Science.gov

Sample records for affect carbon storage

  1. Defaunation affects carbon storage in tropical forests

    PubMed Central

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A.; Magnago, Luiz Fernando S.; Rocha, Mariana F.; Lima, Renato A. F.; Peres, Carlos A.; Ovaskainen, Otso; Jordano, Pedro

    2015-01-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  2. Defaunation affects carbon storage in tropical forests.

    PubMed

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage.

  3. Defaunation affects carbon storage in tropical forests.

    PubMed

    Bello, Carolina; Galetti, Mauro; Pizo, Marco A; Magnago, Luiz Fernando S; Rocha, Mariana F; Lima, Renato A F; Peres, Carlos A; Ovaskainen, Otso; Jordano, Pedro

    2015-12-01

    Carbon storage is widely acknowledged as one of the most valuable forest ecosystem services. Deforestation, logging, fragmentation, fire, and climate change have significant effects on tropical carbon stocks; however, an elusive and yet undetected decrease in carbon storage may be due to defaunation of large seed dispersers. Many large tropical trees with sizeable contributions to carbon stock rely on large vertebrates for seed dispersal and regeneration, however many of these frugivores are threatened by hunting, illegal trade, and habitat loss. We used a large data set on tree species composition and abundance, seed, fruit, and carbon-related traits, and plant-animal interactions to estimate the loss of carbon storage capacity of tropical forests in defaunated scenarios. By simulating the local extinction of trees that depend on large frugivores in 31 Atlantic Forest communities, we found that defaunation has the potential to significantly erode carbon storage even when only a small proportion of large-seeded trees are extirpated. Although intergovernmental policies to reduce carbon emissions and reforestation programs have been mostly focused on deforestation, our results demonstrate that defaunation, and the loss of key ecological interactions, also poses a serious risk for the maintenance of tropical forest carbon storage. PMID:26824067

  4. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, Oscar; Ricart, Aurora M.; Lavery, Paul S.; Mateo, Miguel Angel; Arias-Ortiz, Ariane; Masque, Pere; Rozaimi, Mohammad; Steven, Andy; Duarte, Carlos M.

    2016-08-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3- to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3- to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stocks were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). In addition, soil accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3- to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8- and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypothesis that Corg storage in seagrass soils is influenced by interactions of biological (e.g., meadow productivity, cover and density), chemical (e.g., recalcitrance of Corg stocks) and physical (e.g., hydrodynamic energy and soil accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  5. Key biogeochemical factors affecting soil carbon storage in Posidonia meadows

    NASA Astrophysics Data System (ADS)

    Serrano, O.; Ricart, A. M.; Lavery, P. S.; Mateo, M. A.; Arias-Ortiz, A.; Masque, P.; Steven, A.; Duarte, C. M.

    2015-11-01

    Biotic and abiotic factors influence the accumulation of organic carbon (Corg) in seagrass ecosystems. We surveyed Posidonia sinuosa meadows growing in different water depths to assess the variability in the sources, stocks and accumulation rates of Corg. We show that over the last 500 years, P. sinuosa meadows closer to the upper limit of distribution (at 2-4 m depth) accumulated 3 to 4-fold higher Corg stocks (averaging 6.3 kg Corg m-2) at 3 to 4-fold higher rates (12.8 g Corg m-2 yr-1) compared to meadows closer to the deep limits of distribution (at 6-8 m depth; 1.8 kg Corg m-2 and 3.6 g Corg m-2 yr-1). In shallower meadows, Corg stores were mostly derived from seagrass detritus (88 % in average) compared to meadows closer to the deep limit of distribution (45 % on average). Also, sediment accumulation rates and fine-grained sediment content (< 0.125 mm) in shallower meadows (2.0 mm yr-1 and 9 %, respectively) were approximately 2-fold higher than in deeper meadows (1.2 mm yr-1 and 5 %, respectively). The Corg stocks and accumulation rates accumulated over the last 500 years in bare sediments (0.6 kg Corg m-2 and 1.2 g Corg m-2 yr-1) were 3 to 11-fold lower than in P. sinuosa meadows, while fine-grained sediment content (1 %) and seagrass detritus contribution to the Corg pool (20 %) were 8 and 3-fold lower than in Posidonia meadows, respectively. The patterns found support the hypotheses that Corg storage in seagrass soils is influenced by interactions of biological (e.g. meadow productivity, cover and density), chemical (e.g. recalcitrance of Corg stocks) and physical (e.g. hydrodynamic energy and sediment accumulation rates) factors within the meadow. We conclude that there is a need to improve global estimates of seagrass carbon storage accounting for biogeochemical factors driving variability within habitats.

  6. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  7. Carbon storage potential by four macrophytes as affected by planting diversity in a created wetland.

    PubMed

    Means, Mary M; Ahn, Changwoo; Korol, Alicia R; Williams, Lisa D

    2016-01-01

    Wetland creation has become a commonplace method for mitigating the loss of natural wetlands. Often mitigation projects fail to restore ecosystem services of the impacted natural wetlands. One of the key ecosystem services of newly created wetlands is carbon accumulation/sequestration, but little is known about how planting diversity (PD) affects the ability of herbaceous wetland plants to store carbon in newly created wetlands. Most mitigation projects involve a planting regime, but PD, which may be critical in establishing biologically diverse and ecologically functioning wetlands, is seldom required. Using a set of 34 mesocosms (∼1 m(2) each), we investigated the effects of planting diversity on carbon storage potential of four native wetland plant species that are commonly planted in created mitigation wetlands in Virginia - Carex vulpinoidea, Eleocharis obtusa, Juncus effusus, and Mimulus ringens. The plants were grown under the four distinctive PD treatments [i.e., monoculture (PD 1) through four different species mixture (PD 4)]. Plant biomass was harvested after two growing seasons and analyzed for tissue carbon content. Competition values (CV) were calculated to understand how the PD treatment affected the competitive ability of plants relative to their biomass production and thus carbon storage potentials. Aboveground biomass ranged from 988 g/m(2) - 1515 g/m(2), being greatest in monocultures, but only when compared to the most diverse mixture (p = 0.021). However, carbon storage potential estimates per mesocosm ranged between 344 g C/m(2) in the most diverse mesocosms (PD 4) to 610 g C/m(2) in monoculture ones with no significant difference (p = 0.089). CV of E. obtusa and C. vulpinoidea showed a declining trend when grown in the most diverse mixtures but J. effusus and M. ringens displayed no difference across the PD gradient (p = 0.910). In monocultures, both M. ringens, and J. effusus appeared to store carbon as biomass more

  8. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model

    SciTech Connect

    Weng, Ensheng; Luo, Yiqi; Wang, Weile; Wang, Han; Hayes, Daniel J; McGuire, A. David; Hastings, Alan; Schimel, David

    2012-01-01

    Disturbances have been recognized as a key factor shaping terrestrial ecosystem states and dynamics. A general model that quantitatively describes the relationship between carbon storage and disturbance regime is critical for better understanding large scale terrestrial ecosystem carbon dynamics. We developed a model (REGIME) to quantify ecosystem carbon storage capacities (E[x]) under varying disturbance regimes with an analytical solution E[x] = U {center_dot} {tau}{sub E} {center_dot} {lambda}{lambda} + s {tau} 1, where U is ecosystem carbon influx, {tau}{sub E} is ecosystem carbon residence time, and {tau}{sub 1} is the residence time of the carbon pool affected by disturbances (biomass pool in this study). The disturbance regime is characterized by the mean disturbance interval ({lambda}) and the mean disturbance severity (s). It is a Michaelis-Menten-type equation illustrating the saturation of carbon content with mean disturbance interval. This model analytically integrates the deterministic ecosystem carbon processes with stochastic disturbance events to reveal a general pattern of terrestrial carbon dynamics at large scales. The model allows us to get a sense of the sensitivity of ecosystems to future environmental changes just by a few calculations. According to the REGIME model, for example, approximately 1.8 Pg C will be lost in the high-latitude regions of North America (>45{sup o} N) if fire disturbance intensity increases around 5.7 time the current intensity to the end of the twenty-first century, which will require around 12% increases in net primary productivity (NPP) to maintain stable carbon stocks. If the residence time decreased 10% at the same time additional 12.5% increases in NPP are required to keep current C stocks. The REGIME model also lays the foundation for analytically modeling the interactions between deterministic biogeochemical processes and stochastic disturbance events.

  9. Does deciduous tree species identity affect carbon storage in temperate soils?

    NASA Astrophysics Data System (ADS)

    Jungkunst, Hermann; Schleuß, Per; Heitkamp, Felix

    2015-04-01

    Forest soils contribute roughly 70 % to the global terrestrial soil organic carbon (SOC) pool and thus play a vital role in the global carbon cycle. It is less clear, however, whether temperate tree species identity affects SOC storage beyond the coarse differentiation between coniferous and deciduous trees. The most important driver for soil SOC storage definitely is the fine mineral fraction (clay and fine silt) because of its high sorption ability. It is difficult to disentangle any additional biotic effects since clay and silt vary considerably in nature. For experimental approaches, the process of soil carbon accumulation is too slow and, therefore, sound results cannot be expected for decades. Here we will present our success to distinguish between the effects of fine particle content (abiotic) and tree species composition (biotic) on the SOC pool in an old-growth broad-leaved forest plots along a tree diversity gradient , i.e., 1- (beech), 3- (plus ash and lime tree)- and 5-(plus maple and hornbeam) species. The particle size fractions were separated first and then the carbon concentrations of each fraction was measured. Hence, the carbon content per unit clay was not calculated, as usually done, but directly measured. As expected, the variation in SOC content was mainly explained by the variations in clay content but not entirely. We found that the carbon concentration per unit clay and fine silt in the subsoil was by 30-35% higher in mixed than in monospecific stands indicating a significant species identity or species diversity effect on C stabilization. In contrast to the subsoil, no tree species effects was identified for the topsoil. Indications are given that the mineral phase was already carbon saturated and thus left no more room for a possible biotic effect. Underlying processes must remain speculative, but we will additionally present our latest microcosm results, including isotopic signatures, to underpin the proposed deciduous tree species

  10. Experimental analysis on effective factors affecting carbon dioxide storage as hydrate in a consolidated sedimentary rock

    NASA Astrophysics Data System (ADS)

    Ahn, T.; Lee, J.; Park, C.; Jang, I.

    2012-12-01

    This paper investigated the reservoir properties and the injection rate affecting carbon dioxide storage as hydrate, which observed pressure and temperature at both formation and equilibrium conditions. One of typical issues was leakage to accomplish permanent carbon dioxide storage in underground geological formations. The sequestration of carbon dioxide as hydrate could settle down this matter because of its rigid lattice of cages. Two different experiments were carried out; first was isochoric experiments to analyze the effects of water saturation and pore size distribution on forming the hydrate. The other was isobaric to examine the injection rate of carbon dioxide. Three kinds of consolidated Berea sandstone were used with different water saturation(39~80%) and pore size distribution(5~10μm). The isochoric experiments were carried out under the ranges of pressure and temperature, from 15 to 35 bar and from 263 to 285 Kelvin, respectively. The experimental conditions of the isobaric were the constant pressure 24.7±0.6 bar, the temperature ranged from 271 to 301 Kelvin, and the injection rate varied from 10 to 275 sccm/min. At the viewpoint of reservoir properties, the isochoric experiments showed that the higher initial-water-saturation and the smaller average pore-size could play an inhibitor on forming the hydrate. The effect of water saturation was negligible below 274 Kelvin. Both of them were insignificant at the equilibrium condition. In the case of injection-related property, the isobaric experiments showed that the higher injection rate could make it difficult to form the hydrate. These results confirmed that the prevention of hydrate plugging near wellbore required the higher water saturation and injection rate. This experimental study could be useful to determine the adequate places for carbon dioxide disposal taking advantages of hydrate cap and also to set the operational strategy without any hydrate plugging near wellbore.

  11. PDF Weaving - Linking Inventory Data and Monte Carlo Uncertainty Analysis in the Study of how Disturbance Affects Forest Carbon Storage

    NASA Astrophysics Data System (ADS)

    Healey, S. P.; Patterson, P.; Garrard, C.

    2014-12-01

    Altered disturbance regimes are likely a primary mechanism by which a changing climate will affect storage of carbon in forested ecosystems. Accordingly, the National Forest System (NFS) has been mandated to assess the role of disturbance (harvests, fires, insects, etc.) on carbon storage in each of its planning units. We have developed a process which combines 1990-era maps of forest structure and composition with high-quality maps of subsequent disturbance type and magnitude to track the impact of disturbance on carbon storage. This process, called the Forest Carbon Management Framework (ForCaMF), uses the maps to apply empirically calibrated carbon dynamics built into a widely used management tool, the Forest Vegetation Simulator (FVS). While ForCaMF offers locally specific insights into the effect of historical or hypothetical disturbance trends on carbon storage, its dependence upon the interaction of several maps and a carbon model poses a complex challenge in terms of tracking uncertainty. Monte Carlo analysis is an attractive option for tracking the combined effects of error in several constituent inputs as they impact overall uncertainty. Monte Carlo methods iteratively simulate alternative values for each input and quantify how much outputs vary as a result. Variation of each input is controlled by a Probability Density Function (PDF). We introduce a technique called "PDF Weaving," which constructs PDFs that ensure that simulated uncertainty precisely aligns with uncertainty estimates that can be derived from inventory data. This hard link with inventory data (derived in this case from FIA - the US Forest Service Forest Inventory and Analysis program) both provides empirical calibration and establishes consistency with other types of assessments (e.g., habitat and water) for which NFS depends upon FIA data. Results from the NFS Northern Region will be used to illustrate PDF weaving and insights gained from ForCaMF about the role of disturbance in carbon

  12. Latitudinal variation in carbon storage can help predict changes in swamps affected by global warming

    USGS Publications Warehouse

    Middleton, Beth A.; McKee, Karen

    2004-01-01

    Plants may offer our best hope of removing greenhouse gases (gases that contribute to global warming) emitted to the atmosphere from the burning of fossil fuels. At the same time, global warming could change environments so that natural plant communities will either need to shift into cooler climate zones, or become extirpated (Prasad and Iverson, 1999; Crumpacker and others, 2001; Davis and Shaw, 2001). It is impossible to know the future, but studies combining field observation of production and modeling can help us make predictions about what may happen to these wetland communities in the future. Widespread wetland types such as baldcypress (Taxodium distichum) swamps in the southeastern portion of the United States could be especially good at carbon sequestration (amount of CO2 stored by forests) from the atmosphere. They have high levels of production and sometimes store undecomposed dead plant material in wet conditions with low oxygen, thus keeping gases stored that would otherwise be released into the atmosphere (fig. 1). To study the ability of baldcypress swamps to store carbon, our project has taken two approaches. The first analysis looked at published data to develop an idea (hypothesis) of how production levels change across a temperature gradient in the baldcypress region (published data study). The second study tested this idea by comparing production levels across a latitudinal range by using swamps in similar field conditions (ongoing carbon storage study). These studies will help us make predictions about the future ability of baldcypress swamps to store carbon in soil and plant biomass, as well as the ability of these forests to shift northward with global warming.

  13. Latitudinal Variation in Carbon Storage Can Help Predict Changes in Swamps Affected by Global Warming

    USGS Publications Warehouse

    Middleton, Beth A.; McKee, Karen

    2004-01-01

    Plants may offer our best hope of removing greenhouse gases (gases that contribute to global warming) emitted to the atmosphere from the burning of fossil fuels. At the same time, global warming could change environments so that natural plant communities will either need to shift into cooler climate zones, or become extirpated (Prasad and Iverson, 1999; Crumpacker and others, 2001; Davis and Shaw, 2001). It is impossible to know the future, but studies combining field observation of production and modeling can help us make predictions about what may happen to these wetland communities in the future. Widespread wetland types such as baldcypress (Taxodium distichum) swamps in the southeastern portion of the United States could be especially good at carbon sequestration (amount of CO2 stored by forests) from the atmosphere. They have high levels of production and sometimes store undecomposed dead plant material in wet conditions with low oxygen, thus keeping gases stored that would otherwise be released into the atmosphere (fig. 1). To study the ability of baldcypress swamps to store carbon, our project has taken two approaches. The first analysis looked at published data to develop an idea (hypothesis) of how production levels change across a temperature gradient in the baldcypress region (published data study). The second study tested this idea by comparing production levels across a latitudinal range by using swamps in similar field conditions (ongoing carbon storage study). These studies will help us make predictions about the future ability of baldcypress swamps to store carbon in soil and plant biomass, as well as the ability of these forests to shift northward with global warming.

  14. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain.

    PubMed

    Zhao, Xin; Xue, Jian-Fu; Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0-5:30-50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0-5:5-10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0-10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0-10 cm) but was higher under PT for the deeper soil (30-50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality.

  15. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain

    PubMed Central

    Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0–5:30–50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0–5:5–10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0–10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0–10 cm) but was higher under PT for the deeper soil (30–50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality. PMID:26075391

  16. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    SciTech Connect

    Spangler, Lee; Cunningham, Alfred; Barnhart, Elliot; Lageson, David; Nall, Anita; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Nugent, Paul; Johnson, Jennifer; Hogan, Justin; Codd, Sarah; Bray, Joshua; Prather, Cody; McGrail, B.; Oldenburg, Curtis; Wagoner, Jeff; Pawar, Rajesh

    2014-12-19

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.

  17. Carbon Capture and Storage

    SciTech Connect

    Friedmann, S

    2007-10-03

    Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several

  18. Ecological controls over global soil carbon storage

    SciTech Connect

    Schimel, D.S.

    1995-09-01

    Globally, soil carbon comprises about 2/3 of terrestrial carbon storage. Soil carbon is thus an important reservoir of carbon, but also influences the responses of ecosystems to change by controlling many aspects of nutrient cycling. While broad-scale patterns of soil carbon accumulation can be explained in terms of climatic and biome distributions, many ecological processes also influence the storage and turnover of carbon in soils. I will present a synthesis of information from field studies, model experiments and global data bases on factors controlling the turnover and storage of soil carbon. First, I will review a series of studies showing links between vegetation change (successional and invasions) and soil carbon. Then I will review model analyses of the sensitivity of soil carbon to climatic and ecological changes. Results show that soil carbon storage is broadly sensitive to climate but greatly influenced by the allocation of detritus between resistant (lignaceous and woody) and more labile forms, and that biotic changes that affect allocation, affect soil carbon substantially at regionally and perhaps global scales.

  19. [Profile distribution and storage of soil organic carbon in a black soil as affected by land use types].

    PubMed

    Hao, Xiang-xiang; Han, Xiao-zeng; Li, Lu-jun; Zou, Wen-xiu; Lu, Xin-chun; Qiao, Yun-fa

    2015-04-01

    Taking soils in a long-term experimental field over 29 years with different land uses types, including arable land, bare land, grassland and larch forest land as test materials, the distribution and storage of soil organic carbon (SOC) in the profile (0-200 cm) in typical black soil (Mollisol) region of China were investigated. The results showed that the most significant differences in SOC content occurred in the 0-10 cm surface soil layer among all soils with the order of grassland > arable land > larch forest land > bare land. SOC contents at 10-120 cm depth were lower in arable land as compared with the other land use types. Compared with arable land, grassland could improve SOC content obviously. SOC content down to a depth of 60 cm in grassland was significantly higher than that in arable land. The content of SOC at 0-10 cm in bare land was significantly lower than that in arable land. Although there were no significant differences in SOC content at 0-20 cm depth between larch forestland and arable land, the SOC contents at 20-140 cm depth were generally higher in larch forestland than that in arable land. In general, SOC content showed a significantly negative relationship with soil pH, bulk density, silt and clay content and an even stronger significantly positive relationship with soil total N content and sand content. The SOC storage in arable land at 0-200 cm depth was significantly lower than that in the other three land use types, which was 13.6%, 11.4% and 10.9% lower than in grassland, bare land and larch forest land, respectively. Therefore, the arable land of black soil has a great potential for sequestering C in soil and improving environmental quality.

  20. Carbon Capture and Storage, 2008

    SciTech Connect

    2009-03-19

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  1. Carbon Capture and Storage, 2008

    ScienceCinema

    None

    2016-07-12

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  2. Soil-Gas Identification of Environmental Factors Affecting CO2 Concentrations Beneath a Playa Wetland: Implications for Soil-Gas Monitoring at Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Romanak, K.; Bennett, P.

    2009-12-01

    support significant carbonate dissolution resulting from reaction of CO2 with infiltrating water and soil carbonate. Results of the study show that the degree of carbon reactivity within a near-surface environment limits the effectiveness of shallow subsurface and surface-flux soil-gas monitoring at engineered carbon repositories. When carbon reactivity is at a maximum, CO2 cycling is complex and input of exogenous CO2 into the system is difficult to constrain and quantify. A summary of the factors that define carbon reactivity and their affects on near-surface soil-gas monitoring at geologic carbon storage sites is presented, along with recommendations for site evaluation with regard to near-surface monitoring.

  3. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage.

    PubMed

    Lobo, Elena; Dalling, James W

    2014-03-01

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition. PMID:24452032

  4. Spatial scale and sampling resolution affect measures of gap disturbance in a lowland tropical forest: implications for understanding forest regeneration and carbon storage.

    PubMed

    Lobo, Elena; Dalling, James W

    2014-03-01

    Treefall gaps play an important role in tropical forest dynamics and in determining above-ground biomass (AGB). However, our understanding of gap disturbance regimes is largely based either on surveys of forest plots that are small relative to spatial variation in gap disturbance, or on satellite imagery, which cannot accurately detect small gaps. We used high-resolution light detection and ranging data from a 1500 ha forest in Panama to: (i) determine how gap disturbance parameters are influenced by study area size, and the criteria used to define gaps; and (ii) to evaluate how accurately previous ground-based canopy height sampling can determine the size and location of gaps. We found that plot-scale disturbance parameters frequently differed significantly from those measured at the landscape-level, and that canopy height thresholds used to define gaps strongly influenced the gap-size distribution, an important metric influencing AGB. Furthermore, simulated ground surveys of canopy height frequently misrepresented the true location of gaps, which may affect conclusions about how relatively small canopy gaps affect successional processes and contribute to the maintenance of diversity. Across site comparisons need to consider how gap definition, scale and spatial resolution affect characterizations of gap disturbance, and its inferred importance for carbon storage and community composition.

  5. Carbon dioxide concentration and nitrogen input affect the C and N storage pools in Amanita muscaria-Picea abies mycorrhizae.

    PubMed

    Turnau, K; Berger, A; Loewe, A; Einig, W; Hampp, R; Chalot, M; Dizengremel, P; Kottke, I

    2001-02-01

    We studied the influence of elevated atmospheric CO2 concentration ([CO2]) on the vacuolar storage pool of nitrogen-containing compounds and on the glycogen pool in the hyphal sheath of Amanita muscaria (L. ex Fr.) Hooker-Picea abies L. Karst. mycorrhizae grown with two concentrations of ammonium in the substrate. Mycorrhizal seedlings were grown in petri dishes on agar containing 5.3 or 53 mg N l(-1) and exposed to 350 or 700 microl CO2 l(-1) for 5 or 7 weeks, respectively. Numbers and area of nitrogen-containing bodies in the vacuoles of the mycorrhizal fungus were determined by light microscopy linked to an image analysis system. The relative concentration of nitrogen in the vacuolar bodies was measured by electron energy loss spectroscopy (EELS). Glycogen stored in the cytosol was determined at the ultrastructural level by image analysis after staining the sections (PATAg test). Shoot dry weight, net photosynthesis and relative amounts of N in vacuolar bodies were greater at the higher N and CO2 concentrations. The numbers and areas of vacuolar N-containing bodies were significantly greater at the higher N concentration only at ambient [CO2]. In the same treatment the percentage of hyphae containing glycogen declined to nearly zero. We conclude that, in the high N/low [CO2] treatment, the mycorrhizal fungus had an insufficient carbohydrate supply, partly because of increased amino acid synthesis by the non-mycorrhizal rootlets. When [CO2] was increased, the equilibrium between storage of glycogen and N-containing compounds was reestablished.

  6. Carbon material for hydrogen storage

    DOEpatents

    Bourlinos, Athanasios; Steriotis, Theodore; Stubos, Athanasios; Miller, Michael A

    2016-09-13

    The present invention relates to carbon based materials that are employed for hydrogen storage applications. The material may be described as the pyrolysis product of a molecular precursor such as a cyclic quinone compound. The pyrolysis product may then be combined with selected transition metal atoms which may be in nanoparticulate form, where the metals may be dispersed on the material surface. Such product may then provide for the reversible storage of hydrogen. The metallic nanoparticles may also be combined with a second metal as an alloy to further improve hydrogen storage performance.

  7. Carbon Aerogels for Hydrogen Storage

    SciTech Connect

    Baumann, T F; Worsley, M; Satcher, J H

    2008-08-11

    This effort is focused on the design of new nanostructured carbon-based materials that meet the DOE 2010 targets for on-board vehicle hydrogen storage. Carbon aerogels (CAs) are a unique class of porous materials that possess a number of desirable structural features for the storage of hydrogen, including high surface areas (over 3000 m{sup 2}/g), continuous and tunable porosities, and variable densities. In addition, the flexibility associated with CA synthesis allows for the incorporation of modifiers or catalysts into the carbon matrix in order to alter hydrogen sorption enthalpies in these materials. Since the properties of the doped CAs can be systematically modified (i.e. amount/type of dopant, surface area, porosity), novel materials can be fabricated that exhibit enhanced hydrogen storage properties. We are using this approach to design new H{sub 2} sorbent materials that can storage appreciable amounts of hydrogen at room temperature through a process known as hydrogen spillover. The spillover process involves the dissociative chemisorption of molecular hydrogen on a supported metal catalyst surface (e.g. platinum or nickel), followed by the diffusion of atomic hydrogen onto the surface of the support material. Due to the enhanced interaction between atomic hydrogen and the carbon support, hydrogen can be stored in the support material at more reasonable operating temperatures. While the spillover process has been shown to increase the reversible hydrogen storage capacities at room temperature in metal-loaded carbon nanostructures, a number of issues still exist with this approach, including slow kinetics of H{sub 2} uptake and capacities ({approx} 1.2 wt% on carbon) below the DOE targets. The ability to tailor different structural aspects of the spillover system (i.e. the size/shape of the catalyst particle, the catalyst-support interface and the support morphology) should provide valuable mechanistic information regarding the critical aspects of the

  8. Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction.

    PubMed

    Popovic, Olga; Jensen, Lars Stoumann

    2012-08-01

    Chemical-mechanical separation of pig slurry into a solid fraction rich in dry matter, P, Cu and Zn and a liquid fraction rich in inorganic N but poor in dry matter may allow farmers to manage surplus slurry by exporting the solid fraction to regions with no nutrient surplus. Pig slurry can be applied to arable land only in certain periods during the year, so it is commonly stored prior to field application. This study investigated the effect of storage duration and temperature on chemical characteristics and P, Cu and Zn distribution between particle size classes of raw slurry and its liquid separation fraction. Dry matter, VFA, total N and ammonium content of both slurry products decreased during storage and were affected by temperature, showing higher losses at higher storage temperatures. In both products, total P, Cu and Zn concentrations were not significantly affected by storage duration or temperature. Particle size distribution was affected by slurry separation, storage duration and temperature. In raw slurry, particles larger than 1 mm decreased, whereas particles 250 μm-1 mm increased. The liquid fraction produced was free of particles >500 μm, with the highest proportions of P, Cu and Zn in the smallest particle size class (<25 μm). The proportion of particles <25 μm increased when the liquid fraction was stored at 5 °C, but decreased at 25 °C. Regardless of temperature, distribution of P, Cu and Zn over particle size classes followed a similar pattern to dry matter.

  9. [Effects of climate change on forest soil organic carbon storage: a review].

    PubMed

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  10. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau.

    PubMed

    Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin

    2016-01-01

    The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland. PMID:27494253

  11. Ecosystem Carbon Storage in Alpine Grassland on the Qinghai Plateau

    PubMed Central

    Liu, Shuli; Zhang, Fawei; Du, Yangong; Guo, Xiaowei; Lin, Li; Li, Yikang; Li, Qian; Cao, Guangmin

    2016-01-01

    The alpine grassland ecosystem can sequester a large quantity of carbon, yet its significance remains controversial owing to large uncertainties in the relative contributions of climate factors and grazing intensity. In this study we surveyed 115 sites to measure ecosystem carbon storage (both biomass and soil) in alpine grassland over the Qinghai Plateau during the peak growing season in 2011 and 2012. Our results revealed three key findings. (1) Total biomass carbon density ranged from 0.04 for alpine steppe to 2.80 kg C m-2 for alpine meadow. Median soil organic carbon (SOC) density was estimated to be 16.43 kg C m-2 in alpine grassland. Total ecosystem carbon density varied across sites and grassland types, from 1.95 to 28.56 kg C m-2. (2) Based on the median estimate, the total carbon storage of alpine grassland on the Qinghai Plateau was 5.14 Pg, of which 94% (4.85 Pg) was soil organic carbon. (3) Overall, we found that ecosystem carbon density was affected by both climate and grazing, but to different extents. Temperature and precipitation interaction significantly affected AGB carbon density in winter pasture, BGB carbon density in alpine meadow, and SOC density in alpine steppe. On the other hand, grazing intensity affected AGB carbon density in summer pasture, SOC density in alpine meadow and ecosystem carbon density in alpine grassland. Our results indicate that grazing intensity was the primary contributing factor controlling carbon storage at the sites tested and should be the primary consideration when accurately estimating the carbon storage in alpine grassland. PMID:27494253

  12. Carbon Storage in Wetlands and Lakes of the Eastern US

    NASA Technical Reports Server (NTRS)

    Renik, Byrdie; Peteet, Dorothy; Hansen, James E. (Technical Monitor)

    2001-01-01

    Carbon stored underground may participate in a positive feedback with climate warming, as higher temperatures accelerate decomposition reactions and hence CO2 release. Assessing how below-ground carbon storage varies with modern climate and paleoclimate will advance understanding of this feedback in two ways. First, it will estimate the sensitivity of carbon storage to temperature and precipitation changes. Second, it will help quantify the size of carbon stocks available for the feedback, by indicating how current regional climate differences affect carbon storage. Whereas many studies of below-ground carbon storage concentrate on soils, this investigation focuses on the saturated and primarily organic material stored in wetlands and lake sediments. This study surveys research done on organic sediment depth and organic content at 50-100 sites in the eastern U.S., integrating our own research with the work of others. Storage depth is evaluated for sediments from the past 10,000 years, a date reflected in pollen profiles. Organic content is measured chiefly by loss-on-ignition (101). These variables are compared to characteristics of the sites such as latitude, altitude, and vegetation as well as local climate. Preliminary results suggest a strong relationship between latitude and depth of organic material stored over the last 10,000 years, with more accumulation in the northeastern US than the southeastern US. Linking the percent organic matter to actual carbon content is in progress with wetlands from Black Rock Forest and Alpine Swamp.

  13. Wyoming Carbon Capture and Storage Institute

    SciTech Connect

    Nealon, Teresa

    2014-06-30

    This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

  14. Activated carbon monoliths for methane storage

    NASA Astrophysics Data System (ADS)

    Chada, Nagaraju; Romanos, Jimmy; Hilton, Ramsey; Suppes, Galen; Burress, Jacob; Pfeifer, Peter

    2012-02-01

    The use of adsorbent storage media for natural gas (methane) vehicles allows for the use of non-cylindrical tanks due to the decreased pressure at which the natural gas is stored. The use of carbon powder as a storage material allows for a high mass of methane stored for mass of sample, but at the cost of the tank volume. Densified carbon monoliths, however, allow for the mass of methane for volume of tank to be optimized. In this work, different activated carbon monoliths have been produced using a polymeric binder, with various synthesis parameters. The methane storage was studied using a home-built, dosing-type instrument. A monolith with optimal parameters has been fabricated. The gravimetric excess adsorption for the optimized monolith was found to be 161 g methane for kg carbon.

  15. Prospects for carbon capture and storage technologies

    SciTech Connect

    Soren Anderson; Richard Newell

    2003-01-15

    Carbon capture and storage (CCS) technologies remove carbon dioxide from flue gases for storage in geologic formations or the ocean. The study found that CCS is technically feasible and economically attractive within the range of carbon policies discussed domestically and internationally. Current costs are about $200 to $250 per ton of carbon, although costs are sensitive to fuel prices and other assumptions and could be reduced significantly through technical improvements. Near-term prospects favor CCS for certain industrial sources and electric power plants, with storage in depleted oil and gas reservoirs. Deep aquifers may provide an attractive longer-term storage option, whereas ocean storage poses greater technical and environmental uncertainty. Vast quantities of economically recoverable fossil fuels, sizable political obstacles to their abandonment, and inherent delay associated with developing alternative energy sources suggest that CCS should be seriously considered in the portfolio of options for addressing climate change, alongside energy efficiency and carbon-free energy. 61 refs., 5 figs., 5 tabs.

  16. Last chance for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart

    2013-02-01

    Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.

  17. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  18. Underground storage of carbon dioxide

    SciTech Connect

    Tanaka, Shoichi

    1993-12-31

    Desk studies on underground storage of CO{sub 2} were carried out from 1990 to 1991 fiscal years by two organizations under contract with New Energy and Indestrial Technology Development Organization (NEDO). One group put emphasis on application of CO{sub 2} EOR (enhanced oil recovery), and the other covered various aspects of underground storage system. CO{sub 2} EOR is a popular EOR method in U.S. and some oil countries. At present, CO{sub 2} is supplied from natural CO{sub 2} reservoirs. Possible use of CO{sub 2} derived from fixed sources of industries is a main target of the study in order to increase oil recovery and storage CO{sub 2} under ground. The feasibility study of the total system estimates capacity of storage of CO{sub 2} as around 60 Gton CO{sub 2}, if worldwide application are realized. There exist huge volumes of underground aquifers which are not utilized usually because of high salinity. The deep aquifers can contain large amount of CO{sub 2} in form of compressed state, liquefied state or solution to aquifer. A preliminary technical and economical survey on the system suggests favorable results of 320 Gton CO{sub 2} potential. Technical problems are discussed through these studies, and economical aspects are also evaluated.

  19. Switchgrass cultivars differentially affect soil carbon stabilization

    NASA Astrophysics Data System (ADS)

    Adkins, J.; Jastrow, J. D.; Wullschleger, S. D.; De Graaff, M.

    2012-12-01

    Soil organic carbon (SOC) storage depends on the amount and quality of plant-derived carbon (C) inputs to soil, which is largely regulated by plant roots via the processes of root turnover and exudation. While we know that plant roots mediate SOC stabilization, we do not fully understand which root characteristics specifically promote soil C storage. With this study we asked whether roots with coarse root systems versus roots with finely branched root systems differentially affect soil C stabilization. In order to answer this question, we collected soil cores (4.8 cm diameter, to a depth of 30 cm) from directly over the crown of six switchgrass (Panicum virgatum L.) cultivars that differed in root architecture. Specifically, three cultivars had fibrous root systems (i.e. high specific root length) and three had coarse root systems (i.e. low specific root length). The cultivars (C4 species) were grown in a C3 grassland for four years, allowing us to use isotopic fractionation techniques to assess differences in soil C input and stabilization. The cores were divided into depth increments of 10 cm and the soils were sieved (2mm). Soil from each depth increment was dispersed by shaking for 16 hours in a NaHMP solution to isolate coarse particulate organic matter (C-POM), fine particulate organic matter (F-POM), silt, and clay-sized fractions. Samples of soil fractions across all depths were analyzed for C and N contents as well as δ13C signature. We found that the relative abundance of the different soil fractions and associated δ13C signatures differed significantly among cultivars. These results indicate that switchgrass cultivars can differentially impact soil carbon inputs and stabilization. We hypothesize that these differences may be driven by variability in root architectures.

  20. In vitro cold-storage duration of sour cherry (Prunus cerasus L) shoots is affected by carbon source and nitrogen concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vitro cold storage of fruit crop germplasm is useful for preservation of heritage or commercial cultivars. Shoot cultures of sour cherry (Prunus cerasus L.) cultivars Dolgozdannaya, Moya Radost and Zukovskaya, were cold stored at 4°C in either five-section tissue-culture bags or in 150 ml glass j...

  1. In Vitro Cold-Storage Duration of Sour Cherry (Prunus cerasus L) Shoots is Affected by Carbon Source and Nitrogen Concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In vitro cold storage of fruit crop germplasm is useful for preservation of heritage or commercial cultivars. Shoot cultures of sour cherry (Prunus cerasus L.) cultivars Dolgozdannaya, Moya Radost and Zukovskaya, were cold stored at 4°C in either five-section tissue culture bags or in 150 ml glass ...

  2. Carbon Cycling and Storage in Mangrove Forests

    NASA Astrophysics Data System (ADS)

    Alongi, Daniel M.

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y-1) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y-1) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests.

  3. Carbon cycling and storage in mangrove forests.

    PubMed

    Alongi, Daniel M

    2014-01-01

    Mangroves are ecologically and economically important forests of the tropics. They are highly productive ecosystems with rates of primary production equal to those of tropical humid evergreen forests and coral reefs. Although mangroves occupy only 0.5% of the global coastal area, they contribute 10-15% (24 Tg C y(-1)) to coastal sediment carbon storage and export 10-11% of the particulate terrestrial carbon to the ocean. Their disproportionate contribution to carbon sequestration is now perceived as a means for conservation and restoration and a way to help ameliorate greenhouse gas emissions. Of immediate concern are potential carbon losses to deforestation (90-970 Tg C y(-1)) that are greater than these ecosystems' rates of carbon storage. Large reservoirs of dissolved inorganic carbon in deep soils, pumped via subsurface pathways to adjacent waterways, are a large loss of carbon, at a potential rate up to 40% of annual primary production. Patterns of carbon allocation and rates of carbon flux in mangrove forests are nearly identical to those of other tropical forests. PMID:24405426

  4. Hydrogen storage on activated carbon. Final report

    SciTech Connect

    Schwarz, J.A.

    1994-11-01

    The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

  5. Carbon nanotube materials from hydrogen storage

    SciTech Connect

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F.

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  6. Designing Microporus Carbons for Hydrogen Storage Systems

    SciTech Connect

    Alan C. Cooper

    2012-05-02

    An efficient, cost-effective hydrogen storage system is a key enabling technology for the widespread introduction of hydrogen fuel cells to the domestic marketplace. Air Products, an industry leader in hydrogen energy products and systems, recognized this need and responded to the DOE 'Grand Challenge' solicitation (DOE Solicitation DE-PS36-03GO93013) under Category 1 as an industry partner and steering committee member with the National Renewable Energy Laboratory (NREL) in their proposal for a center-of-excellence on Carbon-Based Hydrogen Storage Materials. This center was later renamed the Hydrogen Sorption Center of Excellence (HSCoE). Our proposal, entitled 'Designing Microporous Carbons for Hydrogen Storage Systems,' envisioned a highly synergistic 5-year program with NREL and other national laboratory and university partners.

  7. Gas storage carbon with enhanced thermal conductivity

    SciTech Connect

    Burchell, T.D.; Rogers, M.R.; Judkins, R.R.

    2000-07-18

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  8. Gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D.; Rogers, Michael Ray; Judkins, Roddie R.

    2000-01-01

    A carbon fiber carbon matrix hybrid adsorbent monolith with enhanced thermal conductivity for storing and releasing gas through adsorption and desorption is disclosed. The heat of adsorption of the gas species being adsorbed is sufficiently large to cause hybrid monolith heating during adsorption and hybrid monolith cooling during desorption which significantly reduces the storage capacity of the hybrid monolith, or efficiency and economics of a gas separation process. The extent of this phenomenon depends, to a large extent, on the thermal conductivity of the adsorbent hybrid monolith. This invention is a hybrid version of a carbon fiber monolith, which offers significant enhancements to thermal conductivity and potential for improved gas separation and storage systems.

  9. Practical modeling approaches for geological storage of carbon dioxide.

    PubMed

    Celia, Michael A; Nordbotten, Jan M

    2009-01-01

    The relentless increase of anthropogenic carbon dioxide emissions and the associated concerns about climate change have motivated new ideas about carbon-constrained energy production. One technological approach to control carbon dioxide emissions is carbon capture and storage, or CCS. The underlying idea of CCS is to capture the carbon before it emitted to the atmosphere and store it somewhere other than the atmosphere. Currently, the most attractive option for large-scale storage is in deep geological formations, including deep saline aquifers. Many physical and chemical processes can affect the fate of the injected CO2, with the overall mathematical description of the complete system becoming very complex. Our approach to the problem has been to reduce complexity as much as possible, so that we can focus on the few truly important questions about the injected CO2, most of which involve leakage out of the injection formation. Toward this end, we have established a set of simplifying assumptions that allow us to derive simplified models, which can be solved numerically or, for the most simplified cases, analytically. These simplified models allow calculation of solutions to large-scale injection and leakage problems in ways that traditional multicomponent multiphase simulators cannot. Such simplified models provide important tools for system analysis, screening calculations, and overall risk-assessment calculations. We believe this is a practical and important approach to model geological storage of carbon dioxide. It also serves as an example of how complex systems can be simplified while retaining the essential physics of the problem.

  10. Natural Carbonation of Peridotite and Applications for Carbon Storage

    NASA Astrophysics Data System (ADS)

    Streit, E.; Kelemen, P.; Matter, J.

    2009-05-01

    Natural carbonation of peridotite in the Samail Ophiolite of Oman is surprisingly rapid and could be further enhanced to provide a safe, permanent method of CO2 storage through in situ formation of carbonate minerals. Carbonate veins form by low-temperature reaction between peridotite and groundwater in a shallow weathering horizon. Reaction with peridotite drives up the pH of the water, and extensive travertine terraces form where this groundwater emerges at the surface in alkaline springs. The potential sink for CO2 in peridotite is enormous: adding 1wt% CO2 to the peridotite in Oman could consume 1/4 of all atmospheric carbon, and several peridotite bodies of comparable size exist throughout the world. Thus carbonation rate and cost, not reservoir size, are the limiting factors on the usefulness of in situ mineral carbonation of peridotite for carbon storage. The carbonate veins in Oman are much younger than previously believed, yielding average 14C ages of 28,000 years. Age data plus estimated volumes of carbonate veins and terraces suggest 10,000 to 100,000 tons per year of CO2 are consumed by these peridotite weathering reactions in Oman. This rate can be enhanced by drilling, hydraulic fracture, injecting CO2-rich fluid, and increasing reaction temperature. Drilling and hydraulic fracture can increase volume of peridotite available for reaction. Additional fracture may occur due to the solid volume increase of the carbonation reaction, and field observations suggest that such reaction-assisted fracture may be responsible for hierarchical carbonate vein networks in peridotite. Natural carbonation of peridotite in Oman occurs at low pCO2, resulting in partial carbonation of peridotite, forming magnesite and serpentine. Raising pCO2 increases carbonation efficiency, forming of magnesite + talc, or at complete carbonation, magnesite + quartz, allowing ˜30wt% CO2 to be added to the peridotite. Increasing the temperature to 185°C can improve the reaction rate by

  11. [Carbon storage and carbon sink of mangrove wetland: research progress].

    PubMed

    Zhang, Li; Guo, Zhi-hua; Li, Zhi-yong

    2013-04-01

    Mangrove forest is a special wetland forest growing in the inter-tidal zone of tropical and subtropical regions, playing important roles in windbreak, promoting silt sedimentation, resisting extreme events such as cyclones and tsunamis, and protecting coastline, etc. The total area of global mangrove forests is about 152000 km2, only accounting for 0. 4% of all forest area. There are about 230 km2 mangrove forests in China. The mangrove forests in the tropics have an average carbon storage as high as 1023 Mg hm-2, and the global mangrove forests can sequestrate about 0. 18-0. 228 Pg C a-1. In addition to plant species composition, a variety of factors such as air temperature, seawater temperature and salinity, soil physical and chemical properties, atmospheric CO2 concentration, and human activities have significant effects on the carbon storage and sink ability of mangrove forests. Many approaches based onfield measurements, including allometric equations, remote sensing, and model simulation, are applied to quantify the carbon storage and sink ability of mangrove forest wetland. To study the carbon storage and sink ability of mangrove wetland can promote the further understanding of the carbon cycle of mangrove wetland and related controlling mechanisms, being of significance for the protection and rational utilization of mangrove wetland.

  12. [Carbon storage and carbon sink of mangrove wetland: research progress].

    PubMed

    Zhang, Li; Guo, Zhi-hua; Li, Zhi-yong

    2013-04-01

    Mangrove forest is a special wetland forest growing in the inter-tidal zone of tropical and subtropical regions, playing important roles in windbreak, promoting silt sedimentation, resisting extreme events such as cyclones and tsunamis, and protecting coastline, etc. The total area of global mangrove forests is about 152000 km2, only accounting for 0. 4% of all forest area. There are about 230 km2 mangrove forests in China. The mangrove forests in the tropics have an average carbon storage as high as 1023 Mg hm-2, and the global mangrove forests can sequestrate about 0. 18-0. 228 Pg C a-1. In addition to plant species composition, a variety of factors such as air temperature, seawater temperature and salinity, soil physical and chemical properties, atmospheric CO2 concentration, and human activities have significant effects on the carbon storage and sink ability of mangrove forests. Many approaches based onfield measurements, including allometric equations, remote sensing, and model simulation, are applied to quantify the carbon storage and sink ability of mangrove forest wetland. To study the carbon storage and sink ability of mangrove wetland can promote the further understanding of the carbon cycle of mangrove wetland and related controlling mechanisms, being of significance for the protection and rational utilization of mangrove wetland. PMID:23898678

  13. Valuing the European 'coastal blue carbon' storage benefit.

    PubMed

    Luisetti, T; Jackson, E L; Turner, R K

    2013-06-15

    'Blue' carbon ecosystems are important carbon storage providers that are currently not protected by any international mechanism, such as REDD. This study aims to contribute to raising awareness in the political domain about the 'blue' carbon issue. This analysis also provides guidance in terms of how to value stock and flows of ecosystem services adding to the debate begun by the Costanza et al. (1997) paper in Nature. Through scenario analysis we assess how human welfare benefits will be affected by changes in the European coastal blue carbon stock provision. The current extent of European coastal blue carbon has an accounting stock value of about US$180 million. If EU Environmental Protection Directives continue to be implemented and effectively enforced, society will gain an appreciating asset over time. However, a future policy reversal resulting in extensive ecosystem loss could mean economic value losses as high as US$1 billion by 2060. PMID:23623654

  14. Valuing the European 'coastal blue carbon' storage benefit.

    PubMed

    Luisetti, T; Jackson, E L; Turner, R K

    2013-06-15

    'Blue' carbon ecosystems are important carbon storage providers that are currently not protected by any international mechanism, such as REDD. This study aims to contribute to raising awareness in the political domain about the 'blue' carbon issue. This analysis also provides guidance in terms of how to value stock and flows of ecosystem services adding to the debate begun by the Costanza et al. (1997) paper in Nature. Through scenario analysis we assess how human welfare benefits will be affected by changes in the European coastal blue carbon stock provision. The current extent of European coastal blue carbon has an accounting stock value of about US$180 million. If EU Environmental Protection Directives continue to be implemented and effectively enforced, society will gain an appreciating asset over time. However, a future policy reversal resulting in extensive ecosystem loss could mean economic value losses as high as US$1 billion by 2060.

  15. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  16. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  17. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  18. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 193.15-20 Carbon dioxide storage. (a...), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located within the...

  19. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  20. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  1. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  2. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  3. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  4. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  5. 46 CFR 95.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Carbon dioxide storage. 95.15-20 Section 95.15-20... PROTECTION EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 95.15-20 Carbon dioxide storage. (a... of not more than 300 pounds of carbon dioxide, may have the cylinders located within the...

  6. 46 CFR 76.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Carbon dioxide storage. 76.15-20 Section 76.15-20... EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 76.15-20 Carbon dioxide storage. (a) Except as... than 300 pounds of carbon dioxide, may have the cylinders located within the space protected. If...

  7. Functional Carbon Materials for Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Zhou, Huihui

    The ability to harvest and convert solar energy has been associated with the evolution of human civilization. The increasing consumption of fossil fuels since the industrial revolution, however, has brought to concerns in ecological deterioration and depletion of the fossil fuels. Facing these challenges, humankind is forced to seek for clean, sustainable and renewable energy resources, such as biofuels, hydraulic power, wind power, geothermal energy and other kinds of alternative energies. However, most alternative energy sources, generally in the form of electrical energy, could not be made available on a continuous basis. It is, therefore, essential to store such energy into chemical energy, which are portable and various applications. In this context, electrochemical energy-storage devices hold great promises towards this goal. The most common electrochemical energy-storage devices are electrochemical capacitors (ECs, also called supercapacitors) and batteries. In comparison to batteries, ECs posses high power density, high efficiency, long cycling life and low cost. ECs commonly utilize carbon as both (symmetric) or one of the electrodes (asymmetric), of which their performance is generally limited by the capacitance of the carbon electrodes. Therefore, developing better carbon materials with high energy density has been emerging as one the most essential challenges in the field. The primary objective of this dissertation is to design and synthesize functional carbon materials with high energy density at both aqueous and organic electrolyte systems. The energy density (E) of ECs are governed by E = CV 2/2, where C is the total capacitance and V is the voltage of the devices. Carbon electrodes with high capacitance and high working voltage should lead to high energy density. In the first part of this thesis, a new class of nanoporous carbons were synthesized for symmetric supercapacitors using aqueous Li2SO4 as the electrolyte. A unique precursor was adopted to

  8. Carbon nanotube materials for hydrogen storage

    SciTech Connect

    Dillon, A.C.; Jones, K.M.; Heben, M.J.

    1996-10-01

    Hydrogen burns pollution-free and may be produced from renewable energy resources. It is therefore an ideal candidate to replace fossil fuels as an energy carrier. However, the lack of a convenient and cost-effective hydrogen storage system greatly impedes the wide-scale use of hydrogen in both domestic and international markets. Although several hydrogen storage options exist, no approach satisfies all of the efficiency, size, weight, cost and safety requirements for transportation or utility use. A material consisting exclusively of micropores with molecular dimensions could simultaneously meet all of the requirements for transportation use if the interaction energy for hydrogen was sufficiently strong to cause hydrogen adsorption at ambient temperatures. Small diameter ({approx}1 mm) carbon single-wall nanotubes (SWNTs) are elongated micropores of molecular dimensions, and materials composed predominantly of SWNTs may prove to be the ideal adsorbent for ambient temperature storage of hydrogen. Last year the authors reported that hydrogen could be adsorbed on arc-generated soots containing 12{Angstrom} diameter nanotubes at temperatures in excess of 285K. In this past year they have learned that such adsorption does not occur on activated carbon materials, and that the cobalt nanoparticles present in their arc-generated soots are not responsible for the hydrogen which is stable at 285 K. These results indicate that enhanced adsorption forces within the internal cavities of the SWNTs are active in stabilizing hydrogen at elevated temperatures. This enhanced stability could lead to effective hydrogen storage under ambient temperature conditions. In the past year the authors have also demonstrated that single-wall carbon nanotubes in arc-generated soots may be selectively opened by oxidation in H{sub 2}O resulting in improved hydrogen adsorption, and they have estimated experimentally that the amount of hydrogen stored is {approximately}10% of the nanotube weight.

  9. Terrestrial carbon storage dynamics: Chasing a moving target

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Shi, Z.; Jiang, L.; Xia, J.; Wang, Y.; Kc, M.; Liang, J.; Lu, X.; Niu, S.; Ahlström, A.; Hararuk, O.; Hastings, A.; Hoffman, F. M.; Medlyn, B. E.; Rasmussen, M.; Smith, M. J.; Todd-Brown, K. E.; Wang, Y.

    2015-12-01

    Terrestrial ecosystems have been estimated to absorb roughly 30% of anthropogenic CO2 emissions. Past studies have identified myriad drivers of terrestrial carbon storage changes, such as fire, climate change, and land use changes. Those drivers influence the carbon storage change via diverse mechanisms, which have not been unified into a general theory so as to identify what control the direction and rate of terrestrial carbon storage dynamics. Here we propose a theoretical framework to quantitatively determine the response of terrestrial carbon storage to different exogenous drivers. With a combination of conceptual reasoning, mathematical analysis, and numeric experiments, we demonstrated that the maximal capacity of an ecosystem to store carbon is time-dependent and equals carbon input (i.e., net primary production, NPP) multiplying by residence time. The capacity is a moving target toward which carbon storage approaches (i.e., the direction of carbon storage change) but usually does not attain. The difference between the capacity and the carbon storage at a given time t is the unrealized carbon storage potential. The rate of the storage change is proportional to the magnitude of the unrealized potential. We also demonstrated that a parameter space of NPP, residence time, and carbon storage potential can well characterize carbon storage dynamics quantified at six sites ranging from tropical forests to tundra and simulated by two versions (carbon-only and coupled carbon-nitrogen) of the Australian Community Atmosphere-Biosphere Land Ecosystem (CABLE) Model under three climate change scenarios (CO2 rising only, climate warming only, and RCP8.5). Overall this study reveals the unified mechanism unerlying terrestrial carbon storage dynamics to guide transient traceability analysis of global land models and synthesis of empirical studies.

  10. [Characteristics of carbon storage of Inner Mongolia forests: a review].

    PubMed

    Yang, Hao; Hu, Zhong-Min; Zhang, Lei-Ming; Li, Sheng-Gong

    2014-11-01

    Forests in Inner Mongolia account for an important part of the forests in China in terms of their large area and high living standing volume. This study reported carbon storage, carbon density, carbon sequestration rate and carbon sequestration potential of forest ecosystems in Inner Mongolia using the biomass carbon data from the related literature. Through analyzing the data of forest inventory and the generalized allometric equations between volume and biomass, previous studies had reported that biomass carbon storage of the forests in Inner Mongolia was about 920 Tg C, which was 12 percent of the national forest carbon storage, the annual average growth rate was about 1.4%, and the average of carbon density was about 43 t · hm(-2). Carbon storage and carbon density showed an increasing trend over time. Coniferous and broad-leaved mixed forest, Pinus sylvestris var. mongolica forest and Betula platyphylla forest had higher carbon sequestration capacities. Carbon storage was reduced due to human activities such as thinning and clear cutting. There were few studies on carbon storage of the forests in Inner Mongolia with focus on the soil, showing that the soil car- bon density increased with the stand age. Study on the carbon sequestration potential of forest ecosystems was still less. Further study was required to examine dynamics of carbon storage in forest ecosystems in Inner Mongolia, i. e., to assess carbon storage in the forest soils together with biomass carbon storage, to compute biomass carbon content of species organs as 45% in the allometric equations, to build more species-specific and site-specific allometric equations including root biomass for different dominant species, and to take into account the effects of climate change on carbon sequestration rate and carbon sequestration potential.

  11. Adsorbed natural gas storage with activated carbon

    SciTech Connect

    Sun, Jian; Brady, T.A.; Rood, M.J.

    1996-12-31

    Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

  12. Carbon adsorption system protects LPG storage sphere

    SciTech Connect

    Gothenquist, C.A.; Rooker, K.M.

    1996-07-01

    Chevron U.S.A. Products Co. installed a carbon adsorption system to protect an LPG storage sphere at its refinery in Richmond, Calif. Vessel damage can result when amine contamination leads to emulsion formation and consequent amine carry-over, thus promoting wet-H{sub 2}S cracking. In Chevron`s No. 5 H{sub 2}S recovery plant, a mixture of butane and propane containing H{sub 2}S is contacted with diethanolamine (DEA) in a liquid-liquid absorber. The absorber is a countercurrent contactor with three packed beds. Because the sweetening system did not include a carbon adsorption unit for amine purification, contaminants were building up in the DEA. The contaminants comprised: treatment chemicals, hydrocarbons, foam inhibitors, and amine degradation products. The paper describes the solution to this problem.

  13. Carbon storage in the deep reducing mantle

    NASA Astrophysics Data System (ADS)

    Rohrbach, A.; Ghosh, S.; Schmidt, M. W.; Wijbrans, C. H.; Klemme, S.

    2014-12-01

    To understand the storage and cycling of carbon in/through Earth's deep mantle it is vital to examine carbon speciations at relevant pressure, temperature, and oxygen fugacity (fO2). In particular redox conditions of the mantle critically influence the mobility of carbon bearing phases in the silicate matrix; oxidized species are generally more mobile (carbonatites, carbonated silicate melts) or have a larger impact on silicate solidi (carbonated peridotite/eclogite) than reduced species (diamond, carbides, metals). Within garnet bearing mantle lithologies, fO2 can be expected to decrease with depth [1], eventually reaching values similar to the iron-wüstite equilibrium which implies the precipitation of a Fe-Ni metal phase at pressures corresponding to the base of the upper mantle [2]. Because Ni is more noble than Fe, Ni partitions strongly into the reduced phases such that at low metal fractions the metal phase reaches XNi > 0.5. Thermodynamic calculations suggest that the mantle contains ~0.1 wt.% Fe,Ni metal at ~300 km depth [3], increasing to ~1 wt% in the lower mantle [4]. To understand the nature of carbon bearing reduced phases in the Earth mantle, we examine experimentally phase relations and melting behavior in the system Fe-Ni-C at 10 and 23 GPa. Dependent on Fe-Ni ratio and related fO2, C content, P and T we observe a variety of phases, namely (Fe,Ni)3C and (Fe,Ni)7C3 carbides, carbon bearing Fe-Ni metal, diamond and carbon rich metal-melt. In the subsolidus, mantle bulk C contents of 50 to 500 ppm [5] would result in the phase association (Fe,Ni)3C + metal + diamond at 10 GPa. In the uppermost lower mantle, about 1 wt.% metal would dissolve ca. 100 ppm C, any further C would lead to (Fe,Ni)3C carbide saturation. The solidus temperatures of theses phase assemblages however are considerably lower than the geotherm at upper and lower mantle pressures. We therefore suggest that reduced carbon bearing phases in the deep mantle are largely molten [6]. [1

  14. Legal and regulatory issues affecting compressed air energy storage

    SciTech Connect

    Hendrickson, P.L.

    1981-07-01

    Several regulatory and legal issues that can potentially affect implementation of a compressed air energy storage (CAES) system are discussed. This technology involves the compression of air using base load electric power for storage in an underground storage medium. The air is subsequently released and allowed to pass through a turbine to generate electricity during periods of peak demand. The storage media considered most feasible are a mined hard rock cavern, a solution-mined cavern in a salt deposit, and a porous geologic formation (normally an aquifer) of suitable structure. The issues are discussed in four categories: regulatory issues common to most CAES facilities regardless of storage medium, regulatory issues applicable to particular CAES reservoir media, issues related to possible liability from CAES operations, and issues related to acquisition of appropriate property rights for CAES implementation. The focus is on selected federal regulation. Lesser attention is given to state and local regulation. (WHK)

  15. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  16. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  17. 46 CFR 193.15-20 - Carbon dioxide storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Carbon dioxide storage. 193.15-20 Section 193.15-20... PROTECTION EQUIPMENT Carbon Dioxide and Clean Agent Extinguishing Systems, Details § 193.15-20 Carbon dioxide...-5(d), consisting of not more than 300 pounds of carbon dioxide, may have cylinders located...

  18. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    PubMed Central

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-01-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC. PMID:26617054

  19. Sample storage-induced changes in the quantity and quality of soil labile organic carbon

    NASA Astrophysics Data System (ADS)

    Sun, Shou-Qin; Cai, Hui-Ying; Chang, Scott X.; Bhatti, Jagtar S.

