1988 and 2002 respectively. These significant drops in NEP offset 28% of the long-term carbon gains from the long-term mean over the last three decades. Although, the long-term average modeled terrestrial carbon sink was estimated to offset ~30% of the fossil fuel emissions of NA, only 0.03 and 3.2% were offset in 1988 and 2002 leaving almost all fossil fuel emissions to the atmosphere. These major drought events that may be associated to frequent occurrences of El Niño-Southern Oscillation, controlled much of the continental scale interannual variability and mainly occurred in parts of the Great Plains, southwest US and northern Mexico. Although stronger carbon sinks were modeled in northern ecosystems as a result of greater gross primary productivity with longer growing season, projected increases in frequency and intensity of drought could enhance carbon release hence may reduce net carbon sink of the continent.

  11. Carbon and Nitrous Oxide Exchange from a Bioenergy Crop Cultivation on a Mineral Soil Measured with Eddy Covariance Method

    NASA Astrophysics Data System (ADS)

    Lind, S.; Shurpali, N.; Martikainen, P. J.

    2009-12-01

    Increased concentration of greenhouse gases (GHG; CO2, CH4, N2O) in the atmosphere have been linked to anthropogenic activities. Energy production based on fossil fuels is the main sources of CO2 to the atmosphere. Strategies to reduce CO2 emissions include use of bioenergy crops as energy source. To evaluate the real atmospheric value of bioenergy, knowledge on CO2 and N2O balances of ecosystems under bioenergy crop cultivation is needed. Reed canary grass (RCG, Phalaris arundinaceae L.) is increasingly being used as a bioenergy crop in the Nordic countries. It grows well in northern Europe as it tolerates flooding, requires short growing season and thrives well under low temperatures. Currently RCG is cultivated on an area of about 19000 ha in Finland and it is the highest yielding grass grown for energy purpose in Finland. The long rotation period (about ten years) of RCG cultivation without tilling favors carbon allocation into soil. First results from RCG cultivations on peat soil show that it is a promising land use option on such soils favoring soil carbon sequestration with low N2O emissions (Hyvönen et al. 2009; Shurpali et al. 2009). In order to devise a sound bioenergy policy based on this grass, studies on soils with variable characteristics under different climatic and hydrological regimes is urgently needed. Micrometeorological eddy covariance technique is suitable to study GHG fluxes at an ecosystem level (Baldocchi 2003). It is useful for continuous, direct and long-term measurements. Eddy covariance technique has been successfully used for measuring CO2 exchange in various ecosystems. The eddy covariance technique has also been used to measure N2O emissions (Denmead 2008). Aims of this study are to quantify the CO2 and N2O exchange of RCG cultivation on a mineral soil employing eddy covariance technique and to identify the key factors controlling the gas exchange. The study site on mineral soil is located in Eastern Finland. RCG was sown in spring

  12. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    SciTech Connect

    Rosenberg, R.M.; O'Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  13. Highly durable silica-coated Pt/carbon nanotubes for proton-exchange membrane fuel cells application

    NASA Astrophysics Data System (ADS)

    Yaowarat, Wattanachai; Li, Oi Lun Helena; Saito, Nagahiro

    2016-01-01

    Platinum nanoparticles supported on carbon nanotubes (Pt/CNTs) have been used as an electrocatalyst in proton-exchange membrane fuel cells (PEMFCs). These catalysts show higher activity in oxygen reduction reaction in PEMFCs than conventional carbon-black-supported Pt nanoparticles. However, their durability is lower than that of other metal-alloy-based or nonmetal-based catalysts. In this study, Pt/CNTs were synthesized by solution plasma followed by coating with silica layer by the sol-gel method using a cationic surfactant [cetyltrimethylammonium bromide (CTAB)]. This material can be used as a cathode in PEMFCs. The silica layer was coated on the surface of Pt/CNTs to prevent agglomeration and detachment of Pt nanoparticles from carbon nanotubes during operation. The formation of silica layers significantly improved the durability of the Pt/CNT catalysts under acidic conditions. After 300 cycles of the cyclic voltammetry test in 0.5#M sulfuric acid (H2SO4), silica-coated Pt/CNTs increased the durability by 43.0 and 24.0% compared with those of noncoated commercial Pt/C and Pt/CNTs, respectively.

  14. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  15. Biophysical controls of carbon exchange in old growth Mountain Ash stands

    NASA Astrophysics Data System (ADS)

    Kilinc, M.; Beringer, J.; Hutley, L.; Tapper, N.; McGuire, D.; Kurioka, K.; Wood, S.; D'Argent, N.

    2008-12-01

    Long-term measurements of CO2, H2O and energy fluxes over a range of terrestrial ecosystem types and maturity are necessary in determining the regional and global carbon budgets. Previous studies from temperate forests have generally shown that the net uptake of carbon (NEE) of ecosystems decreases with stand age, and in old growth forests carbon cycling has often been assumed to be in equilibrium. However, results from the Northern Hemisphere, using eddy covariance flux towers, indicate that old growth forests are a greater sink than first thought. Changes in stand structure, detritus matter and microclimate between young and old growth forests greatly contribute to the variation in the net fluxes of CO2 and H2O. The role of old growth temperate forests in Australia is uncertain and may function remarkably different to their deciduous counterparts in the Northern Hemisphere. An undisturbed old growth, Mountain Ash (Eucalyptus regnans) ecosystem, located in the Central Highlands of Victoria (Australia) has been selected as a permanent study site to investigate carbon and water budgets over diurnal, seasonal and annual cycles. Mountain Ash trees are the world's tallest angiosperms (flowering plant), and fully developed trees can reach heights of more than 100 metres. Mountain Ash forests also occupy a large proportion of Victoria's catchments, making them a crucial resource for the sustainable management and quality of Melbourne's drinking water. This study uses the Eddy Covariance method, which will measure the carbon, water, energy fluxes. The site has been running since August 2005 and we present 18 months of preliminary results from the site. The central theme of this study is to investigate the climatic and biophysical factors that control carbon, water and energy cycles over a range of time scales. Ultimately, this approach will allow us to better understand how these uniquely Australian ecosystems may respond to global climate change.

  16. Atmospheric carbon exchange associated with vegetation and soils in urban and suburban land uses

    SciTech Connect

    Rowntree, R.A.

    1993-12-31

    In studies of the global C cycle prior to the 1980s, urban ecosystems were largely ignored, in part because them were inadequate measures of phytomass and soil carbon for the various land uses associated with cities. In the last decade, progress has been made in gathering urban vegetation data and recently, estimates of urban land use carbon storage and fluxes have been attempted. Demographic trends in many countries suggest that urban areas are growing. Thus it is important to discover the appropriate concepts and methods for understanding greenhouse gas fluxes from urban-related vegetation and soils.

  17. Carbon Exchange in the Northern High Latitude Terrestrial Ecosystems Over the Last Three Decades

    NASA Astrophysics Data System (ADS)

    Jain, Atul; El-Masri, Bassil; Barman, Rahul

    2013-04-01

    The dynamics of carbon fluxes in the permafrost region is likely to have tremendous impacts for the future global climate. Recently, several ecosystem and land surface models have demonstrated improved permafrost modeling capabilities by incorporating deep soil layers, organic soils, and parameterizing the effects of wind compaction and depth hoar formations, which influence high latitude soil biogeophysics. However, no global study has yet incorporated the combined effects of these biogeophysical improvements. Additionally, the primary focus has been on modeling biogeophysical fluxes rather than on how biogeochemical processes and feedbacks are impacted. In this study, we evaluate how biogeochemistry (carbon and nitrogen dynamics) responds to improved biogeophysics in the high latitudes. We employ a land surface model, the Integrated Science Assessment Model (ISAM), to model the fluxes of water, energy and carbon, as well as the change in active layer depths during the historical period. The ISAM represents fully prognostic carbon and nitrogen cycles, coupled with biogeophysics schemes. Additionally, biogeophysical improvements such as the inclusion of deep soils, organic soils, wind compaction and depth hoar formation effects, which are critical for high-latitude soil thermal dynamics, have been incorporated into the model. The performance of the model is evaluated using observations for active layer depths and carbon fluxes, together with recent estimates for total soil carbon amount in the permafrost region. The soil decomposition module in the ISAM was calibrated with field experiment data, which includes representation of nitrogen mineralization processes.The ISAM modeled carbon, nitrogen and energy fluxes were evaluated for several flux tower sites representative of the tundra and the boreal ecosystems as well as for the northern high latitude region. This is one of the first studies to explore the combined effects of improvements in biogeophysics, coupled

  18. Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses

    NASA Astrophysics Data System (ADS)

    Landry, Jean-Sébastien; Damon Matthews, H.

    2016-04-01

    Non-deforestation fire - i.e., fire that is typically followed by the recovery of natural vegetation - is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-deforestation fire vs. fossil fuel combustion on the global carbon cycle and climate, because (1) fossil fuel combustion implies a net transfer of carbon from geological reservoirs to the atmospheric, oceanic, and terrestrial pools, whereas fire occurring in terrestrial ecosystems does not; (2) the average lifetime of the atmospheric CO2 increase is longer when originating from fossil fuel combustion compared to fire, due to the strong vegetation regrowth following fire disturbances in terrestrial ecosystems; and (3) other impacts, for example on land surface albedo, also differ between fire and fossil fuel combustion. The main purpose of this study is to illustrate the consequences from these fundamental differences between fossil fuel combustion and non-deforestation fires using 1000-year simulations of a coupled climate-carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate-carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions - implicitly implying that they have similar effects per unit of CO2 emitted - should therefore be avoided, particularly when these comparisons

  19. The reallocation of carbon in P deficient lupins affects biological nitrogen fixation.

    PubMed

    Kleinert, Aleysia; Venter, Mauritz; Kossmann, Jens; Valentine, Alexander

    2014-11-01

    It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation during P deficiency may affect BNF. Nodulated Lupinus luteus plants were grown in sand culture, using a modified Long Ashton nutrient solution containing no nitrogen (N) for ca. four weeks, after which one set was exposed to a P-deficient nutrient medium, while the other set continued growing on a P-sufficient nutrient medium. Phosphorus stress was measured at 20 days after onset of P-starvation. During P stress the decline in nodular P levels was associated with lower BNF and nodule growth. There was also a shift in the balance of photosynthetic and respiratory C toward a loss of C during P stress. Below-ground respiration declined under limiting P conditions. However, during this decline there was also a shift in the proportion of respiratory energy from maintenance toward growth respiration. Under P stress, there was an increased allocation of C toward root growth, thereby decreasing the amount of C available for maintenance respiration. It is therefore possible that the decline in BNF under P deficiency may be due to this change in resource allocation away from respiration associated with direct nutrient uptake, but rather toward a long term nutrient acquisition strategy of increased root growth. PMID:25155758

  20. Carbon dioxide exchange in a semidesert grassland responding through drought-induced vegetation change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Global warming is predicted to intensify the hydrological cycle, thus increasing drought severity and duration. Severe drought can lead to a change in plant community structure, which, in turn, may yield differences in how water and carbon dioxide are cycled. We report on how the net ecosystem exch...

  1. Sources and sinks of carbonyl sulfide in a mountain grassland and relationships to the carbon dioxide exchange

    NASA Astrophysics Data System (ADS)

    Spielmann, Felix M.; Kitz, Florian; Hammerle, Albin; Gerdel, Katharina; Wohlfahrt, Georg

    2016-04-01

    The trace gas carbonyl sulfide (COS) has been proposed as a tracer for canopy gross primary production (GPP), canopy transpiration and stomatal conductance of plant canopies in the last few years. COS enters the plant leaf through the stomata and diffuses through the intercellular space, the cell wall, the plasma membrane and the cytosol like CO2. It is then catalyzed by the enzyme carbonic anhydrase (CA) in a one-way reaction to H2S and CO2. This one-way flux into the leaf makes COS a promising tracer for the GPP. However there is growing evidence, that plant leaves aren't the only contributors to the ecosystem flux of COS. Therefor the COS uptake of soil microorganisms also containing CA and abiotic COS production might have to be accounted for when using COS as a tracer at the ecosystem scale. The overarching objective of this study was to quantify the relationship between the ecosystem-scale exchange of COS, CO2 and H2O and thus to test for the potential of COS to be used as a tracer for the plant canopy CO2 and H2O exchange. More specifically we aimed at quantifying the contribution of the soil to the ecosystem-scale COS exchange in order to understand complications that may arise due to a non-negligible soil COS exchange. In May 2015 we set up our quantum cascade laser (QCL) (Aerodyne Research Inc., MA, USA) at a temperate mountain grassland in Stubai Valley close to the village of Neustift, Austria. Our site lies at the valley bottom and is an intensively managed mountain grassland, which is cut 3-4 times a year. With the QCL we were able to measure concurrently the concentrations of COS, CO2, H2O (and CO) at a frequency of 10 Hz with minimal noise. This allowed us to conduct ecosystem-scale eddy covariance measurements. The eddy covariance flux measurements revealed that the COS uptake continues at night, which we confirmed was not caused by soil microorganisms, as the soil exchange was close to neutral during nighttime. Instead, the nocturnal COS uptake

  2. Productivity and carbon dioxide exchange of leguminous crops: estimates from flux tower measurements

    USGS Publications Warehouse

    Gilmanov, Tagir G.; Baker, John M.; Bernacchi, Carl J.; Billesbach, David P.; Burba, George G.; Castro, Saulo; Chen, Jiquan; Eugster, Werner; Fischer, Marc L.; Gamon, John A.; Gebremedhin, Maheteme T.; Glenn, Aaron J.; Griffis, Timothy J.; Hatfield, Jerry L.; Heuer, Mark W.; Howard, Daniel M.; Leclerc, Monique Y.; Loescher, Henry W.; Marloie, Oliver; Meyers, Tilden P.; Olioso, Albert; Phillips, Rebecca L.; Prueger, John H.; Skinner, R. Howard; Suyker, Andrew E.; Tenuta, Mario; Wylie, Bruce K.

    2014-01-01

    Net CO2 exchange data of legume crops at 17 flux tower sites in North America and three sites in Europe representing 29 site-years of measurements were partitioned into gross photosynthesis and ecosystem respiration by using the nonrectangular hyperbolic light-response function method. The analyses produced net CO2 exchange data and new ecosystem-scale ecophysiological parameter estimates for legume crops determined at diurnal and weekly time steps. Dynamics and annual totals of gross photosynthesis, ecosystem respiration, and net ecosystem production were calculated by gap filling with multivariate nonlinear regression. Comparison with the data from grain crops obtained with the same method demonstrated that CO2 exchange rates and ecophysiological parameters of legumes were lower than those of maize (Zea mays L.) but higher than for wheat (Triticum aestivum L.) crops. Year-round annual legume crops demonstrated a broad range of net ecosystem production, from sinks of 760 g CO2 m–2 yr–1 to sources of –2100 g CO2 m–2 yr–1, with an average of –330 g CO2 m–2 yr–1, indicating overall moderate CO2–source activity related to a shorter period of photosynthetic uptake and metabolic costs of N2 fixation. Perennial legumes (alfalfa, Medicago sativa L.) were strong sinks for atmospheric CO2, with an average net ecosystem production of 980 (range 550–1200) g CO2 m–2 yr–1.

  3. Micrometeorological observations of carbon, water vapor and heat exchanges on the California Academy of Sciences' living roof using eddy covariance

    NASA Astrophysics Data System (ADS)

    Lavender, S.; Oliphant, A. J.; Thorp, R.

    2014-12-01

    Living roofs have very different surface energy, water and carbon budgets than conventional roofs. Since roofs cover approximately one third of the planimetric surface area of cities, they are a significant driver of the urban boundary layer. Living roofs have been thought to be beneficial for reducing the urban heat island through increased latent heat exchange, uptake of atmospheric carbon dioxide and storage in soil and plant matter, building energy conservation through soil heat storage and latent heat fluxes and reduction in runoff. Here we present evidence of some of these through ongoing observations of surface energy, water and carbon budget estimates for the extensive living roof of the California Academy of Sciences building in Golden Gate Park, San Francisco, California. Micrometeorological measurements including the eddy covariance approach are used to estimate CO2, water vapor and both ground and atmospheric heat fluxes. The California Academy's roof encompasses an area of 18,000 m2. Vegetation surveys were conducted in the spring; beach strawberry (Fragaria chiloensis) and California bentgrass (Agrostis) were found to dominate the project footprint out of the 26 species observed. Eddy covariance measurements are made about one meter above the 10-20 cm tall vegetation on the downwind side of the building. Approximately 50% of data are rejected due to less than 80% of the flux source area being contained in the roof or due to low friction velocity. Nevertheless, we are able to develop robust diurnal ensemble fluxes, and will present data from a nine month period. During summer, the roof acted as a carbon sink of approximately 1.5 gC m-2 d-1. Turbulent heat fluxes were dominated by sensible heat flux with a mean Bowen ratio of approximately 1.5 and daily evapotranspiration rates of about 1.8 mm d-1. The role of seasonality and meteorology on surface microclimate characteristics will also be discussed.

  4. Old and Not-So-Old: Examining Changes in Forest Ecosystem Carbon Exchange With Stand Age in the Upper Midwest U.S.

    NASA Astrophysics Data System (ADS)

    Desai, A. R.; Cook, B.; Davis, K. J.; Bolstad, P.; Carey, E.; Martin, J.; Kreller, L.; Wang, W.

    2003-12-01

    Forest stand age is an important determinant of ecosystem carbon uptake. Though there are biometric measurements and ecological models for forests of all ages, there are few stand-scale eddy-flux measurements of net carbon exchange in older forests, though the number is increasing. In order to scale carbon fluxes from sites to regions, where stands of multiple ages may exist, it is necessary to measure to the effect of stand age on carbon exchange. Measuring the effect of stand age on carbon exchange is also necessary when trying to predict future or past carbon exchange (scaling across time). Many researchers have noted that site disturbance history is the fundamental factor in determining carbon uptake by forests over time scales of decades to centuries. The 8,500 ha Sylvania Wilderness in the upper peninsula of Michigan is one of several large tracts of old-growth forest in the Midwest. Trees range from 0-350 years old. Primary species are sugar maple, eastern hemlock and yellow birch. Catastrophic disturbance is rare. A research plot near the wilderness was established in late 2001 to measure the net ecosystem exchange (NEE) of carbon and water using eddy-flux, component flux and biometric methods. This site is part of the Chequamegon Ecosystem Atmosphere Study (ChEAS, http://cheas.psu.edu), a loose affiliation of researchers conducting carbon and water research in northern Wisconsin and upper Michigan. Another similar research plot within ChEAS and not far from Sylvania is the Willow Creek mature uplands site. This forest is about 70 years old and the primary species are sugar maple, basswood and green ash. The site had presettlement old-growth vegetation similar to what is currently seen in the Sylvania Wilderness. Thus, the carbon exchange seen at Sylvania may be representative of carbon uptake at Willow Creek had it not been logged in the early 20th century, and may also represent the future (or past) carbon uptake for similar forests in northern Wisconsin

  5. Diurnal and seasonal variations in carbon dioxide exchange in ecosystems in the Zhangye oasis area, Northwest China.

    PubMed

    Zhang, Lei; Sun, Rui; Xu, Ziwei; Qiao, Chen; Jiang, Guoqing

    2015-01-01

    Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP), Ecosystem Respiration (Reco) and Net Ecosystem Exchange (NEE) were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR) on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different species. Nighttime

  6. Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China

    PubMed Central

    Zhang, Lei; Sun, Rui; Xu, Ziwei; Qiao, Chen; Jiang, Guoqing

    2015-01-01

    Quantifying carbon dioxide exchange and understanding the response of key environmental factors in various ecosystems are critical to understanding regional carbon budgets and ecosystem behaviors. For this study, CO2 fluxes were measured in a variety of ecosystems with an eddy covariance observation matrix between June 2012 and September 2012 in the Zhangye oasis area of Northwest China. The results show distinct diurnal variations in the CO2 fluxes in vegetable field, orchard, wetland, and maize cropland. Diurnal variations of CO2 fluxes were not obvious, and their values approached zero in the sandy desert, desert steppe, and Gobi ecosystems. Additionally, daily variations in the Gross Primary Production (GPP), Ecosystem Respiration (Reco) and Net Ecosystem Exchange (NEE) were not obvious in the sandy desert, desert steppe, and Gobi ecosystems. In contrast, the distributions of the GPP, Reco, and NEE show significant daily variations, that are closely related to the development of vegetation in the maize, wetland, orchard, and vegetable field ecosystems. All of the ecosystems are characterized by their carbon absorption during the observation period. The ability to absorb CO2 differed significantly among the tested ecosystems. We also used the Michaelis-Menten equation and exponential curve fitting methods to analyze the impact of Photosynthetically Active Radiation (PAR) on the daytime CO2 flux and impact of air temperature on Reco at night. The results show that PAR is the dominant factor in controlling photosynthesis with limited solar radiation, and daytime CO2 assimilation increases rapidly with PAR. Additionally, the carbon assimilation rate was found to increase slowly with high solar radiation. The light response parameters changed with each growth stage for all of the vegetation types, and higher light response values were observed during months or stages when the plants grew quickly. Light saturation points are different for different species. Nighttime

  7. A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition

    PubMed Central

    Neumann, Manuela; Trojanowski, John Q.; Lee, Virginia M.-Y.; Feldman, Gerald; Norris, Joy W.; Friez, Michael J.; Schwartz, Charles E.; Stevenson, Roger; Sima, Anders A. F.

