Science.gov

Sample records for affect cardiovascular function

  1. Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth.

    PubMed

    Momoi, Nobuo; Tinney, Joseph P; Liu, Li J; Elshershari, Huda; Hoffmann, Paul J; Ralphe, John C; Keller, Bradley B; Tobita, Kimimasa

    2008-05-01

    Caffeine consumption during pregnancy is reported to increase the risk of in utero growth restriction and spontaneous abortion. In the present study, we tested the hypothesis that modest maternal caffeine exposure affects in utero developing embryonic cardiovascular (CV) function and growth without altering maternal hemodynamics. Caffeine (10 mg.kg(-1).day(-1) subcutaneous) was administered daily to pregnant CD-1 mice from embryonic days (EDs) 9.5 to 18.5 of a 21-day gestation. We assessed maternal and embryonic CV function at baseline and at peak maternal serum caffeine concentration using high-resolution echocardiography on EDs 9.5, 11.5, 13.5, and 18.5. Maternal caffeine exposure did not influence maternal body weight gain, maternal CV function, or embryo resorption. However, crown-rump length and body weight were reduced in maternal caffeine treated embryos by ED 18.5 (P < 0.05). At peak maternal serum caffeine concentration, embryonic carotid artery, dorsal aorta, and umbilical artery flows transiently decreased from baseline at ED 11.5 (P < 0.05). By ED 13.5, embryonic aortic and umbilical artery flows were insensitive to the peak maternal caffeine concentration; however, the carotid artery flow remained affected. By ED 18.5, baseline embryonic carotid artery flow increased and descending aortic flow decreased versus non-caffeine-exposed embryos. Maternal treatment with the adenosine A(2A) receptor inhibitor reproduced the embryonic hemodynamic effects of maternal caffeine exposure. Adenosine A(2A) receptor gene expression levels of ED 11.5 embryo and ED 18.5 uterus were decreased. Results suggest that modest maternal caffeine exposure has adverse effects on developing embryonic CV function and growth, possibly mediated via adenosine A(2A) receptor blockade.

  2. Clocks and cardiovascular function

    PubMed Central

    McLoughlin, Sarah C.; Haines, Philip; FitzGerald, Garret A.

    2016-01-01

    Circadian clocks in central and peripheral tissues enable the temporal synchronization and organization of molecular and physiological processes of rhythmic animals, allowing optimum functioning of cells and organisms at the most appropriate time of day. Disruption of circadian rhythms, from external or internal forces, leads to widespread biological disruption and is postulated to underlie many human conditions, such as the incidence and timing of cardiovascular disease. Here, we describe in vivo and in vitro methodology relevant to studying the role of circadian rhythms in cardiovascular function and dysfunction PMID:25707279

  3. Cardiovascular function in pulmonary emphysema.

    PubMed

    Visca, Dina; Aiello, Marina; Chetta, Alfredo

    2013-01-01

    Chronic obstructive pulmonary disease (COPD) and chronic cardiovascular disease, such as coronary artery disease, congestive heart failure, and cardiac arrhythmias, have a strong influence on each other, and systemic inflammation has been considered as the main linkage between them. On the other hand, airflow limitation may markedly affect lung mechanics in terms of static and dynamic hyperinflation, especially in pulmonary emphysema, and they can in turn influence cardiac performance as well. Skeletal mass depletion, which is a common feature in COPD especially in pulmonary emphysema patients, may have also a role in cardiovascular function of these patients, irrespective of lung damage. We reviewed the emerging evidence that highlights the role of lung mechanics and muscle mass impairment on ventricular volumes, stroke volume, and stroke work at rest and on exercise in the presence of pulmonary emphysema. Patients with emphysema may differ among COPD population even in terms of cardiovascular function.

  4. The Genetic Response to Short-term Interventions Affecting Cardiovascular Function: Rationale and Design of the HAPI Heart Study

    PubMed Central

    Mitchell, Braxton D.; McArdle, Patrick F.; Shen, Haiqing; Rampersaud, Evadnie; Pollin, Toni I.; Bielak, Lawrence F.; Jaquish, Cashell; Douglas, Julie A.; Roy-Gagnon, Marie-Hélène; Sack, Paul; Naglieri, Rosalie; Hines, Scott; Horenstein, Richard B.; Chang, Yen-Pei C.; Post, Wendy; Ryan, Kathleen A.; Brereton, Nga Hong; Pakyz, Ruth E.; Sorkin, John; Damcott, Coleen M.; O’Connell, Jeffrey R.; Mangano, Charles; Corretti, Mary; Vogel, Robert; Herzog, William; Weir, Matthew R.; Peyser, Patricia A.; Shuldiner, Alan R.

    2008-01-01

    Background The etiology of cardiovascular disease (CVD) is multifactorial. Efforts to identify genes influencing CVD risk have met with limited success to date, likely due to the small effect sizes of common CVD risk alleles and the presence of gene by gene and gene by environment interactions. Methods The Heredity and Phenotype Intervention (HAPI) Heart Study was initiated in 2002 to measure the cardiovascular response to four short-term interventions affecting cardiovascular risk factors and to identify the genetic and environmental determinants of these responses. The measurements included blood pressure responses to the cold pressor stress test and to a high salt diet, triglyceride excursion in response to a high fat challenge, and response in platelet aggregation to aspirin therapy. Results The interventions were carried out in 868 relatively healthy Amish adults from large families. The heritabilities of selected response traits for each intervention ranged from 8–38%, suggesting that some of the variation associated with response to each intervention can be attributed to the additive effects of genes. Conclusions Identifying these response genes may identify new mechanisms influencing CVD and may lead to individualized preventive strategies and improved early detection of high-risk individuals. PMID:18440328

  5. Promethazine affects autonomic cardiovascular mechanisms minimally

    NASA Technical Reports Server (NTRS)

    Brown, T. E.; Eckberg, D. L.

    1997-01-01

    Promethazine hydrochloride, Phenergan, is a phenothiazine derivative with antihistaminic (H1), sedative, antiemetic, anticholinergic, and antimotion sickness properties. These properties have made promethazine a candidate for use in environments such as microgravity, which provoke emesis and motion sickness. Recently, we evaluated carotid baroreceptor-cardiac reflex responses during two Space Shuttle missions 18 to 20 hr after the 50 mg intramuscular administration of promethazine. Because the effects of promethazine on autonomic cardiovascular mechanisms in general and baroreflex function in particular were not known, we were unable to exclude a possible influence of promethazine on our results. Our purpose was to determine the ground-based effects of promethazine on autonomic cardiovascular control. Because of promethazine's antihistaminic and anticholinergic properties, we expected that a 50-mg intramuscular injection of promethazine would affect sympathetically and vagally mediated cardiovascular mechanisms. Eight healthy young subjects, five men and three women, were studied at rest in recumbency. All reported drowsiness as a result of the promethazine injection; most also reported nervous excitation, dry mouth, and fatigue. Three subjects had significant reactions: two reported excessive anxiety and one reported dizziness. Measurements were performed immediately prior to injection and 3.1 +/- 0.1 and 19.5 +/- 0.4 hr postinjection. We found no significant effect of promethazine on resting mean R-R interval, arterial pressure, R-R interval power spectra, carotid baroreflex function, and venous plasma catecholamine levels.

  6. Cerebral Hemispheric Lateralization Associated with Hippocampal Sclerosis May Affect Interictal Cardiovascular Autonomic Functions in Temporal Lobe Epilepsy

    PubMed Central

    Ghchime, Rokia; Benjelloun, Halima; Kiai, Hajar; Belaidi, Halima; Lahjouji, Fatiha; Ouazzani, Reda

    2016-01-01

    It is well established that the temporal lobe epilepsy (TLE) is linked to the autonomic nervous system dysfunctions. Seizures alter the function of different systems such as the respiratory, cardiovascular, gastrointestinal, and urogenital systems. The aim of this work was to evaluate the possible factors which may be involved in interictal cardiovascular autonomic function in temporal lobe epilepsy with complex partial seizures, and with particular attention to hippocampal sclerosis. The study was conducted in 30 patients with intractable temporal lobe epilepsy (19 with left hippocampal sclerosis, 11 with right hippocampal sclerosis). All subjects underwent four tests of cardiac autonomic function: heart rate changes in response to deep breathing, heart rate, and blood pressure variations throughout resting activity and during hand grip, mental stress, and orthostatic tests. Our results show that the right cerebral hemisphere predominantly modulates sympathetic activity, while the left cerebral hemisphere mainly modulates parasympathetic activity, which mediated tachycardia and excessive bradycardia counterregulation, both of which might be involved as a mechanism of sudden unexpected death in epilepsy patients (SUDEP). PMID:27006827

  7. Cardiovascular function in acromegaly.

    PubMed

    Clayton, R N

    2003-06-01

    Even with modern treatment, acromegaly is associated with a 2- to 3-fold increase in mortality, mainly from vascular disease, which is probably a result of the long exposure of tissues to excess GH before diagnosis and treatment. There is accumulating evidence that effective treatment to lower serum GH levels to less than 1-2 ng/ml (glucose suppressed or random, respectively) and normalize IGF-I improves long-term outcome and survival. In addition to recognized cardiovascular risk factors of hypertension, type 2 diabetes mellitus, and dyslipidemia, there is accumulating evidence of specific structural and functional changes in the heart in acromegaly. Along with endothelial dysfunction, these changes may contribute to the increased mortality in this disease. There are specific structural changes in the myocardium with increased myocyte size and interstitial fibrosis of both ventricles. Left ventricular hypertrophy is common even in young patients with short duration of disease. Some of these structural changes can be reversed by effective treatment. Functionally, the main consequence of these changes is impaired left ventricular diastolic function, particularly when exercising, such that exercise tolerance is reduced. Diastolic function improves with treatment, but the effect on exercise tolerance is more variable, and more longitudinal data are required to assess the benefits. What scant data there are on rhythm changes suggest an increase in complex ventricular arrhythmias, possibly as a result of the disordered left ventricular architecture. The functional consequences of these changes are unclear, but they may provide a useful early marker for the ventricular remodeling that occurs in the acromegalic heart. Endothelial dysfunction, especially flow-mediated dilatation, is an early marker of atherosclerosis, and limited data imply that this is impaired in active acromegaly and can be improved with treatment. Similarly, early arterial structural changes, such as

  8. The type B brevetoxin (PbTx-3) adversely affects development, cardiovascular function, and survival in Medaka (Oryzias latipes) embryos.

    PubMed Central

    Colman, Jamie R; Ramsdell, John S

    2003-01-01

    Brevetoxins are produced by the red tide dinoflagellate Karenia brevis. The toxins are lipophilic polyether toxins that elicit a myriad of effects depending on the route of exposure and the target organism. Brevetoxins are therefore broadly toxic to marine and estuarine animals. By mimicking the maternal route of exposure to the oocytes in finfish, we characterized the adverse effects of the type B brevetoxin brevetoxin-3 (PbTx-3) on embryonic fish development and survival. The Japanese rice fish, medaka (Oryzias latipes), was used as the experimental model in which individual eggs were exposed via microinjection to various known concentrations of PbTx-3 dissolved in an oil vehicle. Embryos injected with doses exceeding 1.0 ng/egg displayed tachycardia, hyperkinetic twitches in the form of sustained convulsions, spinal curvature, clumping of the erythrocytes, and decreased hatching success. Furthermore, fish dosed with toxin were often unable to hatch in the classic tail-first fashion and emerged head first, which resulted in partial hatches and death. We determined that the LD(50) (dose that is lethal to 50% of the fish) for an injected dose of PbTx-3 is 4.0 ng/egg. The results of this study complement previous studies of the developmental toxicity of the type A brevetoxin brevetoxin-1 (PbTx-1), by illustrating in vivo the differing affinities of the two congeners for cardiac sodium channels. Consequently, we observed differing cardiovascular responses in the embryos, wherein embryos exposed to PbTx-3 exhibited persistent tachycardia, whereas embryos exposed to PbTx-1 displayed bradycardia, the onset of which was delayed. PMID:14644667

  9. Androgen actions on endothelium functions and cardiovascular diseases

    PubMed Central

    Cai, Jing-Jing; Wen, Juan; Jiang, Wei-Hong; Lin, Jian; Hong, Yuan; Zhu, Yuan-Shan

    2016-01-01

    The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genomic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system. PMID:27168746

  10. Androgen actions on endothelium functions and cardiovascular diseases.

    PubMed

    Cai, Jing-Jing; Wen, Juan; Jiang, Wei-Hong; Lin, Jian; Hong, Yuan; Zhu, Yuan-Shan

    2016-02-01

    The roles of androgens on cardiovascular physiology and pathophysiology are controversial as both beneficial and detrimental effects have been reported. Although the reasons for this discrepancy are unclear, multiple factors such as genetic and epigenetic variation, sex-specificity, hormone interactions, drug preparation and route of administration may contribute. Recently, growing evidence suggests that androgens exhibit beneficial effects on cardiovascular function though the mechanism remains to be elucidated. Endothelial cells (ECs) which line the interior surface of blood vessels are distributed throughout the circulatory system, and play a crucial role in cardiovascular function. Endothelial progenitor cells (EPCs) are considered an indispensable element for the reconstitution and maintenance of an intact endothelial layer. Endothelial dysfunction is regarded as an initiating step in development of atherosclerosis and cardiovascular diseases. The modulation of endothelial functions by androgens through either genomic or nongenomic signal pathways is one possible mechanism by which androgens act on the cardiovascular system. Obtaining insight into the mechanisms by which androgens affect EC and EPC functions will allow us to determine whether androgens possess beneficial effects on the cardiovascular system. This in turn may be critical in the prevention and therapy of cardiovascular diseases. This article seeks to review recent progress in androgen regulation of endothelial function, the sex-specificity of androgen actions, and its clinical applications in the cardiovascular system.

  11. Multiple dietary supplements do not affect metabolic and cardiovascular health.

    PubMed

    Soare, Andreea; Weiss, Edward P; Holloszy, John O; Fontana, Luigi

    2013-09-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m2) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals.

  12. Cardiovascular function in space flight

    NASA Technical Reports Server (NTRS)

    Nicogossian, A. E.; Charles, J. B.; Bungo, M. W.; Leach-Huntoon, C. S.

    1990-01-01

    Postflight orthostatic intolerance and cardiac hemodynamics associated with manned space flight have been investigated on seven STS missions. Orthostatic heart rates appear to be influenced by the mission duration. The rates increase during the first 7-10 days of flight and recover partially after that. Fluid loading is used as a countermeasure to the postflight orthostatic intolerance. The carotid baroreceptor function shows only slight responsiveness to orthostatic stimulation. Plots of the baroreceptor function are presented. It is concluded that an early adaptation to the space flight conditions involves a fluid shift and that the subsequent alterations in the neutral controlling mechanisms contribute to the orthoststic intolerance.

  13. Cardiovascular involvement in patients affected by acromegaly: an appraisal.

    PubMed

    Mosca, Susanna; Paolillo, Stefania; Colao, Annamaria; Bossone, Eduardo; Cittadini, Antonio; Iudice, Francesco Lo; Parente, Antonio; Conte, Sirio; Rengo, Giuseppe; Leosco, Dario; Trimarco, Bruno; Filardi, Pasquale Perrone

    2013-09-01

    Cardiovascular complications are frequent in acromegalic patients. Several studies reported increased prevalence of traditional cardiovascular risk factors and early development of endothelial dysfunction and of structural vascular alterations, with subsequent increased risk of coronary artery disease. Furthermore, chronic exposure to high levels of GH and IGF-I leads to the development of the so called "acromegalic cardiomyopathy", characterized by concentric biventricular hypertrophy, diastolic dysfunction and, additionally, by progressive impairment of systolic performance leading to overt heart failure. Cardiac valvulopathies and arrhythmias have also been documented and may concur to the deterioration of cardiac function. Together with strict control of cardiovascular risk factors, early control of GH and IGF-I excess, by surgical or pharmacological therapy, has been reported to ameliorate cardiac and metabolic abnormalities, leading to a significant reduction of left ventricular hypertrophy and to a consistent improvement of cardiac performance.

  14. Sporting events affect spectators' cardiovascular mortality: it is not just a game.

    PubMed

    Leeka, Justin; Schwartz, Bryan G; Kloner, Robert A

    2010-11-01

    Physiologic and clinical triggers, including mental stress, anxiety, and anger, often precipitate acute myocardial infarction and cardiovascular death. Sporting events can acutely increase cardiovascular event and death rates. A greater impact is observed in patients with known coronary artery disease and when stressful features are present, including a passionate fan, a high-stakes game, a high-intensity game, a loss, and a loss played at home. Sporting events affect cardiovascular health through neuroendocrine responses and possibly an increase in high-risk behaviors. Acute mental stress increases the activity of the hypothalamic-pituitary-adrenocortical axis and the sympathetic-adrenal-medullary system while impairing vagal tone and endothelial function. Collectively, these mechanisms increase myocardial oxygen demand and decrease myocardial oxygen supply while also increasing the risk of arrhythmias and thrombosis. Measures can be taken to reduce cardiovascular risk, including the use of beta-blockers and aspirin, stress management, transcendental meditation, and avoidance of high-risk activities, such as smoking, eating fatty foods, overeating, and abusing alcohol and illicit drugs. Sporting events have the potential to adversely affect spectators' cardiovascular health, and protective measures should be considered.

  15. Skin microvascular endothelial function as a biomarker in cardiovascular diseases?

    PubMed

    Hellmann, Marcin; Roustit, Matthieu; Cracowski, Jean-Luc

    2015-08-01

    Skin microvascular endothelial function is impaired in many cardiovascular diseases, and could be therefore considered as a representative vascular bed. However, today, available evidence allows considering skin microvascular endothelial function neither as a diagnostic biomarker nor as a prognostic biomarker in cardiovascular diseases. Large follow-up studies using standardized methods should now be conducted to assess the potential predictive value of skin microvascular function in cardiovascular diseases.

  16. Discovery and functional characterization of cardiovascular long noncoding RNAs.

    PubMed

    Ounzain, Samir; Burdet, Frédéric; Ibberson, Mark; Pedrazzini, Thierry

    2015-12-01

    Recent advances in sequencing and genomic technologies have resulted in the discovery of thousands of previously unannotated long noncoding RNAs (lncRNAs). However, their function in the cardiovascular system remains elusive. Here we review and discuss considerations for cardiovascular lncRNA discovery, annotation and functional characterization. Although we primarily focus on the heart, the proposed pipeline should foster functional and mechanistic exploration of these transcripts in various cardiovascular pathologies. Moreover, these insights could ultimately lead to novel therapeutic approaches targeting lncRNAs for the amelioration of cardiovascular diseases including heart failure.

  17. Cardiovascular and affective outcomes of active gaming: using the nintendo wii as a cardiovascular training tool.

    PubMed

    Naugle, Keith E; Naugle, Kelly M; Wikstrom, Erik A

    2014-02-01

    Active-video gaming is purported to produce similar cardiovascular responses as aerobic fitness activities. This study compared the emotional and cardiovascular effects of Wii games with those of traditional exercise in college-aged adults with different exercise backgrounds. Specifically, the percentage of heart rate reserve, rate of perceived exertion (RPE), level of enjoyment, and Positive and Negative Affect Schedule scores were compared between subjects who reported exercising frequently at high intensities (high-intensity exerciser group: age = 20.18 years [0.87]; Height = 165.23 cm [9.97]; Mass = 62.37 kg [11.61]), N = 11 and those who exercise more often at lower intensities (low-intensity exercisers group: age = 20.72 years [1.19]; Height = 164.39 cm [8.05]; Mass = 68.04 kg [10.71]), N = 11. The subjects completed six 20-minute exercises sessions: treadmill walking, stationary cycling, and Wii's Tennis, Boxing, Cycling, and Step. The low-intensity exerciser group achieved a greater percentage of heart rate reserve (a) during traditional exercise compared with that during Wii boxing, (b) playing Wii boxing compared with that for Wii tennis, and (c) playing Wii boxing compared with that when the high-intensity exercisers group played any Wii games (p < 0.05). The RPE was greater for boxing and cycling compared with that for tennis and step (p < 0.05). Ratings of enjoyment and the increase in positive emotion were greater for boxing and for tennis compared with those for traditional exercises (p < 0.05). Results suggest that Wii boxing shows the greatest potential as a cardiovascular fitness tool among the Wii games, particularly for individuals who typically exercise at lower intensities.