    2015-11-01

    Effects of sample storage methods on the quantity and quality of labile soil organic carbon are not fully understood even though their effects on basic soil properties have been extensively studied. We studied the effects of air-drying and frozen storage on cold and hot water soluble organic carbon (WSOC). Cold- and hot-WSOC in air-dried and frozen-stored soils were linearly correlated with those in fresh soils, indicating that storage proportionally altered the extractability of soil organic carbon. Air-drying but not frozen storage increased the concentrations of cold-WSOC and carbohydrate in cold-WSOC, while both increased polyphenol concentrations. In contrast, only polyphenol concentration in hot-WSOC was increased by air-drying and frozen storage, suggesting that hot-WSOC was less affected by sample storage. The biodegradability of cold- but not hot-WSOC was increased by air-drying, while both air-drying and frozen storage increased humification index and changed specific UV absorbance of both cold- and hot-WSOC, indicating shifts in the quality of soil WSOC. Our results suggest that storage methods affect the quantity and quality of WSOC but not comparisons between samples, frozen storage is better than air-drying if samples have to be stored, and storage should be avoided whenever possible when studying the quantity and quality of both cold- and hot-WSOC.

  20. Carbon nanotube materials for hydrogen storage

    SciTech Connect

    Dillon, A.C.; Parilla, P.A.; Jones, K.M.; Riker, G.; Heben, M.J.

    1998-08-01

    Carbon single-wall nanotubes (SWNTs) are essentially elongated pores of molecular dimensions and are capable of adsorbing hydrogen at relatively high temperatures and low pressures. This behavior is unique to these materials and indicates that SWNTs are the ideal building block for constructing safe, efficient, and high energy density adsorbents for hydrogen storage applications. In past work the authors developed methods for preparing and opening SWNTs, discovered the unique adsorption properties of these new materials, confirmed that hydrogen is stabilized by physical rather than chemical interactions, measured the strength of interaction to be {approximately} 5 times higher than for adsorption on planar graphite, and performed infrared absorption spectroscopy to determine the chemical nature of the surface terminations before, during, and after oxidation. This year the authors have made significant advances in synthesis and characterization of SWNT materials so that they can now prepare gram quantities of high-purity SWNT samples and measure and control the diameter distribution of the tubes by varying key parameters during synthesis. They have also developed methods which purify nanotubes and cut nanotubes into shorter segments. These capabilities provide a means for opening the tubes which were unreactive to the oxidation methods that successfully opened tubes, and offer a path towards organizing nanotube segments to enable high volumetric hydrogen storage densities. They also performed temperature programmed desorption spectroscopy on high purity carbon nanotube material obtained from collaborator Prof. Patrick Bernier and finished construction of a high precision Seivert`s apparatus which will allow the hydrogen pressure-temperature-composition phase diagrams to be evaluated for SWNT materials.

  1. Carbon Capture and Storage (CCS): Overview, Developments, and Challenges

    NASA Astrophysics Data System (ADS)

    Busch, Andreas; Amann, Alexandra; Kronimus, Alexander; Kühn, Michael

    2010-05-01

    Carbon dioxide capture and storage (CCS) is a technology that will allow the continued combustion of fossil fuels (coal, oil, gas) for e.g. power generation, transportation and industrial processes for the next decades. It therefore facilitates to bridge to a more renewable energy dominated world, enhances the stability and security of energy systems and at the same time reduces global carbon emissions as manifested by many western countries. Geological media suitable for CO2 storage are mainly saline aquifers due to the large storage volumes associated with them, but also depleted oil and gas reservoirs or deep unminable coal beds. Lately, CO2 storage into mafic- to ultramafic rocks, associated with subsequent mineral carbonation are within the R&D scope and first demonstration projects are being executed. For all these storage options various physical and chemical trapping mechanisms must reveal the necessary capacity and injectivity, and must confine the CO2 both, vertically (through an effective seal) or horizontally (through a confining geological structure). Confinement is the prime prerequisite to prevent leakage to other strata, shallow potable groundwater, soils and/or atmosphere. Underground storage of gases (e.g. CO2, H2S, CH4) in these media has been demonstrated on a commercial scale by enhanced oil recovery operations, natural gas storage and acid gas disposal. Some of the risks associated with CO2 capture and geological storage are comparable with any of these industrial activities for which extensive safety and regulatory frameworks are in place. Specific risks associated with CO2 storage relate to the operational (injection) phase and to the post-operational phase. In both phases the risks of most concern are those posed by the potential for acute or chronic CO2 leakage from the storage site. Currently there are only few operations worldwide where CO2 is injected and stored in the subsurface. Some are related to oil production enhancement but the

  2. Is Carbon Capture and Storage Really Needed?

    SciTech Connect

    Tsouris, Costas; Williams, Kent Alan; Aaron, D

    2010-01-01

    Two of the greatest contemporary global challenges are anthropogenic greenhouse gas emissions and energy sustainability. A popular proposed solution to the former problem is carbon capture and storage (CCS). Unfortunately, CCS has little benefit for energy sustainability and introduces significant long-term costs and risks. Thus, we propose the adoption of 'virtual CCS' by directing the resources that would have been spent on CCS to alternative energy technologies. (The term 'virtual' is used here because the concept described in this work satisfies the Merriam-Webster Dictionary definition of virtual: 'being such in essence or effect though not formally recognized or admitted.') In this example, we consider wind and nuclear power and use the funds that would have been required by CCS to invest in installation and operation of these technologies. Many other options exist in addition to wind and nuclear power including solar, biomass, geothermal, and others. These additional energy technologies can be considered in future studies. While CCS involves spending resources to concentrate CO{sub 2} in sinks, such as underground reservoirs, low-carbon alternative energy produces power, which will displace fossil fuel use while simultaneously generating revenues. Thus, these alternative energy technologies achieve the same objective as that of CCS, namely, the avoidance of atmospheric CO{sub 2} emissions.

  3. Policy Needs for Carbon Capture & Storage

    NASA Astrophysics Data System (ADS)

    Peridas, G.

    2007-12-01

    Climate change is one of the most pressing environmental problems of our time. The widespread consensus that exists on climate science requires deep cuts in greenhouse gas emissions, on the order of 50-80% globally from current levels. Reducing energy demand, increasing energy efficiency and sourcing our energy from renewable sources will, and should, play a key role in achieving these cuts. Fossil fuels however are abundant, relatively inexpensive, and still make up the backbone of our energy system. Phasing out fossil fuel use will be a gradual process, and is likely to take far longer than the timeframe dictated by climate science for reducing emissions. A reliable way of decarbonizing the use of fossil fuels is needed. Carbon capture and storage (CCS) has already proven to be a technology that can safely and effectively accomplish this task. The technological know-how and the underground capacity exist to store billions of tons of carbon dioxide in mature oil and gas fields, and deep saline formations. Three large international commercial projects and several other applications have proved this, but substantial barriers remain to be overcome before CCS becomes the technology of choice in all major emitting sectors. Government has a significant role to play in surmounting these barriers. Without mandatory limits on greenhouse gas emissions and a price on carbon, CCS is likely to linger in the background. The expected initial carbon price levels and their potential volatility under such a scheme dictates that further policies be used in the early years in order for CCS to be implemented. Such policies could include a new source performance standard for power plants, and a low carbon generation obligation that would relieve first movers by spreading the additional cost of the technology over entire sectors. A tax credit for capturing and permanently sequestering anthropogenic CO2 would aid project economics. Assistance in the form of loan guarantees for components

  4. [Estimation for vegetation carbon storage in Tiantong National Forest Park].

    PubMed

    Guo, Chun-Zi; Wu, Yang-Yang; Ni, Jian

    2014-11-01

    Based on the field investigation and the data combination from literature, vegetation carbon storage, carbon density, and their spatial distribution were examined across six forest community types (Schima superba--Castanopsis fargesii community, S. superba--C. fargesii with C. sclerophylla community, S. superba--C. fargesii with Distylium myricoides community, Illicium lanceolatum--Choerospondias axillaris community, Liquidambar formosana--Pinus massoniana community and Hedyotis auricularia--Phylostachys pubescens community) in Tiantong National Forest Park, Zhejiang Province, by using the allometric biomass models for trees and shrubs. Results showed that: Among the six communities investigated, carbon storage and carbon density were highest in the S. superba--C. fargesii with C. sclerophylla community (storage: 12113.92 Mg C; density: 165.03 Mg C · hm(-2)), but lowest in the I. lanceolatum--C. axillaris community (storage: 680.95 Mg C; density: 101.26 Mg C · hm(-2)). Carbon storage was significantly higher in evergreen trees than in deciduous trees across six communities. Carbon density ranged from 76.08 to 144.95 Mg C · hm(-2), and from 0. 16 to 20. 62 Mg C · hm(-2) for evergreen trees and deciduous trees, respectively. Carbon storage was highest in stems among tree tissues in the tree layer throughout communities. Among vegetation types, evergreen broad-leaved forest had the highest carbon storage (23092.39 Mg C), accounting for 81.7% of the total carbon storage in all forest types, with a car- bon density of 126.17 Mg C · hm(-2). Total carbon storage for all vegetation types in Tiantong National Forest Park was 28254.22 Mg C, and the carbon density was 96.73 Mg C · hm(-2).

  5. Carbon cryogel based nanomaterials for efficient energy storage

    NASA Astrophysics Data System (ADS)

    Feaver, Aaron

    As demand for fossil fuel alternatives intensifies, energy storage will be a growing concern especially for portable power needs such as automobiles and portable electronic devices. In this work Carbon cryogels have been investigated as an energy storage material for applications in super capacitor electrodes as well as both natural gas storage and hydrogen storage. Carbon cryogels can be tuned to achieve a wide range of pore size, pore volume and surface area as well as have their surface chemistry manipulated. It is this flexibility that enables carbon cryogel application in different energy storage approaches including: (1) Super capacitor electrode materials with electrolyte ions adsorbed on the vast surface area of the carbon cryogel network; (2) Adsorbed natural gas storage where 1--2nm pores and extremely high surface area are required; (3) Carbon cryogel/hydride composite hydrogen storage materials where large pore sizes are required to admit metal hydride particles; (4) Carbon cryogel/hydride composite hydrogen storage materials where high surface area is required and surface chemistry must be strictly controlled. The use of carbon cryogels in each of these approaches has shown to have significant benefits over traditional materials used in the field. High surface area carbon cryogels (>2500m2/g) have been produced and show high capacitance, power, and specific energy as well as high gravimetric methane storage capacity. Carbon cryogel have also been produced to accommodate both metal and complex hydride hydrogen storage materials and the decomposition temperature of both materials has been reduced while the complex hydride material released significantly more hydrogen. The implication of these benefits and how they can be achieved will be discussed.

  6. Legal and regulatory issues affecting aquifer thermal energy storage

    SciTech Connect

    Hendrickson, P.L.

    1981-10-01

    This document updates and expands the report with a similar title issued in October 1980. This document examines a number of legal and regulatory issues that potentially can affect implementation of the aquifer thermal energy storage (ATES) concept. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  7. Sodium-Ion Storage in Pyroprotein-Based Carbon Nanoplates.

    PubMed

    Yun, Young Soo; Park, Kyu-Young; Lee, Byoungju; Cho, Se Youn; Park, Young-Uk; Hong, Sung Ju; Kim, Byung Hoon; Gwon, Hyeokjo; Kim, Haegyeom; Lee, Sungho; Park, Yung Woo; Jin, Hyoung-Joon; Kang, Kisuk

    2015-11-18

    Pyroprotein-based carbon nanoplates are fabricated from self-assembled silk proteins as a versatile platform to examine sodium-ion storage characteristics in various carbon environments. It is found that, depending on the local carbon structure, sodium ions are stored via chemi-/physisorption, insertion, or nanoclustering of metallic sodium.

  8. Sociopolitical drivers in the development of deliberate carbon storage

    NASA Astrophysics Data System (ADS)

    Stephens, Jennie C.

    The idea of engineering the storage of carbon released from fossil fuel burning in reservoirs other than the atmosphere has developed in the past 20 years from an obscure idea to an increasingly recognized potential approach that could be an important contributor to stabilizing atmospheric carbon dioxide (CO2) concentrations. Despite the intense application of scientific and technological expertise to the development of options for deliberate carbon storage, nontechnical factors play an important role. This chapter identifies sociopolitical, nontechnical factors that have contributed to the development of ideas and technologies associated with deliberate carbon storage. Broadly, interest in deliberate storage has expanded in response to increasing societal attention to reducing CO2 emissions for climate change mitigation. Specific societal groups, or stakeholders, which have contributed to the recent focus on carbon storage include the fossil fuel industry that has been shifting to a strategy of confronting rather than denying the CO2-climate change connection, a scientific community motivated by an increased sense of urgency of the need to reduce atmospheric CO2 concentrations, the general public with little knowledge about or awareness of carbon storage, and environmental advocacy groups that have demonstrated some divergence in levels of support for deliberate carbon storage. Among the policy mechanisms that have provided incentives for deliberate carbon storage are national accounting of carbon sources and sinks and carbon taxes. Another driver with particular importance in the United States is the political preference of some politicians to support development of advanced technologies for climate change mitigation rather than supporting mandatory CO2 regulations.

  9. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.

    2000-01-01

    1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate

  10. Grain-based activated carbons for natural gas storage.

    PubMed

    Zhang, Tengyan; Walawender, Walter P; Fan, L T

    2010-03-01

    Natural gas has emerged as a potential alternative to gasoline due to the increase in global energy demand and environmental concerns. An investigation was undertaken to explore the technical feasibility of implementing the adsorbed natural gas (ANG) storage in the fuel tanks of motor vehicles with activated carbons from biomass, e.g., sorghum and wheat. The grain-based activated carbons were prepared by chemical activation; the experimental parameters were varied to identify the optimum conditions. The porosity of the resultant activated carbons was evaluated through nitrogen adsorption; and the storage capacity, through methane adsorption. A comparative study was also carried out with commercial activated carbons from charcoal. The highest storage factor attained was 89 for compacted grain-based activated carbons from grain sorghum with a bulk density of 0.65 g/cm(3), and the highest storage factor attained is 106 for compacted commercial activated carbons (Calgon) with a bulk density of 0.70 g/cm(3). The storage factor was found to increase approximately linearly with increasing bulk density and to be independent of the extent of compaction. This implies that the grain-based activated carbons are the ideal candidates for the ANG storage.

  11. New insights into the nation's carbon storage potential

    USGS Publications Warehouse

    Warwick, Peter D.; Zhu, Zhi-Liang

    2012-01-01

    Carbon sequestration is a method of securing carbon dioxide (CO2) to prevent its release into the atmosphere, where it contributes to global warming as a greenhouse gas. Geologic storage of CO2 in porous and permeable rocks involves injecting high-pressure CO2 into a subsurface rock unit that has available pore space. Biologic carbon sequestration refers to both natural and anthropogenic processes by which CO2 is removed from the atmosphere and stored as carbon in vegetation, soils, and sediments.

  12. Carbon Nanotube Films for Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Kozinda, Alina

    With the rising demands for small, lightweight, and long-lasting portable electronics, the need for energy storage devices with both large power and large energy densities becomes vitally important. From their usage in hybrid electric vehicles to wearable electronics, supercapacitors and rechargeable batteries have been the focus of many previous works. Electrode materials with large specific surface areas can enhance the charging speed and total amount of stored energy. To this end, vertically self-aligned carbon nanotube (CNT) forests are well suited, as they possess outstanding electrical conductivities as well as high mechanical strength and large specific surface areas. In addition, forests of vertically aligned CNTs allow the ions within an electrolyte to pass freely between the individual CNTs from electrode to electrode. In order to minimize the system resistance of the battery or supercapacitor, a thin molybdenum current collector layer is deposited beneath catalyst of the CNT forest, thus ensuring that when the CNT forest grows from its substrate, each CNT has an innate connection to the current collector. This versatile CNT-Mo film architecture is used in this work as both supercapacitor as well as lithium-ion battery electrodes. It is desirable to have energy storage devices of adjustable shapes, such that they may conform to the shrinking form factors of modern portable electronics and mechanically flexible electrodes are an attractive prospect. The CNT-Mo film is shown here to easily release from its growth substrate, after which it may be placed onto a number of surfaces and topographies and densified. Two polymer films, KaptonRTM and Thermanox(TM) , have been used as substrates for the demonstrations of flexible supercapacitor electrodes. Test results show that the attached active CNT-Mo film can withstand bending to at least as large an angle as 180°. The specific capacitance of a 5 mm by 5 mm area electrode in the K2SO 4 aqueous electrolyte with

  13. Hydrogen storage in carbon materials—preliminary results

    NASA Astrophysics Data System (ADS)

    Jörissen, Ludwig; Klos, Holger; Lamp, Peter; Reichenauer, Gudrun; Trapp, Victor

    1998-08-01

    Recent developments aiming at the accelerated commercialization of fuel cells for automotive applications have triggered an intensive research on fuel storage concepts for fuel cell cars. The fuel cell technology currently lacks technically and economically viable hydrogen storage technologies. On-board reforming of gasoline or methanol into hydrogen can only be regarded as an intermediate solution due to the inherently poor energy efficiency of such processes. Hydrogen storage in carbon nanofibers may lead to an efficient solution to the above described problems.

  14. Filled Carbon Nanotubes: Superior Latent Heat Storage Enhancers

    SciTech Connect

    2009-04-01

    This factsheet describes a rstudy whose technical objective is to demonstrate the feasibility of filled carbon nanotubes (CNT) as latent heat storage enhancers, with potential applications as next generation thermal management fluids in diverse applications in industries ranging from high-demand microelectronic cooling, manufacturing, power generation, transportation, to solar energy storage.

  15. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest.

    PubMed

    Shen, Yong; Yu, Shixiao; Lian, Juyu; Shen, Hao; Cao, Honglin; Lu, Huanping; Ye, Wanhui

    2016-01-01

    Tropical forests play a disproportionately important role in the global carbon (C) cycle, but it remains unclear how local environments and functional diversity regulate tree aboveground C storage. We examined how three components (environments, functional dominance and diversity) affected C storage in Dinghushan 20-ha plot in China. There was large fine-scale variation in C storage. The three components significantly contributed to regulate C storage, but dominance and diversity of traits were associated with C storage in different directions. Structural equation models (SEMs) of dominance and diversity explained 34% and 32% of variation in C storage. Environments explained 26-44% of variation in dominance and diversity. Similar proportions of variation in C storage were explained by dominance and diversity in regression models, they were improved after adding environments. Diversity of maximum diameter was the best predictor of C storage. Complementarity and selection effects contributed to C storage simultaneously, and had similar importance. The SEMs disengaged the complex relationships among the three components and C storage, and established a framework to show the direct and indirect effects (via dominance and diversity) of local environments on C storage. We concluded that local environments are important for regulating functional diversity and C storage. PMID:27278688

  16. Tree aboveground carbon storage correlates with environmental gradients and functional diversity in a tropical forest

    PubMed Central

    Shen, Yong; Yu, Shixiao; Lian, Juyu; Shen, Hao; Cao, Honglin; Lu, Huanping; Ye, Wanhui

    2016-01-01

    Tropical forests play a disproportionately important role in the global carbon (C) cycle, but it remains unclear how local environments and functional diversity regulate tree aboveground C storage. We examined how three components (environments, functional dominance and diversity) affected C storage in Dinghushan 20-ha plot in China. There was large fine-scale variation in C storage. The three components significantly contributed to regulate C storage, but dominance and diversity of traits were associated with C storage in different directions. Structural equation models (SEMs) of dominance and diversity explained 34% and 32% of variation in C storage. Environments explained 26–44% of variation in dominance and diversity. Similar proportions of variation in C storage were explained by dominance and diversity in regression models, they were improved after adding environments. Diversity of maximum diameter was the best predictor of C storage. Complementarity and selection effects contributed to C storage simultaneously, and had similar importance. The SEMs disengaged the complex relationships among the three components and C storage, and established a framework to show the direct and indirect effects (via dominance and diversity) of local environments on C storage. We concluded that local environments are important for regulating functional diversity and C storage. PMID:27278688

  17. Record Methane Storage in Monolithic and Powdered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Soo, Yuchoong; Nordwald, E.; Hester, B.; Romanos, J.; Isaacson, B.; Stalla, D.; Moore, D.; Kraus, M.; Burress, J.; Dohnke, E.; Pfeifer, P.

    2010-03-01

    The Alliance for Collaborative Research in Alternative Fuel Technology (ALL-CRAFT) has developed activated carbons from corn cob as adsorbent materials for methane gas storage by physisorption at low pressures. KOH activated carbons were compressed into carbon monolith using chemical binders. High pressure methane isotherms up to 250 bar at room temperature on monolithic and powdered activated carbons were measured gravimetrically and volumetrically. Record methane storage capacities of 250 g CH4/kg carbon and 130 g CH4/liter carbon at 35 bar and 293 K have been achieved. BET surface area, porosity, and pore size distributions were measured from sub-critical nitrogen isotherms. Pore entrances were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A prototype adsorbed natural gas (ANG) tank, loaded with carbon monoliths, was tested in Kansas City.

  18. Ecosystem carbon storage does not vary with mean annual temperature in Hawaiian tropical montane wet forests.

    PubMed

    Selmants, Paul C; Litton, Creighton M; Giardina, Christian P; Asner, Gregory P

    2014-09-01

    Theory and experiment agree that climate warming will increase carbon fluxes between terrestrial ecosystems and the atmosphere. The effect of this increased exchange on terrestrial carbon storage is less predictable, with important implications for potential feedbacks to the climate system. We quantified how increased mean annual temperature (MAT) affects ecosystem carbon storage in above- and belowground live biomass and detritus across a well-constrained 5.2 °C MAT gradient in tropical montane wet forests on the Island of Hawaii. This gradient does not systematically vary in biotic or abiotic factors other than MAT (i.e. dominant vegetation, substrate type and age, soil water balance, and disturbance history), allowing us to isolate the impact of MAT on ecosystem carbon storage. Live biomass carbon did not vary predictably as a function of MAT, while detrital carbon declined by ~14 Mg of carbon ha(-1) for each 1 °C rise in temperature - a trend driven entirely by coarse woody debris and litter. The largest detrital pool, soil organic carbon, was the most stable with MAT and averaged 48% of total ecosystem carbon across the MAT gradient. Total ecosystem carbon did not vary significantly with MAT, and the distribution of ecosystem carbon between live biomass and detritus remained relatively constant across the MAT gradient at ~44% and ~56%, respectively. These findings suggest that in the absence of alterations to precipitation or disturbance regimes, the size and distribution of carbon pools in tropical montane wet forests will be less sensitive to rising MAT than predicted by ecosystem models. This article also provides needed detail on how individual carbon pools and ecosystem-level carbon storage will respond to future warming.

  19. Rotation of Boar Semen Doses During Storage Affects Sperm Quality.

    PubMed

    Schulze, M; Rüdiger, K; Waberski, D

    2015-08-01

    It is common practice to rotate boar semen doses during storage for prevention of sperm sedimentation. In this study, the effect of rotation of boar semen doses during storage on sperm quality was investigated. Manual turning twice daily and automatic rotation five times per hour resulted in the following effects: alkalinization of the BTS-extender, loss of membrane integrity at day 3, and loss of motility and changes in sperm kinematics during a thermoresistance test at day 5. Using a pH-stabilized variant of BTS extender, sperm motility and velocity decreased in continuously rotated samples, whereas membrane integrity and mitochondrial activity remain unaffected. It is concluded that rotation of semen samples adversely affects sperm quality and, therefore, should no longer be recommended for AI practice. PMID:25974759

  20. Annual Report: Carbon Storage (30 September 2012)

    SciTech Connect

    Strazisar, Brian; Guthrie, George

    2013-11-07

    Activities include laboratory experimentation, field work, and numerical modeling. The work is divided into five theme areas (or first level tasks) that each address a key research need: Flow Properties of Reservoirs and Seals, Fundamental Processes and Properties, Estimates of Storage Potential, Verifying Storage Performance, and Geospatial Data Resources. The project also includes a project management effort which coordinates the activities of all the research teams.

  1. Increasing carbon storage in intact African tropical forests.

    PubMed

    Lewis, Simon L; Lopez-Gonzalez, Gabriela; Sonké, Bonaventure; Affum-Baffoe, Kofi; Baker, Timothy R; Ojo, Lucas O; Phillips, Oliver L; Reitsma, Jan M; White, Lee; Comiskey, James A; Djuikouo K, Marie-Noël; Ewango, Corneille E N; Feldpausch, Ted R; Hamilton, Alan C; Gloor, Manuel; Hart, Terese; Hladik, Annette; Lloyd, Jon; Lovett, Jon C; Makana, Jean-Remy; Malhi, Yadvinder; Mbago, Frank M; Ndangalasi, Henry J; Peacock, Julie; Peh, Kelvin S-H; Sheil, Douglas; Sunderland, Terry; Swaine, Michael D; Taplin, James; Taylor, David; Thomas, Sean C; Votere, Raymond; Wöll, Hannsjörg

    2009-02-19

    The response of terrestrial vegetation to a globally changing environment is central to predictions of future levels of atmospheric carbon dioxide. The role of tropical forests is critical because they are carbon-dense and highly productive. Inventory plots across Amazonia show that old-growth forests have increased in carbon storage over recent decades, but the response of one-third of the world's tropical forests in Africa is largely unknown owing to an absence of spatially extensive observation networks. Here we report data from a ten-country network of long-term monitoring plots in African tropical forests. We find that across 79 plots (163 ha) above-ground carbon storage in live trees increased by 0.63 Mg C ha(-1) yr(-1) between 1968 and 2007 (95% confidence interval (CI), 0.22-0.94; mean interval, 1987-96). Extrapolation to unmeasured forest components (live roots, small trees, necromass) and scaling to the continent implies a total increase in carbon storage in African tropical forest trees of 0.34 Pg C yr(-1) (CI, 0.15-0.43). These reported changes in carbon storage are similar to those reported for Amazonian forests per unit area, providing evidence that increasing carbon storage in old-growth forests is a pan-tropical phenomenon. Indeed, combining all standardized inventory data from this study and from tropical America and Asia together yields a comparable figure of 0.49 Mg C ha(-1) yr(-1) (n = 156; 562 ha; CI, 0.29-0.66; mean interval, 1987-97). This indicates a carbon sink of 1.3 Pg C yr(-1) (CI, 0.8-1.6) across all tropical forests during recent decades. Taxon-specific analyses of African inventory and other data suggest that widespread changes in resource availability, such as increasing atmospheric carbon dioxide concentrations, may be the cause of the increase in carbon stocks, as some theory and models predict.

  2. Carbon Materials for Chemical Capacitive Energy Storage

    SciTech Connect

    Zhai, Yunpu; Dou, Yuqian; Zhao, Dongyuan; Fulvio, Pasquale F.; Mayes, Richard T.; Dai, Sheng

    2011-09-26

    Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

  3. Carbon materials for chemical capacitive energy storage.

    PubMed

    Zhai, Yunpu; Dou, Yuqian; Zhao, Dongyuan; Fulvio, Pasquale F; Mayes, Richard T; Dai, Sheng

    2011-11-01

    Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed. PMID:21953940

  4. Carbon materials for chemical capacitive energy storage.

    PubMed

    Zhai, Yunpu; Dou, Yuqian; Zhao, Dongyuan; Fulvio, Pasquale F; Mayes, Richard T; Dai, Sheng

    2011-11-01

    Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

  5. Effect of interannual climate variability on carbon storage in Amazonian ecosystems

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, David A.; Helfrich, J. V. K.; Moore, B.; Vorosmarty, C.J.

    1998-01-01

    The Amazon Basin contains almost one-half of the world's undisturbed tropical evergreen forest as well as large areas of tropical savanna. The forests account for about 10 per cent of the world's terrestrial primary productivity and for a similar fraction of the carbon stored in land ecosystems, and short-term field measurements suggest that these ecosystems are globally important carbon sinks. But tropical land ecosystems have experienced substantial interannual climate variability owing to frequent El Nino episodes in recent decades. Of particular importance to climate change policy is how such climate variations, coupled with increases in atmospheric CO2 concentration, affect terrestrial carbon storage. Previous model analyses have demonstrated the importance of temperature in controlling carbon storage. Here we use a transient process-based biogeochemical model of terrestrial ecosystems to investigate interannual variations of carbon storage in undisturbed Amazonian ecosystems in response to climate variability and increasing atmospheric CO2 concentration during the period 1980 to 1994. In El Nino years, which bring hot, dry weather to much of the Amazon region, the ecosystems act as a source of carbon to the atmosphere (up to 0.2 petagrams of carbon in 1987 and 1992). In other years, these ecosystems act as a carbon sink (up to 0.7 Pg C in 1981 and 1993). These fluxes are large; they compare to a 0.3 Pg C per year source to the atmosphere associated with deforestation in the Amazon Basin in the early 1990s. Soil moisture, which is affected by both precipitation and temperature, and which affects both plant and soil processes, appears to be an important control on carbon storage.

  6. [Fine root biomass and carbon storage in surface soil of Cinnamomum camphora plantation in rainy area of West China].

    PubMed

    Wei, Peng; Li, Xian-Wei; Fan, Chuan; Zhang, Teng-Fei; Liu, Yun-Ke; Su, Yu; Yang, Zheng-Ju

    2013-10-01

    Fine root in forest ecosystems plays an important role in global C cycle. In this study, a measurement was made on the fine root biomass and carbon storage in the surface soil (0-30 cm) of a 31 year-old Cinnamomum camphora plantation in the Rainy Area of West China in November, 2010-December, 2011. The total biomass and carbon storage of the fine roots (living and dead) in the surface soil were 1592.29 kg x hm(-2) and 660.68 kg C x hm(-2), in which, living fine roots accounted for 91.1% and 91.8% respectively. The total biomass and carbon storage of the first five order living roots and dead roots decreased significantly with increasing soil depth, and the living root biomass and carbon storage increased significantly with root order. The sum of the biomass and carbon storage of living and dead fine roots was the largest in autumn and the smallest in winter, but the biomass and carbon storage of the dead fine roots were the largest in winter and the smallest in summer. The biomass and carbon storage of the first two order roots were the largest in summer and the smallest in winter, while those of the last three order roots were the largest in autumn and the smallest in winter. The spatial heterogeneity of soil moisture and nutrients was the main factor affecting the fine root biomass and carbon storage.

  7. Preparation and characterization of ordered porous carbons for increasing hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Park, Soo-Jin

    2011-10-15

    We prepared ordered porous carbons (PCs) by using a replication method that had well-organized mesoporous silica as a template with various carbonization temperatures in order to investigate the possibility of energy storage materials. The microstructure and morphologies of the samples are characterized by XRD, TEM, and FT-Raman spectroscopy. N{sub 2} adsorption isotherms are analyzed by the t-plot method, as well as the BET and the H-K method in order to characterize the specific surface area, pore volume, and pore size distribution of the samples, respectively. The capacity of the hydrogen adsorption of the samples is evaluated by BEL-HP at 77 K and 1 bar. From the results, we are able to confirm that the synthesis of the samples can be accurately governed by the carbonization temperature, which is one of the effective parameters for developing the textural properties of the carbon materials, which affects the behaviors of the hydrogen storage. - Graphical abstract: It is described that the considerable long-range ordering and the presence of mono-dimensional aligned channels between the two aligned nanorods of the porous framework from the SBA-15 was retained in the T-950 sample during the carbonization process. Highlights: > Ordered porous carbons (PCs) are synthesized with various carbonization temperatures by using a replication method. > Carbonization temperature plays an important role in shrinking the micropores during the carbonization process of PCs. > The textural and structural properties of the PCs are good parameters for enhancing the hydrogen storage capacity.

  8. Mechanisms of soil carbon storage in experimental grasslands

    NASA Astrophysics Data System (ADS)

    Steinbeiss, S.; Temperton, V. M.; Gleixner, G.

    2007-10-01

    We investigated the fate of root and litter derived carbon into soil organic matter and dissolved organic matter in soil profiles, in order to explain unexpected positive effects of plant diversity on carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment. In addition to the main biodiversity experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m-2 and 263 g C m-2 to 20 cm depth, while 71 g C m-2 and 393 g C m-2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 11 and 15% of soil organic carbon were derived from plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of carbon newly stored in soil, whereas with double litter this corresponds to twice the amount of stored carbon. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution and contributed to the observed carbon storage in deeper horizons.

  9. Carbon and Nitrogen Storage in Aboveground Biomass and Organic Layer in Natural Larix Stands in Eastern Siberia

    NASA Astrophysics Data System (ADS)

    Shibuya, M.; Saito, H.; Sawamoto, T.; Hatano, R.; Yajima, T.; Takahashi, K.; Cha, J.; Isaev, A.; Maximov, T.

    2002-12-01

    To evaluate the carbon storage capacity of natural Larix stands in eastern Siberia, aboveground biomass, carbon and nitrogen storage in the biomass and organic layer of soil, and net primary production (NPP) were estimated in relation to stand age. Stands studied were from young to mature growth stage. The aboveground biomass and carbon storage in the biomass increased sigmoidally with stand age. The asymptotes of the biomass and carbon storage were 104 t\\ha-1 and 52 tC\\ha-1, respectively. The carbon storage capacity of the aboveground biomass was considered not to be small depending on the long period during which a large biomass close to the asymptote is retained, while the annual increment of the biomass is small. Also, carbon sink efficiency of the biomass changed with stand age. NPP of the stands was small comparing with those of temperate and boreal stands. Estimated net ecosystem production was positive even in a mature stand. Siberian Larix stands studied were carbon sink irrespective of stand age. The carbon storage in organic layer of soil accounted for 80-100 % of that in the aboveground biomass and was a significant carbon sink. Nitrogen was considered as a limited nutrient for the production of the stands from its allocation pattern to aboveground tree organs and storage pattern in soil. Furthermore, the decomposition rate of litter was small and affects the accumulation of organic materials.

  10. Floodplain Organic Carbon Storage in the Central Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.

    2014-12-01

    Floodplain storage of organic carbon is an important aspect of the global carbon cycle that is not well understood or quantified. Although it is understood that rivers transport organic carbon to the ocean, little is known about the quantity of stored carbon in boreal floodplains and the influence of fluvial processes on this storage. We present results on total organic carbon (TOC) content within the floodplains of two rivers, the Dall River and Preacher Creek, in the central Yukon River Basin in the Yukon Flats National Wildlife Refuge of Alaska. The results indicate that organic carbon storage is influenced by fluvial disturbance and grain size. The Dall River, which contains a large amount of floodplain carbon, is meandering and incised, with well-developed floodplain soils, a greater percentage of relatively old floodplain surfaces and a slower floodplain turnover time, and finer grain sizes. Preacher Creek stores less TOC, transports coarser grain sizes, and has higher rates of avulsion and floodplain turnover time. Within the floodplain of a particular river, large spatial heterogeneity in TOC content also exists as a function of depositional environment and age and vegetation community of the site. In addition, saturated regions of the floodplains, such as abandoned channels and oxbow lakes, contain more TOC compared to drier floodplain environments. Frozen alluvial soils likely contain carbon that could be released into the environment with melting permafrost, and thus quantifying the organic carbon content in the active layer of floodplain soils could provide insight into the characteristics of the permafrost beneath. The hydrology in these regions is changing due to permafrost melt, and floodplain areas usually saturated could be dried out, causing breakdown and outgassing of carbon stored in previously saturated soils. Ongoing work will result in a first-order estimate of active-layer floodplain carbon storage for the central Yukon River Basin.

  11. Enhanced lithium ion storage in nanoimprinted carbon

    SciTech Connect

    Wang, Peiqi; Chen, Qian Nataly; Li, Jiangyu; Xie, Shuhong; Liu, Xiaoyan

    2015-07-27

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  12. Enhanced lithium ion storage in nanoimprinted carbon

    NASA Astrophysics Data System (ADS)

    Wang, Peiqi; Chen, Qian Nataly; Xie, Shuhong; Liu, Xiaoyan; Li, Jiangyu

    2015-07-01

    Disordered carbons processed from polymers have much higher theoretical capacity as lithium ion battery anode than graphite, but they suffer from large irreversible capacity loss and have poor cyclic performance. Here, a simple process to obtain patterned carbon structure from polyvinylpyrrolidone was demonstrated, combining nanoimprint lithography for patterning and three-step heat treatment process for carbonization. The patterned carbon, without any additional binders or conductive fillers, shows remarkably improved cycling performance as Li-ion battery anode, twice as high as the theoretical value of graphite at 98 cycles. Localized electrochemical strain microscopy reveals the enhanced lithium ion activity at the nanoscale, and the control experiments suggest that the enhancement largely originates from the patterned structure, which improves surface reaction while it helps relieving the internal stress during lithium insertion and extraction. This study provides insight on fabricating patterned carbon architecture by rational design for enhanced electrochemical performance.

  13. Recent advances in modeling depth distribution of soil carbon storage

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Shu, S.

    2015-12-01

    Depth distribution of soil carbon storage determines the sensitivity of soil carbon to environmental change. We present different approaches that have been used to represent the vertical heterogeneity of soil carbon both in mapping and modeling studies. In digital soil mapping, many studies applied exponential decay functions in soils where carbon concentration has been observed to decline with depth. Recent studies used various forms of spline functions to better represent the vertical distribution of soil carbon along with soil horizons. These studies fitted mathematical functions that described the observations and then interpolated the model coefficients using soil-forming factors and used maps of model coefficients with depth to predict the SOC storage at desired depth intervals. In general, the prediction accuracy decreased with depth and the challenge remains to find appropriate soil-forming factors that determine/explain subsurface soil variation. Models such as Century, RothC, and Terrestrial Ecosystem Model use the exponential depth distribution functions of soil carbon in their model structures. In CLM 4.5 the soil profile is partitioned into 10 layers down to 3.8 m depth and the carbon input from plant roots is assumed to decrease following an exponential function. Not accounting for soil horizons in representing biogeochemistry and the assumption of globally uniform soil depth remain major sources of uncertainty in these models. In this presentation, we will discuss the merits and demerits of using various profile depth distribution functions to represent the vertical heterogeneity of soil carbon storage.

  14. Weathering controls on mechanisms of carbon storage in grassland soils

    USGS Publications Warehouse

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  15. Weathering controls on mechanisms of carbon storage in grassland soils

    SciTech Connect

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  16. Nanowire modified carbon fibers for enhanced electrical energy storage

    NASA Astrophysics Data System (ADS)

    Shuvo, Mohammad Arif Ishtiaque; (Bill) Tseng, Tzu-Liang; Ashiqur Rahaman Khan, Md.; Karim, Hasanul; Morton, Philip; Delfin, Diego; Lin, Yirong

    2013-09-01

    The study of electrochemical super-capacitors has become one of the most attractive topics in both academia and industry as energy storage devices because of their high power density, long life cycles, and high charge/discharge efficiency. Recently, there has been increasing interest in the development of multifunctional structural energy storage devices such as structural super-capacitors for applications in aerospace, automobiles, and portable electronics. These multifunctional structural super-capacitors provide structures combining energy storage and load bearing functionalities, leading to material systems with reduced volume and/or weight. Due to their superior materials properties, carbon fiber composites have been widely used in structural applications for aerospace and automotive industries. Besides, carbon fiber has good electrical conductivity which will provide lower equivalent series resistance; therefore, it can be an excellent candidate for structural energy storage applications. Hence, this paper is focused on performing a pilot study for using nanowire/carbon fiber hybrids as building materials for structural energy storage materials; aiming at enhancing the charge/discharge rate and energy density. This hybrid material combines the high specific surface area of carbon fiber and pseudo-capacitive effect of metal oxide nanowires, which were grown hydrothermally in an aligned fashion on carbon fibers. The aligned nanowire array could provide a higher specific surface area that leads to high electrode-electrolyte contact area thus fast ion diffusion rates. Scanning Electron Microscopy and X-Ray Diffraction measurements are used for the initial characterization of this nanowire/carbon fiber hybrid material system. Electrochemical testing is performed using a potentio-galvanostat. The results show that gold sputtered nanowire carbon fiber hybrid provides 65.9% higher energy density than bare carbon fiber cloth as super-capacitor.

  17. Hydrogen storage capacity of catalytically grown carbon nanofibers.

    PubMed

    Rzepka, Matthias; Bauer, Erich; Reichenauer, Gudrun; Schliermann, Thomas; Bernhardt, Babette; Bohmhammel, Klaus; Henneberg, Eva; Knoll, Uta; Maneck, Heinz-Eberhard; Braue, Wolfgang

    2005-08-11

    In 1996, R. T. K. Baker, and N. M. Rodriguez claimed to have synthesized a new type of carbon nanofiber material capable of storing large amounts of hydrogen at room temperature and pressures above 100 bar, thus making it a powerful candidate for a very efficient energy storage system in mobile applications. Consequently, many scientists all over the world tried to test and verify these findings, however, with partly inconsistent results. We present here for the first time independent hydrogen storage measurements for several types of nanofibers, both synthesized by our group following precisely the specifications given in the literature as well as original samples supplied by Rodriguez and Baker for this study. The hydrogen storage capacities at room temperature and pressures up to 140 bar were quantified independently by gravimetric and volumetric methods, respectively. No significant hydrogen storage capacity has been detected for all carbon nanofibers investigated.

  18. On carbon dioxide storage based on biomineralization strategies.

    PubMed

    Lee, Seung-Woo; Park, Seung-Bin; Jeong, Soon-Kwan; Lim, Kyoung-Soo; Lee, Si-Hyun; Trachtenberg, Michael C

    2010-06-01

    This study focuses on the separation and storage of the global warming greenhouse gas CO(2), and the use of natural biocatalysts in the development of technologies to improve CO(2) storage rates and provide new methods for CO(2) capture. Carbonic anhydrase (CA) has recently been used as a biocatalyst to sequester CO(2) through the conversion of CO(2) to HCO(-) in the mineralization of CaCO(3). Biomimetic CaCO(3) mineralization for carbon capture and storage offers potential as a stable CO(2) capture technology. In this report, we review recent developments in this field and assess disadvantages and improvements in the use of CA in industrial applications. We discuss the contribution that understanding of mechanisms of CO(2) conversion to CO(3)(-) in the formation and regeneration of bivalve shells will make to developments in biomimetic CO(2) storage.

  19. Mountaineer Commerical Scale Carbon Capture and Storage (CCS) Project

    SciTech Connect

    Deanna Gilliland; Matthew Usher

    2011-12-31

    The Final Technical documents all work performed during the award period on the Mountaineer Commercial Scale Carbon Capture & Storage project. This report presents the findings and conclusions produced as a consequence of this work. As identified in the Cooperative Agreement DE-FE0002673, AEP's objective of the Mountaineer Commercial Scale Carbon Capture and Storage (MT CCS II) project is to design, build and operate a commercial scale carbon capture and storage (CCS) system capable of treating a nominal 235 MWe slip stream of flue gas from the outlet duct of the Flue Gas Desulfurization (FGD) system at AEP's Mountaineer Power Plant (Mountaineer Plant), a 1300 MWe coal-fired generating station in New Haven, WV. The CCS system is designed to capture 90% of the CO{sub 2} from the incoming flue gas using the Alstom Chilled Ammonia Process (CAP) and compress, transport, inject and store 1.5 million tonnes per year of the captured CO{sub 2} in deep saline reservoirs. Specific Project Objectives include: (1) Achieve a minimum of 90% carbon capture efficiency during steady-state operations; (2) Demonstrate progress toward capture and storage at less than a 35% increase in cost of electricity (COE); (3) Store CO{sub 2} at a rate of 1.5 million tonnes per year in deep saline reservoirs; and (4) Demonstrate commercial technology readiness of the integrated CO{sub 2} capture and storage system.

  20. National assessment of geologic carbon dioxide storage resources: results

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2012, the U.S. Geological Survey (USGS) completed an assessment of the technically accessible storage resources (TASR) for carbon dioxide (CO2) in geologic formations underlying the onshore and State waters area of the United States. The formations assessed are at least 3,000 feet (914 meters) below the ground surface. The TASR is an estimate of the CO2 storage resource that may be available for CO2 injection and storage that is based on present-day geologic and hydrologic knowledge of the subsurface and current engineering practices. Individual storage assessment units (SAUs) for 36 basins were defined on the basis of geologic and hydrologic characteristics outlined in the assessment methodology of Brennan and others (2010, USGS Open-File Report 2010–1127) and the subsequent methodology modification and implementation documentation of Blondes, Brennan, and others (2013, USGS Open-File Report 2013–1055). The mean national TASR is approximately 3,000 metric gigatons (Gt). The estimate of the TASR includes buoyant trapping storage resources (BSR), where CO2 can be trapped in structural or stratigraphic closures, and residual trapping storage resources, where CO2 can be held in place by capillary pore pressures in areas outside of buoyant traps. The mean total national BSR is 44 Gt. The residual storage resource consists of three injectivity classes based on reservoir permeability: residual trapping class 1 storage resource (R1SR) represents storage in rocks with permeability greater than 1 darcy (D); residual trapping class 2 storage resource (R2SR) represents storage in rocks with moderate permeability, defined as permeability between 1 millidarcy (mD) and 1 D; and residual trapping class 3 storage resource (R3SR) represents storage in rocks with low permeability, defined as permeability less than 1 mD. The mean national storage resources for rocks in residual trapping classes 1, 2, and 3 are 140 Gt, 2,700 Gt, and 130 Gt, respectively. The known recovery

  1. National assessment of geologic carbon dioxide storage resources: methodology implementation

    USGS Publications Warehouse

    Blondes, Madalyn S.; Brennan, Sean T.; Merrill, Matthew D.; Buursink, Marc L.; Warwick, Peter D.; Cahan, Steven M.; Corum, Margo D.; Cook, Troy A.; Craddock, William H.; DeVera, Christina A.; Drake II, Ronald M.; Drew, Lawrence J.; Freeman, P.A.; Lohr, Celeste D.; Olea, Ricardo A.; Roberts-Ashby, Tina L.; Slucher, Ernie R.; Varela, Brian A.

    2013-01-01

    In response to the 2007 Energy Independence and Security Act, the U.S. Geological Survey (USGS) conducted a national assessment of potential geologic storage resources for carbon dioxide (CO2). Storage of CO2 in subsurface saline formations is one important method to reduce greenhouse gas emissions and curb global climate change. This report provides updates and implementation details of the assessment methodology of Brennan and others (2010, http://pubs.usgs.gov/of/2010/1127/) and describes the probabilistic model used to calculate potential storage resources in subsurface saline formations.

  2. [Variation of forest vegetation carbon storage and carbon sequestration rate in Liaoning Province, Northeast China].

    PubMed

    Zhen, Wei; Huang, Mei; Zhai, Yin-Li; Chen, Ke; Gong, Ya-Zhen

    2014-05-01

    The forest vegetation carbon stock and carbon sequestration rate in Liaoning Province, Northeast China, were predicted by using Canadian carbon balance model (CBM-CFS3) combining with the forest resource data. The future spatio-temporal distribution and trends of vegetation carbon storage, carbon density and carbon sequestration rate were projected, based on the two scenarios, i. e. with or without afforestation. The result suggested that the total forest vegetation carbon storage and carbon density in Liaoning Province in 2005 were 133.94 Tg and 25.08 t x hm(-2), respectively. The vegetation carbon storage in Quercus was the biggest, while in Robinia pseudoacacia was the least. Both Larix olgensis and broad-leaved forests had higher vegetation carbon densities than others, and the vegetation carbon densities of Pinus tabuliformis, Quercus and Robinia pseudoacacia were close to each other. The spatial distribution of forest vegetation carbon density in Liaoning Province showed a decrease trend from east to west. In the eastern forest area, the future increase of vegetation carbon density would be smaller than those in the northern forest area, because most of the forests in the former part were matured or over matured, while most of the forests in the later part were young. Under the scenario of no afforestation, the future increment of total forest vegetation carbon stock in Liaoning Province would increase gradually, and the total carbon sequestration rate would decrease, while they would both increase significantly under the afforestation scenario. Therefore, afforestation plays an important role in increasing vegetation carbon storage, carbon density and carbon sequestration rate.

  3. Can intensive management increase carbon storage in forests

    SciTech Connect

    Schroeder, P.

    1991-01-01

    A possible response to increasing atmospheric CO2 concentration is to attempt to increase the amount of carbon stored in terrestrial vegetation. One approach to increasing the size of the terrestrial carbon sink is to increase the growth of forests by utilizing intensive forest management practices. The paper uses data from the literature and from forest growth and yield models to analyze the impact of three management practices on carbon storage: thinning, fertilization, and control of competing vegetation. Using Douglas-fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda) as example species, results showed that thinning generally does not increase carbon storage, and may actually cause a decrease. The exception is thinning of very dense young stands.

  4. Global Ocean Storage of Anthropogenic Carbon (GOSAC)

    SciTech Connect

    Orr, J C

    2002-04-02

    GOSAC was an EC-funded project (1998-2001) focused on improving the predictive capacity and accelerating development of global-scale, three-dimensional, ocean carbon-cycle models by means of standardized model evaluation and model intercomparison. Through the EC Environment and Climate Programme, GOSAC supported the participation of seven European modeling groups in the second phase of the larger international effort OCMIP (the Ocean Carbon-Cycle Model Intercomparison Project). OCMIP included model comparison and validation for both CO{sub 2} and other ocean circulation and biogeochemical tracers. Beyond the international OCMIP effort, GOSAC also supported the same EC ocean carbon cycle modeling groups to make simulations to evaluate the efficiency of purposeful sequestration of CO{sub 2} in the ocean. Such sequestration, below the thermocline has been proposed as a strategy to help mitigate the increase of CO{sub 2} in the atmosphere. Some technical and scientific highlights of GOSAC are given.

  5. Carbon coated textiles for flexible energy storage

    SciTech Connect

    Jost, Kristy; Perez, Carlos O; Mcdonough, John; Presser, Volker; Heon, Min; Dion, Genevieve; Gogotsi, Yury

    2011-01-01

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at 0.25 A$g1 achieved a high gravimetric and areal capacitance, an average of 85 F$g1 on cotton lawn and polyester microfiber, both corresponding to 0.43 F$cm2.

  6. Carbon coated textiles for flexible energy storage

    SciTech Connect

    Jost, Kristy; Perez, Carlos R.; McDonough, John K.; Presser, Volker; Heon, Min; Dion, Genevieve; Gogotsi, Yury

    2011-10-20

    This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at ~0.25 A·g⁻¹ achieved a high gravimetric and areal capacitance, an average of 85 F·g⁻¹ on cotton lawn and polyester microfiber, both corresponding to ~0.43 F·cm⁻².

  7. Impacts of Geological Variability on Carbon Storage Potential

    NASA Astrophysics Data System (ADS)

    Eccles, Jordan Kaelin

    The changes to the environment caused by anthropogenic climate change pose major challenges for energy production in the next century. Carbon Capture and Storage (CCS) is a group of technologies that would permit the continued use of carbon-intense fuels such as coal for energy production while avoiding further impact on the global climate system. The mechanism most often proposed for storage is injection of CO2 below the surface of the Earth in geological media, with the most promising option for CO2 reservoirs being deep saline aquifers (DSA's). Unlike oil and gas reservoirs, deep saline aquifers are poorly characterized and the variability in their properties is large enough to have a high impact on the overall physical and economic viability of CCS. Storage in saline aquifers is likely to be a very high-capacity resource, but its economic viability is almost unknown. We consider the impact of geological variability on the total viability of the CO 2 storage system from several perspectives. First, we examine the theoretical range of costs of storage by coupling a physical and economic model of CO 2 storage with a range of possible geological settings. With the relevant properties of rock extending over several orders of magnitude, it is not surprising that we find costs and storage potential ranging over several orders of magnitude. Second, we use georeferenced data to evaluate the spatial distribution of cost and capacity. When paired together to build a marginal abatement cost curve (MACC), this cost and capacity data indicates that low cost and high capacity are collocated; storage in these promising areas is likely to be quite viable but may not be available to all CO2 sources. However, when we continue to explore the impact of geological variability on realistic, commercial-scale site sizes by invoking capacity and pressure management constraints, we find that the distribution costs and footprints of these sites may be prohibitively high. The combination

  8. Increased fire frequency optimization of black carbon mixing and storage

    NASA Astrophysics Data System (ADS)

    Pyle, Lacey; Masiello, Caroline; Clark, Kenneth

    2016-04-01

    Soil carbon makes up a substantial part of the global carbon budget and black carbon (BC - produced from incomplete combustion of biomass) can be significant fraction of soil carbon. Soil BC cycling is still poorly understood - very old BC is observed in soils, suggesting recalcitrance, yet in short term lab and field studies BC sometimes breaks down rapidly. Climate change is predicted to increase the frequency of fires, which will increase global production of BC. As up to 80% of BC produced in wildfires can remain at the fire location, increased fire frequency will cause significant perturbations to soil BC accumulation. This creates a challenge in estimating soil BC storage, in light of a changing climate and an increased likelihood of fire. While the chemical properties of BC are relatively well-studied, its physical properties are much less well understood, and may play crucial roles in its landscape residence time. One important property is density. When BC density is less than 1 g/cm3 (i.e. the density of water), it is highly mobile and can easily leave the landscape. This landscape mobility following rainfall may inflate estimates of its degradability, making it crucial to understand both the short- and long term density of BC particles. As BC pores fill with minerals, making particles denser, or become ingrown with root and hyphal anchors, BC is likely to become protected from erosion. Consequently, how quickly BC is mixed deeper into the soil column is likely a primary controller on BC accumulation. Additionally the post-fire recovery of soil litter layers caps BC belowground, protecting it from erosional forces and re-combustion in subsequent fires, but still allowing bioturbation deeper into the soil column. We have taken advantage of a fire chronosequence in the Pine Barrens of New Jersey to investigate how density of BC particles change over time, and how an increase in fire frequency affects soil BC storage and soil column movement. Our plots have

  9. Grapefruit gland oil composition is affected by wax application, storage temperature, and storage time.

    PubMed

    Sun, D; Petracek, P D

    1999-05-01

    The effect of wax application, storage temperature (4 or 21 degrees C), and storage time (14 or 28 days after wax application) on grapefruit gland oil composition was examined by capillary gas chromatography. Wax application decreases nonanal and nootkatone levels. beta-Pinene, alpha-phellandrene, 3-carene, ocimene, octanol, trans-linalool oxide, and cis-p-mentha-2,8-dien-1-ol levels increase, but limonene levels decrease, with temperature. Levels of alpha-pinene, limonene, linalool, citronellal, alpha-terpineol, neral, dodecanal, and alpha-humulene decrease with time. Levels of alpha-phellandrene, 3-carene, ocimene, and trans-linalool oxide increase with time. No compound level was affected by the interactive action of temperature and wax application, suggesting that these two factors cause grapefruit oil gland collapse (postharvest pitting) through means other than changing gland oil composition. Compounds that are toxic to the Caribbean fruit fly (alpha-pinene, limonene, alpha-terpineol, and some aldehydes) decrease with time, thus suggesting grapefruit becomes increasingly susceptible to the fly during storage. PMID:10552497

  10. National assessment of geologic carbon dioxide storage resources: data

    USGS Publications Warehouse

    ,

    2013-01-01

    In 2012, the U.S. Geological Survey (USGS) completed the national assessment of geologic carbon dioxide storage resources. Its data and results are reported in three publications: the assessment data publication (this report), the assessment results publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a, USGS Circular 1386), and the assessment summary publication (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013b, USGS Fact Sheet 2013–3020). This data publication supports the results publication and contains (1) individual storage assessment unit (SAU) input data forms with all input parameters and details on the allocation of the SAU surface land area by State and general land-ownership category; (2) figures representing the distribution of all storage classes for each SAU; (3) a table containing most input data and assessment result values for each SAU; and (4) a pairwise correlation matrix specifying geological and methodological dependencies between SAUs that are needed for aggregation of results.

  11. Growth and activity of reservoir microorganisms under carbon capture and storage conditions

    NASA Astrophysics Data System (ADS)

    Rakoczy, Jana; Gniese, Claudia; Krüger, Martin

    2015-04-01

    Carbon capture and storage is a technology to decelerate global warming by reducing CO2 emissions into the atmosphere. To ensure safe long-term storage of CO2 in the underground a number of factors need to be considered. One of them is microbial activity in storage reservoirs, which can lead to the formation of acidic metabolites, H2S or carbonates which then might affect injectivity, permeability, pressure build-up and long-term operability. Our research focused on the effect of high CO2 concentrations on growth and activity of selected thermophilic fermenting and sulphate-reducing bacteria isolated from deep reservoirs. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a certain sterilizing effect on cells. This effect was not observed in control cultures with 100 bar of hydrostatic pressure. However, when provided with a surface for attachment, CO2-inhibited cells restarted growth after CO2 release. The same was observed for organisms able to form spores. Further experiments will examine physiological and molecular properties of the model organism allowing for prediction of its sensitivity and/or adaptability to carbon dioxide in potential future storage sites.

  12. Carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1996-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  13. Carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1996-06-25

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g-1000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  14. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors.

    PubMed

    Marek, Michal V; Janouš, Dalibor; Taufarová, Klára; Havránková, Kateřina; Pavelka, Marian; Kaplan, Věroslav; Marková, Irena

    2011-05-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands.

  15. Carbon Honeycomb High Capacity Storage for Gaseous and Liquid Species

    NASA Astrophysics Data System (ADS)

    Krainyukova, Nina V.; Zubarev, Evgeniy N.

    2016-02-01

    We report an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. The allotrope structures are derived from our low temperature electron diffraction and electron microscopy data. These structures can be both periodic and random and are built exclusively from s p2 -bonded carbon atoms, and may be considered as three-dimensional graphene. They demonstrate high levels of physical absorption of various gases unattainable in other carbon forms such as fullerites or nanotubes. These honeycomb structures can be used not only for storage of various gases and liquids but also as a matrix for new composites.

  16. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Morrison, R.L.; Kaschmitter, J.L.

    1994-10-25

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located there between. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery. 3 figs.

  17. Doping of carbon foams for use in energy storage devices

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Morrison, Robert L.; Kaschmitter, James L.

    1994-01-01

    A polymeric foam precursor, wetted with phosphoric acid, is pyrolyzed in an inert atmosphere to produce an open-cell doped carbon foam, which is utilized as a lithium intercalation anode in a secondary, organic electrolyte battery. Tests were conducted in a cell containing an organic electrolyte and using lithium metal counter and reference electrodes, with the anode located therebetween. Results after charge and discharge cycling, for a total of 6 cycles, indicated a substantial increase in the energy storage capability of the phosphorus doped carbon foam relative to the undoped carbon foam, when used as a rechargeable lithium ion battery.

  18. National assessment of geologic carbon dioxide storage resources: summary

    USGS Publications Warehouse

    ,

    2013-01-01

    The U.S. Geological Survey (USGS) recently completed an evaluation of the technically accessible storage resource (TASR) for carbon dioxide (CO2) for 36 sedimentary basins in the onshore areas and State waters of the United States. The TASR is an estimate of the geologic storage resource that may be available for CO2 injection and storage and is based on current geologic and hydrologic knowledge of the subsurface and current engineering practices. By using a geology-based probabilistic assessment methodology, the USGS assessment team members obtained a mean estimate of approximately 3,000 metric gigatons (Gt) of subsurface CO2 storage capacity that is technically accessible below onshore areas and State waters; this amount is more than 500 times the 2011 annual U.S. energy-related CO2 emissions of 5.5 Gt (U.S. Energy Information Administration, 2012, http://www.eia.gov/environment/emissions/carbon/). In 2007, the Energy Independence and Security Act (Public Law 110–140) directed the U.S. Geological Survey to conduct a national assessment of geologic storage resources for CO2 in consultation with the U.S. Environmental Protection Agency, the U.S. Department of Energy, and State geological surveys. The USGS developed a methodology to estimate storage resource potential in geologic formations in the United States (Burruss and others, 2009, USGS Open-File Report (OFR) 2009–1035; Brennan and others, 2010, USGS OFR 2010–1127; Blondes, Brennan, and others, 2013, USGS OFR 2013–1055). In 2012, the USGS completed the assessment, and the results are summarized in this Fact Sheet and are provided in more detail in companion reports (U.S. Geological Survey Geologic Carbon Dioxide Storage Resources Assessment Team, 2013a,b; see related reports at right). The goal of this project was to conduct an initial assessment of storage capacity on a regional basis, and results are not intended for use in the evaluation of specific sites for potential CO2 storage. The national

  19. DEVELOPMENT OF DOPED NANOPOROUS CARBONS FOR HYDROGEN STORAGE

    SciTech Connect

    Lueking, Angela D.; Li, Qixiu; Badding, John V.; Fonseca, Dania; Gutierrez, Humerto; Sakti, Apurba; Adu, Kofi; Schimmel, Michael

    2010-03-31

    Hydrogen storage materials based on the hydrogen spillover mechanism onto metal-doped nanoporous carbons are studied, in an effort to develop materials that store appreciable hydrogen at ambient temperatures and moderate pressures. We demonstrate that oxidation of the carbon surface can significantly increase the hydrogen uptake of these materials, primarily at low pressure. Trace water present in the system plays a role in the development of active sites, and may further be used as a strategy to increase uptake. Increased surface density of oxygen groups led to a significant enhancement of hydrogen spillover at pressures less than 100 milibar. At 300K, the hydrogen uptake was up to 1.1 wt. % at 100 mbar and increased to 1.4 wt. % at 20 bar. However, only 0.4 wt% of this was desorbable via a pressure reduction at room temperature, and the high lowpressure hydrogen uptake was found only when trace water was present during pretreatment. Although far from DOE hydrogen storage targets, storage at ambient temperature has significant practical advantages oner cryogenic physical adsorbents. The role of trace water in surface modification has significant implications for reproducibility in the field. High-pressure in situ characterization of ideal carbon surfaces in hydrogen suggests re-hybridization is not likely under conditions of practical interest. Advanced characterization is used to probe carbon-hydrogen-metal interactions in a number of systems and new carbon materials have been developed.