    2010-01-01

    We have studied a family with severe mental retardation characterized by the virtual absence of speech, autism spectrum disorder, epilepsy, late-onset ataxia, weakness and dystonia. Post-mortem examination of two males revealed widespread neuronal loss, with the most striking finding being neuronal and glial tau deposition in a pattern reminiscent of corticobasal degeneration. Electron microscopic examination of isolated tau filaments demonstrated paired helical filaments and ribbon-like structures. Biochemical studies of tau demonstrated a preponderance of 4R tau isoforms. The phenotype was linked to Xq26.3, and further analysis identified an in-frame 9 base pair deletion in the solute carrier family 9, isoform A6 (SLC9A6 gene), which encodes sodium/hydrogen exchanger-6 localized to endosomal vesicles. Sodium/hydrogen exchanger-6 is thought to participate in the targeting of intracellular vesicles and may be involved in recycling synaptic vesicles. The striking tau deposition in our subjects reveals a probable interaction between sodium/proton exchangers and cytoskeletal elements involved in vesicular transport, and raises the possibility that abnormalities of vesicular targeting may play an important role in more common disorders such as Alzheimer’s disease and autism spectrum disorders. PMID:20395263

  8. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. PMID:27380366

  9. Multiwalled carbon nanotube dispersion methods affect their aggregation, deposition, and biomarker response.

    PubMed

    Chang, Xiaojun; Henderson, W Matthew; Bouchard, Dermont C

    2015-06-01

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT). The two tested surfactants [anionic sodium dodecyl sulfate (SDS) and nonionic poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEO-PPO-PEO) triblock copolymers (Pluronic)] could only disperse MWNTs via ultrasonication; while stable aqueous SON/MWNT and LT/MWNT suspensions were formed in the presence of the two model NOMs (Suwannee river humic acid and fulvic acid). Due to the inherent stochastic nature for both methods, the formed MWNT suspensions were highly heterogeneous. Their physicochemical properties, including surface charge, size, and morphology, greatly depended upon the dispersant type and concentration but were not very sensitive to the preparation methods. Aggregation and deposition behaviors of the dispersed MWNTs were controlled by van der Waal and electrostatic forces, as well as other non-DLVO forces (e.g., steric, hydrophobic forces, etc.). Unlike the preparation method-independent physicochemical properties, LT/NOM-MWNTs and SON/NOM-MWNTs differed in their fathead minnow epithelial cell metabolomics profiles. PMID:25924000

  10. Fire affects root decomposition, soil food web structure, and carbon flow in tallgrass prairie

    NASA Astrophysics Data System (ADS)

    Shaw, E. Ashley; Denef, Karolien; Milano de Tomasel, Cecilia; Cotrufo, M. Francesca; Wall, Diana H.

    2016-05-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is common and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root-litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root-litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable but also significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition, which, in turn, is significantly affected by fire. Not

  11. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    NASA Astrophysics Data System (ADS)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  12. Modelling carbon and water exchange of a grazed pasture in New Zealand constrained by eddy covariance measurements.

    PubMed

    Kirschbaum, Miko U F; Rutledge, Susanna; Kuijper, Isoude A; Mudge, Paul L; Puche, Nicolas; Wall, Aaron M; Roach, Chris G; Schipper, Louis A; Campbell, David I

    2015-04-15

    We used two years of eddy covariance (EC) measurements collected over an intensively grazed dairy pasture to better understand the key drivers of changes in soil organic carbon stocks. Analysing grazing systems with EC measurements poses significant challenges as the respiration from grazing animals can result in large short-term CO2 fluxes. As paddocks are grazed only periodically, EC observations derive from a mosaic of paddocks with very different exchange rates. This violates the assumptions implicit in the use of EC methodology. To test whether these challenges could be overcome, and to develop a tool for wider scenario testing, we compared EC measurements with simulation runs with the detailed ecosystem model CenW 4.1. Simulations were run separately for 26 paddocks around the EC tower and coupled to a footprint analysis to estimate net fluxes at the EC tower. Overall, we obtained good agreement between modelled and measured fluxes, especially for the comparison of evapotranspiration rates, with model efficiency of 0.96 for weekly averaged values of the validation data. For net ecosystem productivity (NEP) comparisons, observations were omitted when cattle grazed the paddocks immediately around the tower. With those points omitted, model efficiencies for weekly averaged values of the validation data were 0.78, 0.67 and 0.54 for daytime, night-time and 24-hour NEP, respectively. While not included for model parameterisation, simulated gross primary production also agreed closely with values inferred from eddy covariance measurements (model efficiency of 0.84 for weekly averages). The study confirmed that CenW simulations could adequately model carbon and water exchange in grazed pastures. It highlighted the critical role of animal respiration for net CO2 fluxes, and showed that EC studies of grazed pastures need to consider the best approach of accounting for this important flux to avoid unbalanced accounting. PMID:25634732

  13. Using digital repeat photography to investigate phenology and its control on carbon dioxide exchange processes in a boreal minerogenic mire

    NASA Astrophysics Data System (ADS)

    Sonnentag, Oliver; Peichl, Matthias; Nilsson, Mats B.

    2013-04-01

    Phenology is an important driver of the net ecosystem exchange (NEE) of carbon dioxide (CO2) since seasonal plant development is tightly coupled to the processes of photosynthesis and respiration. Digital repeat photography has been previously used in other terrestrial ecosystems (i.e., forest, cropland and grassland) to continuously monitor and quantitatively describe changes in ecosystem phenology. Here, we present a first attempt to apply this technique in a peatland. We use the chromatic greenness index (Gc) derived from digital images analysis to investigate the control of phenology on the ecosystem CO2 exchange measured by the eddy covariance technique in a minerogenic mire in Northern Sweden over two growing seasons (2011 - 2012). We found that Gc was closely linked to the leaf area index of the vascular plant community. Moreover, Gc correlated well with gross ecosystem production (GEP) and ecosystem respiration (ER) during the spring green-up and the autumn periods. During the late summer however, the patterns of Gc and GEP were decoupled and environmental conditions (i.e. drought stress) were the dominating control on GEP during this period. Meanwhile, no correlation was observed between Gc and NEE. We conclude that digital repeat photography may serve as a simple, cheap and automated method to continuously track seasonal changes in phenology and to evaluate its effects on the CO2 exchange in peatland ecosystems. We further suggest that Gc derived from digital image analysis could help improving gap-filling of flux data and modeling of the seasonal development of GEP, especially during the shoulder seasons.

  14. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    USGS Publications Warehouse

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  15. Interannual and seasonal variations in energy and carbon exchanges over the larch forests on the permafrost in northeastern Mongolia

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shin; Ishikawa, Mamoru; Baatarbileg, Nachin; Damdinsuren, Sodov; Ariuntuya, Nymsambuu; Jambaljav, Yamkhin

    2014-06-01

    The larch forests on the permafrost in northeastern Mongolia are located at the southern limit of the Siberian taiga forest, which is one of the key regions for evaluating climate change effects and responses of the forest to climate change. We conducted long-term monitoring of seasonal and interannual variations in hydrometeorological elements, energy, and carbon exchange in a larch forest (48°15‧24‧‧N, 106°51‧3‧‧E, altitude: 1338 m) in northeastern Mongolia from 2010 to 2012. The annual air temperature and precipitation ranged from -0.13 °C to -1.2 °C and from 230 mm to 317 mm. The permafrost was found at a depth of 3 m. The dominant component of the energy budget was the sensible heat flux (H) from October to May (H/available energy [Ra] = 0.46; latent heat flux [LE]/Ra = 0.15), while it was the LE from June to September (H/Ra = 0.28, LE/Ra = 0.52). The annual net ecosystem exchange (NEE), gross primary production (GPP), and ecosystem respiration (RE) were -131 to -257 gC m-2 y-1, 681-703 gC m-2 y-1, and 423-571 gC m-2 y-1, respectively. There was a remarkable response of LE and NEE to both vapor pressure deficit and surface soil water content.

  16. Effects of intraleaf variations in carbonic anhydrase activity and gas exchange on leaf C18OO isoflux in Zea mays.

    PubMed

    Affek, Hagit P; Krisch, Maria J; Yakir, Dan

    2006-01-01

    Variation in the C18OO content of atmospheric CO2 (delta18Oa) can be used to distinguish photosynthesis from soil respiration, which is based on carbonic anhydrase (CA)-catalyzed 18O exchange between CO2 and 18O-enriched leaf water (delta18Ow). Here we tested the hypothesis that mean leaf delta18Ow and assimilation rates can be used to estimate whole-leaf C18OO flux (isoflux), ignoring intraleaf variations in CA activity and gas exchange parameters. We observed variations in CA activity along the leaf (> 30% decline from the leaf center toward the leaf ends), which were only partially correlated to those in delta18Ow (7 to 21 per thousand), delta18O and delta13C of leaf organic matter (25 to 30 per thousand and -12.8 to -13.2 per thousand, respectively), and substomatal CO2 concentrations (intercellular CO2 concentrations, c(i), at the leaf center were approximately 40% of those at the leaf tip). The combined effect of these variations produced a leaf-integrated isoflux that was different from that predicted based on bulk leaf values. However, because of canceling effects among the influencing parameters, isoflux overestimations were only approximately 10%. Conversely, use of measured parameters from a leaf segment could produce large errors in predicting leaf-integrated C18OO fluxes. PMID:16411935

  17. Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Among greenhouse gases, carbon dioxide (CO2) is one of the most significant contributors to regional and global warming as well as climatic change. However, CO2 flux from the soil surface to the atmosphere can be affected by modifications in soil physical properties resulting from changes in land ma...

  18. Ocean Carbon Cycling and CO2 Air-Sea Exchange in Eastern Boundary Upwelling Systems

    NASA Astrophysics Data System (ADS)

    Plattner, G.; Gruber, N.; Lachkar, Z.; Frenzel, H.; Loher, D.

    2008-12-01

    Eastern boundary current (EBC) upwelling systems are regions of intense biogeochemical transformations and transports. Strong upwelling of nutrient- and carbon-rich waters tends to lead to CO2 outgassing nearshore and biologically-driven CO2 uptake offshore. Yet, the net air-sea CO2 balance of EBCs remains unknown. High near-shore productivity coupled with filaments and other meso- and submesoscale phenomena cause a substantial lateral export of organic carbon. We investigate these coastal processes in the California Current (CalCS) and the Canary Current Systems (CanCS), on the basis of the eddy-resolving, physical-biogeochemical model ROMS. Our results confirm the onshore-offshore trends in the air-sea fluxes, with substantial spatial and temporal differences due to topography, upwelling strength, and eddy activity. The CalCS is modeled to be, on average, a very small source of CO2 to the atmosphere, consistent with a recent data-based estimate by Chavez and Takahashi, while for the CanCS this is not clear yet. Regarding offshore transport, the CalCS appears to be stronger than the CanCS. Spatio-temporal variability of all carbon fluxes is substantial, particularly nearshore, posing a tremendous challenge for observing systems targeting e.g. air-sea CO2 fluxes in these dynamic regions. Further analyses of the processes that determine the mean carbon fluxes and their spatio-temporal variability will be presented. Characteristic differences and similarities between the two EBC systems will be discussed.

  19. Multi-scale Analysis of Methane Gas Hydrate Formation and Dissociation via Point Source Thermal Stimulation and Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Garrett Christopher

    experimental data. Increased hydrate saturation and increased heating rate lead to a more intense flow development. Thermal stimulation methane production has been coupled with the simultaneous injection of gaseous carbon dioxide as method of enhancing gas production rates while providing a means for long term storage of carbon dioxide in the hydrate phase. The exchange process was investigated at low and high gas injection rates under conditions of both low and high thermal stimulation applied to a 50% hydrate saturated quartz sand pack. The amount of carbon dioxide stored in the hydrate phased was greatest for the low injection-high heating condition sequestering 69 moles, and lowest for the high injection- low heating condition sequestering 13 moles. The gas exchange is improved with longer contact time between gas phase carbon dioxide and hydrate phase methane, this condition is optimized at low carbon dioxide injection rates. The availability of free water for formation of carbon dioxide is enhanced with the higher heating rates. Thus it is possible to tune the gas production rates and carbon dioxide storage potential by manipulating heating rates and gas injection rates to achieve the desired ratio between methane produced and carbon dioxide sequestered. Understanding the transition period and flow development within the pore fluid mixture should play a large role in determining the optimum placement and geometry of heating and exchange systems on industrial scale hydrate production scenarios. In addition to the optimization of thermal stimulation heating location, the profile and degree of heating rate can be tuned in order to maximize gas collection and minimize excessive heating of unproductive sediment matrix after it has been exhausted of methane hydrate. The production efficiency produced across the three experimental scales averaged between 80 and 90% and appears to be independent of scale. The scale up of this method for industrial scale production should pay

  20. Seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biosphere: extrapolation from site-specific models to regional models

    SciTech Connect

    King, A.W.

    1986-01-01

    Ecological models of the seasonal exchange of carbon dioxide between the atmosphere and the terrestrial biosphere are needed in the study of changes in atmospheric CO/sub 2/ concentration. In response to this need, a set of site-specific models of seasonal terrestrial carbon dynamics was assembled from open-literature sources. The collection was chosen as a base for the development of biome-level models for each of the earth's principal terrestrial biomes or vegetation complexes. Two methods of extrapolation were tested. The first approach was a simple extrapolation that assumed relative within-biome homogeneity, and generated CO/sub 2/ source functions that differed dramatically from published estimates of CO/sub 2/ exchange. The differences were so great that the simple extrapolation was rejected as a means of incorporating site-specific models in a global CO/sub 2/ source function. The second extrapolation explicitly incorporated within-biome variability in the abiotic variables that drive seasonal biosphere-atmosphere CO/sub 2/ exchange. Simulated site-specific CO/sub 2/ dynamics were treated as a function of multiple random variables. The predicated regional CO/sub 2/ exchange is the computed expected value of simulated site-specific exchanges for that region times the area of the region. The test involved the regional extrapolation of tundra and a coniferous forest carbon exchange model. Comparisons between the CO/sub 2/ exchange estimated by extrapolation and published estimates of regional exchange for the latitude belt support the appropriateness of extrapolation by expected value.

  1. Dynamics of Carbon Dioxide Exchange and Transport: The First Year of OCO-2 Observations

    NASA Astrophysics Data System (ADS)

    Wennberg, P. O.; Wunch, D.; O'Dell, C.; Frankenberg, C.; Fisher, B.; Mandrake, L.; Osterman, G. B.; Eldering, A.; Crisp, D.; Gunson, M. R.

    2015-12-01

    We describe observed gradients in space and time in the total column measurements of carbon dioxide (XCO2) during the first year of the OCO-2 mission.Writing this abstract in July, we make several predictions that will be tested in the coming months (in order to bat at least 0.500 while mixing metaphors we include some slam dunks): 1) Global XCO2 in Oct/Nov 2015 is larger than XCO2 in Oct/Nov 2014; 2) Averaged over the year, XCO2 in the Northern Hemisphere is greater than XCO2 in the Southern Hemisphere; 3) The increase in global atmospheric carbon dioxide during 2014/15 will be the largest on record due to a combination of increased fossil emissions and the intensifying El Nino [e.g. Wang et al., PNAS, 110, 13061, 2013]; 4) Summertime drawdown in Northern Hemisphere carbon dioxide will be muted compared with past years due to enhanced transport from the subtropics and enhanced respiration in the Boreal forest associated with anomalously warm surface temperatures at high latitudes in summer 2015 [e.g. Wunch et al., ACP, 13, 9447, 2012].

  2. Atmospheric exchange of carbon dioxide and methane of a small water body and a floating mat in the Luther Marsh peatland, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Burger, Magdalena; Berger, Sina; Blodau, Christian

    2015-04-01

    Recent investigations have suggested that small water bodies cover larger areas in northern peatlands than previously assumed. Their role in the carbon cycle and gas exchange rates are poorly constrained so far. To address this issue we measured CO2 and CH4 fluxes on a small water body (ca. 700 m2) and the surrounding floating mat in the Luther Marsh peatland in Ontario, Canada from July to September 2014. To this end we used closed chambers combined with a portable Los Gatos high-resolution trace gas analyzer at different water depths and distances from the shore on the pond and with different dominating plant types on the floating mat surrounding the pond. In addition, CO2 concentrations were recorded in high temporal resolution using an infrared sensor system during selected periods. Air and water temperature, humidity and temperature of the floating mat, wind speed and direction, photosynthetically active radiation, air pressure and relative humidity were also recorded as auxiliary data at the study site. The results show that pond and floating mat were sources of methane throughout the whole measuring period. Methane emissions via the ebullition pathway occurred predominantly near the shore and on the floating mat. During the daytime measurements the floating mat acted as a net sink and the pond as a net source of CO2. The dynamics of CO2 exchange was also strongly time dependent, as CO2 emissions from the pond strongly increased after mid-August. This suggests that photosynthesis was more affected by seasonal decline than respiration process in the pond and that the allochthonous component of the CO2 flux increased in relative importance towards fall.

  3. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis

    PubMed Central

    Hofmann, Laurie C.

    2013-01-01

    The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO2 are discussed. PMID:23314813

  4. Anatomical and physiological regulation of post-fire carbon and water exchange in canopies of two resprouting Eucalyptus species.