  18. Cardiovascular disease and cognitive function in maintenance hemodialysis patients

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cardiovascular disease (CVD) and cognitive impairment are common in dialysis patients. Given the proposed role of microvascular disease on cognitive function, particularly cognitive domains that incorporate executive functions, we hypothesized that prevalent systemic CVD would be associated with wor...

  19. Cardiovascular function following reduced aerobic activity

    NASA Technical Reports Server (NTRS)

    Raven, P. B.; Welch-O'Connor, R. M.; Shi, X.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: The aim of this study was to test the hypothesis that a sustained reduction of physical activity (deconditioning) would alter the cardiovascular regulatory function. METHODS: Nineteen young, healthy volunteers participated in physical deconditioning for a period of 8 wk. Before (pre) and following (post) physical deconditioning, the responses of heart rate (HR), mean arterial pressure (MAP, measured by Finapres), central venous pressure (CVP), stroke volume (SV, Doppler), and forearm blood flow (FBF, plethysmography) were determined during lower body negative pressure (LBNP). The carotid baroreflex (CBR) function was assessed using a train of pulsatile neck pressure (NP) and suction, and the aortic baroreflex control of HR was assessed during steady-state phenylephrine (PE) infusion superimposed by LBNP and NP to counteract the PE increased CVP and carotid sinus pressure, respectively. RESULTS: Active physical deconditioning significantly decreased maximal oxygen uptake (-7%) and LBNP tolerance (-13%) without a change in baseline hemodynamics. Plasma volume (-3% at P = 0.135), determined by Evans Blue dilution, and blood volume (-4% at P = 0.107) were not significantly altered. During LBNP -20 to -50 torr, there was a significantly greater drop of SV per unit decrease in CVP in the post- (14.7 +/- 1.6%/mm Hg) than predeconditioning (11.2 +/- 0.7%/mm Hg) test accompanied by a greater tachycardia. Deconditioning increased the aortic baroreflex sensitivity (pre vs post: -0.61 +/- 0.12 vs -0.84 +/- 0.14 bpm.mm-1 Hg, P = 0.009) and the slope of forearm vascular resistance (calculated from [MAP-CVP]/FBF) to CVP (-2.75 +/- 0.26 vs -4.94 +/- 0.97 PRU/mm Hg, P = 0.086). However, neither the CBR-HR (-0.28 +/- 0.03 VS -0.39 +/- 0.10 bpm.mm-1 Hg) nor the CBR-MAP (-0.37 +/- 0.16 vs -0.25 +/- 0.07 mm Hg/mm Hg) gains were statistically different between pre- and postdeconditioning. CONCLUSIONS: We concluded that the functional modification of the cardiac pressure

  20. Sperm function in affective illness.

    PubMed

    Amsterdam, J; Winokur, A; Levin, R

    1981-04-01

    There is evidence for functional changes in the hypothalamic-pituitary-gonadal axis of patients with affective disorders. Little is known concerning spermatogenesis or sperm function in depressed men. We systematically evaluated the sperm indices in a group of depressed males complaining of diminished libido, and a healthy control group. No differences were noted in sperm parameters between the groups.

  1. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe{sub 2}O{sub 3} nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice

    SciTech Connect

    Iversen, Nina K.; Frische, Sebastian; Thomsen, Karen; Laustsen, Christoffer; Pedersen, Michael; Hansen, Pernille B.L.; Bie, Peter; Fresnais, Jérome; Berret, Jean-Francois; Baatrup, Erik; Wang, Tobias

    2013-01-15

    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated γ-Fe{sub 2}O{sub 3} NPs (10 mg kg{sup −1}) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1 h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid–base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 ± 0.02 and 7.41 ± 0.02 in mice 0.5 h after injections of saline or NP, and did not change over the next 12 h. In addition, the injections of NP did not affect arterial PCO{sub 2} or [HCO{sub 3}{sup −}] either. Twenty-four and 96 h after NP injections, the GFR averaged 0.35 ± 0.04 and 0.35 ± 0.01 ml min{sup −1} g{sup −1}, respectively, values which were statistically comparable with controls (0.29 ± 0.02 and 0.33 ± 0.1 ml{sup –1} min{sup –1} 25 g{sup –1}). Mean arterial blood pressure (MAP) decreased 12–24 h after NP injections (111.1 ± 11.5 vs 123.0 ± 6.1 min{sup −1}) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterize endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure. -- Highlights: ► PAA coated γ-Fe{sub 2}O{sub 3} nanoparticles were injected intravenously into healthy mice. ► We examine the distribution and physiological effects of

  2. Metal ions affecting the pulmonary and cardiovascular systems.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2011-01-01

    Some metals, such as copper and manganese, are essential to life and play irreplaceable roles in, e.g., the functioning of important enzyme systems. Other metals are xenobiotics, i.e., they have no useful role in human physiology and, even worse, as in the case of lead, may be toxic even at trace levels of exposure. Even those metals that are essential, however, have the potential to turn harmful at very high levels of exposure, a reflection of a very basic tenet of toxicology--"the dose makes the poison." Toxic metal exposure may lead to serious risks to human health. As a result of the extensive use of toxic metals and their compounds in industry and consumer products, these agents have been widely disseminated in the environment. Because metals are not biodegradable, they can persist in the environment and produce a variety of adverse effects. Exposure to metals can lead to damage in a variety of organ systems and, in some cases, metals also have the potential to be carcinogenic. Even though the importance of metals as environmental health hazards is now widely appreciated, the specific mechanisms by which metals produce their adverse effects have yet to be fully elucidated. The unifying factor in determining toxicity and carcinogenicity for most metals is the generation of reactive oxygen and nitrogen species. Metal-mediated formation of free radicals causes various modifications to nucleic acids, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Whilst copper, chromium, and cobalt undergo redox-cycling reactions, for metals such as cadmium and nickel the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. This chapter attempts to show that the toxic effects of different metallic compounds may be manifested in the pulmonary and cardiovascular systems. The knowledge of health effects due to metal exposure is necessary for practising physicians, and should be assessed by inquiring

  3. Airway reflexes, autonomic function, and cardiovascular responses.

    PubMed Central

    Widdicombe, J; Lee, L Y

    2001-01-01

    In this article, we review the cardiovascular responses to the inhalation of irritants and pollutants. Many sensory receptors in the respiratory system, from nose to alveoli, respond to these irritants and set up powerful reflex changes, including those in the cardiovascular system. Systemic hypotension or hypertension, pulmonary hypertension, bradycardia, tachycardia, and dysrhythmias have all been described previously. Most of the experiments have been acute and have been performed on anesthetized experimental animals. Experiments on humans suggest we have similar sensory systems and reflex responses. However, we must use caution when applying the animal results to humans. Most animal experiments, unlike those with humans, have been performed using general anesthesia, with irritants administered in high concentrations, and often to a restricted part of the respiratory tract. Species differences in the response to irritants are well established. We must be even more careful when applying the results of acute experiments in animals to the pathophysiologic changes observed in prolonged exposure to environmental pollution in humans. PMID:11544167

  4. ULTRAFINE CARBON PARTICLE (UFCP) INHALATION AFFECTS CARDIOVASCULAR PERFORMANCE IN HYPERTENSIVE RATS (SHR)

    EPA Science Inventory

    Inhaled UfCP affect cardiovascular performance in healthy rats (Harder et al. Inhal Toxicol 2005; 17:29-42) without apparent pulmonary damage. To assess whether geriatric cardiovascular compromised rats are more susceptible to UfCP effects, male adult (6months) and geriatric (13m...

  5. Trait and state positive affect and cardiovascular recovery from experimental academic stress.

    PubMed

    Papousek, Ilona; Nauschnegg, Karin; Paechter, Manuela; Lackner, Helmut K; Goswami, Nandu; Schulter, Günter

    2010-02-01

    As compared to negative affect, only a small number of studies have examined influences of positive affect on cardiovascular stress responses, of which only a few were concerned with cardiovascular recovery. In this study, heart rate, low- and high-frequency heart rate variability, blood pressure, and levels of subjectively experienced stress were obtained in 65 students before, during and after exposure to academic stress in an ecologically valid setting. Higher trait positive affect was associated with more complete cardiovascular and subjective post-stress recovery. This effect was independent of negative affect and of affective state during anticipation of the stressor. In contrast, a more positive affective state during anticipation of the challenge was related to poor post-stress recovery. The findings suggest that a temporally stable positive affect disposition may be related to adaptive responses, whereas positive emotional states in the context of stressful events can also contribute to prolonged post-stress recovery.

  6. Social support reduces resting cardiovascular function in women.

    PubMed

    Hughes, Brian M; Howard, Siobhan

    2009-10-01

    Social support is believed to benefit cardiovascular health in part by buffering recipients from life stress. Classically, this has been investigated by exploring the relationship between support and cardiovascular reactivity to laboratory stress. Such research customarily emphasizes stress responses and downplays the relevance of resting cardiovascular levels. However, it is now appreciated that resting cardiovascular function is associated with disease risk independently of reactivity. Moreover, such mechanisms are known to be relevant to female members of the population, despite the fact that much previous research has focused on males. Reactivity research rests on the assumption that stress promotes gradual hypertension over time. As such, it is important to establish the relationship between psychosocial factors and resting blood pressure. In a cross-sectional biopsychosocial screening study, we examined resting cardiovascular levels in 211 healthy non-smoking women, using regression to assess associations with psychometric indices of social support (namely, perceived network size and perceived satisfaction with support) while controlling for a range of potential biometric and psychometric confounds. Overall, social support was found to be associated with reduced resting cardiovascular function independently of, and to a greater extent than, biometric variables, anxiety, and depression. Benchmarking these effects against the differences in cardiovascular function between the present sample and a group of 92 similarly aged males revealed that social support accounted for as much variance as gender, which is widely assumed to be an important biomedical determinant of blood pressure. Such findings corroborate assertions that social support influences disease risk in ways that involve direct psychosomatic mechanisms.

  7. Circulating Markers of Liver Function and Cardiovascular Disease Risk.

    PubMed

    Targher, Giovanni; Byrne, Christopher D

    2015-11-01

    Measurement of serum concentrations of various liver enzymes and other nonenzymatic proteins and metabolites of heme metabolism (eg, bilirubin) is often undertaken in clinical practice. Measurement of these liver function tests is simple, quick, and relatively inexpensive. However, interpreting the liver function test results in patients without evidence of liver disease is often challenging. Concentrations of some of liver enzymes, such as γ-glutamyltransferase or alkaline phosphatase, and concentrations of liver-derived metabolites, such as bilirubin, may be influenced by metabolic processes beyond the liver, sometimes making interpretation of the test results difficult. This scenario frequently occurs both in individuals at risk of cardiovascular disease and in patients with known cardiovascular disease, often resulting in the clinicians ignoring the test results. In this brief review, we discuss the evidence for associations between key serum liver function tests and cardiovascular disease risk and where associations are robust; we provide an interpretation for possible mechanistic links between the liver function test and cardiovascular disease.

  8. CARNITINE HOMEOSTASIS, MITOCHONDRIAL FUNCTION, AND CARDIOVASCULAR DISEASE

    PubMed Central

    Sharma, Shruti; Black, Stephen M.

    2009-01-01

    Carnitines are involved in mitochondrial transport of fatty acids and are of critical importance for maintaining normal mitochondrial function. This review summarizes recent experimental and clinical studies showing that mitochondrial dysfunction secondary to a disruption of carnitine homeostasis may play a role in decreased NO signaling and the development of endothelial dysfunction. Future challenges include development of agents that can positively modulate L-carnitine homeostasis which may have high therapeutic potential. PMID:20648231

  9. Cardiovascular Health through Young Adulthood and Cognitive Functioning in Midlife

    PubMed Central

    Reis, Jared P.; Loria, Catherine M.; Launer, Lenore J.; Sidney, Stephen; Liu, Kiang; Jacobs, David R.; Zhu, Na; Lloyd-Jones, Donald M.; He, Ka; Yaffe, Kristine

    2012-01-01

    Objective To examine the association between overall cardiovascular health as recently defined by the American Heart Association in young adulthood to middle-age and cognitive function in midlife. Overall ideal cardiovascular health incorporates 7 metrics, including the avoidance of overweight or obesity, a healthful diet, nonsmoking, and physical activity, total cholesterol, blood pressure, and fasting glucose at goal levels. Methods This analysis of the Coronary Artery Risk Development in Young Adults (CARDIA) Study, a multicenter community-based study with 25 years of follow-up, included 2,932 participants aged 18 to 30 years at baseline (Year 0) who attended follow-up exams at Years 7 and 25. Cardiovascular health metrics were measured at each examination. The Digit Symbol Substitution Test (DSST), modified Stroop Test, and Rey Auditory Verbal Learning Test (RAVLT) were completed at Year 25. Results A greater number of ideal cardiovascular metrics in young adulthood and middle-age was independently associated with better cognitive function in midlife (p-trend<0.01, for all). Specifically, each additional ideal metric was associated with 1.32 more symbols on the DSST (95% CI: 0.93 to 1.71), a 0.77-point lower interference score on the Stroop Test (−1.03 to −0.45), and 0.12 more words on the RAVLT (0.04 to 0.20). Participants who had ≥5 ideal metrics at a greater number of the 3 examinations over the 25-year period exhibited better performance on each cognitive test in middle-age (p-trend<0.01, for all). Interpretation Ideal cardiovascular health in young adulthood and its maintenance to middle-age is associated with better psychomotor speed, executive function, and verbal memory in midlife. PMID:23443990

  10. Cardiovascular

    NASA Video Gallery

    Overview of Cardiovascular research which addresses risks of space flight, including adaptive changes to the cephalad fluid shift (such as reduced circulating blood volume), potential for heart rhy...

  11. Preeclampsia and Vascular Function: A Window to Future Cardiovascular Disease Risk.

    PubMed

    Enkhmaa, Davaasambuu; Wall, Danielle; Mehta, Puja K; Stuart, Jennifer J; Rich-Edwards, Janet Wilson; Merz, C Noel Bairey; Shufelt, Chrisandra

    2016-03-01

    Preeclampsia affects ∼3%-7% of all pregnancies and is the third leading cause of maternal mortality globally. Growing evidence indicates that preeclampsia results from vascular dysfunction, which also increases the risk for future cardiovascular events. Until recently, preeclampsia was considered a disorder limited to pregnancy, which fully resolved with the delivery of the placenta; however, it is now clear that women with a history of preeclampsia have approximately double the risk of future cardiovascular events compared to women with normotensive pregnancies. The aims of this review were to describe the hemodynamic and vascular changes that occur in normal and preeclamptic pregnancies, to review noninvasive methods to test vascular function, and to discuss the associated increased cardiovascular disease risk related to preeclampsia. PMID:26779584

  12. Regulation of sympathetic nervous system function after cardiovascular deconditioning

    NASA Technical Reports Server (NTRS)

    Hasser, E. M.; Moffitt, J. A.

    2001-01-01

    Humans subjected to prolonged periods of bed rest or microgravity undergo deconditioning of the cardiovascular system, characterized by resting tachycardia, reduced exercise capability, and a predisposition for orthostatic intolerance. These changes in cardiovascular function are likely due to a combination of factors, including changes in control of body fluid balance or cardiac alterations resulting in inadequate maintenance of stroke volume, altered arterial or venous vascular function, reduced activation of cardiovascular hormones, and diminished autonomic reflex function. There is evidence indicating a role for each of these mechanisms. Diminished reflex activation of the sympathetic nervous system and subsequent vasoconstriction appear to play an important role. Studies utilizing the hindlimb-unloaded (HU) rat, an animal model of deconditioning, evaluated the potential role of altered arterial baroreflex control of the sympathetic nervous system. These studies indicate that HU results in blunted baroreflex-mediated activation of both renal and lumbar sympathetic nerve activity in response to a hypotensive stimulus. HU rats are less able to maintain arterial pressure during hemorrhage, suggesting that diminished ability to increase sympathetic activity has functional consequences for the animal. Reflex control of vasopressin secretion appears to be enhanced following HU. Blunted baroreflex-mediated sympathoexcitation appears to involve altered central nervous system function. Baroreceptor afferent activity in response to changes in arterial pressure is unaltered in HU rats. However, increases in efferent sympathetic nerve activity for a given decrease in afferent input are blunted after HU. This altered central nervous system processing of baroreceptor inputs appears to involve an effect at the rostral ventrolateral medulla (RVLM). Specifically, it appears that tonic GABAA-mediated inhibition of the RVLM is enhanced after HU. Augmented inhibition apparently

  13. Multiple dietary supplements do not affect metabolic and cardio-vascular health.

    PubMed

    Soare, Andreea; Weiss, Edward P; Holloszy, John O; Fontana, Luigi

    2014-02-01

    Dietary supplements are widely used for health purposes. However, little is known about the metabolic and cardiovascular effects of combinations of popular over-the-counter supplements, each of which has been shown to have anti-oxidant, anti-inflammatory and pro-longevity properties in cell culture or animal studies. This study was a 6-month randomized, single-blind controlled trial, in which 56 non-obese (BMI 21.0-29.9 kg/m(2)) men and women, aged 38 to 55 yr, were assigned to a dietary supplement (SUP) group or control (CON) group, with a 6-month follow-up. The SUP group took 10 dietary supplements each day (100 mg of resveratrol, a complex of 800 mg each of green, black, and white tea extract, 250 mg of pomegranate extract, 650 mg of quercetin, 500 mg of acetyl-l-carnitine, 600 mg of lipoic acid, 900 mg of curcumin, 1 g of sesamin, 1.7 g of cinnamon bark extract, and 1.0 g fish oil). Both the SUP and CON groups took a daily multivitamin/mineral supplement. The main outcome measures were arterial stiffness, endothelial function, biomarkers of inflammation and oxidative stress, and cardiometabolic risk factors. Twenty-four weeks of daily supplementation with 10 dietary supplements did not affect arterial stiffness or endothelial function in nonobese individuals. These compounds also did not alter body fat measured by DEXA, blood pressure, plasma lipids, glucose, insulin, IGF-1, and markers of inflammation and oxidative stress. In summary, supplementation with a combination of popular dietary supplements has no cardiovascular or metabolic effects in non-obese relatively healthy individuals.

  14. Elevated depressive affect is associated with adverse cardiovascular outcomes among African Americans with chronic kidney disease

    PubMed Central

    Fischer, Michael J.; Kimmel, Paul L.; Greene, Tom; Gassman, Jennifer J.; Wang, Xuelei; Brooks, Deborah H.; Charleston, Jeanne; Dowie, Donna; Thornley-Brown, Denyse; Cooper, Lisa A.; Bruce, Marino A.; Kusek, John W.; Norris, Keith C.; Lash, James P.