  20. [Carbon capture and storage (CCS) and its potential role to mitigate carbon emission in China].

    PubMed

    Chen, Wen-Ying; Wu, Zong-Xin; Wang, Wei-Zhong

    2007-06-01

    Carbon capture and storage (CCS) has been widely recognized as one of the options to mitigate carbon emission to eventually stabilize carbon dioxide concentration in the atmosphere. Three parts of CCS, which are carbon capture, transport, and storage are assessed in this paper, covering comparisons of techno-economic parameters for different carbon capture technologies, comparisons of storage mechanism, capacity and cost for various storage formations, and etc. In addition, the role of CCS to mitigate global carbon emission is introduced. Finally, China MARKAL model is updated to include various CCS technologies, especially indirect coal liquefaction and poly-generation technologies with CCS, in order to consider carbon emission reduction as well as energy security issue. The model is used to generate different scenarios to study potential role of CCS to mitigate carbon emissions by 2050 in China. It is concluded that application of CCS can decrease marginal abatement cost and the decrease rate can reach 45% for the emission reduction rate of 50%, and it can lessen the dependence on nuclear power development for stringent carbon constrains. Moreover, coal resources can be cleanly used for longer time with CCS, e.g., for the scenario C70, coal share in the primary energy consumption by 2050 will increase from 10% when without CCS to 30% when with CCS. Therefore, China should pay attention to CCS R&D activities and to developing demonstration projects. PMID:17674718

  1. Simulating impacts of Woody Biomass Harvesting on North Temperate Forest Carbon and Nitrogen Cycling and Storage

    NASA Astrophysics Data System (ADS)

    Hua, D.; Desai, A. R.; Bolstad, P.; Cook, B. D.; Scheller, R.

    2012-12-01

    Woody biomass harvesting is a common feature of forest management given its importance to society for acquisition of pulp and paper, lumber, and wood-based biofuel. Harvest affects many aspects of the forest environment such as biodiversity, soil nutrient quality, physical properties of soil, water quality, wildlife habitat, and climate feedbacks. In this study, we applied a modified CENTURY model to the Willow Creek, Wisconsin Ameriflux site for simulation of the impacts of woody biomass removal on forest carbon and nitrogen storage. Woody biomass harvesting scenarios with different harvesting types, interval, tree species, and soil properties were designed and tested in the model to explore the impact of harvesting on forest productivity, soil and biomass carbon and nitrogen storage, and net carbon exchange between terrestrial ecosystem and the atmosphere. Comparisons of the impacts among harvesting scenarios indicate that woody biomass harvesting significantly alters long-term net soil carbon and nitrogen storage as well as carbon exchange between terrestrial ecosystem and the atmosphere. The simulation results also provide a framework for incorporating carbon management into sustainable forest management practices.

  2. Forest management techniques for carbon dioxide storage

    SciTech Connect

    Fujimori, Takao

    1993-12-31

    In the global ecosystem concerning carbon dioxide content in the atmosphere, the forest ecosystem plays an important role. In effect, the ratio of forest biomass to total terrestrial biomass is about 90%, and the ratio of carbon stored in the forest biomass to that in the atmosphere is two thirds. When soils and detritus of forests are added, there is more C stored in forests than in the atmosphere, about 1.3 times or more. Thus, forests can be regarded as the great holder of C on earth. If the area of forest land on the earth is constantly maintained and forests are in the climax stage, the uptake of C and the release of C by and from the forests will balance. In this case, forests are neither sinks nor sources of CO{sub 2} although they store a large amount of C. However, when forests are deforested, they become a source of C; through human activities, forests have become a source of C. According to a report by the IPCC, 1.6{+-}1.2 PgC is annually added to the atmosphere by deforestation. According to the FAO (1992), the area of land deforested annually in the tropics from 1981 to 1990 was 16.9 x 10{sup 6} ha. This value is nearly half the area of Japanese land. The most important thing for the CO{sub 2} environment concerning forests is therefore how to reduce deforestation and to successfully implement a forestation or reforestation.

  3. An Integrated Approach to Predicting Carbon Dioxide Storage Capacity in Carbonate Reservoirs

    NASA Astrophysics Data System (ADS)

    Smith, M. M.; Hao, Y.; Mason, H. E.; Carroll, S.

    2015-12-01

    Carbonate reservoirs are widespread globally but pose unique challenges for geologic carbon dioxide (CO2) storage due to the reactive nature of carbonate minerals and the inherently heterogeneous pore structures of these rock types. Carbonate mineral dissolution resulting from CO2-acidified fluids may actually create new storage capacity, but predicting the extent and location of enhanced storage is complicated by the presence of pore size distributions spanning orders of magnitude as well as common microfractures. To address this issue, core samples spanning a wide range of depths and predicted permeabilities were procured from wells drilled into the Weyburn-Midale reservoir from the IEA GHG's CO2 Monitoring and Storage Project, Saskatchewan, Canada; and from the Arbuckle dolomite at the Kansas Geological Survey's South-central Kansas CO2 Project. Our approach integrated non-invasive characterization, complex core-flooding experiments, and 3-D reactive transport simulations to calibrate relevant CO2 storage relationships among fluid flow, porosity, permeability, and chemical reactivity. The resulting observations from this work permit us to constrain (and place uncertainty limits on) some of the model parameters needed for estimating evolving reservoir CO2 storage capacity. The challenge remains, however, as to how to best interpret and implement these observations at the actual reservoir scale. We present our key findings from these projects and recommendations for storage capacity predictions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

    USGS Publications Warehouse

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.

    1999-01-01

    We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere-biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900-1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr-1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17

  5. Carbon Monoxide Affecting Planetary Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    He, Chao; Horst, Sarah

    2016-10-01

    Atmospheric hazes are present in a range of solar system and extrasolar planetary atmospheres, and organic hazes, such as that in Titan's atmosphere, could be a source of prebiotic molecules.1 However, the chemistry occurring in planetary atmospheres and the resulting chemical structures are still not clear. Numerous experimental simulations2 have been carried out in the laboratory to understand the chemistry in N2/CH4 atmospheres, but very few simulations4 have included CO in their initial gas mixtures, which is an important component in many N2/CH4 atmospheres including Titan, Triton, and Pluto.3 Here we have conducted a series of atmosphere simulation experiments using AC glow discharge (cold plasma) as energy source to irradiate reactions in gas mixtures of CO, CH4, and N2 with a range of CO mixing ratios (from 0, 0.05%, 0.2%, 0.5%, 1%, 2.5%, to 5%) at low temperature (~100 K). Gas phase products are monitored during the reaction by quadrupole mass spectrometer (MS), and solid phase products are analyzed by solution-state nuclear magnetic resonance spectroscopy (NMR). MS results show that with the increase of CO in the initial gases, the production of nitrogenous organic molecules increases while the production of hydrogen molecules decreases in the gas phase. NMR measurements of the solid phase products show that with the increase of CO, hydrogen atoms bonded to nitrogen or oxygen in unsaturated structures increase while those bonded to saturated carbon decrease, which means more unsaturated species and less saturated species formed with the addition of CO. MS and NMR results demonstrate that the inclusion of CO affects the compositions of both gas and solid phase products, indicating that CO has an important impact on the chemistry occurring in our experiments and probably in planetary atmospheres.1. Hörst, S. M., et al. 2012, AsBio, 12, 8092. Cable, M. L., et al. 2012, Chem. Rev., 112, 18823. Lutz, B. L., et al. 1983, Sci, 220, 1374; Greaves, J. S., et al

  6. Optimizing carbon storage and biodiversity protection in tropical agricultural landscapes.

    PubMed

    Gilroy, James J; Woodcock, Paul; Edwards, Felicity A; Wheeler, Charlotte; Medina Uribe, Claudia A; Haugaasen, Torbjørn; Edwards, David P

    2014-07-01

    With the rapidly expanding ecological footprint of agriculture, the design of farmed landscapes will play an increasingly important role for both carbon storage and biodiversity protection. Carbon and biodiversity can be enhanced by integrating natural habitats into agricultural lands, but a key question is whether benefits are maximized by including many small features throughout the landscape ('land-sharing' agriculture) or a few large contiguous blocks alongside intensive farmland ('land-sparing' agriculture). In this study, we are the first to integrate carbon storage alongside multi-taxa biodiversity assessments to compare land-sparing and land-sharing frameworks. We do so by sampling carbon stocks and biodiversity (birds and dung beetles) in landscapes containing agriculture and forest within the Colombian Chocó-Andes, a zone of high global conservation priority. We show that woodland fragments embedded within a matrix of cattle pasture hold less carbon per unit area than contiguous primary or advanced secondary forests (>15 years). Farmland sites also support less diverse bird and dung beetle communities than contiguous forests, even when farmland retains high levels of woodland habitat cover. Landscape simulations based on these data suggest that land-sparing strategies would be more beneficial for both carbon storage and biodiversity than land-sharing strategies across a range of production levels. Biodiversity benefits of land-sparing are predicted to be similar whether spared lands protect primary or advanced secondary forests, owing to the close similarity of bird and dung beetle communities between the two forest classes. Land-sparing schemes that encourage the protection and regeneration of natural forest blocks thus provide a synergy between carbon and biodiversity conservation, and represent a promising strategy for reducing the negative impacts of agriculture on tropical ecosystems. However, further studies examining a wider range of ecosystem

  7. The potential for carbon storage in UK peatlands

    NASA Astrophysics Data System (ADS)

    Rowson, J.; Worrall, F.; Evans, M.; Bonn, A.; Reed, M.; Chapman, D.; Holden, J.

    2008-12-01

    Upland peat soils represent a large terrestrial carbon store and as such have the potential to be either an ongoing net sink of carbon or a significant net source of carbon. In the UK many upland peats are managed for a range of purposes but these purposes have rarely included carbon stewardship. However, there is now an opportunity to consider whether management practices could be altered to enhance storage of carbon in upland peats. Further, there are now voluntary and regulated carbon trading schemes operational throughout Europe that mean stored carbon, if verified, could have an economic and tradeable value. This means that new income streams could become available for upland management. The 'Sustainable Uplands' RELU project has developed a model for calculating carbon fluxes from peat soils that covers all carbon uptake and release pathways (e.g. fluvial and gaseous pathways). The model has been developed so that the impact of common management options within UK upland peats can be considered. The model was run for a decade from 1997-2006 and applied to an area of 550 km2 of upland peat soils in the Peak District. The study estimates that the region is presently a net sink of -62 Ktonnes CO2 equivalent at an average export of - 136 tonnes CO2 equivalent/km2/yr. If management interventions were targeted across the area the total sink could increase to -160 Ktonnes CO2/yr at an average export of- 219 tonnes CO2 equivalent/km2/yr. The model suggests which management interventions would be most effective and given present costs of peatland restoration and value of carbon offsets the study suggests that 51% of those areas, where a carbon benefit was estimated by modelling for targeted action of management interventions, would show a profit from carbon offsetting within 30 years.

  8. Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications.

    PubMed

    Su, Dang Sheng; Schlögl, Robert

    2010-02-22

    Electrochemical energy storage is one of the important technologies for a sustainable future of our society, in times of energy crisis. Lithium-ion batteries and supercapacitors with their high energy or power densities, portability, and promising cycling life are the cores of future technologies. This Review describes some materials science aspects on nanocarbon-based materials for these applications. Nanostructuring (decreasing dimensions) and nanoarchitecturing (combining or assembling several nanometer-scale building blocks) are landmarks in the development of high-performance electrodes for with long cycle lifes and high safety. Numerous works reviewed herein have shown higher performances for such electrodes, but mostly give diverse values that show no converging tendency towards future development. The lack of knowledge about interface processes and defect dynamics of electrodes, as well as the missing cooperation between material scientists, electrochemists, and battery engineers, are reasons for the currently widespread trial-and-error strategy of experiments. A concerted action between all of these disciplines is a prerequisite for the future development of electrochemical energy storage devices.

  9. Alternatives to reduce corrosion of carbon steel storage drums

    SciTech Connect

    Zirker, L.R.; Beitel, G.A.

    1995-11-01

    The major tasks of this research were (a) pollution prevention opportunity assessments on the overpacking operations for failed or corroded drums, (b) research on existing container corrosion data, (c) investigation of the storage environment of the new Resource Conservation and Recovery Act Type II storage modules, (d) identification of waste streams that demonstrate deleterious corrosion affects on drum storage life, and (e) corrosion test cell program development. Twenty-one waste streams from five US Department of Energy (DOE) sites within the DOE Complex were identified to demonstrate a deleterious effect to steel storage drums. The major components of these waste streams include acids, salts, and solvent liquids, sludges, and still bottoms. The solvent-based waste streams typically had the shortest time to failure: 0.5 to 2 years. The results of this research support the position that pollution prevention evaluations at the front end of a project or process will reduce pollution on the back end.

  10. Synthesis, characterization and hydrogen storage studies on porous carbon

    SciTech Connect

    Ruz, Priyanka Banerjee, Seemita; Sudarsan, V.; Pandey, M.

    2015-06-24

    Porous carbon sample has been prepared, using zeolite-Y as template followed by annealing at 800°C, with view to estimate the extent of hydrogen storage by the sample. Based on XRD, {sup 13}C MAS NMR and Raman spectroscopic studies it is confirmed that the porous Carbon sample contains only sp{sup 2} hybridized carbon. The hydrogen sorption isotherms have been recorded for the sample at 273, 223K and 123K and the maximum hydrogen absorption capacity is found to be 1.47wt% at 123K. The interaction energy of hydrogen with the carbon framework was determined to be ∼ 10 kJ mol{sup −1}at lower hydrogen uptake and gradually decreases with increase in hydrogen loading.

  11. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    PubMed

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-07-20

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  12. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape.

    PubMed

    Alamgir, Mohammed; Campbell, Mason J; Turton, Stephen M; Pert, Petina L; Edwards, Will; Laurance, William F

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m(2) of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  13. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    NASA Astrophysics Data System (ADS)

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-07-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity.

  14. Degraded tropical rain forests possess valuable carbon storage opportunities in a complex, forested landscape

    PubMed Central

    Alamgir, Mohammed; Campbell, Mason J.; Turton, Stephen M.; Pert, Petina L.; Edwards, Will; Laurance, William F.

    2016-01-01

    Tropical forests are major contributors to the terrestrial global carbon pool, but this pool is being reduced via deforestation and forest degradation. Relatively few studies have assessed carbon storage in degraded tropical forests. We sampled 37,000 m2 of intact rainforest, degraded rainforest and sclerophyll forest across the greater Wet Tropics bioregion of northeast Australia. We compared aboveground biomass and carbon storage of the three forest types, and the effects of forest structural attributes and environmental factors that influence carbon storage. Some degraded forests were found to store much less aboveground carbon than intact rainforests, whereas others sites had similar carbon storage to primary forest. Sclerophyll forests had lower carbon storage, comparable to the most heavily degraded rainforests. Our findings indicate that under certain situations, degraded forest may store as much carbon as intact rainforests. Strategic rehabilitation of degraded forests could enhance regional carbon storage and have positive benefits for tropical biodiversity. PMID:27435389

  15. Physical Controls on Delta Formation and Carbon Storage in Mountain Lakes

    NASA Astrophysics Data System (ADS)

    Scott, D.; Wohl, E.

    2014-12-01

    Carbon acts as a component in greenhouse gases that regulate global climate. It is imperative to understand the transport and storage of carbon in order to understand and manage climate change. We examine terrestrial carbon storage in mountain lake deltas as a way of furthering our understanding of the terrestrial carbon sink, which is a poorly understood but significant contributor to the global carbon cycle. We examined subalpine lake deltas in the Washington Cascade Range and Colorado Front Range to test the following hypotheses: 1) The size of the deltaic carbon sink is strongly correlated with incision at the outlet of the lake and the topography of the basin. 2) Areas of high exhumation rates will have smaller and fewer deltas because a high exhumation rate should lead to more confined basins and more colluvium available to dam lake outlets, preventing lake level drop and corresponding delta formation. 3) High-energy deltas will transport more carbon to lakes, avoiding the deltaic carbon sink. At 27 lakes, we surveyed mountain lake deltas and took sediment samples, surveyed lake outlets in the field, and measured lake valley confinement in GIS to test hypotheses 1 and 3. Across the Snoqualmie and Skykomish watersheds in the Washington Cascades and the Colorado Front Range, we took a census of the number of natural lakes and the proportion of those lakes with deltas to test hypothesis 2. Preliminary results indicate that the Washington Cascades (high exhumation rate) have a higher density of lakes, but fewer deltas, than the Colorado Front Range (low exhumation rate). We also suspect that deltas in the Washington Cascades will have a lower carbon content than the Colorado Front Range due to generally higher energy levels on deltas. Finally, we found a substantial difference in the geomorphology and sediment type between beaver-affected and non-beaver-affected lakes in the Colorado Front Range.

  16. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE PAGES

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; Bennett, Philip C.

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO2 conditions and identify factors that may influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure to acidic water, biomassmore » can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  17. Land Use Effects on Carbon Storage in Thailand Tropical Ecosystems

    NASA Astrophysics Data System (ADS)

    Kai, F.; Tostado, E.; Chidthaisong, A.; Tyler, S. C.

    2004-12-01

    Measurements of stable isotopes of C have proved to be of value in estimating soil organic C turnover times and in partitioning soil organic carbon (SOC) from different sources. Typically, the contrast between sources and estimates of C turnover have been studied in ecosystems where C-3 photosynthetic plants such as hardwoods have been replaced by C-4 photosynthetic plants from agriculture such as corn or sugarcane. Here we report concentrations and stable C isotope ratios of SOC from Thailand coastal mangrove forests and intrusive coastal aquaculture in the form of shrimp and wastewater treatment ponds. There are clear changes in both magnitude and 13C/12C of SOC at former mangrove sites which have been altered to make ponds for shrimp farming and wastewater treatment. For instance, total per cent C from 0-40 cm soil depth (average of four 10 cm layers at 2 sites) was 6.2±2.8% for mature mangrove, while it was only 0.5±0.4% for a 10-year old shrimp pond and 1.3±0.4% for an 8-year old water treatment pond. Previous studies of mangrove organic C balance have indicated that these inter-tidal forest ecosystems are a sink for C and that significant C is vested in both above- and below-ground biomass and stored in sediments. Mangrove forest disturbance by human activities clearly has the potential to affect C storage. Our data indicates that stable C isotope tracing will be of value in tracking changes in coastal forest-aquaecosystems just as it has been for forest-agroecosystems

  18. Traceable components of terrestrial carbon storage capacity in biogeochemical models.

    PubMed

    Xia, Jianyang; Luo, Yiqi; Wang, Ying-Ping; Hararuk, Oleksandra

    2013-07-01

    Biogeochemical models have been developed to account for more and more processes, making their complex structures difficult to be understood and evaluated. Here, we introduce a framework to decompose a complex land model into traceable components based on mutually independent properties of modeled biogeochemical processes. The framework traces modeled ecosystem carbon storage capacity (Xss ) to (i) a product of net primary productivity (NPP) and ecosystem residence time (τE ). The latter τE can be further traced to (ii) baseline carbon residence times (τ'E ), which are usually preset in a model according to vegetation characteristics and soil types, (iii) environmental scalars (ξ), including temperature and water scalars, and (iv) environmental forcings. We applied the framework to the Australian Community Atmosphere Biosphere Land Exchange (CABLE) model to help understand differences in modeled carbon processes among biomes and as influenced by nitrogen processes. With the climate forcings of 1990, modeled evergreen broadleaf forest had the highest NPP among the nine biomes and moderate residence times, leading to a relatively high carbon storage capacity (31.5 kg cm(-2) ). Deciduous needle leaf forest had the longest residence time (163.3 years) and low NPP, leading to moderate carbon storage (18.3 kg cm(-2) ). The longest τE in deciduous needle leaf forest was ascribed to its longest τ'E (43.6 years) and small ξ (0.14 on litter/soil carbon decay rates). Incorporation of nitrogen processes into the CABLE model decreased Xss in all biomes via reduced NPP (e.g., -12.1% in shrub land) or decreased τE or both. The decreases in τE resulted from nitrogen-induced changes in τ'E (e.g., -26.7% in C3 grassland) through carbon allocation among plant pools and transfers from plant to litter and soil pools. Our framework can be used to facilitate data model comparisons and model intercomparisons via tracking a few traceable components for all terrestrial carbon

  19. How Glassy States Affect Brown Carbon Production?

    NASA Astrophysics Data System (ADS)

    Liu, P.; Li, Y.; Wang, Y.; Bateman, A. P.; Zhang, Y.; Gong, Z.; Gilles, M. K.; Martin, S. T.

    2015-12-01

    Secondary organic material (SOM) can become light-absorbing (i.e. brown carbon) via multiphase reactions with nitrogen-containing species such as ammonia and amines. The physical states of SOM, however, potentially slow the diffusion of reactant molecules in organic matrix under conditions that semisolids or solids prevail, thus inhibiting the browning reaction pathways. In this study, the physical states and the in-particle diffusivity were investigated by measuring the evaporation kinetics of both water and organics from aromatic-derived SOMs using a quartz-crystal-microbalance (QCM). The results indicate that the SOMs derived from aromatic precursors toluene and m-xylene became solid (glassy) and the in particle diffusion was significantly impeded for sufficiently low relative humidity ( < 20% RH) at 293 K. Optical properties and the AMS spectra were measured for toluene-derived SOM after ammonia exposure at varied RHs. The results suggest that the production of light-absorbing nitrogen-containing compounds from multiphase reactions with ammonia was kinetically limited in the glassy organic matrix, which otherwise produce brown carbon. The results of this study have significant implications for production and optical properties of brown carbon in urban atmospheres that ultimately influence the climate and tropospheric photochemistry.

  20. Soil carbon storage and N{sub 2}O emissions from wheat agroecosystems as affected by free-air CO{sub 2} enrichment (FACE) and nitrogen treatments. Final Report - February 12, 1999

    SciTech Connect

    S. W. Leavitt; A. D. Matthias; T. L. Thompson; R. A. Rauschkolb

    1999-02-17

    Rising atmospheric CO{sub 2} concentrations have prompted concern about response of plants and crops to future elevated CO{sub 2} levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO{sub 2} concentrations. Free-air CO{sub 2} enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO{sub 2} and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grain yield, phenology, length of growing season, water-use efficiency ecosystem production, below ground processes (eg, root and microbial activity, carbon and nitrogen cycling), etc.

  1. [Contribution of tropical upland forests to carbon storage in Colombia].

    PubMed

    Yepes, Adriana; Herrera, Johana; Phillips, Juan; Galindo, Gustavo; Granados, Edwin; Duque, Alvaro; Barbosa, Adriana; Olarte, Claudia; Cardona, María

    2015-03-01

    The tropical montane forests in the Colombian Andean region are located above 1500 m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to (i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, (ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and (iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25 ha plots were randomly distributed in the forests and all trees with D > or =10 cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (approximatly = 700-1800 m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical

  2. Carbon-based electrocatalysts for advanced energy conversion and storage

    PubMed Central

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-01-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  3. Carbon-based electrocatalysts for advanced energy conversion and storage.

    PubMed

    Zhang, Jintao; Xia, Zhenhai; Dai, Liming

    2015-08-01

    Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play curial roles in electrochemical energy conversion and storage, including fuel cells and metal-air batteries. Having rich multidimensional nanoarchitectures [for example, zero-dimensional (0D) fullerenes, 1D carbon nanotubes, 2D graphene, and 3D graphite] with tunable electronic and surface characteristics, various carbon nanomaterials have been demonstrated to act as efficient metal-free electrocatalysts for ORR and OER in fuel cells and batteries. We present a critical review on the recent advances in carbon-based metal-free catalysts for fuel cells and metal-air batteries, and discuss the perspectives and challenges in this rapidly developing field of practical significance. PMID:26601241

  4. Novel Carbons as Electrodes for Electrical Energy Storage

    NASA Astrophysics Data System (ADS)

    Ruoff, Rodney S.

    2014-03-01

    In this talk I will speculate about directions for carbon materials as the electrode(s) in EES systems such as ultracapacitors and Li ion batteries. Perhaps the penultimate electrode material for ultracapacitors (based on charge storage by electrical double layer capacitance, EDLC) would be a ``negative curvature carbon'' (NCC, akin to the Schwartzite structures) with atom thick walls, and possibly substitutionally doped with, e.g., N atoms in case the all-carbon structure were limited by quantum (i.e., intrinsic) capacitance. Such an NCC would have a distribution of pore sizes that would likely (for optimal performance) span ``mesoscale'' and ``microscale'' pores, which in the parlance of porous materials means pores ``above 2-3 nanometers'' and pores ``below about 2 nanometers,'' respectively. Making such materials offers exciting challenges for materials chemists/synthetic chemists, and to date only the ``basic'' Schwarzite structures (ideal crystals studied by DFT with periodic boundary conditions and relatively simple unit cells) have been modeled in terms of properties such as their electronic states and in some cases, potential as all carbon ferromagnets. I identified the NCCs as candidates for EES for ultracapacitors, in a paper published in Science in 2011 with coauthors. We made an aperiodic carbon that had atom thick walls and surface areas as high as 3200 m2/g, along with ``good'' powder electrical conductivity, high carbon content, and apparently close to 100% trivalently bonded carbon in the walls of this very porous carbon. We have learned in one set of experiments, as published in Energy and Environmental Science, that doping with N atoms can increase the EDLC, which we suggest could be a consequence of limiting quantum capacitance in the all-carbon analogue.

  5. Electron and phonon properties and gas storage in carbon honeycombs

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-06-01

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments.A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by

  6. Carbon sequestration kinetic and storage capacity of ultramafic mining waste.

    PubMed

    Pronost, Julie; Beaudoin, Georges; Tremblay, Joniel; Larachi, Faïçal; Duchesne, Josée; Hébert, Réjean; Constantin, Marc

    2011-11-01

    Mineral carbonation of ultramafic rocks provides an environmentally safe and permanent solution for CO(2) sequestration. In order to assess the carbonation potential of ultramafic waste material produced by industrial processing, we designed a laboratory-scale method, using a modified eudiometer, to measure continuous CO(2) consumption in samples at atmospheric pressure and near ambient temperature. The eudiometer allows monitoring the CO(2) partial pressure during mineral carbonation reactions. The maximum amount of carbonation and the reaction rate of different samples were measured in a range of experimental conditions: humidity from dry to submerged, temperatures of 21 and 33 °C, and the proportion of CO(2) in the air from 4.4 to 33.6 mol %. The most reactive samples contained ca. 8 wt % CO(2) after carbonation. The modal proportion of brucite in the mining residue is the main parameter determining maximum storage capacity of CO(2). The reaction rate depends primarily on the proportion of CO(2) in the gas mixture and secondarily on parameters controlling the diffusion of CO(2) in the sample, such as relative saturation of water in pore space. Nesquehonite was the dominant carbonate for reactions at 21 °C, whereas dypingite was most common at 33 °C.

  7. Natural gas storage with activated carbon from a bituminous coal

    USGS Publications Warehouse

    Sun, Jielun; Rood, M.J.; Rostam-Abadi, M.; Lizzio, A.A.

    1996-01-01

    Granular activated carbons ( -20 + 100 mesh; 0.149-0.84 mm) were produced by physical activation and chemical activation with KOH from an Illinois bituminous coal (IBC-106) for natural gas storage. The products were characterized by BET surface area, micropore volume, bulk density, and methane adsorption capacities. Volumetric methane adsorption capacities (Vm/Vs) of some of the granular carbons produced by physical activation are about 70 cm3/cm3 which is comparable to that of BPL, a commercial activated carbon. Vm/Vs values above 100 cm3/cm3 are obtainable by grinding the granular products to - 325 mesh (<0.044 mm). The increase in Vm/Vs is due to the increase in bulk density of the carbons. Volumetric methane adsorption capacity increases with increasing pore surface area and micropore volume when normalizing with respect to sample bulk volume. Compared with steam-activated carbons, granular carbons produced by KOH activation have higher micropore volume and higher methane adsorption capacities (g/g). Their volumetric methane adsorption capacities are lower due to their lower bulk densities. Copyright ?? 1996 Elsevier Science Ltd.

  8. Measurement of carbon storage in landfills from the biogenic carbon content of excavated waste samples.

    PubMed

    De la Cruz, Florentino B; Chanton, Jeffrey P; Barlaz, Morton A

    2013-10-01

    Landfills are an anaerobic ecosystem and represent the major disposal alternative for municipal solid waste (MSW) in the U.S. While some fraction of the biogenic carbon, primarily cellulose (Cel) and hemicellulose (H), is converted to carbon dioxide and methane, lignin (L) is essentially recalcitrant. The biogenic carbon that is not mineralized is stored within the landfill. This carbon storage represents a significant component of a landfill carbon balance. The fraction of biogenic carbon that is not reactive in the landfill environment and therefore stored was derived for samples of excavated waste by measurement of the total organic carbon, its biogenic fraction, and the remaining methane potential. The average biogenic carbon content of the excavated samples was 64.6±18.0% (average±standard deviation), while the average carbon storage factor was 0.09±0.06g biogenic-C stored per g dry sample or 0.66±0.16g biogenic-C stored per g biogenic C.

  9. Progress and new developments in carbon capture and storage

    SciTech Connect

    Plasynski, S.I.; Litynski, J.T.; McIlvried, H.G.; Srivastava, R.D.

    2009-07-01

    Growing concern over the impact on global climate change of the buildup of greenhouse gases (GHGs) in the atmosphere has resulted in proposals to capture carbon dioxide (CO{sub 2}) at large point sources and store it in geologic formations, such as oil and gas reservoirs, unmineable coal seams, and saline formations, referred to as carbon capture and storage (CCS). There are three options for capturing CO{sub 2} from point sources: post-combustion capture, pre-combustion capture, and oxy-combustion. Several processes are available to capture CO{sub 2}, and new or improved processes are under development. However, CO{sub 2} capture is the most expensive part of CCS, typically accounting for 75% of overall cost. CCS will benefit significantly from the development of a lower cost post-combustion CO{sub 2} capture process that can be retrofitted to existing power plants. Once captured, the CO{sub 2} is compressed to about 150 atm and pipelined at supercritical conditions to a suitable storage site. Oil and gas reservoirs, because they have assured seals and are well characterized, are promising early opportunity sites. Saline formations are much more extensive and have a huge potential storage capacity, but are much less characterized. Several commercial and a number of pilot CCS projects are underway around the world.

  10. Lithium storage on carbon nitride, graphenylene and inorganic graphenylene.

    PubMed

    Hankel, Marlies; Searles, Debra J

    2016-06-01

    We present results of density functional theory calculations on the lithium (Li) ion storage capacity of three different two dimensional porous graphene-like membranes. The graphitic carbon nitride membrane, g-CN, is found to have a large Li storage capacity of at least 813 mA h g(-1) (LiCN). However, it is also found that the Li interacts very strongly with the membrane indicating that this is most likely irreversible. According to the calculations, graphenylene or biphenylene carbon (BPC) has a storage capacity of 487 mA h g(-1) (Li1.5C6) which is higher than that for graphite. We also find that Li is very mobile on these materials and does not interact as strongly with the membrane making it a more suitable anode material. Inorganic graphenylene, which is a boron nitride analog of graphenylene, shows very low binding energies, much lower than the cohesive energy of lithium, and it appears to be unsuitable as an anode material for lithium ion batteries. We discuss how charge transfer leads to the very different behaviour observed in these three similar materials.

  11. [Effects of CO2 storage flux on carbon budget of forest ecosystem].

    PubMed

    Zhang, Mi; Wen, Xue-fa; Yu, Gui-rui; Zhang, Lei-ming; Fu, Yu-ling; Sun, Xiao-min; Han, Shi-jie

    2010-05-01

    Carbon dioxide (CO2) storage flux in the air space below measurement height of eddy covariance is very important to correctly evaluate net ecosystem exchange of CO2 (NEE) between forest ecosystem and atmosphere. This study analyzed the dynamic variation of CO2 storage flux and its effects on the carbon budget of a temperate broad-leaved Korean pine mixed forest at Changbai Mountains, based on the eddy covariance flux data and the vertical profile of CO2 concentration data. The CO2 storage flux in this forest ecosystem had typical diurnal variation, with the maximum variation appeared during the transition from stable atmospheric layer to unstable atmospheric layer. The CO2 storage flux calculated by the change in CO2 concentration throughout a vertical profile was not significantly different from that calculated by the change in CO2 concentration at the measurement height of eddy covariance. The NEE of this forest ecosystem was underestimated by 25% and 19% at night and at daytime, respectively, without calculating the CO2 storage flux at half-hour scale, and was underestimated by 10% and 25% at daily scale and annual scale, respectively. Without calculating the CO2 storage flux in this forest ecosystem, the parameters of Michaelis-Menten equation and Lloyd-Taylor equation were underestimated, and the ecosystem apparent quantum yield (alpha) and the ecosystem respiration rate (Rref) at the reference temperature were mostly affected. The gross primary productivity (GPP) and ecosystem respiration (Re) of this forest ecosystem were underestimated about 20% without calculating the CO2 storage flux at half-hour, daily scale, and annual scale.

  12. Incorporating Peatland Plant Communities into the Enzymic 'Latch' Hypothesis: Can Vegetation Influence Carbon Storage Mechanisms?

    NASA Astrophysics Data System (ADS)

    Romanowicz, K. J.; Daniels, A. L.; Potvin, L. R.; Kane, E. S.; Kolka, R. K.; Chimner, R. A.; Lilleskov, E. A.

    2012-12-01

    High water table conditions in peatland ecosystems are known to favor plant production over decomposition and carbon is stored. Dominant plant communities change in response to water table but little is know of how these changes affect belowground carbon storage. One hypothesis known as the enzymic 'latch' proposed by Freeman et al. suggests that oxygen limitations due to high water table conditions inhibit microorganisms from synthesizing specific extracellular enzymes essential for carbon and nutrient mineralization, allowing carbon to be stored as decomposition is reduced. Yet, this hypothesis excludes plant community interactions on carbon storage. We hypothesize that the dominant vascular plant communities, sedges and ericaceous shrubs, will have inherently different effects on peatland carbon storage, especially in response to declines in water table. Sedges greatly increase in abundance following water table decline and create extensive carbon oxidation and mineralization hotspots through the production of deep roots with aerenchyma (air channels in roots). Increased oxidation may enhance aerobic microbial activity including increased enzyme activity, leading to peat subsidence and carbon loss. In contrast, ericaceous shrubs utilize enzymatically active ericoid mycorrhizal fungi that suppress free-living heterotrophs, promoting decreased carbon mineralization by mediating changes in rhizosphere microbial communities and enzyme activity regardless of water table declines. Beginning May 2010, bog monoliths were harvested, housed in mesocosm chambers, and manipulated into three vegetation treatments: unmanipulated (+sedge, +Ericaceae), sedge (+sedge, -Ericaceae), and Ericaceae (-sedge, +Ericaceae). Following vegetation manipulations, two distinct water table manipulations targeting water table seasonal profiles were implemented: (low intra-seasonal variability, higher mean water table; high intra-seasonal variability, lower mean water table). In 2012, peat

  13. Soil Carbon Storage in Christmas Tree Farms: Maximizing Ecosystem Management and Sustainability for Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Chapman, S. K.; Shaw, R.; Langley, A.

    2008-12-01

    Management of agroecosystems for the purpose of manipulating soil carbon stocks could be a viable approach for countering rising atmospheric carbon dioxide concentrations, while maximizing sustainability of the agroforestry industry. We investigated the carbon storage potential of Christmas tree farms in the southern Appalachian mountains as a potential model for the impacts of land management on soil carbon. We quantified soil carbon stocks across a gradient of cultivation duration and herbicide management. We compared soil carbon in farms to that in adjacent pastures and native forests that represent a control group to account for variability in other soil-forming factors. We partitioned tree farm soil carbon into fractions delineated by stability, an important determinant of long-term sequestration potential. Soil carbon stocks in the intermediate pool are significantly greater in the tree farms under cultivation for longer periods of time than in the younger tree farms. This pool can be quite large, yet has the ability to repond to biological environmental changes on the centennial time scale. Pasture soil carbon was significantly greater than both forest and tree farm soil carbon, which were not different from each other. These data can help inform land management and soil carbon sequestration strategies.

  14. Factors affecting expired waveform for carbon monoxide

    SciTech Connect

    Rubin, D.Z.; Lewis, S.M.; Mittman, C.

    1984-01-01

    The authors previously presented a method based on a computer lung model for determining the distribution of both specific ventilation and specific diffusing capacity. These argon and carbon monoxide (CO) washin and washout studies were obtained in 12 normal subjects and 24 patients with varying degrees of obstructive lung disease. In addition to end-tidal and mixed expired gas concentrations, the expired waveform for both gases was sampled. In patients we found that this method failed to adequately describe CO dynamics during the early part of expiration; predicted concentrations were higher than actual data. Modifications of the original model that satisfy all data are presented. This new model suggests that CO uptake occurs in spaces with ventilatory properties of dead space. The accuracy and reliability of these observations were established by computer simulation studies as well as by repeated testing in one subject. These proved to be highly reproducible over a period of 5 mo. Standard parameter sensitivity tests showed parameters to vary by less than 10% and to be stable even when realistic levels of noise were added to the data. We conclude that studies involving ventilation of insoluble gases are insufficient to describe gas exchange in the lung. The addition of an exchangeable gas adds significant understanding of lung function, particularly in disease.

  15. A comparative study on the lithium-ion storage performances of carbon nanotubes and tube-in-tube carbon nanotubes.

    PubMed

    Xu, Yi-Jun; Liu, Xi; Cui, Guanglei; Zhu, Bo; Weinberg, Gisela; Schlögl, Robert; Maier, Joachim; Su, Dang Sheng

    2010-03-22

    A comparative study of the electrochemical performances of carbon nanotubes and tube-in-tube carbon nanotubes reveals a dependence effect of lithium-ion storage behavior on the detailed nanostructure of carbon nanotubes. In particular, the impurity that graphitic particles or graphene fragments inherently present in carbon nanotubes plays a crucial role in the lithium-ion storage capacity of the carbon nanotubes. Compared to acid-washed carbon nanotubes, the assembly of graphitic impurity fragments in the tube-in-tube structures hinders lithium-ion diffusion, thus drastically decreasing the rate performance of lithium-ion storage. Significantly, our results indicate that the lithium-ion storage capacity of carbon nanotubes as anode electrodes can be improved or controlled by optimizing the microstructure composition of impurity graphitic nanoparticles or graphene fragments in the matrix of the carbon nanotubes.

  16. Aggregation of carbon dioxide sequestration storage assessment units

    USGS Publications Warehouse

    Blondes, Madalyn S.; Schuenemeyer, John H.; Olea, Ricardo A.; Drew, Lawrence J.

    2013-01-01

    The U.S. Geological Survey is currently conducting a national assessment of carbon dioxide (CO2) storage resources, mandated by the Energy Independence and Security Act of 2007. Pre-emission capture and storage of CO2 in subsurface saline formations is one potential method to reduce greenhouse gas emissions and the negative impact of global climate change. Like many large-scale resource assessments, the area under investigation is split into smaller, more manageable storage assessment units (SAUs), which must be aggregated with correctly propagated uncertainty to the basin, regional, and national scales. The aggregation methodology requires two types of data: marginal probability distributions of storage resource for each SAU, and a correlation matrix obtained by expert elicitation describing interdependencies between pairs of SAUs. Dependencies arise because geologic analogs, assessment methods, and assessors often overlap. The correlation matrix is used to induce rank correlation, using a Cholesky decomposition, among the empirical marginal distributions representing individually assessed SAUs. This manuscript presents a probabilistic aggregation method tailored to the correlations and dependencies inherent to a CO2 storage assessment. Aggregation results must be presented at the basin, regional, and national scales. A single stage approach, in which one large correlation matrix is defined and subsets are used for different scales, is compared to a multiple stage approach, in which new correlation matrices are created to aggregate intermediate results. Although the single-stage approach requires determination of significantly more correlation coefficients, it captures geologic dependencies among similar units in different basins and it is less sensitive to fluctuations in low correlation coefficients than the multiple stage approach. Thus, subsets of one single-stage correlation matrix are used to aggregate to basin, regional, and national scales.

  17. Spatial and temporal patterns of carbon storage in forest ecosystems on Hainan island, southern China.

    PubMed

    Ren, Hai; Li, Linjun; Liu, Qiang; Wang, Xu; Li, Yide; Hui, Dafeng; Jian, Shuguang; Wang, Jun; Yang, Huai; Lu, Hongfang; Zhou, Guoyi; Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993-2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices.

  18. Spatial and Temporal Patterns of Carbon Storage in Forest Ecosystems on Hainan Island, Southern China

    PubMed Central

    Tang, Xuli; Zhang, Qianmei; Wang, Dong; Yuan, Lianlian; Chen, Xubing

    2014-01-01

    Spatial and temporal patterns of carbon (C) storage in forest ecosystems significantly affect the terrestrial C budget, but such patterns are unclear in the forests in Hainan Province, the largest tropical island in China. Here, we estimated the spatial and temporal patterns of C storage from 1993–2008 in Hainan's forest ecosystems by combining our measured data with four consecutive national forest inventories data. Forest coverage increased from 20.7% in the 1950s to 56.4% in the 2010s. The average C density of 163.7 Mg C/ha in Hainan's forest ecosystems in this study was slightly higher than that of China's mainland forests, but was remarkably lower than that in the tropical forests worldwide. Total forest ecosystem C storage in Hainan increased from 109.51 Tg in 1993 to 279.17 Tg in 2008. Soil C accounted for more than 70% of total forest ecosystem C. The spatial distribution of forest C storage in Hainan was uneven, reflecting differences in land use change and forest management. The potential carbon sequestration of forest ecosystems was 77.3 Tg C if all forested lands were restored to natural tropical forests. To increase the C sequestration potential on Hainan Island, future forest management should focus on the conservation of natural forests, selection of tree species, planting of understory species, and implementation of sustainable practices. PMID:25229628

  19. Storage of Hydrogen in Single-Walled Carbon Nanotubes

    SciTech Connect

    Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J.

    1997-03-27

    Pores of molecular dimensions can adsorb large quantities of gases owing to the enhanced density of the adsorbed material inside the pores, a consequence of the attractive potential of the pore walls. Pederson and Broughton have suggested that carbon nanotubes, which have diameters of typically a few nanometres, should be able to draw up liquids by capillarity, and this effect has been seen for low-surface-tension liquids in large-diameter, multi-walled nanotubes. Here we show that a gas can condense to high density inside narrow, single-walled nanotubes (SWNTs). Temperature-programmed desorption spectroscopy shows that hydrogen will condense inside SWNTs under conditions that do not induce adsorption within a standard mesoporous activated carbon. The very high hydrogen uptake in these materials suggests that they might be effective as a hydrogen-storage material for fuel-cell electric vehicles.

  20. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  1. Lignin Based Carbon Materials for Energy Storage Applications

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori; Rios, Orlando; Johs, Alexander

    2014-01-01

    The implementation of Li-ion battery technology into electric and hybrid electric vehicles and portable electronic devices such as smart phones, laptops and tablets, creates a demand for efficient, economic and sustainable materials for energy storage. However, the high cost and long processing time associated with manufacturing battery-grade anode and cathode materials are two big constraints for lowering the total cost of batteries and environmentally friendly electric vehicles. Lignin, a byproduct of the pulp and paper industry and biorefinery, is one of the most abundant and inexpensive natural biopolymers. It can be efficiently converted to low cost carbon fibers with optimal properties for use as anode materials. Recent developments in the preparation of lignin precursors and conversion to carbon fiber-based anode materials have created a new class of anode materials with excellent electrochemical characteristics suitable for immediate use in existing Li- or Na-ion battery technologies.

  2. Ecosystem and Societal Consequences of Ocean versus Atmosphere Carbon Storage

    NASA Astrophysics Data System (ADS)

    Barry, J. P.; Adams, E. E.; Bleck, R.; Caldeira, K.; Carman, K.; Erickson, D.; Kennett, J. P.; Sarmiento, J. L.; Tsouris, C.

    2005-12-01

    Climate stabilization during the next 100 to 200 y will require significant reductions in atmospheric carbon dioxide emissions to avoid large increases in global temperature. While there is only mild disagreement concerning carbon management options such as energy efficiency, alternative energy sources, and even geologic C storage, ocean storage remains controversial, due to its potential impacts for deep-sea ecosystems. A cautionary approach to carbon management might avoid any ocean C storage. However, this approach does not consider the balance between ocean and terrestrial ecosystems, or societal concerns. Using a broader perspective, we might ask whether atmospheric CO2 storage (i.e. the status quo), or deep ocean sequestration is better for Earth's ecosystems and societies? We explored the potential storage capacity of the deep ocean for carbon dioxide, under scenarios producing a 0.2 pH unit reduction, a level similar to observed scale of pH variability in deep ocean basins, which may also represent coarse thresholds for deep-sea ecosystem impacts. Roughly 500 PgC could be stored in the deep ocean to lower pH by 0.2 units, yielding a long term (~250 y) ocean sequestration program of 2 PgCy-1. The mitigation value of such ocean C sequestration for upper ocean and terrestrial systems depends strongly on future emission scenarios. Under a low emission scenario (e.g. SRES scenario A1T, B1; atm CO2 ~575 ppm, global temperature change of ~+2 oC), a 2 PgCy-1 ocean CO2 injection program could mitigate global temperature by ~-0.4 oC (20%) by 2100. This could reduce significantly the number of people at risk of water shortage and tropical diseases, with lesser improvement expected for hunger or coastal flooding. Mitigation for terrestrial and shallow ocean ecosystems is difficult to predict. A 0.4 oC reduction in warming this century is expected to delay the progression of coral reef devastation by roughly 20 y. The mitigation potential of ocean storage under very

  3. Carbon storage in Swedish bedrock - current status regarding potential storage areas and geophysical information

    NASA Astrophysics Data System (ADS)

    Bergman, B.; Juhojuntti, N. G.

    2010-12-01

    Carbon Capture and Storage (CCS) is increasingly considered as an option to reduce the release of CO2 to the atmosphere. There is today a significant interest from Swedish heavy industry in CCS-technology. Large point sources are found within process industry related to e.g. production of paper and steel (operating under European Union regulations). There is also significant emission of CO2 from burning of biomass for energy production. However, this process is considered to be climate neutral and thus the emissions are not included in the carbon trading schemes. Based on recent work at the Geological Survey of Sweden and by other organizations we discuss the possibilities for geological storage of CO2 in Sweden, including the locations of the potential storage sites and the main CO2 emitters. In this context, we also review the relevant geophysical data available at the Geological Survey, focusing on the seismic data but also including gravity and magnetic data. Deep saline aquifers are presently considered as the most realistic storage alternative in Sweden. Sedimentary bedrock containing such layers and which could be suitable for CO2 storage is mainly found within the southern Baltic Sea and around southernmost Sweden, close to Denmark. The knowledge about the sedimentary bedrock in these areas is mainly based on seismic measurements and drilling in connection with hydrocarbon prospecting during the 70’s and the 80’s. Approximately 40.000 km’s of seismic reflection profiles were acquired, mostly in the potential CO2 storage areas mentioned above. Data from these profiles are now archived at the Geological Survey, and currently the magnetic tapes (8000-9000 reels) are being transcribed to modern storage media, a work that will likely be finished during 2011. Despite the hydrocarbon prospecting in these areas there are remaining uncertainties regarding the suitability of the sedimentary bedrock for CO2 storage, in particular related to the porosity and

  4. Impact of bioenergy production on carbon storage and soil functions

    NASA Astrophysics Data System (ADS)

    Prays, Nadia; Franko, Uwe

    2016-04-01

    An important renewable energy source is methane produced in biogas plants (BGPs) that convert plant material and animal excrements to biogas and a residue (BGR). If the plant material stems from crops produced specifically for that purpose, a BGP have a 'footprint' that is defined by the area of arable land needed for the production of these energy crops and the area for distributing the BGRs. The BGR can be used to fertilize these lands (reducing the need for carbon and nitrogen fertilizers), and the crop land can be managed to serve as a carbon sink, capturing atmospheric CO2. We focus on the ecological impact of different BGPs in Central Germany, with a specific interest in the long-term effect of BGR-fertilization on carbon storage within the footprint of a BGP. We therefore studied nutrient fluxes using the CANDY (CArbon and Nitrogen Dynamics) model, which processes site-specific information on soils, crops, weather, and land management to compute stocks and fluxes of carbon and nitrogen for agricultural fields. We used CANDY to calculated matter fluxes within the footprints of BGPs of different sizes, and studied the effect of the substrate mix for the BGP on the carbon dynamics of the soil. This included the land requirement of the BGR recycling when used as a fertilizer: the footprint of a BGP required for the production of the energy crop generally differs from its footprint required to take up its BGR. We demonstrate how these findings can be used to find optimal cropping choices and land management for sustainable soil use, maintaining soil fertility and other soil functions. Furthermore, site specific potentials and limitations for agricultural biogas production can be identified and applied in land-use planning.

  5. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution

    NASA Astrophysics Data System (ADS)

    Siewert, Matthias B.; Hanisch, Jessica; Weiss, Niels; Kuhry, Peter; Maximov, Trofim C.; Hugelius, Gustaf

    2015-10-01

    Permafrost-affected ecosystems are important components in the global carbon (C) cycle that, despite being vulnerable to disturbances under climate change, remain poorly understood. This study investigates ecosystem carbon storage in two contrasting continuous permafrost areas of NE and East Siberia. Detailed partitioning of soil organic carbon (SOC) and phytomass carbon (PC) is analyzed for one tundra (Kytalyk) and one taiga (Spasskaya Pad/Neleger) study area. In total, 57 individual field sites (24 and 33 in the respective areas) have been sampled for PC and SOC, including the upper permafrost. Landscape partitioning of ecosystem C storage was derived from thematic upscaling of field observations using a land cover classification from very high resolution (2 × 2 m) satellite imagery. Nonmetric multidimensional scaling was used to explore patterns in C distribution. In both environments the ecosystem C is mostly stored in the soil (≥86%). At the landscape scale C stocks are primarily controlled by the presence of thermokarst depressions (alases). In the tundra landscape, site-scale variability of C is controlled by periglacial geomorphological features, while in the taiga, local differences in catenary position, soil texture, and forest successions are more important. Very high resolution remote sensing is highly beneficial to the quantification of C storage. Detailed knowledge of ecosystem C storage and ground ice distribution is needed to predict permafrost landscape vulnerability to projected climatic changes. We argue that vegetation dynamics are unlikely to offset mineralization of thawed permafrost C and that landscape-scale reworking of SOC represents the largest potential changes to C cycling.

  6. 40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Group 1 Storage Vessels at New Affected Sources 4 Table 4 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY.... 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage Vessels at New...

  7. 40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Group 1 Storage Vessels at New Affected Sources 4 Table 4 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Polymers and Resins Pt. 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage...

  8. 40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Group 1 Storage Vessels at New Affected Sources 4 Table 4 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... and Resins Pt. 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage Vessels...

  9. 40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 12 2012-07-01 2011-07-01 true Group 1 Storage Vessels at Existing Affected Sources 2 Table 2 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage Vessels...

  10. 40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Group 1 Storage Vessels at Existing Affected Sources 2 Table 2 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Polymers and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage...

  11. 40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 12 2013-07-01 2013-07-01 false Group 1 Storage Vessels at New Affected Sources 4 Table 4 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Polymers and Resins Pt. 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage...

  12. 40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Group 1 Storage Vessels at Existing Affected Sources 2 Table 2 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Polymers and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage...

  13. 40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 11 2011-07-01 2011-07-01 false Group 1 Storage Vessels at Existing Affected Sources 2 Table 2 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage Vessels...

  14. 40 CFR Table 2 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Group 1 Storage Vessels at Existing Affected Sources 2 Table 2 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... and Resins Pt. 63, Subpt. JJJ, Table 2 Table 2 to Subpart JJJ of Part 63—Group 1 Storage Vessels...

  15. 40 CFR Table 4 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Group 1 Storage Vessels at New Affected Sources 4 Table 4 to Subpart JJJ of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY.... 63, Subpt. JJJ, Table 4 Table 4 to Subpart JJJ of Part 63—Group 1 Storage Vessels at New...

  16. Hierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage

    NASA Astrophysics Data System (ADS)

    Kuzmenko, V.; Saleem, A. M.; Bhaskar, A.; Staaf, H.; Desmaris, V.; Enoksson, P.

    2015-12-01

    The problem of energy storage and its continuous delivery on demand needs new effective solutions. Supercapacitors are viewed as essential devices for solving this problem since they can quickly provide high power basically countless number of times. The performance of supercapacitors is mostly dependent on the properties of electrode materials used for electrostatic charge accumulation, i.e. energy storage. This study presents new sustainable cellulose-derived materials that can be used as electrodes for supercapacitors. Nanofibrous carbon nanofiber (CNF) mats were covered with vapor-grown carbon nanotubes (CNTs) in order to get composite CNF/CNT electrode material. The resulting composite material had significantly higher surface area and was much more conductive than pure CNF material. The performance of the CNF/CNT electrodes was evaluated by various analysis methods such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy and cyclic stability. The results showed that the cellulose-derived composite electrodes have fairly high values of specific capacitance and power density and can retain excellent performance over at least 2 000 cycles. Therefore it can be stated that sustainable cellulose-derived CNF/CNT composites are prospective materials for supercapacitor electrodes.

  17. Viability of Carbon Dioxide Storage in Deep Sea Sediment

    NASA Astrophysics Data System (ADS)

    Bielicki, J. M.

    2007-12-01

    Despite the public's general aversion to using the ocean to dispose of captured carbon dioxide (CO2), recent revisions of the London Protocol have removed a hurdle to subsea injection of CO2. This paper constructs a map of the worldwide "prospectivity" of CO2 storage in deep sea sediment, i.e. amenable locations are determined and storage capacities estimated. CO2 injected into deep sea sediment is expected to be gravitationally trapped and secondarily capped by CO2 hydrate formation. Capture, transport, and storage costs are estimated and a mixed-integer linear programming model that generates spatially optimized infrastructure networks is applied. The model captures CO2 from fixed point sources, uses minimum cost routing paths, aggregates CO2 flow into trunk distribution pipelines where appropriate, and injects the CO2 in potential deep sea injection sites. Economies of scale for this climate change mitigation intervention in the United States Exclusive Economic Zone are discussed, including provisions for destabilizing and/or harvesting methane from in situ gas hydrates.

  18. Hydrogen storage reactions on titanium decorated carbon nanocones theoretical study

    NASA Astrophysics Data System (ADS)

    Shalabi, A. S.; Taha, H. O.; Soliman, K. A.; Abeld Aal, S.

    2014-12-01

    Hydrogen storage reactions on Ti decorated carbon nanocones (CNC) are investigated by using the state of the art density functional theory calculations. The single Ti atom prefers to bind at the bridge site between two hexagonal rings, and can bind up to 6 hydrogen molecules with average adsorption energies of -1.73, -0.74, -0.57, -0.45, -0.42, and -0.35 eV per hydrogen molecule. No evidence for metal clustering in the ideal circumstances, and the hydrogen storage capacity is expected to be as large as 14.34 wt%. Two types of interactions are recognized. While the interaction of 2H2 with Ti-CNC is irreversible at 532 K, the interaction of 3H2 with Ti-CNC is reversible at 392 K. Further characterizations of the former two reactions are considered in terms of projected densities of states, simulated infrared and proton magnetic resonance spectra, electrophilicity, and statistical thermodynamic stability. The free energy of the highest hydrogen storage capacity reaction between 6H2 and Ti-CNC meets the ultimate targets of department of energy at (233.15 K) and (11.843 atm) with surface coverage (0.941) and (direct/inverse) rate constants ratio (1.35).

  19. Carbon Nanomaterials for Energy Storage, Actuators and Environmental Applications

    NASA Astrophysics Data System (ADS)

    Wang, Chengwei

    Carbon nanomaterials have caught tremendous attention in the last few decades due to their unique physical and chemical properties. Tremendous effort has been made to develop new synthesis techniques for carbon nanomaterials and investigate their properties for different applications. In this work, carbon nanospheres (CNSs), carbon foams (CF), and single-walled carbon nanotubes (SWNTs) were studied for various applications, including water treatment, energy storage, actuators, and sensors. A facile spray pyrolysis synthesis technique was developed to synthesize individual CNSs with specific surface area (SSA) up to 1106 m2/g. The hollow CNSs showed adsorption of up to 300 mg rhodamine B dye per gram carbon, which is more than 15 times higher than that observed for conventional carbon black. They were also evaluated as adsorbents for removal of arsenate and selenate from water and displayed good binding to both species, outperforming commercial activated carbons for arsenate removal in pH > 8. When evaluated as supercapacitor electrode materials, specific capacitances of up to 112 F/g at a current density of 0.1 A/g were observed. When used as Li-ion battery anode materials, the CNSs achieved a discharge capacity of 270 mAh/g at a current density of 372 mA/g (1C), which is 4-fold higher than that of commercial graphite anode. Carbon foams were synthesized using direct pyrolysis and had SSA up to 2340 m2/g. When used as supercapacitor electrode materials, a specific capacitance up to 280 F/g was achieved at current density of 0.1 A/g and remained as high as 207 F/g, even at a high current density of 10 A/g. A printed walking robot was made from common plastic films and coatings of SWNTs. The solid-state thermal bimorph actuators were multifunctional energy transducers powered by heat, light, or electricity. The actuators were also investigated for photo/thermal detection. Electrochemical actuators based on MnO2 were also studied for potential underwater applications

  20. [Distribution of soil organic carbon storage and carbon density in Gahai Wetland ecosystem].

    PubMed

    Ma, Wei-Wei; Wang, Hui; Huang, Rong; Li, Jun-Zhen; Li, De-Yu

    2014-03-01

    The profile distribution and accumulation characteristics of organic carbon of four typical marshes (herbaceous peat, marsh wetland, mountain wetland, subalpine meadow) were studied in Gahai Wetlands of Gannan in July 2011. The results showed that the soil bulk densities of the four typical marshes ranged from 0.22 to 1.29 g x cm(-3). The content of soil organic carbon in the herbaceous peat was higher than in other types, with its average content of organic carbon (286. 80 g x kg(-1)) being about 2.91, 4.99, 7.31 times as much as that of the marsh wetland, mountain wetland and subalpine meadow, respectively. The average organic carbon densities were in order of herbaceous peat > subalpine meadow > marsh wetland > mountain wetland, with the highest in the 0-10 cm layer. The change of organic carbon density along the soil profile was basically in accordance with the organic carbon content in the four typical marshes, but fluctuated with soil depth. There were obviously two carbon storage layers (0-10 and 20-40 cm, respectively) in the four typical marshes. The amounts of organic carbon stored in the 0-60 cm layer of the four typical marshes were 369.46, 278.83, 276.16, 292.23 t x hm(-2), respectively. The total amount of organic carbon stored in the 0-60 cm of the four typical marshes was about 9.50 x 10(6) t.