    PubMed

    Turnbull, Tarryn L; Buckley, Thomas N; Barlow, Alexandra M; Adams, Mark A

    2014-10-01

    The great majority of Eucalyptus spp. are facultative resprouters, and they dominate the eucalypt forests of Australia. Despite this numeric and geographic dominance, there is a general lack of knowledge of their capacity for carbon capture and water loss during canopy reinstation. After a crown-removing fire, we measured leaf-level determinants of carbon and water flux in resprouting canopies of Eucalyptus dives and E. radiata over the 3 years that followed. Leaf anatomy and physiology changed markedly during canopy reinstation, and leaves produced in the second year (2010) were distinct from those produced later. Leaves produced in 2010 were thicker (all measures of leaf anatomy), yet more porous (increased intercellular airspace), causing specific leaf area also to be greater. Indicators of heterotrophic activity, leaf respiration rate and light compensation point, were twofold greater in 2010, whereas all measures of photosynthetic capacity were greatest in leaves produced in 2011 and 2012. Whilst stomatal density, vein density and leaf hydraulic conductance all progressively decreased with time, neither leaf water status nor carbon isotope discrimination were affected. We conclude that canopy reinstation is primarily limited by pre-fire carbon stores, rather than by post-fire edaphic conditions (e.g., water availability), and thus argue that capacity for recovery is directly linked to pre-fire forest health. PMID:25108550

  5. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  6. The Effect of Additional Dead Space on Respiratory Exchange Ratio and Carbon Dioxide Production Due to Training

    PubMed Central

    Smolka, Lukasz; Borkowski, Jacek; Zaton, Marek

    2014-01-01

    The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training. The primary outcome measures were respiratory exchange ratio (RER) and carbon dioxide production (VCO2). Two groups of young healthy males: Experimental (Exp, n = 15) and Control (Con, n = 15), participated in this study. The training consisted of 12 sessions, performed twice a week for 6 weeks. A single training session consisted of continuous, constant-rate exercise on a cycle ergometer at 60% of VO2max which was maintained for 30 minutes. Subjects in Exp group were breathing through additional respiratory dead space (1200ml), while subjects in Con group were breathing without additional dead space. Pre-test and two post-training incremental exercise tests were performed for the detection of gas exchange variables. In all training sessions, pCO2 was higher and blood pH was lower in the Exp group (p < 0.001) ensuring respiratory acidosis. A 12-session training program resulted in significant increase in performance time in both groups (from 17”29 ± 1”31 to 18”47 ± 1”37 in Exp; p=0.02 and from 17”20 ± 1”18 to 18”45 ± 1”44 in Con; p = 0.02), but has not revealed a significant difference in RER and VCO2 in both post-training tests, performed at rest and during submaximal workload. We interpret the lack of difference in post-training values of RER and VCO2 between groups as an absence of inhibition in glycolysis and glycogenolysis during exercise with additional dead space. Key Points The purpose of the study was to investigate the effects of implementing additional respiratory dead space during cycloergometry-based aerobic training on respiratory exchange ratio and carbon dioxide production. In all training sessions, respiratory acidosis was gained by experimental group only. No significant difference in RER and VCO2 between experimental and control group due to the trainings. The lack of

  7. Sources and Sinks of Methane and Carbon Dioxide Exchanges in Mountain Forest in Equatorial Africa

    NASA Astrophysics Data System (ADS)

    Delmas, R. A.; Servant, J.; Tathy, J. P.; Cros, B.; Labat, M.

    1992-04-01

    Sources and sinks of methane were studied in the Mayombe forest, a tropical evergreen forest located in a mountainous region in central Africa. Important methane emissions, reaching 6×1013 molecules/cm2/s, were measured in flooded lowlands where soil characteristics: pH and redox potential, favor the growth of methanogenic bacteria. However, basically, soils of this region constitute a sink of atmospheric methane with uptake rates ranging from 1010 to 1011 molecules/cm2/s. Methane emission from termite nests was also studied; it appeared to be a minor component of the methane budget. CH4 concentrations were measured inside the forest and in the surrounding atmosphere, CO2 being used as a qualitative tracer of air exchanges. In spite of intense but scattered and size-limited sources this environment seems to be a net sink of atmospheric methane.

  8. Carbon supported Ag nanoparticles as high performance cathode catalyst for H2/O2 anion exchange membrane fuel cell

    PubMed Central

    Xin, Le; Zhang, Zhiyong; Wang, Zhichao; Qi, Ji; Li, Wenzhen

    2013-01-01

    A solution phase-based nanocapsule method was successfully developed to synthesize non-platinum metal catalyst—carbon supported Ag nanoparticles (Ag/C). XRD patterns and TEM image show Ag nanoparticles with a small average size (5.4 nm) and narrow size distribution (2–9 nm) are uniformly dispersed on the carbon black Vulcan XC-72 support. The intrinsic activity and pathway of oxygen reduction reaction (ORR) on the Ag/C and commercial Pt/C were investigated using rotating ring disk electrode (RRDE) tests at room temperature. The results confirmed that the 4-electron pathway of ORR proceeds on small Ag nanoparticles, and showed comparable ORR activities on the self-prepared Ag/C and a commercial Pt/C. A single H2-O2 anion exchange membrane fuel cell (AEMFC) with the Ag/C cathode catalyst exhibited an open circuit potential of 0.98 V and a peak power density of 190 mW/cm2 at 80°C. PMID:24790944

  9. Charge state distributions and charge exchange cross sections of carbon in helium at 30-258 keV

    NASA Astrophysics Data System (ADS)

    Maxeiner, Sascha; Seiler, Martin; Suter, Martin; Synal, Hans-Arno

    2015-10-01

    With the introduction of helium stripping in radiocarbon (14C) accelerator mass spectrometry (AMS), higher +1 charge state yields in the 200 keV region and fewer beam losses are observed compared to nitrogen or argon stripping. To investigate the feasibility of even lower beam energies for 14C analyses the stripping characteristics of carbon in helium need to be further studied. Using two different AMS systems at ETH Zurich (myCADAS and MICADAS), ion beam transmissions of carbon ions for the charge states -1, +1, +2 and +3 were measured in the range of 258 keV down to 30 keV. The correction for beam losses and the extraction of charge state yields and charge exchange cross sections will be presented. An increase in population of the +1 charge state towards the lowest measured energies up to 75% was found as well as agreement with previous data from literature. The findings suggest that more compact radiocarbon AMS systems are possible and could provide even higher efficiency than current systems operating in the 200 keV range.

  10. The role of soil drainage class in carbon dioxide exchange and decomposition in boreal black spruce (Picea mariana) forest stands

    USGS Publications Warehouse

    Wickland, K.P.; Neff, J.C.; Harden, J.W.

    2010-01-01

    Black spruce (Picea mariana (Mill.) B.S.P.) forest stands range from well drained to poorly drained, typically contain large amounts of soil organic carbon (SOC), and are often underlain by permafrost. To better understand the role of soil drainage class in carbon dioxide (CO2) exchange and decomposition, we measured soil respiration and net CO2 fluxes, litter decomposition and litterfall rates, and SOC stocks above permafrost in three Alaska black spruce forest stands characterized as well drained (WD), moderately drained (MD), and poorly drained (PD). Soil respiration and net CO2 fluxes were not significantly different among sites, although the relation between soil respiration rate and temperature varied with site (Qw: WD > MD > PD). Annual estimated soil respiration, litter decomposition, and groundcover photosynthesis were greatest at PD. These results suggest that soil temperature and moisture conditions in shallow organic horizon soils at PD were more favorable for decomposition compared with the better drained sites. SOC stocks, however, increase from WD to MD to PD such that surface decomposition and C storage are diametric. Greater groundcover vegetation productivity, protection of deep SOC by permafrost and anoxic conditions, and differences in fire return interval and (or) severity at PD counteract the relatively high near-surface decomposition rates, resulting in high net C accumulation.

  11. Protein adsorption on low temperature isotropic carbon. III. Isotherms, competitivity, desorption and exchange of human albumin and fibrinogen.

    PubMed

    Feng, L; Andrade, J D

    1994-04-01

    In this paper we consider the adsorption of albumin and fibrinogen on low temperature isotropic carbon (LTIC). A subsequent paper considers the adsorption of other plasma proteins [Feng L, Andrade JD, Colloids and Surfaces (in press)]. Carbon fragments and silica plates were used as adsorbents. Adsorption was carried out by incubating the adsorbents in solutions of 125I-labelled and unlabelled proteins (single component system), or with buffer-diluted human plasma (multicomponent system). Adsorbed proteins then underwent displacement by buffer, by single protein solutions or by dilute plasma. Results show that the LTIC substrate adsorbs a large amount of proteins before saturation, which may be due to multilayer adsorption. LTIC also irreversibly holds adsorbed proteins against the exchange agents used; little adsorbed proteins can be displaced, even after a very short adsorption time. There is no preferential adsorption for either albumin or fibrinogen on LTIC from their binary solutions, suggesting that both proteins have high affinities for the surface. Such strong interactions between LTIC and proteins are not attributed to electrostatic interactions. On the other hand, protein adsorption on the silica surface is selective and reversible, with a much higher affinity for fibrinogen than albumin and an even higher affinity for some other plasma proteins. The paper also discusses the effect of sequential protein addition to a solution on the surface concentration and suppression of adsorption of both proteins in the presence of other plasma proteins. A very important conclusion is that the LTIC surface is very active towards proteins adsorption. PMID:8061122

  12. Loss of the AE3 Cl−/HCO−3 exchanger in mice affects rate-dependent inotropy and stress-related AKT signaling in heart

    PubMed Central

    Prasad, Vikram; Lorenz, John N.; Lasko, Valerie M.; Nieman, Michelle L.; Al Moamen, Nabeel J.; Shull, Gary E.

    2013-01-01

    Cl−/HCO−3 exchangers are expressed abundantly in cardiac muscle, suggesting that HCO−3 extrusion serves an important function in heart. Mice lacking Anion Exchanger Isoform 3 (AE3), a major cardiac Cl−/HCO−3 exchanger, appear healthy, but loss of AE3 causes decompensation in a hypertrophic cardiomyopathy (HCM) model. Using intra-ventricular pressure analysis, in vivo pacing, and molecular studies we identified physiological and biochemical changes caused by loss of AE3 that may contribute to decompensation in HCM. AE3-null mice had normal cardiac contractility under basal conditions and after β-adrenergic stimulation, but pacing of hearts revealed that frequency-dependent inotropy was blunted, suggesting that AE3-mediated HCO−3 extrusion is required for a robust force-frequency response (FFR) during acute biomechanical stress in vivo. Modest changes in expression of proteins that affect Ca2+-handling were observed, but Ca2+-transient analysis of AE3-null myocytes showed normal twitch-amplitude and Ca2+-clearance. Phosphorylation and expression of several proteins implicated in HCM and FFR, including phospholamban (PLN), myosin binding protein C, and troponin I were not altered in hearts of paced AE3-null mice; however, phosphorylation of Akt, which plays a central role in mechanosensory signaling, was significantly higher in paced AE3-null hearts than in wild-type controls and phosphorylation of AMPK, which is affected by Akt and is involved in energy metabolism and some cases of HCM, was reduced. These data show loss of AE3 leads to impaired rate-dependent inotropy, appears to affect mechanical stress-responsive signaling, and reduces activation of AMPK, which may contribute to decompensation in heart failure. PMID:24427143

  13. How pulse modes affect proton-barriers and anion-exchange membrane mineral fouling during consecutive electrodialysis treatments.

    PubMed

    Cifuentes-Araya, Nicolás; Pourcelly, Gérald; Bazinet, Laurent

    2013-02-15

    Mineral fouling of cation-exchange membrane (CEM) was recently reduced by pulsed electric fields (PEFs) during the electrodialysis (ED) of solutions containing high Mg(2+)/Ca(2+) ratios. However, a fouling layer appeared on the diluate side of anion-exchange membrane (AEM) once the pause lapse surpassed certain duration. Recent studies presented a multilayer mineral growth on CEM, but the case of AEM needs yet to be cleared. The current study reveals the mechanisms involved in AEM fouling growth when applying pulse modes of current in comparison with dc current. The results showed that dc current generated steady proton barriers given by water splitting at AEM interfaces that impeded fouling on both membrane sides. The higher frequency of PEF ratio 1 (Ton/Toff=10s/10s) acted removing completely an initial mineral deposit on the concentrate side of AEM, keeping it clean after two and three consecutive runs. Particularly, an undesirable brucite layer was formed on the AEM-diluate side for longer pause lapses as for a PEF ratio 0.3 (Ton/Toff=10s/33.3s) current regime. This structure caused violent water splitting resulting in amorphous magnesium hydroxide formation and consequently in fouling precipitation on the concentrate side during a third run through current exaltation. PMID:23141696

  14. EFFECTS OF TANNINS ON SOIL CARBON, CATION EXCHANGE CAPACITY, AND METAL SOLUBILITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannins sorb to soil, affect the solubility of soil nitrogen, and soil chemical processes that may be important for the formation of soil organic matter and nutrient cycling. However, studies are needed, comparing different classes of tannins and related compounds, to determine if soils have a maxi...

  15. Phosphorus supply affects acclimation of photosynthesis in loblolly pine to elevated carbon dioxide

    SciTech Connect

    Lewis, J.D.; Griffin, K.L.; Thomas, R.B.; Strain, B.R. )

    1993-06-01

    The interactive effects of phosphorus supply and mycorrhizal status on the acclimation of photosynthesis to elevated CO[sub 2] was investigated using 12 week old loblolly pine (Pinus taeda L.) seedlings. Seedlings were grown at either 35.5 Pa or 7 1.0 Pa CO[sub 2], with (M) or without (NM) mycorrhizal inoculum and with an adequate (High P) or a limiting (Low P) supply of phosphorus. Seedlings grown and measured at 7 1.0 Pa CO[sub 2] had significantly higher net assimilation rates (A) than seedlings grown and measured at 35.5 Pa. However, A did not vary between CO[sub 2] treatments when compared at either 35.5 or 71.0 Pa. Elevated CO[sub 2] resulted in reduced rubisco activity (V[sub cmax]) and increased RuBP regeneration capacity (J[sub max]). Low P plants had lower V[sub cmax], J[sub max] and A than High P plants. There were also significant three-way interactions between CO[sub 2] supply, phosphorus supply and mycorrhizal status on estimated values of V[sub cmax] and J[sub max]. Both V[sub cmax] and J[sub max] decreased in plants grown at elevated CO[sub 2] in all nutrient treatments except Low P, NM plants, where mean values of both parameters increased. These results indicate that plant phosphorus status affects the acclimation of photosynthesis to elevated carbon dioxide. Mycorrhizal infection ameliorated phosphorus deficiency effects on photosynthetic capacity.

  16. Impact of Atmosphere-sea Exchange on the Isotopic Expression of Carbon Excursions: Observations and Modeling of OAE-1a

    NASA Astrophysics Data System (ADS)

    Finkelstein, D. B.; Pratt, L. M.; Brassell, S. C.; Montañez, I. P.

    2005-12-01

    Negative carbon isotope excursions are a recurring phenomenon in earth history (e.g., Permo-Triassic boundary, Jurassic and Cretaceous oceanic anoxic events, and the Paleocene-Eocene Thermal Maximum) variously attributed to destabilization of methane clathrates, a decrease in primary productivity, intensified volcanism, and more recently to widespread peat fires. Each forcing mechanism invoked accounts for both the magnitude of the negative isotopic shift and the reservoir required to drive the shift as observed at one to several locales. Studies rarely consider the effect of latitudinal temperature changes on the excursion. Here, we explore the early Aptian oceanic anoxic event as an example of a negative isotopic shift whose magnitude varies with paleolatitude in terrestrial settings. It increases (from -2.0 to -8.2 ‰) with paleolatitude (5° to 33°N) and is greater than that expected for changes in plant C isotope discrimination driven by environmental stresses (~3 ‰). Conceptually, an isotopic shift of terrestrial vegetation across paleolatitudes represents a response to its forcing mechanism and temperature. A closed system carbon cycle model constructed of five reservoirs (atmosphere, vegetation, soil, and shallow and deep oceans), and five fluxes (productivity, respiration, litter fall, atmosphere-ocean exchange, and surface-deep ocean exchange) was employed is assessment of a negative isotopic shift at 2x pre-industrial atmospheric levels (P.A.L.) for pCO2 keeping all variables constant with the exception of temperature. The model was run at 5°C increments from 5° to 40°C to simulate the effect of temperature gradients on isotopic shifts at variable latitudes, with the appropriate temperature dependent fractionations for atmosphere - sea exchange. The magnitude of the negative isotopic shift at each temperature was calculated for both terrestrial and marine organic matter. In terrestrial vegetation it changed from -4 to -5.8 ‰ with decreasing

  17. Heat transfer and pressure drop of supercritical carbon dioxide flowing in several printed circuit heat exchanger channel patterns

    SciTech Connect

    Carlson, M.; Kruizenga, A.; Anderson, M.; Corradini, M.

    2012-07-01

    Closed-loop Brayton cycles using supercritical carbon dioxide (SCO{sub 2}) show potential for use in high-temperature power generation applications including High Temperature Gas Reactors (HTGR) and Sodium-Cooled Fast Reactors (SFR). Compared to Rankine cycles SCO{sub 2} Brayton cycles offer similar or improved efficiency and the potential for decreased capital costs due to a reduction in equipment size and complexity. Compact printed-circuit heat exchangers (PCHE) are being considered as part of several SCO{sub 2} Brayton designs to further reduce equipment size with increased energy density. Several designs plan to use a gas cooler operating near the pseudo-critical point of carbon dioxide to benefit from large variations in thermophysical properties, but further work is needed to validate correlations for heat transfer and pressure-drop characteristics of SCO{sub 2} flows in candidate PCHE channel designs for a variety of operating conditions. This paper presents work on experimental measurements of the heat transfer and pressure drop behavior of miniature channels using carbon dioxide at supercritical pressure. Results from several plate geometries tested in horizontal cooling-mode flow are presented, including a straight semi-circular channel, zigzag channel with a bend angle of 80 degrees, and a channel with a staggered array of extruded airfoil pillars modeled after a NACA 0020 airfoil with an 8.1 mm chord length facing into the flow. Heat transfer coefficients and bulk temperatures are calculated from measured local wall temperatures and local heat fluxes. The experimental results are compared to several methods for estimating the friction factor and Nusselt number of cooling-mode flows at supercritical pressures in millimeter-scale channels. (authors)

  18. Assessing filtering of mountaintop CO2 mole fractions for application to inverse models of biosphere-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Brooks, B.-G. J.; Desai, A. R.; Stephens, B. B.; Bowling, D. R.; Burns, S. P.; Watt, A. S.; Heck, S. L.; Sweeney, C.

    2012-02-01

    There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are often difficult to measure due to unusual and complicated influences associated with atmospheric transport. Consequently, deriving regional fluxes in mountain regions with carbon cycle inversion of atmospheric CO2 mole fraction is sensitive to filtering of observations to those that can be represented at the transport model resolution. Using five years of CO2 mole fraction observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON), five statistical filters are used to investigate a range of approaches for identifying regionally representative CO2 mole fractions. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diel variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mole fraction variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to select subsets of site measurements that are representative on model scales. Our new filtering techniques provide guidance for novel approaches to assimilating mountain-top CO2 mole fractions in carbon cycle inverse models.

  19. A model of vertical exchange of water and carbon dioxide in the boreal ecosystem

    NASA Astrophysics Data System (ADS)

    Kuchment, L. S.; Demidov, V. N.; Startseva, Z. P.