    2011-01-01

    This study was designed to examine the impact of elevated depressive affect on health outcomes among participants with hypertensive chronic kidney disease in the African-American Study of Kidney Disease and Hypertension (AASK) Cohort Study. Elevated depressive affect was defined by Beck Depression Inventory II (BDI-II) thresholds of 11 or more, above 14, and by 5-Unit increments in the score. Cox regression analyses were used to relate cardiovascular death/hospitalization, doubling of serum creatinine/end-stage renal disease, overall hospitalization, and all-cause death to depressive affect evaluated at baseline, the most recent annual visit (time-varying), or average from baseline to the most recent visit (cumulative). Among 628 participants at baseline, 42% had BDI-II scores of 11 or more and 26% had a score above 14. During a 5-year follow-up, the cumulative incidence of cardiovascular death/hospitalization was significantly greater for participants with baseline BDI-II scores of 11 or more compared with those with scores <11. The baseline, time-varying, and cumulative elevated depressive affect were each associated with a significant higher risk of cardiovascular death/hospitalization, especially with a time-varying BDI-II score over 14 (adjusted HR 1.63) but not with the other outcomes. Thus, elevated depressive affect is associated with unfavorable cardiovascular outcomes in African Americans with hypertensive chronic kidney disease. PMID:21633409

  15. Obesity, Cardiovascular Fitness, and Inhibition Function: An Electrophysiological Study

    PubMed Central

    Song, Tai-Fen; Chi, Lin; Chu, Chien-Heng; Chen, Feng-Tzu; Zhou, Chenglin; Chang, Yu-Kai

    2016-01-01

    The purpose of the present study was to examine how obesity and cardiovascular fitness are associated with the inhibition aspect of executive function from behavioral and electrophysiological perspectives. One hundred college students, aged 18–25 years, were categorized into four groups of equal size on the basis of body mass index and cardiovascular fitness: a normal-weight and high-fitness (NH) group, an obese-weight and high-fitness (OH) group, a normal-weight and low-fitness (NL) group, and an obese-weight and low-fitness (OL) group. Behavioral measures of response time and number of errors, as well as event-related potential measures of P3 and N1, were assessed during the Stroop Task. The results revealed that, in general, the NH group exhibited shorter response times and larger P3 amplitudes relative to the NL and OL groups, wherein the OL group exhibited the longest response time in the incongruent condition. No group differences in N1 indices were also revealed. These findings suggest that the status of being both normal weight and having high cardiovascular fitness is associated with better behavioral and later stages of electrophysiological indices of cognitive function. PMID:27512383

  16. Obesity, Cardiovascular Fitness, and Inhibition Function: An Electrophysiological Study.

    PubMed

    Song, Tai-Fen; Chi, Lin; Chu, Chien-Heng; Chen, Feng-Tzu; Zhou, Chenglin; Chang, Yu-Kai

    2016-01-01

    The purpose of the present study was to examine how obesity and cardiovascular fitness are associated with the inhibition aspect of executive function from behavioral and electrophysiological perspectives. One hundred college students, aged 18-25 years, were categorized into four groups of equal size on the basis of body mass index and cardiovascular fitness: a normal-weight and high-fitness (NH) group, an obese-weight and high-fitness (OH) group, a normal-weight and low-fitness (NL) group, and an obese-weight and low-fitness (OL) group. Behavioral measures of response time and number of errors, as well as event-related potential measures of P3 and N1, were assessed during the Stroop Task. The results revealed that, in general, the NH group exhibited shorter response times and larger P3 amplitudes relative to the NL and OL groups, wherein the OL group exhibited the longest response time in the incongruent condition. No group differences in N1 indices were also revealed. These findings suggest that the status of being both normal weight and having high cardiovascular fitness is associated with better behavioral and later stages of electrophysiological indices of cognitive function. PMID:27512383

  17. Obesity, Cardiovascular Fitness, and Inhibition Function: An Electrophysiological Study.

    PubMed

    Song, Tai-Fen; Chi, Lin; Chu, Chien-Heng; Chen, Feng-Tzu; Zhou, Chenglin; Chang, Yu-Kai

    2016-01-01

    The purpose of the present study was to examine how obesity and cardiovascular fitness are associated with the inhibition aspect of executive function from behavioral and electrophysiological perspectives. One hundred college students, aged 18-25 years, were categorized into four groups of equal size on the basis of body mass index and cardiovascular fitness: a normal-weight and high-fitness (NH) group, an obese-weight and high-fitness (OH) group, a normal-weight and low-fitness (NL) group, and an obese-weight and low-fitness (OL) group. Behavioral measures of response time and number of errors, as well as event-related potential measures of P3 and N1, were assessed during the Stroop Task. The results revealed that, in general, the NH group exhibited shorter response times and larger P3 amplitudes relative to the NL and OL groups, wherein the OL group exhibited the longest response time in the incongruent condition. No group differences in N1 indices were also revealed. These findings suggest that the status of being both normal weight and having high cardiovascular fitness is associated with better behavioral and later stages of electrophysiological indices of cognitive function.

  18. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  19. Cardiovascular Deconditioning in Humans: Alteration in Cardiovascular Regulation and Function During Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Cohen, Richard

    1999-01-01

    Alterations in cardiovascular regulation and function that occur during and after space flight have been reported. These alterations are manifested, for example, by reduced orthostatic tolerance upon reentry to the earth's gravity from space. However, the precise physiologic mechanisms responsible for these alterations remain to be fully elucidated. Perhaps, as a result, effective countermeasures have yet to be developed. In this project we apply a powerful, new method - cardiovascular system identification (CSI) - for the study of the effects of space flight on the cardiovascular system so that effective countermeasures can be developed. CSI involves the mathematical analysis of second-to-second fluctuations in non-invasively measured heart rate, arterial blood pressure (ABP), and instantaneous lung volume (ILV - respiratory activity) in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of all the physiologic mechanisms coupling these signals, CSI provides a model of the closed-loop cardiovascular regulatory state in an individual subject. The model includes quantitative descriptions of the heart rate baroreflex, autonomic function, as well as other important physiologic mechanisms. We are in the process of incorporating beat-to-beat fluctuations of stroke volume into the CSI technique in order to quantify additional physiologic mechanisms such as those involved in control of peripheral vascular resistance and alterations in cardiac contractility. We apply CSI in conjunction with the two general protocols of the Human Studies Core project. The first protocol involves ground-based, human head down tilt bed rest to simulate microgravity and acute stressors - upright tilt, standing and bicycle exercise - to provide orthostatic and exercise challenges. The second protocol is intended to be the same as the first but with the addition of sleep deprivation to determine whether

  20. Cardiovascular Deconditioning

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Fritsch-Yelle, Janice M.; Whitson, Peggy A.; Wood, Margie L.; Brown, Troy E.; Fortner, G. William

    1999-01-01

    Spaceflight causes adaptive changes in cardiovascular function that may deleteriously affect crew health and safety. Over the last three decades, symptoms of cardiovascular changes have ranged from postflight orthostatic tachycardia and decreased exercise capacity to serious cardiac rhythm disturbances during extravehicular activities (EVA). The most documented symptom of cardiovascular dysfunction, postflight orthostatic intolerance, has affected a significant percentage of U.S. Space Shuttle astronauts. Problems of cardiovascular dysfunction associated with spaceflight are a concern to NASA. This has been particularly true during Shuttle flights where the primary concern is the crew's physical health, including the pilot's ability to land the Orbiter, and the crew's ability to quickly egress and move to safety should a dangerous condition arise. The study of astronauts during Shuttle activities is inherently more difficult than most human research. Consequently, sample sizes have been small and results have lacked consistency. Before the Extended Duration Orbiter Medical Project (EDOMP), there was a lack of normative data on changes in cardiovascular parameters during and after spaceflight. The EDOMP for the first time allowed studies on a large enough number of subjects to overcome some of these problems. There were three primary goals of the Cardiovascular EDOMP studies. The first was to establish, through descriptive studies, a normative data base of cardiovascular changes attributable to spaceflight. The second goal was to determine mechanisms of cardiovascular changes resulting from spaceflight (particularly orthostatic hypotension and cardiac rhythm disturbances). The third was to evaluate possible countermeasures. The Cardiovascular EDOMP studies involved parallel descriptive, mechanistic, and countermeasure evaluations.

  1. Placebo Sleep Affects Cognitive Functioning

    ERIC Educational Resources Information Center

    Draganich, Christina; Erdal, Kristi

    2014-01-01

    The placebo effect is any outcome that is not attributed to a specific treatment but rather to an individual's mindset (Benson & Friedman, 1996). This phenomenon can extend beyond its typical use in pharmaceutical drugs to involve aspects of everyday life, such as the effect of sleep on cognitive functioning. In 2 studies examining whether…

  2. Alterations in Cardiovascular Regulation and Function During Long-Term Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Cohen, Richard J.

    1999-01-01

    The Cardiovascular Alterations Team is conducting studies of hemodynamic regulation and susceptibility to arrhythmias resulting from sixteen days of simulated microgravity exposure. In these studies very intensive measurements are made during a short duration of bed rest. In this collaborative effort are making many of the same measurements, however much less frequently, on subjects who are exposed to a much longer duration of simulated microgravity. Alterations in cardiovascular regulation and function that occur during and after space flight have been reported. These alterations are manifested, for example, by reduced orthostatic tolerance upon reentry to the earth's gravity from space. However, the precise physiologic mechanisms responsible for these alterations remain to be fully elucidated. Perhaps, as a result, effective countermeasures have yet to be developed. In addition, numerous reports from the past 30 years suggest that the incidence of ventricular arrhythmias among astronauts is increased during space flight. However, the effects of space flight and the associated physiologic stresses on cardiac conduction processes are not known, and an increase in cardiac susceptibility to arrhythmias has never been quantified. In this project we are applying the most powerful technologies available to determine, in a ground-based study of long duration space flight, the mechanisms by which space flight affects cardiovascular function, and then on the basis of an understanding of these mechanisms to develop rational and specific countermeasures. To this end we are conducting a collaborative project with the Bone Demineralization/Calcium Metabolism Team of the National Space Biomedical Research Institute (NSBRI). The Bone Team is conducting bed rest studies in human subjects lasting 17 weeks, which provides a unique opportunity to study the effects of long duration microgravity exposure on the human cardiovascular system. We are applying a number of powerful new

  3. Vitamin D3 and cardiovascular function in rats.

    PubMed Central

    Weishaar, R E; Simpson, R U

    1987-01-01

    We have previously identified a receptor for 1,25-dihydroxyvitamin D3 in myocardial cells (Simpson, R.U. 1983. Circulation. 68:239.). To establish the relevance of this observation, we evaluated the role of the prohormone vitamin D3 in regulating cardiovascular function. In rats maintained on a vitamin D3-deficient diet for nine weeks, increases in systolic blood pressure (BP) and serum creatine phosphokinase (CPK) were observed. These increases coincided with a reduction of serum calcium from 10.3 to 5.6 mg/dl. However, while serum calcium remained depressed throughout the study, increases in BP and serum CPK were transient. After nine weeks of vitamin D3-depletion, but not after six weeks, ventricular and vascular muscle contractile function were also markedly enhanced. The increase in ventricular contractile function could not be prevented by maintaining serum calcium at 9.0 mg/dl during the period of D3-depletion. These observations suggest a primary role for the vitamin D3-endocrine system in regulating cardiovascular function. PMID:3034981

  4. Effect of Sustained Human Centrifugation on Autonomic Cardiovascular and Vestibular Function

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Benavides, Edgar W.; Harm, Deborah L.; Rupert, A. H.

    2002-01-01

    Repeated exposure to +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, both sustained exposure to +Gx and changes in otolith function resulting from the gravitational changes of space flight and parabolic flight may adversely affect autonomic cardiovascular function and orthostatic tolerance. HYPOTHESES: Baroreflex function and orthostatic tolerance are acutely improved by a single sustained (30 min) exposure to +3Gz but not +3Gx. Moreover, after 30 min of +3Gx, any changes that occur in autonomic cardiovascular function will relate commensurately to changes in otolith function. METHODS: Twenty-two healthy human subjects were first exposed to 5 min of +3 Gz centrifugation and then subsequently up to a total of30 min of either +3Gz (n = 15) or +3Gx (n = 7) centrifugation. Tests of autonomic cardiovascular function both before and after both types of centrifugation included: (a) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; (b) carotid-cardiac baroreflex tests; ( c) Valsalva tests; and (d) 30-min head-up tilt (HUT) tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: All four +3Gz subjects who were intolerant to HUT before centrifugation became tolerant to HUT after centrifugation. The operational point of the carotid-cardiac baroreflex and the Valsalva-related baroreflex were also enhanced in the +3Gz group but not in the +3Gx group. No significant vestibular-autonomic relationships were detected, other than a significant vestibular-cerebrovascular interaction reported previously. CONCLUSIONS: A single, sustained exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance whereas a similar exposure to +3 Gx centrifugation appears to have less effect.

  5. Independent effects of early-life experience and trait aggression on cardiovascular function.

    PubMed

    Rana, Samir; Pugh, Phyllis C; Katz, Erin; Stringfellow, Sara A; Lin, Chee Paul; Wyss, J Michael; Stauss, Harald M; White, C Roger; Clinton, Sarah M; Kerman, Ilan A

    2016-08-01

    Early-life experience (ELE) can significantly affect life-long health and disease, including cardiovascular function. Specific dimensions of emotionality also modify risk of disease, and aggressive traits along with social inhibition have been established as independent vulnerability factors for the progression of cardiovascular disease. Yet, the biological mechanisms mediating these associations remain poorly understood. The present study utilized the inherently stress-susceptible and socially inhibited Wistar-Kyoto rats to determine the potential influences of ELE and trait aggression (TA) on cardiovascular parameters throughout the lifespan. Pups were exposed to maternal separation (MS), consisting of daily 3-h separations of the entire litter from postnatal day (P)1 to P14. The rats were weaned at P21, and as adults were instrumented for chronic radiotelemetry recordings of blood pressure and heart rate (HR). Adult aggressive behavior was assessed using the resident-intruder test, which demonstrated that TA was independent of MS exposure. MS-exposed animals (irrespective of TA) had significantly lower resting HR accompanied by increases in HR variability. No effects of MS on resting blood pressure were detected. In contrast, TA correlated with increased resting mean, systolic, and diastolic arterial pressures but had no effect on HR. TA rats (relative to nonaggressive animals) also manifested increased wall-to-lumen ratio in the thoracic aorta, increased sensitivity to phenylephrine-induced vascular contractility, and increased norepinephrine content in the heart. Together these data suggest that ELE and TA are independent factors that impact baseline cardiovascular function.

  6. Microcomputer-based monitoring of cardiovascular functions in simulated microgravity

    NASA Astrophysics Data System (ADS)

    Tahvanainen, K.; Länsimies, E.; Tikkanen, P.; Hartikainen, J.; Kärki, T.; Lyyra, T.; Mäntysaari, M.

    A microcomputer-based system for non-invasive monitoring of cardiovascular system in simulated microgravity is described. The system evaluates automatically, accurately and interactively heart beat intervals, beat-to-beat non-invasive finger arterial blood pressure (systolic, diastolic, mean and pulse pressure) using a Finapres device and beat-to-beat changes of thoracic blood volume using impedance changes. In addition, beat-to-beat evaluation of cardiac mechanical function including left ventricular ejection time, diastolic time, systolic time intervals, left ventricular ejection fraction estimate and several other contractility parameters, left ventricular volume, stroke volume and cardiac output estimates are performed with high degree of automaticity.

  7. Physical activity ameliorates cardiovascular health in elderly subjects: the functional role of the β adrenergic system

    PubMed Central

    Santulli, Gaetano; Ciccarelli, Michele; Trimarco, Bruno; Iaccarino, Guido

    2013-01-01

    Aging is a complex process characterized by a gradual decline in organ functional reserves, which eventually reduces the ability to maintain homeostasis. An exquisite feature of elderly subjects, which constitute a growing proportion of the world population, is the high prevalence of cardiovascular disorders, which negatively affect both the quality of life and the life expectancy. It is widely acknowledged that physical activity represents one of the foremost interventions capable in reducing the health burden of cardiovascular disease. Interestingly, the benefits of moderate-intensity physical activity have been established both in young and elderly subjects. Herein we provide a systematic and updated appraisal of the literature exploring the pathophysiological mechanisms evoked by physical activity in the elderly, focusing on the functional role of the β adrenergic system. PMID:23964243

  8. Cardiovascular function and basics of physiology in microgravity.

    PubMed

    Aubert, André E; Beckers, Frank; Verheyden, Bart

    2005-04-01

    Space exploration is a dream of mankind. However, this intriguing environment is not without risks. Life, and the human body, has developed all over evolution in the constant presence of gravity, especially from the moment on when living creatures left the ocean. When this gravitational force is no longer acting on the body, drastic changes occur. Some of these changes occur immediately, others progress only slowly. In the past 40 years of human space flight (first orbital flight by Yuri Gagarin on 12 April, 1961) several hazards for the human body have been identified. Bone mineral density is lost, muscle atrophy and cardiovascular deconditioning occur; pulmonary function, fluid regulating systems of the body, the sensory and the balance system are all disturbed by the lack of gravity. These changes in human physiology have to be reversed again when astronauts return to earth. This can cause adaptation problems, especially after long-duration space flights. Also the reaction of human physiology to radiation in space poses a huge risk at this moment. In this review the accent will be on cardiovascular function in space: how normal function is modified to reach a new equilibrium in space after short- and long-duration exposure to microgravity. In order to make long-duration space flight possible the mechanisms of this physiological adaptation must be understood to full extent. Only with this knowledge, effective countermeasures can be developed. PMID:15887469

  9. What is the Ultimate Goal in Neural Regulation of Cardiovascular Function?

    ERIC Educational Resources Information Center

    Prakash, E. S.; Madanmohan; Pal, Gopal Krushna

    2004-01-01

    We used the following multiple-choice question after a series of lectures in cardiovascular physiology in the first year of an undergraduate medical curriculum (n = 66) to assess whether students had understood the neural regulation of cardiovascular function. In health, neural cardiovascular mechanisms are geared toward maintaining A) cardiac…

  10. Fetal in vivo continuous cardiovascular function during chronic hypoxia.

    PubMed

    Allison, B J; Brain, K L; Niu, Y; Kane, A D; Herrera, E A; Thakor, A S; Botting, K J; Cross, C M; Itani, N; Skeffington, K L; Beck, C; Giussani, D A

    2016-03-01

    Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean P(aO2) levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l(-1), P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase-derived reactive oxygen species. PMID:26926316

  11. Urinary uromodulin, kidney function and cardiovascular disease in elderly adults

    PubMed Central

    Garimella, Pranav S.; Biggs, Mary L.; Katz, Ronit; Ix, Joachim H.; Bennett, Michael R.; Devarajan, Prasad; Kestenbaum, Bryan R.; Siscovick, David S.; Jensen, Majken K.; Shlipak, Michael G.; Chaves, Paulo H. M.; Sarnak, Mark J.