  1. [Changes of carbon storage and carbon sequestration in plantation ecosystems on purple soil].

    PubMed

    Yu, Zhanyuan; Yang, Yusheng; Chen, Guangshui

    2004-10-01

    This paper studied the carbon storages and carbon sequestration capacities of degraded plantation ecosystems in purple soil area. Using space-time replacement method, four ecological restoration treatments (I, II, III and IV) were selected on the basis of erosion intensions from high to low in Ninghua, Fujian. Treatment I was not treated with any other measures after afforestation. Treatment II adopted engineering soil and water conservation measure after afforestation. In treatment III, the engineering measure associated biological measure was taken after afforestation. As for treatment IV, enclosure was adopted to protect against anthropogenic disturbances after afforestation. We observed that the carbon sequestration potential was increased with weakening erosion degree, i.e., I < II < III < IV. The carbon storage of 4 treatments was 1.4, 8.5, 25.6 and 37.6 t x hm(-2), and the annual assimilation of CO2 was 712.87, 1458.01, 9718.10 and 11,109.56 kg x hm(-2), respectively. It was suggested that the restored forest ecosystem was one of the important carbon sinks in this area. Engineering soil and water conservation measure associated biological measure would be the main means of restoring degraded ecosystem. But presently, the reasonable strategy was to decrease human's disturbances, and hence, the enclosure for reforestation could be used to transform forest ecosystem into carbon sink.

  2. Response of total belowground carbon flux and soil organic carbon storage to increasing mean annual temperature in Hawaiian tropical montane wet forest.

    NASA Astrophysics Data System (ADS)

    Giardina, C. P.; Litton, C. M.; Crow, S. E.

    2011-12-01

    Controls on the allocation of carbon belowground by plants and the retention of this carbon as new soil organic carbon are poorly quantified, yet exert a large influence on the carbon balance of the terrestrial biosphere. While many studies have now quantified total belowground carbon flux (TBCF), and general global patterns have been identified, rigorous field tests of the effects of climate variables on TBCF do not yet exist, and the conversion of TBCF into soil organic carbon - particularly long-lived soil organic carbon - has received little attention. These represent critical gaps in our understanding of terrestrial carbon cycling, and currently severely constrain efforts to model climate change impacts on belowground carbon processes and storage. We have established a model mean annual temperature gradient spanning 5.2°C in Hawaiian tropical montane wet forests where soil type and age, soil moisture balance, vegetation composition, and disturbance history do not co-vary with temperature. We found that TBCF increases by a factor of two over the 5.2°C MAT gradient in response to increasing ecosystem productivity, while total soil carbon storage is constant. These findings suggest that as temperatures warm, there will be a significant increase in TBCF and belowground carbon process leading to increased flux of CO2 from soils as soil respiration, but that soil organic carbon storage will be relatively insensitive to warming - at least where moisture availability is not affected by rising temperatures. While short-term responses to warming may differ, this study represents long-term insight into the impacts of rising temperatures on belowground carbon cycling and assumes that ecosystem characteristics will change with warming as quantified across this MAT gradient.

  3. Storage behavior of mango as affected by post harvest application of plant extracts and storage conditions.

    PubMed

    Gupta, Nisha; Jain, S K

    2014-10-01

    The use of plant extracts could be a useful alternative to synthetic fungicides in the post harvest handling of fruits and vegetables. The aim of this study was to access the efficacy of extracts obtained from four plants (neem, Pongamia, custard apple leaf and marigold flowers) on the extension of shelf life of mango fruits cv. Dashehri under two storage conditions (Cool store and ambient condition). The fruits were treated with 2 concentrations of each plant extracts (10 % and 20 %) were placed in perforated linear low density poly ethylene bags and stored in storage conditions viz., cool storage and ambient condition, respectively. The treatment of neem leaf extract in combination with cool storage gave encouraging results. Up to the end of the storage study the treatment combination of 20 % neem leaf extract and cool store completely inhibited the pathogens, and no spoilage was observed. There was minimum physiological loss in weight (6.24 %), minimum girth reduction (0.62 %), maximum ascorbic acid content (29.96 mg/ 100 g of pulp), maximum acidity (0.19 %), minimum pH (5.28), maximum total soluble solids (20.96 %), maximum total sugars (12.50 %), reducing sugars (4.12 %) and non- reducing sugars (7.96 %) and best organoleptic score (7.93/10) in this interaction. The inhibitory effect of neem leaf extract was ascribed to the presence of active principle azadirachtin. PMID:25328189

  4. Resource quality affects carbon cycling in deep-sea sediments

    PubMed Central

    Mayor, Daniel J; Thornton, Barry; Hay, Steve; Zuur, Alain F; Nicol, Graeme W; McWilliam, Jenna M; Witte, Ursula F M

    2012-01-01

    Deep-sea sediments cover ∼70% of Earth's surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of 13C-labelled diatoms and faecal pellets to a cold water (−0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth. PMID:22378534

  5. Resource quality affects carbon cycling in deep-sea sediments.

    PubMed

    Mayor, Daniel J; Thornton, Barry; Hay, Steve; Zuur, Alain F; Nicol, Graeme W; McWilliam, Jenna M; Witte, Ursula F M

    2012-09-01

    Deep-sea sediments cover ~70% of Earth's surface and represent the largest interface between the biological and geological cycles of carbon. Diatoms and zooplankton faecal pellets naturally transport organic material from the upper ocean down to the deep seabed, but how these qualitatively different substrates affect the fate of carbon in this permanently cold environment remains unknown. We added equal quantities of (13)C-labelled diatoms and faecal pellets to a cold water (-0.7 °C) sediment community retrieved from 1080 m in the Faroe-Shetland Channel, Northeast Atlantic, and quantified carbon mineralization and uptake by the resident bacteria and macrofauna over a 6-day period. High-quality, diatom-derived carbon was mineralized >300% faster than that from low-quality faecal pellets, demonstrating that qualitative differences in organic matter drive major changes in the residence time of carbon at the deep seabed. Benthic bacteria dominated biological carbon processing in our experiments, yet showed no evidence of resource quality-limited growth; they displayed lower growth efficiencies when respiring diatoms. These effects were consistent in contrasting months. We contend that respiration and growth in the resident sediment microbial communities were substrate and temperature limited, respectively. Our study has important implications for how future changes in the biochemical makeup of exported organic matter will affect the balance between mineralization and sequestration of organic carbon in the largest ecosystem on Earth. PMID:22378534

  6. Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Park, Soo-Jin

    2012-10-15

    Activated multi-walled carbon nanotubes (A-MWCNTs) were prepared using a chemical activation method to obtain well-developed pore structures for use as hydrogen storage materials. The microstructure and crystallinity of the A-MWCNTs were evaluated by X-ray diffraction and Fourier transform Raman spectroscopy. The textural properties of the A-MWCNTs were investigated by nitrogen gas sorption analysis at 77 K. The hydrogen storage capacity of the A-MWCNTs was evaluated at 77 K and 1 bar. The results showed that the specific surface area of the MWCNTs increased from 327 to 495 m{sup 2}/g as the activation temperature was increased. The highest hydrogen storage capacity was observed in the A-MWCNTs sample activated at 900 Degree-Sign C (0.54 wt%). This was attributed to it having the narrowest microporosity, which is a factor closely related to the hydrogen storage capacity. This shows that the hydrogen storage behaviors depend on the pore volume. Although a high pore volume is desirable for hydrogen storage, it is also severely affected if the pore size in the A-MWCNTs for the hydrogen molecules is suitable for creating the activation process. Highlights: Black-Right-Pointing-Pointer The AT-800 and AT-900 samples were prepared by a chemical activation method at activation temperature of 800 and 900 Degree-Sign C, respectively. Black-Right-Pointing-Pointer The AT-900 sample has the narrowest peak in comparison with the AT-800 sample, resulting from the overlap of the two peaks (Peak I and Peak II). Black-Right-Pointing-Pointer This overlapping effect is due to the newly created micropores or shrinkages of pores in Peak II. So, these determining characteristics are essential for designing materials that are suitable for molecular hydrogen storage.

  7. Carbide-Derived Carbon Films for Integrated Electrochemical Energy Storage

    NASA Astrophysics Data System (ADS)

    Heon, Min

    Active RFID tags, which can communicate over tens or even hundreds of meters, MEMS devices of several microns in size, which are designed for the medical and pharmaceutical purposes, and sensors working in wireless monitoring systems, require microscale power sources that are able to provide enough energy and to satisfy the peak power demands in those applications. Supercapacitors have not been an attractive candidate for micro-scale energy storage, since most nanoporous carbon electrode materials are not compatible with micro-fabrication techniques and have failed to meet the requirements of high volumetric energy density and small form factor for power supplies for integrated circuits or microelectronic devices or sensors. However, supercapacitors can provide high power density, because of fast charging/discharging, which can enable self-sustaining micro-modules when combined with energy-harvesting devices, such as solar cell, piezoelectric or thermoelectric micro-generators. In this study, carbide-derived carbon (CDC) films were synthesized via vacuum decomposition of carbide substrates and gas etching of sputtered carbide thin films. This approach allowed manufacturing of porous carbon films on SiC and silicon substrates. CDC films were studied for micro-supercapacitor electrodes, and showed good double layer capacitance. Since the gas etching technique is compatible with conventional micro-device fabrication processes, it can be implemented to manufacture integrated on-chip supercapacitors on silicon wafers.

  8. Plant growth-rate dependence of detrital carbon storage in ecosystems

    SciTech Connect

    Cebrian, J.; Duarte, C.M.

    1995-06-16

    Detrital carbon accumulation accounts for most of an ecosystem`s capacity to store organic carbon because the carbon contained as plant detritus exceeds that stored in living plants by about threefold. A comparative analysis of the mass and turnover of detrital carbon in ecosystems demonstrates that these properties are strongly related to the turnover rate of the dominant primary producers and are poorly related to ecosystem primary production. These results contribute to an understanding of the factors that control carbon storage in ecosystems and the role of carbon storage in the global carbon budget. 24 refs., 3 figs.

  9. Storage iron exchange in the rat as affected by deferoxamine

    SciTech Connect

    Kim, B.K.; Huebers, H.; Pippard, M.J.; Finch, C.A.

    1985-04-01

    The initial tissue localization and redistribution of radioactive iron injected intravenously into the rat as ferritin, chondroitin sulfate, and nonviable red cells was determined. Ferritin iron, initially localized in the hepatocyte, showed minimal redistribution over 24 hours in the normal animal. This may be compared with the active release of iron from the reticuloendothelial cell after the intravenous injection of nonviable red cells and chondroitin sulfate iron. All forms of iron were actively mobilized in iron-deficient animals. The effect of chelation of iron by deferoxamine (DFO) on the redistribution pattern over 4 to 6 hours was determined in iron-deficient, normal, iron-loaded, and phenylhydrazine-treated rats to evaluate the effect of iron stores and erythropoiesis. Use of DFO resulted in extensive chelation of radioactive iron within the hepatocyte and greatly reduced the amount of hepatocyte iron available for erythropoiesis. Very little chelation of reticuloendothelial cell-processed iron occurred, and there was little decrease in its utilization for red cell production. Total urinary chelate iron was independent of erythropoiesis but varied in parallel with the iron load of the animal. These studies suggest that DFO does not act on the reticuloendothelial cell but does have at least two sites of action, both of which relate to total storage iron. One involves hepatocyte stores with excretion into the intestinal tract. The other, possibly located at the hepatocyte membrane, results in urinary iron excretion.

  10. Does utility spent nuclear fuel storage affect local property values?

    SciTech Connect

    Metz, W.C.; Allison, T.; Clark, D.E.

    1997-05-01

    With federal policy apparently forcing more utilities to store their spent nuclear fuel at their reactor sites for the foreseeable future, the question arises whether residential sale prices will be affected because of the public perceptions of risk and negative imagery. This article discusses the question using the following topic areas: estimates of economic consequences; california plant case studies; real estate data used in the analyses; hedonic modeling; iterative hedonic modeling; 25-mile analyses; 15 mile analyses; news coverage analysis. 3 figs.

  11. Integrated Assessment Modeling for Carbon Storage Risk and Uncertainty Quantification

    NASA Astrophysics Data System (ADS)

    Bromhal, G. S.; Dilmore, R.; Pawar, R.; Stauffer, P. H.; Gastelum, J.; Oldenburg, C. M.; Zhang, Y.; Chu, S.

    2013-12-01

    The National Risk Assessment Partnership (NRAP) has developed tools to perform quantitative risk assessment at site-specific locations for long-term carbon storage. The approach that is being used is to divide the storage and containment system into components (e.g., reservoirs, seals, wells, groundwater aquifers), to develop detailed models for each component, to generate reduced order models (ROMs) based on the detailed models, and to reconnect the reduced order models within an integrated assessment model (IAM). CO2-PENS, developed at Los Alamos National Lab, is being used as the IAM for the simulations in this study. The benefit of this approach is that simulations of the complete system can be generated on a relatively rapid time scale so that Monte Carlo simulation can be performed. In this study, hundreds of thousands of runs of the IAMs have been generated to estimate likelihoods of the quantity of CO2 released to the atmosphere, size of aquifer impacted by pH, size of aquifer impacted by TDS, and size of aquifer with different metals concentrations. Correlations of the output variables with different reservoir, seal, wellbore, and aquifer parameters have been generated. Importance measures have been identified, and inputs have been ranked in the order of their impact on the output quantities. Presentation will describe the approach used, representative results, and implications for how the Monte Carlo analysis is implemented on uncertainty quantification.

  12. Fresh Water Generation from Aquifer-Pressured Carbon Storage

    SciTech Connect

    Aines, R D; Wolery, T J; Bourcier, W L; Wolfe, T; Haussmann, C

    2010-02-19

    Can we use the pressure associated with sequestration to make brine into fresh water? This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). Possible products are: Drinking water, Cooling water, and Extra aquifer space for CO{sub 2} storage. The conclusions are: (1) Many saline formation waters appear to be amenable to largely conventional RO treatment; (2) Thermodynamic modeling indicates that osmotic pressure is more limiting on water recovery than mineral scaling; (3) The use of thermodynamic modeling with Pitzer's equations (or Extended UNIQUAC) allows accurate estimation of osmotic pressure limits; (4) A general categorization of treatment feasibility is based on TDS has been proposed, in which brines with 10,000-85,000 mg/L are the most attractive targets; (5) Brines in this TDS range appear to be abundant (geographically and with depth) and could be targeted in planning future CCS operations (including site selection and choice of injection formation); and (6) The estimated cost of treating waters in the 10,000-85,000 mg/L TDS range is about half that for conventional seawater desalination, due to the anticipated pressure recovery.

  13. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    PubMed

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  14. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    PubMed

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics.

  15. Sensitivity of global and regional terrestrial carbon storage to the direct CO2 effect and climate change based on the CMIP5 model intercomparison.

    PubMed

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04 PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics. PMID:24748331

  16. Sensitivity of Global and Regional Terrestrial Carbon Storage to the Direct CO2 Effect and Climate Change Based on the CMIP5 Model Intercomparison

    PubMed Central

    Peng, Jing; Dan, Li; Huang, Mei

    2014-01-01

    Global and regional land carbon storage has been significantly affected by increasing atmospheric CO2 concentration and climate change. Based on fully coupled climate-carbon-cycle simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we investigate sensitivities of land carbon storage to rising atmospheric CO2 concentration and climate change over the world and 21 regions during the 130 years. Overall, the simulations suggest that consistently spatial positive effects of the increasing CO2 concentrations on land carbon storage are expressed with a multi-model averaged value of 1.04PgC per ppm. The stronger positive values are mainly located in the broad areas of temperate and tropical forest, especially in Amazon basin and western Africa. However, large heterogeneity distributed for sensitivities of land carbon storage to climate change. Climate change causes decrease in land carbon storage in most tropics and the Southern Hemisphere. In these regions, decrease in soil moisture (MRSO) and enhanced drought somewhat contribute to such a decrease accompanied with rising temperature. Conversely, an increase in land carbon storage has been observed in high latitude and altitude regions (e.g., northern Asia and Tibet). The model simulations also suggest that global negative impacts of climate change on land carbon storage are predominantly attributed to decrease in land carbon storage in tropics. Although current warming can lead to an increase in land storage of high latitudes of Northern Hemisphere due to elevated vegetation growth, a risk of exacerbated future climate change may be induced due to release of carbon from tropics. PMID:24748331

  17. China's crop productivity and soil carbon storage as influenced by multifactor global change.

    PubMed

    Ren, Wei; Tian, Hanqin; Tao, Bo; Huang, Yao; Pan, Shufen

    2012-09-01

    Much concern has been raised about how multifactor global change has affected food security and carbon sequestration capacity in China. By using a process-based ecosystem model, the Dynamic Land Ecosystem Model (DLEM), in conjunction with the newly developed driving information on multiple environmental factors (climate, atmospheric CO2 , tropospheric ozone, nitrogen deposition, and land cover/land use change), we quantified spatial and temporal patterns of net primary production (NPP) and soil organic carbon storage (SOC) across China's croplands during 1980-2005 and investigated the underlying mechanisms. Simulated results showed that both crop NPP and SOC increased from 1980 to 2005, and the highest annual NPP occurred in the Southeast (SE) region (0.32 Pg C yr(-1) , 35.4% of the total NPP) whereas the largest annual SOC (2.29 Pg C yr(-1) , 35.4% of the total SOC) was found in the Northeast (NE) region. Land management practices, particularly nitrogen fertilizer application, appear to be the most important factor in stimulating increase in NPP and SOC. However, tropospheric ozone pollution and climate change led to NPP reduction and SOC loss. Our results suggest that China's crop productivity and soil carbon storage could be enhanced through minimizing tropospheric ozone pollution and improving nitrogen fertilizer use efficiency. PMID:24501069

  18. Profile storage of organic/inorganic carbon in soil: from forest to desert.

    PubMed

    Wang, Yugang; Li, Yan; Ye, Xuehua; Chu, Yu; Wang, Xinping

    2010-03-15

    Understanding the distribution of organic/inorganic carbon storage in soil profile is crucial for assessing regional, continental and global soil C stores and predicting the consequences of global change. However, little is known about the organic/inorganic carbon storages in deep soil layers at various landscapes. This study was conducted to determine the soil organic/inorganic carbon storage in soil profile of 0-3m at 5 sites of natural landscape from forest to desert. Landscapes are temperate forest, temperate grassland, temperate shrub-grassland, temperate shrub desert, and temperate desert. Root mass density and carbon contents at the profile were determined for each site. The results showed that considerable decrease in root biomass and soil organic carbon content at the soil profile of 0-3m when landscape varied from forest to desert along a precipitation gradient, while soil inorganic carbon content increased significantly along the precipitation gradient. Namely, for density of soil organic carbon: forest>grassland>shrub-grassland>shrub desert>desert; for density of soil inorganic carbon: forest, grasslandcarbon storage was found in 1-3m depth. For grassland and shrub-grassland, the contribution from 1-3m was mainly in the form of organic carbon, while for shrub desert and desert the contribution from this depth was mainly in the form of inorganic carbon. The comparison of soil C storage between top 0-1m and 1-3m showed that the using top 1m of soil profile to estimate soil carbon storages would considerably underestimate soil carbon storage. This is especially true for organic soil carbon at grassland region, and for soil inorganic carbon at desert region.

  19. The effects of transient storage on carbon uptake in a sub-arctic stream in interior Alaska

    NASA Astrophysics Data System (ADS)

    Rinehart, A.; Jones, J. B.

    2010-12-01

    The fate of dissolved organic carbon (DOC) in streams is largely controlled by organic matter and nutrient inputs from the catchment, biotic uptake, and hydrologic retention within transient storage zones (hyporheic zone, pools, eddies). The hyporheic zone can be an important site for processing of organic matter and, thus hydrologic residence time in transient storage is an important factor regulating carbon uptake. Our research examined transient storage and carbon uptake in a sub-arctic stream to understand the mechanisms affecting hyporheic carbon cycling in streams underlain by warming permafrost. The research was conducted in a stream draining a low permafrost catchment in the Caribou-Poker Creeks Research Watershed in interior Alaska, in which permafrost underlies ~5% of the catchment. Short-term steady-state solute injections of a conservative tracer and acetate were performed in the summers of 2008 through 2010 to capture variation in soil thaw and stream discharge. Transient storage was described with the one-dimensional transport with inflow and storage (OTIS) model. Carbon uptake was determined by calculating the mass transfer coefficient (Vf; mm/min), which describes the vertical velocity of carbon across the stream/sediment interface. Residence time in transient storage increased with discharge, but was not related to thaw depth suggesting the hyporheic zone is relatively shallow compared to the thaw bulb beneath the stream. The stream is highly incised with thick vegetation along the banks. High discharge may result in increased lateral hydrologic exchange with flowpaths through the stream bank. Stream flow frequently cuts into and under the bank up to 50 cm (average width = 80 cm) creating “lateral pockets,” and vegetation roots create pools. During high flows these surface features may increase surface storage and enhance lateral exchange. The carbon mass transfer coefficient (mm/min) decreased with discharge revealing more efficient carbon

  20. Increasing forest disturbances in Europe and their impact on carbon storage

    NASA Astrophysics Data System (ADS)

    Seidl, Rupert; Schelhaas, Mart-Jan; Rammer, Werner; Verkerk, Pieter Johannes

    2014-09-01

    Disturbances from wind, bark beetles and wildfires have increased in Europe's forests throughout the twentieth century. Climatic changes were identified as a key driver behind this increase, yet how the expected continuation of climate change will affect Europe's forest disturbance regime remains unresolved. Increasing disturbances could strongly impact the forest carbon budget, and are suggested to contribute to the recently observed carbon sink saturation in Europe's forests. Here we show that forest disturbance damage in Europe has continued to increase in the first decade of the twenty-first century. On the basis of an ensemble of climate change scenarios we find that damage from wind, bark beetles and forest fires is likely to increase further in coming decades, and estimate the rate of increase to be +0.91 × 106 m3 of timber per year until 2030. We show that this intensification can offset the effect of management strategies aiming to increase the forest carbon sink, and calculate the disturbance-related reduction of the carbon storage potential in Europe's forests to be 503.4 Tg C in 2021-2030. Our results highlight the considerable carbon cycle feedbacks of changing disturbance regimes, and underline that future forest policy and management will require a stronger focus on disturbance risk and resilience.

  1. Siting is a constraint to realize environmental benefits from carbon capture and storage.

    PubMed

    Sekar, Ashok; Williams, Eric; Chester, Mikhail

    2014-10-01

    Carbon capture and storage (CCS) for coal power plants reduces onsite carbon dioxide emissions, but affects other air emissions on and offsite. This research assesses the net societal benefits and costs of Monoethanolamine (MEA) CCS, valuing changes in emissions of CO2, SO2, NOX, NH3 and particulate matter (PM), including those in the supply chain. Geographical variability and stochastic uncertainty for 407 coal power plant locations in the U.S. are analyzed. The results show that the net environmental benefits and costs of MEA CCS depend critically on location. For a few favorable sites of both power plant and upstream processes, CCS realizes a net benefit (benefit-cost ratio >1) if the social cost of carbon exceeds $51/ton. For much of the U.S. however, the social cost of carbon must be much higher to realize net benefits from CCS, up to a maximum of $910/ton. While the social costs of carbon are uncertain, typical estimates are in the range of $32-220 per ton, much lower than the breakeven value for many potential CCS locations. Increased impacts upstream from the power plant can dramatically change the social acceptability of CCS and needs further consideration and analysis.

  2. Increasing forest disturbances in Europe and their impact on carbon storage

    PubMed Central

    Seidl, Rupert; Schelhaas, Mart-Jan; Rammer, Werner; Verkerk, Pieter Johannes

    2015-01-01

    Disturbances from wind, bark beetles, and wildfires have increased in Europe’s forests throughout the 20th century 1. Climatic changes were identified as a main driver behind this increase 2, yet how the expected continuation of climate change will affect Europe’s forest disturbance regime remains unresolved. Increasing disturbances could strongly impact the forest carbon budget 3,4, and are hypothesized to contribute to the recently observed carbon sink saturation in Europe’s forests 5. Here we show that forest disturbance damage in Europe has continued to increase in the first decade of the 21st century. Based on an ensemble of climate change scenarios we find that damage from wind, bark beetles, and forest fires is likely to increase further in coming decades, and estimate the rate of increase to +0.91·106 m3 of timber per year until 2030. We show that this intensification can offset the effect of management strategies aiming to increase the forest carbon sink, and calculate the disturbance-related reduction of the carbon storage potential in Europe’s forests to be 503.4 Tg C in 2021-2030. Our results highlight the considerable carbon cycle feedbacks of changing disturbance regimes, and underline that future forest policy and management will require a stronger focus on disturbance risk and resilience. PMID:25737744

  3. Siting is a constraint to realize environmental benefits from carbon capture and storage.

    PubMed

    Sekar, Ashok; Williams, Eric; Chester, Mikhail

    2014-10-01

    Carbon capture and storage (CCS) for coal power plants reduces onsite carbon dioxide emissions, but affects other air emissions on and offsite. This research assesses the net societal benefits and costs of Monoethanolamine (MEA) CCS, valuing changes in emissions of CO2, SO2, NOX, NH3 and particulate matter (PM), including those in the supply chain. Geographical variability and stochastic uncertainty for 407 coal power plant locations in the U.S. are analyzed. The results show that the net environmental benefits and costs of MEA CCS depend critically on location. For a few favorable sites of both power plant and upstream processes, CCS realizes a net benefit (benefit-cost ratio >1) if the social cost of carbon exceeds $51/ton. For much of the U.S. however, the social cost of carbon must be much higher to realize net benefits from CCS, up to a maximum of $910/ton. While the social costs of carbon are uncertain, typical estimates are in the range of $32-220 per ton, much lower than the breakeven value for many potential CCS locations. Increased impacts upstream from the power plant can dramatically change the social acceptability of CCS and needs further consideration and analysis. PMID:25187199

  4. Capacitive energy storage in nanostructured carbon-electrolyte systems.

    PubMed

    Simon, P; Gogotsi, Y

    2013-05-21

    Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of renewable energy sources will require a drastically increased ability to store electrical energy. In the move toward an electrical economy, chemical (batteries) and capacitive energy storage (electrochemical capacitors or supercapacitors) devices are expected to play an important role. This Account summarizes research in the field of electrochemical capacitors conducted over the past decade. Overall, the combination of the right electrode materials with a proper electrolyte can successfully increase both the energy stored by the device and its power, but no perfect active material exists and no electrolyte suits every material and every performance goal. However, today, many materials are available, including porous activated, carbide-derived, and templated carbons with high surface areas and porosities that range from subnanometer to just a few nanometers. If the pore size is matched with the electrolyte ion size, those materials can provide high energy density. Exohedral nanoparticles, such as carbon nanotubes and onion-like carbon, can provide high power due to fast ion sorption/desorption on their outer surfaces. Because of its higher charge-discharge rates compared with activated carbons, graphene has attracted increasing attention, but graphene had not yet shown a higher volumetric capacitance than porous carbons. Although aqueous electrolytes, such as sodium sulfate, are the safest and least expensive, they have a limited voltage window. Organic electrolytes, such as solutions of [N(C2H5)4]BF4 in acetonitrile or propylene carbonate, are the most common in commercial devices. Researchers are increasingly interested in nonflammable ionic liquids. These liquids have low vapor pressures, which allow them to be used safely over a temperature range from -50 °C to at least 100 °C and over a larger voltage window

  5. Capacitive energy storage in nanostructured carbon-electrolyte systems.

    PubMed

    Simon, P; Gogotsi, Y

    2013-05-21

    Securing our energy future is the most important problem that humanity faces in this century. Burning fossil fuels is not sustainable, and wide use of renewable energy sources will require a drastically increased ability to store electrical energy. In the move toward an electrical economy, chemical (batteries) and capacitive energy storage (electrochemical capacitors or supercapacitors) devices are expected to play an important role. This Account summarizes research in the field of electrochemical capacitors conducted over the past decade. Overall, the combination of the right electrode materials with a proper electrolyte can successfully increase both the energy stored by the device and its power, but no perfect active material exists and no electrolyte suits every material and every performance goal. However, today, many materials are available, including porous activated, carbide-derived, and templated carbons with high surface areas and porosities that range from subnanometer to just a few nanometers. If the pore size is matched with the electrolyte ion size, those materials can provide high energy density. Exohedral nanoparticles, such as carbon nanotubes and onion-like carbon, can provide high power due to fast ion sorption/desorption on their outer surfaces. Because of its higher charge-discharge rates compared with activated carbons, graphene has attracted increasing attention, but graphene had not yet shown a higher volumetric capacitance than porous carbons. Although aqueous electrolytes, such as sodium sulfate, are the safest and least expensive, they have a limited voltage window. Organic electrolytes, such as solutions of [N(C2H5)4]BF4 in acetonitrile or propylene carbonate, are the most common in commercial devices. Researchers are increasingly interested in nonflammable ionic liquids. These liquids have low vapor pressures, which allow them to be used safely over a temperature range from -50 °C to at least 100 °C and over a larger voltage window

  6. Geologic framework for the national assessment of carbon dioxide storage resources: Denver Basin, Colorado, Wyoming, and Nebraska: Chapter G in Geologic framework for the national assessment of carbon dioxide storage resources

    USGS Publications Warehouse

    Drake II, Ronald M.; Brennan, Sean T.; Covault, Jacob A.; Blondes, Madalyn S.; Freeman, P.A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.

    2014-01-01

    This is a report about the geologic characteristics of five storage assessment units (SAUs) within the Denver Basin of Colorado, Wyoming, and Nebraska. These SAUs are Cretaceous in age and include (1) the Plainview and Lytle Formations, (2) the Muddy Sandstone, (3) the Greenhorn Limestone, (4) the Niobrara Formation and Codell Sandstone, and (5) the Terry and Hygiene Sandstone Members. The described characteristics, as specified in the methodology, affect the potential carbon dioxide storage resource in the SAUs. The specific geologic and petrophysical properties of interest include depth to the top of the storage formation, average thickness, net-porous thickness, porosity, permeability, groundwater quality, and the area of structural reservoir traps. Descriptions of the SAU boundaries and the overlying sealing units are also included. Assessment results are not contained in this report; however, the geologic information included here will be used to calculate a statistical Monte Carlo-based distribution of potential storage volume in the SAUs.

  7. Storage temperature affects the quality of cut flowers from the Asteraceae.

    PubMed

    Celikel, Fisun G; Reid, Michael S

    2002-02-01

    The respiration of cut flowers of gerbera (Gerbera jamesonii H. Bolus ex Hook.f. 'Vesuvio') and sunflower (Helianthus annuus L.) increased exponentially with increasing storage temperature. Poststorage vase life and negatively gravitropic bending of the neck of the flowers were both strongly affected by simulated transport at higher temperatures. Vase life and stem bending after dry storage showed highly significant linear relationships (negative and positive, respectively) with the rate of respiration during storage. The data indicate the importance of maintaining temperatures close to the freezing point during commercial handling and transport of these important commercial cut-flower crops for maximum vase life.

  8. Directed precipitation of hydrated and anhydrous magnesium carbonates for carbon storage.

    PubMed

    Swanson, Edward J; Fricker, Kyle J; Sun, Michael; Park, Ah-Hyung Alissa

    2014-11-14

    Magnesite is the most desirable phase within the magnesium carbonate family for carbon storage for a number of reasons: magnesium efficiency, omission of additional crystal waters and thermodynamic stability. For large-scale carbonation to be a viable industrial process, magnesite precipitation must be made to occur rapidly and reliably. Unfortunately, the formation of metastable hydrated magnesium carbonate phases (e.g. MgCO3·3H2O and Mg5(CO3)4(OH)2·4H2O) interferes with the production of anhydrous magnesite under a variety of reaction conditions because magnesite crystals are slower to both nucleate and grow compared to the hydrated carbonate phases. Furthermore, the reaction conditions required for the formation of each magnesium carbonate phases have not been well understood with conflicting literature data. In this study, the effects of both magnesite (MgCO3) and inert (Al2O3) seed particles on the precipitation of magnesium carbonates from a Mg(OH)2 slurry were explored. It was interesting that MgCO3 seeding was shown to accelerate anhydrous magnesite growth at temperatures (80-150 °C), where it would normally not form in short time scale. Since the specific surface areas of MgCO3 and Al2O3 seeding particles were similar, this phenomenon was due to the difference in the surface chemistry of two seeding particles. By providing a template with similar chemistry for the growth of magnesite, the precipitation of anhydrous magnesite was demonstrated. The effect of temperature on seeded carbonation was also investigated. A comparison with published MgCO3 precipitation rate laws indicated that the precipitation of magnesite was limited by either CO2 adsorption from the gas phase or the dissolution rate of Mg(OH)2. PMID:25264731

  9. Soil carbon storage in a small arid catchment in the Negev desert (Israel)

    NASA Astrophysics Data System (ADS)

    Hoffmann, Ulrike; Kuhn, Nikolaus

    2010-05-01

    The mineral soil represents a major pool in the global carbon cycle. The behavior of mineral soil as a carbon reservoir in global climate and environmental issues is far from fully understood and causes a serious lack of comparable data on mineral soil organic carbon (SOC) at regional scale. To improve our understanding of soil carbon sequestration, it is necessary to acquire regional estimates of soil carbon pools in different ecosystem types. So far, little attention has been given to Dryland ecosystems, but they are often considered as highly sensitive to environmental change, with large and rapid responses to even smallest changes of climate conditions. Due to this fact, Drylands, as an ecosystem with extensive surface area across the globe (6.15 billion ha), have been suggested as a potential component for major carbon storage. A priori reasoning suggests that regional spatial patterns of SOC density (kg/m²) in Drylands are mostly affected by vegetation, soil texture, landscape position, soil truncation, wind erosion/deposition and the effect of water supply. Particularly unassigned is the interaction between soil volume, geomorphic processes and SOC density on regional scale. This study aims to enhance our understanding of regional spatial variability in dependence on soil volume, topography and surface parameters in areas susceptible to environmental change. Soil samples were taken in small transects at different representative slope positions across a range of elevations, soil texture, vegetation types, and terrain positions in a small catchment (600 ha) in the Negev desert. Topographic variables were extracted from a high resolution (0.5m) digital elevation model. Subsequently, we estimated the soil volume by excavating the entire soil at the representative sampling position. The volume was then estimated by laser scanning before and after soil excavation. SOC concentration of the soil samples was determined by CHN-analyser. For each sample, carbon

  10. Storage at low temperature differentially affects the colour and carotenoid composition of two cultivars of banana.

    PubMed

    Facundo, Heliofabia Virginia De Vasconcelos; Gurak, Poliana Deyse; Mercadante, Adriana Zerlotti; Lajolo, Franco Maria; Cordenunsi, Beatriz Rosana

    2015-03-01

    Different storage conditions can induce changes in the colour and carotenoid profiles and levels in some fruits. The goal of this work was to evaluate the influence of low temperature storage on the colour and carotenoid synthesis in two banana cultivars: Prata and Nanicão. For this purpose, the carotenoids from the banana pulp were determined by HPLC-DAD-MS/MS, and the colour of the banana skin was determined by a colorimeter method. Ten carotenoids were identified, of which the major carotenoids were all-trans-lutein, all-trans-α-carotene and all-trans-β-carotene in both cultivars. The effect of the low temperatures was subjected to linear regression analysis. In cv. Prata, all-trans-α-carotene and all-trans-β-carotene were significantly affected by low temperature (p<0.01), with negative estimated values (β coefficients) indicating that during cold storage conditions, the concentrations of these carotenoids tended to decrease. In cv. Nanicão, no carotenoid was significantly affected by cold storage (p>0.05). The accumulation of carotenoids in this group may be because the metabolic pathways using these carotenoids were affected by storage at low temperatures. The colour of the fruits was not negatively affected by the low temperatures (p>0.05).

  11. Deployment models for commercialized carbon capture and storage.

    PubMed

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  12. Deployment models for commercialized carbon capture and storage.

    PubMed

    Esposito, Richard A; Monroe, Larry S; Friedman, Julio S

    2011-01-01

    Even before technology matures and the regulatory framework for carbon capture and storage (CCS) has been developed, electrical utilities will need to consider the logistics of how widespread commercial-scale operations will be deployed. The framework of CCS will require utilities to adopt business models that ensure both safe and affordable CCS operations while maintaining reliable power generation. Physical models include an infrastructure with centralized CO(2) pipelines that focus geologic sequestration in pooled regional storage sites or supply CO(2) for beneficial use in enhanced oil recovery (EOR) and a dispersed plant model with sequestration operations which take place in close proximity to CO(2) capture. Several prototypical business models, including hybrids of these two poles, will be in play including a self-build option, a joint venture, and a pay at the gate model. In the self-build model operations are vertically integrated and utility owned and operated by an internal staff of engineers and geologists. A joint venture model stresses a partnership between the host site utility/owner's engineer and external operators and consultants. The pay to take model is turn-key external contracting to a third party owner/operator with cash positive fees paid out for sequestration and cash positive income for CO(2)-EOR. The selection of a business model for CCS will be based in part on the desire of utilities to be vertically integrated, source-sink economics, and demand for CO(2)-EOR. Another element in this decision will be how engaged a utility decides to be and the experience the utility has had with precommercial R&D activities. Through R&D, utilities would likely have already addressed or at least been exposed to the many technical, regulatory, and risk management issues related to successful CCS. This paper provides the framework for identifying the different physical and related prototypical business models that may play a role for electric utilities in

  13. Hierarchically structured carbon nanotubes for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Du, Feng

    As the world population continues to increase, large amounts of energy are consumed. Reality pushes us to find new energy or use our current energy more efficiently. Researches on energy conversion and storage have become increasingly important and essential. This grand challenge research has led to a recent focus on nanostructured materials. Carbon nanomaterials such as carbon nanotubes (CNTs) play a critical role in all of these nanotechnology challenges. CNTs have a very large surface area, a high electrochemical accessibility, high electronic conductivity and strong mechanical properties. This combination of properties makes them promising materials for energy device applications, such as FETs, supercapacitors, fuel cells, and lithium batteries. This study focuses on exploring the possibility of using vertically aligned carbon nanotubes (VA-CNTs) as the electrode materials in these energy applications. For the application of electrode materials, electrical conductive, vertically aligned CNTs with controllable length and diameter were synthesized. Several CVD methods for VA-CNT growth have been explored, although the iron / aluminum pre-coated catalyst CVD system was the main focus. A systematic study of several factors, including growth time, temperature, gas ratio, catalyst coating was conducted. The mechanism of VA-CNTs was discussed and a model for VA-CNT length / time was proposed to explain the CNT growth rate. Furthermore, the preferential growth of semiconducting (up to 96 atom% carbon) VA-SWNTs by using a plasma enhanced CVD process combined with fast heating was also explored, and these semiconducting materials have been directly used for making FETs using simple dispersion in organic solvent, without any separation and purification. Also, by inserting electron-accepting nitrogen atoms into the conjugated VA-CNT structure during the growth process, we synthesized vertically aligned nitrogen containing carbon nanotubes (VA-NCNTs). After purification of

  14. How life affects the geochemical cycle of carbon

    NASA Technical Reports Server (NTRS)

    Walker, James C. G.

    1992-01-01

    Developing a quantitative understanding of the biogeochemical cycles of carbon as they have worked throughout Earth history on various time scales, how they have been affected by biological evolution, and how changes in the carbon content of ocean and atmosphere may have affected climate and the evolution of life are the goals of the research. Theoretical simulations were developed that can be tuned to reproduce such data as exist and, once tuned, can be used to predict properties that have not yet been observed. This is an ongoing process, in which models and results are refined as new data and interpretations become available and as understanding of the global system improves. Results of the research are described in several papers which were published or submitted for publication. These papers are summarized. Future research plans are presented.

  15. Early atmospheric detection of carbon dioxide from carbon capture and storage sites

    PubMed Central

    Pak, Nasrin Mostafavi; Rempillo, Ofelia; Norman, Ann-Lise; Layzell, David B.

    2016-01-01

    ABSTRACT The early atmospheric detection of carbon dioxide (CO2) leaks from carbon capture and storage (CCS) sites is important both to inform remediation efforts and to build and maintain public support for CCS in mitigating greenhouse gas emissions. A gas analysis system was developed to assess the origin of plumes of air enriched in CO2, as to whether CO2 is from a CCS site or from the oxidation of carbon compounds. The system measured CO2 and O2 concentrations for different plume samples relative to background air and calculated the gas differential concentration ratio (GDCR = −ΔO2/ΔCO2). The experimental results were in good agreement with theoretical calculations that placed GDCR values for a CO2 leak at 0.21, compared with GDCR values of 1–1.8 for the combustion of carbon compounds. Although some combustion plume samples deviated in GDCR from theoretical, the very low GDCR values associated with plumes from CO2 leaks provided confidence that this technology holds promise in providing a tool for the early detection of CO2 leaks from CCS sites.  Implications: This work contributes to the development of a cost-effective technology for the early detection of leaks from sites where CO2 has been injected into the subsurface to enhance oil recovery or to permanently store the gas as a strategy for mitigating climate change. Such technology will be important in building public confidence regarding the safety and security of carbon capture and storage sites. PMID:27111469

  16. Analysis of an integrated carbon cylce for storage of renewables

    NASA Astrophysics Data System (ADS)

    Streibel, Martin; Nakaten, Natalie; Kempka, Thomas; Kühn, Michael

    2013-04-01

    In order to mitigate the consequences of climate change the energy concept of the Government of Germany foresees the reduction of CO2 emissions by 80 % in 2050 compared to the status in 1990. Different routes are followed to achieve this goal. Most advanced is the construction of renewable energy sources in order to replace fossil fuel driven parts of the electricity generation. The increasing share of renewable energy sources in power production introduces the problem of high fluctuation of energy generated by windmills and photovoltaic. On top the production is not driven by demand but by availability of wind and sun. In this context, the "Power to Gas" concept has been developed. Main idea is the storage of excess renewable energy in form of hydrogen produced by electrolysis. If in a second step H2 reacts with CO2 to form CH4 the current natural gas infrastructure can be used. In times of energy production by renewables below the actual electricity demand CH4 is combusted to produce electricity. The emissions can be further reduced if CO2 is captured in the power plant and buffered in a dynamic geological storage (CCS). Subsequently the CO2 is back produced when excess energy is available to synthesise CH4. Storing CH4 locally also reduces energy for transport. Hence an integrated almost closed carbon cycle is implemented. In the present study this extended "Power to Gas" concept is elaborated on a regional-scale for the State of Brandenburg and the control area of 50 hertz. Focus of the analysis is the energetic balance of the concept for the integration of a geological CH4 and CO2 storage. Therefore, the energy conversion efficiency for the "Power to Gas" concept has been calculated using available data from literature. According to our calculations approximately 33 % of the wind energy used can be regained by combusting the synthesised CH4 in a combined cycle plant. In order to fuel a peaking power plant with a power of 120 MW for 2,500 hours a year

  17. Microbial Carbon Cycling in Permafrost-Affected Soils

    SciTech Connect

    Vishnivetskaya, T.; Liebner, Susanne; Wilhelm, Ronald; Wagner, Dirk

    2011-01-01

    The Arctic plays a key role in Earth s climate system as global warming is predicted to be most pronounced at high latitudes and because one third of the global carbon pool is stored in ecosystems of the northern latitudes. In order to improve our understanding of the present and future carbon dynamics in climate sensitive permafrost ecosystems, present studies concentrate on investigations of microbial controls of greenhouse gas fluxes, on the activity and structure of the involved microbial communities, and on their response to changing environmental conditions. Permafrost-affected soils can function as both a source and a sink for carbon dioxide and methane. Under anaerobic conditions, caused by flooding of the active layer and the effect of backwater above the permafrost table, the mineralization of organic matter can only be realized stepwise by specialized microorganisms. Important intermediates of the organic matter decomposition are hydrogen, carbon dioxide and acetate, which can be further reduced to methane by methanogenic archaea. Evolution of methane fluxes across the subsurface/atmosphere boundary will thereby strongly depend on the activity of anaerobic methanogenic archaea and obligately aerobic methane oxidizing proteobacteria, which are known to be abundant and to significantly reduce methane emissions in permafrost-affected soils. Therefore current studies on methane-cycling microorganisms are the object of particular attention in permafrost studies, because of their key role in the Arctic methane cycle and consequently of their significance for the global methane budget.

  18. Carbon Storage in an Extensive Karst-distributed Region of Southwestern China based on Multiple Methods

    NASA Astrophysics Data System (ADS)

    Guo, C.; Wu, Y.; Yang, H.; Ni, J.

    2015-12-01

    Accurate estimation of carbon storage is crucial to better understand the processes of global and regional carbon cycles and to more precisely project ecological and economic scenarios for the future. Southwestern China has broadly and continuously distribution of karst landscapes with harsh and fragile habitats which might lead to rocky desertification, an ecological disaster which has significantly hindered vegetation succession and economic development in karst regions of southwestern China. In this study we evaluated the carbon storage in eight political divisions of southwestern China based on four methods: forest inventory, carbon density based on field investigations, CASA model driven by remote sensing data, and BIOME4/LPJ global vegetation models driven by climate data. The results show that: (1) The total vegetation carbon storage (including agricultural ecosystem) is 6763.97 Tg C based on the carbon density, and the soil organic carbon (SOC) storage (above 20cm depth) is 12475.72 Tg C. Sichuan Province (including Chongqing) possess the highest carbon storage in both vegetation and soil (1736.47 Tg C and 4056.56 Tg C, respectively) among the eight political divisions because of the higher carbon density and larger distribution area. The vegetation carbon storage in Hunan Province is the smallest (565.30 Tg C), and the smallest SOC storage (1127.40 Tg C) is in Guangdong Province; (2) Based on forest inventory data, the total aboveground carbon storage in the woody vegetation is 2103.29 Tg C. The carbon storage in Yunnan Province (819.01 Tg C) is significantly higher than other areas while tropical rainforests and seasonal forests in Yunnan contribute the maximum of the woody vegetation carbon storage (account for 62.40% of the total). (3) The net primary production (NPP) simulated by the CASA model is 68.57 Tg C/yr, while the forest NPP in the non-karst region (account for 72.50% of the total) is higher than that in the karst region. (4) BIOME4 and LPJ

  19. Method of making improved gas storage carbon with enhanced thermal conductivity

    DOEpatents

    Burchell, Timothy D [Oak Ridge, TN; Rogers, Michael R [Knoxville, TN

    2002-11-05

    A method of making an adsorbent carbon fiber based monolith having improved methane gas storage capabilities is disclosed. Additionally, the monolithic nature of the storage carbon allows it to exhibit greater thermal conductivity than conventional granular activated carbon or powdered activated carbon storage beds. The storage of methane gas is achieved through the process of physical adsorption in the micropores that are developed in the structure of the adsorbent monolith. The disclosed monolith is capable of storing greater than 150 V/V of methane [i.e., >150 STP (101.325 KPa, 298K) volumes of methane per unit volume of storage vessel internal volume] at a pressure of 3.5 MPa (500 psi).

  20. Modeling Carbon Dioxide Storage in the Basal Aquifer of Canada

    NASA Astrophysics Data System (ADS)

    Huang, X.; Bandilla, K.; Celia, M. A.; Bachu, S.; Rebscher, D.; Zhou, Q.; Birkholzer, J. T.

    2012-12-01

    Reducing anthropogenic carbon dioxide (CO2) emissions into the atmosphere is a key challenge for society. Geological CO2 storage in deep saline aquifers is one of the most promising solutions to decrease carbon emissions. One such deep saline aquifer targeted for industrial-scale CO2 injection is the Basal Aquifer of Prairie Region in Canada and Northern Plains in the US. The aquifer stretches across three provinces (Alberta, Saskatchewan and Manitoba) and three states (Montana, North and South Dakota), and covers approximately 1,320,000 km2 (Figure 1). A large number of stationary CO2 sources lie within the foot print of the aquifer, and several CO2 injection projects are in the planning stage. In order for CO2 sequestration to be successful, the injected CO2 needs to stay isolated from the atmosphere for many centuries. Mathematical models are useful tools to assess the fate of both the injected CO2 and the resident brine. These models vary in complexity from fully three-dimensional multi-phase numerical reservoir simulators to simple semi-analytical solutions. In this presentation we compare a cascade of models ranging from single-phase semi-analytic solutions to multi-phase numerical simulators to determine the ability of each of these approaches to predict the pressure response in the injection formation. The majority of the models in this study are based on vertically-integrated governing equations; such models are computationally efficient, allow for reduced data input, and are broadly consistent with the flow physics. The petro-physical parameters and geometries used in this study are based on the geology of the Canadian section of the Basal Aquifer. Approximately ten injection sites are included in the model, with locations and injection rates based on planned injection operations. The predicted areas of review of the injection operations are used as a comparison metric among the different simulation approaches. Areal extent of the Basal Aquifer (*Source

  1. [Organic carbon storage in urban built-up areas of China in 1997-2006].

    PubMed

    Zhu, Chao; Zhao, Shu-Qing; Zhou, De-Cheng

    2012-05-01

    With the increase of greenhouse gases emission in urban regions, urban carbon cycle plays a more and more important role in global carbon cycle. To estimate urban carbon emission and carbon storage is crucial for understanding urban carbon cycle. By using China's statistics data and the results from recent publications, this paper estimated the organic carbon storage in China's urban built-up areas in 1997-2006. From 1997 to 2006, the total organic carbon storage in the urban built-up areas increased from 0.13-0.19 Pg C (averagely 0.16 Pg C) to 0.28-0.41 Pg C (averagely 0.34 Pg C), and the organic carbon density increased from 9.86-14.03 kg C x m(-2) (averagely 11.95 kg C x m(-2)) to 10.54-15.54 kg C x m(-2) (averagely 13.04 kg C x m(-2)). The total organic carbon storage in the urban built-up areas was mainly contributed by soils (78% in 1997 and 73% in 2006), followed by buildings (12% in 1997 and 16% in 2006) and green spaces (9% in 1997 and 10% in 2006), while the carbon storage in resident bodies only accounted for less than 1%, which could be neglected.

  2. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  3. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  4. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  5. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  6. 46 CFR 34.15-20 - Carbon dioxide storage-T/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Carbon dioxide storage-T/ALL. 34.15-20 Section 34.15-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Carbon Dioxide Extinguishing Systems, Details § 34.15-20 Carbon dioxide storage—T/ALL. (a) Except as provided in paragraph...

  7. Contrasting effects of defaunation on aboveground carbon storage across the global tropics

    PubMed Central

    Osuri, Anand M.; Ratnam, Jayashree; Varma, Varun; Alvarez-Loayza, Patricia; Hurtado Astaiza, Johanna; Bradford, Matt; Fletcher, Christine; Ndoundou-Hockemba, Mireille; Jansen, Patrick A.; Kenfack, David; Marshall, Andrew R.; Ramesh, B. R.; Rovero, Francesco; Sankaran, Mahesh

    2016-01-01

    Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical data set, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth's tropical forests. In our simulations, African, American and South Asian forests, which have high proportions of animal-dispersed species, consistently show carbon losses (2–12%), but Southeast Asian and Australian forests, where there are more abiotically dispersed species, show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (∼2,100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically dispersed species. Thus, floristic differences and distinct dispersal mode–seed size–adult size combinations can drive contrasting regional responses to defaunation. PMID:27108957

  8. Contrasting effects of defaunation on aboveground carbon storage across the global tropics.

    PubMed

    Osuri, Anand M; Ratnam, Jayashree; Varma, Varun; Alvarez-Loayza, Patricia; Hurtado Astaiza, Johanna; Bradford, Matt; Fletcher, Christine; Ndoundou-Hockemba, Mireille; Jansen, Patrick A; Kenfack, David; Marshall, Andrew R; Ramesh, B R; Rovero, Francesco; Sankaran, Mahesh

    2016-04-25

    Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical data set, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth's tropical forests. In our simulations, African, American and South Asian forests, which have high proportions of animal-dispersed species, consistently show carbon losses (2-12%), but Southeast Asian and Australian forests, where there are more abiotically dispersed species, show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (∼2,100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically dispersed species. Thus, floristic differences and distinct dispersal mode-seed size-adult size combinations can drive contrasting regional responses to defaunation.

  9. Contrasting effects of defaunation on aboveground carbon storage across the global tropics.

    PubMed

    Osuri, Anand M; Ratnam, Jayashree; Varma, Varun; Alvarez-Loayza, Patricia; Hurtado Astaiza, Johanna; Bradford, Matt; Fletcher, Christine; Ndoundou-Hockemba, Mireille; Jansen, Patrick A; Kenfack, David; Marshall, Andrew R; Ramesh, B R; Rovero, Francesco; Sankaran, Mahesh

    2016-01-01

    Defaunation is causing declines of large-seeded animal-dispersed trees in tropical forests worldwide, but whether and how these declines will affect carbon storage across this biome is unclear. Here we show, using a pan-tropical data set, that simulated declines of large-seeded animal-dispersed trees have contrasting effects on aboveground carbon stocks across Earth's tropical forests. In our simulations, African, American and South Asian forests, which have high proportions of animal-dispersed species, consistently show carbon losses (2-12%), but Southeast Asian and Australian forests, where there are more abiotically dispersed species, show little to no carbon losses or marginal gains (±1%). These patterns result primarily from changes in wood volume, and are underlain by consistent relationships in our empirical data (∼2,100 species), wherein, large-seeded animal-dispersed species are larger as adults than small-seeded animal-dispersed species, but are smaller than abiotically dispersed species. Thus, floristic differences and distinct dispersal mode-seed size-adult size combinations can drive contrasting regional responses to defaunation. PMID:27108957

  10. [Carbon storage of forest stands in Shandong Province estimated by forestry inventory data].

    PubMed

    Li, Shi-Mei; Yang, Chuan-Qiang; Wang, Hong-Nian; Ge, Li-Qiang

    2014-08-01

    Based on the 7th forestry inventory data of Shandong Province, this paper estimated the carbon storage and carbon density of forest stands, and analyzed their distribution characteristics according to dominant tree species, age groups and forest category using the volume-derived biomass method and average-biomass method. In 2007, the total carbon storage of the forest stands was 25. 27 Tg, of which the coniferous forests, mixed conifer broad-leaved forests, and broad-leaved forests accounted for 8.6%, 2.0% and 89.4%, respectively. The carbon storage of forest age groups followed the sequence of young forests > middle-aged forests > mature forests > near-mature forests > over-mature forests. The carbon storage of young forests and middle-aged forests accounted for 69.3% of the total carbon storage. Timber forest, non-timber product forest and protection forests accounted for 37.1%, 36.3% and 24.8% of the total carbon storage, respectively. The average carbon density of forest stands in Shandong Province was 10.59 t x hm(-2), which was lower than the national average level. This phenomenon was attributed to the imperfect structure of forest types and age groups, i. e., the notably higher percentage of timber forests and non-timber product forest and the excessively higher percentage of young forests and middle-aged forest than mature forests.

  11. [Soil organic carbon storage changes with land reclamation under vegetation reconstruction on opencast coal mine dump].

    PubMed

    Li, Jun-Chao; Dang, Ting-Hui; Guo, Sheng-Li; Xue, Jiang; Tang, Jun

    2014-10-01

    Vegetation reconstruction was an effective solution to reclaim the opencast coal mine dump which was formed in the process of mining. To understand the impact of the vegetation reconstruction patterns' on the mine soil organic carbon (SOC) storage was essential for selecting the methods of vegetation restoration and also important for accurately estimating the potential of the soil carbon sequestration. The study area was on the Heidaigou opencast coal mine, which was 15 years reclaimed coal mine dump in Zhungeer, Inner Mongolia autonomous region, we selected 5 vegetation reconstruction patterns (natural recovery land, grassland, bush land, mixed woodland of arbor and bush, arbor land), and 16 vegetation types, 408 soil samples (0-100 m), to study the effect of the vegetation reconstruction patterns on the SOC storage. The results were showed as follows: (1) on the reclaimed coal mine dump, the vegetation reconstruction patterns significantly affected the SOC content and its distribution in the soil profile (P < 0.05). The surface 0-10 cm SOC content was grassland > shrub land > arbor forest > mixed forest of arbor and shrub > natural recovery land, in which the grassland, shrub land and arbor forest were about 2.2, 1.3, and 1.3 times of natural recovery land (2.14 g · kg(-1)) respectively. The total nitrogen (TN) showed the similar trends. (2) Among the vegetation types, Medicago sativa had the highest surface SOC content (5.71 g · kg(-1)) and TN content (0.49 g · kg(-1)), that were 171.3% and 166.7% higher than the natural recovery land, and two times of Hippophae rhamnoides, Amorpha fruticosa + Pinus tabulaeformis and Robinia pseudoacacia. (3) The effect of vegetation types on SOC mainly concentrated in the 0-20 cm depth, and the effect on TN accounted for 40 cm. (4) For the SOC storage, the order was original landform area > reclaimed dump > new dump and grassland > woodland (including arbor and shrub land). After 15 years revegetation, the soil carbon

  12. [Soil organic carbon storage changes with land reclamation under vegetation reconstruction on opencast coal mine dump].

    PubMed

    Li, Jun-Chao; Dang, Ting-Hui; Guo, Sheng-Li; Xue, Jiang; Tang, Jun

    2014-10-01

    Vegetation reconstruction was an effective solution to reclaim the opencast coal mine dump which was formed in the process of mining. To understand the impact of the vegetation reconstruction patterns' on the mine soil organic carbon (SOC) storage was essential for selecting the methods of vegetation restoration and also important for accurately estimating the potential of the soil carbon sequestration. The study area was on the Heidaigou opencast coal mine, which was 15 years reclaimed coal mine dump in Zhungeer, Inner Mongolia autonomous region, we selected 5 vegetation reconstruction patterns (natural recovery land, grassland, bush land, mixed woodland of arbor and bush, arbor land), and 16 vegetation types, 408 soil samples (0-100 m), to study the effect of the vegetation reconstruction patterns on the SOC storage. The results were showed as follows: (1) on the reclaimed coal mine dump, the vegetation reconstruction patterns significantly affected the SOC content and its distribution in the soil profile (P < 0.05). The surface 0-10 cm SOC content was grassland > shrub land > arbor forest > mixed forest of arbor and shrub > natural recovery land, in which the grassland, shrub land and arbor forest were about 2.2, 1.3, and 1.3 times of natural recovery land (2.14 g · kg(-1)) respectively. The total nitrogen (TN) showed the similar trends. (2) Among the vegetation types, Medicago sativa had the highest surface SOC content (5.71 g · kg(-1)) and TN content (0.49 g · kg(-1)), that were 171.3% and 166.7% higher than the natural recovery land, and two times of Hippophae rhamnoides, Amorpha fruticosa + Pinus tabulaeformis and Robinia pseudoacacia. (3) The effect of vegetation types on SOC mainly concentrated in the 0-20 cm depth, and the effect on TN accounted for 40 cm. (4) For the SOC storage, the order was original landform area > reclaimed dump > new dump and grassland > woodland (including arbor and shrub land). After 15 years revegetation, the soil carbon

  13. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    PubMed

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility. PMID:27090405

  14. Biorefineries of carbon dioxide: From carbon capture and storage (CCS) to bioenergies production.

    PubMed

    Cheah, Wai Yan; Ling, Tau Chuan; Juan, Joon Ching; Lee, Duu-Jong; Chang, Jo-Shu; Show, Pau Loke

    2016-09-01

    Greenhouse gas emissions have several adverse environmental effects, like pollution and climate change. Currently applied carbon capture and storage (CCS) methods are not cost effective and have not been proven safe for long term sequestration. Another attractive approach is CO2 valorization, whereby CO2 can be captured in the form of biomass via photosynthesis and is subsequently converted into various form of bioenergy. This article summarizes the current carbon sequestration and utilization technologies, while emphasizing the value of bioconversion of CO2. In particular, CO2 sequestration by terrestrial plants, microalgae and other microorganisms are discussed. Prospects and challenges for CO2 conversion are addressed. The aim of this review is to provide comprehensive knowledge and updated information on the current advances in biological CO2 sequestration and valorization, which are essential if this approach is to achieve environmental sustainability and economic feasibility.