    2003-04-01

    The vertical movement of soil moisture is described by the Richards equation including the term accounting for water extraction by plant roots. Evapotranspiration is presented in the form of two separate fluxes: the evaporation from the soil surface and the transpiration. The bulb formulas have been used to calculate both these components. The ground and leave temperatures are calculated on the basis of heat balance approach using the solar radiation components as input data. The stomatal resistance is a function of leave water potential and photosynthesis. The photosynthesis is calculated as the diffusion of carbon dioxide through the stomatal openings or the leaf photosynthesis model is applied. To estimate the canopy dark respiration and the respiration from soil, root and stem empirical formulas are used. The model has been calibrated and validated on the basis of tower flux and meteorological data obtained for Southern Study Area Old Jack Pine site (Saskatchevan, Canada) during the 1994 BOREAS project. The influence of soil moisture content on the carbon dioxide fluxes and the photosynthesis has been investigated.

  20. Recovery of energy, water and carbon exchange in degraded forests in eastern Amazonia

    NASA Astrophysics Data System (ADS)

    Trumbore, Susan; Brando, Paulo; Oliveira dos Santos, Claudinei; Silvério, Divino; Coe, Michael

    2016-04-01

    Large regions in the state of Mato Grosso in Brazil have been deforested and converted to pasture and soy agriculture. In addition to deforestation, remnant forests in the region are degraded by repeated fire and edge related effects. We are combining eddy covariance with other measures to study the impact of these changes in land cover on energy, water and carbon balance, in a region that sits at the ecotone between continuous forest and savanna. The degraded forest plot is part of a multi-year experimental fire treatment and had experienced large-scale mortality in the years prior to tower installation. Leaf area was strongly reduced in degraded forest, but surprisingly latent energy fluxes nearly equaled those in the intact forest. Carbon uptake rates in the intact forest exceeded those in the degraded forest, though not when expressed on a leaf-area basis. Overall, these results corroborate those found in experimentally logged tropical forest showing rapid recovery of fluxes, despite losses of biomass. Compared to both forests, the soy field reflected more incoming energy, and lost a greater proportion of absorbed radiation as sensible rather than latent heat.

  1. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies.

    PubMed

    Voelker, Steven L; Brooks, J Renée; Meinzer, Frederick C; Anderson, Rebecca; Bader, Martin K-F; Battipaglia, Giovanna; Becklin, Katie M; Beerling, David; Bert, Didier; Betancourt, Julio L; Dawson, Todd E; Domec, Jean-Christophe; Guyette, Richard P; Körner, Christian; Leavitt, Steven W; Linder, Sune; Marshall, John D; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina; Plumpton, Heather J; Pregitzer, Kurt S; Saurer, Matthias; Smith, Andrew R; Siegwolf, Rolf T W; Stambaugh, Michael C; Talhelm, Alan F; Tardif, Jacques C; Van de Water, Peter K; Ward, Joy K; Wingate, Lisa

    2016-02-01

    Rising atmospheric [CO2 ], ca , is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2 ], ci , a constant drawdown in CO2 (ca  - ci ), and a constant ci /ca . These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca . The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca . To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ(13) C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca -induced changes in ci /ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca  - ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci . Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca , when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca , when photosystems are saturated and water loss is large for each unit C gain

  2. Ventilation and carbon dioxide exchange in exercising horses: effect of inspired oxygen fraction.

    PubMed

    Pelletier, N; Leith, D E

    1995-02-01

    Thoroughbred horses (TB) have no ventilatory response to added CO2 during near-maximal exercise. To see whether that reflects mechanical limits to ventilation or the control of breathing, we examined the effects of varying inspired O2 fraction (0.16, 0.21, or 0.30) in five normal TB standing quietly and galloping at 10 and 14 m/s on a level treadmill. We measured gas exchange (O2 consumption and CO2 production) and ventilation with a flow-through mask system. We also measured PO2, PCO2, and O2 contents in arterial and mixed venous blood and calculated cardiac output by using the Fick equation. Low inspired O2 fraction (0.16 vs. 0.21) had significant effects in TB galloping at 14 m/s. Arterial PO2 then was 38 Torr compared with 56 Torr for horses on air. Tidal volume and minute ventilation were 20% greater than their corresponding values on air, which were 12 liters and 1,475 l/min, respectively, whereas respiratory frequency did not change. O2 consumption and CO2 production were unchanged, but alveolar ventilation was 6% greater, despite increased alveolar and physiological dead spaces, so arterial PCO2 was lower (45 vs. 50 Torr on air). Thus, hypoxia was an effective stimulus to breathing, and minute ventilation was not mechanically limited in TB breathing air at the speeds studied. PMID:7759436

  3. Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis.

    PubMed

    Haupt-Herting, Silke; Fock, Heinrich P

    2002-06-01

    In a study on metabolic consumption of photosynthetic electrons and dissipation of excess light energy under water stress, O2 and CO2 gas exchange was measured by mass spectrometry in tomato plants using 18O2 and 13CO2. Under water stress, gross O2 evolution (E(O)), gross O2 uptake (U(O)), net CO2 uptake (PN), gross CO2 uptake (TPS), and gross CO2 evolution (Ec) declined. The ratio P(N)/E(O) fell during stress, while the ratios U(O)/E(O) and E(C)/TPS rose. Mitochondrial respiration in the light, which can be measured directly by 12CO2 evolution during 13CO2 uptake at 3000 microl l(-1) 13CO2, is small in relation to gross CO2 evolution and CO2 release from the glycolate pathway. It is concluded that PSII, the Calvin cycle and mitochondrial respiration are down-regulated under water stress. The percentages of photosynthetic electrons dissipated by CO2 assimilation, photorespiration and the Mehler reaction were calculated: in control leaves more than 50% of the electrons were consumed in CO2 assimilation, 23% in photorespiration and 13% in the Mehler reaction. Under severe stress the percentages of electrons dissipated by CO2 assimilation and the Mehler reaction declined while the percentage of electrons used in photorespiration doubled. The consumption of electrons in photorespiration may reduce the likelihood of damage during water deficit. PMID:12102511

  4. The role of snow cover and soil freeze/thaw cycles affecting boreal-arctic soil carbon dynamics

    NASA Astrophysics Data System (ADS)

    Yi, Y.; Kimball, J. S.; Rawlins, M. A.; Moghaddam, M.; Euskirchen, E. S.

    2015-07-01

    Northern Hemisphere permafrost affected land areas contain about twice as much carbon as the global atmosphere. This vast carbon pool is vulnerable to accelerated losses through mobilization and decomposition under projected global warming. Satellite data records spanning the past 3 decades indicate widespread reductions (∼ 0.8-1.3 days decade-1) in the mean annual snow cover extent and frozen season duration across the pan-Arctic domain, coincident with regional climate warming trends. How the soil carbon pool responds to these changes will have a large impact on regional and global climate. Here, we developed a coupled terrestrial carbon and hydrology model framework with detailed 1-D soil heat transfer representation to investigate the sensitivity of soil organic carbon stocks and soil decomposition to changes in snow cover and soil freeze/thaw processes in the Pan-Arctic region over the past three decades (1982-2010). Our results indicate widespread soil active layer deepening across the pan-Arctic, with a mean decadal trend of 6.6 ± 12.0 (SD) cm, corresponding with widespread warming and lengthening non-frozen season. Warming promotes vegetation growth and soil heterotrophic respiration, particularly within surface soil layers (≤ 0.2 m). The model simulations also show that seasonal snow cover has a large impact on soil temperatures, whereby increases in snow cover promote deeper (≥ 0.5 m) soil layer warming and soil respiration, while inhibiting soil decomposition from surface (≤ 0.2 m) soil layers, especially in colder climate zones (mean annual T ≤ -10 °C). Our results demonstrate the important control of snow cover in affecting northern soil freeze/thaw and soil carbon decomposition processes, and the necessity of considering both warming, and changing precipitation and snow cover regimes in characterizing permafrost soil carbon dynamics.

  5. Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting.

    PubMed

    Srivastava, Ajit; Htoon, Han; Klimov, Victor I; Kono, Junichiro

    2008-08-22

    We report the direct observation of spin-singlet dark excitons in individual single-walled carbon nanotubes through low-temperature micro-magneto-photoluminescence spectroscopy. A magnetic field (B) applied along the tube axis brightened the dark state, leading to the emergence of a new emission peak. The peak rapidly grew in intensity with increasing B at the expense of the originally dominated bright exciton peak and became dominant at B>3 T. This behavior, universally observed for more than 50 tubes of different chiralities, can be quantitatively modeled by incorporating the Aharonov-Bohm effect and intervalley Coulomb mixing. The directly measured dark-bright splitting values were 1-4 meV for tube diameters 1.0-1.3 nm. Scatter in the splitting value emphasizes the role of the local environment surrounding a nanotube in determining its excitonic fine structure. PMID:18764659

  6. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere

    PubMed

    Sellers; Dickinson; Randall; Betts; Hall; Berry; Collatz; Denning; Mooney; Nobre; Sato; Field; Henderson-Sellers

    1997-01-24

    Atmospheric general circulation models used for climate simulation and weather forecasting require the fluxes of radiation, heat, water vapor, and momentum across the land-atmosphere interface to be specified. These fluxes are calculated by submodels called land surface parameterizations. Over the last 20 years, these parameterizations have evolved from simple, unrealistic schemes into credible representations of the global soil-vegetation-atmosphere transfer system as advances in plant physiological and hydrological research, advances in satellite data interpretation, and the results of large-scale field experiments have been exploited. Some modern schemes incorporate biogeochemical and ecological knowledge and, when coupled with advanced climate and ocean models, will be capable of modeling the biological and physical responses of the Earth system to global change, for example, increasing atmospheric carbon dioxide. PMID:8999789

  7. Land Use Affects Carbon Sources to the Pelagic Food Web in a Small Boreal Lake.

    PubMed

    Rinta, Päivi; van Hardenbroek, Maarten; Jones, Roger I; Kankaala, Paula; Rey, Fabian; Szidat, Sönke; Wooller, Matthew J; Heiri, Oliver

    2016-01-01

    Small humic forest lakes often have high contributions of methane-derived carbon in their food webs but little is known about the temporal stability of this carbon pathway and how it responds to environmental changes on longer time scales. We reconstructed past variations in the contribution of methanogenic carbon in the pelagic food web of a small boreal lake in Finland by analyzing the stable carbon isotopic composition (δ13C values) of chitinous fossils of planktivorous invertebrates in sediments from the lake. The δ13C values of zooplankton remains show several marked shifts (approx. 10 ‰), consistent with changes in the proportional contribution of carbon from methane-oxidizing bacteria in zooplankton diets. The results indicate that the lake only recently (1950s) obtained its present state with a high contribution of methanogenic carbon to the pelagic food web. A comparison with historical and palaeobotanical evidence indicates that this most recent shift coincided with agricultural land-use changes and forestation of the lake catchment and implies that earlier shifts may also have been related to changes in forest and land use. Our study demonstrates the sensitivity of the carbon cycle in small forest lakes to external forcing and that the effects of past changes in local land use on lacustrine carbon cycling have to be taken into account when defining environmental and ecological reference conditions in boreal headwater lakes. PMID:27487044

  8. Land Use Affects Carbon Sources to the Pelagic Food Web in a Small Boreal Lake

    PubMed Central

    Rinta, Päivi; van Hardenbroek, Maarten; Jones, Roger I.; Kankaala, Paula; Rey, Fabian; Szidat, Sönke; Wooller, Matthew J.; Heiri, Oliver

    2016-01-01

    Small humic forest lakes often have high contributions of methane-derived carbon in their food webs but little is known about the temporal stability of this carbon pathway and how it responds to environmental changes on longer time scales. We reconstructed past variations in the contribution of methanogenic carbon in the pelagic food web of a small boreal lake in Finland by analyzing the stable carbon isotopic composition (δ13C values) of chitinous fossils of planktivorous invertebrates in sediments from the lake. The δ13C values of zooplankton remains show several marked shifts (approx. 10 ‰), consistent with changes in the proportional contribution of carbon from methane-oxidizing bacteria in zooplankton diets. The results indicate that the lake only recently (1950s) obtained its present state with a high contribution of methanogenic carbon to the pelagic food web. A comparison with historical and palaeobotanical evidence indicates that this most recent shift coincided with agricultural land-use changes and forestation of the lake catchment and implies that earlier shifts may also have been related to changes in forest and land use. Our study demonstrates the sensitivity of the carbon cycle in small forest lakes to external forcing and that the effects of past changes in local land use on lacustrine carbon cycling have to be taken into account when defining environmental and ecological reference conditions in boreal headwater lakes. PMID:27487044

  9. Development of internal manifold heat exchanger (IMHEX reg sign ) molten carbonate fuel cell stacks

    SciTech Connect

    Marianowski, L.G.; Ong, E.T.; Petri, R.J.; Remick, R.J.

    1991-01-01

    The Institute of Gas Technology (IGT) has been in the forefront of molten carbonate fuel cell (MCFC) development for over 25 years. Numerous cell designs have been tested and extensive tests have been performed on a variety of gas manifolding alternatives for cells and stacks. Based upon the results of these performance tests, IGT's development efforts started focusing on an internal gas manifolding concept. This work, initiated in 1988, is known today as the IMHEX{reg sign} concept. MCP has developed a comprehensive commercialization program loading to the sale of commercial units in 1996. MCP's role is in the manufacture of stack components, stack assembly, MCFC subsystem testing, and the design, marketing and construction of MCFC power plants. Numerous subscale (1 ft{sup 2}) stacks have been operated containing between 3 and 70 cells. These tests verified and demonstrated the viability of internal manifolding from technical (no carbonate pumping), engineering (relaxed part dimensional tolerance requirements), and operational (good gas sealing) aspects. Simplified fabrication, ease of assembly, the elimination of external manifolds and all associated clamping requirements has significantly lowered anticipated stack costs. Ongoing 1 ft{sup 2} stack testing is generating performance and endurance characteristics as a function of system specified operating conditions. Commercial-sized, full-area stacks (10 ft{sup 2}) are in the process of being assembled and will be tested in November. This paper will review the recent developments the MCFC scale-up and manufacture work of MCP, and the research and development efforts of IGT which support those efforts. 17 figs.

  10. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 2: Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2013-04-01

    Increased ocean acidification from fossil fuel CO2 invasion, from temperature-driven changes in respiration, and from possible leakage from sub-seabed geologic CO2 disposal has aroused concern over the impacts of elevated CO2 concentrations on marine life. Discussion of these impacts has so far focused only on changes in the oceanic bulk fluid properties (ΔpH, Δ[∑ CO2], etc.) as the critical variable and with a major focus on carbonate shell formation. Here we describe the rate problem for animals that must export CO2 at about the same rate at which O2 is consumed. We analyse the basic properties controlling CO2 export within the diffusive boundary layer around marine animals in an ocean changing in temperature (T) and CO2 concentration in order to compare the challenges posed by O2 uptake under stress with the equivalent problem of CO2 expulsion. The problem is more complex than that for a non-reactive gas, since with CO2 the influence of the seawater carbonate acid-base system needs to be considered. These reactions significantly facilitate CO2 efflux compared to O2 intake at equal temperature, pressure and fluid flow rate under typical oceanic concentrations. The effect of these reactions can be described by an enhancement factor, similar to that widely used for CO2 invasion at the sea surface. While organisms do need to actively regulate flow over their surface to thin the boundary layer to take up enough O2, this seems to be not necessary to facilitate CO2 efflux. Instead, the main impacts of rising oceanic CO2 will most likely be those associated with classical ocean acidification science. Regionally, as with O2, the combination of T, P and pH/pCO2 creates a zone of maximum CO2 stress at around 1000 m depth.

  11. Spatial and temporal patterns of biotic exchanges of CO sub 2 between the atmosphere and tropical landscapes and their role in the global carbon balance

    SciTech Connect

    Not Available

    1992-01-01

    At SUNY ESF, our overall objective for this year was to finish refining the methods used to convert our previous models of global carbon flux and land use change into a GIS-compatible format. We now have the ability to obtain, convert, and incorporate geographic data into spatial simulation models that describe past carbon exchange patterns, as well as predict future landuse change and carbon exchange. Our initial tests of this model in Peninsula Malaysia have been very promising, in that we are able to successfully predict land use from 1972 to 1982 and even from 1870 to 1970. In this context successful'' means that we classify in the model from 80 to 95 percent of the cells correctly, depending upon the number of land use types we try to predict. We are now preparing to apply this model to the entire continent of Africa and to Central America.

  12. Soil-Gas Identification of Environmental Factors Affecting CO2 Concentrations Beneath a Playa Wetland: Implications for Soil-Gas Monitoring at Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Romanak, K.; Bennett, P.

    2009-12-01

    Strategies for identifying and interpreting the effects of environmental factors on near-surface CO2 concentrations are essential to developing accurate monitoring protocols at carbon storage sites. Based on the results of a three-year study of a natural analogue we present, 1) a method for using soil-gas to identify near-surface CO2 cycling, and 2) a framework for developing monitoring protocols and site evaluation for near-surface monitoring. Near-surface CO2 production, consumption, and re-distribution was observed in the vadose-zone of a highly CO2-reactive playa wetland in the Texas High Plains. Atmospheric conditions, organic and inorganic soil carbon, subsurface pressure, water flux, and surface and groundwater chemistry were compared to real-time background measurements of CO2, CH4, O2+Ar, and N2 from depths up to 45 feet. Carbon isotopes and spatially and temporally variable concentrations of CO2 ≤ 17%, CH4 ≤ 2%, and O2 from 21-0% indicate CO2 and CH4 are produced by microbes. Molar gas ratios of O2 and CO2 distinguish between oxidation of organic matter (CH2O + O2 → CO2 + H2O), CH4 oxidation (CH4 + 2O2 → CO2 + 2H2O), and potentially acetate fermentation (CH3COOH → CH4 + CO2). O2 consumption and distribution is regulated by water flux that supplies dissolved organics to microbes at depth and regulates oxygen supply by blocking vertical permeability and atmospheric gas exchange. A surface flux experiment indicates that when playa floors are dry, subsurface wetting fronts from rain events or previous ponding periods block vertical permeability resulting in surface flux measurements that do not represent subsurface conditions. Samples with CO2+O2 < 21% and N2 > 78% identify dissolution of CO2 and carbonate minerals into recharging groundwater resulting in loss of pore pressure and chemically-induced advection of atmosphere into pores. Inverse geochemical reaction modeling (PHREEQC) of playa surface water and perched groundwater in high PCO2 zones

  13. How does the topic of conversation affect verbal exchange and eye gaze? A comparison between typical development and high-functioning autism.