    2015-01-01

    Urinary uromodulin (uUMOD) is the most common secreted tubular protein in healthy adults. However, the relationship between uUMOD and clinical outcomes is still unclear. Here we measured uUMOD in 192 participants of the Cardiovascular Health Study with over a 30% decline in estimated glomerular filtration rate (eGFR) over 9 years, 54 with incident end stage renal disease (ESRD), and in a random sub-cohort of 958 participants. The association of uUMOD with eGFR decline was evaluated using logistic regression and with incident ESRD, cardiovascular disease, heart failure and mortality using Cox proportional regression. Mean age was 78 years and median uUMOD was 25.8 μg/mL. In a case-control study evaluating eGFR decline (192 cases and 231 controls), each standard deviation higher uUMOD was associated with a 23% lower odds of eGFR decline (odds ratio 0.77, (95% CI 0.62, 0.96)) and a 10% lower risk of mortality (hazard ratio 0.90, (95% CI 0.83, 0.98)) after adjusting for demographics, eGFR, albumin/creatinine ratio and other risk factors. There was no risk association of uUMOD with ESRD, cardiovascular disease or heart failure after multivariable adjustment. Thus, low uUMOD levels may identify persons at risk of progressive kidney disease and mortality above and beyond established markers of kidney disease, namely eGFR and the albumin/creatinine ratio. Future studies need to confirm these results and evaluate whether uUMOD is a marker of tubular health and/or whether it plays a causal role in preserving kidney function. PMID:26154925

  12. Relation of cognitive appraisal to cardiovascular reactivity, affect, and task engagement.

    PubMed

    Maier, Karl J; Waldstein, Shari R; Synowski, Stephen J

    2003-08-01

    The relation of primary cognitive appraisals to cardiovascular reactivity, affect, task engagement, and perceived stress was examined in 56 men (ages 18-29). Systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate, preejection period, stroke index, cardiac index, and total peripheral resistance were assessed at rest and during performance of a computerized mental arithmetic task. Extending on prior investigations, threat and challenge appraisals were assessed independently from one another and from secondary appraisals. Positive and negative affect, task engagement, and levels of perceived stress were also assessed. Results indicated that threat (R2 =.08, p =.01), challenge (R2 =.14, p =.003), and their interaction (R2 =.11, p =.006) independently predicted DBP reactivity; DBP responses were greatest among participants with a high threat/low challenge pattern of appraisal. Threat appraisals predicted greater negative affect (R2 =.32) and perceived stress (R2 =.48), whereas challenge appraisals were related to greater positive affect (R2 =.44) and task engagement (R2 =.40, ps <.0001). Greater positive affect was correlated with increased SBP and DBP reactivity, and greater levels of task engagement with increased DBP response (ps < or = .002). Results suggest that primary cognitive appraisals are more potent predictors of affect and task engagement than cardiovascular reactivity.

  13. Renal Function and Cardiovascular Response to Mental Stress

    PubMed Central

    Seliger, Stephen L.; Katzel, Leslie I.; Fink, Jeffrey C.; Weir, Matthew R.; Waldstein, Shari R.

    2008-01-01

    Background/Aims Cardiovascular reactivity (CVR), defined as an exaggerated hemodynamic response to mental stress, is a putative vascular risk factor and may reflect sympathetic hyperactivity. Chronic kidney disease (CKD) is also associated with sympathetic hyperactivity and vascular risk, but its relationship with CVR is unknown. Methods CVR was assessed in 107 individuals without overt cardiovascular disease or diabetes. Blood pressure and heart rate responses were elicited by three experimental tasks designed to evoke mental stress. Glomerular filtration rate (eGFR) was estimated using the MDRD formula. General linear models estimated the association between renal function and CVR, adjusting for potential confounders. Results Mean age was 66 years and 11% had eGFR of <60 ml/min/1.73 m2. After multivariate adjustment, a low eGFR was associated with a greater stress response of systolic blood pressure, heart rate, and pulse pressure. Associations were only partially attenuated after adjustment for lipids and glucose tolerance. When considered as a continuous variable, lower eGFR was associated with a greater blood pressure response after adjustment for glycemia. Conclusion Although there were relatively few participants with CKD, these results suggest a relationship between CKD and greater CVR. Further investigation is warranted into factors that mediate this relationship and potential clinical consequences of this exaggerated response to stress in CKD. PMID:18025779

  14. Association of Fitness Level With Cardiovascular Risk and Vascular Function in Older Nonexercising Individuals.

    PubMed

    Oudegeest-Sander, Madelijn H; Thijssen, Dick H J; Smits, Paul; van Dijk, Arie P J; Olde Rikkert, Marcel G M; Hopman, Maria T E

    2015-07-01

    It is currently unknown whether differences in physical fitness in older, nonexercising individuals affect cardiovascular risk profile and vascular function. To examine this, 40 healthy older individuals (age 69 ± 4 years) who were classified as nonexercising for the past 5-10 years were allocated to a lower physical fitness (LF; VO2max 20.7 ± 2.4 mlO2/min/kg) or higher physical fitness group (HF; VO2max 29.1 ± 2.8 mlO2/ min/kg, p < .001). Cardiovascular risk profile was calculated using the Lifetime Risk Score (LRS). Vascular function was examined using the gold standard venous occlusion plethysmography to assess blood flow changes in response to intra-arterial infusion of acetylcholine, sodium nitroprusside, and L-NNMA. Daily life activity level of the HF group was higher compared with the LF group (p = .04). LRS was higher (p < .001) and blood flow ratio response to acetylcholine was lower (p = .04) in the LF group. This study shows that a higher physical fitness level is associated with better cardiovascular health and vascular function in nonexercising older individuals. PMID:25222970

  15. Sex and the cardiovascular system: the intriguing tale of how women and men regulate cardiovascular function differently.

    PubMed

    Huxley, Virginia H

    2007-03-01

    The ability to recognize and appreciate from a reproductive standpoint that males and females possess different attributes has been long standing. Only more recently have we begun to look more deeply into both the similarities and differences between men and women, as well as between boys and girls, with respect to the structure and function of other organ systems. This article focuses on the cardiovascular system, with examples of sex differences in the control of coronary function, blood pressure, and volume. Recognizing the differences between the sexes with respect to cardiovascular function facilitates understanding of the mechanisms whereby homeostasis can be achieved using different contributions or components of the living system. Furthermore, recognition of the differences as well as the similarities permits the design of appropriate diagnostic instruments, recognition of sex-specific pathophysiology, and implementation of appropriate treatment of cardiovascular disease in men and women.

  16. Sex and the cardiovascular system: the intriguing tale of how women and men regulate cardiovascular function differently.

    PubMed

    Huxley, Virginia H

    2007-03-01

    The ability to recognize and appreciate from a reproductive standpoint that males and females possess different attributes has been long standing. Only more recently have we begun to look more deeply into both the similarities and differences between men and women, as well as between boys and girls, with respect to the structure and function of other organ systems. This article focuses on the cardiovascular system, with examples of sex differences in the control of coronary function, blood pressure, and volume. Recognizing the differences between the sexes with respect to cardiovascular function facilitates understanding of the mechanisms whereby homeostasis can be achieved using different contributions or components of the living system. Furthermore, recognition of the differences as well as the similarities permits the design of appropriate diagnostic instruments, recognition of sex-specific pathophysiology, and implementation of appropriate treatment of cardiovascular disease in men and women. PMID:17327577

  17. Caffeine-induced changes in cardiovascular function during resistance training.

    PubMed

    Astorino, Todd Anthony; Rohmann, Riana Lee; Firth, Kelli; Kelly, Sondra

    2007-10-01

    Caffeine (CAF) exerts a pressor effect both at rest and during exercise, as blood pressure is higher than with placebo. The effect of acute CAF ingestion combined with intense resistance training on cardiovascular function is unknown, however. The primary aim of the study was to examine changes in cardiovascular function after completion of fatiguing bench-press and leg-press exercise after CAF or placebo ingestion. Twenty-two resistance-trained men ingested CAF (6 mg/kg) or placebo 1 h preexercise in a randomized, double-blind crossover design. They refrained from CAF intake and strenuous exercise 48 and 24 h pretrial, respectively. Heart rate and blood pressure were measured preexercise. After a standardized warm-up, 1-repetition-maximum (1-RM) on the barbell bench press and leg press was tested. When it had been determined, a load equivalent to 60% of 1-RM was placed on the bar, and the subject completed repetitions to failure. Measurements of heart rate and blood pressure were immediately completed, and mean arterial pressure and rate-pressure product were calculated. Results showed significant (P < 0.05) increases in heart rate (+ 10 beats/min), systolic blood pressure (+ 8-10 mmHg), and rate-pressure product with acute CAF ingestion versus placebo. No change (P > 0.05) in diastolic blood pressure across time or treatment was shown. To prevent elevated blood pressure and potential enhanced risk of heart disease, CAF intake should be monitored in at-risk men who participate in resistance training.

  18. [Effects of the 520-day isolation on the functional state of the cardiovascular system].

    PubMed

    Stepanova, G P; Buĭlov, S P; Eshchenko, A I; Skedina, M A; Voronkov, Iu I

    2014-01-01

    Purpose of the work was to study the cardiovascular effects of simulated factors in a 520-day crewed mission to Mars, and to validate the diagnostic value of the ultrasonic investigation of microcirculation and endothelium-dependent dilation of the right brachial artery in 6 male volunteers at the age of 28 to 39 years. It appears that 520-d isolation affected intracardiac hemodynamics and endothelium function more dramatically compared with 105-d isolation, increasing the risk of atherosclerosis. These findings add insight into the "cost of human adaptation" to very long isolation.

  19. [Effects of the 520-day isolation on the functional state of the cardiovascular system].

    PubMed

    Stepanova, G P; Buĭlov, S P; Eshchenko, A I; Skedina, M A; Voronkov, Iu I

    2014-01-01

    Purpose of the work was to study the cardiovascular effects of simulated factors in a 520-day crewed mission to Mars, and to validate the diagnostic value of the ultrasonic investigation of microcirculation and endothelium-dependent dilation of the right brachial artery in 6 male volunteers at the age of 28 to 39 years. It appears that 520-d isolation affected intracardiac hemodynamics and endothelium function more dramatically compared with 105-d isolation, increasing the risk of atherosclerosis. These findings add insight into the "cost of human adaptation" to very long isolation. PMID:25365873

  20. Effects of hydraulic circuit training on cardiovascular function.

    PubMed

    Haennel, R; Teo, K K; Quinney, A; Kappagoda, T

    1989-10-01

    The effect of hydraulic circuit training (HCT) on cardiovascular (CV) function was assessed in 32 healthy middle-aged males (X age = 42.2 +/- 2.1 yr). Maximal aerobic power (VO2max), with simultaneous measurement of stroke volume (SV) and cardiac output (CO), by impedance cardiography, was assessed pre- and post-training. Subjects were randomly assigned to a nonexercising control group, a cycle training group (cycle), or one of the two HCT groups. Training groups participated in a 9 wk program, 3 d.wk-1. Subjects assigned to HCT exercised on a 9 station circuit, completing 3 circuits.d-1. Each circuit consisted of three 20 s work intervals at each station with a 1:1 work:rest ratio. One HCT group (HCTmax) completed the maximal repetitions possible (RM) during each work interval. The other HCT group (HCTsub) exercised at 70-85% of RM. Following training VO2max (ml.kg-1 min-1) was significantly increased in all training groups (18.0, 12.5, and 11.3% for cycle, HCTsub, and HCTmax groups, respectively; P less than 0.05). The increase in VO2max observed in the cycle group was significantly greater than that recorded by the two HCT groups (P less than 0.05). For all three training groups, the increase in VO2max was associated with increases in SVmax and COmax (P less than 0.05 for both). These findings suggest that both maximal and submaximal HCT programs can elicit improvements in cardiovascular fitness. PMID:2607948

  1. Damaging effects of hyperglycemia on cardiovascular function: spotlight on glucose metabolic pathways.

    PubMed

    Mapanga, Rudo F; Essop, M Faadiel

    2016-01-15

    The incidence of cardiovascular complications associated with hyperglycemia is a growing global health problem. This review discusses the link between hyperglycemia and cardiovascular diseases onset, focusing on the role of recently emerging downstream mediators, namely, oxidative stress and glucose metabolic pathway perturbations. The role of hyperglycemia-mediated activation of nonoxidative glucose pathways (NOGPs) [i.e., the polyol pathway, hexosamine biosynthetic pathway, advanced glycation end products (AGEs), and protein kinase C] in this process is extensively reviewed. The proposal is made that there is a unique interplay between NOGPs and a downstream convergence of detrimental effects that especially affect cardiac endothelial cells, thereby contributing to contractile dysfunction. In this process the AGE pathway emerges as a crucial mediator of hyperglycemia-mediated detrimental effects. In addition, a vicious metabolic cycle is established whereby hyperglycemia-induced NOGPs further fuel their own activation by generating even more oxidative stress, thereby exacerbating damaging effects on cardiac function. Thus NOGP inhibition, and particularly that of the AGE pathway, emerges as a novel therapeutic intervention for the treatment of cardiovascular complications such as acute myocardial infarction in the presence hyperglycemia.

  2. Validation of Cardiovascular Parameters During NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, Steven H.

    2008-01-01

    Microgravity-induced physiological changes, including cardiovascular deconditioning may impair crewmembers f capabilities during exploration missions on the Moon and Mars. The Functional Task Test (FTT), which will be used to assess task performance in short and long duration astronauts, consists of 7 functional tests to evaluate crewmembers f ability to perform activities to be conducted in a partial-gravity environment or following an emergency landing on Earth. The Recovery from Fall/Stand Test (RFST) tests both the subject fs ability to get up from a prone position and orthostatic intolerance. PURPOSE: Crewmembers have never become presyncopal in the first 3 min of quiet stand, yet it is unknown whether 3 min is long enough to cause similar heart rate fluctuations to a 5-min stand. The purpose of this study was to validate and test the reliability of heart rate variability (HRV) analysis of a 3-min quiet stand. METHODS: To determine the validity of using 3 vs. 5-min of standing to assess HRV, 7 healthy subjects remained in a prone position for 2 min, stood up quickly and stood quietly for 6 min. ECG and continuous blood pressure data were recorded. Mean R-R interval and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the complete FTT on separate days, including the RFST with a 3-min stand test. Analysis of variance (ANOVA) was performed on the HRV measures. RESULTS: Spectral HRV measures reflecting autonomic activity were not different (p>0.05) during the 0-3 and 0-5 min segment (mean R-R interval: 738+/-74 ms, 728+/-69 ms; low frequency to high frequency ratio: 6.5+/-2.2, 7.7+/-2.7; normalized high frequency: 0.19+/-0.03, 0.18+/-0.04). The average coefficient of variation for mean R-R interval, systolic and diastolic blood pressures

  3. Validation of Cardiovascular Parameters during NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, S. H.

    2009-01-01

    Microgravity exposure causes physiological deconditioning and impairs crewmember task performance. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in a series of operationally-relevant tasks. One of these, the Recovery from Fall/Stand Test (RFST), tests both the ability to recover from a prone position and cardiovascular responses to orthostasis. PURPOSE: Three minutes were chosen for the duration of this test, yet it is unknown if this is long enough to induce cardiovascular responses similar to the operational 5 min stand test. The purpose of this study was to determine the validity and reliability of heart rate variability (HRV) analysis of a 3 min stand and to examine the effect of spaceflight on these measures. METHODS: To determine the validity of using 3 vs. 5 min of standing to assess HRV, ECG was collected from 7 healthy subjects who participated in a 6 min RFST. Mean R-R interval (RR) and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the FTT on separate days, including the RFST with a 3 min stand. Analysis of variance (ANOVA) was performed on the HRV measures. One crewmember completed the FTT before a 14-day mission, on landing day (R+0) and one (R+1) day after returning to Earth. RESULTS VALIDITY: HRV measures reflecting autonomic activity were not significantly different during the 0-3 and 0-5 min segments. RELIABILITY: The average coefficient of variation for RR, systolic (SBP) and diastolic blood pressures during the RFST were less than 8% for the 3 sessions. ANOVA results yielded a greater inter-subject variability (p<0.006) than inter-session variability (p>0.05) for HRV in the RFST. SPACEFLIGHT: Lower RR and higher SBP were observed on R+0 in rest and stand. On R+1

  4. Functional Task Test: 2. Spaceflight-Induced Cardiovascular Change and Recovery During NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Phillips, Tiffany; Arzeno, Natalia M.; Stenger, Michael; Lee, Stuart M. C.; Bloomberg, Jacob J.; Platts, Steven H.

    2011-01-01

    The overall objective of the functional task test (FTT) is to correlate spaceflight-induced physiological adaptations with changes in performance of high priority exploration mission-critical tasks. This presentation will focus on the recovery from fall/stand test (RFST), which measures the cardiovascular response to the transition from the prone posture (simulated fall) to standing in normal gravity, as well as heart rate (HR) during 11 functional tasks. As such, this test describes some aspects of spaceflight-induced cardiovascular deconditioning and the course of recovery in Space Shuttle and International Space Station (ISS) astronauts. The sensorimotor and neuromuscular components of the FTT are described in two separate abstracts: Functional Task Test 1 and 3.

  5. Alterations in cardiovascular autonomic function tests in idiopathic hyperhidrosis.

    PubMed

    De Marinis, Milena; Colaizzo, Elisa; Petrelli, Rosa Anna Nives; Santilli, Valter

    2012-04-01

    We performed cardiovascular autonomic function tests to assess sympathetic and parasympathetic functions in patients with idiopathic hyperhidrosis. We studied 35 patients with idiopathic hyperhidrosis and 35 age- and sex-matched controls. A thermoregulatory sweat test (TST) was performed in all subjects. Sweating was qualitatively (Minor's test at 22°C) and quantitatively (skin conductance) evaluated. Orthostatism, tilt to 65°, cold pressor test, deep breathing, Valsalva maneuver and hyperventilation were performed in patients and controls. A greater fall in blood pressure values was observed in patients than in controls in the upright tests (p<0.05). In particular, postural hypotension was present in a subgroup of patients (34%), in whom changes in lying-to-standing blood pressure and heart rate were greater (p<0.001) than those of the remaining patients. The TST revealed that the total body sweat rate (ml/cm(2)/min) was more pronounced in patients with postural hypotension (p<0.001) than in the other patients and controls. The skin conductance values of patients with postural hypotension were higher (p<0.001) than those of the remaining patients. A positive correlation was found between skin conductance values and postural hypotension. Dehydration and poor water intake may play a role in postural hypotension in patients with severe hyperhidrosis and pronounced thermoregulatory sweating. A significantly marked increase in parasympathetic function was observed in patients. Responses to deep breathing, Valsalva maneuver and hyperventilation were significantly greater in patients (p<0.001) than in controls. Idiopathic hyperhidrosis seems to be a complex dysfunction that involves autonomic pathways other than those related to sweating.

  6. Can lifestyle modification affect men’s erectile function?

    PubMed Central

    Hehemann, Marah C.

    2016-01-01

    Erectile dysfunction (ED) is a common condition affecting millions of men worldwide. The pathophysiology and epidemiologic links between ED and risk factors for cardiovascular disease (CVD) are well-established. Lifestyle modifications such as smoking cessation, weight reduction, dietary modification, physical activity, and psychological stress reduction have been increasingly recognized as foundational to the prevention and treatment of ED. The aim of this review is to outline behavioral choices which may increase ones risk of developing ED, to present relevant studies addressing lifestyle factors correlated with ED, and to highlight proposed mechanisms for intervention aimed at improving erectile function in men with ED. These recommendations can provide a framework for counseling patients with ED about lifestyle modification. PMID:27141445

  7. The relationship of hostility, negative affect and ethnicity to cardiovascular responses: an ambulatory study in Singapore.

    PubMed

    Enkelmann, Hwee Chong; Bishop, George D; Tong, Eddie M W; Diong, Siew Maan; Why, Yong Peng; Khader, Majeed; Ang, Jansen

    2005-05-01

    This study tested the hypotheses that ambulatory heart rate and blood pressure would be higher for individuals high but not low in hostility when they experienced negative affect or social stress and that this interaction would be stronger for Indians compared with other Singapore ethnic groups. Ambulatory blood pressure monitoring was done on 108 male Singapore patrol officers as they went about their daily duties. After each BP measurement participants completed a computerized questionnaire including items on emotional experience. Individuals high in hostility showed higher systolic blood pressure when reporting negative affect whereas this was not true for those low in hostility. Ethnic differences were obtained such that Indians showed an increase in mean arterial pressure when angered whereas MAP was negatively related to anger for Malays and unrelated for Chinese. Also a three-way interaction between ethnicity, hostility, and social stress indicated that hostility and social stress interacted in their effects on DBP for Indian participants but not for Chinese or Malays. Finally, a three-way interaction was obtained between ethnicity, hostility and negative affect for heart rate in which heart rate increased with increasing levels of negative affect for Chinese high in hostility and Malays low in hostility but decreased with increasing negative affect for all other participants. These data are consistent with higher CHD rates among individuals high in hostility and also provide additional evidence on ethnic differences in cardiovascular reactivity in Singapore.