  15. Rapid Assessment of U.S. Forest and Soil Organic Carbon Storage and Forest Biomass Carbon-Sequestration Capacity

    USGS Publications Warehouse

    Sundquist, Eric T.; Ackerman, Katherine V.; Bliss, Norman B.; Kellndorfer, Josef M.; Reeves, Matt C.; Rollins, Matthew G.

    2009-01-01

    This report provides results of a rapid assessment of biological carbon stocks and forest biomass carbon sequestration capacity in the conterminous United States. Maps available from the U.S. Department of Agriculture are used to calculate estimates of current organic carbon storage in soils (73 petagrams of carbon, or PgC) and forest biomass (17 PgC). Of these totals, 3.5 PgC of soil organic carbon and 0.8 PgC of forest biomass carbon occur on lands managed by the U.S. Department of the Interior (DOI). Maps of potential vegetation are used to estimate hypothetical forest biomass carbon sequestration capacities that are 3-7 PgC higher than current forest biomass carbon storage in the conterminous United States. Most of the estimated hypothetical additional forest biomass carbon sequestration capacity is accrued in areas currently occupied by agriculture and development. Hypothetical forest biomass carbon sequestration capacities calculated for existing forests and woodlands are within +or- 1 PgC of estimated current forest biomass carbon storage. Hypothetical forest biomass sequestration capacities on lands managed by the DOI in the conterminous United States are 0-0.4 PgC higher than existing forest biomass carbon storage. Implications for forest and other land management practices are not considered in this report. Uncertainties in the values reported here are large and difficult to quantify, particularly for hypothetical carbon sequestration capacities. Nevertheless, this rapid assessment helps to frame policy and management discussion by providing estimates that can be compared to amounts necessary to reduce predicted future atmospheric carbon dioxide levels.

  16. 40 CFR Table 3 to Subpart U of... - Group 1 Storage Vessels at Existing Affected Sources

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 10 2013-07-01 2013-07-01 false Group 1 Storage Vessels at Existing Affected Sources 3 Table 3 to Subpart U of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...

  17. 40 CFR Table 3 to Subpart U of... - Group 1 Storage Vessels at Existing Affected Sources

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Group 1 Storage Vessels at Existing Affected Sources 3 Table 3 to Subpart U of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...

  18. 40 CFR Table 3 to Subpart U of... - Group 1 Storage Vessels at Existing Affected Sources

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 10 2014-07-01 2014-07-01 false Group 1 Storage Vessels at Existing Affected Sources 3 Table 3 to Subpart U of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...

  19. 40 CFR Table 3 to Subpart U of... - Group 1 Storage Vessels at Existing Affected Sources

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 9 2011-07-01 2011-07-01 false Group 1 Storage Vessels at Existing Affected Sources 3 Table 3 to Subpart U of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission...

  20. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, J.; Harvey, J.W.; Conklin, M.H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single-storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (> 90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (t(s) ratio > 5.0) and when the dominance of

  1. Threshold Dynamics in Soil Carbon Storage for Bioenergy Crops

    NASA Astrophysics Data System (ADS)

    Woo, D.; Quijano, J.; Kumar, P.; Chaoka, S.; Bernacchi, C.

    2014-12-01

    Due to increasing demands for bioenergy, a considerable amount of land in the Midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. In this study, we attempt to explore and analyze how different amounts of above-ground biomass returned to the soil at harvest affect the below-ground dynamics of carbon and nitrogen as a comparative study between miscanthus, swichgrass, and corn-corn-soybean rotation. The simulation results show that there is a threshold effect in the amount of above-ground litter input in the soil after harvest that will reach a critical organic matter C:N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes such as decomposition and mineralization. These thresholds are approximately 25% and 15% of above-ground biomass for switchgrass and miscanthus, respectively. However, we do not observe such threshold effects for corn-corn-soybean rotation. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which in turn would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared with a corn-corn-soybean rotation.

  2. Ectomycorrhizal fungi increase soil carbon storage: molecular signatures of mycorrhizal competition driving soil C storage at global scale

    NASA Astrophysics Data System (ADS)

    Averill, C.; Barry, B. K.; Hawkes, C.

    2015-12-01

    Soil carbon storage and decay is regulated by the activity of free-living decomposer microbes, which can be limited by nitrogen availability. Many plants associate with symbiotic ectomycorrhizal fungi on their roots, which produce nitrogen-degrading enzymes and may be able to compete with free-living decomposers for soil organic nitrogen. By doing so, ectomycorrhizal fungi may able to induce nitrogen limitation and reduce activity of free-living microbial decomposition by mining soil organic nitrogen. The implication is that ectomycorrhizal-dominated systems should have increased soil carbon storage relative to non-ectomycorrhizal systems, which has been confirmed at a global scale. To investigate these effects, we analyzed 364 globally distributed observations of soil fungal communities using 454 sequencing of the ITS region, along with soil C and N concentrations, climate and chemical data. We assigned operational taxonomic units using the QIIME pipeline and UNITE fungal database and assigned fungal reads as ectomycorrhizal or non-mycorrhizal based on current taxonomic knowledge. We tested for associations between ectomycorrhizal abundance, climate, and soil carbon and nitrogen. Sites with greater soil carbon had quantitatively more ectomycorrhizal fungi within the soil microbial community based on fungal sequence abundance, after accounting for soil nitrogen availability. This is consistent with our hypothesis that ectomycorrhizal fungi induce nitrogen-limitation of free-living decomposers and thereby increase soil carbon storage. The strength of the mycorrhizal effect increased non-linearly with ectomycorrhizal abundance: the greater the abundance, the greater the effect size. Mean annual temperature, potential evapotranspiration, soil moisture and soil pH were also significant predictors in the final AIC selected model. This analysis suggests that molecular data on soil microbial communities can be used to make quantitative biogeochemical predictions. The

  3. Catalytic Metal Free Production of Large Cage Structure Carbon Particles: A Candidate for Hydrogen Storage

    NASA Technical Reports Server (NTRS)

    Kimura, Yuki; Nuth, Joseph A., III; Ferguson, Frank T.

    2005-01-01

    We will demonstrate that carbon particles consisting of large cages can be produced without catalytic metal. The carbon particles were produced in CO gas as well as by introduction of 5% methane gas into the CO gas. The gas-produced carbon particles were able to absorb approximately 16.2 wt% of hydrogen. This value is 2.5 times higher than the 6.5 wt% goal for the vehicular hydrogen storage proposed by the Department of Energy in the USA. Therefore, we believe that this carbon particle is an excellent candidate for hydrogen storage for fuel cells.

  4. Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures.

    PubMed

    Gao, Yun; Qin, Zhanbin; Guan, Li; Wang, Xiaomian; Chen, George Z

    2015-07-11

    Solutions of calcium chloride in mixed water and formamide are excellent electrolytes for capacitive charge storage in partially oxidised carbon nanotubes at unprecedented sub-zero-temperatures (e.g. 67% capacitance retention at -60 °C).

  5. Estimating Carbon Storage in Eelgrass Meadows in the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Simpson, J.; McDowell, B.; Sacarny, M.; Colarusso, P.

    2014-12-01

    Seagrass meadows can be hotspots for carbon storage and sequestration, but the data currently available shows an enormous amount of variability. Carbon storage varies with seagrass species and region, and with meadow condition, where healthy meadows sequester carbon but those that are declining may be sources of inorganic carbon to the atmosphere. Very little is known about carbon storage in Zostera marina (eelgrass) meadows in the Gulf of Maine, where they are threatened by poor water quality and physical disturbance. In 2014 we studied two eelgrass meadows in coastal Massachusetts, U.S.A. We sampled biomass and measured carbon content in above- and below-ground plant tissues, sediments, and particulate organic matter in the water column. We estimated bed density and extent using a combination of sonar, visual imaging, and diver surveys. To investigate persistence of carbon storage in sediments, we also sampled sediments from an area where a meadow had historically existed, but had died back in 2012. Results of this work will not only support eelgrass restoration and protection measures locally, but will also help clarify our global understanding of carbon storage in blue habitats.

  6. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage?

    PubMed

    Wiley, Erin; Huepenbecker, Sarah; Casper, Brenda B; Helliker, Brent R

    2013-11-01

    There is no consensus about how stresses such as low water availability and temperature limit tree growth. Sink limitation to growth and survival is often inferred if a given stress does not cause non-structural carbohydrate (NSC) concentrations or levels to decline along with growth. However, trees may actively maintain or increase NSC levels under moderate carbon stress, making the pattern of reduced growth and increased NSCs compatible with carbon limitation. To test this possibility, we used full and half defoliation to impose severe and moderate carbon limitation on 2-year-old Quercus velutina Lam. saplings grown in a common garden. Saplings were harvested at either 3 weeks or 4 months after treatments were applied, representing short- and longer-term effects on woody growth and NSC levels. Both defoliation treatments maintained a lower total leaf area than controls throughout the experiment with no evidence of photosynthetic up-regulation, and resulted in a similar total biomass reduction. While fully defoliated saplings had lower starch levels than controls in the short term, half defoliated saplings maintained control starch levels in both the short and longer term. In the longer term, fully defoliated saplings had the greatest starch concentration increment, allowing them to recover to near-control starch levels. Furthermore, between the two harvest dates, fully and half defoliated saplings allocated a greater proportion of new biomass to starch than did controls. The maintenance of control starch levels in half defoliated saplings indicates that these trees actively store a substantial amount of carbon before growth is carbon saturated. In addition, the allocation shift favouring storage in defoliated saplings is consistent with the hypothesis that, as an adaptation to increasing carbon stress, trees can prioritize carbon reserve formation at the expense of growth. Our results suggest that as carbon limitation increases, reduced growth is not necessarily

  7. Legal and regulatory issues affecting the aquifer thermal energy storage concept

    SciTech Connect

    Hendrickson, P.L.

    1980-10-01

    A number of legal and regulatory issus that potentially can affect implementation of the Aquifer Thermal Energy Storage (ATES) concept are examined. This concept involves the storage of thermal energy in an underground aquifer until a later date when it can be effectively utilized. Either heat energy or chill can be stored. Potential end uses of the energy include district space heating and cooling, industrial process applications, and use in agriculture or aquaculture. Issues are examined in four categories: regulatory requirements, property rights, potential liability, and issues related to heat or chill delivery.

  8. CARBON STORAGE AND FLUXES IN PONDEROSA PINE AT DIFFERENT SUCCESSIONAL STAGES

    EPA Science Inventory

    We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, and eddy flux estimates of net ecosystem exchange. The young site (Y site) was previously an old-growth pondero...

  9. Front page or "buried" beneath the fold? Media coverage of carbon capture and storage.

    PubMed

    Boyd, Amanda D; Paveglio, Travis B

    2014-05-01

    Media can affect public views and opinions on science, policy and risk issues. This is especially true of a controversial emerging technology that is relatively unknown. The study presented here employs a media content analysis of carbon capture and storage (CCS), one potential strategy to reduce greenhouse gas emissions. The authors analyzed all mentions of CCS in two leading Canadian national newspapers and two major western regional newspapers from the first article that discussed CCS in 2004 to the end of 2009 (825 articles). An in-depth content analysis was conducted to examine factors relating to risk from CCS, how the technology was portrayed and if coverage was negatively or positively biased. We conclude by discussing the possible impact of media coverage on support or opposition to CCS adoption. PMID:23825250

  10. [Prediction of spatial distribution of forest carbon storage in Heilongjiang Province using spatial error model].

    PubMed

    Liu, Chang; Li, Feng-Ri; Zhen, Zhen

    2014-10-01

    Abstract: Based on the data from Chinese National Forest Inventory (CNFI) and Key Ecological Benefit Forest Monitoring plots (5075 in total) in Heilongjiang Province in 2010 and concurrent meteorological data coming from 59 meteorological stations located in Heilongjiang, Jilin and Inner Mongolia, this paper established a spatial error model (SEM) by GeoDA using carbon storage as dependent variable and several independent variables, including diameter of living trees (DBH), number of trees per hectare (TPH), elevation (Elev), slope (Slope), and product of precipitation and temperature (Rain_Temp). Global Moran's I was computed for describing overall spatial autocorrelations of model results at different spatial scales. Local Moran's I was calculated at the optimal bandwidth (25 km) to present spatial distribution residuals. Intra-block spatial variances were computed to explain spatial heterogeneity of residuals. Finally, a spatial distribution map of carbon storage in Heilongjiang was visualized based on predictions. The results showed that the distribution of forest carbon storage in Heilongjiang had spatial effect and was significantly influenced by stand, topographic and meteorological factors, especially average DBH. SEM could solve the spatial autocorrelation and heterogeneity well. There were significant spatial differences in distribution of forest carbon storage. The carbon storage was mainly distributed in Zhangguangcai Mountain, Xiao Xing'an Mountain and Da Xing'an Mountain where dense, forests existed, rarely distributed in Songnen Plains, while Wanda Mountain had moderate-level carbon storage. PMID:25796882

  11. Applications for activated carbons from waste tires: Natural gas storage and air pollution control

    USGS Publications Warehouse

    Brady, T.A.; Rostam-Abadi, M.; Rood, M.J.

    1996-01-01

    Natural gas storage for natural gas vehicles and the separation and removal of gaseous contaminants from gas streams represent two emerging applications for carbon adsorbents. A possible precursor for such adsorbents is waste tires. In this study, activated carbon has been developed from waste tires and tested for its methane storage capacity and SO2 removal from a simulated flue-gas. Tire-derived carbons exhibit methane adsorption capacities (g/g) within 10% of a relatively expensive commercial activated carbon; however, their methane storage capacities (Vm/Vs) are almost 60% lower. The unactivated tire char exhibits SO2 adsorption kinetics similar to a commercial carbon used for flue-gas clean-up. Copyright ?? 1996 Elsevier Science Ltd.

  12. Impacts of Soil Organic Stability on Carbon Storage in Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Williams, E. K.; Rosenheim, B. E.

    2015-12-01

    Coastal wetlands store vast amounts of organic carbon, globally, and are becoming increasingly vulnerable to the effects of anthropogenic sea level rise. Recently, we used ramped pyrolysis/oxidation decomposition characteristics as proxies for soil organic carbon (SOC) stability to understand the fate of carbon storage in coastal wetlands (fresh, brackish, and salt marshes) comprising the Mississippi River deltaic plain, undergoing rapid rates of local sea level rise. At equivalent soil depths, we observed that fresh marsh SOC was more thermochemically stable than brackish and salt marsh SOC. The differences in stability imply stronger carbon sequestration potential of fresh marsh soil carbon, compared to that of salt and brackish marshes. Here, we expand upon these results of differential organic carbon stability/reactivity and model how projected changes in salinity due to sea-level rise and other environmental changes will impact carbon storage in this region with implications globally.

  13. The environmental and economic sustainability of carbon capture and storage.

    PubMed

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  14. The environmental and economic sustainability of carbon capture and storage.

    PubMed

    Hardisty, Paul E; Sivapalan, Mayuran; Brooks, Peter

    2011-05-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO(2) abated--there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications-indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO(2) entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  15. The Environmental and Economic Sustainability of Carbon Capture and Storage

    PubMed Central

    Hardisty, Paul E.; Sivapalan, Mayuran; Brooks, Peter

    2011-01-01

    For carbon capture and storage (CCS) to be a truly effective option in our efforts to mitigate climate change, it must be sustainable. That means that CCS must deliver consistent environmental and social benefits which exceed its costs of capital, energy and operation; it must be protective of the environment and human health over the long term; and it must be suitable for deployment on a significant scale. CCS is one of the more expensive and technically challenging carbon emissions abatement options available, and CCS must first and foremost be considered in the context of the other things that can be done to reduce emissions, as a part of an overall optimally efficient, sustainable and economic mitigation plan. This elevates the analysis beyond a simple comparison of the cost per tonne of CO2 abated—there are inherent tradeoffs with a range of other factors (such as water, NOx, SOx, biodiversity, energy, and human health and safety, among others) which must also be considered if we are to achieve truly sustainable mitigation. The full life-cycle cost of CCS must be considered in the context of the overall social, environmental and economic benefits which it creates, and the costs associated with environmental and social risks it presents. Such analysis reveals that all CCS is not created equal. There is a wide range of technological options available which can be used in a variety of industries and applications—indeed CCS is not applicable to every industry. Stationary fossil-fuel powered energy and large scale petroleum industry operations are two examples of industries which could benefit from CCS. Capturing and geo-sequestering CO2 entrained in natural gas can be economic and sustainable at relatively low carbon prices, and in many jurisdictions makes financial sense for operators to deploy now, if suitable secure disposal reservoirs are available close by. Retrofitting existing coal-fired power plants, however, is more expensive and technically

  16. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    PubMed

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs. PMID:24738450

  17. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    PubMed

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.

  18. Spatial Simulation of Land Use based on Terrestrial Ecosystem Carbon Storage in Coastal Jiangsu, China

    PubMed Central

    Chuai, Xiaowei; Huang, Xianjin; Wang, Wanjing; Wu, Changyan; Zhao, Rongqin

    2014-01-01

    This paper optimises projected land-use structure in 2020 with the goal of increasing terrestrial ecosystem carbon storage and simulates its spatial distribution using the CLUE-S model. We found the following: The total carbon densities of different land use types were woodland > water area > cultivated land > built-up land > grassland > shallows. Under the optimised land-use structure projected for 2020, coastal Jiangsu showed the potential to increase carbon storage, and our method was effective even when only considering vegetation carbon storage. The total area will increase by reclamation and the original shallows will be exploited, which will greatly increase carbon storage. For built-up land, rural land consolidation caused the second-largest carbon storage increase, which might contribute the most as the rural population will continue to decrease in the future, while the decrease of cultivated land will contribute the most to carbon loss. The area near the coastline has the greatest possibility for land-use change and is where land management should be especially strengthened. PMID:25011476

  19. Inhibited Carbonate Precipitation in Seawater Allows Carbon Dioxide Storage as Carbonate Alkalinity

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Caldeira, K.

    2005-12-01

    As we have previously described, contacting flue gas (from fossil fuel combustion) with water and limestone presents a simple way of spontaneously reacting CO2 out of point-source waste gas streams to form a bicarbonate-rich solution via the reaction: CO2 + CaCO3 + H2O <--> Ca2+ + 2HCO3-. This process, we term Accelerated Weathering of Limestone (AWL), can provide a low-tech, inexpensive, high-capacity, environmentally friendly CO2 capture and sequestration technology in locations where limestone and abundant water are in close proximity to CO2 sources. Coastal locations are especially attractive because the ocean provides a source of water as well as a receptacle for the resulting bicarbonate solution. However, as evident in the preceding equation, the reaction will be driven to the right and hence excess bicarbonate will theoretically remain in solution only so long as excess CO2 is present. If the solution's excess CO2 is allowed to contact and thus degas to the atmosphere, carbonate ions will become supersaturated and solid carbonate will precipitate, thus reversing the original reaction and the CO2 mitigation potential of the process. Yet in the case of seawater, an important caveat is that carbonate precipitation is chemically hindered by the presence of phosphate, organic compounds, magnesium ions, and possibly other solutes. Indeed, the surface ocean is typically 6X supersaturated in calcite and 4X in aragonite, and it has been experimentally shown that seawater can tolerate >18X supersaturation before carbonate precipitation is chemically initiated. This means that: i) a substantial fraction of AWL-captured and -converted carbon will stay in solution in the form of carbonate alkalinity even if the solution's CO2 is fully equilibrated with the atmosphere, ii) significant CO2 mitigation can be achieved regardless of depth or location of solution disposal in the ocean, and iii) the resulting elevation in solution pH following CO2 degassing would be helpful in

  20. Carbon in conurbations: Afforestation and carbon storage as consequences of urban sprawl in Colorado's Front Range

    NASA Astrophysics Data System (ADS)

    Golubiewski, Nancy Ellen

    In the arid western United States, urbanization transforms landscapes from sparsely vegetated grasslands with tree-lined riparian corridors into matrices of asphalt, concrete, turf grass, and multi-strata wooded stands. This research sought to understand the consequences of urbanization upon carbon pools in the Front Range of Colorado, a metropolitan area undergoing expansive urban transformation. Vegetative and edaphic C, as well as biomass and other soil physical/chemical properties, were measured throughout the Denver-Boulder metropolitan area in 2000 and 2001. Anthropogenic activities leave clear signatures on all three C compartments measured. The comparison of C storage in the vegetated spaces of urban areas to that in grasslands and agricultural fields reveals a marked increase as well as a proportional shift in storage from belowground to aboveground. Lawn grass produces more biomass and stores more C than local prairie or agricultural fields. Introduced woody vegetation comprises a substantial C pool in urban greenspaces and represents a wholly new ecosystem feature. Established urban greenspaces harbor larger C pools than native grasslands on a per area basis. Rather than map the urban land-cover types, regional detection of the proportion of the urbanized landscape occupied by vegetated and anthropogenic components extracted biophysical information of the urban/rural matrix. Convex geometry and partial unmixing algorithms were used to extract major landscape elements from an AVIRIS image of Boulder, including six vegetation endmembers. Other scene components were also identified, including soil, water, and five impervious surfaces. The fractional abundance of urban vegetation equaled or exceeded that of vegetation in surrounding areas. In order to understand the effect of the per-area C increase in anthropogenic landscapes regionally, the distribution of carbon in land covers across the landscape was investigated. Regional C estimates were based on both

  1. Pacific whiting frozen fillets as affected by postharvest processing and storage conditions.

    PubMed

    Lee, Jinhwan; Park, Jae W

    2016-06-15

    Whole fish and H&G (headed and gutted) fish were stored under refrigeration (<4 °C) for 0, 2, and 5 days and subsequently filleted and frozen at -18 °C and -80 °C. Frozen fillets were analyzed during 24 weeks of storage. The activity of trimethylamine-N-oxide demethylase (TMAOase) decreased more quickly at -18 °C than -80 °C. TMAOase reduction was distinctively noted at -18 °C storage. Formaldehyde (FA) induced by TMAOase increased at all treatments at -18 °C as frozen storage extended to 24 weeks, but it was near zero at -80 °C up to 12 weeks of storage. Textural toughening, low water retention ability, and low salt soluble protein resulted from the denaturation function of FA. A sudden decrease in surface hydrophobicity at 24 weeks, when stored at -18 °C, resulted from FA-induced unfolding and subsequent aggregation. FA concentration appeared to affect protein aggregations and textual toughening of fillets during frozen storage.

  2. Carbon Cycle 2.0: Nitash Balsara: Energy Storage

    ScienceCinema

    Nitash Balsara

    2016-07-12

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  3. Carbon Cycle 2.0: Nitash Balsara: Energy Storage

    SciTech Connect

    Nitash Balsara

    2010-02-16

    Feb. 4, 2010: Humanity emits more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future.

  4. Metal oxide-carbon composites for energy conversion and storage

    NASA Astrophysics Data System (ADS)

    Perera, Sanjaya Dulip

    The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.

  5. Carbon dioxide storage in unconventional reservoirs workshop: summary of recommendations

    USGS Publications Warehouse

    Jones, Kevin B.; Blondes, Madalyn S.

    2015-01-01

    The storage capacity for all unconventional reservoirs may be modeled using a volumetric equation starting with the extent of the rock unit and adjusted using these key factors and reaction terms. The ideas that were developed during this workshop can be used by USGS scientists to develop a methodology to assess the CO2 storage resource in unconventional reservoirs. This methodology could then be released for public comment and peer review. After completing this development process, the USGS could then use the methodology to assess the CO2 storage resource in unconventional reservoirs.

  6. Estimation of Carbon Dioxide Storage Capacity for Depleted Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Lai, Yen Ting; Shen, Chien-Hao; Tseng, Chi-Chung; Fan, Chen-Hui; Hsieh, Bieng-Zih

    2015-04-01

    A depleted gas reservoir is one of the best options for CO2 storage for many reasons. First of all, the storage safety or the caprock integrity has been proven because the natural gas was trapped in the formation for a very long period of time. Also the formation properties and fluid flow characteristics for the reservoir have been well studied since the discovery of the gas reservoir. Finally the surface constructions and facilities are very useful and relatively easy to convert for the use of CO2 storage. The purpose of this study was to apply an analytical approach to estimate CO2 storage capacity in a depleted gas reservoir. The analytical method we used is the material balance equation (MBE), which have been widely used in natural gas storage. We proposed a modified MBE for CO2 storage in a depleted gas reservoir by introducing the z-factors of gas, CO2 and the mixture of the two. The MBE can be derived to a linear relationship between the ratio of pressure to gas z-factor (p/z) and the cumulative term (Gp-Ginj, where Gp is the cumulative gas production and Ginj is the cumulative CO2 injection). The CO2 storage capacity can be calculated when constraints of reservoir recovery pressure are adopted. The numerical simulation was also used for the validation of the theoretical estimation of CO2 storage capacity from the MBE. We found that the quantity of CO2 stored is more than that of gas produced when the reservoir pressure is recovered from the abandon pressure to the initial pressure. This result was basically from the fact that the gas- CO2 mixture z-factors are lower than the natural gas z-factors in reservoir conditions. We also established a useful p/z plot to easily observe the pressure behavior of CO2 storage and efficiently calculate the CO2 storage capacity. The application of the MBE we proposed was demonstrated by a case study of a depleted gas reservoir in northwestern Taiwan. The estimated CO2 storage capacities from conducting reservoir simulation

  7. Lianas reduce carbon accumulation and storage in tropical forests.

    PubMed

    van der Heijden, Geertje M F; Powers, Jennifer S; Schnitzer, Stefan A

    2015-10-27

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests.

  8. Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Freeman, E.; Skinner, L. C.; Waelbroeck, C.; Hodell, D.

    2016-06-01

    The influence of ocean circulation changes on atmospheric CO2 hinges primarily on the ability to alter the ocean interior's respired nutrient inventory. Here we investigate the Atlantic overturning circulation at the Last Glacial Maximum and its impact on respired carbon storage using radiocarbon and stable carbon isotope data from the Brazil and Iberian Margins. The data demonstrate the existence of a shallow well-ventilated northern-sourced cell overlying a poorly ventilated, predominantly southern-sourced cell at the Last Glacial Maximum. We also find that organic carbon remineralization rates in the deep Atlantic remained broadly similar to modern, but that ventilation ages in the southern-sourced overturning cell were significantly increased. Respired carbon storage in the deep Atlantic was therefore enhanced during the last glacial period, primarily due to an increase in the residence time of carbon in the deep ocean, rather than an increase in biological carbon export.

  9. Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum.

    PubMed

    Freeman, E; Skinner, L C; Waelbroeck, C; Hodell, D

    2016-01-01

    The influence of ocean circulation changes on atmospheric CO2 hinges primarily on the ability to alter the ocean interior's respired nutrient inventory. Here we investigate the Atlantic overturning circulation at the Last Glacial Maximum and its impact on respired carbon storage using radiocarbon and stable carbon isotope data from the Brazil and Iberian Margins. The data demonstrate the existence of a shallow well-ventilated northern-sourced cell overlying a poorly ventilated, predominantly southern-sourced cell at the Last Glacial Maximum. We also find that organic carbon remineralization rates in the deep Atlantic remained broadly similar to modern, but that ventilation ages in the southern-sourced overturning cell were significantly increased. Respired carbon storage in the deep Atlantic was therefore enhanced during the last glacial period, primarily due to an increase in the residence time of carbon in the deep ocean, rather than an increase in biological carbon export. PMID:27346723

  10. Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum

    PubMed Central

    Freeman, E.; Skinner, L. C.; Waelbroeck, C.; Hodell, D.

    2016-01-01

    The influence of ocean circulation changes on atmospheric CO2 hinges primarily on the ability to alter the ocean interior's respired nutrient inventory. Here we investigate the Atlantic overturning circulation at the Last Glacial Maximum and its impact on respired carbon storage using radiocarbon and stable carbon isotope data from the Brazil and Iberian Margins. The data demonstrate the existence of a shallow well-ventilated northern-sourced cell overlying a poorly ventilated, predominantly southern-sourced cell at the Last Glacial Maximum. We also find that organic carbon remineralization rates in the deep Atlantic remained broadly similar to modern, but that ventilation ages in the southern-sourced overturning cell were significantly increased. Respired carbon storage in the deep Atlantic was therefore enhanced during the last glacial period, primarily due to an increase in the residence time of carbon in the deep ocean, rather than an increase in biological carbon export. PMID:27346723

  11. Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage

    NASA Astrophysics Data System (ADS)

    María Gómez Castro, Berta; Fernández López, Sheila; Carrera, Jesús; de Simone, Silvia; Martínez, Lurdes; Roetting, Tobias; Soler, Joaquim; Ortiz, Gema; de Dios, Carlos; Huber, Christophe

    2014-05-01

    Interpretation of hydraulic tests performed at a carbonate rock site for CO2 storage Berta Gómez, Sheila Fernández, Tobias Roetting, Lurdes Martínez, Silvia de Simone, Joaquim Soler, Jesus Carrera, Gema Ortiz, Christophe Huber, Carlos de Dios Proper design of CO2 geological storage facilities requires knowledge of the reservoir hydraulic parameters. Specifically, permeability controls the flux of CO2, the rate at which it dissolves, local and regional pressure buildup and the likelihood of induced seismicity. Permeability is obtained from hydraulic tests, which may yield local permeability, which controls injectivity, and large scale permeability, which controls pressure buildup at the large scale. If pressure response measurements are obtained at different elevations, hydraulic tests may also yield vertical permeability, which controls the rate at which CO2 dissolves. The objective of this work is to discuss the interpretation of hydraulic tests at deep reservoirs and the conditions under which these permeabilities can be obtained. To achieve this objective, we have built a radially symmetric model, including a skin and radial as well as vertical heterogeneity. We use this model to simulate hydraulic tests with increasing degrees of complexity about the medium response. We start by assuming Darcy flow, then add coupled mechanical effects (fractures opening) and, finally, we add thermal effects. We discuss how these affect the conventional interpretation of the tests and how to identify their presence. We apply these findings to the interpretation of hydraulic tests at Hontomin.

  12. Microbial Carbon Pump ---A New Mechanism for Long-Term Carbon Storage in the Global Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Jiao, N.; Azam, F.; McP Working Group; Scor Wg134

    2010-12-01

    Marine dissolved organic matter (DOM) reservoir, containing carbon equivalent to the total carbon inventory of atmospheric CO2, is an important issue in understanding the role of the ocean in climate change. The known biological mechanism for oceanic carbon sequestration is the biological pump, which depends on vertical transportation of carbon either through particulate organic matter (POM) sedimentation or DOM export by mixing and downwelling. Both the POM and the DOM are subject to microbial mineralization and most of the organic carbon will be returned to dissolved inorganic carbon within a few decades. Only a small fraction of the POM escapes mineralization and reaches the sediment where organic carbon can be buried and stored for thousands and even millions of years. The efficiency of the biological pump is currently the basic measure of the ocean’s ability to store biologically fixed carbon. However, the production and fate of the large pool of recalcitrant DOM with an averaged turnover time of 4000-6000 thousands of years in the water column has not been adequately considered to date. Marine microbes essentially monopolize the utilization of DOM. Although their diverse adaptive strategies for using newly fixed carbon are well known, major gaps exist in our knowledge on how they interact with the large pool of DOM that appears to be recalcitrant. This is an important problem, as DOM molecules that are not degraded for extended periods of time constitute carbon storage in the ocean. A newly proposed concept - the “microbial carbon pump (MCP)” (NATURE REVIEWS Microbiology 2010.8:593-599) (also see diagram below) provides a formalized focus on the significance of microbial processes in carbon storage in the recalcitrant DOM reservoir, and a framework for testing hypotheses on the sources and sinks of DOM and the underlying biogeochemical mechanisms. The MCP, through concessive processing of DOM, transforms some organic carbon from the reactive DOM pools

  13. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? 2011 Author(s).

  14. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    NASA Astrophysics Data System (ADS)

    Hasselquist, N. J.; Germino, M. J.; Sankey, J. B.; Ingram, L. J.; Glenn, N. F.

    2011-08-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m-1 d-1 and 19 g N m-1 d-1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  15. The potential storage of carbon caused by eutrophication of the biosphere

    NASA Technical Reports Server (NTRS)

    Peterson, B. J.; Melillo, J. M.

    1985-01-01

    The hypothesis that the rate of atmospheric CO2 increase has been reduced due to increased net storage of carbon in forests, coastal oceans, and the open sea, caused by eutrophication of the biosphere with nitrogen and phosphorus, is examined. The potential for carbon storage, the balance of C, N, and P, and man's influence on the forests, rivers, coastal oceans, and the open sea is studied and discussed. It is concluded that biotic carbon sinks are small relative to the rate of CO2 release from fossil fuel; therefore, storage is limited. Man has reduced the stocks of carbon held in forests and soils and there is a redistribution of C, N, and P from the land to the oceans.

  16. Palladium on Nitrogen-Doped Mesoporous Carbon: A Bifunctional Catalyst for Formate-Based, Carbon-Neutral Hydrogen Storage.

    PubMed

    Wang, Fanan; Xu, Jinming; Shao, Xianzhao; Su, Xiong; Huang, Yanqiang; Zhang, Tao

    2016-02-01

    The lack of safe, efficient, and economical hydrogen storage technologies is a hindrance to the realization of the hydrogen economy. Reported herein is a reversible formate-based carbon-neutral hydrogen storage system that is established over a novel catalyst comprising palladium nanoparticles supported on nitrogen-doped mesoporous carbon. The support was fabricated by a hard template method and nitridated under a flow of ammonia. Detailed analyses demonstrate that this bicarbonate/formate redox equilibrium is promoted by the cooperative role of the doped nitrogen functionalities and the well-dispersed, electron-enriched palladium nanoparticles.

  17. FeS@C on Carbon Cloth as Flexible Electrode for Both Lithium and Sodium Storage.

    PubMed

    Wei, Xiang; Li, Weihan; Shi, Jin-an; Gu, Lin; Yu, Yan

    2015-12-23

    Flexible and self-supported carbon-coated FeS on carbon cloth films (denoted as FeS@C/carbon cloth) is prepared by a facial hydrothermal method combined with a carbonization treatment. The FeS@C/carbon cloth could be directly used as electrodes for Li-ion batteries (LIBs) and sodium-ion batteries (NIBs). The synthetic effects of the structure, highly electron-conductive of carbon cloth, porous structure for electrolyte access, and uniform carbon shell on FeS surface to accommodate the volume change lead to improved cyclability and rate capability. For lithium storage, the FeS@C/carbon cloth electrode delivers a high discharge capacity of 420 mAh g(-1) even after 100 cycles at a current density of 0.15 C and 370 mAh g(-1)at a high current density of 7.5 C (1 C = 609 mA g(-1). When used for sodium storage, it keeps a reversible capacity of 365 mAh g(-1)after 100 cycles at 0.15 C. Similar process can be utilized for the formation of various cathode and anode composites on carbon cloth for flexible energy storage devices.

  18. Woody debris along an upland chronosequence in boreal Manitoba and its impact on long-term carbon storage

    USGS Publications Warehouse

    Manies, K.L.; Harden, J.W.; Bond-Lamberty, B. P.; O'Neill, K. P.

    2005-01-01

    This study investigated the role of fire-killed woody debris as a source of soil carbon in black spruce (Picea mariana (Mill.) BSP) stands in Manitoba, Canada. We measured the amount of standing dead and downed woody debris along an upland chronosequence, including wood partially and completely covered by moss growth. Such woody debris is rarely included in measurement protocols and composed up to 26% of the total amount of woody debris in older stands, suggesting that it is important to measure all types of woody debris in ecosystems where burial by organic matter is possible. Based on these data and existing net primary production (NPP) values, we used a mass-balance model to assess the potential impact of fire-killed wood on long-term carbon storage at this site. The amount of carbon stored in deeper soil organic layers, which persists over millennia, was used to represent this long-term carbon. We estimate that between 10% and 60% of the deep-soil carbon is derived from wood biomass. Sensitivity analyses suggest that this estimate is most affected by the fire return interval, decay rate of wood, amount of NPP, and decay rate of the char (postfire) carbon pool. Landscape variations in these terms could account for large differences in deep-soil carbon. The model was less sensitive to fire consumption rates and to rates at which standing dead becomes woody debris. All model runs, however, suggest that woody debris plays an important role in long-term carbon storage for this area. ?? 2005 NRC Canada.

  19. High Carbon Use Efficiency is Not Explained by Production of Storage Compounds

    NASA Astrophysics Data System (ADS)

    Dijkstra, Paul; van Groenigen, Kees-Jan

    2015-04-01

    The efficiency with which microbes use substrate to make new microbial biomass (Carbon Use Efficiency or CUE; mol C / mol C) is an important variable in soil and ecosystem C cycling models. Estimates of CUE in soil microbial communities vary widely. It has been hypothesized that high values of CUE are associated with production of storage compounds following a sudden increases in substrate availability during CUE measurements. In that case, these high CUE values would not be representative for balanced microbial growth (i.e. the production of all compounds needed to make new microbial cells). To test this hypothesis, we added position-specific 13C-labeled glucose isotopomers in parallel incubations of a ponderosa pine and piñon-juniper soil. We compared the measured pattern of CO2 release for the six glucose C atoms with patterns of CO2 production expected for balanced growth with a low, medium, or high CUE, and with CO2 production patterns associated with production of storage compounds (glycogen, lipids, or polyhydroxybutyrate). The measured position-specific CO2 production did not match that for production of glycogen, lipids, or polyhydroxybutyrate, but agreed closely with that expected for balanced growth at high CUE and high pentose phosphate pathway activity. We conclude that soil microbial communities utilize glucose substrate for biomass growth with high CUE, and that addition of small amounts of 13C-labeled glucose tracers do not affect CUE or induce storage compounds production. We submit that the measurement of position-specific CO2 production offers a quick and easy way to test biochemically explicit hypotheses concerning microbial growth metabolism.

  20. Selection and preparation of activated carbon for fuel gas storage

    DOEpatents

    Schwarz, James A.; Noh, Joong S.; Agarwal, Rajiv K.

    1990-10-02

    Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

  1. Soil organic carbon storage changes in coastal wetlands of the modern Yellow River Delta from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Yu, J.; Wang, Y.; Li, Y.; Dong, H.; Zhou, D.; Han, G.; Wu, H.; Wang, G.; Mao, P.; Gao, Y.

    2012-06-01

    Soil carbon sequestration plays an essential role in mitigating atmospheric CO2 increases and the subsequently global greenhouse effect. The storages and dynamics of soil organic carbon (SOC) of 0-30 cm soil depth in different landscape types including beaches, reservoir and pond, reed wetland, forest wetland, bush wetland, farmland, building land, bare land (severe saline land) and salt field in the modern Yellow River Delta (YRD) were studied based on the data of the regional survey and laboratory analysis. The landscape types were classified by the interpretation of remote sensing images of 2000 and 2009, which were calibrated by field survey results. The results revealed an increase of 10.59 km2 in the modem YRD area from 2000 to 2009. The SOC density varied ranging from 0.73 kg m-2 to 4.25 kg m-2 at depth of 0-30 cm. There were approx. 3.559 × 106 t and 3.545 × 106 t SOC stored in the YRD in 2000 and 2009, respectively. The SOC storages changed greatly in beaches, bush wetland, farm land and salt field which were affected dominantly by anthropogenic activities. The area of the YRD increased greatly within 10 years, however, the small increase of SOC storage in the region was observed due to landscape changes, indicating that the modern YRD was a potential carbon sink and anthropogenic activity was a key factor for SOC change.

  2. Soil organic carbon storage changes in coastal wetlands of the modern Yellow River Delta from 2000 to 2009

    NASA Astrophysics Data System (ADS)

    Yu, J.; Wang, Y.; Li, Y.; Dong, H.; Zhou, D.; Han, G.; Wu, H.; Wang, G.; Mao, P.; Gao, Y.

    2012-02-01

    Soil carbon sequestration plays an essential role in mitigating CO2 increases and the subsequently global greenhouse effect. The storages and dynamics of soil organic carbon (SOC) of 0-30 cm soil depth in different landscape types including beaches, reservoir and pond, reed wetland, forest wetland, bush wetland, farmland, building land, bare land (severe saline land) and salt field in the modern Yellow River Delta (YRD), were studied based on the data of the regional survey and laboratory analysis. The landscape types were classified by the interpretation of remote sensing images of 2000 and 2009, which was calibrated by field survey results. The results revealed an increase of 10.59 km2 in the modem YRD area from 2000 to 2009. The SOC density varied ranging from 0.73 kg m-2 to 21.60 kg m-2 at depth of 30 cm. There were ~3.97 × 106 t and 3.98 × 106 t SOC stored in the YRD in 2000 and 2009, respectively. The SOC storages changed greatly in beaches, bush wetland, farm land and salt field which were affected dominantly by anthropogenic activities. The area of the YRD increased greatly within 10 yr, however, the small increase of SOC storage in the region was observed due to landscape changes, indicating that the modern YRD was a potential carbon sink and anthropogenic activity was a key factor for SOC change.

  3. A national look at carbon capture and storage-National carbon sequestration database and geographical information system (NatCarb)

    USGS Publications Warehouse

    Carr, T.R.; Iqbal, A.; Callaghan, N.; ,; Look, K.; Saving, S.; Nelson, K.

    2009-01-01

    The US Department of Energy's Regional Carbon Sequestration Partnerships (RCSPs) are responsible for generating geospatial data for the maps displayed in the Carbon Sequestration Atlas of the United States and Canada. Key geospatial data (carbon sources, potential storage sites, transportation, land use, etc.) are required for the Atlas, and for efficient implementation of carbon sequestration on a national and regional scale. The National Carbon Sequestration Database and Geographical Information System (NatCarb) is a relational database and geographic information system (GIS) that integrates carbon storage data generated and maintained by the RCSPs and various other sources. The purpose of NatCarb is to provide a national view of the carbon capture and storage potential in the U.S. and Canada. The digital spatial database allows users to estimate the amount of CO2 emitted by sources (such as power plants, refineries and other fossil-fuel-consuming industries) in relation to geologic formations that can provide safe, secure storage sites over long periods of time. The NatCarb project is working to provide all stakeholders with improved online tools for the display and analysis of CO2 carbon capture and storage data. NatCarb is organizing and enhancing the critical information about CO2 sources and developing the technology needed to access, query, model, analyze, display, and distribute natural resource data related to carbon management. Data are generated, maintained and enhanced locally at the RCSP level, or at specialized data warehouses, and assembled, accessed, and analyzed in real-time through a single geoportal. NatCarb is a functional demonstration of distributed data-management systems that cross the boundaries between institutions and geographic areas. It forms the first step toward a functioning National Carbon Cyberinfrastructure (NCCI). NatCarb provides access to first-order information to evaluate the costs, economic potential and societal issues of

  4. Carbon storage estimation of main forestry ecosystems in Northwest Yunnan Province using remote sensing data

    NASA Astrophysics Data System (ADS)

    Wang, Jinliang; Wang, Xiaohua; Yue, Cairong; Xu, Tian-shu; Cheng, Pengfei

    2014-05-01

    Estimating regional forest organic carbon pool has became a hot issue in the study of forest ecosystem carbon cycle. The forest ecosystem in Shangri-La County, Northwest Yunnan Province, are well preserved, and the area of Picea Likiangensis, Quercus Aquifolioides, Pinus Densata and Pinus Yunnanensis amounts to 80% of the total arboreal forest area in Shangri-La County. Based on the field measurements, remote sensing data and GIS analysis, three models were established for carbon storage estimation. The remote sensing information model with the highest accuracy were used to calculate the carbon storages of the four main forest ecosystems. The results showed: (1) the total carbon storage of the four forest ecosystems in Shangri-La is 302.984 TgC, in which tree layer, shrub layer, herb layer, litter layer, soil layer are 60.196TgC, 5.433TgC, 1.080TgC, 3.582TgC and 232.692TgC, accounting for 19.87%, 1.79%, 0.36%, 1.18%, 76.80% of the total carbon storage respectively. (2)The order of the carbon storage from high to low is soil layer, tree layer, shrub layer, litter layer and herb layer respectively for the four main forest ecosystems. (3)The total average carbon density of the four main forest ecosystems is 403.480 t/hm2, and the carbon densities of the Picea Likiangensis, Quercus Aquifolioides, Pinus Densata and Pinus Yunnanensis are 576.889 t/hm2, 326.947 t/hm2, 279.993 t/hm2 and 255.792 t/hm2 respectively.

  5. Lianas reduce carbon accumulation and storage in tropical forests

    PubMed Central

    van der Heijden, Geertje M. F.; Powers, Jennifer S.; Schnitzer, Stefan A.

    2015-01-01

    Tropical forests store vast quantities of carbon, account for one-third of the carbon fixed by photosynthesis, and are a major sink in the global carbon cycle. Recent evidence suggests that competition between lianas (woody vines) and trees may reduce forest-wide carbon uptake; however, estimates of the impact of lianas on carbon dynamics of tropical forests are crucially lacking. Here we used a large-scale liana removal experiment and found that, at 3 y after liana removal, lianas reduced net above-ground carbon uptake (growth and recruitment minus mortality) by ∼76% per year, mostly by reducing tree growth. The loss of carbon uptake due to liana-induced mortality was four times greater in the control plots in which lianas were present, but high variation among plots prevented a significant difference among the treatments. Lianas altered how aboveground carbon was stored. In forests where lianas were present, the partitioning of forest aboveground net primary production was dominated by leaves (53.2%, compared with 39.2% in liana-free forests) at the expense of woody stems (from 28.9%, compared with 43.9%), resulting in a more rapid return of fixed carbon to the atmosphere. After 3 y of experimental liana removal, our results clearly demonstrate large differences in carbon cycling between forests with and without lianas. Combined with the recently reported increases in liana abundance, these results indicate that lianas are an important and increasing agent of change in the carbon dynamics of tropical forests. PMID:26460031

  6. Changes in forest biomass carbon storage in China between 1949 and 1998.

    PubMed

    Fang, J; Chen, A; Peng, C; Zhao, S; Ci, L

    2001-06-22

    The location and mechanisms responsible for the carbon sink in northern mid-latitude lands are uncertain. Here, we used an improved estimation method of forest biomass and a 50-year national forest resource inventory in China to estimate changes in the storage of living biomass between 1949 and 1998. Our results suggest that Chinese forests released about 0.68 petagram of carbon between 1949 and 1980, for an annual emission rate of 0.022 petagram of carbon. Carbon storage increased significantly after the late 1970s from 4.38 to 4.75 petagram of carbon by 1998, for a mean accumulation rate of 0.021 petagram of carbon per year, mainly due to forest expansion and regrowth. Since the mid-1970s, planted forests (afforestation and reforestation) have sequestered 0.45 petagram of carbon, and their average carbon density increased from 15.3 to 31.1 megagrams per hectare, while natural forests have lost an additional 0.14 petagram of carbon, suggesting that carbon sequestration through forest management practices addressed in the Kyoto Protocol could help offset industrial carbon dioxide emissions.

  7. Testing Associations of Plant Functional Diversity with Carbon and Nitrogen Storage along a Restoration Gradient of Sandy Grassland.

    PubMed

    Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Zhao, Xueyong; Zhang, Jing; Wang, Shaokun; Yue, Xiyuan

    2016-01-01

    The trait-based approach shows that ecosystem function is strongly affected by plant functional diversity as reflected by the traits of the most abundant species (community-weighted mean, CWM) and functional dispersion (FDis). Effects of CWM and FDis individually support the biomass ratio hypothesis and the niche complementarity hypothesis. However, there is little empirical evidence on the relative roles of CWM traits and FDis in explaining the carbon (C) and nitrogen (N) storage in grassland ecosystems. We measured plant functional traits in the 34 most abundant species across 24 sites along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. Thereafter, we calculated the CWM traits, the functional divergence of each single trait (FDvar) and the trait dispersion of multiple traits (FDis). We also measured the C and N storage in plant, litter, root, and soil. Using a stepwise multiple regression analysis, we further assessed which of the functional diversity components best explained C and N storage in the sandy grassland restoration. We found consistent links between C or N storage and leaf traits related to plant resource use strategy. However, the CWM of plant height was retained as an important predictor of C and N storage in plant, litter, soil, and total ecosystem in the final multiple models. CWMs of specific leaf area and plant height best predicted soil C and N storage and total ecosystem N storage. FDis was one of good predictors of litter C and N storage as well as total ecosystem C storage. These results suggest that ecosystem C and N pools in the sandy grassland restoration are primarily associated with the traits of the most abundant species in communities, thereby supporting the biomass ratio hypothesis. The positive associations of FDis with C storage in litter and total ecosystem provide evidence to support the niche complementarity hypothesis. Both functional

  8. Testing Associations of Plant Functional Diversity with Carbon and Nitrogen Storage along a Restoration Gradient of Sandy Grassland

    PubMed Central

    Zuo, Xiaoan; Zhou, Xin; Lv, Peng; Zhao, Xueyong; Zhang, Jing; Wang, Shaokun; Yue, Xiyuan

    2016-01-01

    The trait-based approach shows that ecosystem function is strongly affected by plant functional diversity as reflected by the traits of the most abundant species (community-weighted mean, CWM) and functional dispersion (FDis). Effects of CWM and FDis individually support the biomass ratio hypothesis and the niche complementarity hypothesis. However, there is little empirical evidence on the relative roles of CWM traits and FDis in explaining the carbon (C) and nitrogen (N) storage in grassland ecosystems. We measured plant functional traits in the 34 most abundant species across 24 sites along a restoration gradient of sandy grassland (mobile dune, semi-fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. Thereafter, we calculated the CWM traits, the functional divergence of each single trait (FDvar) and the trait dispersion of multiple traits (FDis). We also measured the C and N storage in plant, litter, root, and soil. Using a stepwise multiple regression analysis, we further assessed which of the functional diversity components best explained C and N storage in the sandy grassland restoration. We found consistent links between C or N storage and leaf traits related to plant resource use strategy. However, the CWM of plant height was retained as an important predictor of C and N storage in plant, litter, soil, and total ecosystem in the final multiple models. CWMs of specific leaf area and plant height best predicted soil C and N storage and total ecosystem N storage. FDis was one of good predictors of litter C and N storage as well as total ecosystem C storage. These results suggest that ecosystem C and N pools in the sandy grassland restoration are primarily associated with the traits of the most abundant species in communities, thereby supporting the biomass ratio hypothesis. The positive associations of FDis with C storage in litter and total ecosystem provide evidence to support the niche complementarity hypothesis. Both functional

  9. Boron nutrition affects the carbon metabolism of silver birch seedlings.

    PubMed

    Ruuhola, Teija; Keinänen, Markku; Keski-Saari, Sarita; Lehto, Tarja

    2011-11-01

    Boron (B) is an essential micronutrient whose deficiency is common both in agriculture and in silviculture. Boron deficiency impairs the growth of plants and affects many metabolic processes like carbohydrate metabolism. Boron deficiency and also excess B may decrease the sink demand by decreasing the growth and sugar transport which may lead to the accumulation of carbohydrates and down-regulation of photosynthesis. In this study, we investigated the effects of B nutrition on the soluble and storage carbohydrate concentrations of summer leaves and autumn buds in a deciduous tree species, Betula pendula Roth. In addition, we investigated the changes in the pools of condensed tannins between summer and autumn harvests. One-year-old birch seedlings were fertilized with a complete nutrient solution containing three different levels of B: 0, 30 and 100% of the standard level for complete nutrient solution. Half of the seedlings were harvested after summer period and another half when leaves abscised. The highest B fertilization level (B100) caused an accumulation of starch and a decrease in the concentrations of hexoses (glucose and fructose) in summer leaves, whereas in the B0 seedlings, hexoses (mainly glucose) accumulated and starch decreased. These changes in carbohydrate concentrations might be related to the changes in the sink demand since the autumn growth was the smallest for the B100 seedlings and largest for the B30 seedlings that did not accumulate carbohydrates. The autumn buds of B30 seedlings contained the lowest levels of glucose, glycerol, raffinose and total polyols, which was probably due to the dilution effect of the deposition of other substances like phenols. Condensed tannins accumulated in high amounts in the birch stems during the hardening of seedlings and the largest accumulation was detected in the B30 treatment. Our results suggest that B nutrition of birch seedlings affects the carbohydrate and phenol metabolism and may play an important

  10. [Biomass and carbon storage of ground bryophytes under six types of young coniferous forest plantations].

    PubMed

    Bao, Weikai; Lei, Bo; Leng, Li

    2005-10-01

    This paper studied the biomass and carbon storage of the ground bryophytes under young Picea balfouriana (P), Pinus tabulaeformis (Y), Pinus armandii (H), Larix kaempferi (L), Picea balfouriana-Pinus tabulaeformis (P-Y), and Pinus tabulaeformis-Pinus armandii (Y-H) forest plantations in the upper reach of Minjiang River, Sichuan Province. The results showed that total biomass and carbon storage of ground bryophytes were relatively low, being 3.11 - 460.36 kg x hm(-2) and 1.12 +/- 0.03 x 168.95 +/- 0.92 kg x hm(-2), respectively. On plot level, only the bryophyte biomass between forest P and others, and the carbon storage between forest L and others were significantly different. The ground bryophyte had the highest biomass and carbon storage under forest P, while the lowest ones under forest H. Comprehensive analysis suggested that forest type and its structural feature might be the important factors determining the biomass and carbon storage of ground bryophytes, and thinning was an important measure to improve ground bryophyte growth and biomass production.

  11. Towards Regional, Error-Bounded Landscape Carbon Storage Estimates for Data-Deficient Areas of the World

    PubMed Central

    Willcock, Simon; Phillips, Oliver L.; Platts, Philip J.; Balmford, Andrew; Burgess, Neil D.; Lovett, Jon C.; Ahrends, Antje; Bayliss, Julian; Doggart, Nike; Doody, Kathryn; Fanning, Eibleis; Green, Jonathan; Hall, Jaclyn; Howell, Kim L.; Marchant, Rob; Marshall, Andrew R.; Mbilinyi, Boniface; Munishi, Pantaleon K. T.; Owen, Nisha; Swetnam, Ruth D.; Topp-Jorgensen, Elmer J.; Lewis, Simon L.

    2012-01-01

    Monitoring landscape carbon storage is critical for supporting and validating climate change mitigation policies. These may be aimed at reducing deforestation and degradation, or increasing terrestrial carbon storage at local, regional and global levels. However, due to data-deficiencies, default global carbon storage values for given land cover types such as ‘lowland tropical forest’ are often used, termed ‘Tier 1 type’ analyses by the Intergovernmental Panel on Climate Change (IPCC). Such estimates may be erroneous when used at regional scales. Furthermore uncertainty assessments are rarely provided leading to estimates of land cover change carbon fluxes of unknown precision which may undermine efforts to properly evaluate land cover policies aimed at altering land cover dynamics. Here, we present a repeatable method to estimate carbon storage values and associated 95% confidence intervals (CI) for all five IPCC carbon pools (aboveground live carbon, litter, coarse woody debris, belowground live carbon and soil carbon) for data-deficient regions, using a combination of existing inventory data and systematic literature searches, weighted to ensure the final values are regionally specific. The method meets the IPCC ‘Tier 2’ reporting standard. We use this method to estimate carbon storage over an area of33.9 million hectares of eastern Tanzania, reporting values for 30 land cover types. We estimate that this area stored 6.33 (5.92–6.74) Pg C in the year 2000. Carbon storage estimates for the same study area extracted from five published Africa-wide or global studies show a mean carbon storage value of ∼50% of that reported using our regional values, with four of the five studies reporting lower carbon storage values. This suggests that carbon storage may have been underestimated for this region of Africa. Our study demonstrates the importance of obtaining regionally appropriate carbon storage estimates, and shows how such values can be produced for

  12. GEOLOGIC CARBON STORAGE: UNDERSTANDING THE RULES OF THE UNDERGROUND

    EPA Science Inventory

    The paper discusses the geologic sequestration (GS) of carbon dioxide (CO2), an emerging option for carbon management. Few studies have explored the regulatory needs of GS or compared these needs with regulations governing underground injection on the U.S. mainland. Our treatment...

  13. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Technical Reports Server (NTRS)

    Hagedorn, Norman H. (Inventor)

    1993-01-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  14. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1993-05-01

    An alkali metal, such as lithium, is the anodic reactant; carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant; and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is, therefore, especially useful in extraterrestrial environments.

  15. Alkali metal carbon dioxide electrochemical system for energy storage and/or conversion of carbon dioxide to oxygen

    NASA Astrophysics Data System (ADS)

    Hagedorn, Norman H.

    1991-09-01

    An alkali metal, such as lithium, is the anodic reactant, carbon dioxide or a mixture of carbon dioxide and carbon monoxide is the cathodic reactant, and carbonate of the alkali metal is the electrolyte in an electrochemical cell for the storage and delivery of electrical energy. Additionally, alkali metal-carbon dioxide battery systems include a plurality of such electrochemical cells. Gold is a preferred catalyst for reducing the carbon dioxide at the cathode. The fuel cell of the invention produces electrochemical energy through the use of an anodic reactant which is extremely energetic and light, and a cathodic reactant which can be extracted from its environment and therefore exacts no transportation penalty. The invention is therefore especially useful in extraterrestrial environments.

  16. A comparative theoretical study of metal functionalized carbon nanocones and carbon nanocone sheets as potential hydrogen storage materials.

    PubMed

    Shalabi, A S; Soliman, K A; Taha, H O

    2014-09-28

    The hydrogen storage of Ti functionalized carbon nanocones and carbon nanocone sheets is investigated by using the state-of-the-art density functional theory calculations. The Ti atom prefers to bind at the hollow site of the hexagonal ring. The average adsorption energies corrected for dispersion forces are -0.54 and -0.39 eV per hydrogen molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 9.31 and 11.01 wt%. The hydrogen storage reactions are characterized in terms of simulated infrared spectra, projected densities of states, kinetics, and statistical thermodynamics. The free energies and enthalpies of the Ti functionalized carbon nanocone meet the ultimate targets of the Department of Energy for all temperatures and pressures. The closest reactions to zero free energy occur at 378.15 K/2.961 atm for carbon nanocones and 233.15 K/2.961 atm for carbon nanocone sheets. The translational component is found to exert a dominant effect on the total entropy change with temperature. More promising thermodynamics are assigned to the hydrogenation of Ti functionalized carbon nanocone sheets at 233.15 K. As the temperature is increased, the lifetimes of the hydrogen molecules adsorbed at the surface drop and the rate constants increase. At fixed pressure, the rate constants of hydrogenation of Ti functionalized carbon nanocones are smaller than those of Ti functionalized carbon nanocone sheets, while the lifetimes are greater.

  17. Impacts of chronic N input on the carbon and nitrogen storage of a postfire Mediterranean-type shrubland

    NASA Astrophysics Data System (ADS)

    Vourlitis, George L.; Hentz, Cloe S.