    PubMed

    Nadig, Aparna; Lee, Iris; Singh, Leher; Bosshart, Kyle; Ozonoff, Sally

    2010-07-01

    Conversation is a primary area of difficulty for individuals with high-functioning autism (HFA) although they have unimpaired formal language abilities. This likely stems from the unstructured nature of face-to-face conversation as well as the need to coordinate other modes of communication (e.g. eye gaze) with speech. We conducted a quantitative analysis of both verbal exchange and gaze data obtained from conversations between children with HFA and an adult, compared with those of typically developing children matched on language level. We examined a new question: how does speaking about a topic of interest affect reciprocity of verbal exchange and eye gaze? Conversations on generic topics were compared with those on individuals' circumscribed interests, particularly intense interests characteristic of HFA. Two opposing hypotheses were evaluated. Speaking about a topic of interest may improve reciprocity in conversation by increasing participants' motivation and engagement. Alternatively, it could engender more one-sided interaction, given the engrossing nature of circumscribed interests. In their verbal exchanges HFA participants demonstrated decreased reciprocity during the interest topic, evidenced by fewer contingent utterances and more monologue-style speech. Moreover, a measure of stereotyped behaviour and restricted interest symptoms was inversely related to reciprocal verbal exchange. However, both the HFA and comparison groups looked significantly more to their partner's face during the interest than generic topic. Our interpretation of results across modalities is that circumscribed interests led HFA participants to be less adaptive to their partner verbally, but speaking about a highly practiced topic allowed for increased gaze to the partner. The function of this increased gaze to partner may differ for the HFA and comparison groups. PMID:20493890

  14. New insights into carbon acquisition and exchanges within the coral-dinoflagellate symbiosis under NH4+ and NO3- supply.

    PubMed

    Ezzat, Leïla; Maguer, Jean-François; Grover, Renaud; Ferrier-Pagès, Christine

    2015-08-01

    Anthropogenic nutrient enrichment affects the biogeochemical cycles and nutrient stoichiometry of coastal ecosystems and is often associated with coral reef decline. However, the mechanisms by which dissolved inorganic nutrients, and especially nitrogen forms (ammonium versus nitrate) can disturb the association between corals and their symbiotic algae are subject to controversial debate. Here, we investigated the coral response to varying N : P ratios, with nitrate or ammonium as a nitrogen source. We showed significant differences in the carbon acquisition by the symbionts and its allocation within the symbiosis according to nutrient abundance, type and stoichiometry. In particular, under low phosphate concentration (0.05 µM), a 3 µM nitrate enrichment induced a significant decrease in carbon fixation rate and low values of carbon translocation, compared with control conditions (N : P = 0.5 : 0.05), while these processes were significantly enhanced when nitrate was replaced by ammonium. A combined enrichment in ammonium and phosphorus (N : P = 3 : 1) induced a shift in nutrient allocation to the symbionts, at the detriment of the host. Altogether, these results shed light into the effect of nutrient enrichment on reef corals. More broadly, they improve our understanding of the consequences of nutrient loading on reef ecosystems, which is urgently required to refine risk management strategies. PMID:26203006

  15. Elevated pressure of carbon dioxide affects growth of thermophilic Petrotoga sp.

    NASA Astrophysics Data System (ADS)

    Rakoczy, Jana; Gniese, Claudia; Schippers, Axel; Schlömann, Michael; Krüger, Martin

    2014-05-01

    Carbon capture and storage (CCS) is considered a promising new technology which reduces carbon dioxide emissions into the atmosphere and thereby decelerates global warming. During CCS, carbon dioxide is captured from emission sources (e.g. fossil fuel power plants or other industries), pressurised, and finally stored in deep geological formations, such as former gas or oil reservoirs as well as saline aquifers. However, with CCS being a very young technology, there are a number of unknown factors that need to be investigated before declaring CCS as being safe. Our research investigates the effect of high carbon dioxide concentrations and pressures on an indigenous microorganism that colonises a potential storage site. Growth experiments were conducted using the thermophilic thiosulphate-reducing bacterium Petrotoga sp., isolated from formation water of the gas reservoir Schneeren (Lower Saxony, Germany), situated in the Northern German Plain. Growth (OD600) was monitored over one growth cycle (10 days) at different carbon dioxide concentrations (50%, 100%, and 150% in the gas phase), and was compared to control cultures grown with 20% carbon dioxide. An additional growth experiment was performed over a period of 145 days with repeated subcultivation steps in order to detect long-term effects of carbon dioxide. Cultivation over 10 days at 50% and 100% carbon dioxide slightly reduced cell growth. In contrast, long-term cultivation at 150% carbon dioxide reduced cell growth and finally led to cell death. This suggested a more pronounced effect of carbon dioxide at prolonged cultivation and stresses the need for a closer consideration of long-term effects. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a sterilising effect on cells. This effect was not observed in control cultures

  16. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  17. Role of gas exchange in the inorganic carbon, oxygen, and /sup 222/Rn budgets of the Amazon River

    SciTech Connect

    Devol, A.H.; Quay, P.D.; Richey, J.E.; Martinelli, L.A.

    1987-01-01

    Dissolved oxygen, /sup 222/Rn, pCO/sub 2/, alkalinity, respiration rate, and discharge have been measured at eight mainstem and seven tributary stations during February-March 1984 in a 1700-km stretch of the Amazon River between Vargem Grande and Obidos in Brazil. Air-water gas exchange rates were estimated two ways: measurements of the flux of /sup 222/Rn int floating domes yielded an average boundary layer thickness of 78..mu..m, and oxygen mass balance calculations resulted in an average of 38..mu..m. Given a boundary layer thickness on the order of 50..mu..m, CO/sub 2/ loss to the atmosphere in the entire reach would have been 37.4 kmol s/sup -1/, which is about equal to the total tributary dissolved inorganic carbon (DIC) input and is about half of the total fluvial DIC input to the section. Thus, CO/sub 2/ evasion is a major component of Amazon River DIC balance. Because gas exchange within the section was rapid relative to water travel time through the section, a quasi-steady state was maintained between respiratory input and evasion of CO/sub 2/. Dissolved /sup 222/Rn activities in the mainstem varied from 3.5 to 8.3 dpm liter/sup -1/ and were always highly supersaturated with respect to the atmosphere. Dissolved radon was also not supported by decay of /sup 222/Ra in the mainstem. A /sup 222/Rn mass balance indicated that direct groundwater input into this stretch of the Amazon mainstem probably accounted for no more than 1% of water discharge.

  18. PDF Weaving - Linking Inventory Data and Monte Carlo Uncertainty Analysis in the Study of how Disturbance Affects Forest Carbon Storage

    NASA Astrophysics Data System (ADS)

    Healey, S. P.; Patterson, P.; Garrard, C.

    2014-12-01

    Altered disturbance regimes are likely a primary mechanism by which a changing climate will affect storage of carbon in forested ecosystems. Accordingly, the National Forest System (NFS) has been mandated to assess the role of disturbance (harvests, fires, insects, etc.) on carbon storage in each of its planning units. We have developed a process which combines 1990-era maps of forest structure and composition with high-quality maps of subsequent disturbance type and magnitude to track the impact of disturbance on carbon storage. This process, called the Forest Carbon Management Framework (ForCaMF), uses the maps to apply empirically calibrated carbon dynamics built into a widely used management tool, the Forest Vegetation Simulator (FVS). While ForCaMF offers locally specific insights into the effect of historical or hypothetical disturbance trends on carbon storage, its dependence upon the interaction of several maps and a carbon model poses a complex challenge in terms of tracking uncertainty. Monte Carlo analysis is an attractive option for tracking the combined effects of error in several constituent inputs as they impact overall uncertainty. Monte Carlo methods iteratively simulate alternative values for each input and quantify how much outputs vary as a result. Variation of each input is controlled by a Probability Density Function (PDF). We introduce a technique called "PDF Weaving," which constructs PDFs that ensure that simulated uncertainty precisely aligns with uncertainty estimates that can be derived from inventory data. This hard link with inventory data (derived in this case from FIA - the US Forest Service Forest Inventory and Analysis program) both provides empirical calibration and establishes consistency with other types of assessments (e.g., habitat and water) for which NFS depends upon FIA data. Results from the NFS Northern Region will be used to illustrate PDF weaving and insights gained from ForCaMF about the role of disturbance in carbon

  19. Changes in ecosystem structure related to the type and extent of woody cover alter carbon dynamics and surface energy exchange in central Texas ecosystems.

    NASA Astrophysics Data System (ADS)

    Litvak, M. E.; Heilman, J.; McInnes, K.; Owens, K.; Kjelgaard, J.; Thijs, A.

    2006-12-01

    Rangeland ecosystems account for almost two thirds the total land area in Texas. Over the past century, heavy livestock grazing and fire suppression coupled with changes in climate have facilitated the expansion of woody species into rangelands throughout the state. Based in part on the assumption that woody species use more water than their herbaceous counterparts, land managers have used a variety of techniques to reduce tree and shrub abundance to combat the loss of forage for cattle. As a result, the structure of rangelands in Texas is complex, characterized by woody vegetation that is patchy in distribution, and continually changing between grassland, savanna and woodland. Despite the large areal extent of Texas rangelands, very little is known about how the observed changes in ecosystem structure impact carbon cycle dynamics and surface energy exchange. To reduce these uncertainties, we explored explicit relationships between structure and function in these ecosystems by comparing tower-based measurements of carbon and water vapor exchange made simultaneously from July 2004-Dec 2005 across three representative land covers in central Texas: open grassland, savanna with 30% Ashe juniper and honey mesquite cover, and closed canopy woodland. Here we report our findings on what impact the type and pattern of woody plant cover has on biological controls and patterns of carbon sequestration, evapotranspiration, and sensitivity to precipitation pulses. Monthly measurements of leaf level gas exchange, soil respiration rates, herbaceous net ecosystem exchange, and sap flow measurements on dominant woody species were used to augment eddy covariance estimates of ecosystem-atmosphere exchange. The addition of woody species significantly increased carbon sequestration in these ecosystems. Net ecosystem production from July 05-Jun 05 in the grassland, savanna and forest ecosystems was -14 g C m-2, -413 g C m-2, -450 g C m-2, respectively. Evapotranspiration was less

  20. Calcium carbonate budgets for two coral reefs affected by different terrestrial runoff regimes, Rio Bueno, Jamaica

    NASA Astrophysics Data System (ADS)

    Mallela, J.; Perry, C. T.

    2007-03-01

    A process-based carbonate budget was used to compare carbonate framework production at two reef sites subject to varying degrees of fluvial influence in Rio Bueno, Jamaica. The turbid, central embayment was subjected to high rates of fluvial sediment input, framework accretion was restricted to ≤30 m, and net carbonate production was 1,887 g CaCO3 m-2 year-1. Gross carbonate production (GCP) was dominated by scleractinians (97%), particularly by sediment-resistant species, e.g. Diploria strigosa on the reef flat (<2 m). Calcareous encrusters contributed very little carbonate. Total bioerosion removed 265 g CaCO3 m-2 year-1 and was dominated by microborers. At the clear-water site, net carbonate production was 1,236 g CaCO3 m-2 year-1; the most productive zone was on the fore-reef (10 m). Corals accounted for 82% of GCP, and encrusting organisms 16%. Bioerosion removed 126 g CaCO3 m-2 year-1 and was dominated by macroborers. Total fish and urchin grazing was limited throughout (≤20 g CaCO3 m-2 year-1). The study demonstrates that: (1) carbonate production and net reef accretion can occur where environmental conditions approach or exceed perceived threshold levels for coral survival; and (2) although live coral cover (and carbonate production rates) were reduced on reef-front sites along the North Jamaican coast, low population densities of grazing fish and echinoids to some extent offset this, thus maintaining positive carbonate budgets.

  1. Effects of vegetation structure on soil carbon, nutrients and greenhouse gas exchange in a savannah ecosystem of Mount Kilimanjaro Region

    NASA Astrophysics Data System (ADS)

    Becker, J.

    2015-12-01

    The savannah biome is a hotspot for biodiversity and wildlife conservation in Africa and recently got in the focus of research on carbon sequestration. Savannah ecosystems are under strong pressure from climate and land-use change, especially around populous areas like the Mt. Kilimanjaro region. Savannah vegetation consists of grassland with isolated trees and is therefore characterized by high spatial variation of canopy cover, aboveground biomass and root structure. The canopy structure is a major regulator for soil ecological parameters and soil-atmospheric trace gas exchange (CO2, N2O, CH4) in water limited environments. The spatial distribution of these parameters and the connection between above and belowground processes are important to understand and predict ecosystem changes and estimate its vulnerability. Our objective was to determine spatial trends and changes of soil parameters and relate their variability to the vegetation structure. We chose three trees from each of the two most dominant species (Acacia nilotica and Balanites aegyptiaca) in our research area. For each tree, we selected transects with nine sampling points of the same relative distances to the stem. At these each sampling point a soil core was taken and separated in 0-10 cm and 10-30 cm depth. We measured soil carbon (C) and nitrogen (N) storage, microbial biomass C and N, Natural δ13C, soil respiration, available nutrients, pH, cation exchange capacity (CEC) as well as root biomass and -density, soil temperature and soil water content. Concentrations and stocks of C and N fractions, CEC and K+ decreased up to 50% outside the crown covered area. Microbial C:N ratio and CO2 efflux was about 30% higher outside the crown. This indicates N limitation and low C use efficiency in soil outside the crown area. We conclude that the spatial structure of aboveground biomass in savanna ecosystems leads to a spatial variance in nutrient limitation. Therefore, the capability of a savanna ecosystem

  2. Exchange of nitrous oxides and carbon dioxide measured using the eddy covariance technique in a high-latitude city

    NASA Astrophysics Data System (ADS)

    Järvi, Leena; Nordbo, Annika; Rannik, Üllar; Haapanala, Sami; Pihlatie, Mari; Mammarella, Ivan; Riikonen, Anu; Nikinmaa, Eero; Vesala, Timo

    2014-05-01

    In Helsinki, Finland, carbon dioxide (CO2) fluxes have been measured continuously using the eddy covariance (EC) technique since 2005. In summer 2012, the measurements were supplemented with the fluxes of nitrous oxide (N2O) in order to examine how the exchanges of these two important greenhouse gases behave in urban environment. The EC measurements are made at the semi-urban measurement station SMEAR III Kumpula site located four kilometres north-east from the Helsinki city centre. The measurements are made on the top level of a 31 meters high lattice tower (60°12.17'N, 24°57.67'E) located on a hill, 26 m above sea level. The area around the tower can be divided into three surface cover sectors: built, road and vegetation, each representing the typical surface cover of the area. These areas allow us to examine the effect of different urban surface covers to the exchange of CO2 and N2O. The measurement setup includes an ultrasonic anemometer (USA-1, Metek GmbH) and a closed-path infrared gas analyzer (LI-7000, LI-COR) to measure the CO2 flux. During the summer 2012 measurement campaign lasting from 21 June till 27 November, the N2O flux was measured using a TDL spectrometer. Commonly accepted procedures were used to post-process the raw 10 Hz data. Overall, the measurement surroundings act as a source for both CO2 and N2O. The long-term measurements of the CO2 flux show a strong seasonal variation with clear effect from vegetation. In summer in the direction of high fraction of vegetation cover, the CO2 uptake exceeds its emissions and a downward flux reaching on average 10 μmol m-2 s-1 is observed. N2O on the other hand reaches its maxima values (campaign median 2.0 μmol m-2 h-1) in the same direction. This indicates that vegetation cannot be neglected in the urban greenhouse exchange studies. Traffic had a clear role emitting both N2O and CO2 with higher emissions during the rush hours than at other times. In the direction of the heavily trafficked road

  3. Biometric and Eddy-Covariance Based Estimates of Ecosystem Carbon Exchange in an Age-Sequence of Temperate Pine Forests

    NASA Astrophysics Data System (ADS)

    Peichl, M.; Arain, M. A.; Brodeur, J. J.; Khomik, M.

    2009-05-01

    We determined and compared annual carbon (C) exchanges from biometric and eddy-covariance (EC) measurements in an age-sequence (6-, 19-, 34-, 69-years old) of managed pine (Pinus strobus L.) forests in southern Ontario from 2005-2007. The biometric approach determined annual above- and belowground tree biomass production from site-specific allometric biomass equations depending on either tree diameter at breast height (DBH) only (method B1) or on DBH with tree height as additional variable (method B2). In addition, detritus production and heterotrophic soil respiration were determined. Data from continuous closed- path measurements at the oldest site and from a roving open-path system among the three younger sites provided EC-based estimates of C exchanges (method EC). The contribution of individual net primary productivity (NPP) components varied considerably with stand age, suggesting different dominant fluxes and uncertainty levels occurring at various forest development stages. All methods produced similar patterns for inter-annual variations with highest (lowest) C fluxes in 2006 (2005). While on an annual basis, differences between methods ranged from ± 4-67% for estimates of annual net ecosystem productivity (NEP), the differences were within ± 15% when averaged over three years, except for the 34-year old stand. Mean annual NEP was estimated by the biometric method B1 (B2) as 1 (N.A.), 394 (634), 134 (265), and 124 (272) g C m-2 y-1 compared to 47, 724, 408, and 119 g C m-2 y-1 by the EC method for the 6-, 19-, 34-, 69-years old stands, respectively. The biometric method B1 agreed best with the EC estimates in the youngest and the oldest stand, but estimated considerably lower productivity rates than the EC method in the two middle-age stands in which method B2 showed a better agreement with method EC by accounting for the vigorous height growth in these stands. Thus, our comparison study shows that the use of inadequate allometric equations may

  4. Development of an Eddy Covariance System for Air-Sea Carbon Dioxide Exchange

    NASA Astrophysics Data System (ADS)

    Miller, S. D.; Marandino, C. A.; McCormick, C.; Saltzman, E. S.

    2006-12-01

    We are developing a ship-based system to measure the air-sea pCO2 gradient and air-sea turbulent flux of CO2 over the ocean. The eddy covariance flux system uses off-the-shelf instruments to measure the turbulent wind vector (Campbell Scientific CSAT3 sonic anemometer), platform motion (Systron Donner Motion Pak II), and carbon dioxide molar density (LiCor 7000 Infrared Gas Analyzer). Two major sources of uncertainty in calculated fluxes are the effect of water vapor fluctuations on air density fluctuations (the WPL effect, Webb, Pearman and Leuning. 1980), and a spurious CO2 signal due to the sensitivity of the gas analyzer to platform motion (McGillis et al., 1998). Two flux systems were deployed side-by-side on a cruise from Manzanillo, Mexico to Puntas Arenas, Chile, in January 2006. Results from the cruise are presented, with a focus on our attempts to reduce biases in the calculated air-sea CO2 flux due to the WPL effect and the motion sensitivity of the gas analyzer.

  5. Exchanges of oxygen, carbon dioxide, nitrogen and water in the caecilian Dermophis mexicanus.

    PubMed

    Stiffler, D F; Talbot, C R

    2000-11-01

    Oxygen consumption was measured in five Dermophis mexicanus and averaged (+/- SEM) 0.047 +/- 0.004 ml O2 g(-1) x h(-1). Carbon dioxide production averaged 0.053 +/- 0.005 ml CO2 g(-1) x h(-1) in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 micromol N g(-1) x h(-1) which is higher than that found for other amphibians. Of this, 82.5% (1.13 micromol N g(-1) x h(-1)) was in the form of urea while 17.5% (0.24 micromol N g(-1) h(-1)) was in the form of NH3 + NH4+. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g(-1) x h(-1) in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. PMID:11128440

  6. Vertically aligned carbon nanotube electrodes for high current density operating proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Murata, Shigeaki; Imanishi, Masahiro; Hasegawa, Shigeki; Namba, Ryoichi

    2014-05-01

    We successfully developed cathode electrodes for polymer electrolyte membrane fuel cells (PEMFC) that enable operation at high current densities by incorporating vertically aligned carbon nanotubes (CNTs) as the catalyst support; additionally, we prepared 236 cm2 membrane electrodes assemblies (MEAs) for vehicular use. The electrode structure improved the mass transport of reactants, i.e. oxygen, proton, electron and water, in systems performing at a 2.6 A cm-2 current density and 0.6 V with extremely low platinum (Pt) loading at the cathode (0.1 mg cm-2). The improved mass transport caused the 70 mV dec-1 Tafel slope to continue up to 1.0 A cm-2. The mass transport was improved because the pores were continuous, the catalyst support materials did not agglomerate and the catalyst layer made good electrical contact with the microporous layer. Utilizing wavy coil-shaped CNTs was also crucial. These CNTs displayed anti-agglomerative characteristics during the wet manufacturing process and maintained a continuous pore structure framing the layered catalyst structure. Because the CNTs had elastic characteristics, they might fill the space between catalyst and microporous layers to prevent flooding. However, the compressed CNTs in the cells were no longer vertically aligned. Therefore, vertically aligning the nanotubes was important during the MEA manufacturing process but was irrelevant for cell performance.