  8. Pathologic Function and Therapeutic Potential of Exosomes in Cardiovascular Disease

    PubMed Central

    Ailawadi, Shaina; Wang, Xiaohong; Gu, Haitao; Fan, Guo-Chang

    2014-01-01

    The heart is a very complex conglomeration of organized interactions between various different cell types that all aid in facilitating myocardial function through contractility, sufficient perfusion, and cell-to-cell reception. In order to make sure all features of the heart work effectively, it is imperative to have a well-controlled communication system among the different types of cells. One of the most important ways the heart regulates itself is by the use of extracellular vesicles, more specifically, exosomes. Exosomes are types of nano-vesicles, naturally released from living cells. They are believed to play a critical role in intercellular communication through the means of certain mechanisms including direct cell-to-cell contact, long-range signals as well as electrical and extracellular chemical molecules. Exosomes contain many unique features like surface proteins/receptors, lipids, mRNAs, microRNAs, transcription factors and other proteins. Recent studies indicate that the exosomal contents are highly regulated by various stress and disease conditions, in turn reflective of the parent cell status. At present, exosomes are well appreciated to be involved in the process of tumor and infection disease. However, the research on cardiac exosomes is just emerging. In this review, we summarize recent findings on the pathologic effects of exosomes on cardiac remodeling under stress and disease conditions, including cardiac hypertrophy, peripartum cardiomyopathy, diabetic cardiomyopathy and sepsis-induced cardiovascular dysfunction. In addition, the cardio-protective effects of stress-preconditioned exosomes and stem cell-derived exosomes are also summarized. Finally, we discuss how to epigenetically reprogram exosome contents in host cells which makes them beneficial for the heart. PMID:25463630

  9. Positive affect and health-related neuroendocrine, cardiovascular, and inflammatory processes.

    PubMed

    Steptoe, Andrew; Wardle, Jane; Marmot, Michael

    2005-05-01

    Negative affective states such as depression are associated with premature mortality and increased risk of coronary heart disease, type 2 diabetes, and disability. It has been suggested that positive affective states are protective, but the pathways through which such effects might be mediated are poorly understood. Here we show that positive affect in middle-aged men and women is associated with reduced neuroendocrine, inflammatory, and cardiovascular activity. Positive affect was assessed by aggregating momentary experience samples of happiness over a working day and was inversely related to cortisol output over the day, independently of age, gender, socioeconomic position, body mass, and smoking. Similar patterns were observed on a leisure day. Happiness was also inversely related to heart rate assessed by using ambulatory monitoring methods over the day. Participants underwent mental stress testing in the laboratory, where plasma fibrinogen stress responses were smaller in happier individuals. These effects were independent of psychological distress, supporting the notion that positive well-being is directly related to health-relevant biological processes. PMID:15840727

  10. The Implicit Positive and Negative Affect Test: Validity and Relationship with Cardiovascular Stress-Responses.

    PubMed

    van der Ploeg, Melanie M; Brosschot, Jos F; Thayer, Julian F; Verkuil, Bart

    2016-01-01

    Self-report, i.e., explicit, measures of affect cannot fully explain the cardiovascular (CV) responses to stressors. Measuring affect beyond self-report, i.e., using implicit measures, could add to our understanding of stress-related CV activity. The Implicit Positive and Negative Affect Test (IPANAT) was administered in two studies to test its ecological validity and relation with CV responses and self-report measures of affect. In Study 1 students (N = 34) viewed four film clips inducing anger, happiness, fear, or no emotion, and completed the IPANAT and the Positive And Negative Affect Scale at baseline and after each clip. Implicit negative affect (INA) was higher and implicit positive affect (IPA) was lower after the anger inducing clip and vice versa after the happiness inducing clip. In Study 2 students performed a stressful math task with (n = 14) or without anger harassment (n = 15) and completed the IPANAT and a Visual Analog Scale as an explicit measure afterwards. Systolic (SBP), diastolic (DBP) blood pressure, heart rate (HR), heart rate variability (HRV), and total peripheral resistance (TPR) were recorded throughout. SBP and DBP were higher and TPR was lower in the harassment condition during the task with a prolonged effect on SBP and DBP during recovery. As expected, explicit negative affect (ENA) was higher and explicit positive affect (EPA) lower after harassment, but ENA and EPA were not related to CV activity. Although neither INA nor IPA differed between the tasks, during both tasks higher INA was related to higher SBP, lower HRV and lower TPR and to slower recovery of DBP after both tasks. Low IPA was related to slower recovery of SBP and DBP after the tasks. Implicit affect was not related to recovery of HR, HRV, and TPR. In conclusion, the IPANAT seems to respond to film clip-induced negative and positive affect and was related to CV activity during and after stressful tasks. These findings support the theory that implicitly measured affect

  11. The Implicit Positive and Negative Affect Test: Validity and Relationship with Cardiovascular Stress-Responses.

    PubMed

    van der Ploeg, Melanie M; Brosschot, Jos F; Thayer, Julian F; Verkuil, Bart

    2016-01-01

    Self-report, i.e., explicit, measures of affect cannot fully explain the cardiovascular (CV) responses to stressors. Measuring affect beyond self-report, i.e., using implicit measures, could add to our understanding of stress-related CV activity. The Implicit Positive and Negative Affect Test (IPANAT) was administered in two studies to test its ecological validity and relation with CV responses and self-report measures of affect. In Study 1 students (N = 34) viewed four film clips inducing anger, happiness, fear, or no emotion, and completed the IPANAT and the Positive And Negative Affect Scale at baseline and after each clip. Implicit negative affect (INA) was higher and implicit positive affect (IPA) was lower after the anger inducing clip and vice versa after the happiness inducing clip. In Study 2 students performed a stressful math task with (n = 14) or without anger harassment (n = 15) and completed the IPANAT and a Visual Analog Scale as an explicit measure afterwards. Systolic (SBP), diastolic (DBP) blood pressure, heart rate (HR), heart rate variability (HRV), and total peripheral resistance (TPR) were recorded throughout. SBP and DBP were higher and TPR was lower in the harassment condition during the task with a prolonged effect on SBP and DBP during recovery. As expected, explicit negative affect (ENA) was higher and explicit positive affect (EPA) lower after harassment, but ENA and EPA were not related to CV activity. Although neither INA nor IPA differed between the tasks, during both tasks higher INA was related to higher SBP, lower HRV and lower TPR and to slower recovery of DBP after both tasks. Low IPA was related to slower recovery of SBP and DBP after the tasks. Implicit affect was not related to recovery of HR, HRV, and TPR. In conclusion, the IPANAT seems to respond to film clip-induced negative and positive affect and was related to CV activity during and after stressful tasks. These findings support the theory that implicitly measured affect

  12. The Implicit Positive and Negative Affect Test: Validity and Relationship with Cardiovascular Stress-Responses

    PubMed Central

    van der Ploeg, Melanie M.; Brosschot, Jos F.; Thayer, Julian F.; Verkuil, Bart

    2016-01-01

    Self-report, i.e., explicit, measures of affect cannot fully explain the cardiovascular (CV) responses to stressors. Measuring affect beyond self-report, i.e., using implicit measures, could add to our understanding of stress-related CV activity. The Implicit Positive and Negative Affect Test (IPANAT) was administered in two studies to test its ecological validity and relation with CV responses and self-report measures of affect. In Study 1 students (N = 34) viewed four film clips inducing anger, happiness, fear, or no emotion, and completed the IPANAT and the Positive And Negative Affect Scale at baseline and after each clip. Implicit negative affect (INA) was higher and implicit positive affect (IPA) was lower after the anger inducing clip and vice versa after the happiness inducing clip. In Study 2 students performed a stressful math task with (n = 14) or without anger harassment (n = 15) and completed the IPANAT and a Visual Analog Scale as an explicit measure afterwards. Systolic (SBP), diastolic (DBP) blood pressure, heart rate (HR), heart rate variability (HRV), and total peripheral resistance (TPR) were recorded throughout. SBP and DBP were higher and TPR was lower in the harassment condition during the task with a prolonged effect on SBP and DBP during recovery. As expected, explicit negative affect (ENA) was higher and explicit positive affect (EPA) lower after harassment, but ENA and EPA were not related to CV activity. Although neither INA nor IPA differed between the tasks, during both tasks higher INA was related to higher SBP, lower HRV and lower TPR and to slower recovery of DBP after both tasks. Low IPA was related to slower recovery of SBP and DBP after the tasks. Implicit affect was not related to recovery of HR, HRV, and TPR. In conclusion, the IPANAT seems to respond to film clip-induced negative and positive affect and was related to CV activity during and after stressful tasks. These findings support the theory that implicitly measured affect

  13. Chronic Treatment with Ivabradine Does Not Affect Cardiovascular Autonomic Control in Rats.

    PubMed

    Silva, Fernanda C; Paiva, Franciny A; Müller-Ribeiro, Flávia C; Caldeira, Henrique M A; Fontes, Marco A P; de Menezes, Rodrigo C A; Casali, Karina R; Fortes, Gláucia H; Tobaldini, Eleonora; Solbiati, Monica; Montano, Nicola; Dias Da Silva, Valdo J; Chianca, Deoclécio A

    2016-01-01

    A low resting heart rate (HR) would be of great benefit in cardiovascular diseases. Ivabradine-a novel selective inhibitor of hyperpolarization-activated cyclic nucleotide gated (HCN) channels- has emerged as a promising HR lowering drug. Its effects on the autonomic HR control are little known. This study assessed the effects of chronic treatment with ivabradine on the modulatory, reflex and tonic cardiovascular autonomic control and on the renal sympathetic nerve activity (RSNA). Male Wistar rats were divided in 2 groups, receiving intraperitoneal injections of vehicle (VEH) or ivabradine (IVA) during 7 or 8 consecutive days. Rats were submitted to vessels cannulation to perform arterial blood pressure (AP) and HR recordings in freely moving rats. Time series of resting pulse interval and systolic AP were used to measure cardiovascular variability parameters. We also assessed the baroreflex, chemoreflex and the Bezold-Jarish reflex sensitivities. To better evaluate the effects of ivabradine on the autonomic control of the heart, we performed sympathetic and vagal autonomic blockade. As expected, ivabradine-treated rats showed a lower resting (VEH: 362 ± 16 bpm vs. IVA: 260 ± 14 bpm, p = 0.0005) and intrinsic HR (VEH: 369 ± 9 bpm vs. IVA: 326 ± 11 bpm, p = 0.0146). However, the chronic treatment with ivabradine did not change normalized HR spectral parameters LF (nu) (VEH: 24.2 ± 4.6 vs. IVA: 29.8 ± 6.4; p > 0.05); HF (nu) (VEH: 75.1 ± 3.7 vs. IVA: 69.2 ± 5.8; p > 0.05), any cardiovascular reflexes, neither the tonic autonomic control of the HR (tonic sympathovagal index; VEH: 0.91± 0.02 vs. IVA: 0.88 ± 0.03, p = 0.3494). We performed the AP, HR and RSNA recordings in urethane-anesthetized rats. The chronic treatment with ivabradine reduced the resting HR (VEH: 364 ± 12 bpm vs. IVA: 207 ± 11 bpm, p < 0.0001), without affecting RSNA (VEH: 117 ± 16 vs. IVA: 120 ± 9 spikes/s, p = 0.9100) and mean arterial pressure (VEH: 70 ± 4 vs. IVA: 77 ± 6 mmHg, p

  14. Chronic Treatment with Ivabradine Does Not Affect Cardiovascular Autonomic Control in Rats

    PubMed Central

    Silva, Fernanda C.; Paiva, Franciny A.; Müller-Ribeiro, Flávia C.; Caldeira, Henrique M. A.; Fontes, Marco A. P.; de Menezes, Rodrigo C. A.; Casali, Karina R.; Fortes, Gláucia H.; Tobaldini, Eleonora; Solbiati, Monica; Montano, Nicola; Dias Da Silva, Valdo J.; Chianca, Deoclécio A.

    2016-01-01

    A low resting heart rate (HR) would be of great benefit in cardiovascular diseases. Ivabradine—a novel selective inhibitor of hyperpolarization-activated cyclic nucleotide gated (HCN) channels- has emerged as a promising HR lowering drug. Its effects on the autonomic HR control are little known. This study assessed the effects of chronic treatment with ivabradine on the modulatory, reflex and tonic cardiovascular autonomic control and on the renal sympathetic nerve activity (RSNA). Male Wistar rats were divided in 2 groups, receiving intraperitoneal injections of vehicle (VEH) or ivabradine (IVA) during 7 or 8 consecutive days. Rats were submitted to vessels cannulation to perform arterial blood pressure (AP) and HR recordings in freely moving rats. Time series of resting pulse interval and systolic AP were used to measure cardiovascular variability parameters. We also assessed the baroreflex, chemoreflex and the Bezold-Jarish reflex sensitivities. To better evaluate the effects of ivabradine on the autonomic control of the heart, we performed sympathetic and vagal autonomic blockade. As expected, ivabradine-treated rats showed a lower resting (VEH: 362 ± 16 bpm vs. IVA: 260 ± 14 bpm, p = 0.0005) and intrinsic HR (VEH: 369 ± 9 bpm vs. IVA: 326 ± 11 bpm, p = 0.0146). However, the chronic treatment with ivabradine did not change normalized HR spectral parameters LF (nu) (VEH: 24.2 ± 4.6 vs. IVA: 29.8 ± 6.4; p > 0.05); HF (nu) (VEH: 75.1 ± 3.7 vs. IVA: 69.2 ± 5.8; p > 0.05), any cardiovascular reflexes, neither the tonic autonomic control of the HR (tonic sympathovagal index; VEH: 0.91± 0.02 vs. IVA: 0.88 ± 0.03, p = 0.3494). We performed the AP, HR and RSNA recordings in urethane-anesthetized rats. The chronic treatment with ivabradine reduced the resting HR (VEH: 364 ± 12 bpm vs. IVA: 207 ± 11 bpm, p < 0.0001), without affecting RSNA (VEH: 117 ± 16 vs. IVA: 120 ± 9 spikes/s, p = 0.9100) and mean arterial pressure (VEH: 70 ± 4 vs. IVA: 77 ± 6 mm

  15. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs

    PubMed Central

    Bhatt, Sasmira; Alison, Beth J; Wallace, Euan M; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; te Pas, Arjan B; Morley, Colin J; Polglase, Graeme R; Hooper, Stuart B

    2013-01-01

    Delayed cord clamping improves circulatory stability in preterm infants at birth, but the underlying physiology is unclear. We investigated the effects of umbilical cord clamping, before and after ventilation onset, on cardiovascular function at birth. Prenatal surgery was performed on lambs (123 days) to implant catheters into the pulmonary and carotid arteries and probes to measure pulmonary (PBF), carotid (CaBF) and ductus arteriosus blood flows. Lambs were delivered at 126 ± 1 days and: (1) the umbilical cord was clamped at delivery and ventilation was delayed for about 2 min (Clamp 1st; n = 6), and (2) umbilical cord clamping was delayed for 3–4 min, until after ventilation was established (Vent 1st; n = 6). All lambs were subsequently ventilated for 30 min. In Clamp 1st lambs, cord clamping rapidly (within four heartbeats), but transiently, increased pulmonary and carotid arterial pressures (by ∼30%) and CaBF (from 30.2 ± 5.6 to 40.1 ± 4.6 ml min−1 kg−1), which then decreased again within 30–60 s. Following ventilation onset, these parameters rapidly increased again. In Clamp 1st lambs, cord clamping reduced heart rate (by ∼40%) and right ventricular output (RVO; from 114.6 ± 14.4 to 38.8 ± 9.7 ml min−1 kg−1), which were restored by ventilation. In Vent 1st lambs, cord clamping reduced RVO from 153.5 ± 3.8 to 119.2 ± 10.6 ml min−1 kg−1, did not affect heart rates and resulted in stable blood flows and pressures during transition. Delaying cord clamping for 3–4 min until after ventilation is established improves cardiovascular function by increasing pulmonary blood flow before the cord is clamped. As a result, cardiac output remains stable, leading to a smoother cardiovascular transition throughout the early newborn period. PMID:23401615

  16. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs.

    PubMed

    Bhatt, Sasmira; Alison, Beth J; Wallace, Euan M; Crossley, Kelly J; Gill, Andrew W; Kluckow, Martin; te Pas, Arjan B; Morley, Colin J; Polglase, Graeme R; Hooper, Stuart B

    2013-04-15

    Delayed cord clamping improves circulatory stability in preterm infants at birth, but the underlying physiology is unclear. We investigated the effects of umbilical cord clamping, before and after ventilation onset, on cardiovascular function at birth. Prenatal surgery was performed on lambs (123 days) to implant catheters into the pulmonary and carotid arteries and probes to measure pulmonary (PBF), carotid (CaBF) and ductus arteriosus blood flows. Lambs were delivered at 126 ± 1 days and: (1) the umbilical cord was clamped at delivery and ventilation was delayed for about 2 min (Clamp 1st; n = 6), and (2) umbilical cord clamping was delayed for 3-4 min, until after ventilation was established (Vent 1st; n = 6). All lambs were subsequently ventilated for 30 min. In Clamp 1st lambs, cord clamping rapidly (within four heartbeats), but transiently, increased pulmonary and carotid arterial pressures (by ∼30%) and CaBF (from 30.2 ± 5.6 to 40.1 ± 4.6 ml min(-1) kg(-1)), which then decreased again within 30-60 s. Following ventilation onset, these parameters rapidly increased again. In Clamp 1st lambs, cord clamping reduced heart rate (by ∼40%) and right ventricular output (RVO; from 114.6 ± 14.4 to 38.8 ± 9.7 ml min(-1) kg(-1)), which were restored by ventilation. In Vent 1st lambs, cord clamping reduced RVO from 153.5 ± 3.8 to 119.2 ± 10.6 ml min(-1) kg(-1), did not affect heart rates and resulted in stable blood flows and pressures during transition. Delaying cord clamping for 3-4 min until after ventilation is established improves cardiovascular function by increasing pulmonary blood flow before the cord is clamped. As a result, cardiac output remains stable, leading to a smoother cardiovascular transition throughout the early newborn period.

  17. Comparative and functional analysis of cardiovascular-related genes

    SciTech Connect

    Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-01

    The ability to detect putative cis-regulatory elements in cardiovascular-related genes has been accelerated by the availability of genomic sequence data from numerous vertebrate species and the recent development of comparative genomic tools. This improvement is anticipated to lead to a better understanding of the complex regulatory architecture of cardiovascular (CV) genes and how genetic variants in these non-coding regions can potentially play a role in cardiovascular disease. This manuscript reviews a recently established database dedicated to the comparative sequence analysis of 250 human CV genes of known importance, 37 of which currently contain sequence comparison data for organisms beyond those of human, mouse and rat. These data have provided a glimpse into the variety of possible insights from deep vertebrate sequence comparisons and the identification of putative gene regulatory elements.

  18. Impact of Polyphenol Antioxidants on Cycling Performance and Cardiovascular Function

    PubMed Central

    Trinity, Joel D.; Pahnke, Matthew D.; Trombold, Justin R.; Coyle, Edward F.