    2016-02-01

    Mediterranean-type shrublands are subject to periodic fire and high levels of nitrogen (N) deposition, but little is known how chronic N deposition affects carbon (C) and N storage during succession. We conducted a long-term experiment in Californian chaparral to test the hypothesis that chronic N enrichment would increase postfire C and N accumulation. The experimental layout consisted of a randomized design where four 10 × 10 m plots received 5 g N m-2 annually since 2003 and four 10 × 10 m plots served as controls. Aboveground and belowground C and N pools and fluxes were measured seasonally (every 3 months) for a period of 10 years. Added N rapidly increased soil extractable N pools and decreased soil pH; however, total soil C and N storage were not affected. Added N plots initially had significantly lower C and N storage than control plots, presumably because of nutrient losses from leaching and/or higher belowground C allocation. However, rates of aboveground N and C storage became significantly higher in added N plots after 4-5 years of exposure, thus increasing fuel buildup, which has implications for future fire intensity. This recovering chaparral stand is not yet "N saturated" after 10 years of chronic N input. However, N leaching continues to be higher in added N plots, indicating that postfire chaparral stands in high-N deposition areas can be important sources of N to groundwater/aquatic systems even if productivity is stimulated by N input.

  18. An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase

    SciTech Connect

    Finley, Robert

    2012-12-01

    The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern

  19. Combined hydrogen production and storage with subsequent carbon crystallization.

    PubMed

    Lueking, Angela D; Gutierrez, Humberto R; Fonseca, Dania A; Narayanan, Deepa L; Van Essendelft, Dirk; Jain, Puja; Clifford, Caroline E B

    2006-06-21

    We provide evidence of low-temperature hydrogen evolution and possible hydrogen trapping in an anthracite coal derivative, formed via reactive ball milling with cyclohexene. No molecular hydrogen is added to the process. Raman-active molecular hydrogen vibrations are apparent in samples at atmospheric conditions (300 K, 1 bar) for samples prepared 1 year previously and stored in ambient air. Hydrogen evolves slowly at room temperature and is accelerated upon sample heating, with a first increase in hydrogen evolution occurring at approximately 60 degrees C. Subsequent chemical modification leads to the observation of crystalline carbons, including nanocrystalline diamond surrounded by graphene ribbons, other sp2-sp3 transition regions, purely graphitic regions, and a previously unidentified crystalline carbon form surrounded by amorphous carbon. The combined evidence for hydrogen trapping and carbon crystallization suggests hydrogen-induced crystallization of the amorphous carbon materials, as metastable hydrogenated carbons formed via the high-energy milling process rearrange into more thermodynamically stable carbon forms and molecular hydrogen.

  20. In situ carbonation of peridotite for CO2 storage

    PubMed Central

    Kelemen, Peter B.; Matter, Jürg

    2008-01-01

    The rate of natural carbonation of tectonically exposed mantle peridotite during weathering and low-temperature alteration can be enhanced to develop a significant sink for atmospheric CO2. Natural carbonation of peridotite in the Samail ophiolite, an uplifted slice of oceanic crust and upper mantle in the Sultanate of Oman, is surprisingly rapid. Carbonate veins in mantle peridotite in Oman have an average 14C age of ≈26,000 years, and are not 30–95 million years old as previously believed. These data and reconnaissance mapping show that ≈104 to 105 tons per year of atmospheric CO2 are converted to solid carbonate minerals via peridotite weathering in Oman. Peridotite carbonation can be accelerated via drilling, hydraulic fracture, input of purified CO2 at elevated pressure, and, in particular, increased temperature at depth. After an initial heating step, CO2 pumped at 25 or 30 °C can be heated by exothermic carbonation reactions that sustain high temperature and rapid reaction rates at depth with little expenditure of energy. In situ carbonation of peridotite could consume >1 billion tons of CO2 per year in Oman alone, affording a low-cost, safe, and permanent method to capture and store atmospheric CO2.

  1. Microporous carbon nanosheets with redox-active heteroatoms for pseudocapacitive charge storage

    NASA Astrophysics Data System (ADS)

    Yun, Y. S.; Kim, D.-H.; Hong, S. J.; Park, M. H.; Park, Y. W.; Kim, B. H.; Jin, H.-J.; Kang, K.

    2015-09-01

    We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors.We report microporous carbon nanosheets containing numerous redox active heteroatoms fabricated from exfoliated waste coffee grounds by simple heating with KOH for pseudocapacitive charge storage. We found that various heteroatom combinations in carbonaceous materials can be a redox host for lithium ion storage. The bio-inspired nanomaterials had unique characteristics, showing superior electrochemical performances as cathode for asymmetric pseudocapacitors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04231c

  2. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage.

    PubMed

    Wang, Hailiang; Dai, Hongjie

    2013-04-01

    The global shift of energy production from fossil fuels to renewable energy sources requires more efficient and reliable electrochemical energy storage devices. In particular, the development of electric or hydrogen powered vehicles calls for much-higher-performance batteries, supercapacitors and fuel cells than are currently available. In this review, we present an approach to synthesize electrochemical energy storage materials to form strongly coupled hybrids (SC-hybrids) of inorganic nanomaterials and novel graphitic nano-carbon materials such as carbon nanotubes and graphene, through nucleation and growth of nanoparticles at the functional groups of oxidized graphitic nano-carbon. We show that the inorganic-nano-carbon hybrid materials represent a new approach to synthesize electrode materials with higher electrochemical performance than traditional counterparts made by simple physical mixtures of electrochemically active inorganic particles and conducting carbon materials. The inorganic-nano-carbon hybrid materials are novel due to possible chemical bonding between inorganic nanoparticles and oxidized carbon, affording enhanced charge transport and increased rate capability of electrochemical materials without sacrificing specific capacity. Nano-carbon with various degrees of oxidation provides a novel substrate for nanoparticle nucleation and growth. The interactions between inorganic precursors and oxidized-carbon substrates provide a degree of control over the morphology, size and structure of the resulting inorganic nanoparticles. This paper reviews the recent development of inorganic-nano-carbon hybrid materials for electrochemical energy storage and conversion, including the preparation and functionalization of graphene sheets and carbon nanotubes to impart oxygen containing groups and defects, and methods of synthesis of nanoparticles of various morphologies on oxidized graphene and carbon nanotubes. We then review the applications of the SC

  3. Regional Opportunities for Carbon Dioxide Capture and Storage in China: A Comprehensive CO2 Storage Cost Curve and Analysis of the Potential for Large Scale Carbon Dioxide Capture and Storage in the People’s Republic of China

    SciTech Connect

    Dahowski, Robert T.; Li, Xiaochun; Davidson, Casie L.; Wei, Ning; Dooley, James J.

    2009-12-01

    This study presents data and analysis on the potential for carbon dioxide capture and storage (CCS) technologies to deploy within China, including a survey of the CO2 source fleet and potential geologic storage capacity. The results presented here indicate that there is significant potential for CCS technologies to deploy in China at a level sufficient to deliver deep, sustained and cost-effective emissions reductions for China over the course of this century.

  4. Spatial Variations in Carbon Storage along Headwater Fluvial Networks with Differing Valley Geometry

    NASA Astrophysics Data System (ADS)

    Wohl, E. E.; Dwire, K. A.; Polvi, L. E.; Sutfin, N. A.; Bazan, R. A.

    2011-12-01

    We distinguish multiple valley types along headwater fluvial networks in the Colorado Front Range based on valley geometry (downstream gradient and valley-bottom width relative to active channel width) and the presence of biotic drivers (beaver dams or channel-spanning logjams associated with old-growth forest) capable of creating a multi-thread channel pattern. Valley type influences storage of fine sediment, organic matter, and carbon. Deep, narrow valleys have limited storage potential, whereas wide, shallow valleys with multi-thread channels have substantial storage potential. Multi-thread channels only occur in the presence of a biotic driver. Given the importance of headwater streams in the global carbon cycle, it becomes important to understand the spatial distribution and magnitude of carbon storage along these streams, as well as the processes governing patterns of storage. We compare carbon stored in three reservoirs: riparian vegetation (live, dead, and litter), instream and floodplain large wood, and floodplain soils for 100-m-long valley segments in seven different valley types. The valley types are (i) laterally confined valleys in old-growth forest, (ii) partly confined valleys in old-growth forest, (iii) laterally unconfined valleys with multi-thread channels in old-growth forest, (iv) laterally unconfined valleys with single-thread channels in old-growth forest, (v) laterally confined valleys in younger forest, (vi) recently abandoned beaver-meadow complexes with multi-thread channels and willow thickets, and (vii) longer abandoned beaver-meadow complexes with single-thread channels and very limited woody vegetation. Preliminary results suggest that, although multi-thread channel segments driven by beavers or logjams cover less than 25 percent of the total length of headwater river networks in the study area, they account for more than three-quarters of the carbon stored along the river network. Historical loss of beavers and old-growth forest has

  5. Coupled Socio-Ecological Drivers of Carbon Storage in South African Coastal Lowland Landscapes

    NASA Astrophysics Data System (ADS)

    Smithwick, E. A.

    2011-12-01

    The amount of carbon stored in African terrestrial ecosystems is unknown, varying from 30 to >250 Mg C ha-1 in tropical forests. Several prominent efforts are improving this estimate through forest inventories and modeling, but carbon storage varies across ecosystems and some ecosystems remain vastly understudied. This is critical given that Africa's net carbon flux ranges from a source to a substantial carbon sink, making it one of the weakest links in the global carbon cycle. One such understudied ecosystem is the coastal lowland forest along the Eastern Cape of South Africa, which lies between two internationally recognized biodiversity hotspots and is a current focus of conservation efforts in the region. Six permanent forest plots were established within two nature reserves during February 2011. Using empirical wood density estimates, aboveground tree carbon was estimated using established allometric equations. Results indicated that forests store between 50 and 100 Mg C ha-1, with significant variability among sites. However, the landscapes of the nature reserves differ significantly in the amount of forest cover due to differences in fire frequencies (ranging from <3 to >100 years), which are largely determined by rates of wildlife poaching within nature reserves. Thus, although estimates of forest carbon storage are heterogeneous within Eastern Cape forests, landscape-scale carbon storage is governed largely by human activities and reflects strongly coupled socio-ecological drivers. Estimates of landscape-scale carbon storage can help guide conservation management strategies and form the basis of future modeling efforts exploring interactions of climate, disturbance, and human livelihoods.

  6. On the use of data mining for estimating carbon storage in the trees

    PubMed Central

    2013-01-01

    Forests contribute to climate change mitigation by storing carbon in tree biomass. The amount of carbon stored in this carbon pool is estimated by using either allometric equations or biomass expansion factors. Both of the methods provide estimate of the carbon stock based on the biometric parameters of a model tree. This study calls attention to the potential advantages of the data mining technique known as instance-based classification, which is not used currently for this purpose. The analysis of the data on the carbon storage in 30 trees of Brazilian pine (Araucaria angustifolia) shows that the instance-based classification provides as relevant estimates as the conventional methods do. The coefficient of correlation between the estimated and measured values of carbon storage in tree biomass does not vary significantly with the choice of the method. The use of some other measures of method performance leads to the same result. In contrast to the convention methods the instance-based classification does not presume any specific form of the function relating carbon storage to the biometric parameters of the tree. Since the best form of such function is difficult to find, the instance-based classification could outperform the conventional methods in some cases, or simply get rid of the questions about the choice of the allometric equations. PMID:23758745

  7. Reversible Storage of Hydrogen and Natural Gas in Nanospace-Engineered Activated Carbons

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Beckner, Matt; Rash, Tyler; Yu, Ping; Suppes, Galen; Pfeifer, Peter

    2012-02-01

    An overview is given of the development of advanced nanoporous carbons as storage materials for natural gas (methane) and molecular hydrogen in on-board fuel tanks for next-generation clean automobiles. High specific surface areas, porosities, and sub-nm/supra-nm pore volumes are quantitatively selected by controlling the degree of carbon consumption and metallic potassium intercalation into the carbon lattice during the activation process. Tunable bimodal pore-size distributions of sub-nm and supra-nm pores are established by subcritical nitrogen adsorption. Optimal pore structures for gravimetric and volumetric gas storage, respectively, are presented. Methane and hydrogen adsorption isotherms up to 250 bar on monolithic and powdered activated carbons are reported and validated, using several gravimetric and volumetric instruments. Current best gravimetric and volumetric storage capacities are: 256 g CH4/kg carbon and 132 g CH4/liter carbon at 293 K and 35 bar; 26, 44, and 107 g H2/kg carbon at 303, 194, and 77 K respectively and 100 bar. Adsorbed film density, specific surface area, and binding energy are analyzed separately using the Clausius-Clapeyron equation, Langmuir model, and lattice gas models.

  8. Role of rock/fluid characteristics in carbon (CO2) storage and modeling

    USGS Publications Warehouse

    Verma, Mahendra K.

    2005-01-01

    The presentation ? Role of Rock/Fluid Characteristics in Carbon (CO2) Storage and Modeling ? was prepared for the meeting of the Environmental Protection Agency (EPA) in Houston, Tex., on April 6?7, 2005. It provides an overview of greenhouse gases, particularly CO2, and a summary of their effects on the Earth?s atmosphere. It presents methods of mitigating the effects of greenhouse gases, and the role of rock and fluid properties on CO2 storage mechanisms. It also lists factors that must be considered to adequately model CO2 storage.

  9. Whole ecosystem estimates of carbon exchange and storage in a New England salt marsh

    NASA Astrophysics Data System (ADS)

    Forbrich, I.; Giblin, A.

    2013-12-01

    Salt marshes are wetlands situated at the interface of land and ocean. They are among the most productive ecosystems worldwide and store substantial amounts of carbon as peat. Their long-term stability is dependent on sediment accretion and carbon accumulation to avoid submergence when sea level is rising. Currently, estimates of carbon storage in salt marshes are uncertain because our understanding of the coupling between marsh plant productivity and carbon release to the adjacent ocean is limited. To evaluate the capacity to store carbon as well as the resilience of the ecosystem, long-term studies of carbon cycling considering both vertical and lateral fluxes are necessary. To study the net exchange between marsh and atmosphere, we chose the non-intrusive eddy covariance which allows nearly continuous half hourly flux measurements of net ecosystem exchange (NEE) on the ecosystem scale. Since spring 2012, we have been investigating the marsh-atmosphere exchange of carbon dioxide (CO2) at a Spartina patens high marsh at the Plum Island Ecosystems Long-Term Ecological Research site. Seasonal dynamics of CO2 exchange during summer were controlled by the phenology of S. patens. Preliminary estimates for seasonal carbon storage range from 185 to 228 g C m-2 (5/1/2012 to 10/31/2012). During the winter months we observed small fluxes, but carbon uptake still occurred during the day. We attribute this to microalgae productivity. Winter carbon release is estimated to be approximately 130 g C m-2 (12/6/2012 to 4/30/2013), when uptake by microalgae is not taken into account. This emphasizes the relevance of transitional and cold season carbon cycling for the carbon storage capacity of northern salt marshes, since a large proportion of fixed carbon is released during these periods. Direct tidal effects on the marsh-atmosphere carbon exchange are visible especially during monthly spring tides, when both daytime carbon uptake and night time respiration were reduced during

  10. Human and environmental controls over aboveground carbon storage in Madagascar

    PubMed Central

    2012-01-01

    Background Accurate, high-resolution mapping of aboveground carbon density (ACD, Mg C ha-1) could provide insight into human and environmental controls over ecosystem state and functioning, and could support conservation and climate policy development. However, mapping ACD has proven challenging, particularly in spatially complex regions harboring a mosaic of land use activities, or in remote montane areas that are difficult to access and poorly understood ecologically. Using a combination of field measurements, airborne Light Detection and Ranging (LiDAR) and satellite data, we present the first large-scale, high-resolution estimates of aboveground carbon stocks in Madagascar. Results We found that elevation and the fraction of photosynthetic vegetation (PV) cover, analyzed throughout forests of widely varying structure and condition, account for 27-67% of the spatial variation in ACD. This finding facilitated spatial extrapolation of LiDAR-based carbon estimates to a total of 2,372,680 ha using satellite data. Remote, humid sub-montane forests harbored the highest carbon densities, while ACD was suppressed in dry spiny forests and in montane humid ecosystems, as well as in most lowland areas with heightened human activity. Independent of human activity, aboveground carbon stocks were subject to strong physiographic controls expressed through variation in tropical forest canopy structure measured using airborne LiDAR. Conclusions High-resolution mapping of carbon stocks is possible in remote regions, with or without human activity, and thus carbon monitoring can be brought to highly endangered Malagasy forests as a climate-change mitigation and biological conservation strategy. PMID:22289685

  11. The lifetime of carbon capture and storage as a climate-change mitigation technology

    SciTech Connect

    Juanes, Ruben

    2013-12-30

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 years. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century.

  12. Lifetime of carbon capture and storage as a climate-change mitigation technology

    PubMed Central

    Szulczewski, Michael L.; MacMinn, Christopher W.; Herzog, Howard J.; Juanes, Ruben

    2012-01-01

    In carbon capture and storage (CCS), CO2 is captured at power plants and then injected underground into reservoirs like deep saline aquifers for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained world, the deployment of CCS has been hindered by uncertainty in geologic storage capacities and sustainable injection rates, which has contributed to the absence of concerted government policy. Here, we clarify the potential of CCS to mitigate emissions in the United States by developing a storage-capacity supply curve that, unlike current large-scale capacity estimates, is derived from the fluid mechanics of CO2 injection and trapping and incorporates injection-rate constraints. We show that storage supply is a dynamic quantity that grows with the duration of CCS, and we interpret the lifetime of CCS as the time for which the storage supply curve exceeds the storage demand curve from CO2 production. We show that in the United States, if CO2 production from power generation continues to rise at recent rates, then CCS can store enough CO2 to stabilize emissions at current levels for at least 100 y. This result suggests that the large-scale implementation of CCS is a geologically viable climate-change mitigation option in the United States over the next century. PMID:22431639

  13. Carbon Storages in Plantation Ecosystems in Sand Source Areas of North Beijing, China

    PubMed Central

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0–100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management. PMID:24349223

  14. Atomic-layer-deposition-assisted formation of carbon nanoflakes on metal oxides and energy storage application.

    PubMed

    Guan, Cao; Zeng, Zhiyuan; Li, Xianglin; Cao, Xiehong; Fan, Yu; Xia, Xinhui; Pan, Guoxiang; Zhang, Hua; Fan, Hong Jin

    2014-01-29

    Nanostructured carbon is widely used in energy storage devices (e.g., Li-ion and Li-air batteries and supercapacitors). A new method is developed for the generation of carbon nanoflakes on various metal oxide nanostructures by combining atomic layer deposition (ALD) and glucose carbonization. Various metal oxide@nanoflake carbon (MO@f-C) core-branch nanostructures are obtained. For the mechanism, it is proposed that the ALD Al2 O3 and glucose form a composite layer. Upon thermal annealing, the composite layer becomes fragmented and moves outward, accompanied by carbon deposition on the alumina skeleton. When tested as electrochemical supercapacitor electrode, the hierarchical MO@f-C nanostructures exhibit better properties compared with the pristine metal oxides or the carbon coating without ALD. The enhancement can be ascribed to increased specific surface areas and electric conductivity due to the carbon flake coating. This peculiar carbon coating method with the unique hierarchical nanostructure may provide a new insight into the preparation of 'oxides + carbon' hybrid electrode materials for energy storage applications.

  15. Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes

    NASA Astrophysics Data System (ADS)

    Hasegawa, George; Kanamori, Kazuyoshi; Kannari, Naokatsu; Ozaki, Jun-ichi; Nakanishi, Kazuki; Abe, Takeshi

    2016-06-01

    Hard carbons emerge as one of the most promising candidate for an anode of Na-ion batteries. This research focuses on the carbon monolith derived from resorcinol-formaldehyde (RF) gels as a model hard carbon electrode. A series of binder-free monolithic carbon electrodes heat-treated at varied temperatures allow the comparative investigation of the correlation between carbon nanotexture and electrochemical Na+-ion storage. The increase in carbonization temperature exerts a favorable influence on electrode performance, especially in the range between 1600 °C and 2500 °C. The comparison between Li+- and Na+-storage behaviors in the carbon electrodes discloses that the Na+-trapping in nanovoids is negligible when the carbonization temperature is higher than 1600 °C. On the other hand, the high-temperature sintering at 2500-3000 °C enlarges the resistance for Na+-insertion into interlayer spacing as well as Na+-filling into nanovoids. In addition, the study on the effect of pore size clearly demonstrates that not the BET surface area but the surface area related to meso- and macropores is a predominant factor for the initial irreversible capacity. The outcomes of this work are expected to become a benchmark for other hard carbon electrodes prepared from various precursors.

  16. Carbon storages in plantation ecosystems in sand source areas of north Beijing, China.

    PubMed

    Liu, Xiuping; Zhang, Wanjun; Cao, Jiansheng; Shen, Huitao; Zeng, Xinhua; Yu, Zhiqiang; Zhao, Xin

    2013-01-01

    Afforestation is a mitigation option to reduce the increased atmospheric carbon dioxide levels as well as the predicted high possibility of climate change. In this paper, vegetation survey data, statistical database, National Forest Resource Inventory database, and allometric equations were used to estimate carbon density (carbon mass per hectare) and carbon storage, and identify the size and spatial distribution of forest carbon sinks in plantation ecosystems in sand source areas of north Beijing, China. From 2001 to the end of 2010, the forest areas increased more than 2.3 million ha, and total carbon storage in forest ecosystems was 173.02 Tg C, of which 82.80 percent was contained in soil in the top 0-100 cm layer. Younger forests have a large potential for enhancing carbon sequestration in terrestrial ecosystems than older ones. Regarding future afforestation efforts, it will be more effective to increase forest area and vegetation carbon density through selection of appropriate tree species and stand structure according to local climate and soil conditions, and application of proper forest management including land-shaping, artificial tending and fencing plantations. It would be also important to protect the organic carbon in surface soils during forest management.

  17. Physical and chemical changes during carbon dioxide injection and storage (Invited)

    NASA Astrophysics Data System (ADS)

    Faulkner, D. R.; Armitage, P. J.; Blake, O. O.; Worden, R.

    2013-12-01

    Many of the lessons learnt from carbon capture and storage projects can be instructive for other applications, such as geothermal energy. More than 3M tonnes of carbon dioxide was injected at In Salah, Algeria between 2004 to 2011. We have tested rocks from this field to investigate the change in properties resulting from geomechanical and geochemical changes produced by injection and storage. Injection produced inflation of the reservoir that was recorded at the surface by satellite measurements. The uplift was asymmetrical around the injection wells indicating an inherent permeability anisotropy of around 15. Laboratory measurements of permeability indicate that a maximum horizontal permeability anisotropy of a factor of 2 is possible from the differential stress field alone. The permeability anisotropy can be explained by fracture damage produced by sub-failure stresses, as shown in laboratory experiments. The base of the caprock to the storage reservoir shows significant increases in permeability during flow of carbon dioxide-saturated water. The acidic fluid rapidly dissolves siderite and chlorite within the pore throats. Precipitation of the dissolved material is likely where lower carbon dioxide concentrations are present and may produce a lower permeability caprock at some distance from the injection well. Identifying changes that occur within carbon dioxide storage sites not only helps with future planning of these sites but can also provide valuable insights into likely processes in geothermal fields.

  18. Remote sensing assessment of carbon storage by urban forest

    NASA Astrophysics Data System (ADS)

    Kanniah, K. D.; Muhamad, N.; Kang, C. S.

    2014-02-01

    Urban forests play a crucial role in mitigating global warming by absorbing excessive CO2 emissions due to transportation, industry and house hold activities in the urban environment. In this study we have assessed the role of trees in an urban forest, (Mutiara Rini) located within the Iskandar Development region in south Johor, Malaysia. We first estimated the above ground biomass/carbon stock of the trees using allometric equations and biometric data (diameter at breast height of trees) collected in the field. We used remotely sensed vegetation indices (VI) to develop an empirical relationship between VI and carbon stock. We used five different VIs derived from a very high resolution World View-2 satellite data. Results show that model by [1] and Normalized Difference Vegetation Index are correlated well (R2 = 0.72) via a power model. We applied the model to the entire study area to obtain carbon stock of urban forest. The average carbon stock in the urban forest (mostly consisting of Dipterocarp species) is ~70 t C ha-1. Results of this study can be used by the Iskandar Regional Development Authority to better manage vegetation in the urban environment to establish a low carbon city in this region.

  19. A STUDY OF CORROSION AND STRESS CORROSION CRACKING OF CARBON STEEL NUCLEAR WASTE STORAGE TANKS

    SciTech Connect

    BOOMER, K.D.

    2007-08-21

    The Hanford reservation Tank Farms in Washington State has 177 underground storage tanks that contain approximately 50 million gallons of liquid legacy radioactive waste from cold war plutonium production. These tanks will continue to store waste until it is treated and disposed. These nuclear wastes were converted to highly alkaline pH wastes to protect the carbon steel storage tanks from corrosion. However, the carbon steel is still susceptible to localized corrosion and stress corrosion cracking. The waste chemistry varies from tank to tank, and contains various combinations of hydroxide, nitrate, nitrite, chloride, carbonate, aluminate and other species. The effect of each of these species and any synergistic effects on localized corrosion and stress corrosion cracking of carbon steel have been investigated with electrochemical polarization, slow strain rate, and crack growth rate testing. The effect of solution chemistry, pH, temperature and applied potential are all considered and their role in the corrosion behavior will be discussed.

  20. Activated carbon derived from waste coffee grounds for stable methane storage

    NASA Astrophysics Data System (ADS)

    Kemp, K. Christian; Baek, Seung Bin; Lee, Wang-Geun; Meyyappan, M.; Kim, Kwang S.

    2015-09-01

    An activated carbon material derived from waste coffee grounds is shown to be an effective and stable medium for methane storage. The sample activated at 900 °C displays a surface area of 1040.3 m2 g-1 and a micropore volume of 0.574 cm3 g-1 and exhibits a stable CH4 adsorption capacity of ˜4.2 mmol g-1 at 3.0 MPa and a temperature range of 298 ± 10 K. The same material exhibits an impressive hydrogen storage capacity of 1.75 wt% as well at 77 K and 100 kPa. Here, we also propose a mechanism for the formation of activated carbon from spent coffee grounds. At low temperatures, the material has two distinct types with low and high surface areas; however, activation at elevated temperatures drives off the low surface area carbon, leaving behind the porous high surface area activated carbon.

  1. Nitrogen storage dynamics are affected by masting events in Fagus crenata.

    PubMed

    Han, Qingmin; Kabeya, Daisuke; Iio, Atsuhiro; Inagaki, Yoshiyuki; Kakubari, Yoshitaka

    2014-03-01

    It is generally assumed that the production of a large crop of seeds depletes stores of resources and that these take more than 1 year to replenish; this is accepted, theoretically, as the proximate mechanism of mast seeding (resource budget model). However, direct evidence of resource depletion in masting trees is very rare. Here, we trace seasonal and inter-annual variations in nitrogen (N) concentration and estimate the N storage pool of individuals after full masting of Fagus crenata in two stands. In 2005, a full masting year, the amount of N in fruit litter represented half of the N present in mature leaves in an old stand (age 190-260 years), and was about equivalent to the amount of N in mature leaves in a younger stand (age 83-84 years). Due to this additional burden, both tissue N concentration and individual N storage decreased in 2006; this was followed by significant replenishment in 2007, although a substantial N store remained even after full masting. These results indicate that internal storage may be important and that N may be the limiting factor for fruiting. In the 4 years following full masting, the old stand experienced two moderate masting events separated by 2 years, whilst trees in the younger stand did not fruit. This different fruiting behavior may be related to different "costs of reproduction" in the full masting year 2005, thus providing more evidence that N may limit fruiting. Compared to the non-fruiting stand, individuals in the fruiting stand exhibited an additional increase in N concentrations in roots early in the 2007 growing season, suggesting additional N uptake from the soil to supply resource demand. The enhanced uptake may alleviate the N storage depletion observed in the full masting year. This study suggests that masting affects N cycle dynamics in mature Fagus crenata and N may be one factor limiting fruiting. PMID:24221082

  2. Does feed composition affect oxidation of rainbow trout (Oncorhynchus mykiss) during frozen storage?

    PubMed

    Baron, Caroline P; Hyldig, Grethe; Jacobsen, Charlotte

    2009-05-27

    Rainbow trout ( Oncorhynchus mykiss ) were fed a diet containing either fish oil or rapeseed oil and with or without 200 mg/kg carotenoid (either astaxanthin or canthaxanthin). A total of six diets were obtained: (1) fish oil/astaxanthin; (2) vegetable oil/astaxanthin; (3) fish oil/canthaxanthin; (4) vegetable oil/canthaxanthin; (5) fish oil/no pigment; and (6) vegetable oil/no pigment. The fish were slaughtered and stored in polyethylene bags individually as butterfly fillets for up to 22 months at -20 °C. The composition of the fish muscle at slaughter and during frozen storage was evaluated by sampling after 4, 8, 13, 18, and 22 months. The carotenoid content in the muscle was found to be approximately 9-10 mg/kg of fish for both carotenoids. Primary oxidation lipid products (peroxides) as well as secondary oxidation products (volatiles) were measured. In addition, the level of protein carbonyl groups and the content of tocopherols and carotenoids in the muscle were also measured. To estimate the overall changes in sensory properties of the different samples during storage, a trained sensory panel also evaluated the samples. Both the sensory panel and the chemical analysis revealed that in this investigation fish fed fish oil were slightly more oxidized than fish fed vegetable oil. Results showed that canthaxanthin effectively protected both protein and lipid against oxidation during frozen storage. In contrast, astaxanthin did not seem to have a clear and systematic effect. Results indicated that the feed composition influenced the fish muscle composition and subsequently the oxidative stability of the fish during frozen storage. Besides, other constituents in the feed might influence deposition of antioxidants in the tissue and consequently affect the oxidative stability of the muscle.

  3. Comparison of methods for geologic storage of carbon dioxide in saline formations

    SciTech Connect

    Goodman, Angela L.; Bromhal, Grant S.; Strazisar, Brian; Rodosta, Traci D.; Guthrie, William J.; Allen, Douglas E.; Guthrie, George D.

    2013-01-01

    Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

  4. Optimized carbonation of magnesium silicate mineral for CO2 storage.

    PubMed

    Eikeland, Espen; Blichfeld, Anders Bank; Tyrsted, Christoffer; Jensen, Anca; Iversen, Bo Brummerstedt

    2015-03-11

    The global ambition of reducing the carbon dioxide emission makes sequestration reactions attractive as an option of storing CO2. One promising environmentally benign technology is based on forming thermodynamically stable carbonated minerals, with the drawback that these reactions usually have low conversion rates. In this work, the carbonation reaction of Mg rich olivine, Mg2SiO4, under supercritical conditions has been studied. The reaction produces MgCO3 at elevated temperature and pressure, with the addition of NaHCO3 and NaCl to improve the reaction rates. A sequestration rate of 70% was achieved within 2 h, using olivine particles of sub-10 μm, whereas 100% conversion was achieved in 4 h. This is one of the fastest complete conversions for this reaction reported to date. The CO2 sequestration rate is found to be highly dependent on the applied temperature and pressure, as well as the addition of NaHCO3. In contrast, adding NaCl was found to have limited effect on the reaction rate. The roles of NaHCO3 and NaCl as catalysts are discussed and especially how their effect changes with increased olivine particle size. The products have been characterized by Rietveld refinement of powder X-ray diffraction, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy revealing the formation of amorphous silica and micrometer-sized magnesium carbonate crystals.

  5. Optimized carbonation of magnesium silicate mineral for CO2 storage.

    PubMed

    Eikeland, Espen; Blichfeld, Anders Bank; Tyrsted, Christoffer; Jensen, Anca; Iversen, Bo Brummerstedt

    2015-03-11

    The global ambition of reducing the carbon dioxide emission makes sequestration reactions attractive as an option of storing CO2. One promising environmentally benign technology is based on forming thermodynamically stable carbonated minerals, with the drawback that these reactions usually have low conversion rates. In this work, the carbonation reaction of Mg rich olivine, Mg2SiO4, under supercritical conditions has been studied. The reaction produces MgCO3 at elevated temperature and pressure, with the addition of NaHCO3 and NaCl to improve the reaction rates. A sequestration rate of 70% was achieved within 2 h, using olivine particles of sub-10 μm, whereas 100% conversion was achieved in 4 h. This is one of the fastest complete conversions for this reaction reported to date. The CO2 sequestration rate is found to be highly dependent on the applied temperature and pressure, as well as the addition of NaHCO3. In contrast, adding NaCl was found to have limited effect on the reaction rate. The roles of NaHCO3 and NaCl as catalysts are discussed and especially how their effect changes with increased olivine particle size. The products have been characterized by Rietveld refinement of powder X-ray diffraction, scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX) spectroscopy revealing the formation of amorphous silica and micrometer-sized magnesium carbonate crystals. PMID:25688577

  6. A general approach towards carbon nanotube and iron oxide coaxial architecture and its lithium storage capability

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Ni, Jiangfeng; Wang, Wencong; Li, Liang

    2015-12-01

    Coaxial architectures consisting of metal oxide and carbon nanotube are promising for many energy applications due to their synergetic interaction. The engineering and development of coaxial structures through a simple approach are highly desirable but remain a challenge. Herein, we present a general and facile ethylene glycol bath approach to fabricate coaxial architectures in which the metal oxide component is sandwiched by carbon nanotube and amorphous carbon. These unique architectures can serve as efficient electrode for lithium storage. The internal carbon nanotube allows rapid electron transport, while the external amorphous carbon acts as flexible buffer to accommodate volume variation upon lithium uptake. When evaluated in lithium cells, the carbon nanotube and iron oxide coaxial material exhibits a remarkable electrochemical lithium storage. It affords a capacity of 1083 mAh g-1 over 60 cycles, and retains 529 mAh g-1 at a high rate of 5 A g-1, drastically outperforming the pure iron oxide counterpart. This facile approach is in principle applicable to constructing other coaxial electrodes, and thus holds great potential in the manipulation of battery materials for lithium storage application.

  7. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs.

  8. Fast synthesis of multilayer carbon nanotubes from camphor oil as an energy storage material.

    PubMed

    TermehYousefi, Amin; Bagheri, Samira; Shinji, Kawasaki; Rouhi, Jalal; Rusop Mahmood, Mohamad; Ikeda, Shoichiro

    2014-01-01

    Among the wide range of renewable energy sources, the ever-increasing demand for electricity storage represents an emerging challenge. Utilizing carbon nanotubes (CNTs) for energy storage is closely being scrutinized due to the promising performance on top of their extraordinary features. In this work, well-aligned multilayer carbon nanotubes were successfully synthesized on a porous silicon (PSi) substrate in a fast process using renewable natural essential oil via chemical vapor deposition (CVD). Considering the influx of vaporized multilayer vertical carbon nanotubes (MVCNTs) to the PSi, the diameter distribution increased as the flow rate decreased in the reactor. Raman spectroscopy results indicated that the crystalline quality of the carbon nanotubes structure exhibits no major variation despite changes in the flow rate. Fourier transform infrared (FT-IR) spectra confirmed the hexagonal structure of the carbon nanotubes because of the presence of a peak corresponding to the carbon double bond. Field emission scanning electron microscopy (FESEM) images showed multilayer nanotubes, each with different diameters with long and straight multiwall tubes. Moreover, the temperature programmed desorption (TPD) method has been used to analyze the hydrogen storage properties of MVCNTs, which indicates that hydrogen adsorption sites exist on the synthesized multilayer CNTs. PMID:25258714

  9. Storage temperature and 1-MCP treatment affect storage disorders and physiological attributes of ‘Royal Gala’ apples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Royal Gala’ apples [Malus domestica (Borkh.) Mansf.] can develop postharvest disorders such as flesh browning, senescent breakdown, peeling, cracking, or shriveling during and after cold storage. The objective of this study was to examine the effects of storage temperature and a range of 1-methylc...

  10. Microbial Internal Storage Alters the Carbon Transformation in Dynamic Anaerobic Fermentation.

    PubMed

    Ni, Bing-Jie; Batstone, Damien; Zhao, Bai-Hang; Yu, Han-Qing

    2015-08-01

    Microbial internal storage processes have been demonstrated to occur and play an important role in activated sludge systems under both aerobic and anoxic conditions when operating under dynamic conditions. High-rate anaerobic reactors are often operated at a high volumetric organic loading and a relatively dynamic profile, with large amounts of fermentable substrates. These dynamic operating conditions and high catabolic energy availability might also facilitate the formation of internal storage polymers by anaerobic microorganisms. However, so far information about storage under anaerobic conditions (e.g., anaerobic fermentation) as well as its consideration in anaerobic process modeling (e.g., IWA Anaerobic Digestion Model No. 1, ADM1) is still sparse. In this work, the accumulation of storage polymers during anaerobic fermentation was evaluated by batch experiments using anaerobic methanogenic sludge and based on mass balance analysis of carbon transformation. A new mathematical model was developed to describe microbial storage in anaerobic systems. The model was calibrated and validated by using independent data sets from two different anaerobic systems, with significant storage observed, and effectively simulated in both systems. The inclusion of the new anaerobic storage processes in the developed model allows for more successful simulation of transients due to lower accumulation of volatile fatty acids (correction for the overestimation of volatile fatty acids), which mitigates pH fluctuations. Current models such as the ADM1 cannot effectively simulate these dynamics due to a lack of anaerobic storage mechanisms.

  11. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage.

    PubMed

    Averill, Colin; Turner, Benjamin L; Finzi, Adrien C

    2014-01-23

    Soil contains more carbon than the atmosphere and vegetation combined. Understanding the mechanisms controlling the accumulation and stability of soil carbon is critical to predicting the Earth's future climate. Recent studies suggest that decomposition of soil organic matter is often limited by nitrogen availability to microbes and that plants, via their fungal symbionts, compete directly with free-living decomposers for nitrogen. Ectomycorrhizal and ericoid mycorrhizal (EEM) fungi produce nitrogen-degrading enzymes, allowing them greater access to organic nitrogen sources than arbuscular mycorrhizal (AM) fungi. This leads to the theoretical prediction that soil carbon storage is greater in ecosystems dominated by EEM fungi than in those dominated by AM fungi. Using global data sets, we show that soil in ecosystems dominated by EEM-associated plants contains 70% more carbon per unit nitrogen than soil in ecosystems dominated by AM-associated plants. The effect of mycorrhizal type on soil carbon is independent of, and of far larger consequence than, the effects of net primary production, temperature, precipitation and soil clay content. Hence the effect of mycorrhizal type on soil carbon content holds at the global scale. This finding links the functional traits of mycorrhizal fungi to carbon storage at ecosystem-to-global scales, suggesting that plant-decomposer competition for nutrients exerts a fundamental control over the terrestrial carbon cycle.

  12. Aeolian nutrient fluxes following wildfire in sagebrush steppe: Implications for soil carbon storage

    USGS Publications Warehouse

    Hasselquist, N.J.; Germino, M.J.; Sankey, J.B.; Ingram, L.J.; Glenn, N.F.

    2011-01-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m????'1 d????'1 and 19 g N m????'1 d????'1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes. ?? Author(s) 2011. CC Attribution 3.0 License.

  13. Aeolian nutrient fluxes following wildfire in sagebrush steppe: implications for soil carbon storage

    NASA Astrophysics Data System (ADS)

    Hasselquist, N. J.; Germino, M. J.; Sankey, J. B.; Ingram, L. J.; Glenn, N. F.

    2011-12-01

    Pulses of aeolian transport following fire can profoundly affect the biogeochemical cycling of nutrients in semi-arid and arid ecosystems. Our objective was to determine horizontal nutrient fluxes occurring in the saltation zone during an episodic pulse of aeolian transport that occurred following a wildfire in a semi-arid sagebrush steppe ecosystem in southern Idaho, USA. We also examined how temporal trends in nutrient fluxes were affected by changes in particle sizes of eroded mass as well as nutrient concentrations associated with different particle size classes. In the burned area, total carbon (C) and nitrogen (N) fluxes were as high as 235 g C m-1 d-1 and 19 g N m-1 d-1 during the first few months following fire, whereas C and N fluxes were negligible in an adjacent unburned area throughout the study. Temporal variation in C and N fluxes following fire was largely attributable to the redistribution of saltation-sized particles. Total N and organic C concentrations in the soil surface were significantly lower in the burned relative to the unburned area one year after fire. Our results show how an episodic pulse of aeolian transport following fire can affect the spatial distribution of soil C and N, which, in turn, can have important implications for soil C storage. These findings demonstrate how an ecological disturbance can exacerbate a geomorphic process and highlight the need for further research to better understand the role aeolian transport plays in the biogeochemical cycling of C and N in recently burned landscapes.

  14. [Vertical distribution of soil active carbon and soil organic carbon storage under different forest types in the Qinling Mountains].

    PubMed

    Wang, Di; Geng, Zeng-Chao; She, Diao; He, Wen-Xiang; Hou, Lin

    2014-06-01

    Adopting field investigation and indoor analysis methods, the distribution patterns of soil active carbon and soil carbon storage in the soil profiles of Quercus aliena var. acuteserrata (Matoutan Forest, I), Pinus tabuliformis (II), Pinus armandii (III), pine-oak mixed forest (IV), Picea asperata (V), and Quercus aliena var. acuteserrata (Xinjiashan Forest, VI) of Qinling Mountains were studied in August 2013. The results showed that soil organic carbon (SOC), microbial biomass carbon (MBC), dissolved organic carbon (DOC), and easily oxidizable carbon (EOC) decreased with the increase of soil depth along the different forest soil profiles. The SOC and DOC contents of different depths along the soil profiles of P. asperata and pine-oak mixed forest were higher than in the other studied forest soils, and the order of the mean SOC and DOC along the different soil profiles was V > IV > I > II > III > VI. The contents of soil MBC of the different forest soil profiles were 71.25-710.05 mg x kg(-1), with a content sequence of I > V > N > III > II > VI. The content of EOC along the whole soil profile of pine-oak mixed forest had a largest decline, and the order of the mean EOC was IV > V> I > II > III > VI. The sequence of soil organic carbon storage of the 0-60 cm soil layer was V > I >IV > III > VI > II. The MBC, DOC and EOC contents of the different forest soils were significanty correlated to each other. There was significant positive correlation among soil active carbon and TOC, TN. Meanwhile, there was no significant correlation between soil active carbon and other soil basic physicochemical properties.

  15. Charge Modulation in Graphitic Carbon Nitride as a Switchable Approach to High-Capacity Hydrogen Storage.

    PubMed

    Tan, Xin; Kou, Liangzhi; Tahini, Hassan A; Smith, Sean C

    2015-11-01

    Electrical charging of graphitic carbon nitride nanosheets (g-C4 N3 and g-C3 N4 ) is proposed as a strategy for high-capacity and electrocatalytically switchable hydrogen storage. Using first-principle calculations, we found that the adsorption energy of H2 molecules on graphitic carbon nitride nanosheets is dramatically enhanced by injecting extra electrons into the adsorbent. At full hydrogen coverage, the negatively charged graphitic carbon nitride achieves storage capacities up to 6-7 wt %. In contrast to other hydrogen storage approaches, the storage/release occurs spontaneously once extra electrons are introduced or removed, and these processes can be simply controlled by switching on/off the charging voltage. Therefore, this approach promises both facile reversibility and tunable kinetics without the need of specific catalysts. Importantly, g-C4 N3 has good electrical conductivity and high electron mobility, which can be a very good candidate for electron injection/release. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage materials.

  16. Rock Physics of Geologic Carbon Sequestration/Storage

    SciTech Connect

    Dvorkin, Jack; Mavko, Gary

    2013-05-31

    This report covers the results of developing the rock physics theory of the effects of CO{sub 2} injection and storage in a host reservoir on the rock's elastic properties and the resulting seismic signatures (reflections) observed during sequestration and storage. Specific topics addressed are: (a) how the elastic properties and attenuation vary versus CO{sub 2} saturation in the reservoir during injection and subsequent distribution of CO{sub 2} in the reservoir; (b) what are the combined effects of saturation and pore pressure on the elastic properties; and (c) what are the combined effects of saturation and rock fabric alteration on the elastic properties. The main new results are (a) development and application of the capillary pressure equilibrium theory to forecasting the elastic properties as a function of CO{sub 2} saturation; (b) a new method of applying this theory to well data; and (c) combining this theory with other effects of CO{sub 2} injection on the rock frame, including the effects of pore pressure and rock fabric alteration. An important result is translating these elastic changes into synthetic seismic responses, specifically, the amplitude-versus-offset (AVO) response depending on saturation as well as reservoir and seal type. As planned, three graduate students participated in this work and, as a result, received scientific and technical training required should they choose to work in the area of monitoring and quantifying CO{sub 2} sequestration.

  17. Economic and environmental evaluation of flexible integrated gasification polygeneration facilities with carbon capture and storage

    EPA Science Inventory

    One innovative option for reducing greenhouse gas (GHG) emissions involves pairing carbon capture and storage (CCS) with the production of synthetic fuels and electricity from co-processed coal and biomass. In this scheme, the feedstocks are first converted to syngas, from which ...

  18. Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment

    SciTech Connect

    2009-03-01

    This factsheet describes a research project whose goal is to translate a unique approach for the synthesis of self-assembled nanostructured carbon into industrially viable technologies for two important, large-scale applications: electrochemical double-layer capacitors (also referred to as ultracapacitors) for electrical energy storage, and capacitive deionization (CDI) systems for water treatment and desalination.

  19. Application of Harmonic Pulse Testing for Leakage Detection in Carbon Storage Formations

    NASA Astrophysics Data System (ADS)

    Sun, A. Y.; Lu, J.; Hovorka, S. D.; Kianinejad, A.

    2014-12-01

    Carbon capture and storage (CCS) has the potential to enable a deep reduction in global CO2 emissions. Unintended migration of fluids from carbon storage formations not only compromises the goal of long-term carbon storage efficiency, but also leads to increased risks and liabilities. To fully characterize all attributes of leakage events (e.g., leak location and onset time), a leak detection tool must possess sufficient sensitivity and reliability. In this study, we demonstrate a novel leakage detection method based on harmonic pulse testing (HPT), in which a sinusoidal injection pattern is applied to probe potential leaks in carbon storage formations. Although HPT has been used for reservoir characterization, its efficacy for leakage detection requires further theoretical, numerical, and experimental validation. Our theoretical analysis and single- and multiphase modeling show that HPT is a viable and cost-effective method for pressure-based leakage diagnosis. Mega-scale laboratory experiments are being conducted using a 1-m diameter and 0.77m tall stainless tank to validate theoretical and numerical models. The results from numerical modeling, as well as from early experiments, will be presented.

  20. 75 FR 6087 - A Comprehensive Federal Strategy on Carbon Capture and Storage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ...'s goals of providing clean energy, supporting American jobs, and reducing emissions of carbon... capture and storage (CCS), will help position the United States as a leader in the global clean energy... private capital. The Department of Energy is conducting a comprehensive clean coal technology...

  1. Soil classification and carbon storage in cacao agroforestry farming systems of Bahia, Brazil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information concerning the classification of soils and their properties under cacao agroforestry systems of the Atlantic rain forest biome region in the Southeast of Bahia Brazil is largely unknown. Soil and climatic conditions in this region are favorable for high soil carbon storage. This study is...

  2. Capturing King Coal: deploying carbon capture and storage systems in the US at scale

    SciTech Connect

    Fernando, H.; Venezia, J.; Rigdon, C.; Verma, P.

    2008-05-15

    This paper examines the challenges in the deployment of carbon capture and storage (CCS) systems in the USA under the four broad categories of technology, policy, legal and regulatory framework, and investment, and their implications for CCS as part of the solution to mitigate adverse climate change impacts.

  3. Hydrogen Storage in the Carbon Dioxide - Formic Acid Cycle.

    PubMed

    Fink, Cornel; Montandon-Clerc, Mickael; Laurenczy, Gabor

    2015-01-01

    This year Mankind will release about 39 Gt carbon dioxide into the earth's atmosphere, where it acts as a greenhouse gas. The chemical transformation of carbon dioxide into useful products becomes increasingly important, as the CO(2) concentration in the atmosphere has reached 400 ppm. One approach to contribute to the decrease of this hazardous emission is to recycle CO(2), for example reducing it to formic acid. The hydrogenation of CO(2) can be achieved with a series of catalysts under basic and acidic conditions, in wide variety of solvents. To realize a hydrogen-based charge-discharge device ('hydrogen battery'), one also needs efficient catalysts for the reverse reaction, the dehydrogenation of formic acid. Despite of the fact that the overwhelming majority of these reactions are carried out using precious metals-based catalysts (mainly Ru), we review here developments for catalytic hydrogen evolution from formic acid with iron-based complexes. PMID:26842324

  4. Light enables a very high efficiency of carbon storage in developing embryos of rapeseed.

    PubMed

    Goffman, Fernando D; Alonso, Ana P; Schwender, Jörg; Shachar-Hill, Yair; Ohlrogge, John B

    2005-08-01

    The conversion of photosynthate to seed storage reserves is crucial to plant fitness and agricultural production, yet quantitative information about the efficiency of this process is lacking. To measure metabolic efficiency in developing seeds, rapeseed (Brassica napus) embryos were cultured in media in which all carbon sources were [U-14C]-labeled and their conversion into CO2, oil, protein, and other biomass was determined. The conversion efficiency of the supplied carbon into seed storage reserves was very high. When provided with 0, 50, or 150 micromol m(-2) s(-1) light, the proportion of carbon taken up by embryos that was recovered in biomass was 60% to 64%, 77% to 86%, and 85% to 95%, respectively. Light not only improved the efficiency of carbon storage, but also increased the growth rate, the proportion of 14C recovered in oil relative to protein, and the fixation of external 14CO2 into biomass. Embryos grown at 50 micromol m(-2) s(-1) in the presence of 5 microM 1,1-dimethyl-3-(3,4-dichlorophenyl) urea (an inhibitor of photosystem II) were reduced in total biomass and oil synthesis by 3.2-fold and 2.8-fold, respectively, to the levels observed in the dark. To explore if the reduced growth and carbon conversion efficiency in dark were related to oxygen supplied by photosystem II, embryos and siliques were cultured with increased oxygen. The carbon conversion efficiency of embryos remained unchanged when oxygen levels were increased 3-fold. Increasing the O2 levels surrounding siliques from 21% to 60% did not increase oil synthesis rates either at 1,000 micromol m(-2) s(-1) or in the dark. We conclude that light increases the growth, efficiency of carbon storage, and oil synthesis in developing rapeseed embryos primarily by providing reductant and/or ATP.

  5. Carbide-Derived Carbons with Tunable Porosity Optimized for Hydrogen Storage

    SciTech Connect

    Fisher, John E.; Gogotsi, Yury; Yildirim, Taner

    2010-01-07

    On-board hydrogen storage is a key requirement for fuel cell-powered cars and trucks. Porous carbon-based materials can in principle adsorb more hydrogen per unit weight at room temperature than liquid hydrogen at -176 oC. Achieving this goal requires interconnected pores with very high internal surface area, and binding energies between hydrogen and carbon significantly enhanced relative to H2 on graphite. In this project a systematic study of carbide-derived carbons, a novel form of porous carbon, was carried out to discover a high-performance hydrogen sorption material to meet the goal. In the event we were unable to improve on the state of the art in terms of stored hydrogen per unit weight, having encountered the same fundamental limit of all porous carbons: the very weak interaction between H2 and the carbon surface. On the other hand we did discover several strategies to improve storage capacity on a volume basis, which should be applicable to other forms of porous carbon. Further discoveries with potentially broader impacts include • Proof that storage performance is not directly related to pore surface area, as had been previously claimed. Small pores (< 1.5 nm) are much more effective in storing hydrogen than larger ones, such that many materials with large total surface areas are sub-par performers. • Established that the distribution of pore sizes can be controlled during CDC synthesis, which opens the possibility of developing high performance materials within a common family while targeting widely disparate applications. Examples being actively pursued with other funding sources include methane storage, electrode materials for batteries and supercapacitors with record high specific capacitance, and perm-selective membranes which bind cytokines for control of infections and possibly hemodialysis filters.

  6. Organic carbon storage in four ecosystem types in the karst region of southwestern China.

    PubMed

    Liu, Yuguo; Liu, Changcheng; Wang, Shijie; Guo, Ke; Yang, Jun; Zhang, Xinshi; Li, Guoqing

    2013-01-01

    Karst ecosystems are important landscape types that cover about 12% of the world's land area. The role of karst ecosystems in the global carbon cycle remains unclear, due to the lack of an appropriate method for determining the thickness of the solum, a representative sampling of the soil and data of organic carbon stocks at the ecosystem level. The karst region in southwestern China is the largest in the world. In this study, we estimated biomass, soil quantity and ecosystem organic carbon stocks in four vegetation types typical of karst ecosystems in this region, shrub grasslands (SG), thorn shrubbery (TS), forest - shrub transition (FS) and secondary forest (F). The results showed that the biomass of SG, TS, FS, and F is 0.52, 0.85, 5.9 and 19.2 kg m(-2), respectively and the corresponding organic cabon storage is 0.26, 0.40, 2.83 and 9.09 kg m(-2), respectively. Nevertheless, soil quantity and corresponding organic carbon storage are very small in karst habitats. The quantity of fine earth overlaying the physical weathering zone of the carbonate rock of SG, TS, FS and F is 38.10, 99.24, 29.57 and 61.89 kg m(-2), respectively, while the corresponding organic carbon storage is only 3.34, 4.10, 2.37, 5.25 kg m(-2), respectively. As a whole, ecosystem organic carbon storage of SG, TS, FS, and F is 3.81, 4.72, 5.68 and 15.1 kg m(-2), respectively. These are very low levels compared to other ecosystems in non-karst areas. With the restoration of degraded vegetation, karst ecosystems in southwestern China may play active roles in mitigating the increasing CO2 concentration in the atmosphere.

  7. Process for producing carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, James L.; Mayer, Steven T.; Pekala, Richard W.

    1998-01-01

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.

  8. Process for producing carbon foams for energy storage devices

    DOEpatents

    Kaschmitter, J.L.; Mayer, S.T.; Pekala, R.W.

    1998-08-04

    A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc--1.0 g/cc) electrically conductive and have high surface areas (400 m{sup 2}/g--1,000 m{sup 2}/g). Capacitances on the order of several tens of farad per gram of electrode are achieved. 9 figs.

  9. Forests and ozone: productivity, carbon storage, and feedbacks

    PubMed Central

    Wang, Bin; Shugart, Herman H.; Shuman, Jacquelyn K.; Lerdau, Manuel T.

    2016-01-01

    Tropospheric ozone is a serious air-pollutant, with large impacts on plant function. This study demonstrates that tropospheric ozone, although it damages plant metabolism, does not necessarily reduce ecosystem processes such as productivity or carbon sequestration because of diversity change and compensatory processes at the community scale ameliorate negative impacts at the individual level. This study assesses the impact of ozone on forest composition and ecosystem dynamics with an individual-based gap model that includes basic physiology as well as species-specific metabolic properties. Elevated tropospheric ozone leads to no reduction of forest productivity and carbon stock and to increased isoprene emissions, which result from enhanced dominance by isoprene-emitting species (which tolerate ozone stress better than non-emitters). This study suggests that tropospheric ozone may not diminish forest carbon sequestration capacity. This study also suggests that, because of the often positive relationship between isoprene emission and ozone formation, there is a positive feedback loop between forest communities and ozone, which further aggravates ozone pollution. PMID:26899381

  10. Synthesis, characterization, and modeling of hydrogen storage in carbon aerogels

    SciTech Connect

    Pekala, R.W.; Coronado, P.R.; Calef, D.F.

    1995-04-01

    Carbon aerogels are a special class of open-cell foams with an ultrafine cell/pore size (<50 nm), high surface area (600-800 m{sup 2}/g), and a solid matrix composed of interconnected colloidal-like particles or fibers with characteristic diameters of 10 nm. These materials are usually synthesized from the sol-gel polymerization of resorcinol-formaldehyde or phenolic-furfural, followed by supercritical extraction of the solvent and pyrolysis in an inert atmosphere. The resultant aerogel has a nanocrystalline structure with micropores (<2 nm diameter) located within the solid matrix. Carbon aerogel monoliths can be prepared at densities ranging from 0.05-1.0 g/cm{sup 3}, leading to volumetric surface areas (> 500 m{sup 2}/cm{sup 3}) that are much larger than commercially available materials. This research program is directed at optimization of the aerogel structure for maximum hydrogen adsorption over a wide range of temperatures and pressures. Computer modeling of hydrogen adsorption at carbon surfaces was also examined.

  11. FUNGAL POPULATIONS ASSOCIATED TO NETTING TISSUE OF GALIA MELONS AFFECTING QUALITY DURING STORAGE.

    PubMed

    Parra, M A; Aguilar, F W; Martínez, J A

    2015-01-01

    Galia melons are produced in southeast Spain and exported to other European countries. The main problem of melons during transport and storage consists of the development of epiphytic populations of fungi living inside the netting areas located on fruit surface. These areas are natural wounds which are covered by local suberin and lignin secretion induced by the plant in response to the natural skin wounds which occurs during fruit growing. These fungi are growing from the scarce organic matter and nutrients that are either deposited or segregated from the fruit. Several genera of fungi have commonly been associated to those areas such as some species of Fusarium, Cladosporium sp. and Alternaria sp. and a few others. All microorganisms were living in an ecological equilibrium. However, when water was present inside the netting areas, the growth of Cladosporium sp. was exacerbated and then, the ecological equilibrium was broken, therefore these grey areas turned to green-dark colour due to hyphal development of this fungus. This process deteriorated visual quality of fruits, therefore the increase of losses during transport and storage were noticeable. A relative humidity very high, round 100% or a thinner layer of water condensed in these areas were sufficient to increase epiphytic development of Cladosporium without causing decay, even at refrigeration temperature. However, when relative humidity was lower than about 98%, no growth of aerial hyphae of Cladosporium was observed. In contrast, some brown stains round netting areas were developed due to the growth of the fungus through skin layers causing severe decay after 32 days of storage at 7 degrees C. When the affected fruits were transferred at ambient temperature, aerial mycelium of Cladosporium emerged from those brown skin areas exacerbating the losses. In conclusion, water condensation should be avoided to prevent epiphytic development of Cladosporium. If washing treatment of fruits is carried out during

  12. Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project

    SciTech Connect

    Bigelow, Erik

    2013-01-01

    The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries

  13. Water use at pulverized coal power plants with postcombustion carbon capture and storage.

    PubMed

    Zhai, Haibo; Rubin, Edward S; Versteeg, Peter L

    2011-03-15

    Coal-fired power plants account for nearly 50% of U.S. electricity supply and about a third of U.S. emissions of CO(2), the major greenhouse gas (GHG) associated with global climate change. Thermal power plants also account for 39% of all freshwater withdrawals in the U.S. To reduce GHG emissions from coal-fired plants, postcombustion carbon capture and storage (CCS) systems are receiving considerable attention. Current commercial amine-based capture systems require water for cooling and other operations that add to power plant water requirements. This paper characterizes and quantifies water use at coal-burning power plants with and without CCS and investigates key parameters that influence water consumption. Analytical models are presented to quantify water use for major unit operations. Case study results show that, for power plants with conventional wet cooling towers, approximately 80% of total plant water withdrawals and 86% of plant water consumption is for cooling. The addition of an amine-based CCS system would approximately double the consumptive water use of the plant. Replacing wet towers with air-cooled condensers for dry cooling would reduce plant water use by about 80% (without CCS) to about 40% (with CCS). However, the cooling system capital cost would approximately triple, although costs are highly dependent on site-specific characteristics. The potential for water use reductions with CCS is explored via sensitivity analyses of plant efficiency and other key design parameters that affect water resource management for the electric power industry.

  14. Applications of carbon dioxide capture and storage technologies in reducing emissions from fossil-fired power plants

    SciTech Connect

    Balat, M.; Balat, H.; Oz, C.