  7. Nanosilver and Nano Zero-Valent Iron Exposure Affects Nutrient Exchange Across the Sediment-Water Interface.

    PubMed

    Buchkowski, Robert W; Williams, Clayton J; Kelly, Joel; Veinot, Jonathan G C; Xenopoulos, Marguerite A

    2016-01-01

    To examine how nanoparticles influence biogeochemical cycles in streams, we studied the acute impact of nanosilver (nAg) and nanoparticulate zero-valent iron (nZVI) exposure on nutrient and oxygen exchange across the sediment-water interface of two streams (agricultural canal and wetland) that differed in their water quality and sediment characteristics. At the agricultural site, nAg increased oxygen consumption and decreased N2 flux rates from that observed in control incubations. nZVI caused sediment-water systems from both streams to go hypoxic within 1.5 h of exposure. N2 flux rates were at least an order of magnitude higher in nZVI treatments as compared to control. Water column nitrate and nitrite concentrations were not impacted by nZVI exposure but total dissolved phosphorus concentrations were higher in cores treated with nZVI. nAg and nZVI exposure to surface water ecosystems can disrupt ecological function across the sediment-water interface. PMID:26611367

  8. Enhanced salt-removal percentage in capacitive deionization with addition of ion-exchange membrane using carbon electrode synthesized with freezing thawing method

    NASA Astrophysics Data System (ADS)

    Sari, Intan Permata; Endarko

    2016-04-01

    Ion-exchange membrane technology has shown a great potential to enhance the desalting efficiency. Ion-exchange membranes are placed in front of the electrodes so that the charged ions can be selectively passed through the membrane layer and captured by the oppositely charged electrode more quickly, so as to increase the efficiency of desalination. In this research, carbon electrodes have been synthesized from an activated carbon (700 - 1400 m2/g) and polyvinyl alcohol (PVA) as a binder using freezing thawing method. A solution with 180 µS/cm NaCl was pumped to the capacitive deionization (CDI) cell using a Boyu Submersible pump (model SP-601) at a flow rate of 25 mL/min and the voltage was set at 2 V. The result showed that the CDI cell with ion-exchange membrane (MCDI) has the salt removal efficiency greater than the CDI cell without ion-exchange membrane. The salt-removal percentage of MCDI was achieved at 66.36%, meanwhile the CDI cell without ion-exchange membrane resulted in 54.4%.

  9. Modeling coupled interactions of carbon, water, and ozone exchange between terrestrial ecosystems and the atmosphere. I: model description.

    PubMed

    Nikolov, Ned; Zeller, Karl F

    2003-01-01

    A new biophysical model (FORFLUX) is presented to study the simultaneous exchange of ozone, carbon dioxide, and water vapor between terrestrial ecosystems and the atmosphere. The model mechanistically couples all major processes controlling ecosystem flows trace gases and water implementing recent concepts in plant eco-physiology, micrometeorology, and soil hydrology. FORFLUX consists of four interconnected modules-a leaf photosynthesis model, a canopy flux model, a soil heat-, water- and CO2- transport model, and a snow pack model. Photosynthesis, water-vapor flux and ozone uptake at the leaf level are computed by the LEAFC3 sub-model. The canopy module scales leaf responses to a stand level by numerical integration of the LEAFC3model over canopy leaf area index (LAI). The integration takes into account (1) radiative transfer inside the canopy, (2) variation of foliage photosynthetic capacity with canopy depth, (3) wind speed attenuation throughout the canopy, and (4) rainfall interception by foliage elements. The soil module uses principles of the diffusion theory to predict temperature and moisture dynamics within the soil column, evaporation, and CO2 efflux from soil. The effect of soil heterogeneity on field-scale fluxes is simulated employing the Bresler-Dagan stochastic concept. The accumulation and melt of snow on the ground is predicted using an explicit energy balance approach. Ozone deposition is modeled as a sum of three fluxes- ozone uptake via plant stomata, deposition to non-transpiring plant surfaces, and ozone flux into the ground. All biophysical interactions are computed hourly while model projections are made at either hourly or daily time step. FORFLUX represents a comprehensive approach to studying ozone deposition and its link to carbon and water cycles in terrestrial ecosystems. PMID:12713923

  10. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    DOE PAGESBeta

    Whelan, Mary E.; Hilton, Timothy W.; Berry, Joseph A.; Berkelhammer, Max; Desai, Ankur R.; Campbell, J. Elliott

    2016-03-21

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil–COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show small uptake of atmospheric COS. Recently, a series of studies at an agricultural site in the central United States found soilmore » COS production under hot conditions an order of magnitude greater than fluxes at other sites. To investigate the extent of this phenomenon, soils were collected from five new sites and incubated in a variety of soil moisture and temperature states. We found that soils from a desert, an oak savannah, a deciduous forest, and a rainforest exhibited small COS fluxes, behavior resembling previous studies. However, soil from an agricultural site in Illinois, >800 km away from the initial central US study site, demonstrated comparably large soil fluxes under similar conditions. These new data suggest that, for the most part, soil COS interaction is negligible compared to plant uptake of COS. We present a model that anticipates the large agricultural soil fluxes so that they may be taken into account. Furthermore, while COS air-monitoring data are consistent with the dominance of plant uptake, improved interpretation of these data should incorporate the soil flux parameterizations suggested here.« less

  11. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    SciTech Connect

    Whelan, Mary E.; Hilton, Timothy W.; Berry, Joseph A.; Berkelhammer, Max; Desai, Ankur R.; Campbell, J. Elliott

    2016-01-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil–COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show small uptake of atmospheric COS. Recently, a series of studies at an agricultural site in the central United States found soil COS production under hot conditions an order of magnitude greater than fluxes at other sites. To investigate the extent of this phenomenon, soils were collected from five new sites and incubated in a variety of soil moisture and temperature states. We found that soils from a desert, an oak savannah, a deciduous forest, and a rainforest exhibited small COS fluxes, behavior resembling previous studies. However, soil from an agricultural site in Illinois,  > 800 km away from the initial central US study site, demonstrated comparably large soil fluxes under similar conditions. These new data suggest that, for the most part, soil COS interaction is negligible compared to plant uptake of COS. We present a model that anticipates the large agricultural soil fluxes so that they may be taken into account. While COS air-monitoring data are consistent with the dominance of plant uptake, improved interpretation of these data should incorporate the soil flux parameterizations suggested here.

  12. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    NASA Astrophysics Data System (ADS)

    Whelan, M. E.; Hilton, T. W.; Berry, J. A.; Berkelhammer, M.; Desai, A. R.; Campbell, J. E.

    2015-08-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show small uptake of atmospheric COS. Recently, a series of studies at an agricultural site in the central United States found soil COS production under hot conditions an order of magnitude greater than fluxes at other sites. To investigate the extent of this phenomenon, soils were collected from 5 new sites and incubated in a variety of soil moisture and temperature states. We found that soils from a desert, an oak savannah, a deciduous forest, and a rainforest exhibited small COS fluxes, behavior resembling previous studies. However, soil from an agricultural site in Illinois, > 800 km away from the initial central US study site, demonstrated comparably large soil fluxes under similar conditions. These new data suggest that, for the most part, soil COS interaction is negligible compared to plant uptake of COS. We present a model that anticipates the large agricultural soil fluxes so that they may be taken into account. While COS air-monitoring data are consistent with the dominance of plant uptake, improved interpretation of these data should incorporate the soil flux parameterizations suggested here.

  13. Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake

    NASA Astrophysics Data System (ADS)

    Whelan, Mary E.; Hilton, Timothy W.; Berry, Joseph A.; Berkelhammer, Max; Desai, Ankur R.; Campbell, J. Elliott

    2016-03-01

    Carbonyl sulfide (COS) measurements are one of the emerging tools to better quantify gross primary production (GPP), the largest flux in the global carbon cycle. COS is a gas with a similar structure to CO2; COS uptake is thought to be a proxy for GPP. However, soils are a potential source or sink of COS. This study presents a framework for understanding soil-COS interactions. Excluding wetlands, most of the few observations of isolated soils that have been made show small uptake of atmospheric COS. Recently, a series of studies at an agricultural site in the central United States found soil COS production under hot conditions an order of magnitude greater than fluxes at other sites. To investigate the extent of this phenomenon, soils were collected from five new sites and incubated in a variety of soil moisture and temperature states. We found that soils from a desert, an oak savannah, a deciduous forest, and a rainforest exhibited small COS fluxes, behavior resembling previous studies. However, soil from an agricultural site in Illinois, > 800 km away from the initial central US study site, demonstrated comparably large soil fluxes under similar conditions. These new data suggest that, for the most part, soil COS interaction is negligible compared to plant uptake of COS. We present a model that anticipates the large agricultural soil fluxes so that they may be taken into account. While COS air-monitoring data are consistent with the dominance of plant uptake, improved interpretation of these data should incorporate the soil flux parameterizations suggested here.

  14. Concurrent Measurements of Oxygen and Carbon Dioxide Exchange during Lightflecks in Maize (Zea mays L.).

    PubMed

    Krall, J. P.; Pearcy, R. W.

    1993-11-01

    Leaves of maize (Zea mays L.) were enclosed in a temperature-controlled cuvette under 35 Pa (350 [mu]bars) CO2 and 0.2 kPa (0.2%)O2 and exposed to short periods (1-30 s) of illumination (light-flecks). The rate and total amount of CO2 assimilated and O2 evolved were measured. The O2 evolution rate was taken as an indicator of the rate of photosynthetic noncyclic electron transport (NCET). In this C4 species, the response of electron transport during the lightflecks qualitatively mimicked that of C3 species previously tested, whereas the response of CO2 assimilation differed. Under short-duration lightflecks at high photon flux density (PFD), the mean rate of O2 evolution was greater than the steady-state rate of O2 evolution under the same PFD due to a burst of O2 evolution at the beginning of the lightfleck. This O2 burst was taken as indicating a high level of NCET involved in the buildup of assimilatory charge via ATP, NADPH, and reduced or phosphorylated metabolites. However, as lightfleck duration decreased, the amount of CO2 assimilated per unit time of the lightfleck (the mean rate of CO2 assimilation) decreased. There was also a burst of CO2 from the leaf at the beginning of low-PFD lightflecks that further reduced the assimilation during these lightflecks. The results are discussed in terms of the buildup of assimilatory charge through the synthesis of high-energy metabolites specific to C4 metabolism. It is speculated that the inefficiency of carbon uptake during brief light transients in the C4 species, relative to C3 species, is due to the futile synthesis of C4 cycle intermediates. PMID:12231981

  15. Calcium Carbonate Phosphate Binding Ion Exchange Filtration and Accelerated Denitrification Improve Public Health Standards and Combat Eutrophication in Aquatic Ecosystems

    PubMed Central

    Yanamadala, Vijay

    2010-01-01

    Hektoen agar. Initial analyses suggest a strong correlation between phosphate concentrations and bacterial populations; a 66% decrease in phosphate resulted in a 35% reduction in bacterial populations and a 45% reduction in enteropathogenic populations. Likewise, a strong correlation was shown between calcium carbonate concentrations and bacterial reduction greater than that which can be attributed to the phosphate reduction alone. This was followed by the construction of various phosphate binding calcium carbonate filters, which used the ion exchange principle, including a spring loading filter, PVC pipe filter, and a galvanized filter. All were tested with the aid of Stoke's law formulation. The experiment was extremely successful in designing a working phosphate-binding and ammonia-reducing filter, and a large-scale agitator-clarifier filter system is currently being planned for construction in Madrona Marsh; this filter will reduce phosphate and ammonia levels substantially in the following years, bringing ecological, economical, and health-related improvements to the overall ecosystem and habitat. PMID:16381147

  16. Acclimation to high CO/sub 2/ in monoecious cucumbers. II. Carbon exchange rates, enzyme activities, and starch and nutrient concentrations. [Cucumis sativus L

    SciTech Connect

    Peet, M.M.; Huber, S.C.; Patterson, D.T.

    1986-01-01

    Carbon exchange capacity of cucumber (Cucumis sativus L.) germinated and grown in controlled environment chambers at 1000 microliters per liter CO/sub 2/ decreased from the vegetative growth stage to the fruiting stage, during which time capacity of plants grown at 350 microliters per liter increased. Carbon exchange rates (CERs) measured under growth conditions during the fruiting period were, in fact, lower in plants grown at 1000 microliters per liter CO/sub 2/ than those grown at 350. Progressive decreases in CERs in 1000 microliters per liter plants were associated with decreasing stomatal conductances and activities of ribulose bisphosphate carboxylase and carbonic anhydrase. Leaf starch concentrations were higher in 1000 microliters per liter CO/sub 2/ grown-plants than in 350 microliters per liter grown plants but calcium and nitrogen concentrations were lower, the greatest difference occurring at flowering. Sucrose synthase and sucrose-P-synthase activities were similar in 1000 microliters per liter compared to 350 microliters per liter plants during vegetative growth and flowering but higher in 350 microliters per liter plants at fruiting. The decreased carbon exchange rates observed in this cultivar at 1000 microliters per liter CO/sub 2/ could explain the lack of any yield increase when compared with plants grown at 350 microliters per liter.

  17. [Evaluation of remote sensing extraction methods for vegetation phenology based on flux tower net ecosystem carbon exchange data].

    PubMed

    Mou, Min-Jie; Zhu, Wen-Quan; Wang, Ling-Li; Xu, Ying-Jun; Liu, Jian-Hong

    2012-02-01

    Taking the vegetation phenological metrics derived from the net ecosystem carbon exchange (NEE) data of 72 flux towers in North America as the references, a comprehensive evaluation was conducted on the three typical classes of remote sensing extraction methods (threshold method, moving average method, and function fitting method) for vegetation phenology from the aspects of feasibility and accuracy. The results showed that the local midpoint threshold method had the highest feasibility and accuracy for extracting vegetation phenology, followed by the first derivative method based on fitted Logistic function. The feasibility and accuracy of moving average method were determined by the moving window size. As for the MODJS 16 d composited time-series normalized difference vegetation index (NDVI), the moving average method had preferable performance when the window size was set as 15. The global threshold method performed quite poor in the feasibility and accuracy. Though the values of the phenological metrics extracted by the curvature change rate method based on fitted Logistic function and the corresponding ones derived from NEE data had greater differences, there existed a strong correlation between them, indicating that the vegetation phenological metrics extracted by the curvature change rate method could reflect the real temporal and spatial variations of vegetation phenology. PMID:22586953

  18. Assessing filtering of mountaintop CO2 mixing ratios for application to inverse models of biosphere-atmosphere carbon exchange

    NASA Astrophysics Data System (ADS)

    Brooks, B.-G. J.; Desai, A. R.; Stephens, B. B.; Bowling, D. R.; Burns, S. P.; Watt, A. S.; Heck, S. L.; Sweeney, C.

    2011-09-01

    There is a widely recognized need to improve our understanding of biosphere-atmosphere carbon exchanges in areas of complex terrain including the United States Mountain West. CO2 fluxes over mountainous terrain are difficult to measure often due to unusual and complicated influences associated with atmospheric transport in complex terrain. Using five years of CO2 mixing ratio observations from the Regional Atmospheric Continuous CO2 Network in the Rocky Mountains (Rocky RACCOON), five statistical (subsetting) filters are used to investigate a range of approaches for identifying regionally representative CO2 mixing ratios. Test results from three filters indicate that subsets based on short-term variance and local CO2 gradients across tower inlet heights retain nine-tenths of the total observations and are able to define representative diurnal variability and seasonal cycles even for difficult-to-model sites where the influence of local fluxes is much larger than regional mixing ratio variations. Test results from two other filters that consider measurements from previous and following days using spline fitting or sliding windows are overly selective. Case study examples showed that even when standardized to common subset sizes these windowing-filters rejected measurements representing synoptic changes in CO2, which suggests that they are not well suited to filtering continental CO2 measurements. We present a novel CO2 lapse rate filter that uses CO2 differences between levels in the model atmosphere to constrain subsets of site measurements that are representative on model scales.

  19. Isotopic exchange in mineral-fluid systems. 4. The crystal chemical controls on oxygen isotope exchange rates in carbonate-H{sub 2}O and layer silicate-H{sub 2}O systems

    SciTech Connect

    Cole, D.R.

    2000-03-01

    Oxygen isotope exchange between minerals and water in systems far from chemical equilibrium is controlled largely by surface reactions such as dissolution-precipitation. In many cases, this behavior can be modeled adequately by a simple pseudo-first order rate model that accounts for changes in surface area of the solid. Previous modeling of high temperature isotope exchange data for carbonates, sulfates, and silicates indicated that within a given mineral group there appears to be a systematic relationship between rate and mineral chemistry. The author tested this idea by conducting oxygen isotope exchange experiments in the systems, carbonate-H{sub 2}O and layer silicate-H{sub 2}O at 300 and 350 C, respectively. Witherite (BaCO{sub 3}), strontianite (SrCO{sub 3}) and calcite (CaCO{sub 3}) were reacted with pure H{sub 2}O for different lengths of time (271--1,390 H) at 300 C and 100 bars. The layer silicates, chlorite, biotite and muscovite were reacted with H{sub 2}O for durations ranging from 132 to 3,282 h at 350 C and 250 bars. A detailed survey of grain sizes and grain habits using scanning electron microscopy (SEM) indicated that grain regrowth occurred in all experiments to varying extents. The isotopic rates (ln r) for the carbonate-H{sub 2}O system are {minus}20.75 {+-} 0.44, {minus}18.95 {+-} 0.62 and {minus}18.51 {+-} 0.48 mol O/m{sup 2} s for calcite, strontianite and witherite, respectively. The oxygen isotope exchange rates for layer silicate-H{sub 2}O systems are {minus}23.99 {+-} 0.89, {minus}23.14 {+-} 0.74 and {minus}22.40 {+-} 0.66 mol O/m{sup 2} s for muscovite, biotite and chlorite, respectively.

  20. International Studies of Hazardous Groundwater/Surface Water Exchange in the Volcanic Eruption and Tsunami Affected Areas of Kamchatka

    NASA Astrophysics Data System (ADS)

    Kontar, Y. A.; Gusiakov, V. K.; Izbekov, P. E.; Gordeev, E.; Titov, V. V.; Verstraeten, I. M.; Pinegina, T. K.; Tsadikovsky, E. I.; Heilweil, V. M.; Gingerich, S. B.