    2014-01-01

    This investigation sought to determine if supplementation with polyphenol antioxidant (PA) improves exercise performance in the heat (31.5 °C, 55% RH) by altering the cardiovascular and thermoregulatory responses to exercise. Twelve endurance trained athletes ingested PA or placebo (PLAC) for 7 days. Consecutive days of exercise testing were performed at the end of the supplementation periods. Cardiovascular and thermoregulatory measures were made during exercise. Performance, as measured by a 10 min time trial (TT) following 50 min of moderate intensity cycling, was not different between treatments (PLAC: 292 ± 33 W and PA: 279 ± 38 W, p = 0.12). Gross efficiency, blood lactate, maximal neuromuscular power, and ratings of perceived exertion were also not different between treatments. Similarly, performance on the second day of testing, as assessed by time to fatigue at maximal oxygen consumption, was not different between treatments (PLAC; 377 ± 117 s vs. PA; 364 ± 128 s, p = 0.61). Cardiovascular and thermoregulatory responses to exercise were not different between treatments on either day of exercise testing. Polyphenol antioxidant supplementation had no impact on exercise performance and did not alter the cardiovascular or thermoregulatory responses to exercise in the heat. PMID:24667134

  19. Impact of polyphenol antioxidants on cycling performance and cardiovascular function.

    PubMed

    Trinity, Joel D; Pahnke, Matthew D; Trombold, Justin R; Coyle, Edward F

    2014-03-24

    This investigation sought to determine if supplementation with polyphenol antioxidant (PA) improves exercise performance in the heat (31.5 °C, 55% RH) by altering the cardiovascular and thermoregulatory responses to exercise. Twelve endurance trained athletes ingested PA or placebo (PLAC) for 7 days. Consecutive days of exercise testing were performed at the end of the supplementation periods. Cardiovascular and thermoregulatory measures were made during exercise. Performance, as measured by a 10 min time trial (TT) following 50 min of moderate intensity cycling, was not different between treatments (PLAC: 292 ± 33 W and PA: 279 ± 38 W, p = 0.12). Gross efficiency, blood lactate, maximal neuromuscular power, and ratings of perceived exertion were also not different between treatments. Similarly, performance on the second day of testing, as assessed by time to fatigue at maximal oxygen consumption, was not different between treatments (PLAC; 377 ± 117 s vs. PA; 364 ± 128 s, p = 0.61). Cardiovascular and thermoregulatory responses to exercise were not different between treatments on either day of exercise testing. Polyphenol antioxidant supplementation had no impact on exercise performance and did not alter the cardiovascular or thermoregulatory responses to exercise in the heat.

  20. Deficient cardiovascular stress reactivity predicts poor executive functions in adults with attention-deficit/hyperactivity disorder.

    PubMed

    Hirvikoski, Tatja; Olsson, Erik M G; Nordenstrom, Anna; Lindholm, Torun; Nordstrom, Anna-Lena; Lajic, Svetlana

    2011-01-01

    Associations between cardiovascular stress markers, subjective stress reactivity, and executive functions were studied in 60 adults (30 with attention-deficit/hyperactivity disorder, ADHD, and 30 controls) using the Paced Auditory Serial Addition Test (PASAT, a test of executive functions) as a cognitive stressor. Despite higher self-perceived stress, the adults with ADHD showed lower or atypical cardiovascular stress reactivity, which was associated with poorer performance on PASAT. Using cardiovascular stress markers, subjective stress, and results on PASAT as predictors in a logistic regression, 83.3% of the ADHD group and 86.9% of the controls could be classified correctly.

  1. Cardiovascular risks and brain function: a functional magnetic resonance imaging study of executive function in older adults.

    PubMed

    Chuang, Yi-Fang; Eldreth, Dana; Erickson, Kirk I; Varma, Vijay; Harris, Gregory; Fried, Linda P; Rebok, George W; Tanner, Elizabeth K; Carlson, Michelle C

    2014-06-01

    Cardiovascular (CV) risk factors, such as hypertension, diabetes, and hyperlipidemia are associated with cognitive impairment and risk of dementia in older adults. However, the mechanisms linking them are not clear. This study aims to investigate the association between aggregate CV risk, assessed by the Framingham general cardiovascular risk profile, and functional brain activation in a group of community-dwelling older adults. Sixty participants (mean age: 64.6 years) from the Brain Health Study, a nested study of the Baltimore Experience Corps Trial, underwent functional magnetic resonance imaging using the Flanker task. We found that participants with higher CV risk had greater task-related activation in the left inferior parietal region, and this increased activation was associated with poorer task performance. Our results provide insights into the neural systems underlying the relationship between CV risk and executive function. Increased activation of the inferior parietal region may offer a pathway through which CV risk increases risk for cognitive impairment.

  2. Cardiovascular function during sustained +G/z/ stress

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Sandler, H.; Stone, H. L.

    1976-01-01

    The development of aerospace systems capable of very high levels of positive vertical accelerators stress has created a need for a better understanding of the cardiovascular responses to acceleration. Using a canine model, the heart and cardiovascular system were instrumented to continuously measure coronary blood flow, cardiac output, left ventricular and aortic root pressure, and oxygen saturation in the aorta, coronary sinus, and right ventricle. The animals were exposed to acceleration profiles up to +6 G, 120 s at peak G; a seatback angle of 45 deg was simulated in some experiments. Radiopaque contrast medium was injected to visualize the left ventricular chamber, coronary vasculature, aorta, and branches of the aorta. The results suggest mechanisms responsible for arrhythmias which may occur, and subendocardial hemorrhage which has been reported in other animals.

  3. Dietary polyphenols regulate endothelial function and prevent cardiovascular disease.

    PubMed

    Yamagata, Kazuo; Tagami, Motoki; Yamori, Yukio

    2015-01-01

    Vascular endothelial cell (EC) dysfunction strongly induces development of cardiovascular and cerebrovascular diseases. Epidemiologic studies demonstrated a preventative effect of dietary polyphenols toward cardiovascular disease. In studies using cultured vascular ECs, polyphenols were recognized to regulate nitric oxide and endothelin-1 (ET-1) production. Furthermore, epigallocatechin-3-gallate inhibited the expression of adhesion molecules by a signaling pathway that is similar to that of high-density lipoprotein and involves induction of Ca(2+)/calmodulin-dependent kinase II, liver kinase B, and phosphatidylinositol 3-kinase expression. The effects of polyphenols on ECs include antioxidant activity and enhancement of the expression of several protective proteins, including endothelial nitric oxide synthase and paraoxonase 1. However, the observed effects of dietary polyphenols in vitro do not always translate to an in vivo setting. As such, there are many questions concerning their physiological mode of action. In this review, we discuss research on the effect of dietary polyphenols on cardiovascular disease and their protective effect on EC dysfunction.

  4. The impact of non-severe burn injury on cardiac function and long-term cardiovascular pathology

    PubMed Central

    O’Halloran, Emily; Shah, Amit; Dembo, Lawrence; Hool, Livia; Viola, Helena; Grey, Christine; Boyd, James; O’Neill, Tomas; Wood, Fiona; Duke, Janine; Fear, Mark

    2016-01-01

    Severe burn injury significantly affects cardiovascular function for up to 3 years. However, whether this leads to long-term pathology is unknown. The impact of non-severe burn injury, which accounts for over 80% of admissions in developed countries, has not been investigated. Using a rodent model of non-severe burn injury with subsequent echocardiography we showed significantly increased left ventricular end systolic diameter (LVESD) and ventricular wall thickness at up to 3 months post-injury. Use of propranolol abrogated the changes in cardiac measures observed. Subsequently we investigated changes in a patient cohort with non-severe injury. Echocardiography measured at baseline and at 3 months post-injury showed increased LVESD at 3 months and significantly decreased posterior wall diameter. Finally, 32 years of Western Australian hospital records were used to investigate the incidence of cardiovascular disease admissions after burn injury. People who had experienced a burn had increased hospital admissions and length of stay for cardiovascular diseases when compared to a matched uninjured cohort. This study presents animal, patient and population data that strongly suggest non-severe burn injury has significant effects on cardiovascular function and long-term morbidity in some burn patients. Identification of patients at risk will promote better intervention and outcomes for burn patients. PMID:27694999

  5. Effect of Voluntary Ethanol Consumption Combined with Testosterone Treatment on Cardiovascular Function in Rats: Influence of Exercise Training.

    PubMed

    Engi, Sheila A; Planeta, Cleopatra S; Crestani, Carlos C

    2016-01-01

    This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6), animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances. PMID:26760038

  6. Effect of Voluntary Ethanol Consumption Combined with Testosterone Treatment on Cardiovascular Function in Rats: Influence of Exercise Training

    PubMed Central

    Engi, Sheila A.; Planeta, Cleopatra S.; Crestani, Carlos C.

    2016-01-01

    This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6), animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances. PMID:26760038

  7. Effect of Voluntary Ethanol Consumption Combined with Testosterone Treatment on Cardiovascular Function in Rats: Influence of Exercise Training.

    PubMed

    Engi, Sheila A; Planeta, Cleopatra S; Crestani, Carlos C

    2016-01-01

    This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6), animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances.

  8. Relationship between body composition and both cardiovascular risk factors and lung function in systemic sclerosis.

    PubMed

    Caramaschi, Paola; Biasi, Domenico; Caimmi, Cristian; Barausse, Giovanni; Gatti, Davide; Ferrari, Marcello; Pieropan, Sara; Sabbagh, Dania; Adami, Silvano

    2014-01-01

    The aims of this study were to evaluate body composition in systemic sclerosis (SSc) and to assess its association with the traditional risk factors for atherosclerosis and parameters of lung function. Eighty-six patients affected by SSc (13 men and 73 women, mean age 58.5 years, mean disease duration 10.7 years, 31 with diffuse form and 55 with limited pattern) underwent evaluation of body composition using a dual-energy X-ray (DXA) fan beam densitometer (GE Lunar iDXA) in order to assess total and regional body fat mass and fat-free mass. Clinical features, pulmonary function parameters, and the concomitant presence of the traditional cardiovascular risk factors were recorded. Android fat resulted to be higher in SSc patients with coexistence of hypercholesterolemia (P = 0.021), hypertension (P = 0.028), and overweight/obesity (P < 0.001) and positively correlated with body mass index (P < 0.001). Forced vital capacity (FVC) was inversely correlated with android fat (P = 0.034) and with the android fat/gynoid fat ratio (P = 0.013) and positively correlated with android lean (P = 0.041); the correlations were improved when FVC data were adjusted for sex, age, disease duration, and smoking habits (P = 0.010 for android fat, P = 0.010 for android fat/gynoid fat ratio, P = 0.011 for android lean). In this study, we showed that visceral abdominal fat, measured by DXA, is correlated with the main cardiovascular risk factors and lung volumes in SSc patients. Longitudinal studies are needed to evaluate if decrease of abdominal fat would improve lung function. PMID:24052413

  9. Relation of endothelial function to cardiovascular risk in women with sedentary occupations and without known cardiovascular disease.

    PubMed

    Lippincott, Margaret F; Carlow, Andrea; Desai, Aditi; Blum, Arnon; Rodrigo, Maria; Patibandla, Sushmitha; Zalos, Gloria; Smith, Kevin; Schenke, William H; Csako, Gyorgy; Waclawiw, Myron A; Cannon, Richard O

    2008-08-01

    Our purpose was to determine predictors of endothelial function and potential association with cardiovascular risk in women with sedentary occupations, in whom obesity-associated risk factors may contribute to excess morbidity and mortality. Ninety consecutive women (age range 22 to 63 years, 22 overweight (body mass index [BMI] > or =25 to 29.9 kg/m(2)) and 42 obese (BMI > or = 30 kg/m(2)), had vital signs, lipids, insulin, glucose, high-sensitivity C-reactive protein, and sex hormones measured. Endothelial function was determined using brachial artery flow-mediated dilation after 5 minutes of forearm ischemia. Treadmill stress testing was performed with gas exchange analysis at peak exercise (peak oxygen consumption [Vo(2)]) to assess cardiorespiratory fitness. Brachial artery reactivity was negatively associated with Framingham risk score (r = -0.3542, p = 0.0007). Univariate predictors of endothelial function included peak Vo(2) (r = 0.4483, p <0.0001), age (r = -0.3420, p = 0.0010), BMI (r = -0.3065, p = 0.0035), and high-sensitivity C-reactive protein (r = -0.2220, p = 0.0400). Using multiple linear regression analysis with stepwise modeling, peak Vo(2) (p = 0.0003) was the best independent predictor of brachial artery reactivity, with age as the only other variable reaching statistical significance (p = 0.0436) in this model. In conclusion, endothelial function was significantly associated with cardiovascular risk in women with sedentary occupations, who were commonly overweight or obese. Even in the absence of routine exercise, cardiorespiratory fitness, rather than conventional risk factors or body mass, is the dominant predictor of endothelial function and suggests a modifiable approach to risk.

  10. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression.

    PubMed

    Dampney, R A L; Horiuchi, J

    2003-12-01

    Until about 10 years ago, knowledge of the functional organisation of the central pathways that subserve cardiovascular responses to homeostatic challenges and other stressors was based almost entirely on studies in anaesthetised animals. More recently, however, many studies have used the method of the expression of immediate early genes, particularly the c-fos gene, to identify populations of central neurons that are activated by such challenges in conscious animals. In this review we first consider the advantages and limitations of this method. Then, we discuss how the application of the method of immediate early gene expression, when used alone or in combination with other methods, has contributed to our understanding of the central mechanisms that regulate the autonomic and neuroendocrine response to various cardiovascular challenges (e.g., hypotension, hypoxia, hypovolemia, and other stressors) as they operate in the conscious state. In general, the results of studies of central cardiovascular pathways using immediate early gene expression are consistent with previous studies in anaesthetised animals, but in addition have revealed other previously unrecognised pathways that also contribute to cardiovascular regulation. Finally, we briefly consider recent evidence indicating that immediate early gene expression can modify the functional properties of central cardiovascular neurons, and the possible significance of this in producing long-term changes in the regulation of the cardiovascular system both in normal and pathological conditions.

  11. Endothelial Markers May Link Kidney Function to Cardiovascular Events in Type 2 Diabetes

    PubMed Central

    Maier, Christina; Clodi, Martin; Neuhold, Stephanie; Resl, Michael; Elhenicky, Marie; Prager, Rudolf; Moertl, Deddo; Strunk, Guido; Luger, Anton; Struck, Joachim; Pacher, Richard; Hülsmann, Martin

    2009-01-01

    OBJECTIVE The increased cardiovascular risk in diabetes has been linked to endothelial and renal dysfunction. The aim of this study was to investigate the role of stable fragments of the precursors of adrenomedullin, endothelin-1, vasopressin, and atrial natriuretic peptide in progression of cardiovascular disease in patients with diabetes. RESEARCH DESIGN AND METHODS This was a prospective, observational study design with a composite end point (death or unexpected admission to hospital due to a cardiovascular event) on 781 patients with type 2 diabetes (54 events, median duration of observation 15 months). The four stable precursor peptides midregional adrenomedullin (MR-proADM), midregional proatrial natriuretic peptide (MR-proANP), COOH-terminal proendothelin-1 (CT-proET-1), and COOH-terminal provasopressin or copeptin (CT-proAVP) were determined at baseline, and their association to renal function and cardiovascular events was studied using stepwise linear and Cox logistic regression analysis and receiver operating characteristic analysis, respectively. RESULTS MR-proADM, CT-proET-1, CT-proAVP, and MR-proANP were all elevated in patients with future cardiovascular events and independently correlated to serum creatinine. MR-proADM and MR-proANP were significant predictors of a future cardiovascular event, with MR-proANP being the stronger (area under the curve 0.802 ± 0.034, sensitivity 0.833, specificity 0.576, positive predictive value 0.132, and negative predictive value 0.978 with a cutoff value of 75 pmol/l). CONCLUSIONS The four serum markers of vasoactive and natriuretic peptides are related to both kidney function and cardiovascular events, thus linking two major complications of diabetes, diabetic nephropathy and cardiovascular disease. PMID:19564455

  12. Endothelial function in a cardiovascular risk population with borderline ankle–brachial index

    PubMed Central

    Syvänen, Kari; Korhonen, Päivi; Partanen, Auli; Aarnio, Pertti

    2011-01-01

    Introduction: The diagnosis of peripheral arterial disease (PAD) can be made by measuring the ankle–brachial index (ABI). Traditionally ABI values > 1.00–1.40 have been considered normal and ABI ≤ 0.90 defines PAD. Recent studies, however, have shown that individuals with ABI values between 0.90–1.00 are also at risk of cardiovascular events. We studied this cardiovascular risk population subgroup in order to determine their endothelial function using peripheral arterial tonometry (PAT). Methods: We selected 66 individuals with cardiovascular risk and borderline ABI. They all had hypertension, newly diagnosed glucose disorder, metabolic syndrome, obesity, or a ten year risk of cardiovascular disease death of 5% or more according to the Systematic Coronary Risk Evaluation System (SCORE). Subjects with previously diagnosed diabetes or cardiovascular disease were excluded. Endothelial function was assessed by measuring the reactive hyperemia index (RHI) from fingertips using an Endo-PAT device. Results: The mean ABI was 0.95 and mean RHI 2.11. Endothelial dysfunction, defined as RHI < 1.67, was detected in 15/66 (23%) of the subjects. There were no statistically significant differences in RHI values between subjects with different cardiovascular risk factors. The only exception was that subjects with impaired fasting glucose (IFG) had slightly lower RHI values (mean RHI 1.91) than subjects without IFG (mean RHI 2.24) (P = 0.02). Conclusions: In a cardiovascular risk population with borderline ABI nearly every fourth subject had endothelial dysfunction, indicating an elevated risk of cardiovascular events. This might point out a subgroup of individuals in need of more aggressive treatment for their risk factors. PMID:21415923

  13. N-Methyl-D-Aspartate Receptor Signaling and Function in Cardiovascular Tissues.

    PubMed

    McGee, Marie A; Abdel-Rahman, Abdel A

    2016-08-01

    Excellent reviews on central N-methyl-D-aspartate receptor (NMDAR) signaling and function in cardiovascular regulating neuronal pools have been reported. However, much less attention has been given to NMDAR function in peripheral tissues, particularly the heart and vasculature, although a very recent review discusses such function in the kidney. In this short review, we discuss the NMDAR expression and complexity of its function in cardiovascular tissues. In conscious (contrary to anesthetized) rats, activation of the peripheral NMDAR triggers cardiovascular oxidative stress through the PI3K-ERK1/2-NO signaling pathway, which ultimately leads to elevation in blood pressure. Evidence also implicates Ca release, in the peripheral NMDAR-mediated pressor response. Despite evidence of circulating potent ligands (eg, D-aspartate and L-aspartate, L-homocysteic acid, and quinolinic acid) and also their coagonist (eg, glycine or D-serine), the physiological role of peripheral cardiovascular NMDAR remains elusive. Nonetheless, the cardiovascular relevance of the peripheral NMDAR might become apparent when its signaling is altered by drugs, such as alcohol, which interact with the NMDAR or its downstream signaling mechanisms. PMID:27046337

  14. Plant Protein and Animal Proteins: Do They Differentially Affect Cardiovascular Disease Risk?12

    PubMed Central

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-01-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. PMID:26567196

  15. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk?

    PubMed

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-11-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat.

  16. Spaceflight-Induced Cardiovascular Changes and Recovery During NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, S. H.

    2010-01-01

    Microgravity-induced physiological changes could impair a crewmember s performance upon return to a gravity environment. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in mission-critical tasks. The Recovery from Fall/Stand Test (RFST) simulates one such task, measuring the ability to recover from a prone position and the cardiovascular response to orthostasis. The purpose of this study was to evaluate spaceflight-induced cardiovascular changes during the FTT. METHODS: Five astronauts participated in the FTT before 10-15 day missions, on landing day (R+0), and one (R+1), six (R+6) and thirty (R+30) days after landing. The RFST consisted of a 2-minute prone rest followed by a 3-minute stand during which heart rate (HR, Holter) and continuous blood pressure (BP, Finometer) were measured. Spectral heart rate variability (HRV) was calculated during the RFST to approximate autonomic function. Statistical analysis was performed with two-factor repeated measures ANOVA. RESULTS: During RFST, HR was higher on R+0 than preflight (p<0.004). This increase in HR persisted on R+1 and R+6 during the stand portion of RFST (p<0.026). BP was well-regulated on all test days. Parasympathetic activity was diminished on R+0 (p=0.035). Sympathovagal balance tended to be affected by spaceflight (main effect, p=0.072), appearing to be slightly elevated during postflight RFST except on R+30. Additionally, analysis of HR during the functional tasks yielded a higher HR on R+0 than preflight during 8 of 11 tasks analyzed, where all tasks had HR return to preflight values by R+30 (p<0.05). CONCLUSION: Spaceflight causes an increase in HR, decrease in parasympathetic activity, and increase in sympathovagal balance, which we confirmed during RFST. These spaceflight-induced changes seen in the RFST, along with the increased postflight HR in most functional tasks, can be used to assess functional performance after short-duration spaceflight.