    2009-07-01

    The aim of this paper is to investigate the global contribution of carbon capture and storage technologies to mitigating climate change. Carbon capture and storage is a technology that comprises the separation of from carbon dioxide industrial- and energy-related sources, transport to a storage location (e.g., saline aquifers and depleted hydrocarbon fields), and long-term isolation from the atmosphere. The carbon dioxides emitted directly at the power stations are reduced by 80 to 90%. In contrast, the life cycle assessment shows substantially lower reductions of greenhouse gases in total (minus 65 to 79%).

  15. Hydrogen Storage in Novel Carbon-Based Nanostructured Materials

    SciTech Connect

    Whitney, E. S.; Curtis, C. J.; Engtrakul, C.; Davis, M. F.; Su, T.; Parilla, P. A.; Simpson, L. J.; Blackburn, J. L.; Zhao, Y.; Kim, Y.-H.; Zhang, S. B.; Heben, M. J.; Dillon, A. C.

    2006-01-01

    Experimental wet chemical approaches to complex an iron atom with two C60 fullerenes, representing a new molecule, dubbed a 'bucky dumbbell', have been demonstrated. The structure of this molecule has been determined by 13C solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Furthermore, this structure has been shown to have unique binding sites for dihydrogen molecules with the technique of temperature programmed desorption (TPD). The new adsorption sites have binding energies that are stronger than that observed for hydrogen physisorbed on planar graphite, but significantly weaker than a chemical C-H bond. Further development of these molecules could make them ideal candidates for onboard vehicular hydrogen storage.

  16. Cumulative Radiative Forcing Implications of Deployment Strategies for Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Sathre, R. C.; Masanet, E.

    2011-12-01

    Carbon capture and storage (CCS) is increasingly discussed as a potential means of mitigating the climate disruption associated with fossil fuel use. Some technologies for capturing, transporting, and sequestering carbon dioxide (CO2) are already mature, while others technologies under development may lead to more cost- and energy-efficient CCS systems. Various elements of CCS systems are currently in operation at relatively small scale, but will need to be scaled up very substantially in order to make a significant contribution to climate change mitigation. Because the rate of fossil fuel CO2 emission is continuing to increase and the emitted CO2 will remain in the atmosphere for long time periods, the speed at which CCS is deployed will strongly affect the cumulative CO2 emission and the climate impacts. To better understand these issues, in this analysis we integrate scenario forecasting of energy supply systems, life cycle emission modeling, and time-dependent calculations of cumulative radiative forcing. We develop a series of CCS deployment scenarios that describe plausible future trajectories for CCS implementation in the US electric power plant fleet. The scenarios incorporate dimensions such as speed of deployment build-out, year of initiating deployment, efficiency of capture technology, and installation in new power plants vs. retrofitting existing plants. We conduct life cycle greenhouse gas (GHG) emissions analyses of each scenario to estimate annual emission profiles of CO2, CH4, and N2O over a 90-year time horizon, from 2010 to 2100. We then model the atmospheric dynamics of the emitted GHGs including atmospheric decay and instantaneous radiative forcing patterns over time. Finally, we determine the cumulative radiative forcing of each scenario, which we use as a proxy for surface temperature change and resulting disruption to physical, ecological and social systems. The results show strong climate mitigation benefits of early, aggressive

  17. Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage.

    PubMed

    Ibáñez, Inés; Zak, Donald R; Burton, Andrew J; Pregitzer, Kurt S

    2016-04-01

    As increasing levels of nitrogen (N) deposition impact many terrestrial ecosystems, understanding the potential effects of higher N availability is critical for forecasting tree carbon allocation patterns and thus future forest productivity. Most regional estimates of forest biomass apply allometric equations, with parameters estimated from a limited number of studies, to forest inventory data (i.e., tree diameter). However most of these allometric equations cannot account for potential effects of increased N availability on biomass allocation patterns. Using 18 yr of tree diameter, height, and mortality data collected for a dominant tree species (Acer saccharum) in an atmospheric N deposition experiment, we evaluated how greater N availability affects allometric relationships in this species. After taking into account site and individual variability, our results reveal significant differences in allometric parameters between ambient and experimental N deposition treatments. Large trees under experimental N deposition reached greater heights at a given diameter; moreover, their estimated maximum height (mean ± standard deviation: 33.7 ± 0.38 m) was significantly higher than that estimated under the ambient condition (31.3 ± 0.31 m). Within small tree sizes (5-10 cm diameter) there was greater mortality under experimental N deposition, whereas the relative growth rates of small trees were greater under experimental N deposition. Calculations of stemwood biomass using our parameter estimates for the diameter-height relationship indicated the potential for significant biases in these estimates (~2.5%), with under predictions of stemwood biomass averaging 4 Mg/ha lower if ambient parameters were to be used to estimate stem biomass of trees in the experimental N deposition treatment. As atmospheric N deposition continues to increase into the future, ignoring changes in tree allometry will contribute to the uncertainty associated with aboveground carbon storage

  18. Chronic nitrogen deposition alters tree allometric relationships: implications for biomass production and carbon storage.

    PubMed

    Ibáñez, Inés; Zak, Donald R; Burton, Andrew J; Pregitzer, Kurt S

    2016-04-01

    As increasing levels of nitrogen (N) deposition impact many terrestrial ecosystems, understanding the potential effects of higher N availability is critical for forecasting tree carbon allocation patterns and thus future forest productivity. Most regional estimates of forest biomass apply allometric equations, with parameters estimated from a limited number of studies, to forest inventory data (i.e., tree diameter). However most of these allometric equations cannot account for potential effects of increased N availability on biomass allocation patterns. Using 18 yr of tree diameter, height, and mortality data collected for a dominant tree species (Acer saccharum) in an atmospheric N deposition experiment, we evaluated how greater N availability affects allometric relationships in this species. After taking into account site and individual variability, our results reveal significant differences in allometric parameters between ambient and experimental N deposition treatments. Large trees under experimental N deposition reached greater heights at a given diameter; moreover, their estimated maximum height (mean ± standard deviation: 33.7 ± 0.38 m) was significantly higher than that estimated under the ambient condition (31.3 ± 0.31 m). Within small tree sizes (5-10 cm diameter) there was greater mortality under experimental N deposition, whereas the relative growth rates of small trees were greater under experimental N deposition. Calculations of stemwood biomass using our parameter estimates for the diameter-height relationship indicated the potential for significant biases in these estimates (~2.5%), with under predictions of stemwood biomass averaging 4 Mg/ha lower if ambient parameters were to be used to estimate stem biomass of trees in the experimental N deposition treatment. As atmospheric N deposition continues to increase into the future, ignoring changes in tree allometry will contribute to the uncertainty associated with aboveground carbon storage

  19. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    USGS Publications Warehouse

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  20. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils

    SciTech Connect

    Schimel, D.S.; Holland, E.A.; McKeown, R.

    1994-09-01

    Soil carbon, a major component of the global carbon inventory, has significant potential for change with changing climate and human land use. We applied the Century ecosystem model to a series of forest and grassland sites distributed globally to examine large-scale controls over soil carbon. Key site-specific parameters influencing soil carbon dynamics are soil texture and foliar lignin content; accordingly, we perturbed these variables at each site to establish a range of carbon concentrations and turnover times. We examined the simulated soil carbon stores, turnover times, and C:N ratios for correlations with patterns of independent variables. Results showed that soil carbon is related linearly to soil texture, increasing as clay content increases, that soil carbon stores and turnover time are related to mean annual temperature by negative exponential functions, and that heterotrophic respiration originates from recent detritus ({approximately}50%), microbial turnover ({approximately}30%), and soil organic matter ({approximately}20%) with modest variations between forest and grassland ecosystems. The effect of changing temperature on soil organic carbon (SOC) estimated by Century is dSOC/dT = 183e-0.0034T. Global extrapolation of this relationship leads to an estimated sensitivity of soil C storage to a temperature of -11.1 Pg{degrees}C{sup -1}, excluding extreme arid and organic soils. In Century, net primary production (NPP) and soil carbon are closely coupled through the N cycle, so that as temperatures increase, accelerated N release first results in fertilization responses, increasing C inputs. The Century-predicted effect of temperature on carbon storage is modified by as much as 100% by the N cycle feedback. Century-estimated soil C sensitivity -11.1 Pg{degrees}C{sup -1} is similar to losses predicted with a simple data-based calculation -14.1 Pg{degrees}C{sup -1}. 66 refs., 6 figs., 4 tabs.

  1. Carbon storage in Amazonia during the last glacial maximum: secondary data and uncertainties.

    PubMed

    Turcq, Bruno; Cordeiro, Renato C; Sifeddine, Abdefettah; Simões Filho, Francisco F L; Albuquerque, Ana Luisa S; Abrão, Jorge J

    2002-12-01

    The Amazonian forest is, due to its great size, carbon storage capacity and present-day variability in carbon uptake and release, an important component of the global carbon cycle. Paleo-environmental reconstruction is difficult for Amazonia due to the scarcity of primary palynological data and the mis-interpretation of some secondary data. Studies of lacustrine sediment records have shown that Amazonia has known periods in which the climate was drier than it is today. However, not all geomorphological features such as dunes, and slope erosion, which are thought to indicate rainforest regression, date from the time of the Late Glacial Maximum (LGM) and these features do not necessarily correspond to episodes of forest regression. There is also uncertainty concerning LGM carbon storage due to rainforest soils and biomass estimates. Soil carbon content may decrease moderately during the LGM, whereas rainforest biomass may change considerably in response to changes in the global environment. Biomass per unit area in Amazonia has probably been reduced by the cumulative effects of low CO2 concentration, a drier climate and lower temperatures. As few paleo-vegetation data are available, there is considerable uncertainty concerning the amount of carbon stored in Amazonia during the LGM, which may have corresponded to 44-94% of the carbon currently stored in biomass and soils.

  2. Percolative metal-organic framework/carbon composites for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Xie, Shuqian; Hwang, Jiann-Yang; Sun, Xiang; Shi, Shangzhao; Zhang, Zheng; Peng, Zhiwei; Zhai, Yuchun

    2014-05-01

    Percolative Metal-organic framework/Carbon (MOFAC) composites are synthesized by IRMOF8 (isoreticular metal-organic frameworks) directly depositing on activated carbon via heterogeneous nucleation. Carbon content is calculated by TGA (Thermogravimetric analysis) tests. XRD (X-ray diffraction) and FESEM (Field emission-scanning electron microscope) are carried out to characterize the structures of the samples. BET surface areas and the pore size distribution are measured. The dielectric constant is measured with impedance analyzer and a specially designed sample holder. The dielectric constants of the MOFAC composites rise with increasing the carbon content, and the composites possess the insulator-conductor transition as the carbon content increases from 17.77 wt% to 22.2 wt%. The composites are further tested for hydrogen storage capability under assist of the PMN-PT (single crystal lead magnesium niobate-lead titanate) generated electric field. With help from the PMN-PT, the hydrogen uptake capability is increased about 31.5% over the MOFAC3 (MOF-Carbon composite with 22.2 wt% of carbon) without PMN-PT, which is elucidated by the charge distribution mechanisms. The improved storage is due to a stronger electrostatic interaction between IRMOF8 and hydrogen molecule caused by field polarization. Meanwhile, rapid adsorption/desorption kinetics and total reversibility on the samples are observed in the present or absence of external electric field.

  3. Allocation to carbon storage pools in Norway spruce saplings under drought and low CO2.

    PubMed

    Hartmann, Henrik; McDowell, Nate G; Trumbore, Susan

    2015-03-01

    Non-structural carbohydrates (NSCs) are critical to maintain plant metabolism under stressful environmental conditions, but we do not fully understand how NSC allocation and utilization from storage varies with stress. While it has become established that storage allocation is unlikely to be a mere overflow process, very little empirical evidence has been produced to support this view, at least not for trees. Here we present the results of an intensively monitored experimental manipulation of whole-tree carbon (C) balance (young Picea abies (L.) H Karst.) using reduced atmospheric [CO2] and drought to reduce C sources. We measured specific C storage pools (glucose, fructose, sucrose, starch) over 21 weeks and converted concentration measurement into fluxes into and out of the storage pool. Continuous labeling ((13)C) allowed us to track C allocation to biomass and non-structural C pools. Net C fluxes into the storage pool occurred mainly when the C balance was positive. Storage pools increased during periods of positive C gain and were reduced under negative C gain. (13)C data showed that C was allocated to storage pools independent of the net flux and even under severe C limitation. Allocation to below-ground tissues was strongest in control trees followed by trees experiencing drought followed by those grown under low [CO2]. Our data suggest that NSC storage has, under the conditions of our experimental manipulation (e.g., strong progressive drought, no above-ground growth), a high allocation priority and cannot be considered an overflow process. While these results also suggest active storage allocation, definitive proof of active plant control of storage in woody plants requires studies involving molecular tools.

  4. Development of a Probabilistic Assessment Methodology for Evaluation of Carbon Dioxide Storage

    USGS Publications Warehouse

    Burruss, Robert A.; Brennan, Sean T.; Freeman, P.A.; Merrill, Matthew D.; Ruppert, Leslie F.; Becker, Mark F.; Herkelrath, William N.; Kharaka, Yousif K.; Neuzil, Christopher E.; Swanson, Sharon M.; Cook, Troy A.; Klett, Timothy R.; Nelson, Philip H.; Schenk, Christopher J.

    2009-01-01

    This report describes a probabilistic assessment methodology developed by the U.S. Geological Survey (USGS) for evaluation of the resource potential for storage of carbon dioxide (CO2) in the subsurface of the United States as authorized by the Energy Independence and Security Act (Public Law 110-140, 2007). The methodology is based on USGS assessment methodologies for oil and gas resources created and refined over the last 30 years. The resource that is evaluated is the volume of pore space in the subsurface in the depth range of 3,000 to 13,000 feet that can be described within a geologically defined storage assessment unit consisting of a storage formation and an enclosing seal formation. Storage assessment units are divided into physical traps (PTs), which in most cases are oil and gas reservoirs, and the surrounding saline formation (SF), which encompasses the remainder of the storage formation. The storage resource is determined separately for these two types of storage. Monte Carlo simulation methods are used to calculate a distribution of the potential storage size for individual PTs and the SF. To estimate the aggregate storage resource of all PTs, a second Monte Carlo simulation step is used to sample the size and number of PTs. The probability of successful storage for individual PTs or the entire SF, defined in this methodology by the likelihood that the amount of CO2 stored will be greater than a prescribed minimum, is based on an estimate of the probability of containment using present-day geologic knowledge. The report concludes with a brief discussion of needed research data that could be used to refine assessment methodologies for CO2 sequestration.

  5. Storage of terrestrial carbon in boreal lake sediments and evasion to the atmosphere

    NASA Astrophysics Data System (ADS)

    Molot, Lewis A.; Dillon, Peter J.

    1996-09-01

    Carbon mass balance studies of 20 small, forested catchments and seven lakes on the Precambrian Shield in central Ontario during a 12-year period have shown that most carbon in the study lakes is derived from terrestrial sources, primarily peatlands, and that carbon retained by lakes (total inputs less loss via outflow from the lake) is partitioned between lake sediments and the atmosphere. The partitioning of retained carbon is a function of lake alkalinity: the ratio of evaded/sediment carbon increases with decreasing alkalinity. These carbon flux relationships were applied to the global boreal forest biome to evaluate the role of aquatic systems with respect to carbon fluxes and pools within the biome. We calculate that approximately 66 Tg of organic and inorganic carbon are exported annually from the boreal forest biome to adjacent surface waters of which 14 to 36 Tg reach coastal waters. The remainder is either evaded to the atmosphere (12 to 21 Tg yr-1) or stored in lake sediments (18 to 31 Tg yr-1). Approximately 120 Pg of carbon may be stored in boreal lake sediments, a conservative estimate based on an accumulation period of 5,000 years and a size comparable to recent boreal pool estimates of 419 Pg for peatlands and 64 Pg for plant biomass. Hence the amount of total carbon stored in the boreal forest biome may be significantly larger because of storage in lake sediments.

  6. New Pathways and Metrics for Enhanced, Reversible Hydrogen Storage in Boron-Doped Carbon Nanospaces

    SciTech Connect

    Pfeifer, Peter; Wexler, Carlos; Hawthorne, M. Frederick; Lee, Mark W.; Jalistegi, Satish S.

    2014-08-14

    This project, since its start in 2007—entitled “Networks of boron-doped carbon nanopores for low-pressure reversible hydrogen storage” (2007-10) and “New pathways and metrics for enhanced, reversible hydrogen storage in boron-doped carbon nanospaces” (2010-13)—is in support of the DOE's National Hydrogen Storage Project, as part of the DOE Hydrogen and Fuel Cells Program’s comprehensive efforts to enable the widespread commercialization of hydrogen and fuel cell technologies in diverse sectors of the economy. Hydrogen storage is widely recognized as a critical enabling technology for the successful commercialization and market acceptance of hydrogen powered vehicles. Storing sufficient hydrogen on board a wide range of vehicle platforms, at energy densities comparable to gasoline, without compromising passenger or cargo space, remains an outstanding technical challenge. Of the main three thrust areas in 2007—metal hydrides, chemical hydrogen storage, and sorption-based hydrogen storage—sorption-based storage, i.e., storage of molecular hydrogen by adsorption on high-surface-area materials (carbons, metal-organic frameworks, and other porous organic networks), has emerged as the most promising path toward achieving the 2017 DOE storage targets of 0.055 kg H2/kg system (“5.5 wt%”) and 0.040 kg H2/liter system. The objective of the project is to develop high-surface-area carbon materials that are boron-doped by incorporation of boron into the carbon lattice at the outset, i.e., during the synthesis of the material. The rationale for boron-doping is the prediction that boron atoms in carbon will raise the binding energy of hydro- gen from 4-5 kJ/mol on the undoped surface to 10-14 kJ/mol on a doped surface, and accordingly the hydro- gen storage capacity of the material. The mechanism for the increase in binding energy is electron donation from H2 to electron-deficient B atoms, in the form of sp2 boron-carbon bonds. Our team is proud to have

  7. Effect of grassland cutting frequency on soil carbon storage - a case study on public lawns in three Swedish cities

    NASA Astrophysics Data System (ADS)

    Poeplau, C.; Marstorp, H.; Thored, K.; Kätterer, T.

    2016-04-01

    Soils contain the largest terrestrial carbon pool and thus play a crucial role in the global carbon cycle. Grassland soils have particularly high soil organic carbon (SOC) stocks. In Europe (EU 25), grasslands cover 22 % of the land area. It is therefore important to understand the effects of grassland management and management intensity on SOC storage. City lawns constitute a unique study system in this context, since they provide a high functional diversity and thus a wide range of different management intensities per unit area. In this study we investigated frequently mown (on average eight times per season) utility lawns and rarely mown (once per season) meadow-like lawns at three multi-family housing areas in each of three Swedish cities: Uppsala, Malmö, and Gothenburg. The two different lawn types were compared regarding their aboveground net primary production (NPP) and SOC storage. In addition, root biomass was determined in Uppsala. We found significantly higher aboveground NPP and SOC concentrations and significantly lower soil C : N ratio for the utility lawns compared with the meadow-like lawns. On average, aboveground NPP was 24 % or 0.7 Mg C ha-1 yr-1 higher and SOC was 12 % or 7.8 Mg ha-1 higher. Differences in SOC were well explained by differences in aboveground NPP (R2 = 0.39), which indicates that the increase in productivity due to more optimum CO2-assimilating leaf area, leading to higher carbon input to the soil, was the major driver for soil carbon sequestration. Differences in soil C : N ratio indicated a more closed N cycle in utility lawns, which might have additionally affected SOC dynamics. We did not find any difference in root biomass between the two management regimes, and concluded that cutting frequency most likely only exerts an effect on SOC when cuttings are left on the surface.

  8. Synthesis and applications of carbon nanomaterials for energy generation and storage.

    PubMed

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio

    2016-01-01

    The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future. PMID:26925363

  9. Synthesis and applications of carbon nanomaterials for energy generation and storage

    PubMed Central

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy

    2016-01-01

    Summary The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage – the key to the portable electronics of the future. PMID:26925363

  10. Synthesis and applications of carbon nanomaterials for energy generation and storage.

    PubMed

    Notarianni, Marco; Liu, Jinzhang; Vernon, Kristy; Motta, Nunzio

    2016-01-01

    The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Over the last 20 years, carbon, one of the most abundant materials found on earth, and its allotrope forms such as fullerenes, carbon nanotubes and graphene have been proposed as sources of energy generation and storage because of their extraordinary properties and ease of production. Various approaches for the synthesis and incorporation of carbon nanomaterials in organic photovoltaics and supercapacitors have been reviewed and discussed in this work, highlighting their benefits as compared to other materials commonly used in these devices. The use of fullerenes, carbon nanotubes and graphene in organic photovoltaics and supercapacitors is described in detail, explaining how their remarkable properties can enhance the efficiency of solar cells and energy storage in supercapacitors. Fullerenes, carbon nanotubes and graphene have all been included in solar cells with interesting results, although a number of problems are still to be overcome in order to achieve high efficiency and stability. However, the flexibility and the low cost of these materials provide the opportunity for many applications such as wearable and disposable electronics or mobile charging. The application of carbon nanotubes and graphene to supercapacitors is also discussed and reviewed in this work. Carbon nanotubes, in combination with graphene, can create a more porous film with extraordinary capacitive performance, paving the way to many practical applications from mobile phones to electric cars. In conclusion, we show that carbon nanomaterials, developed by inexpensive synthesis and process methods such as printing and roll-to-roll techniques, are ideal for the development of flexible devices for energy generation and storage - the key to the portable electronics of the future.

  11. Impact of land-use on carbon storage as dependent on soil texture: evidence from a desertified dryland using repeated paired sampling design.

    PubMed

    Ye, Xuehua; Tang, Shuangli; Cornwell, William K; Gao, Shuqin; Huang, Zhenying; Dong, Ming; Cornelissen, Johannes H C

    2015-03-01

    Desertification resulting from land-use affects large dryland areas around the world, accompanied by carbon loss. However it has been difficult to interpret different land-use contributions to carbon pools owing to confounding factors related to climate, topography, soil texture and other original soil properties. To avoid such confounding effects, a unique systematic and extensive repeated design of paired sampling plots of different land-use types was adopted on Ordos Plateau, N China. The sampling enabled to quantify the effects of the predominant land-use types on carbon storage as dependent on soil texture, and to define the most promising land-use choices for carbon storage, both in grassland on sandy soil and in desert grassland on brown calcareous soil. The results showed that (1) desertification control should be an effective measure to improve the carbon sequestration in sandy grassland, and shrub planting should be better than grass planting; (2) development of man-made grassland should be a good choice to solve the contradictions of ecology and economy in desert grassland; (3) grassland on sandy soil is more vulnerable to soil degradation than desert grassland on brown calcareous soil. The results may be useful for the selection of land-use types, aiming at desertification prevention in drylands. Follow-up studies should directly investigate the role of soil texture on the carbon storage dynamic caused by land-use change.

  12. Impact of land-use on carbon storage as dependent on soil texture: evidence from a desertified dryland using repeated paired sampling design.

    PubMed

    Ye, Xuehua; Tang, Shuangli; Cornwell, William K; Gao, Shuqin; Huang, Zhenying; Dong, Ming; Cornelissen, Johannes H C

    2015-03-01

    Desertification resulting from land-use affects large dryland areas around the world, accompanied by carbon loss. However it has been difficult to interpret different land-use contributions to carbon pools owing to confounding factors related to climate, topography, soil texture and other original soil properties. To avoid such confounding effects, a unique systematic and extensive repeated design of paired sampling plots of different land-use types was adopted on Ordos Plateau, N China. The sampling enabled to quantify the effects of the predominant land-use types on carbon storage as dependent on soil texture, and to define the most promising land-use choices for carbon storage, both in grassland on sandy soil and in desert grassland on brown calcareous soil. The results showed that (1) desertification control should be an effective measure to improve the carbon sequestration in sandy grassland, and shrub planting should be better than grass planting; (2) development of man-made grassland should be a good choice to solve the contradictions of ecology and economy in desert grassland; (3) grassland on sandy soil is more vulnerable to soil degradation than desert grassland on brown calcareous soil. The results may be useful for the selection of land-use types, aiming at desertification prevention in drylands. Follow-up studies should directly investigate the role of soil texture on the carbon storage dynamic caused by land-use change. PMID:25560656

  13. Threshold dynamics in soil carbon storage for bioenergy crops.

    PubMed

    Woo, Dong K; Quijano, Juan C; Kumar, Praveen; Chaoka, Sayo; Bernacchi, Carl J

    2014-10-21

    Because of increasing demands for bioenergy, a considerable amount of land in the midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. The foliar carbon/nitrogen ratio (C/N) in these bioenergy crops at harvest is significantly higher than the ratios in replaced crops, such as corn or soybean. We show that there is a critical soil organic matter C/N ratio, where microbial biomass can be impaired as microorganisms become dependent upon net immobilization. The simulation results show that there is a threshold effect in the amount of aboveground litter input in the soil after harvest that will reach a critical organic matter C/N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes, such as decomposition and mineralization. These thresholds are approximately 25 and 15% of aboveground biomass for switchgrass and miscanthus, respectively. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which, in turn, would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared to a corn-corn-soybean rotation. PMID:25207669

  14. Threshold dynamics in soil carbon storage for bioenergy crops.

    PubMed

    Woo, Dong K; Quijano, Juan C; Kumar, Praveen; Chaoka, Sayo; Bernacchi, Carl J

    2014-10-21

    Because of increasing demands for bioenergy, a considerable amount of land in the midwestern United States could be devoted to the cultivation of second-generation bioenergy crops, such as switchgrass and miscanthus. The foliar carbon/nitrogen ratio (C/N) in these bioenergy crops at harvest is significantly higher than the ratios in replaced crops, such as corn or soybean. We show that there is a critical soil organic matter C/N ratio, where microbial biomass can be impaired as microorganisms become dependent upon net immobilization. The simulation results show that there is a threshold effect in the amount of aboveground litter input in the soil after harvest that will reach a critical organic matter C/N ratio in the soil, triggering a reduction of the soil microbial population, with significant consequences in other microbe-related processes, such as decomposition and mineralization. These thresholds are approximately 25 and 15% of aboveground biomass for switchgrass and miscanthus, respectively. These results suggest that values above these thresholds could result in a significant reduction of decomposition and mineralization, which, in turn, would enhance the sequestration of atmospheric carbon dioxide in the topsoil and reduce inorganic nitrogen losses when compared to a corn-corn-soybean rotation.

  15. Elevated atmospheric carbon dioxide in agroecosystems affects groundwater quality

    SciTech Connect

    Torbert, H.A.; Prior, S.A.; Rogers, H.H.; Schlesinger, W.H.; Mullins, G.L.; Runion, G.B.

    1996-07-01

    Increasing atmospheric carbon dioxide (CO{sub 2}) concentration has led to concerns about global changes to the environment. One area of global change that has not been addressed is the effect of elevated atmospheric CO{sub 2} on groundwater quality below agroecosystems. Elevated CO{sub 2} concentration alterations of plant growth and C/N ratios may modify C and N cycling in soil and affect nitrate (NO{sub 3}{sup {minus}}) leaching to groundwater. This study was conducted to examine the effects of a legume (soybean [Glycine max (L.) Merr.]) and a nonlegume (grain sorghum [Sorghum bicolor (L.) Moench]) CO{sub 2}-enriched agroecosystems on NO{sub 3}{sup {minus}} movement below the root zone in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with plant species (soybean and grain sorghum) as the main plots and CO{sub 2} concentration ({approximately}360 and {approximately}720 {mu}L L{sup {minus}1} CO{sub 2}) as subplots using open-top field chambers. Fertilizer application was made with {sup 15}N-depleted NH{sub 4}NO{sub 3} to act as a fertilizer tracer. Soil solution samples were collected weekly at 90-cm depth for a 2-yr period and monitored for NO{sub 3}{sup {minus}}-N concentrations. Isotope analysis of soil solution indicated that the decomposition of organic matter was the primary source of No{sub 3}{sup {minus}}-N in soil solution below the root zone through most of the monitoring period. Significant differences were observed for NO{sub 3}{sup {minus}}-N concentrations between soybean and grain sorghum, with soybean having the higher NO{sub 3}{sup {minus}}-N concentration. Elevated CO{sub 2} increased total dry weight, total N content, and C/N ratio of residue returned to soil in both years. Elevated CO{sub 2} significantly decreased NO{sub 3}{sup {minus}}-N concentrations below the root zone in both soybean and grain sorghum. 37 refs., 2 figs., 2 tabs.

  16. Tree Death Leading To Ecosystem Renewal? Forecasting Carbon Storage As Eastern Forests Age

    NASA Astrophysics Data System (ADS)

    Curtis, P.; Gough, C. M.; Bohrer, G.; Nadelhoffer, K. J.; Ivanov, V. Y.

    2013-12-01

    The future trajectory of North American carbon (C) stocks remains uncertain as a subset of maturing trees die in mixed deciduous forests of the U.S. Midwest and East transitioning from early to middle and late succession. We are studying disturbance-structure-function relationships of aging forests in northern Michigan using long-term ecological and meteorological C cycling studies, a large-scale disturbance experiment, a 200-year forest chronosequence, and flux comparisons across three tower sites. We find that ecosystem responses to mortality are characterized by several processes that affect structure-function relationships and alter the way ecosystem functioning interacts with meteorological forcing. We subjected 39 ha of forest to moderate experimental disturbance, similar to that of age-related or climatically induced tree mortality. We found that the mortality of a third of all canopy trees minimally altered the balance between forest C uptake and release, as growth-limiting light and nitrogen resources were rapidly reallocated from dead and dying trees to undisturbed trees. Although disturbance-induced mortality increased soil N mineralization rates, nitrification, and denitrification, N exports from soils remained low. Upper canopy gap formation and a rise in structural complexity allowed increased photosynthetic contribution of sub-canopy vegetation to compensate for the death of canopy dominant trees. However, we found large differences between the transpirational response of maples and oaks to VPD and soil moisture, which led to relative declines in maple transpiration post-disturbance. These hydrologic differences may affect a species' ability to compete for resources following such a disturbance. Changes to canopy structure had a relatively small effect on roughness length and the turbulence forcing of fluxes from the canopy. We currently are studying how tree mortality driven changes in canopy structure affects within-canopy resource distribution and

  17. 40 CFR Table 5 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources Producing the Listed Thermoplastics

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Affected Sources Producing the Listed Thermoplastics 5 Table 5 to Subpart JJJ of Part 63 Protection of... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 63—Group 1 Storage Vessels at New Affected Sources Producing the Listed...

  18. 40 CFR Table 3 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources Producing the Listed Thermoplastics

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Affected Sources Producing the Listed Thermoplastics 3 Table 3 to Subpart JJJ of Part 63 Protection of... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 3 Table 3 to Subpart JJJ of Part 63—Group 1 Storage Vessels at Existing Affected Sources Producing the...

  19. 40 CFR Table 5 to Subpart Jjj of... - Group 1 Storage Vessels at New Affected Sources Producing the Listed Thermoplastics

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Affected Sources Producing the Listed Thermoplastics 5 Table 5 to Subpart JJJ of Part 63 Protection of... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 5 Table 5 to Subpart JJJ of Part 63—Group 1 Storage Vessels at New Affected Sources Producing the Listed...

  20. 40 CFR Table 3 to Subpart Jjj of... - Group 1 Storage Vessels at Existing Affected Sources Producing the Listed Thermoplastics

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Affected Sources Producing the Listed Thermoplastics 3 Table 3 to Subpart JJJ of Part 63 Protection of... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins Pt. 63, Subpt. JJJ, Table 3 Table 3 to Subpart JJJ of Part 63—Group 1 Storage Vessels at Existing Affected Sources Producing the...

  1. Sex and storage affect cholinesterase activity in blood plasma of Japanese quail

    USGS Publications Warehouse

    Hill, E.F.

    1989-01-01

    Freezing at -25?C had confounding effects on cholinesterase (ChE) activity in blood plasma from breeding female quail, but did not affect ChE activity in plasma from males. Plasma ChE activity of control females increased consistently during 28 days of storage while both carbamate- and cidrotophos-inhibited ChE decreased. Refrigeration of plasma at 4?C for 2 days had little effect of ChE activity. Plasma ChE activity was averaged about 34% higher in breeding males than in females. Extreme caution should be exercised in use of blood plasma for evaluation of anti ChE exposure in free-living birds.

  2. Sampling and storage conditions of rainbow trout liver affects monooxygenase and conjugation enzymes.

    PubMed

    Lindström-Seppä, P; Hänninen, O

    1988-01-01

    1. The effect of storage conditions of rainbow trout (Salmo gairdneri) liver on monooxygenase and conjugation enzyme activities was studied. Fish livers or whole fish were frozen and stored for various periods of time at -4, -20 or -80 degrees C. 2. Freezing the whole fish at -20 degrees C affected the biotransformation enzyme activities dramatically. The loss of monooxygenase activity exceeded up to one-tenth of the initial rate in 17 days. UDP-Glucuronosyltransferase activity increased 50%. Glutathione S-transferase appeared to be the most durable enzyme. 3. When the whole fish were stored in an ice-bath at -4 degrees C for up to 24 hr the activities measured decreased only half of that when frozen for 3 days. 4. When it is impossible to freeze the tissues studied in liquid nitrogen the activities are best preserved when whole, decapitated, bled fish are kept in an ice-bath for less than 24 hr. PMID:2899000

  3. Circumpolar distribution and carbon storage of thermokarst landscapes

    NASA Astrophysics Data System (ADS)

    Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A. D.; Romanovsky, V. E.; Sannel, A. B. K.; Schuur, E. A. G.; Turetsky, M. R.

    2016-10-01

    Thermokarst is the process whereby the thawing of ice-rich permafrost ground causes land subsidence, resulting in development of distinctive landforms. Accelerated thermokarst due to climate change will damage infrastructure, but also impact hydrology, ecology and biogeochemistry. Here, we present a circumpolar assessment of the distribution of thermokarst landscapes, defined as landscapes comprised of current thermokarst landforms and areas susceptible to future thermokarst development. At 3.6 × 106 km2, thermokarst landscapes are estimated to cover ~20% of the northern permafrost region, with approximately equal contributions from three landscape types where characteristic wetland, lake and hillslope thermokarst landforms occur. We estimate that approximately half of the below-ground organic carbon within the study region is stored in thermokarst landscapes. Our results highlight the importance of explicitly considering thermokarst when assessing impacts of climate change, including future landscape greenhouse gas emissions, and provide a means for assessing such impacts at the circumpolar scale.

  4. Circumpolar distribution and carbon storage of thermokarst landscapes

    PubMed Central

    Olefeldt, D.; Goswami, S.; Grosse, G.; Hayes, D.; Hugelius, G.; Kuhry, P.; McGuire, A. D.; Romanovsky, V. E.; Sannel, A.B.K.; Schuur, E.A.G.; Turetsky, M. R.

    2016-01-01

    Thermokarst is the process whereby the thawing of ice-rich permafrost ground causes land subsidence, resulting in development of distinctive landforms. Accelerated thermokarst due to climate change will damage infrastructure, but also impact hydrology, ecology and biogeochemistry. Here, we present a circumpolar assessment of the distribution of thermokarst landscapes, defined as landscapes comprised of current thermokarst landforms and areas susceptible to future thermokarst development. At 3.6 × 106 km2, thermokarst landscapes are estimated to cover ∼20% of the northern permafrost region, with approximately equal contributions from three landscape types where characteristic wetland, lake and hillslope thermokarst landforms occur. We estimate that approximately half of the below-ground organic carbon within the study region is stored in thermokarst landscapes. Our results highlight the importance of explicitly considering thermokarst when assessing impacts of climate change, including future landscape greenhouse gas emissions, and provide a means for assessing such impacts at the circumpolar scale. PMID:27725633

  5. Molecular simulation of carbon dioxide adsorption for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Tenney, Craig M.

    Capture of CO2 from fossil fuel power plants and sequestration in unmineable coal seams are achievable methods for reducing atmospheric emissions of this greenhouse gas. To aid the development of effective CO2 capture and sequestration technologies, a series of molecular simulation studies were conducted to study the adsorption of CO2 and related species onto heterogeneous, solid adsorbents. To investigate the influence of surface heterogeneity upon adsorption behavior in activated carbons and coal, isotherms were generated via grand canonical Monte Carlo (GCMC) simulation for CO2 adsorption in slit-shaped pores with several variations of chemical and structural heterogeneity. Adsorption generally increased with increasing oxygen content and the presence of holes or furrows, which acted as preferred binding sites. To investigate the potential use of the flexible metal organic framework (MOF) Cu(BF4)2(bpy)2 (bpy=bipyridine) for CO2 capture, pure- and mixed-gas adsorption was simulated at conditions representative of power plant process streams. This MOF was chosen because it displays a novel behavior in which the crystal structure reversibly transitions from an empty, zero porosity state to a saturated, expanded state at the "gate pressure". Estimates of CO2 capacity above the gate pressure from GCMC simulations using a rigid MOF model showed good agreement with experiment. The CO2 adsorption capacity and estimated heats of adsorption are comparable to common physi-adsorbents under similar conditions. Mixed-gas simulations predicted CO2/N2 and CO2/H 2selectivities higher than typical microporous materials. To more closely investigate this gating effect, hybrid Monte-Carlo/molecular-dynamics (MCMD) was used to simulate adsorption using a flexible MOF model. Simulation cell volumes remained relatively constant at low gas pressures before increasing at higher pressure. Mixed-gas simulations predicted CO2/N 2 selectivities comparable to other microporous adsorbents. To

  6. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage

    SciTech Connect

    Schwarz, Haiqing L.

    2016-01-01

    We developed a novel porous graphitic carbon nanofiber material using a synthesis strategy combining electrospinning and catalytic graphitization. RF hydrogel was used as carbon precursors, transition metal ions were successfully introduced into the carbon matrix by binding to the carboxylate groups of a resorcinol derivative. Transition metal particles were homogeneously distributed throughout the carbon matrix, which are used as in-situ catalysts to produce graphitic fullerene-like nanostructures surrounding the metals. The success design of graphitic carbons with enlarged interlayer spacing will enable the multivalent ion intercalation for the development of multivalent rechargeable batteries.

  7. [Dynamics of carbon and nitrogen storage of Cupressus chengiana plantations in the arid valley of Minjiang River, Southwest China].

    PubMed

    Luo, Da; Feng, Qiu-hong; Shi, Zuo-min; Li, Dong-sheng; Yang, Chang-xu; Liu, Qian-li; He, Jian-she

    2015-04-01

    The carbon and nitrogen storage and distribution patterns of Cupressus chengiana plantation ecosystems with different stand ages in the arid valley of Minjiang River were studied. The results showed that carbon contents in different organs of C. chengiana were relatively stable, while nitrogen contents were closely related to different organs, and soil organic carbon and nitrogen contents increased with the stand age. Carbon and nitrogen storage in vegetation layer, soil layer, and the whole ecosystem of the plantation increased with the stand age. The values of total carbon storage in the 13-, 11-, 8-, 6- and 4-year-old C. chengiana plantation ecosystems were 190.90, 165.91, 144.57, 119.44, and 113.49 t x hm(-2), and the values of total nitrogen storage were 19.09, 17.97, 13.82, 13.42, and 12.26 t x hm(-2), respectively. Most of carbon and nitrogen were stored in the 0-60 cm soil layer in the plantation ecosystems and occupied 92.8% and 98.8%, respectively, and the amounts of carbon and nitrogen stored in the top 0-20 cm soil layer, accounted for 54.4% and 48.9% of those in the 0-60 cm soil layer, respectively. Difference in distribution of carbon and nitrogen storage was observed in the vegetation layer. The percentage of carbon storage in tree layer (3.7%) were higher than that in understory vegetation (3.5%), while the percentage of nitrogen storage in tree layer (0.5%) was lower than that in understory (0.7%). The carbon and nitrogen storage and distribution patterns in the plantations varied obviously with the stand age, and the plantation ecosystems at these age stages could accumulate organic carbon and nitrogen continuously.

  8. Transient dynamics of terrestrial carbon storage: Mathematical foundation and numeric examples

    DOE PAGES

    Luo, Yiqi; Shi, Zheng; Lu, Xingjie; Xia, Jianyang; Liang, Junyi; Wang, Ying; Smith, Matthew J.; Jiang, Lifen; Ahlstrom, Anders; Chen, Benito; et al

    2016-09-16

    Terrestrial ecosystems absorb roughly 30% of anthropogenic CO2 emissions since preindustrial era, but it is unclear whether this carbon (C) sink will endure into the future. Despite extensive modeling, experimental, and observational studies, what fundamentally determines transient dynamics of terrestrial C storage under climate change is still not very clear. Here we develop a new framework for understanding transient dynamics of terrestrial C storage through mathematical analysis and numerical experiments. Our analysis indicates that the ultimate force driving ecosystem C storage change is the C storage capacity, which is jointly determined by ecosystem C input (e.g., net primary production, NPP)more » and residence time. Since both C input and residence time vary with time, the C storage capacity is time-dependent and acts as a moving attractor that actual C storage chases. The rate of change in C storage is proportional to the C storage potential, the difference between the current storage and the storage capacity. The C storage capacity represents instantaneous responses of the land C cycle to external forcing, whereas the C storage potential represents the internal capability of the land C cycle to influence the C change trajectory in the next time step. The influence happens through redistribution of net C pool changes in a network of pools with different residence times. Furthermore, this and our other studies have demonstrated that one matrix equation can exactly replicate simulations of most land C cycle models (i.e., physical emulators). As a result, simulation outputs of those models can be placed into a three-dimensional (3D) parameter space to measure their differences. The latter can be decomposed into traceable components to track the origins of model uncertainty. Moreover, the emulators make data assimilation computationally feasible so that both C flux- and pool-related datasets can be used to better constrain model predictions of land C

  9. Tailoring of Single Walled Carbon Nanohorns for Hydrogen Storage and Catalyst Supports

    SciTech Connect

    Hu, Hui; Zhao, Bin; Puretzky, Alexander A; Rouleau, Christopher M; Styers-Barnett, David J; Geohegan, David B; Brown, Craig M.; Liu, Yun; Zhou, Wei; Kabbour, Houria; Neumann, Dan

    2007-01-01

    We report the post-processing chemical treatments of single walled carbon nanohorns (SWNHs) as a medium with tunable porosity to optimize hydrogen adsorption. Laser synthesized SWNHs are oxidized in air to achieve surface areas up to 1900 m2/g. Chemistry methods are described for the decoration of SWNHs with 1-3 nm Pt nanoparticles to probe spillover and metal-assisted hydrogen storage mechanisms. Hydrogen storage of opened SWNHs is 2.6 wt% at 77K, which is 3 times as that of as-prepared SWNHs.

  10. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors

    SciTech Connect

    Simon, P.; Gogotsi, Y.

    2010-06-21

    Electrochemical capacitors, also known as supercapacitors, are energy storage devices that fill the gap between batteries and dielectric capacitors. Thanks to their unique features, they have a key role to play in energy storage and harvesting, acting as a complement to or even a replacement of batteries which has already been achieved in various applications. One of the challenges in the supercapacitor area is to increase their energy density. Some recent discoveries regarding ion adsorption in microporous carbon exhibiting pores in the nanometre range can help in designing the next generation of high-energy-density supercapacitors.

  11. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    SciTech Connect

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology and the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.

  12. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage

    NASA Astrophysics Data System (ADS)

    Blackford, Jerry; Stahl, Henrik; Bull, Jonathan M.; Bergès, Benoît J. P.; Cevatoglu, Melis; Lichtschlag, Anna; Connelly, Douglas; James, Rachael H.; Kita, Jun; Long, Dave; Naylor, Mark; Shitashima, Kiminori; Smith, Dave; Taylor, Peter; Wright, Ian; Akhurst, Maxine; Chen, Baixin; Gernon, Tom M.; Hauton, Chris; Hayashi, Masatoshi; Kaieda, Hideshi; Leighton, Timothy G.; Sato, Toru; Sayer, Martin D. J.; Suzumura, Masahiro; Tait, Karen; Vardy, Mark E.; White, Paul R.; Widdicombe, Steve

    2014-11-01

    Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate, yet many economies will remain reliant on these technologies for several decades. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system. In many regions storage reservoirs are located offshore, over a kilometre or more below societally important shelf seas. Therefore, concerns about the possibility of leakage and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d-1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.

  13. [Soil carbon and nitrogen storage of different land use types in northwestern Shanxi Loess Plateau].

    PubMed

    Dong, Yun-Zhong; Wang, Yong-Liang; Zhang, Jian-Jie; Zhang, Qiang; Yang, Zhi-Ping

    2014-04-01

    The soil organic carbon (SOC) and total nitrogen (TN) storage under five different land use patterns, i. e. , poplar and Caragana microphylla plantation, C. microphylla artificial shrubland, poplar plantation, bare land and cropland were studied in the hilly [ness Plateau of northwestern Shanxi. The results showed that the contents, densities and storage of SOC and TN varied remarkably under the different land-use patterns. Soil carbon and nitrogen contents and storage in the 0-20 cm soil layer were significantly higher in the 20-40 cm and 40-60 cm soil layers under each of the five land use patterns. In the same soil layer, the contents and densities of SOC and TN under the five land use patterns were in the order of poplar and C. microphylla plantation > C. microphylla artificial shrubland > poplar plantation > bare land > cropland. The SOC storage in the 0-60 cm soil layer was in the order of poplar and C. microphylla plantation (30.09 t x hm(-2)) > C. microphylla artificial shrubland (24.78 t x hm(-2)) > poplar plantation (24.14 t x hm(-2)) > bare land (22.06 t x hm(-2)) > cropland (17.59 t x hm(-2)). Soil TN storage had the same trend as SOC storage, and TN storage in the 0-60 cm soil layer was the highest (4.94 t x hm(-2)) in poplar and Caragana microphylla plantation, followed by C. microphylla artificial shrubland (3.53 t x hm(-2)), poplar plantation (3.51 t x hm(-2)), bare land (3.40 t x hm(-2)), and cropland (2.71 t x hm(-2)). Poplar and C. microphylla plantation and C. microphylla artificial shrubland were the good land use patterns in the process of vegetation construction and ecological restoration in the hilly Loess Plateau of northwestern Shanxi.

  14. Vulnerability of carbon storage in North American boreal forests to wildfires during the 21st century

    USGS Publications Warehouse

    Balshi, M. S.; McGuire, Anthony David; Duffy, P.; Flannigan, M.; Kicklighter, David W.; Melillo, J.

    2009-01-01

    The boreal forest contains large reserves of carbon. Across this region, wildfires influence the temporal and spatial dynamics of carbon storage. In this study, we estimate fire emissions and changes in carbon storage for boreal North America over the 21st century. We use a gridded data set developed with a multivariate adaptive regression spline approach to determine how area burned varies each year with changing climatic and fuel moisture conditions. We apply the process-based Terrestrial Ecosystem Model to evaluate the role of future fire on the carbon dynamics of boreal North America in the context of changing atmospheric carbon dioxide (CO2) concentration and climate in the A2 and B2 emissions scenarios of the CGCM2 global climate model. Relative to the last decade of the 20th century, decadal total carbon emissions from fire increase by 2.5–4.4 times by 2091–2100, depending on the climate scenario and assumptions about CO2fertilization. Larger fire emissions occur with warmer climates or if CO2 fertilization is assumed to occur. Despite the increases in fire emissions, our simulations indicate that boreal North America will be a carbon sink over the 21st century if CO2 fertilization is assumed to occur in the future. In contrast, simulations excluding CO2 fertilization over the same period indicate that the region will change to a carbon source to the atmosphere, with the source being 2.1 times greater under the warmer A2 scenario than the B2 scenario. To improve estimates of wildfire on terrestrial carbon dynamics in boreal North America, future studies should incorporate the role of dynamic vegetation to represent more accurately post-fire successional processes, incorporate fire severity parameters that change in time and space, account for human influences through increased fire suppression, and integrate the role of other disturbances and their interactions with future fire regime.

  15. Vegetation persistence and carbon storage: Implications for environmental water management for Phragmites australis

    NASA Astrophysics Data System (ADS)

    Whitaker, Kai; Rogers, Kerrylee; Saintilan, Neil; Mazumder, Debashish; Wen, Li; Morrison, R. J.

    2015-07-01

    Environmental water allocations are used to improve the ecological health of wetlands. There is now increasing demand for allocations to improve ecosystem productivity and respiration, and enhance carbon sequestration. Despite global recognition of wetlands as carbon sinks, information regarding carbon dynamics is lacking. This is the first study estimating carbon sequestration for semiarid Phragmites australis reedbeds. The study combined aboveground biomass assessments with stable isotope analyses of soils and modeling of biomass using Normalized Digital Vegetation Index (NDVI) to investigate the capacity of environmental water allocations to improve carbon storage. The study considered relationships between soil organic carbon (SOC), carbon sources, and reedbed persistence in the Macquarie Marshes, a regulated semiarid floodplain of the Murray-Darling Basin, Australia. SOC storage levels to 1 m soil depth were higher in persistent reedbeds (167 Mg ha-1) than ephemeral reedbeds (116-138 Mg ha-1). In situ P. australis was the predominant source of surface SOC at persistent reedbeds; mixed sources of surface SOC were proposed for ephemeral reedbeds. 13C enrichment with increasing soil depth occurred in persistent and ephemeral reedbeds and may not relate to flow characteristics. Despite high SOC at persistent reedbeds, differences in the rate of accretion contributed to significantly higher rates of carbon sequestration at ephemeral reedbeds (approximately 554 and 465 g m-2 yr-1) compared to persistent reedbeds (5.17 g m-2 yr-1). However, under current water regimes, rapid accretion at ephemeral reedbeds cannot be maintained. Effective management of persistent P. australis reedbeds may enhance carbon sequestration in the Macquarie Marshes and floodplain wetlands more generally.

  16. Summary of Carbon Storage Project Public Information Meeting and Open House, Hawesville, Kentucky, October 28, 2010

    SciTech Connect

    Harris, David; Williams, David; Bowersox, J Richard; Leetaru, Hannes

    2012-06-01

    The Kentucky Geological Survey (KGS) completed a second phase of carbon dioxide (CO{sub 2}) injection and seismic imaging in the Knox Group, a Cambrian Ordovician dolomite and sandstone sequence in September 2010. This work completed 2 years of activity at the KGS No. 1 Marvin Blan well in Hancock County, Kentucky. The well was drilled in 2009 by a consortium of State and industry partners (Kentucky Consortium for Carbon Storage). An initial phase of CO{sub 2} injection occurred immediately after completion of the well in 2009. The second phase of injection and seismic work was completed in September 2010 as part of a U.S. DOE funded project, after which the Blan well was plugged and abandoned. Following completion of research at the Blan well, a final public meeting and open house was held in Hancock County on October 28, 2010. This meeting followed one public meeting held prior to drilling of the well, and two on site visits during drilling (one for news media, and one for school teachers). The goal of the final public meeting was to present the results of the project to the public, answer questions, and address any concerns. Despite diligent efforts to publicize the final meeting, it was poorly attended by the general public. Several local county officials and members of the news media attended, but only one person from the general public showed up. We attribute the lack of interest in the results of the project to several factors. First, the project went as planned, with no problems or incidents that affected the local residents. The fact that KGS fulfilled the promises it made at the beginning of the project satisfied residents, and they felt no need to attend the meeting. Second, Hancock County is largely rural, and the technical details of carbon sequestration were not of interest to many people. The county officials attending were an exception; they clearly realized the importance of the project in future economic development for the county.

  17. Cold storage to overcome dormancy affects the carbohydrate status and photosynthetic capacity of Rhododendron simsii.

    PubMed

    Christiaens, A; De Keyser, E; Lootens, P; Pauwels, E; Roldán-Ruiz, I; De Riek, J; Gobin, B; Van Labeke, M-C

    2015-01-01

    Global warming leads to increasing irregular and unexpected warm spells during autumn, and therefore natural chilling requirements to break dormancy are at risk. Controlled cold treatment can provide an answer to this problem. Nevertheless, artificial cold treatment will have consequences for carbon reserves and photosynthesis. In this paper, the effect of dark cold storage at 7 °C to break flower bud dormancy in the evergreen Rhododendron simsii was quantified. Carbohydrate and starch content in leaves and flower buds of an early ('Nordlicht'), semi-early ('M. Marie') and late ('Mw. G. Kint') flowering cultivar showed that carbon loss due to respiration was lowest in 'M. Marie', while 'Mw. G. Kint' was completely depleted of starch reserves at the end of cold treatment. Gene isolation resulted in a candidate gene for sucrose synthase (SUS) RsSus, which appears to be homologous to AtSus3 and had a clear increase in expression in leaves during cold treatment. Photosynthesis measurements on 'Nordlicht' and the late-flowering cultivar 'Thesla' showed that during cold treatment, dark respiration decreased 58% and 63%, respectively. Immediately after cold treatment, dark respiration increased and stabilised after 3 days. The light compensation point followed the same trend as dark respiration. Quantum efficiency showed no significant changes during the first days after cold treatment, but was significantly higher than in plants with dormant flower buds at the start of cold treatment. In conclusion, photosynthesis stabilised 3 days after cold treatment and was improved compared to the level before cold treatment.

  18. Petrology of Deep Storage, Ingassing, and Outgassing of Terrestrial Carbon (Invited)

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.

    2010-12-01

    Fluxes of carbon between the mantle and the exosphere modulate Earth's atmosphere and climate on short to long time scales. Carbon geochemistry of mantle-derived samples suggests that the fluxes associated with deep cycle are in the order of 1012-13 g C/yr and the reservoir sizes involved in deep carbon are in the order of 1022-23 g C. Petrology of deep storage is critical to this long-term evolution and distribution of terrestrial carbon. Here I synthesize the petrologic constraints that are critical in understanding the evolution of deep terrestrial carbon. Carbon is a volatile, trace element in the Earth's mantle. But unlike most other trace elements including hydrogen, which in the Earth’s mantle is held in dominant silicate minerals, carbon is stored in accessory phases. The accessory phase of interest, with increasing depth, changes typically from fluids/melts → calcite/dolomite → magnesite → diamond/ Fe-rich alloy/ Fe-metal carbide, assuming that the mass balance and oxidation state are buffered solely by silicates. If, however, carbon is sufficiently abundant, locally it may overwhelm the mass balance and redox buffer of the Earth’s interior. For example, carbon may reside as carbonate even in the deep mantle, which otherwise is thought to be reduced and not conducive for carbonate stability. If Earth's deep mantle is Fe-metal saturated, carbon storage in metal alloy and as metal carbide is difficult to avoid for depleted and enriched domains, respectively. Carbon ingassing to the interior is aided by modern subduction of the carbonated oceanic lithosphere, whereas outgassing from the mantle is controlled by decompression melting of carbon-bearing mantle. Carbonated melting at >300 km depth or redox melting of diamond-bearing or metal/metal carbide-bearing mantle at somewhat shallower depth generates carbonatitic and carbonated silicate melts, which are the chief agents for liberating carbon from the solid Earth to the exosphere. Petrology allows

  19. Chemically Accelerated Carbon Mineralization: Chemical and Biological Catalytic Enhancement of Weathering of Silicate Minerals as Novel Carbon Capture and Storage

    SciTech Connect

    2010-07-01

    IMPACCT Project: Columbia University is developing a process to pull CO2 out of the exhaust gas of coal-fired power plants and turn it into a solid that can be easily and safely transported, stored above ground, or integrated into value-added products (e.g. paper filler, plastic filler, construction materials, etc.). In nature, the reaction of CO2 with various minerals over long periods of time will yield a solid carbonate—this process is known as carbon mineralization. The use of carbon mineralization as a CO2 capture and storage method is limited by the speeds at which these minerals can be dissolved and CO2 can be hydrated. To facilitate this, Columbia University is using a unique process and a combination of chemical catalysts which increase the mineral dissolution rate, and the enzymatic catalyst carbonic anhydrase which speeds up the hydration of CO2.

  20. Energy Storage.

    ERIC Educational Resources Information Center

    Eaton, William W.

    Described are technological considerations affecting storage of energy, particularly electrical energy. The background and present status of energy storage by batteries, water storage, compressed air storage, flywheels, magnetic storage, hydrogen storage, and thermal storage are discussed followed by a review of development trends. Included are…

  1. A Probabilistic Assessment Methodology for the Evaluation of Geologic Carbon Dioxide Storage

    USGS Publications Warehouse

    Brennan, Sean T.; Burruss, Robert A.; Merrill, Matthew D.; Freeman, P.A.; Ruppert, Leslie F.

    2010-01-01

    In 2007, the Energy Independence and Security Act (Public Law 110-140) authorized the U.S. Geological Survey (USGS) to conduct a national assessment of potential geologic storage resources for carbon dioxide (CO2) in cooperation with the U.S. Environmental Protection Agency and the U.S. Department of Energy. The first year of that activity was specified for development of a methodology to estimate storage potential that could be applied uniformly to geologic formations across the United States. After its release, the methodology was to receive public comment and external expert review. An initial methodology was developed and published in March 2009 (Burruss and others, 2009), and public comments were received. The report was then sent to a panel of experts for external review. The external review report was received by the USGS in December 2009. This report is in response to those external comments and reviews and describes how the previous assessment methodology (Burruss and others, 2009) was revised. The resource that is assessed is the technically accessible storage resource, which is defined as the mass of CO2 that can be stored in the pore volume of a storage formation. The methodology that is presented in this report is intended to be used for assessments at scales ranging from regional to subbasinal in which storage assessment units are defined on the basis of common geologic and hydrologic characteristics. The methodology does not apply to site-specific evaluation of storage resources or capacity.

  2. On the relative magnitudes of photosynthesis, respiration, growth and carbon storage in vegetation

    NASA Astrophysics Data System (ADS)

    van Oijen, M.

    2012-04-01

    • Background and Aims. The carbon balance of vegetation is dominated by the two large fluxes of photosynthesis (P) and respiration (R). Mechanistic models have attempted to simulate the two fluxes separately, each with their own set of internal and external controls. This has led to model predictions where environmental change causes R to exceed P, with consequent dieback of vegetation. However, empirical evidence suggests that the R:P ratio is constrained to a narrow range of about 0.4-0.5. Physiological explanations for the narrow range are not conclusive. We aim to introduce a novel perspective by theoretical study of the quantitative relationship between the four carbon fluxes of P, R, growth and storage (or its inverse, remobilisation). • Methods. Starting from the law of conservation of mass - in this case carbon - we derive equations for the relative magnitudes of all carbon fluxes which depend on only two parameters: the R:P ratio and the relative rate of storage of carbon into remobilisable reserves. The equations are used to explain observed flux ratios and to analyse incomplete data sets of carbon fluxes. • Key Results. Storage rate is shown to be a freely varying parameter, whereas R:P is narrowly constrained. This explains the constancy of the ratio reported in the literature. With the information thus gained, a data set of R and P in grassland was analysed, and flux estimates could be derived for the periods after cuts in which plant growth is dominated by remobilisation before photosynthesis takes over. • Conclusions. We conclude that the relative magnitudes of photosynthesis, respiration, growth and substrate storage are indeed tightly constrained, but because of mass conservation rather than for physiological reasons. This facilitates analysis of incomplete data sets. Mechanistic models, as the embodiment of physiological mechanisms, need to show consistency with the constraints. • Reference. Van Oijen, M., Schapendonk, A. & Höglind, M

  3. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States

    USGS Publications Warehouse

    Schimel, D.; Melillo, J.; Tian, H.; McGuire, A.D.; Kicklighter, D.; Kittel, T.; Rosenbloom, N.; Running, S.; Thornton, P.; Ojima, D.; Parton, W.; Kelly, R.; Sykes, M.; Neilson, R.; Rizzo, B.

    2000-01-01

    The effects of increasing carbon dioxide (CO2) and climate on net carbon storage in terrestrial ecosystems of the conterminous United States for the period 1895-1993 were modeled with new, detailed historical climate information. For the period 1980-1993, results from an ensemble of three models agree within 25%, simulating a land carbon sink from CO2 and climate effects of 0.08 gigaton of carbon per year. The best estimates of the total sink from inventory data are about three times larger, suggesting that processes such as regrowth on abandoned agricultural land or in forests harvested before 1980 have effects as large as or larger than the direct effects of CO2 and climate. The modeled sink varies by about 100% from year to year as a result of climate variability.