    2012-12-01

    During the US-Russia Geohazards Workshop held July 17-19, 2012 in Moscow, Russia the international research effort was asked to identify cooperative actions for disaster risk reduction, focusing on extreme geophysical events. As a part of this recommendation the PIRE project was developed to understand, quantify, forecast and protect the coastal zone aquifers and inland water resources of Kamchatka (Russia) and its ecosystems affected by the November 4, 1952 Kamchatka tsunami (Khalatyrka Beach near Petropavlovsk-Kamchatskiy) and the January 2, 1996 Karymskiy volcano eruption and the lake tsunami. This project brings together teams from U.S. universities and research institutions located in Russia. The research consortium was briefed on recent technical developments and will utilize samples secured via major international volcanic and tsunami programs for the purpose of advancing the study of submarine groundwater discharge (SGD) in the volcanic eruption and tsunami affected coastal areas and inland lakes of Kamchatka. We plan to accomplish this project by developing and applying the next generation of field sampling, remote sensing, laboratory techniques and mathematical tools to study groundwater-surface water interaction processes and SGD. We will develop a field and modeling approach to define SGD environment, key controls, and influence of volcano eruption and tsunami, which will provide a framework for making recommendations to combat contamination. This is valuable for politicians, water resource managers and decision-makers and for the volcano eruption and tsunami affected region water supply and water quality of Kamchatka. Data mining and results of our field work will be compiled for spatial modeling by Geo-Information System (GIS) using 3-D Earth Systems Visualization Lab. The field and model results will be communicated to interested stakeholders via an interactive web site. This will allow computation of SGD spatial patterns. In addition, thanks to the

  1. Effects of drought - altered seasonality and low rainfall - in net ecosystem carbon exchange of three contrasting Mediterranean ecosystems

    NASA Astrophysics Data System (ADS)

    Pereira, J. S.; Mateus, J. A.; Aires, L. M.; Pita, G.; Pio, C.; Andrade, V.; Banza, J.; David, T. S.; Rodrigues, A.; David, J. S.

    2007-06-01

    Droughts cause reductions in gross primary production (GPP) and also in net ecosystem exchange (NEE), contributing to most of the inter-annual variability in terrestrial carbon sequestration. In seasonally dry climates (Mediterranean) droughts result from reductions in annual rainfall and from changes in rain seasonality. In western Iberia, the hydrological-year (i.e., from October to September) of 2004-2005 was extremely dry, with precipitation 50% below the long-term mean (691 mm in 1961-1990), but 2005-2006 was normal. We compared the carbon fluxes measured by the eddy covariance technique from three contrasting ecosystems in southern Portugal: an evergreen oak woodland (savannah-like) with ca. 21% tree cover; a Mediterranean C3/C4 grassland; and a coppiced eucalyptus plantation. During the dry hydrological-year of 2004-2005, NEE was lowest, the highest sink strength was in the eucalypt plantation (NEE = -399 g C m -2 year-1) as compared to the oak woodland (NEE = -88 g C m -2 year-1), and the grassland (NEE = +49 g C m -2 year -1). The latter was a source of carbon dioxide. The NEE values of the dry year were, however, much lower than those for wetter years, e.g. NEE = -861 g C m-2 year -1 in 2002-2003 in the eucalypt plantation. The NEE of the grassland and the oak savannah in the 2005-2006 hydrological-year, with annual precipitation above the long term mean, were -190 and -120 g C m -2 year-1, respectively. All ecosystems studied increased their rain-use efficiency (GPP per unit of rain volume) increased in dry years. In the case of annual vegetation - grassland and low tree density woodland, however &ndash, rain-use efficiency decreased with severe drought. However, this was more pronounced in the eucalypt plantation due to greater GPP and the use of deep soil water resources. Although both calendar years of 2004 and 2005 had equally low rainfall, the effect of drought on the eucalypt plantation was delayed until the second dry year. This suggests that the

  2. Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100

    NASA Astrophysics Data System (ADS)

    Jin, Zhenong; Zhuang, Qianlai; He, Jin-Sheng; Zhu, Xudong; Song, Weimin

    2015-08-01

    Methane (CH4) is a potent greenhouse gas (GHG) that affects the global climate system. Knowledge about land-atmospheric CH4 exchanges on the Qinghai-Tibetan Plateau (QTP) is insufficient. Using a coupled biogeochemistry model, this study analyzes the net exchanges of CH4 and CO2 over the QTP for the period of 1979-2100. Our simulations show that the region currently acts as a net CH4 source with 0.95 Tg CH4 y-1 emissions and 0.19 Tg CH4 y-1 soil uptake, and a photosynthesis C sink of 14.1 Tg C y-1. By accounting for the net CH4 emission and the net CO2 sequestration since 1979, the region was found to be initially a warming source until the 2010s with a positive instantaneous radiative forcing peak in the 1990s. In response to future climate change projected by multiple global climate models (GCMs) under four representative concentration pathway (RCP) scenarios, the regional source of CH4 to the atmosphere will increase by 15-77% at the end of this century. Net ecosystem production (NEP) will continually increase from the near neutral state to around 40 Tg C y-1 under all RCPs except RCP8.5. Spatially, CH4 emission or uptake will be noticeably enhanced under all RCPs over most of the QTP, while statistically significant NEP changes over a large-scale will only appear under RCP4.5 and RCP4.6 scenarios. The cumulative GHG fluxes since 1979 will exert a slight warming effect on the climate system until the 2030s, and will switch to a cooling effect thereafter. Overall, the total radiative forcing at the end of the 21st century is 0.25-0.35 W m-2, depending on the RCP scenario. Our study highlights the importance of accounting for both CH4 and CO2 in quantifying the regional GHG budget.

  3. Whole Leaf Carbon Exchange Characteristics of Phosphate Deficient Soybeans (Glycine max L.) 1

    PubMed Central

    Lauer, Michael J.; Pallardy, Stephen G.; Blevins, Dale G.; Randall, Douglas D.

    1989-01-01

    Low phosphate nutrition results in increased chlorophyll fluorescence, reduced photosynthetic rate, accumulation of starch and sucrose in leaves, and low crop yields. This study investigated physiological responses of soybean (Glycine max [L.] Merr.) leaves to low inorganic phosphate (Pi) conditions. Responses of photosynthesis to light and CO2 were examined for leaves of soybean grown at high (0.50 millimolar) or low (0.05 millimolar) Pi. Leaves of low Pi plants exhibited paraheliotropic orientation on bright sunny days rather than the normal diaheliotropic orientation exhibited by leaves of high Pi soybeans. Leaves of plants grown at high Pi had significantly higher light saturation points (1000 versus 630 micromole photons [400-700 nanometers] per square meter per second) and higher apparent quantum efficiency (0.062 versus 0.044 mole CO2 per mole photons) at ambient (34 pascals) CO2 than did low Pi leaves, yet stomatal conductances were similar. High Pi leaves also had significantly higher carboxylation efficiency (2.90 versus 0.49 micromole CO2 per square meter per second per pascal), a lower CO2 compensation point (6.9 versus 11.9 pascals), and a higher photosynthetic rate at 34 pascals CO2 (19.5 versus 6.7 micromoles CO2 per square meter per second) than did low Pi leaves. Soluble protein (0.94 versus 0.73 milligram per square centimeter), ribulose-1,5-bisphosphate carboxylase/oxygenase content (0.33 versus 0.25 milligram per square centimeter), and ribulose-1,5-bisphosphate carboxylase/oxygenase specific activity (25.0 versus 16.7 micromoles per square meter per second) were significantly greater in leaves of plants in the high Pi treatment. The data indicate that Pi stress alters the plant's CO2 reduction characteristics, which may in turn affect the plant's capacity to accommodate normal radiation loads. Images Figure 1 Figure 4 PMID:16667147

  4. The sorption of organic matter in soils as affected by the nature of soil carbon

    SciTech Connect

    Kaiser, K.; Haumaier, L.; Zech, W.

    2000-04-01

    Recent studies have shown that soil organic carbon (OC) may either hinder or favor the sorption of dissolved organic matter (DOM) in soils. The concept was that the nature of soil OC determines these contrasting findings. To test this hypothesis, the authors compared the DOM sorption in soils with OC derived from biomass decomposition with that in soils with OC more likely derived from biomass decomposition with that in soils with OC more likely derived from charred materials (black carbon). All the mineral soil samples in the study were from Spodosols, and the DOM was from an aqueous extract of a more forest floor layer. Sorption was determined in batch experiments. The sorption in soils that contain large amounts of black carbon was, in general, less than the sorption in soils with decomposition-derived OC. When the DOM sorption parameters of the soils were correlated to the OC content, the black carbon soils showed a positive effect of the OC content on the DOM sorption. In the soils lacking the features of black carbon residues, the DOM sorption was negatively influenced by OC. These results lead them to assume that the nature of soil OC is a soil property that needs to be considered in the DOM sorption of soils, especially when soils have large amounts of highly aromatic OC.

  5. Solubility and Leaching Risks of Organic Carbon in Paddy Soils as Affected by Irrigation Managements

    PubMed Central

    Yang, Shihong; Wei, Qi; Gao, Xiaoli

    2013-01-01

    Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha−1, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants. PMID:23935423

  6. Factors affecting stress assisted corrosion cracking of carbon steel under industrial boiler conditions

    NASA Astrophysics Data System (ADS)

    Yang, Dong

    Failure of carbon steel boiler tubes from waterside has been reported in the utility boilers and industrial boilers for a long time. In industrial boilers, most waterside tube cracks are found near heavy attachment welds on the outer surface and are typically blunt, with multiple bulbous features indicating a discontinuous growth. These types of tube failures are typically referred to as stress assisted corrosion (SAC). For recovery boilers in the pulp and paper industry, these failures are particularly important as any water leak inside the furnace can potentially lead to smelt-water explosion. Metal properties, environmental variables, and stress conditions are the major factors influencing SAC crack initation and propagation in carbon steel boiler tubes. Slow strain rate tests (SSRT) were conducted under boiler water conditions to study the effect of temperature, oxygen level, and stress conditions on crack initation and propagation on SA-210 carbon steel samples machined out of boiler tubes. Heat treatments were also performed to develop various grain size and carbon content on carbon steel samples, and SSRTs were conducted on these samples to examine the effect of microstructure features on SAC cracking. Mechanisms of SAC crack initation and propagation were proposed and validated based on interrupted slow strain tests (ISSRT). Water chemistry guidelines are provided to prevent SAC and fracture mechanics model is developed to predict SAC failure on industrial boiler tubes.

  7. How surface fire in Siberian Scots pine forests affects soil organic carbon in the forest floor: Stocks, molecular structure, and conversion to black carbon (charcoal)

    NASA Astrophysics Data System (ADS)

    Czimczik, Claudia I.; Preston, Caroline M.; Schmidt, Michael W. I.; Schulze, Ernst-Detlef

    2003-03-01

    In boreal forests, fire is a frequent disturbance and converts soil organic carbon (OC) to more degradation-resistant aromatic carbon, i.e., black carbon (BC) which might act as a long-term atmospheric-carbon sink. Little is known on the effects of fires on boreal soil OC stocks and molecular composition. We studied how a surface fire affected the composition of the forest floor of Siberian Scots pine forests by comparing the bulk elemental composition, molecular structure (13C-MAS NMR), and the aromatic carbon fraction (BC and potentially interfering constituents like tannins) of unburned and burned forest floor. Fire reduced the mass of the forest floor by 60%, stocks of inorganic elements (Si, Al, Fe, K, Ca, Na, Mg, Mn) by 30-50%, and of OC, nitrogen, and sulfur by 40-50%. In contrast to typical findings from temperate forests, unburned OC consisted mainly of (di-)O-alkyl (polysaccharides) and few aromatic structures, probably due to dominant input of lichen biomass. Fire converted OC into alkyl and aromatic structures, the latter consisting of heterocyclic macromolecules and small clusters of condensed carbon. The small cluster size explained the small BC concentrations determined using a degradative molecular marker method. Fire increased BC stocks (16 g kg-1 OC) by 40% which translates into a net-conversion rate of 0.7% (0.35% of net primary production) unburned OC to BC. Here, however, BC was not a major fraction of soil OC pool in unburned or burned forest floor, either due to rapid in situ degradation or relocation.

  8. Momentum, water vapor, and carbon dioxide exchange at a centrally located prairie site during FIFE

    NASA Astrophysics Data System (ADS)

    Verma, Shashi B.; Kim, Joon; Clement, Robert J.

    1992-11-01

    Eddy correlation measurements were made of fluxes of momentum, sensible heat, water vapor, and carbon dioxide at a centrally located plateau site in the FIFE study area during the period from May to October 1987. About 82% of the vegetation at the site was comprised of several C4 grass species (big bluestem, Indian grass, switchgrass, tall dropseed, little bluestem, and blue grama), with the remainder being C3 grasses, sedges, forbs, and woody plants. The prairie was burned in mid-April and was not grazed. Precipitation during the study period was about normal, except for a 3-week dry period in late July to early August, which caused moisture stress conditions. The drag coefficient (Cd=u*2/u¯2, where u* is the friction velocity and ū is the mean wind speed at 2.25 m above the ground) of the prairie vegetation ranged from 0.0087 to 0.0099. The average d/zc and z0/zc (where d is the zero plane displacement, z0 is the roughness parameter, and zc is the canopy height) were estimated to be about 0.71 and 0.028, respectively. Information was developed on the aerodynamic conductance (ga) in terms of mean wind speed (measured at a reference height) for different periods in the growing season. During the early and peak growth stages, with favorable soil moisture, the daily evapotranspiration (ET) rates ranged from 3.9 to 6.6 mm d-1. The ET rate during the dry period was between 2.9 and 3.8 mm d-1. The value of the Priestley-Taylor coefficient (α), calculated as the ratio of the measured ET to the equilibrium ET, averaged around 1.26 when the canopy stomatal resistance (rc) was less than 100 s m-1. When rc increased above 100 s m-1, α decreased rapidly. The atmospheric CO2 flux data (eddy correlation) were used, in conjunction with estimated soil CO2 flux, to evaluate canopy photosynthesis (Pc). The dependence of Pc on photosynthetically active radiation (KPAR), vapor pressure deficit, and soil moisture was examined. Under nonlimiting soil moisture conditions, Pc was

  9. The HartX-synthesis: An experimental approach to water and carbon exchange of a Scots pine plantation

    NASA Astrophysics Data System (ADS)

    Bernhofer, Ch.; Gay, L. W.; Granier, A.; Joss, U.; Kessler, A.; Köstner, B.; Siegwolf, R.; Tenhunen, J. D.; Vogt, R.

    1996-03-01

    In May 1992 during the interdisciplinary measurement campaign HartX (Hartheim eXperiment), several independent estimates of stand water vapor flux were compared at a 12-m high Scots pine ( Pinus silvestris) plantation on a flat fluvial terrace of the Rhine close to Freiburg, Germany. Weather during the HartX period was characterized by ten consecutive clear days with exceptionally high input of available energy for this time of year and with a slowly shifting diurnal pattern in atmospheric variables like vapor pressure deficit. Methods utilized to quantify components of stand water flux included porometry measurements on understory graminoid leaves and on pine needles and three different techniques for determining individual tree xylem sap flow. Micrometeorological methods included eddy covariance and eddy covariance energy balance techniques with six independent systems on two towers separated by 40 m. Additionally, Bowen ratio energy balance estimates of water flux were conducted and measurements of the gradients in water vapor, CO2, and trace gases within and above the stand were carried out with an additional, portable 30 m high telescoping mast. Biologically-based estimates of overstory transpiration were obtained by up-scaling tree sap flow rates to stand level via cumulative sapwood area. Tree transpiration contributed between 2.2 and 2.6 mm/day to ET for a tree leaf area index (LAI) of 2.8. The pine stand had an understory dominated by sedge and grass species with overall average LAI of 1.5. Mechanistic canopy gas exchange models that quantify both water vapor and CO2 exchange were applied to both understory and tree needle ecosystem compartments. Thus, the transpiration by graminoid species was estimated at approximately 20% of total stand ET. The modelled estimates for understory contribution to stand water flux compared well with micrometeorologically-based determinations. Maximum carbon gain was estimated from the canopy models at approximately 425 mmol

  10. Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology?

    PubMed

    Savage, Jessica A; Clearwater, Michael J; Haines, Dustin F; Klein, Tamir; Mencuccini, Maurizio; Sevanto, Sanna; Turgeon, Robert; Zhang, Cankui

    2016-04-01

    Despite the crucial role of carbon transport in whole plant physiology and its impact on plant-environment interactions and ecosystem function, relatively little research has tried to examine how phloem physiology impacts plant ecology. In this review, we highlight several areas of active research where inquiry into phloem physiology has increased our understanding of whole plant function and ecological processes. We consider how xylem-phloem interactions impact plant drought tolerance and reproduction, how phloem transport influences carbon allocation in trees and carbon cycling in ecosystems and how phloem function mediates plant relations with insects, pests, microbes and symbiotes. We argue that in spite of challenges that exist in studying phloem physiology, it is critical that we consider the role of this dynamic vascular system when examining the relationship between plants and their biotic and abiotic environment. PMID:26147312

  11. Land-use affects the radiocarbon age, storage and depth distribution of soil organic carbon in Eastern Australia

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Wilson, Brian; Hua, Quan

    2015-04-01

    Land-use has been shown to affect soil organic carbon (SOC) storage, with natural systems generally storing larger quantities of SOC than anthropogenically managed systems in surface soils. However, these effects are often difficult to detect deeper in the soil profile. Little is known regarding the effects of land-use on the radiocarbon age of SOC, both at the surface and deeper in the soil profile. We investigated the storage, radiocarbon content and depth distribution of soil organic carbon from across the state of NSW, Australia. A total of 100 profiles were analysed for total SOC concentration at numerous depths (up to 1 m) and a machine learning approach implementing tree ensemble methods was used to identify the key drivers of SOC depth distribution. Surface SOC storage was strongly associated with climate (predominately precipitation, to a lesser degree relative humidity and temperature), whereas SOC depth distribution was predominately influenced by land-use, soil type and to a lesser extent temperature. A subset of 12 soil profiles from a range of climate zones were analysed for radiocarbon content with a view to contrasting three land-use systems: natural, cleared/grazed and cropped. Radiocarbon content was affected strongly by land-use, with effects most pronounced at depth. Native systems appeared to have the youngest carbon throughout the profile, with cropped and grazed systems having older SOC. Radiocarbon content was also strongly associated with SOC content. Our results indicate that natural systems act as a carbon pump into the soil, injecting young, fresh organic carbon which is vertically distributed throughout the profile. In contrast, managed systems are deprived of this input and are depleted in SOC at all depths, leading to higher radiocarbon ages throughout the profile.

  12. [Carbon source metabolic diversity of soil microbial community under different climate types in the area affected by Wenchuan earthquake].