  17. Myocardial 123I-MIBG Uptake and Cardiovascular Autonomic Function in Parkinson's Disease

    PubMed Central

    Katagiri, Akira; Asahina, Masato; Araki, Nobuyuki; Poudel, Anupama; Fujinuma, Yoshikatsu; Yamanaka, Yoshitaka; Kuwabara, Satoshi

    2015-01-01

    Introduction. Patients with Parkinson's disease (PD) showed reduced myocardial 123I-MIBG uptake, which may affect autonomic regulation. We investigated correlation between MIBC accumulation and cardiovascular autonomic function in PD. Methods. We performed myocardial MIBG scintigraphy, heart rate variability (HRV) analysis, and the head-up tilt test (HUT) in 50 PD patients (66.4 ± 7.8 years; duration 5.5 ± 5.9 years). Autonomic function tests were also performed in 50 healthy controls (66.5 ± 8.9 years). As HRV parameters, a high-frequency power (HF, 0.15–0.4 Hz), a low-frequency power (LF, 0.04–0.15 Hz), and LF/HF ratio were used. Results. Our PD patients had a significant reduction in LF and HF compared with the controls (P = 0.005 and P = 0.01). In HUT, systolic and diastolic blood pressure falls in the PD group were significantly greater than those in the controls (P = 0.02 and P = 0.02). The washout rate of MIBG was negatively correlated with blood pressure changes during HUT. Conclusion. Our PD patients showed reduced HRV, blood pressure dysregulation, and reduced MIBG accumulation, which was correlated with blood pressure dysregulation. Orthostatic hypotension in PD may be mainly caused by sympathetic postganglionic degeneration. PMID:26649224

  18. Executive Cognitive Functioning and Cardiovascular Autonomic Regulation in a Population-Based Sample of Working Adults

    PubMed Central

    Stenfors, Cecilia U. D.; Hanson, Linda M.; Theorell, Töres; Osika, Walter S.

    2016-01-01

    Objective: Executive cognitive functioning is essential in private and working life and is sensitive to stress and aging. Cardiovascular (CV) health factors are related to cognitive decline and dementia, but there is relatively few studies of the role of CV autonomic regulation, a key component in stress responses and risk factor for cardiovascular disease (CVD), and executive processes. An emerging pattern of results from previous studies suggest that different executive processes may be differentially associated with CV autonomic regulation. The aim was thus to study the associations between multiple measures of CV autonomic regulation and measures of different executive cognitive processes. Method: Participants were 119 healthy working adults (79% women), from the Swedish Longitudinal Occupational Survey of Health. Electrocardiogram was sampled for analysis of heart rate variability (HRV) measures, including the Standard Deviation of NN, here heart beats (SDNN), root of the mean squares of successive differences (RMSSD), high frequency (HF) power band from spectral analyses, and QT variability index (QTVI), a measure of myocardial repolarization patterns. Executive cognitive functioning was measured by seven neuropsychological tests. The relationships between CV autonomic regulation measures and executive cognitive measures were tested with bivariate and partial correlational analyses, controlling for demographic variables, and mental health symptoms. Results: Higher SDNN and RMSSD and lower QTVI were significantly associated with better performance on cognitive tests tapping inhibition, updating, shifting, and psychomotor speed. After adjustments for demographic factors however (age being the greatest confounder), only QTVI was clearly associated with these executive tests. No such associations were seen for working memory capacity. Conclusion: Poorer CV autonomic regulation in terms of lower SDNN and RMSSD and higher QTVI was associated with poorer executive

  19. Does calcium intake affect cardiovascular risk factors and/or events?

    PubMed Central

    Torres, Márcia Regina Simas Gonçalves; Sanjuliani, Antonio Felipe

    2012-01-01

    Dietary intervention is an important approach in the prevention of cardiovascular disease. Over the last decade, some studies have suggested that a calcium-rich diet could help to control body weight, with anti-obesity effects. The potential mechanism underlying the impact of calcium on body fat has been investigated, but it is not fully understood. Recent evidence has also suggested that a calcium-rich diet could have beneficial effects on other cardiovascular risk factors, such as insulin resistance, dyslipidemia, hypertension and inflammatory states. In a series of studies, it was observed that a high intake of milk and/or dairy products (the main sources of dietary calcium) is associated with a reduction in the relative risk of cardiovascular disease. However, a few studies suggest that supplemental calcium (mainly calcium carbonate or citrate) may be associated with an increased risk of cardiovascular events. This review will discuss the available evidence regarding the relationship between calcium intake (dietary and supplemental) and different cardiovascular risk factors and/or events. PMID:22892932

  20. Corticosteroids Are Essential for Maintaining Cardiovascular Function in Male Mice.

    PubMed

    Cruz-Topete, Diana; Myers, Page H; Foley, Julie F; Willis, Monte S; Cidlowski, John A

    2016-07-01

    Activation of the hypothalamic-pituitary-adrenal axis results in the release of hormones from the adrenal glands, including glucocorticoids and mineralocorticoids. The physiological association between corticosteroids and cardiac disease is becoming increasingly recognized; however, the mechanisms underlying this association are not well understood. To determine the biological effects of corticosteroids on the heart, we investigated the impact of adrenalectomy in C57BL/6 male mice. Animals were adrenalectomized (ADX) at 1 month of age and maintained for 3-6 months after surgery to evaluate the effects of long-term adrenalectomy on cardiac function. Morphological evaluation suggested that ADX mice showed significantly enlarged hearts compared with age-matched intact controls. These changes in morphology correlated with deficits in left ventricular (LV) function and electrocardiogram (ECG) abnormalities in ADX mice. Correlating with these functional defects, gene expression analysis of ADX hearts revealed aberrant expression of a large cohort of genes associated with cardiac hypertrophy and arrhythmia. Combined corticosterone and aldosterone replacement treatment prevented the emergence of cardiac abnormalities in ADX mice, whereas corticosterone replacement prevented the effects of adrenalectomy on LV function but did not block the emergence of ECG alterations. Aldosterone replacement did not preserve the LV function but prevented ECG abnormalities. Together, the data indicate that adrenal glucocorticoids and mineralocorticoids either directly or indirectly have selective effects in the heart and their signaling pathways are essential in maintaining normal cardiac function. PMID:27219275

  1. The Association between Cardiovascular Disease and Cochlear Function in Older Adults

    ERIC Educational Resources Information Center

    Torre, Peter, III; Cruickshanks, Karen J.; Klein, Barbara E.K.; Klein, Ronald; Nondahl, David M.

    2005-01-01

    The purpose of this research was to evaluate the relation between self-reported cardiovascular disease (CVD) and cochlear function in older adults. The Epidemiology of Hearing Loss Study (EHLS) is an ongoing population-based study of hearing loss and its risk factors in Beaver Dam, Wisconsin. As part of the EHLS questionnaire, participants were…

  2. Left ventricular concentric geometry during treatment adversely affects cardiovascular prognosis in hypertensive patients.

    PubMed

    Muiesan, Maria Lorenza; Salvetti, Massimo; Monteduro, Cristina; Bonzi, Bianca; Paini, Anna; Viola, Sara; Poisa, Paolo; Rizzoni, Damiano; Castellano, Maurizio; Agabiti-Rosei, Enrico

    2004-04-01

    Left ventricular (LV) mass and geometry predict risk for cardiovascular events in hypertension. Regression of LV hypertrophy (LVH) may imply an important prognostic significance. The relation between changes in LV geometry during antihypertensive treatment and subsequent prognosis has not yet been determined. A total of 436 prospectively identified uncomplicated hypertensive subjects with a baseline and follow-up echocardiogram (last examination 72+/-38 months apart) were followed for an additional 42+/-16 months. Their family doctor gave antihypertensive treatment. After the last follow-up echocardiogram, a first cardiovascular event occurred in 71 patients. Persistence of LVH from baseline to follow-up was confirmed as an independent predictor of cardiovascular events. Cardiovascular morbidity and mortality were significantly greater in patients with concentric (relative wall thickness > or =0.44) than in those with eccentric geometry (relative wall thickness <0.44) in patients presenting with LVH (P=0.002) and in those without LVH (P=0.002) at the follow-up echocardiogram. The incidence of cardiovascular events progressively increased from the first to the third tertile of LV mass index at follow-up (partition values 91 and 117 g/m2), but for a similar value of LV mass index it was significantly greater in those with concentric geometry (OR: 4.07; 95% CI: 1.49 to 11.14; P=0.004 in the second tertile; OR: 3.45; 95% CI: 1.62 to 7.32; P=0.001 in the third tertile; P<0.0001 in concentric versus eccentric geometry). Persistence or development of concentric geometry during follow-up may have additional prognostic significance in hypertensive patients with and without LVH. PMID:15007041

  3. Does Apolipoprotein E genotype affect cardiovascular risk in subjects with acromegaly?

    PubMed

    Bozok Cetintas, Vildan; Zengi, Ayhan; Tetik, Asli; Karadeniz, Muammer; Ergonen, Faruk; Kucukaslan, Ali Sahin; Tamsel, Sadik; Kosova, Buket; Sahin, Serap Baydur; Saygılı, Fusun; Eroglu, Zuhal

    2012-06-01

    Acromegaly is a syndrome that results when the pituitary gland produces excess growth hormone after epiphyseal closure at puberty. Usually, subjects with acromegaly exhibit a 2- to 3-fold higher mortality rate from diseases that are associated with cardiovascular complications when compared to the normal population. In this study, we therefore aimed to evaluate whether a well-established cardiovascular risk factor, the Apolipoprotein E (Apo E) genotype, contributes to increased risk of cardiovascular complications in subjects with acromegaly. A total of 102 unrelated acromegaly subjects were prospectively included into this case-control association study and constituted our study group. The study group was comparable by age and gender with 200 unrelated healthy subjects constituting our control group. Genomic DNA was isolated from the peripheral blood leukocytes of all subjects and Apo E genotype (codon 112/158) was assessed by melting temperature analyses after using a real-time PCR protocol. The Apolipoprotein E4 allele was found at a significantly higher frequency in the study group when compared with the control group (P = 0.032). Subjects with the E2 allele, on the other hand, had significantly increased values in body mass index (P = 0.004), waist circumference (P = 0.001), C-reactive protein (CRP) (P < 0.001), and left-side carotid intima media thickness (P = 0.025). The Apolipoprotein E2 genotype might contribute to increased risk of cardiovascular complications in subjects with acromegaly since it is concurrently present with other cardiovascular risk factors such as the left-side carotid intima media thickness and CRP.

  4. Seaweeds as Preventive Agents for Cardiovascular Diseases: From Nutrients to Functional Foods

    PubMed Central

    Cardoso, Susana M.; Pereira, Olívia R.; Seca, Ana M. L.; Pinto, Diana C. G. A.; Silva, Artur M. S.

    2015-01-01

    Being naturally enriched in key nutrients and in various health-promoting compounds, seaweeds represent promising candidates for the design of functional foods. Soluble dietary fibers, peptides, phlorotannins, lipids and minerals are macroalgae’s major compounds that can hold potential in high-value food products derived from macroalgae, including those directed to the cardiovascular-health promotion. This manuscript revises available reported data focusing the role of diet supplementation of macroalgae, or extracts enriched in bioactive compounds from macroalgae origin, in targeting modifiable markers of cardiovascular diseases (CVDs), like dyslipidemia, oxidative stress, vascular inflammation, hypertension, hypercoagulability and activation of the sympathetic and renin-angiotensin systems, among others. At last, the review also describes several products that have been formulated with the use of whole macroalgae or extracts, along with their claimed cardiovascular-associated benefits. PMID:26569268

  5. Differences in Physical Fitness and Cardiovascular Function Depend on BMI in Korean Men.

    PubMed

    So, Wi-Young; Choi, Dai-Hyuk

    2010-01-01

    We investigated the associations between cardiovascular function and both body mass index and physical fitness in Korean men. The subjects were 2,013 men, aged 20 to 83 years, who visited a health promotion center for a comprehensive medical and fitness test during 2006-2009. The WHO's Asia-Pacific Standard Report definition of BMI was used in this study. Fitness assessment of cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, power, agility, and balance were evaluated by VO2max (ml/kg/min), grip strength (kg), sit-ups (reps/min), sit and reach (cm), vertical jump (cm), side steps (reps/30s), and standing on one leg with eyes closed (sec), respectively. For cardiovascular function, we evaluated systolic blood pressure (SBP), diastolic blood pressure (DBP), resting heart rate (RHR), double product (DP), and vital capacity. There were significant decreases in cardiorespiratory endurance (p < 0.001), power (p < 0.001), and balance (p < 0.001), and increases in muscular strength (p < 0.001). Further, cardiovascular function, including SBP (p < 0.001), DBP (p < 0.001), double product (p < 0.001), and vital capacity (p=0.006) appeared to be lower for the obesity group. We conclude that an obese person exhibits lower fitness level and weaker cardiovascular function than a normal person. Key pointsThe obese group had a lower fitness level, including cardiorespiratory endurance, power, and balance.Obese group demonstrated an increase in muscular strength.Obese group had higher blood pressure and weaker cardiovascular function, including DP and vital capacity, than the normal group. PMID:24149691

  6. Differences in Physical Fitness and Cardiovascular Function Depend on BMI in Korean Men.

    PubMed

    So, Wi-Young; Choi, Dai-Hyuk

    2010-01-01

    We investigated the associations between cardiovascular function and both body mass index and physical fitness in Korean men. The subjects were 2,013 men, aged 20 to 83 years, who visited a health promotion center for a comprehensive medical and fitness test during 2006-2009. The WHO's Asia-Pacific Standard Report definition of BMI was used in this study. Fitness assessment of cardiorespiratory endurance, muscular strength, muscular endurance, flexibility, power, agility, and balance were evaluated by VO2max (ml/kg/min), grip strength (kg), sit-ups (reps/min), sit and reach (cm), vertical jump (cm), side steps (reps/30s), and standing on one leg with eyes closed (sec), respectively. For cardiovascular function, we evaluated systolic blood pressure (SBP), diastolic blood pressure (DBP), resting heart rate (RHR), double product (DP), and vital capacity. There were significant decreases in cardiorespiratory endurance (p < 0.001), power (p < 0.001), and balance (p < 0.001), and increases in muscular strength (p < 0.001). Further, cardiovascular function, including SBP (p < 0.001), DBP (p < 0.001), double product (p < 0.001), and vital capacity (p=0.006) appeared to be lower for the obesity group. We conclude that an obese person exhibits lower fitness level and weaker cardiovascular function than a normal person. Key pointsThe obese group had a lower fitness level, including cardiorespiratory endurance, power, and balance.Obese group demonstrated an increase in muscular strength.Obese group had higher blood pressure and weaker cardiovascular function, including DP and vital capacity, than the normal group.

  7. Cardiac structure and function in humans: a new cardiovascular physiology laboratory

    PubMed Central

    Song, Su; Burleson, Paul D.; Passo, Stanley; Messina, Edward J.; Levine, Norman; Thompson, Carl I.; Belloni, Francis L.; Recchia, Fabio A.; Ojaimi, Caroline; Kaley, Gabor

    2009-01-01

    As the traditional cardiovascular control laboratory has disappeared from the first-year medical school curriculum, we have recognized the need to develop another “hands-on” experience as a vehicle for wide-ranging discussions of cardiovascular control mechanisms. Using an echocardiograph, an automatic blood pressure cuff, and a reclining bicycle, we developed protocols to illustrate the changes in cardiac and vascular function that occur with changes in posture, venous return, and graded exercise. We use medical student volunteers and a professional echocardiographer to generate and acquire data, respectively. In small-group sessions, we developed an interactive approach to discuss the data and to make a large number of calculations from a limited number of measurements. The sequence of cardiac events and cardiac structure in vivo were illustrated with the volunteers lying down, standing, and then with their legs raised passively above the heart to increase venous return. Volunteers were then asked to peddle the bicycle to achieve steady-state heart rates of 110 and 150 beats/min. Data were collected in all these states, and calculations were performed and used as the basis of a small-group discussion to illustrate physiological principles. Information related to a surprisingly large number of cardiovascular control mechanisms was derived, and its relevance to cardiovascular dysfunction was explored. This communication describes our experience in developing a new cardiovascular control laboratory to reinforce didactic material presented in lectures and small-group sessions. PMID:19745049

  8. Cardiac structure and function in humans: a new cardiovascular physiology laboratory.

    PubMed

    Song, Su; Burleson, Paul D; Passo, Stanley; Messina, Edward J; Levine, Norman; Thompson, Carl I; Belloni, Francis L; Recchia, Fabio A; Ojaimi, Caroline; Kaley, Gabor; Hintze, Thomas H

    2009-09-01

    As the traditional cardiovascular control laboratory has disappeared from the first-year medical school curriculum, we have recognized the need to develop another "hands-on" experience as a vehicle for wide-ranging discussions of cardiovascular control mechanisms. Using an echocardiograph, an automatic blood pressure cuff, and a reclining bicycle, we developed protocols to illustrate the changes in cardiac and vascular function that occur with changes in posture, venous return, and graded exercise. We use medical student volunteers and a professional echocardiographer to generate and acquire data, respectively. In small-group sessions, we developed an interactive approach to discuss the data and to make a large number of calculations from a limited number of measurements. The sequence of cardiac events and cardiac structure in vivo were illustrated with the volunteers lying down, standing, and then with their legs raised passively above the heart to increase venous return. Volunteers were then asked to peddle the bicycle to achieve steady-state heart rates of 110 and 150 beats/min. Data were collected in all these states, and calculations were performed and used as the basis of a small-group discussion to illustrate physiological principles. Information related to a surprisingly large number of cardiovascular control mechanisms was derived, and its relevance to cardiovascular dysfunction was explored. This communication describes our experience in developing a new cardiovascular control laboratory to reinforce didactic material presented in lectures and small-group sessions.

  9. Ultrasound strain imaging for quantification of tissue function: cardiovascular applications

    NASA Astrophysics Data System (ADS)

    de Korte, Chris L.; Lopata, Richard G. P.; Hansen, Hendrik H. G.

    2013-03-01

    With ultrasound imaging, the motion and deformation of tissue can be measured. Tissue can be deformed by applying a force on it and the resulting deformation is a function of its mechanical properties. Quantification of this resulting tissue deformation to assess the mechanical properties of tissue is called elastography. If the tissue under interrogation is actively deforming, the deformation is directly related to its function and quantification of this deformation is normally referred as `strain imaging'. Elastography can be used for atherosclerotic plaques characterization, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. We developed radio frequency (RF) based ultrasound methods to assess the deformation at higher resolution and with higher accuracy than commercial methods using conventional image data (Tissue Doppler Imaging and 2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so 1D. We further extended this method to multiple directions and further improved precision by using compounding of data acquired at multiple beam steered angles. In arteries, the presence of vulnerable plaques may lead to acute events like stroke and myocardial infarction. Consequently, timely detection of these plaques is of great diagnostic value. Non-invasive ultrasound strain compounding is currently being evaluated as a diagnostic tool to identify the vulnerability of plaques. In the heart, we determined the strain locally and at high resolution resulting in a local assessment in contrary to conventional global functional parameters like cardiac output or shortening fraction.