  4. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage.

    PubMed

    Comănescu, Cezar; Capurso, Giovanni; Maddalena, Amedeo

    2012-09-28

    Mesoporous carbon frameworks were synthesized using the soft-template method. Ca(BH(4))(2) was incorporated into activated mesoporous carbon by the incipient wetness method. The activation of mesoporous carbon was necessary to optimize the surface area and pore size. Thermal programmed absorption measurements showed that the confinement of this borohydride into carbon nanoscaffolds improved its reversible capacity (relative to the reactive portion) and performance of hydrogen storage compared to unsupported borohydride. Hydrogen release from the supported hydride started at a temperature as low as 100 °C and the dehydrogenation rate was fast compared to the bulk borohydride. In addition, the hydrogen pressure necessary to regenerate the borohydride from the dehydrogenation products was reduced. PMID:22948563

  5. Spatial distribution and variability of carbon storage in different sympodial bamboo species in China.

    PubMed

    Teng, Jiangnan; Xiang, Tingting; Huang, Zhangting; Wu, Jiasen; Jiang, Peikun; Meng, Cifu; Li, Yongfu; Fuhrmann, Jeffry J

    2016-03-01

    Selection of tree species is potentially an important management decision for increasing carbon storage in forest ecosystems. This study investigated and compared spatial distribution and variability of carbon storage in 8 sympodial bamboo species in China. The results of this study showed that average carbon densities (CDs) in the different organs decreased in the order: culms (0.4754 g g(-1)) > below-ground (0.4701 g g(-1)) > branches (0.4662 g g(-1)) > leaves (0.4420 g g(-1)). Spatial distribution of carbon storage (CS) on an area basis in the biomass of 8 sympodial bamboo species was in the order: culms (17.4-77.1%) > below-ground (10.6-71.7%) > branches (3.8-11.6%) > leaves (0.9-5.1%). Total CSs in the sympodial bamboo ecosystems ranged from 103.6 Mg C ha(-1) in Bambusa textilis McClure stand to 194.2 Mg C ha(-1) in Dendrocalamus giganteus Munro stand. Spatial distribution of CSs in 8 sympodial bamboo ecosystems decreased in the order: soil (68.0-83.5%) > vegetation (16.8-31.1%) > litter (0.3-1.7%). Total current CS and biomass carbon sequestration rate in the sympodial bamboo stands studied in China is 93.184 × 10(6) Mg C ha(-1) and 8.573 × 10(6) Mg C yr(-1), respectively. The sympodial bamboos had a greater CSs and higher carbon sequestration rates relative to other bamboo species. Sympodial bamboos can play an important role in improving climate and economy in the widely cultivated areas of the world.

  6. How does soil management affect carbon losses from soils?

    NASA Astrophysics Data System (ADS)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  7. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils

    NASA Astrophysics Data System (ADS)

    Schimel, David S.; Braswell, B. H.; Holland, Elisabeth A.; McKeown, Rebecca; Ojima, D. S.; Painter, Thomas H.; Parton, William J.; Townsend, Alan R.

    1994-09-01

    Soil carbon, a major component of the global carbon inventory, has significant potential for change with changing climate and human land use. We applied the Century ecosystem model to a series of forest and grassland sites distributed globally to examine large-scale controls over soil carbon. Key site-specific parameters influencing soil carbon dynamics are soil texture and foliar lignin content; accordingly, we perturbed these variables at each site to establish a range of carbon concentrations and turnover times. We examined the simulated soil carbon stores, turnover times, and C:N ratios for correlations with patterns of independent variables. Results showed that soil carbon is related linearly to soil texture, increasing as clay content increases, that soil carbon stores and turnover time are related to mean annual temperature by negative exponential functions, and that heterotrophic respiration originates from recent detritus (˜50%), microbial turnover (˜30%), and soil organic matter (˜20%) with modest variations between forest and grassland ecosystems. The effect of changing temperature on soil organic carbon (SOC) estimated by Century is dSOC/dT= 183e-0.034T. Global extrapolation of this relationship leads to an estimated sensitivity of soil C storage to a temperature of -11.1 Pg° C-1, excluding extreme arid and organic soils. In Century, net primary production (NPP) and soil carbon are closely coupled through the N cycle, so that as temperatures increase, accelerated N release first results in fertilization responses, increasing C inputs. The Century-predicted effect of temperature on carbon storage is modified by as much as 100% by the N cycle feedback. Century-estimated soil C sensitivity (-11.1 Pg° C-1) is similar to losses predicted with a simple data-based calculation (-14.1 Pg° C-1). Inclusion of the N cycle is important for even first-order predictions of terrestrial carbon balance. If the NPP-SOC feedback is disrupted by land use or other

  8. The role of tree-fall dynamics in long-term carbon storage of tropical peatlands

    NASA Astrophysics Data System (ADS)

    Dommain, R.; Cobb, A.; Joosten, H.; Glaser, P. H.; Chua, A.; Gandois, L.; Kai, F. M.; Noren, A. J.; Kamariah, A. S.; Su'ut, N. S.; Harvey, C. F.

    2015-12-01

    The forested peatlands of the Earth's tropical belt represent a major terrestrial carbon pool that may contain over 90 petagram C. However, the mechanisms that led to the build-up of this significant pool of carbon are poorly understood. Moreover, the rates of carbon uptake by peat accumulation in these tropical settings have rarely been quantified and natural variations in uptake on decadal to millennial scales are not well constrained. We studied carbon accumulation dynamics on these timescales of a peat swamp forest dominated by the dipterocarp Shorea albida - a unique forest type that, until recently, widely covered the lowlands of northwest Borneo. The impressive Shorea albida trees may reach heights of 70 m and are therefore strongly susceptible to windthrow and lightning. Such natural disturbances cause these trees to fall and uproot - excavating over 1 m deep holes into the peat that fill with water to become tip-up pools. The analysis of high-resolution aerial photographs and radiocarbon dated peat cores from our field site in Brunei together with the construction of a simulation model of peat accumulation allowed us to determine the role of tree-fall and tip-up pools in carbon storage. In a hectare of Shorea albida forest four tip-up pools form per decade. A pool completely fills with organic matter within 200 years according to our pollen record and a dated pool deposit stored 40 kg C m-2 of the total 110 kg C m-2 large local peat carbon pool. The carbon accumulation rates in these pools reach over 800 g C m-2 yr-1 - within the range of annual litterfall in dipterocarp forests. The simulation model indicates that up to 60% of the peat deposits under Shorea albida forests could be derived from infilled pools. Tip-up pools are therefore local hotspots for carbon storage in tropical forested peatlands.

  9. Scaling up carbon storage in human-dominated heterogeneous landscapes in the Great Lakes region

    NASA Astrophysics Data System (ADS)

    Currie, W.; Brown, D. G.; Kiger, S.; Nassauer, J. I.; Robinson, D. T.

    2013-12-01

    Humans alter vegetation worldwide for a variety of purposes, including production of timber, food, fuelwood, and biofuels. While providing key social and economic benefits, these activities alter vegetation community composition, vertical structure, ecology, and biogeochemistry including carbon cycling. Joint outcomes at the landscape scale, such as ecological and social outcomes, arise over time through coupled social-ecological processes and feedbacks. We focused on measuring and modeling carbon storage in low-density (exurban) residential landscapes in southeastern Michigan, but our findings are relevant for human-dominated vegetation more broadly, particularly scaling up carbon storage in fragmented and spatially heterogeneous tree cover. We studied soil and vegetation carbon storage in 23, 1 km-scale landscapes that had been converted to low-density residential land from agricultural land or forest remnant patches in the last 50 years. The use of three hierarchical spatial scales was key. These included (1) distinct ecological zones at the sub-parcel scale, such as dense trees and shrubs, turfgrass, and turfgrass with sparse woody vegetation; (2) traditional land-cover categories at the sub-1-km scale such as tree cover and impervious surfaces; and (3) differences among four distinct neighborhood types, distinguished by parcel size, road access, and tree cover, at the sub-township to regional scale. Low-density residential land stored ca. 19,000 g C / m2 on average, which is much lower than that of individual old-growth forest patches in the region, but surprisingly similar to C storage in regionally-averaged second-growth forests. In residential land, the presence of large trees was important to C storage but interestingly, many large trees occurred outside of forest patches. Another important location for C storage in our exurban landscapes was soil to 1 m depth, which stored greater C than comparative forests in the region. This high soil C storage arose

  10. Carbon sequestration in natural gas reservoirs: Enhanced gas recovery and natural gas storage

    SciTech Connect

    Oldenburg, Curtis M.

    2003-04-08

    Natural gas reservoirs are obvious targets for carbon sequestration by direct carbon dioxide (CO{sub 2}) injection by virtue of their proven record of gas production and integrity against gas escape. Carbon sequestration in depleted natural gas reservoirs can be coupled with enhanced gas production by injecting CO{sub 2} into the reservoir as it is being produced, a process called Carbon Sequestration with Enhanced Gas Recovery (CSEGR). In this process, supercritical CO{sub 2} is injected deep in the reservoir while methane (CH{sub 4}) is produced at wells some distance away. The active injection of CO{sub 2} causes repressurization and CH{sub 4} displacement to allow the control and enhancement of gas recovery relative to water-drive or depletion-drive reservoir operations. Carbon dioxide undergoes a large change in density as CO{sub 2} gas passes through the critical pressure at temperatures near the critical temperature. This feature makes CO{sub 2} a potentially effective cushion gas for gas storage reservoirs. Thus at the end of the CSEGR process when the reservoir is filled with CO{sub 2}, additional benefit of the reservoir may be obtained through its operation as a natural gas storage reservoir. In this paper, we present discussion and simulation results from TOUGH2/EOS7C of gas mixture property prediction, gas injection, repressurization, migration, and mixing processes that occur in gas reservoirs under active CO{sub 2} injection.

  11. Test the effects of nutrient enrichment on organic carbon storage in western Pacific oligotrophic gyre

    NASA Astrophysics Data System (ADS)

    liu, J.; Jiao, N.; Tang, K.

    2013-12-01

    In order to test the hypothesis that enrichment of nitrate and phosphate would decrease storage of organic carbon in the ocean (Jiao et al., 2011), we conducted a series of in-situ incubation experiments in the western Pacific Ocean. Five treatments were employed: organic carbon (glucose or algal exudation organic matter (EOM)) and macronutrient (nitrate and phosphate) were added alone or in combination with each other. The final concentration of organic carbon and macronutrient in treatments were 10 μM/C/kg, 1.5 μM/N/kg and 0.15 μM/P/ respectively higher than those in controls. Total dissolved organic matter (TOC) concentration, bacterial abundance, and nitrate and phosphate concentration were monitored during the incubation processes. The results showed that the utilization of TOC and bacterial community growth rate were enhanced by inorganic nutrients enrichment treatments during the initial 48 hours incubation, regardless of glucose enrichment or not. Until the end of 14 days incubation, the percentage of remaining additional organic carbon was significant higher in the glucose enrichment treatments and EOM enrichment treatments (40.64% and 55.05%, respectively), compared to the combination of glucose and inorganic nutrients enrichment treatment (4.52%). These results suggest that inorganic nutrients enrichment condition may be adverse to short-term scale carbon storage, presumably due to the nutrient-stimulated bacterial metabolism and respiration, which is consistent to the hypothesis.

  12. Considerations in forecasting the demand for carbon sequestration and biotic storage technologies

    SciTech Connect

    Trexler, M.C.

    1997-12-31

    The Intergovernmental Panel on Climate Change (IPCC) has identified forestry and other land-use based mitigation measures as possible sources and sinks of greenhouse gases. An overview of sequestration and biotic storage is presented, and the potential impacts of the use of carbon sequestration as a mitigation technology are briefly noted. Carbon sequestration is also compare to other mitigation technologies. Biotic mitigation technologies are concluded to be a legitimate and potentially important part of greenhouse gas mitigation due to their relatively low costs, ancillary benefits, and climate impact. However, not all biotic mitigation techniques perfectly match the idealized definition of a mitigation measure, and policies are becoming increasingly biased against biotic technologies.

  13. Effect of climate on the storage and turnover of carbon in soils

    NASA Technical Reports Server (NTRS)

    Trumbore, Susan; Chadwick, Oliver; Amundson, Ronald; Brasher, Benny

    1994-01-01

    Climate is, in many instances, the dominant variable controlling the storage of carbon in soils. It has proven difficult, however, to determine how soil properties influenced by climate, such as soil temperature and soil moisture, actually operate to determine the rates of accumulation and decomposition of soil organic matter. Our approach has been to apply a relatively new tool, the comparison of C-14 in soil organic matter from pre- and post-bomb soils, to quantify carbon turnover rates along climosequences. This report details the progress made toward this end by work under this contract.

  14. STEM Imaging of Single Pd Atoms in Activated Carbon Fibers Considered for Hydrogen Storage

    SciTech Connect

    Van Benthem, Klaus; Bonifacio, Cecile S; Contescu, Cristian I; Pennycook, Stephen J; Gallego, Nidia C

    2011-01-01

    Aberration corrected scanning transmission electron microscopy was used to demonstrate the feasibility of imaging individual Pd atoms that are highly dispersed throughout the volume of activated carbon fibers. Simultaneous acquisition of high-angle annular dark-field and bright-field images allows correlation of the location of single Pd atoms with microstructural features of the carbon host material. Sub-Angstrom imaging conditions revealed that 18 wt% of the total Pd content is dispersed as single Pd atoms in three re-occurring local structural arrangements. The identified structural configurations may represent effective storage sites for molecular hydrogen through Kubas complex formation as discussed in detail in the preceding article.

  15. Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction.

    PubMed

    Trivedi, Pankaj; Anderson, Ian C; Singh, Brajesh K

    2013-12-01

    Soil organic carbon performs a number of functions in ecosystems and it is clear that microbial communities play important roles in land-atmosphere carbon (C) exchange and soil C storage. In this review, we discuss microbial modulators of soil C storage, 'omics'-based approaches to characterize microbial system interactions impacting terrestrial C sequestration, and how data related to microbial composition and activities can be incorporated into mechanistic and predictive models. We argue that although making direct linkage of genomes to global phenomena is a significant challenge, many connections at intermediate scales are viable with integrated application of new systems biology approaches and powerful analytical and modelling techniques. This integration could enhance our capability to develop and evaluate microbial strategies for capturing and sequestering atmospheric CO2.

  16. Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)

    DOE Data Explorer

    NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

  17. Earthquake triggering and large-scale geologic storage of carbon dioxide

    PubMed Central

    Zoback, Mark D.; Gorelick, Steven M.

    2012-01-01

    Despite its enormous cost, large-scale carbon capture and storage (CCS) is considered a viable strategy for significantly reducing CO2 emissions associated with coal-based electrical power generation and other industrial sources of CO2 [Intergovernmental Panel on Climate Change (2005) IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, eds Metz B, et al. (Cambridge Univ Press, Cambridge, UK); Szulczewski ML, et al. (2012) Proc Natl Acad Sci USA 109:5185–5189]. We argue here that there is a high probability that earthquakes will be triggered by injection of large volumes of CO2 into the brittle rocks commonly found in continental interiors. Because even small- to moderate-sized earthquakes threaten the seal integrity of CO2 repositories, in this context, large-scale CCS is a risky, and likely unsuccessful, strategy for significantly reducing greenhouse gas emissions. PMID:22711814

  18. Final Scientific/Technical Report Carbon Capture and Storage Training Northwest - CCSTNW

    SciTech Connect

    Workman, James

    2013-09-30

    This report details the activities of the Carbon Capture and Storage Training Northwest (CCSTNW) program 2009 to 2013. The CCSTNW created, implemented, and provided Carbon Capture and Storage (CCS) training over the period of the program. With the assistance of an expert advisory board, CCSTNW created curriculum and conducted three short courses, more than three lectures, two symposiums, and a final conference. The program was conducted in five phases; 1) organization, gap analysis, and form advisory board; 2) develop list serves, website, and tech alerts; 3) training needs survey; 4) conduct lectures, courses, symposiums, and a conference; 5) evaluation surveys and course evaluations. This program was conducted jointly by Environmental Outreach and Stewardship Alliance (dba. Northwest Environmental Training Center – NWETC) and Pacific Northwest National Laboratories (PNNL).

  19. Li and Ca Co-decorated carbon nitride nanostructures as high-capacity hydrogen storage media

    NASA Astrophysics Data System (ADS)

    Wang, Yusheng; Ji, Yong; Li, Meng; Yuan, Pengfei; Sun, Qiang; Jia, Yu

    2011-11-01

    Using first-principles method based on density functional theory, we perform a detailed study of the hydrogen storage properties of Li and Ca co-decorated graphene-like carbon nitride (g-CN) nanostructures. The results show that the average adsorption energy of the molecular hydrogen is ˜0.26 eV/H2, which is acceptable for reversible H2 adsorption/desorption near ambient temperature. Moreover, the findings also show that the storage capacity of the Li and Ca co-decorated g-CN can reach up to 9.17 wt %, presenting a good potential as hydrogen storage material. Regarding the H2 adsorption mechanism, it is demonstrated that the Li adatoms become positively charged through charge transferring to g-CN and then bind hydrogen molecules via the polarization mechanism.

  20. Surface-Driven Sodium Ion Energy Storage in Nanocellular Carbon Foams

    SciTech Connect

    Shao, Yuyan; Xiao, Jie; Wang, Wei; Engelhard, Mark H.; Chen, Xilin; Nie, Zimin; Gu, Meng; Saraf, Laxmikant V.; Exarhos, Gregory J.; Zhang, Jiguang; Liu, Jun

    2013-07-23

    Sodium ion (Na+) batteries have attracted increased attention for energy storage due to the natural abundance of sodium, but their development is hindered by the poor intercalation property of Na+ in electrodes. This paper reports a detailed study of high capacity, high rate sodium ion energy storage in high-surface-area nanocellular carbon foams (NCCF). The energy storage mechanism is surface-driven reactions between Na+ and oxygen-containing functional groups on the surface of NCCF. The surface reaction, rather than a Na+ bulk intercalation reaction, leads to high rate performance and cycling stability due to the enhanced reaction kinetics and the absence of electrode structure change. The NCCF makes more surface area and surface functional groups available for the Na+ reaction. It delivers 152 mAh/g capacity at the rate of 0.1 A/g and a capacity retention of 90% for over 1600 cycles.

  1. National assessment of geologic carbon dioxide storage resources: allocations of assessed areas to Federal lands

    USGS Publications Warehouse

    Buursink, Marc L.; Cahan, Steven M.; Warwick, Peter D.

    2015-01-01

    Following the geologic basin-scale assessment of technically accessible carbon dioxide storage resources in onshore areas and State waters of the United States, the U.S. Geological Survey estimated that an area of about 130 million acres (or about 200,000 square miles) of Federal lands overlies these storage resources. Consequently, about 18 percent of the assessed area associated with storage resources is allocated to Federal land management. Assessed areas are allocated to four other general land-ownership categories as follows: State lands about 4.5 percent, Tribal lands about 2.4 percent, private and other lands about 72 percent, and offshore areas about 2.6 percent.

  2. Adsorbed Natural Gas Storage in Optimized High Surface Area Microporous Carbon

    NASA Astrophysics Data System (ADS)

    Romanos, Jimmy; Rash, Tyler; Nordwald, Erik; Shocklee, Joshua Shawn; Wexler, Carlos; Pfeifer, Peter

    2011-03-01

    Adsorbed natural gas (ANG) is an attractive alternative technology to compressed natural gas (CNG) or liquefied natural gas (LNG) for the efficient storage of natural gas, in particular for vehicular applications. In adsorbants engineered to have pores of a few molecular diameters, a strong van der Walls force allows reversible physisorption of methane at low pressures and room temperature. Activated carbons were optimized for storage by varying KOH:C ratio and activation temperature. We also consider the effect of mechanical compression of powders to further enhance the volumetric storage capacity. We will present standard porous material characterization (BET surface area and pore-size distribution from subcritical N2 adsorption) and methane isotherms up to 250 bar at 293K. At sufficiently high pressure, specific surface area, methane binding energy and film density can be extracted from supercritical methane adsorption isotherms. Research supported by the California Energy Commission (500-08-022).

  3. Temporal and Spatial Deployment of Carbon Dioxide Capture and Storage Technologies across the Representative Concentration Pathways

    SciTech Connect

    Dooley, James J.; Calvin, Katherine V.

    2011-04-18

    The Intergovernmental Panel on Climate Change’s (IPCC) Fifth Assessment (to be published in 2013-2014) will to a significant degree be built around four Representative Concentration Pathways (RCPs) that are intended to represent four scenarios of future development of greenhouse gas emissions, land use, and concentrations that span the widest range of potential future atmospheric radiative forcing. Under the very stringent climate policy implied by the 2.6 W/m2 overshoot scenario, all electricity is eventually generated from low carbon sources. However, carbon dioxide capture and storage (CCS) technologies never comprise more than 50% of total electricity generation in that very stringent scenario or in any of the other cases examined here. There are significant differences among the cases studied here in terms of how CCS technologies are used, with the most prominent being is the significant expansion of biomass+CCS as the stringency of the implied climate policy increases. Cumulative CO2 storage across the three cases that imply binding greenhouse gas constraints ranges by nearly an order of magnitude from 170GtCO2 (radiative forcing of 6.0W/m2 in 2100) to 1600GtCO2 (2.6W/m2 in 2100) over the course of this century. This potential demand for deep geologic CO2 storage is well within published estimates of total global CO2 storage capacity.

  4. A meta-analysis on the impacts of partial cutting on forest structure and carbon storage

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Zhao, S. Q.; Liu, S.; Oeding, J.

    2013-06-01

    Partial cutting, which removes some individual trees from a forest, is one of the major and widespread forest management practices that can significantly alter both forest structure and carbon (C) storage. Using 748 observations from 81 studies published between 1973 and 2011, we synthesized the impacts of partial cutting on three variables associated with forest structure (mean annual growth of diameter at breast height (DBH), stand basal area, and volume) and four variables related to various C stock components (aboveground biomass C (AGBC), understory C, forest floor C, and mineral soil C). Results show that the growth of DBH increased by 111.9% after partial cutting, compared to the uncut control, with a 95% bootstrapped confidence interval ranging from 92.2 to 135.9%, while stand basal area and volume decreased immediately by 34.2% ([-37.4%, -31.2%]) and 28.4% ([-32.0%, -25.1%]), respectively. On average, partial cutting reduced AGBC by 43.4% ([-47.7%, -39.3%]), increased understory C storage by 391.5% ([220.0%, 603.8%]), but did not show significant effects on C stocks on forest floor and in mineral soil. All the effects, if significant (i.e., on DBH growth, stand basal area, volume, and AGBC), intensified linearly with cutting intensity and decreased linearly over time. Overall, cutting intensity had more strong impacts than the length of recovery time on the responses of those variables to partial cutting. Besides the significant influence of cutting intensity and recovery time, other factors such as climate zone and forest type also affected forest responses to partial cutting. For example, a large fraction of the changes in DBH growth remains unexplained, suggesting the factors not included in the analysis may play a major role. The data assembled in this synthesis were not sufficient to determine how long it would take for a complete recovery after cutting because long-term experiments were scarce. Future efforts should be tailored to increase the

  5. Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage

    SciTech Connect

    James W. Castle; Ronald W. Falta; David Bruce; Larry Murdoch; Scott E. Brame; Donald Brooks

    2006-10-31

    The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas, alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride

  6. Carbon storage in Organic Soils (COrS): Quantifying past variations in carbon accumulation in peatlands of South Wales, UK.

    NASA Astrophysics Data System (ADS)

    Carless, Donna; Kulessa, Bernd; Street-Perrott, Alayne; Davies, Siwan; Sinnadurai, Paul

    2014-05-01

    addition, long-term environmental changes are being identified through the use of humification and plant-macrofossil analyses to reconstruct past variations in bog vegetation and surface wetness. This ensemble of techniques will permit direct comparisons to be made between records of carbon accumulation, palaeoclimate and vegetation, and hence will allow the factors influencing long-term carbon storage to be determined.

  7. Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage.

    PubMed

    Su, Yuezeng; Li, Shuang; Wu, Dongqing; Zhang, Fan; Liang, Haiwei; Gao, Pengfei; Cheng, Chong; Feng, Xinliang

    2012-09-25

    Metal oxides (MOs) have been widely investigated as promising high-capacity anode material for lithium ion batteries, but they usually exhibit poor cycling stability and rate performance due to the huge volume change induced by the alloying reaction with lithium. In this article, we present a double protection strategy by fabricating a two-dimensional (2D) core-shell nanostructure to improve the electrochemical performance of metal oxides in lithium storage. The 2D core-shell architecture is constructed by confining the well-defined graphene based metal oxides nanosheets (G@MO) within carbon layers. The resulting 2D carbon-coated graphene/metal oxides nanosheets (G@MO@C) inherit the advantages of graphene, which possesses high electrical conductivity, large aspect ratio, and thin feature. Furthermore, the carbon shells can tackle the deformation of MO nanoparticles while keeping the overall electrode highly conductive and active in lithium storage. As the result, the produced G@MO@C hybrids exhibit outstanding reversible capacity and excellent rate performance for lithium storage (G@SnO(2)@C, 800 mAh g(-1) at the rate of 200 mA g(-1) after 100 cycles; G@Fe(3)O(4)@C, 920 mAh g(-1) at the rate of 200 mA g(-1) after 100 cycles).

  8. Nanoporous carbons derived from binary carbides and their optimization for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Dash, Ranjan Kumar

    On-board hydrogen storage is one of the major hurdles for success of hydrogen economy. Hydrogen storage using physisorption technique demands highly porous materials. Carbide derived carbons (CDC), a new class of porous carbons produced by thermo chemical etching of metal atoms from carbides were selected as a method for producing highly porous material for hydrogen storage. In order to synthesize tunable nanoporous carbon and to establish a structure-property relation between initial metal carbide and resultant nanoporous carbon, CDCs were synthesized from four metal carbides, two that have uniform carbon to carbon distance in the lattice structure (ZrC, TiC and SiC) and one that has a non-uniform carbon distribution in the lattice (B4C). It was shown that a uniform distribution of carbon atoms in the carbide is important for obtaining a narrow pore size distribution (PSD). CDC derived from B 4C had a relatively broad PSD and contained mesopores even at the lowest synthesis temperature, while the CDC produced from SiC maintained a narrow PSD even at the synthesis temperature of 1200°C. CDC produced from ZrC and TiC has a narrow PSD at low synthesis temperature and pores gets wider at higher temperatures. Comparison of CDCs produced from ZrC, TiC and B 4C shows that CDCs produced from ZrC and TiC show a lower degree of ordering than that from B4C at high temperatures. Unlike CDCs produced from ZrC and TiC, the PSD of CDCs from B4C does not change appreciably in the 600-1200°C range. CDCs produced from ZrC and TiC can have both narrowly distributed micropores (pores smaller than 2 nm) and mesopores (pores larger than 2 nm), depending on synthesis temperature. In this work, it is demonstrated that porosity of CDC can be fine tuned with a high accuracy by using different starting carbides and varying the synthesis temperatures. This is very important in many applications of porous carbon, especially for gas storage. CDC from ZrC, TiC, B4C and SiC resulted in a

  9. Defining Noble Gas Partitioning for Carbon Capture and Storage Environments

    NASA Astrophysics Data System (ADS)

    Warr, O.; Masters, A.; Rochelle, C.; Ballentine, C. J.

    2014-12-01

    For viable CCS implementation variables such as CO2 dissolution rates, reactions with the host rock and the extent of groundwater interaction must be accurately constrained. Noble gases play an important role in these systems [e.g. 1,2]. Their application, however, requires accurate Henry's constants within dense CO2-H2O systems. Current interpretations use pure noble gas-H2O partitioning data [3,4] and assume CO2-noble gas interactions are negligible, even at high (>700 kg/m3) CO2 densities [2]. To test this assumption we experimentally determined noble gas CO2-H2O partitioning for the 170-656 kg/m3 CO2 density range; representative of most CCS environments. Contrary to assumption, CO2 density significantly affected noble gas partition coefficients. For helium, increasing CO2 density resulted in a negative deviation trend from CO2-free values whilst for argon, krypton and xenon strong, positive deviations were observed. At 656 kg/m3 these deviations were -35%, 74%, 114% and 321% respectively. This is interpreted as the CO2 phase acting as a polar solvent inducing polarisation in the noble gases. Deviation trends are well defined using a 2nd order polynomial. The effect of a dense CO2 phase can now be incorporated into existing noble gas models. We also present results from a Gibbs-Ensemble Monte Carlo molecular simulation to model partitioning for this binary system. This fundamental technique makes predictions based on the pair-potentials of interaction between the molecules. Here it gives the phase compositions and Henry coefficients for noble gases. With a proven ability in accurately replicating both the CO2-H2O system and low pressure noble gas Henry constants the focus is now on fully optimising the model to match high pressure observations. [1] Gilfillan et al. (2009) Nature 458 614-618 [2] Gilfillan et al. (2008) GCA 72 1174-1198 [3] Crovetto et al. (1982) J.Chem.Phys. 76 1077-1086 [4] Ballentine et al. in Porcelli et al. (eds.) (2002) Rev.Min.Geo. 47 539-614.

  10. Different carbon sources affect PCB accumulation by marine bivalves.

    PubMed

    Laitano, M V; Silva Barni, M F; Costa, P G; Cledón, M; Fillmann, G; Miglioranza, K S B; Panarello, H O

    2016-02-01

    Pampean creeks were evaluated in the present study as potential land-based sources of PCB marine contamination. Different carbon and nitrogen sources from such creeks were analysed as boosters of PCB bioaccumulation by the filter feeder bivalve Brachidontes rodriguezii and grazer limpet Siphonaria lessoni. Carbon of different source than marine and anthropogenic nitrogen assimilated by organisms were estimated through their C and N isotopic composition. PCB concentration in surface sediments and mollusc samples ranged from 2.68 to 6.46 ng g(-1) (wet weight) and from 1074 to 4583 ng g(-1) lipid, respectively, reflecting a punctual source of PCB contamination related to a landfill area. Thus, despite the low flow of creeks, they should not be underestimated as contamination vectors to the marine environment. On the other hand, mussels PCB bioaccumulation was related with the carbon source uptake which highlights the importance to consider this factor when studying PCB distribution in organisms of coastal systems.

  11. Different carbon sources affect PCB accumulation by marine bivalves.

    PubMed

    Laitano, M V; Silva Barni, M F; Costa, P G; Cledón, M; Fillmann, G; Miglioranza, K S B; Panarello, H O

    2016-02-01

    Pampean creeks were evaluated in the present study as potential land-based sources of PCB marine contamination. Different carbon and nitrogen sources from such creeks were analysed as boosters of PCB bioaccumulation by the filter feeder bivalve Brachidontes rodriguezii and grazer limpet Siphonaria lessoni. Carbon of different source than marine and anthropogenic nitrogen assimilated by organisms were estimated through their C and N isotopic composition. PCB concentration in surface sediments and mollusc samples ranged from 2.68 to 6.46 ng g(-1) (wet weight) and from 1074 to 4583 ng g(-1) lipid, respectively, reflecting a punctual source of PCB contamination related to a landfill area. Thus, despite the low flow of creeks, they should not be underestimated as contamination vectors to the marine environment. On the other hand, mussels PCB bioaccumulation was related with the carbon source uptake which highlights the importance to consider this factor when studying PCB distribution in organisms of coastal systems. PMID:26606107

  12. Divergent predictions of carbon storage between two global land models: attribution of the causes through traceability analysis

    NASA Astrophysics Data System (ADS)

    Rafique, Rashid; Xia, Jianyang; Hararuk, Oleksandra; Asrar, Ghassem R.; Leng, Guoyong; Wang, Yingping; Luo, Yiqi

    2016-07-01

    Representations of the terrestrial carbon cycle in land models are becoming increasingly complex. It is crucial to develop approaches for critical assessment of the complex model properties in order to understand key factors contributing to models' performance. In this study, we applied a traceability analysis which decomposes carbon cycle models into traceable components, for two global land models (CABLE and CLM-CASA') to diagnose the causes of their differences in simulating ecosystem carbon storage capacity. Driven with similar forcing data, CLM-CASA' predicted ˜ 31 % larger carbon storage capacity than CABLE. Since ecosystem carbon storage capacity is a product of net primary productivity (NPP) and ecosystem residence time (τE), the predicted difference in the storage capacity between the two models results from differences in either NPP or τE or both. Our analysis showed that CLM-CASA' simulated 37 % higher NPP than CABLE. On the other hand, τE, which was a function of the baseline carbon residence time (τ'E) and environmental effect on carbon residence time, was on average 11 years longer in CABLE than CLM-CASA'. This difference in τE was mainly caused by longer τ'E of woody biomass (23 vs. 14 years in CLM-CASA'), and higher proportion of NPP allocated to woody biomass (23 vs. 16 %). Differences in environmental effects on carbon residence times had smaller influences on differences in ecosystem carbon storage capacities compared to differences in NPP and τ'E. Overall, the traceability analysis showed that the major causes of different carbon storage estimations were found to be parameters setting related to carbon input and baseline carbon residence times between two models.

  13. Comparison of Publically Available Methodologies for Development of Geologic Storage Estimates for Carbon Dioxide in Saline Formations

    NASA Astrophysics Data System (ADS)

    Goodman, A.; Strazisar, B. R.; Guthrie, G. D.; Bromhal, G.

    2012-12-01

    High-level estimates of CO2 storage potential at the national, regional, and basin scale are required to assess the potential for carbon capture, utilization, and storage (CCUS) technologies to reduce CO2 emissions for application to saline formations. Both private and public entities worldwide rely on CO2 storage potential estimates for broad energy-related government policy and business decisions. High-level estimates of CO2 geologic storage potential, however, have a high degree of uncertainty because the assessments rely on simplifying assumptions due to the deficiency or absence of data from the subsurface associated with areas of potential storage in saline formations and the natural heterogeneity of geologic formations in general, resulting in undefined rock properties. As site characterization progresses to individual CO2 storage sites, additional site-specific data will likely be collected and analyzed that will allow for the refinement of high-level CO2 storage resource estimates and development of CO2 storage capacities. Until such detailed characterization can be documented, dependable high-level CO2 storage estimates are essential to ensure successful widespread deployment of CCUS technologies. Initiatives for assessing CO2 geologic storage potential have been conducted since 1993. Although dependable high-level CO2 storage estimates are essential to ensure successful deployment of CCUS technologies, it is difficult to assess the uncertainty of these estimates without knowing how the current methodologies targeted at high-level CO2 storage resource estimates for saline formations compare to one another. In this study, we compare high-level CO2 methodologies for development of geologic storage estimates for CO2 in saline formations to assess the uncertainty associated with various methodologies. The methodologies applied are listed as follows: (1) U.S. DOE Methodology: Development of Geologic Storage Potential for Carbon Dioxide at the National and

  14. PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage.

    PubMed

    Xiang, Zhonghua; Wang, Dan; Xue, Yuhua; Dai, Liming; Chen, Jian-Feng; Cao, Dapeng

    2015-01-01

    Owing to the shortage of the traditional fossil fuels caused by fast consumption, it is an urgent task to develop the renewable and clean energy sources. Thus, advanced technologies for both energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) are being studied extensively. In this work, we use porous aromatic framework (PAF) as precursor to produce nitrogen-doped 3D carbon materials, i.e., N-PAF-Carbon, by exposing NH3 media. The "graphitic" and "pyridinic" N species, large surface area, and similar pore size as electrolyte ions endow the nitrogen-doped PAF-Carbon with outstanding electronic performance. Our results suggest the N-doping enhance not only the ORR electronic catalysis but also the supercapacitive performance. Actually, the N-PAF-Carbon obtains ~70 mV half-wave potential enhancement and 80% increase as to the limiting current after N doping. Moreover, the N-PAF-Carbon displays free from the CO and methanol crossover effect and better long-term durability compared with the commercial Pt/C benchmark. Moreover, N-PAF-Carbon also possesses large capacitance (385 F g(-1)) and excellent performance stability without any loss in capacitance after 9000 charge-discharge cycles. These results clearly suggest that PAF-derived N-doped carbon material is promising metal-free ORR catalyst for fuel cells and capacitor electrode materials.

  15. PAF-derived nitrogen-doped 3D Carbon Materials for Efficient Energy Conversion and Storage.

    PubMed

    Xiang, Zhonghua; Wang, Dan; Xue, Yuhua; Dai, Liming; Chen, Jian-Feng; Cao, Dapeng

    2015-01-01

    Owing to the shortage of the traditional fossil fuels caused by fast consumption, it is an urgent task to develop the renewable and clean energy sources. Thus, advanced technologies for both energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) are being studied extensively. In this work, we use porous aromatic framework (PAF) as precursor to produce nitrogen-doped 3D carbon materials, i.e., N-PAF-Carbon, by exposing NH3 media. The "graphitic" and "pyridinic" N species, large surface area, and similar pore size as electrolyte ions endow the nitrogen-doped PAF-Carbon with outstanding electronic performance. Our results suggest the N-doping enhance not only the ORR electronic catalysis but also the supercapacitive performance. Actually, the N-PAF-Carbon obtains ~70 mV half-wave potential enhancement and 80% increase as to the limiting current after N doping. Moreover, the N-PAF-Carbon displays free from the CO and methanol crossover effect and better long-term durability compared with the commercial Pt/C benchmark. Moreover, N-PAF-Carbon also possesses large capacitance (385 F g(-1)) and excellent performance stability without any loss in capacitance after 9000 charge-discharge cycles. These results clearly suggest that PAF-derived N-doped carbon material is promising metal-free ORR catalyst for fuel cells and capacitor electrode materials. PMID:26045229

  16. Elevated pressure of carbon dioxide affects growth of thermophilic Petrotoga sp.

    NASA Astrophysics Data System (ADS)

    Rakoczy, Jana; Gniese, Claudia; Schippers, Axel; Schlömann, Michael; Krüger, Martin

    2014-05-01

    Carbon capture and storage (CCS) is considered a promising new technology which reduces carbon dioxide emissions into the atmosphere and thereby decelerates global warming. During CCS, carbon dioxide is captured from emission sources (e.g. fossil fuel power plants or other industries), pressurised, and finally stored in deep geological formations, such as former gas or oil reservoirs as well as saline aquifers. However, with CCS being a very young technology, there are a number of unknown factors that need to be investigated before declaring CCS as being safe. Our research investigates the effect of high carbon dioxide concentrations and pressures on an indigenous microorganism that colonises a potential storage site. Growth experiments were conducted using the thermophilic thiosulphate-reducing bacterium Petrotoga sp., isolated from formation water of the gas reservoir Schneeren (Lower Saxony, Germany), situated in the Northern German Plain. Growth (OD600) was monitored over one growth cycle (10 days) at different carbon dioxide concentrations (50%, 100%, and 150% in the gas phase), and was compared to control cultures grown with 20% carbon dioxide. An additional growth experiment was performed over a period of 145 days with repeated subcultivation steps in order to detect long-term effects of carbon dioxide. Cultivation over 10 days at 50% and 100% carbon dioxide slightly reduced cell growth. In contrast, long-term cultivation at 150% carbon dioxide reduced cell growth and finally led to cell death. This suggested a more pronounced effect of carbon dioxide at prolonged cultivation and stresses the need for a closer consideration of long-term effects. Experiments with supercritical carbon dioxide at 100 bar completely inhibited growth of freshly inoculated cultures and also caused a rapid decrease of growth of a pre-grown culture. This demonstrated that supercritical carbon dioxide had a sterilising effect on cells. This effect was not observed in control cultures

  17. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions.

    PubMed

    Li, Weili; Liu, Linshu; Jin, Tony Z

    2012-12-01

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid and chitosan were incorporated with AIT and used to coat one side of the film. The films were subjected to different storage conditions (storage time, storage temperature, and packed or unpacked) and handling conditions (washing, abrasion, and air blowing), and the antimicrobial activity of the films against Salmonella Stanley in tryptic soy broth was determined. The films (8.16 μl of AIT per cm(2) of surface area) significantly (P < 0.05) inhibited the growth of Salmonella during 24 h of incubation at 22°C, while the populations of Salmonella in controls increased from ca. 4 to over 8 log CFU/ml, indicating a minimum inactivation of 4 log CFU/ml on films in comparison to the growth on controls. Statistical analyses indicated that storage time, storage temperature, and surface abrasion affected the antimicrobial activity of the films significantly (P < 0.05). However, the differences in microbial reduction between those conditions were less than 0.5 log cycle. The results suggest that the films' antimicrobial properties are stable under practical storage and handling conditions and that these antimicrobial films have potential applications in food packaging.

  18. Storage of parbaked bread affects shelf life of fully baked end product: a ¹H NMR study.

    PubMed

    Bosmans, Geertrui M; Lagrain, Bert; Ooms, Nand; Fierens, Ellen; Delcour, Jan A

    2014-12-15

    Full baking of earlier partially baked (parbaked) bread can supply fresh bread to the consumer at any time of the day. When parbaked bread loaves were stored at -25, 4 or 23°C, the extent of crumb to crust moisture migration and amylopectin retrogradation differed with storage temperature, and the firming rate was evidently lowest during frozen storage. The extent of crumb to crust moisture migration during parbaked bread storage largely determined the mass of the fresh finished bread, and its crumb and crust moisture contents. Initial NMR proton mobility, initial resilience, the extent of amylopectin retrogradation and changes in firmness and resilience during storage of fully baked bread were affected by its crumb moisture content. The lowest firming rate was observed for finished bread resulting from parbaked bread stored at -25°C, while the highest firming rate was observed for finished bread from parbaked bread stored at 23°C.

  19. Carbon storage in terrestrial ecosystems: do browsing and grazing herbivores matter?

    PubMed

    Tanentzap, Andrew J; Coomes, David A

    2012-02-01

    Large mammalian herbivores manifest a strong top-down control on ecosystems that can transform entire landscapes, but their impacts have not been reviewed in the context of terrestrial carbon storage. Here, we evaluate the effects of plant biomass consumption by large mammalian herbivores (>10 kg adult biomass), and the responses of ecosystems to these herbivores, on carbon stocks in temperate and tropical regions, and the Arctic. We calculate the difference in carbon stocks resulting from herbivore exclusion using the results of 108 studies from 52 vegetation types. Our estimates suggest that herbivores can reduce terrestrial above- and below-ground carbon stocks across vegetation types but reductions in carbon stocks may approach zero given sufficient periods of time for systems to respond to herbivory (i.e. decades). We estimate that if all large herbivores were removed from the vegetation types sampled in our review, increases in terrestrial carbon stocks would be up to three orders of magnitude less than many of the natural and human-influenced sources of carbon emissions. However, we lack estimates for the effects of herbivores on below-ground biomass and soil carbon levels in many regions, including those with high herbivore densities, and upwards revisions of our estimates may be necessary. Our results provide a starting point for a discussion on the magnitude of the effects of herbivory on the global carbon cycle, particularly given that large herbivores are common in many ecosystems. We suggest that herbivore removal might represent an important strategy towards increasing terrestrial carbon stocks at local and regional scales within specific vegetation types, since humans influence populations of most large mammals.

  20. Effect of p-type multi-walled carbon nanotubes for improving hydrogen storage behaviors

    SciTech Connect

    Lee, Seul-Yi; Yop Rhee, Kyong; Nahm, Seung-Hoon; Park, Soo-Jin

    2014-02-15

    In this study, the hydrogen storage behaviors of p-type multi-walled carbon nanotubes (MWNTs) were investigated through the surface modification of MWNTs by immersing them in sulfuric acid (H{sub 2}SO{sub 4}) and hydrogen peroxide (H{sub 2}O{sub 2}) at various ratios. The presence of acceptor-functional groups on the p-type MWNT surfaces was confirmed by X-ray photoelectron spectroscopy. Measurement of the zeta-potential determined the surface charge transfer and dispersion of the p-type MWMTs, and the hydrogen storage capacity was evaluated at 77 K and 1 bar. From the results obtained, it was found that acceptor-functional groups were introduced onto the MWNT surfaces, and the dispersion of MWNTs could be improved depending on the acid-mixed treatment conditions. The hydrogen storage was increased by acid-mixed treatments of up to 0.36 wt% in the p-type MWNTs, compared with 0.18 wt% in the As-received MWNTs. Consequently, the hydrogen storage capacities were greatly influenced by the acceptor-functional groups of p-type MWNT surfaces, resulting in increased electron acceptor–donor interaction at the interfaces. - Graphical abstract: Hydrogen storage behaviors of the p-type MWNTs with the acid-mixed treatments are described. Display Omitted Display Omitted.

  1. Influence of CO 2 activation on hydrogen storage behaviors of platinum-loaded activated carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Lee, Seul-Yi; Park, Soo-Jin

    2010-12-01

    In this work, platinum (Pt) metal loaded activated multi-walled carbon nanotubes (MWNTs) were prepared with different structural characteristics for hydrogen storage applications. The process was conducted by a gas phase CO 2 activation method at 1200 °C as a function of the CO 2 flow time. Pt-loaded activated MWNTs were also formulated to investigate the hydrogen storage characteristics. The microstructures of the Pt-loaded activated MWNTs were characterized by XRD and TEM measurements. The textural properties of the samples were analyzed using N 2 adsorption isotherms at 77 K. The BET, D-R, and BJH equations were used to observe the specific surface areas and the micropore and mesopore structures. The hydrogen storage capacity of the Pt-loaded activated MWNTs was measured at 298 K at a pressure of 100 bar. The hydrogen storage capacity was increased with CO 2 flow time. It was found that the micropore volume of the activated MWNTs plays a key role in the hydrogen storage capacity.

  2. Combination of herbivore removal and nitrogen deposition increases upland carbon storage.

    PubMed

    Smith, Stuart W; Johnson, David; Quin, Samuel L O; Munro, Kyle; Pakeman, Robin J; van der Wal, René; Woodin, Sarah J

    2015-08-01

    Ecosystem carbon (C) accrual and storage can be enhanced by removing large herbivores as well as by the fertilizing effect of atmospheric nitrogen (N) deposition. These drivers are unlikely to operate independently, yet their combined effect on aboveground and belowground C storage remains largely unexplored. We sampled inside and outside 19 upland grazing exclosures, established for up to 80 years, across an N deposition gradient (5-24 kg N ha(-1) yr(-1) ) and found that herbivore removal increased aboveground plant C stocks, particularly in moss, shrubs and litter. Soil C storage increased with atmospheric N deposition, and this was moderated by the presence or absence of herbivores. In exclosures receiving above 11 kg N ha(-1) year(-1) , herbivore removal resulted in increased soil C stocks. This effect was typically greater for exclosures dominated by dwarf shrubs (Calluna vulgaris) than by grasses (Molinia caerulea). The same pattern was observed for ecosystem C storage. We used our data to predict C storage for a scenario of removing all large herbivores from UK heathlands. Predictions were made considering herbivore removal only (ignoring N deposition) and the combined effects of herbivore removal and current N deposition rates. Predictions including N deposition resulted in a smaller increase in UK heathland C storage than predictions using herbivore removal only. This finding was driven by the fact that the majority of UK heathlands receive low N deposition rates at which herbivore removal has little effect on C storage. Our findings demonstrate the crucial link between herbivory by large mammals and atmospheric N deposition, and this interaction needs to be considered in models of biogeochemical cycling. PMID:25930662

  3. Phenolic resin-based porous carbons for adsorption and energy storage applications

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Nilantha P.

    The main objective of this dissertation research is to develop phenolic resin based carbon materials for range of applications by soft-templating and Stober-like synthesis strategies. Applications Studied in this dissertation are adsorption of CO2, bio-molecular and heavy metal ions, and energy storage devices. Based on that, our goal is to design carbon materials with desired pore structure, high surface area, graphitic domains, incorporated metal nanoparticles, and specific organic groups and heteroatoms. In this dissertation the organic-organic self-assembly of phenolic resins and triblock copolymers under acidic conditions will be used to obtain mesoporous carbons/carbon composites and Stober-like synthesis involving phenolic resins under basic condition will be used to prepare polymer/carbon particles and their composites. The structure of this dissertation consists of an introductory chapter (Chapter 1) discussing the general synthesis of carbon materials, particularly the soft-templating strategy and Stober-like carbon synthesis. Also, Chapter 1 includes a brief outline of applications namely adsorption of CO2, biomolecule and heavy metal ions, and supercapacitors. Chapter 2 discusses the techniques used for characterization of the carbon materials studied. This chapter starts with nitrogen adsorption analysis, which is used to measure the specific surface area, pore volume, distribution of pore sizes, and pore width. In addition to nitrogen adsorption, powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution thermogravimetric analysis (HR-TGA), cyclic voltammetry (CV) and CHNS elemental analysis (EA) are mentioned too. Chapter 3 is focused on carbon materials for CO2 adsorption. There are different types of porous solid materials such as silicate, MOFs, carbons, and zeolites studied for CO2 adsorption. However, the carbon based materials are considered to be the best candidates for CO 2 adsorption to the industrial point of

  4. Carbon and Nitrogen Storage in Glomalin-Related Soil Protein During Grassland-to- Woodland Succession

    NASA Astrophysics Data System (ADS)

    Ariza, M. C.; Boutton, T. W.; Gonzalez-Chavez, M. C.; Filley, T. R.

    2008-12-01

    Glomalin is a hyphal glycoprotein produced by arbuscular mycorrhizal fungi that has been found to make a significant contribution to soil organic matter and to play a key role in the process of soil aggregation. However, little is known regarding the effects of land cover changes on glomalin storage in soil. To evaluate this, we quantified glomalin in soils along a grassland-to-woodland chronosequence in a subtropical mesquite savanna located in southern Texas. Soil cores (0-10 cm) were collected from remnant grasslands (age 0) and from adjacent woody plant stands (ages 14 to 86 yr). Glomalin-related soil protein (GRSP), operationally defined as Bradford reactive soil protein was extracted from soil as easily extractable glomalin (EE-GRSP) and as total glomalin (T-GRSP). EE-GRSP was extracted from 1 g soil with 8 ml of 20 mM citrate-buffer, pH 7.0 at 121 °C for 30 minutes. T-GRSP was extracted from 1 g soil with 8 ml of 50 mM citrate-buffer, pH 8.0 at 121 °C for 60 minutes; extractions were repeated up to 4 times. Extracts were purified by precipitation at pH 2.5, reconstituted in 0.1 NaOH, dialyzed against dH2O, freeze-dried, and analyzed for %C and N. EE-GRSP concentrations ranged from 1.0-1.4 mg/g in remnant grasslands, and from 1.7-2.3 mg/g in wooded areas. Similarly, T-GRSP concentrations ranged from 1.2-2.6 mg/g in remnant grasslands, and from 2.8-4.3 mg/g. Both GRSP fractions increased linearly during the first 40 years of woody plant encroachment, and then remained relatively constant at approximately 4 mg/g in woody clusters ranging in age from 50-90 years. Carbon and nitrogen concentrations in T-GRSP (C = 10-25%; N = 1-3%) were similar in both remnant grasslands and woody plant stands. C and N in T-GRSP accounted for 6% of total soil organic carbon (SOC) and 5% of soil total N in remnant grasslands, and 4% of both SOC and total N in wooded areas. Our results show that woody plant cover significantly affects GRSP concentrations, likely due to increased

  5. A synthesis of current knowledge on forests and carbon storage in the United States.

    PubMed

    McKinley, Duncan C; Ryan, Michael G; Birdsey, Richard A; Giardina, Christian P; Harmon, Mark E; Heath, Linda S; Houghton, Richard A; Jackson, Robert B; Morrison, James F; Murray, Brian C; Patakl, Diane E; Skog, Kenneth E

    2011-09-01

    Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding

  6. A synthesis of current knowledge on forests and carbon storage in the United States.

    PubMed

    McKinley, Duncan C; Ryan, Michael G; Birdsey, Richard A; Giardina, Christian P; Harmon, Mark E; Heath, Linda S; Houghton, Richard A; Jackson, Robert B; Morrison, James F; Murray, Brian C; Patakl, Diane E; Skog, Kenneth E

    2011-09-01

    Using forests to mitigate climate change has gained much interest in science and policy discussions. We examine the evidence for carbon benefits, environmental and monetary costs, risks and trade-offs for a variety of activities in three general strategies: (1) land use change to increase forest area (afforestation) and avoid deforestation; (2) carbon management in existing forests; and (3) the use of wood as biomass energy, in place of other building materials, or in wood products for carbon storage. We found that many strategies can increase forest sector carbon mitigation above the current 162-256 Tg C/yr, and that many strategies have co-benefits such as biodiversity, water, and economic opportunities. Each strategy also has trade-offs, risks, and uncertainties including possible leakage, permanence, disturbances, and climate change effects. Because approximately 60% of the carbon lost through deforestation and harvesting from 1700 to 1935 has not yet been recovered and because some strategies store carbon in forest products or use biomass energy, the biological potential for forest sector carbon mitigation is large. Several studies suggest that using these strategies could offset as much as 10-20% of current U.S. fossil fuel emissions. To obtain such large offsets in the United States would require a combination of afforesting up to one-third of cropland or pastureland, using the equivalent of about one-half of the gross annual forest growth for biomass energy, or implementing more intensive management to increase forest growth on one-third of forestland. Such large offsets would require substantial trade-offs, such as lower agricultural production and non-carbon ecosystem services from forests. The effectiveness of activities could be diluted by negative leakage effects and increasing disturbance regimes. Because forest carbon loss contributes to increasing climate risk and because climate change may impede regeneration following disturbance, avoiding

  7. The Potential of Microbial Activity to Increase the Efficacy of Geologic Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Cunningham, A. B.; Gerlach, R.; Phillips, A. J.; Eldring, J.; Lauchnor, E.; Klapper, I.; Ebigbo, A.; Mitchell, A. C.; Spangler, L.

    2012-12-01

    Geologic carbon capture and storage involves the injection of CO2 into underground formations such as brine aquifers where microbe-rock-fluid interactions will occur. These interactions may be important for the long-term fate of the injected CO2 particularly near well bores and potential leakage pathways. Herein, concepts and results are presented from bench to meso-scale experiments focusing on the utility of attached microorganisms and biofilms to enhance storage security of injected CO2. Batch and flow experiments at atmospheric and geologic CO2storage-relevant pressures have demonstrated the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to scCO2, and facilitate the conversion of CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Recently, the microbially catalyzed process of ureolysis has been investigated for the potential to promote calcium carbonate mineralization in subsurface reservoirs using native or introduced ureolytic microorganisms, which increase the saturation state of CaCO3 via the hydrolysis of urea. The anticipated applications for this biomineralization process in the subsurface include sealing microfractures and CO2 leakage pathways for increased security of geologic carbon storage. Recent work has focused on facilitating this biomineralization process in large scale (74 cm diameter, 38 cm high sandstone) radial flow systems under ambient and subsurface relevant pressures with the goal of developing injection strategies suited for field scale deployment. Methods for microscopic and macroscopic visualization of relevant processes, such as growth of microbial biofilms, their interactions with minerals and influence on pore spaces in porous media reactors are being developed and have been used to calibrate reactive transport models. As a result, these models are being used to predict the effect of biological processes on CO2

  8. Multiwalled Carbon Nanotube Dispersion Methods Affect Their Aggregation, Deposition, and Biomarker Response

    EPA Science Inventory

    To systematically evaluate how dispersion methods affect the environmental behaviors of multiwalled carbon nanotubes (MWNTs), MWNTs were dispersed in various solutions (e.g., surfactants, natural organic matter (NOM), and etc.) via ultrasonication (SON) and long-term stirring (LT...

  9. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    NASA Astrophysics Data System (ADS)

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  10. Microbially enhanced carbon capture and storage - from pores to cores (Invited)

    NASA Astrophysics Data System (ADS)

    Mitchell, A. C.; Cunningham, A. B.; Spangler, L.; Gerlach, R.

    2010-12-01

    During the operation of Geologic Carbon Capture and Storage (CCS) and the injection of supercritical CO2 into underground formations, microbe-rock-fluid interactions occur. These interactions may be important for controlling the ultimate fate of the injected CO2, and may also be manipulated to enhance the storage of the CO2, via mineral-trapping, solubility trapping, formation trapping, and leakage reduction. We have demonstrated that engineered microbial biofilms are capable of enhancing formation, mineral, and solubility trapping in carbon sequestration-relevant formation materials. Batch and flow experiments at atmospheric and high pressures (> 74 bar) have shown the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to supercritical CO2, and facilitate the conversion of gaseous and supercritical CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Ongoing microscopy and modelling studies aim to understand these processes at both the pore- and core-scale in order to facilitate larger scale understanding and potential manipulation for biologically based CCS engineering. Successful development of these biologically-based concepts could result in microbially enhanced carbon sequestration strategies as well as CO2 leakage mitigation technologies, which can be applied either before CO2 injection or as a remedial measure around injection wells.

  11. Simulation experiments with late quaternary carbon storage in mid-latitude forest communities

    SciTech Connect

    Solomon, A.M.; Tharp, M.L.

    1984-01-01

    The assumption was tested that forest biomass in communities on the modern landscape is equivalent to that in similar communities on the late-Quaternary landscape. Forest carbon storage dynamics during the past 16,000 years were derived from a mathematical model of forest processes and individual tree species behavior. Modern pollen and climate data sets provided pollen-climate transfer functions to generate model driving variables from fossil pollen records. Climate variables were estimated from fossil pollen stratigraphies in Tennessee, Ohio, and Michigan. Only simulated early postglacial warming produced the large carbon gains one would expect in mixed deciduous-coniferous forests from unglaciated regions. The simulated mid-Holocene warming generated little carbon storage response by temperate deciduous forests and large carbon gains in northern hardwood-conifer forests, unlike the linear relationship expected when equivalence is assumed between modern and prehistoric forests. Late-glacial, mid-latitude forests may have contained more biomass than would be expected from equivalent forests on the modern landscape. Simulations of alternate hypotheses to explain the enhanced late-glacial cannot distinguish effects of reduced seasonal temperature extremes from effects of changing species' temperature tolerances. 84 references, 5 figures, 2 tables.

  12. [Difference between carbon storage of burned area under different restorations in Greater Xing' an Mountains, Northeast China].

    PubMed

    Xin, Ying; Zou, Meng-ling; Zhao, Yu-sen

    2015-11-01

    In order to explore forest restoration approach effect on carbon storage of severely burned area in Greater Xing'an Mountains, the carbon contents of tree, shrub, herb and litter from two plantations (Larix gmelinii and Pinus sylvestris var. mongolica) and natural secondary forest were determined, respectively, by using dry combustion method. The biomass of each component was obtained to estimate the distribution characterization of forest vegetation carbon storage by combing whole harvest method with average standard wood method. The results showed that, for both plantations and secondary forest, the average carbon content of shrub was higher than that of arbor and herb. In the L. gmelinii plantation, the average carbon contents of shrub, litter, arbor and herb were 45.8%, 45.3%, 44.4% and 33.6%, respectively. The average carbon content of shrub and arbor was more than 50% in P. sylvestris var. mongolica plantation, while that of arbor, shrub and litter was about 42% for the secondary forest. The biomass of arbor was higher than shrub and herb. In L. gmelinii plantation, the total biomass of vegetation and litter was 123.90 t · hm(-2), which was significantly higher than that of P. sylvestris var. mongolica plantation and secondary forest. The carbon storage of vegetation in L. gmelinii plantation was 50.97 t · hm(-2), among which the arbor was 49.87 t · hm(-2), accounting for 97.8% of the total carbon storage in forest vegetation, while the proportion of herb carbon storage only occupied 0.02%. The total carbon storage of plantations was higher than that of the secondary forest, suggesting a stronger capacity of carbon sink through artificial restoration on severely burned area in Greater Xing' an Mountains during this period.