    PubMed

    Zhang, Guang-Shuai; Lin, Yong-Ming; Ma, Rui-Feng; Deng, Hao-Jun; Du, Kun; Wu, Cheng-Zhen; Hong, Wei

    2015-02-01

    The MS8.0 Wenchuan earthquake in 2008 led to huge damage to land covers in northwest Sichuan, one of the critical fragile eco-regions in China which can be divided into Semi-arid dry hot climate zone (SDHC) and Subtropical humid monsoon climate zone (SHMC). Using the method of Bilog-ECO-microplate technique, this paper aimed to determine the functional diversity of soil microbial community in the earthquake-affected areas which can be divided into undamaged area (U), recover area (R) and damaged area without recovery (D) under different climate types, in order to provide scientific basis for ecological recovery. The results indicated that the average-well-color-development (AWCD) in undamaged area and recovery area showed SDHC > SHMC, which was contrary to the AWCD in the damaged area without recovery. The AWCD of damaged area without recovery was the lowest in both climate zones. The number of carbon source utilization types of soil microbial in SHMC zone was significantly higher than that in SDHC zone. The carbon source utilization types in both climate zones presented a trend of recover area > undamaged area > damaged area without recovery. The carbon source metabolic diversity characteristic of soil microbial community was significantly different in different climate zones. The diversity index and evenness index both showed a ranking of undamaged area > recover area > damaged area without recovery. In addition, the recovery area had the highest richness index. The soil microbial carbon sources metabolism characteristic was affected by soil nutrient, aboveground vegetation biomass and vegetation coverage to some extent. In conclusion, earthquake and its secondary disasters influenced the carbon source metabolic diversity characteristic of soil microbial community mainly through the change of aboveground vegetation and soil environmental factors. PMID:26031097

  13. Dynamics of carbon-hydrogen and carbon-methyl exchanges in the collision of {sup 3}P atomic carbon with propene

    SciTech Connect

    Lee, Shih-Huang Chen, Wei-Kan; Chin, Chih-Hao; Huang, Wen-Jian

    2013-11-07

    We investigated the dynamics of the reaction of {sup 3}P atomic carbon with propene (C{sub 3}H{sub 6}) at reactant collision energy 3.8 kcal mol{sup −1} in a crossed molecular-beam apparatus using synchrotron vacuum-ultraviolet ionization. Products C{sub 4}H{sub 5}, C{sub 4}H{sub 4}, C{sub 3}H{sub 3}, and CH{sub 3} were observed and attributed to exit channels C{sub 4}H{sub 5} + H, C{sub 4}H{sub 4} + 2H, and C{sub 3}H{sub 3} + CH{sub 3}; their translational-energy distributions and angular distributions were derived from the measurements of product time-of-flight spectra. Following the addition of a {sup 3}P carbon atom to the C=C bond of propene, cyclic complex c-H{sub 2}C(C)CHCH{sub 3} undergoes two separate stereoisomerization mechanisms to form intermediates E- and Z-H{sub 2}CCCHCH{sub 3}. Both the isomers of H{sub 2}CCCHCH{sub 3} in turns decompose to C{sub 4}H{sub 5} + H and C{sub 3}H{sub 3} + CH{sub 3}. A portion of C{sub 4}H{sub 5} that has enough internal energy further decomposes to C{sub 4}H{sub 4} + H. The three exit channels C{sub 4}H{sub 5} + H, C{sub 4}H{sub 4} + 2H, and C{sub 3}H{sub 3} + CH{sub 3} have average translational energy releases 13.5, 3.2, and 15.2 kcal mol{sup −1}, respectively, corresponding to fractions 0.26, 0.41, and 0.26 of available energy deposited to the translational degrees of freedom. The H-loss and 2H-loss channels have nearly isotropic angular distributions with a slight preference at the forward direction particularly for the 2H-loss channel. In contrast, the CH{sub 3}-loss channel has a forward and backward peaked angular distribution with an enhancement at the forward direction. Comparisons with reactions of {sup 3}P carbon atoms with ethene, vinyl fluoride, and vinyl chloride are stated.

  14. Na+, Ca2+, and Mg2+ in brines affect supercritical CO2-brine-biotite interactions: ion exchange, biotite dissolution, and illite precipitation.

    PubMed

    Hu, Yandi; Ray, Jessica R; Jun, Young-Shin

    2013-01-01

    For sustainable geologic CO(2) sequestration (GCS), a better understanding of the effects of brine cation compositions on mica dissolution, surface morphological change, and secondary mineral precipitation under saline hydrothermal conditions is needed. Batch dissolution experiments were conducted with biotite under conditions relevant to GCS sites (55-95 °C and 102 atm CO(2)). One molar NaCl, 0.4 M MgCl(2), or 0.4 M CaCl(2) solutions were used to mimic different brine compositions, and deionized water was used for comparison. Faster ion exchange reactions (Na(+)-K(+), Mg(2+)-K(+), and Ca(2+)-K(+)) occurred in these salt solutions than in water (H(+)-K(+)). The ion exchange reactions affected bump, bulge, and crack formation on the biotite basal plane, as well as the release of biotite framework ions. In these salt solutions, numerous illite fibers precipitated after reaction for only 3 h at 95 °C. Interestingly, in slow illite precipitation processes, oriented aggregation of hexagonal nanoparticles forming the fibrous illite was observed. These results provide new information for understanding scCO(2)-brine-mica interactions in saline aquifers with different brine cation compositions, which can be useful for GCS as well as other subsurface projects. PMID:22607371

  15. Inter-annual variability of carbon exchange and extreme events at the Loobos pine forest

    NASA Astrophysics Data System (ADS)

    Elbers, Jan; Moors, Eddy; Hutjes, Ronald; Jacobs, Cor; Jans, Wilma; Kruijt, Bart; Stolk, Petra; ter Maat, Herbert; Vermeulen, Marleen; Abreu, Pedro

    2013-04-01

    respiration, at 10 degrees, increases from about 3.28 µmol m-2 s-1 at the start of the period, to about 4.45 µmol m-2 s-1 in 2006, with a strong increase in the year 2001. No relation was found with precipitation or with air temperature. The ecosystem respiration is also known to be affected by soil moisture and ecosystem characteristics such as below- or aboveground biomass development . Therefore we also determined best fits of Reco,10 on a monthly basis, with one corresponding fitted value of Ea kept constant during the year. Effects of extreme events For the Loobos site there are two distinct types of extreme events during the period studied: droughts and storm damage. Typical storms causing serious damage to pine forest in The Netherlands are short events with temperatures around zero and solid precipitation accumulating on the tree crowns. The weight of the accumulated snow causes branches and complete tree tops to snap. The effect of these extreme event on GPP/Reco is investigated.

  16. Analysis of heat affected zone obtained by CO2 laser cutting of low carbon steel (S235)

    NASA Astrophysics Data System (ADS)

    Zaied, M.; Miraoui, I.; Boujelbene, M.; Bayraktar, E.

    2013-12-01

    Laser cutting is associated with thermal effects at the cutting surface resulting in alteration of microstructure and mechanical properties. An abrupt change on the cutting surface is caused by a structural modified zone called heat affected zone (HAZ) due to weld heat treatment introduced by a high thermal gradient in the substrate material. Heat affected zone is often associated with undesirable effects such as surface cracking, fatigue resistance, etc. Therefore, it is important to minimize the thickness of this zone (HAZ). The objective of this work is to study the effect of high-power CO2 laser cutting on the heat affected zone. The laser cutting of low carbon steel (S235) is investigated with the aim of evaluating the effect of the input laser cutting parameters: laser power and cutting speed, on heat affected zone. An overall optimization was applied to find out the optimal cutting parameters that would minimize the thickness of heat affected zone. It was found that laser cutting parameters have an effect on the heat affected zone. The HAZ can be minimized by increasing the laser cutting speed and decreasing the laser power.

  17. Processes Affecting Carbon Fluxes of Grassland Ecosystems Under Elevated CO{sub 2}

    SciTech Connect

    Owensby, C.E.; Ham, J.M.; Rice, C.W.; Knapp, A.K.

    1998-03-14

    Final report of a project which exposed native tallgrass prairie to twice-ambient atmospheric CO{sub 2}. Improved water use efficiency increased biomass production and increased soil organic matter. Twice ambient CO{sub 2} decreased canopy evapotranspiration by 22%, but, maintained an increased net carbon sequestration.

  18. EVALUATION OF PARAMETERS AFFECTING ACTIVATED CARBON ADSORPTION OF A SOLVENT-LADEN AIR STREAM

    EPA Science Inventory

    As part of EPA's continuing research on methods to control volatile organic compound emissions, a vapor-phase activated carbon pilot plant has been constructed. The automated, computer-controlled pilot plant has been designed to provide data not easily obtained from full-scale ad...

  19. Sub-surface soil carbon changes affects biofuel greenhouse gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in direct soil organic carbon (SOC) can have a major impact on overall greenhouse gas (GHG) emissions from biofuels when using life-cycle assessment (LCA). Estimated changes in SOC, when accounted for in an LCA, are typically derived from near-surface soil depths (<30 cm). Changes in subsurf...

  20. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    SciTech Connect

    Spangler, Lee; Cunningham, Alfred; Barnhart, Elliot; Lageson, David; Nall, Anita; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Nugent, Paul; Johnson, Jennifer; Hogan, Justin; Codd, Sarah; Bray, Joshua; Prather, Cody; McGrail, B.; Oldenburg, Curtis; Wagoner, Jeff; Pawar, Rajesh

    2014-12-19

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.

  1. Soil profile organic carbon as affected by tillage and cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reports on the long-term effects of tillage and cropping systems on soil organic carbon (SOC) sequestration in the entire rooting profile are limited. A long-term experiment with three cropping systems [continuous corn (CC), continuous soybean (CSB), and soybean-corn (SB-C)] in six primary tillage s...

  2. Observations of net soil exchange of CO2 in a dryland show experimental warming increases carbon losses in biocrust soils

    USGS Publications Warehouse

    Darrouzet-Nardi, Anthony N.; Reed, Sasha C.; Grote, Ed; Belnap, Jayne

    2015-01-01

    Many arid and semiarid ecosystems have soils covered with well-developed biological soil crust communities (biocrusts) made up of mosses, lichens, cyanobacteria, and heterotrophs living at the soil surface. These communities are a fundamental component of dryland ecosystems, and are critical to dryland carbon (C) cycling. To examine the effects of warming temperatures on soil C balance in a dryland ecosystem, we used infrared heaters to warm biocrust-dominated soils to 2 °C above control conditions at a field site on the Colorado Plateau, USA. We monitored net soil exchange (NSE) of CO2 every hour for 21 months using automated flux chambers (5 control and 5 warmed chambers), which included the CO2 fluxes of the biocrusts and the soil beneath them. We observed measurable photosynthesis in biocrust soils on 12 % of measurement days, which correlated well with precipitation events and soil wet-up. These days included several snow events, providing what we believe to be the first evidence of substantial photosynthesis underneath snow by biocrust organisms in drylands. Overall, biocrust soils in both control and warmed plots were net CO2 sources to the atmosphere, with control plots losing 62 ± 8 g C m−2 (mean ± SE) over the first year of measurement and warmed plots losing 74 ± 9 g C m−2. Between control and warmed plots, the difference in soil C loss was uncertain over the course of the entire year due to large and variable rates in spring, but on days during which soils were wet and crusts were actively photosynthesizing, biocrusts that were warmed by 2 °C had a substantially more negative C balance (i.e., biocrust soils took up less C and/or lost more C in warmed plots). Taken together, our data suggest a substantial risk of increased C loss from biocrust soils with higher future temperatures, and highlight a robust capacity to predict CO2 exchange in biocrust soils using easily measured environmental parameters.

  3. Discontinuous gas-exchange cycle characteristics are differentially affected by hydration state and energy metabolism in gregarious and solitary desert locusts.

    PubMed

    Talal, Stav; Ayali, Amir; Gefen, Eran

    2015-12-01

    The termination of discontinuous gas exchange cycles (DGCs) in severely dehydrated insects casts doubt on the generality of the hygric hypothesis, which posits that DGCs evolved as a water conservation mechanism. We followed DGC characteristics in the two density-dependent phases of the desert locust Schistocerca gregaria throughout exposure to an experimental treatment of combined dehydration and starvation stress, and subsequent rehydration. We hypothesized that, under stressful conditions, the more stress-resistant gregarious locusts would maintain DGCs longer than solitary locusts. However, we found no phase-specific variations in body water content, water loss rates (total and respiratory) or timing of stress-induced abolishment of DGCs. Likewise, locusts of both phases re-employed DGCs after ingesting comparable volumes of water when rehydrated. Despite comparable water management performances, the effect of exposure to stressful experimental conditions on DGC characteristics varied significantly between gregarious and solitary locusts. Interburst duration, which is affected by the ability to buffer CO2, was significantly reduced in dehydrated solitary locusts compared with gregarious locusts. Moreover, despite similar rehydration levels, only gregarious locusts recovered their initial CO2 accumulation capacity, indicating that cycle characteristics are affected by factors other than haemolymph volume. Haemolymph protein measurements and calculated respiratory exchange ratios suggest that catabolism of haemolymph proteins may contribute to a reduced haemolymph buffering capacity, and thus a compromised ability for CO2 accumulation, in solitary locusts. Nevertheless, DGC was lost at similar hydration states in the two phases, suggesting that DGCs are terminated as a result of inadequate oxygen supply to the tissues. PMID:26486365

  4. Biological Filtration Limits Carbon Availability and Affects Downstream Biofilm Formation and Community Structure†

    PubMed Central

    Pang, Chee Meng; Liu, Wen-Tso

    2006-01-01

    Carbon removal strategies have gained popularity in the mitigation of biofouling in water reuse processes, but current biofilm-monitoring practices based on organic-carbon concentrations may not provide an accurate representation of the in situ biofilm problem. This study evaluated a submerged microtiter plate assay for direct and rapid monitoring of biofilm formation by subjecting the plates to a continuous flow of either secondary effluent (SE) or biofilter-treated secondary effluent (BF). This method was very robust, based on a high correlation (R2 = 0.92) between the biomass (given by the A600 in the microtiter plate assay) and the biovolume (determined from independent biofilms developed on glass slides under identical conditions) measurements, and revealed that the biomasses in BF biofilms were consistently lower than those in SE biofilms. The influence of the organic-carbon content on the biofilm community composition and succession was further evaluated using molecular tools. Terminal restriction fragment length polymorphism analysis of 16S rRNA genes revealed a group of pioneer colonizers, possibly represented by Sphingomonadaceae and Caulobacter organisms, to be common in both SE and BF biofilms. However, differences in organic-carbon availabilities in the two water samples eventually led to the selection of distinct biofilm communities. Alphaproteobacterial populations were confirmed by fluorescence in situ hybridization to be enriched in SE biofilms, while Betaproteobacteria were dominant in BF biofilms. Cloning analyses further demonstrated that microorganisms adapted for survival under low-substrate conditions (e.g., Aquabacterium, Caulobacter, and Legionella) were preferentially selected in the BF biofilm, suggesting that carbon limitation strategies may not achieve adequate biofouling control in the long run. PMID:16957184

  5. Riparian Zones and the Role of Hyporheic Exchange in the Carbon Budget of a Small, Forested, Headwater Stream, Western Oregon, USA.

    NASA Astrophysics Data System (ADS)

    Wondzell, S. M.; Corson-Rikert, H.; Dosch, N.; Haggerty, R.

    2014-12-01

    Recent estimates have identified streams as important conduits in the global carbon budget. Stream waters are typically super-saturated with CO2. This CO2 is assumed to come from carbon fixed in the upland terrestrial environment and then transported to the stream via soil water or groundwater. Evasion of CO2 occurs at the stream surface, which usually comprises less than 2% of the watershed area, yet this flux might account for as much as 30% of the net ecosystem exchange in a watershed. This view does not consider the role of hyporheic exchange, despite the fact that hyporheic exchange fluxes can be very large in headwater streams, which drain the majority of the landscape. Using continuously recording probes, we show that pCO2 averages 890 ppmv in stream water and 7,680 ppmv in hyporheic water in a 96-ha watershed. Independent estimates show that stream water turn-over lengths through the hyporheic zone are less than 100 m at baseflow, which suggests that stream water is continuously recharged with CO2 every time it is cycled through the hyporheic zone. We monitored DIC and DOC in a co-located well network and show that DOC decreases, and DIC increases, with travel time through the hyporheic zone. However, respiration of stream-source DOC can only account for approximately 10% of the increase in DIC. Previous hydrologic studies suggest that lateral inputs of soil water or groundwater are limited within this study reach, so the large increases in DIC must come from particulate organic matter buried in the hyporheic zone and from the overlying soil. These measurements suggest that riparian zones supply, via hyporheic exchange, a disproportionately large fraction of carbon to headwater streams and may therefore play an outsized role in the global carbon cycle.

  6. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    PubMed Central

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg−1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg−1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365

  7. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    NASA Astrophysics Data System (ADS)

    Yang, X. M.; Drury, C. F.; Reynolds, W. D.; Yang, J. Y.

    2016-06-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2–53 μm) and sand (53–2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg‑1 soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg‑1, but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation.

  8. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions?

    PubMed

    Yang, X M; Drury, C F; Reynolds, W D; Yang, J Y

    2016-01-01

    We test the common assumption that organic carbon (OC) storage occurs on sand-sized soil particles only after the OC storage capacity on silt- and clay-sized particles is saturated. Soil samples from a Brookston clay loam in Southwestern Ontario were analysed for the OC concentrations in bulk soil, and on the clay (<2 μm), silt (2-53 μm) and sand (53-2000 μm) particle size fractions. The OC concentrations in bulk soil ranged from 4.7 to 70.8 g C kg(-1) soil. The OC concentrations on all three particle size fractions were significantly related to the OC concentration of bulk soil. However, OC concentration increased slowly toward an apparent maximum on silt and clay, but this maximum was far greater than the maximum predicted by established C sequestration models. In addition, significant increases in OC associated with sand occurred when the bulk soil OC concentration exceeded 30 g C kg(-1), but this increase occurred when the OC concentration on silt + clay was still far below the predicted storage capacity for silt and clay fractions. Since the OC concentrations in all fractions of Brookston clay loam soil continued to increase with increasing C (bulk soil OC content) input, we concluded that the concept of OC storage capacity requires further investigation. PMID:27251365

  9. [Spatial-temporal distributions of dissolved inorganic carbon and its affecting factors in the Yellow River estuary].

    PubMed

    Guo, Xing-Sen; Lü, Ying-Chun; Sun, Zhi-Gao; Wang, Chuan-Yuan; Zhao, Quan-Sheng

    2015-02-01

    Estuary is an important area contributing to the global carbon cycle. In order to analyze the spatial-temporal distribution characteristics of the dissolved inorganic carbon (DIC) in the surface water of Yellow River estuary. Samples were collected in spring, summer, fall, winter of 2013, and discussed the correlation between the content of DIC and environmental factors. The results show that, the DIC concentration of the surface water in Yellow River estuary is in a range of 26.34-39.43 mg x L(-1), and the DIC concentration in freshwater side is higher than that in the sea side. In some areas where the salinity is less than 15 per thousand, the DIC concentration appears significant losses-the maximum loss is 20.46%. Seasonal distribution of performance in descending order is spring, fall, winter, summer. Through principal component analysis, it shows that water temperature, suspended solids, salinity and chlorophyll a are the main factors affecting the variation of the DIC concentration in surface water, their contribution rate is as high as 83% , and alkalinity, pH, dissolved organic carbon, dissolved oxygen and other factors can not be ignored. The loss of DIC in the low area is due to the calcium carbonate sedimentation. DIC presents a gradually increasing trend, which is mainly due to the effects of water retention time, temperature, outside input and environmental conditions. PMID:26031070

  10. A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program site synthesis

    SciTech Connect

    Schwalm, Christopher R.; Williams, Christopher A.; Schaefer, Kevin; Anderson, Ryan; Arain, A.; Baker, Ian; Lokupitiya, Erandathie; Barr, Alan; Black, T. A.; Gu, Lianhong; Riciutto, Dan M.

    2010-12-01

    Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO2 exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO2 exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans 220 site-years, 10 biomes, and includes two large-scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models' ability to simulate the seasonal cycle of CO2 exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was 10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model-data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.