  10. Cardiovascular Disease is Associated with COPD Severity and Reduced Functional Status and Quality of Life

    PubMed Central

    Black-Shinn, Jennifer L.; Kinney, Gregory L.; Wise, Anastasia L.; Regan, Elizabeth A.; Make, Barry; Krantz, Mori J.; Barr, R. Graham; Murphy, James R.; Lynch, David; Silverman, Edwin K.; Crapo, James D.; Hokanson, John E.

    2015-01-01

    Introduction Smoking is a major risk factor for both cardiovascular disease (CVD) and chronic obstructive pulmonary disease (COPD). More individuals with COPD die from CVD than respiratory causes and the risk of developing CVD appears to be independent of smoking burden. Although CVD is a common comorbid condition within COPD, the nature of its relationships to COPD affection status and severity, and functional status is not well understood. Methods The first 2,500 members of the COPDGene cohort were evaluated. Subjects were current and former smokers with a minimum 10 pack year history of cigarette smoking. COPD was defined by spirometry as an FEV1/FVC < lower limit of normal (LLN) with further identification of severity by FEV1 percent of predicted (GOLD stages 2, 3, and 4) for the main analysis. The presence of physician-diagnosed self-reported CVD was determined from a medical history questionnaire administered by a trained staff member. Results A total of 384 (15%) had pre-existing CVD. Self-reported CVD was independently related to COPD (Odds Ratio=1.61, 95% CI=1.18–2.20, p=0.01) after adjustment for covariates with CHF having the greatest association with COPD. Within subjects with COPD, pre-existing self-reported CVD placed subjects at greater risk of hospitalization due to exacerbation, higher BODE index, and greater St. George’s questionnaire score. The presence of self-reported CVD was associated with a shorter six-minute walk distance in those with COPD (p<0.05). Conclusions Self-reported CVD was independently related to COPD with presence of both self-reported CVD and COPD associated with a markedly reduced functional status and reduced quality of life. Identification of CVD in those with COPD is an important consideration in determining functional status. PMID:24831864

  11. Normalized endothelial function but sustained cardiovascular risk profile 11 years following a pregnancy complicated by preeclampsia.

    PubMed

    Östlund, Eva; Al-Nashi, Maha; Hamad, Rangeen Rafik; Larsson, Anders; Eriksson, Maria; Bremme, Katarina; Kahan, Thomas

    2013-12-01

    Women with a history of preeclampsia are at increased risk of future cardiovascular disease. Preeclampsia is associated with elevated blood pressure, inflammation and endothelial dysfunction, and these findings remain 1 year after delivery. Whether these abnormalities persist long after delivery, and whether they may contribute to future cardiovascular disease, is not well studied. We studied 15 women with a history of preeclampsia and 16 matched controls with an uncomplicated pregnancy 11 years following the index pregnancy; all had also been previously examined at 1 year. We assessed arterial stiffness (pulse wave analysis), 24 h ambulatory blood pressure and endothelial function (forearm flow-mediated dilatation and pulse wave analysis following β receptor agonist provocation), and determined markers of glucose and lipid metabolism, inflammation and vascular function. The preeclampsia group had higher blood pressures and reduced night/day blood pressure ratios, increased body mass index and reduced glucose tolerance, and increased levels of tissue necrosis factor receptor 1 and intracellular adhesion molecule-1, suggesting inflammatory and vascular activation. However, the endothelial impairment observed in the preeclampsia group at 1 year was normalized at 11 years, whereas the control group remained unchanged during follow-up. Our findings of higher blood pressures, impaired glucose tolerance and normalization of endothelial function 11 years after preeclampsia suggest cardiovascular risk factors present already before pregnancy to be more important than permanent endothelial damage for the increased risk of future cardiovascular complications in women with a history of preeclampsia.

  12. How medical treatment affects mean platelet volume as a cardiovascular risk marker in polycystic ovary syndrome?

    PubMed

    Kabil Kucur, Suna; Gozukara, Ilay; Aksoy, Aysenur; Uludag, Eda U; Keskin, Havva; Kamalak, Zeynep; Carlioglu, Ayse

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a prevalent disease with many potential long-term metabolic and cardiovascular risks if not managed appropriately. Mean platelet volume (MPV) is a marker associated with adverse cardiovascular events. In this study, we aimed to investigate MPV levels under ethinyl estradiol/cyproterone acetate or metformin therapy for the previous 6 months in PCOS. A total of 114 individuals [metformin treatment (n = 18), ethinyl estradiol/cyproterone acetate treatment (n = 29), newly diagnosed PCOS patient with no treatment (n = 35), and control group of eumenorrheic healthy individuals (n = 32)] were included in the current study. Hematologic parameters other than MPV were similar in all groups. The MPV value was significantly higher in the newly diagnosed PCOS patients compared with the other three groups independent of age, BMI, and C-reactive protein level in multiple regression analysis (P < 0.01). The MPV value of control group was comparable to the groups under ethinyl estradiol/cyproterone acetate or metformin therapy (P = 1.0). There was no statistically significant difference in the white blood cell count among the groups. The MPV values were positively correlated with the homeostatic model assessment-insulin resistance and Ferriman-Gallwey Score (P = 0.044, r = 0.261; P = 0.037, r = 0.229, respectively). Ethinyl estradiol/cyproterone acetate and metformin similarly appear to decrease MPV, a marker of cardiovascular risk. Therefore, a possible beneficial effect of ethinyl estradiol/cyproterone acetate and metformin on long-term cardiovascular morbidities in PCOS may be suggested.

  13. Effects of long-term vegetarian diets on cardiovascular autonomic functions in healthy postmenopausal women.

    PubMed

    Fu, Chin-Hua; Yang, Cheryl C H; Lin, Chin-Lon; Kuo, Terry B J

    2006-02-01

    The incidence of cardiovascular disease is higher in postmenopausal women than in premenopausal women. We hypothesized that long-term vegetarian diets might modulate cardiovascular autonomic functions measured by frequency-domain techniques in healthy postmenopausal women. A total of 35 healthy vegetarians (mean age +/- SEM 55.0 +/- 1.3 years) who had been vegetarians for > or =2 years and 35 omnivores (55.1 +/- 1.4 years) participated in this study. These subjects were all postmenopausal without hormone replacement therapy. Fluctuations in arterial blood pressure and heart rate variability were diffracted into low-frequency (0.04 to 0.15 Hz) and high-frequency (0.15 to 0.4 Hz) segments. Cardiovascular autonomic functions and baroreflex sensitivity were evaluated by specific frequency-domain measures. The vegetarians had statistically lower systolic and diastolic blood pressure, and lower serum total cholesterol, low-density lipoprotein cholesterol, triglycerides, fasting blood sugar, and hemoglobin levels compared with the nonvegetarians. They also exhibited a significantly higher high-frequency power of heart rate variability and increased baroreflex sensitivity than did omnivores. No statistical differences were found in the low-frequency/high-frequency ratio or percentage of low frequency of heart rate variability between the 2 groups. In conclusion, in addition to the lower blood pressure and lipid concentrations in vegetarians, long-term vegetarian diets may facilitate vagal regulation of the heart and increase baroreflex sensitivity in healthy postmenopausal women, without increasing the sympathetic modulations of the cardiovascular system.

  14. Effects of cocaine and cocaine metabolites on cardiovascular function in squirrel monkeys.

    PubMed

    Schindler, C W; Zheng, J W; Goldberg, S R

    2001-11-01

    The effects of cocaine and the cocaine metabolites norcocaine, ecgonine methyl ester, benzoylecgonine and cocaethylene were evaluated in conscious squirrel monkeys for their effects on blood pressure and heart rate. Norcocaine, ecgonine methyl ester and benzoylecgonine are produced in vivo following cocaine use. Cocaethylene is produced in vivo following concurrent cocaine and alcohol use. Increases in both blood pressure and heart rate were observed following cocaine doses of 0.3-3.0 mg/kg. Ecgonine methyl ester and benzoylecgonine had no effect on either parameter up to doses of 10.0 mg/kg. Norcocaine increased blood pressure, but was less potent than cocaine. Norcocaine did not affect heart rate at doses up to 3.0 mg/kg. In contrast to the other metabolites, cocaethylene increased blood pressure and heart rate similarly to cocaine. These results suggest that ecgonine methyl ester and benzoylecgonine are devoid of cardiovascular effects at doses comparable to cocaine and would not be expected to contribute to cocaine's overall cardiovascular effects. Norcocaine's effect on blood pressure might contribute to the cardiovascular effects of cocaine, but this metabolite is produced only at low levels in vivo. The one metabolite that might be expected to contribute to cocaine's overall cardiovascular effect is cocaethylene, although the degree of this contribution is not clear.

  15. Effects of Pomegranate Extract Supplementation on Cardiovascular Risk Factors and Physical Function in Hemodialysis Patients.

    PubMed

    Wu, Pei-Tzu; Fitschen, Peter J; Kistler, Brandon M; Jeong, Jin Hee; Chung, Hae Ryong; Aviram, Michael; Phillips, Shane A; Fernhall, Bo; Wilund, Kenneth R

    2015-09-01

    The purpose of this study was to evaluate the effects of oral supplementation with pomegranate extract on cardiovascular risk, physical function, oxidative stress, and inflammation in hemodialysis (HD) patients. Thirty-three HD subjects were randomized to the pomegranate (POM) or placebo (CON) group. Patients in POM ingested a 1000 mg capsule of a purified pomegranate polyphenol extract 7 days/week for 6 months. Individuals in CON ingested a noncaloric placebo capsule using the same protocol. Measurements were conducted at baseline and repeated 6 months following the start of the intervention. Brachial blood pressure (BP) was obtained using an automatic digital BP monitor. Cardiovascular risk was assessed using ultrasound and arterial tonometry. Blood samples were collected for the measurements of circulating markers of inflammation, oxidative stress, and antioxidant capacity. Muscle strength and physical function were assessed by isokinetic dynamometry, a validated shuttle walk test, and a battery of tests to assess functional fitness. Systolic blood pressure and diastolic blood pressure were reduced by 24 ± 13.7 and 10 ± 5.3 mmHg, respectively, in POM (P < .05). However, the BP differences in POM were no longer significant after controlling for baseline BP. The paraoxonase-1 activity increased by 26.6% (P < .05) in POM, compared to no significant change in CON. However, pomegranate supplementation had no effect on other markers of cardiovascular disease risk, inflammation and oxidative stress, or measures of physical function and muscle strength. While pomegranate extract supplementation may reduce BP and increase the antioxidant activity in HD patients, it does not improve other markers of cardiovascular risk, physical function, or muscle strength.

  16. Correlation of macro and micro cardiovascular function during weightlessness and simulated weightlessness.

    PubMed

    Hutchins, P M; Marshburn, T H; Smith, T L; Osborne, S W; Lynch, C D; Moultsby, S J

    1988-01-01

    The investigation of cardiovascular function necessarily involves a consideration of the exchange of substances at the capillary. If cardiovascular function is compromised or in any way altered during exposure to zero gravity in space, then it stands to reason that microvascular function is also modified. We have shown that an increase in cardiac output similar to that reported during simulated weightlessness is associated with a doubling of the number of post-capillary venules and a reduction in the number of arterioles by 35%. If the weightlessness of space travel produces similar changes in cardiopulmonary volume and cardiac output, a reasonable expectation is that astronauts will undergo venous neovascularization. We have developed an animal model in which to correlate microvascular and systemic cardiovascular function. The microcirculatory preparation consists of a lightweight, thermo-neutral chamber implanted around intact skeletal muscle on the back of a rat. Using this technique, the performed microvasculature of the cutaneous maximus muscle may be observed in the conscious, unanesthetized animal. Microcirculatory variables which may be obtained include venular and arteriolar numbers, lengths and diameters, single vessel flow velocities, vasomotion, capillary hematocrit anastomoses and orders of branching. Systemic hemodynamic monitoring of cardiac output by electromagnetic flowmetry, and arterial and venous pressures allows correlation of macro- and microcirculatory changes at the same time, in the same animal. Observed and calculated hemodynamic variables also include pulse pressure, heart rate, stroke volume, total peripheral resistance, aortic compliance, minute work, peak aortic flow velocity and systolic time interval. In this manner, an integrated assessment of total cardiovascular function may be obtained in the same animal without the complicating influence of anesthetics.

  17. Correlation of macro and micro cardiovascular function during weightlessness and simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Hutchins, P. M.; Marshburn, T. H.; Smith, T. L.; Osborne, S. W.; Lynch, C. D.; Moultsby, S. J.

    1988-01-01

    The investigation of cardiovascular function necessarily involves a consideration of the exchange of substances at the capillary. If cardiovascular function is compromised or in any way altered during exposure to zero gravity in space, then it stands to reason that microvascular function is also modified. We have shown that an increase in cardiac output similar to that reported during simulated weightlessness is associated with a doubling of the number of post-capillary venules and a reduction in the number of arterioles by 35%. If the weightlessness of space travel produces similar changes in cardiopulmonary volume and cardiac output, a reasonable expectation is that astronauts will undergo venous neovascularization. We have developed an animal model in which to correlate microvascular and systemic cardiovascular function. The microcirculatory preparation consists of a lightweight, thermo-neutral chamber implanted around intact skeletal muscle on the back of a rat. Using this technique, the performed microvasculature of the cutaneous maximus muscle may be observed in the conscious, unanesthetized animal. Microcirculatory variables which may be obtained include venular and arteriolar numbers, lengths and diameters, single vessel flow velocities, vasomotion, capillary hematocrit anastomoses and orders of branching. Systemic hemodynamic monitoring of cardiac output by electromagnetic flowmetry, and arterial and venous pressures allows correlation of macro- and microcirculatory changes at the same time, in the same animal. Observed and calculated hemodynamic variables also include pulse pressure, heart rate, stroke volume, total peripheral resistance, aortic compliance, minute work, peak aortic flow velocity and systolic time interval. In this manner, an integrated assessment of total cardiovascular function may be obtained in the same animal without the complicating influence of anesthetics.

  18. Factors affecting use of preventive tests for cardiovascular risk among Greeks.

    PubMed

    Pappa, Evelina; Kontodimopoulos, Nick; Papadopoulos, Angelos A; Pallikarona, Georgia; Niakas, Dimitris; Tountas, Yannis

    2009-10-01

    Data from a Greek national representative sample was used to investigate socio-demographic, self-perceived health, and health risk factors that determine the use of cardiovascular preventive tests (blood pressure, cholesterol and blood glucose). Chi-square and logistic regression analyses were used (p < 0.05). Older age, marriage, regular family doctor and chronic diseases increased the likelihood of receiving preventive tests, whereas low education and alcohol consumption reduced the likelihood of having these tests. The effect of obesity varied. Interventions which improve the knowledge of the poorly educated and empower the preventive role of the physicians may redress the inequalities and improve the effectiveness of preventive services utilization.

  19. The impact of consecutive freshwater trimix dives at altitude on human cardiovascular function.

    PubMed

    Lozo, Mislav; Madden, Dennis; Gunjaca, Grgo; Ljubkovic, Marko; Marinovic, Jasna; Dujic, Zeljko

    2015-03-01

    Self-contained underwater breathing apparatus (SCUBA) diving is regularly associated with numerous asymptomatic changes in cardiovascular function. Freshwater SCUBA diving presents unique challenges compared with open sea diving related to differences in water density and the potential for dive locations at altitude. The aim of this study was to evaluate the impact of freshwater trimix diving at altitude on human cardiovascular function. Ten divers performed two dives in consecutive days at 294 m altitude with the surface interval of 24 h. Both dives were at a depth of 45 m with total dive time 29 and 26 min for the first and second dive, respectively. Assessment of venous gas embolization, hydration status, cardiac function and arterial stiffness was performed. Production of venous gas emboli was low, and there were no significant differences between the dives. After the first dive, diastolic blood pressure was significantly reduced, which persisted up to 24 h. Left ventricular stroke volume decreased, and heart rate increased after both dives. Pulse wave velocity was unchanged following the dives. However, the central and peripheral augmentation index became more negative after both dives, indicating reduced wave reflection. Ejection duration and round trip travel time were prolonged 24 h after the first dive, suggesting longer-lasting suppression of cardiac and endothelial function. This study shows that freshwater trimix dives with conservative profiles and low venous gas bubble loads can result in multiple asymptomatic acute cardiovascular changes some of which were present up to 24 h after dive. PMID:24528802

  20. Improvement of Processing Speed in Executive Function Immediately following an Increase in Cardiovascular Activity

    PubMed Central

    Tam, Nicoladie D.

    2013-01-01

    This study aims to identify the acute effects of physical exercise on specific cognitive functions immediately following an increase in cardiovascular activity. Stair-climbing exercise is used to increase the cardiovascular output of human subjects. The color-naming Stroop Test was used to identify the cognitive improvements in executive function with respect to processing speed and error rate. The study compared the Stroop results before and immediately after exercise and before and after nonexercise, as a control. The results show that there is a significant increase in processing speed and a reduction in errors immediately after less than 30 min of aerobic exercise. The improvements are greater for the incongruent than for the congruent color tests. This suggests that physical exercise induces a better performance in a task that requires resolving conflict (or interference) than a task that does not. There is no significant improvement for the nonexercise control trials. This demonstrates that an increase in cardiovascular activity has significant acute effects on improving the executive function that requires conflict resolution (for the incongruent color tests) immediately following aerobic exercise more than similar executive functions that do not require conflict resolution or involve the attention-inhibition process (for the congruent color tests). PMID:24187613

  1. The impact of consecutive freshwater trimix dives at altitude on human cardiovascular function.

    PubMed

    Lozo, Mislav; Madden, Dennis; Gunjaca, Grgo; Ljubkovic, Marko; Marinovic, Jasna; Dujic, Zeljko

    2015-03-01

    Self-contained underwater breathing apparatus (SCUBA) diving is regularly associated with numerous asymptomatic changes in cardiovascular function. Freshwater SCUBA diving presents unique challenges compared with open sea diving related to differences in water density and the potential for dive locations at altitude. The aim of this study was to evaluate the impact of freshwater trimix diving at altitude on human cardiovascular function. Ten divers performed two dives in consecutive days at 294 m altitude with the surface interval of 24 h. Both dives were at a depth of 45 m with total dive time 29 and 26 min for the first and second dive, respectively. Assessment of venous gas embolization, hydration status, cardiac function and arterial stiffness was performed. Production of venous gas emboli was low, and there were no significant differences between the dives. After the first dive, diastolic blood pressure was significantly reduced, which persisted up to 24 h. Left ventricular stroke volume decreased, and heart rate increased after both dives. Pulse wave velocity was unchanged following the dives. However, the central and peripheral augmentation index became more negative after both dives, indicating reduced wave reflection. Ejection duration and round trip travel time were prolonged 24 h after the first dive, suggesting longer-lasting suppression of cardiac and endothelial function. This study shows that freshwater trimix dives with conservative profiles and low venous gas bubble loads can result in multiple asymptomatic acute cardiovascular changes some of which were present up to 24 h after dive.

  2. Some peculiar effects of NO-synthase inhibition on the structure and function of cardiovascular system.

    PubMed

    Kristek, Frantisek

    2011-09-01

    Long-term increase of blood pressure represents one of the most important risk factors triggering many cardiovascular diseases, and via counter-regulatory mechanisms it is itself modulated by them. Adequate perfusion of the respective areas with nutrients requires appropriate production of vasodilatory and vasoconstrictory agents. Disharmony among them has an important impact on mechanical properties of the arteries, resulting in pathological alterations in the cardiovascular system. Defective production of the vasodilatory agent nitric oxide (NO) has a pronounced effect on this delicate balance and can evoke functional and structural changes in the cardiovascular system leading to hypertension. This review is focused mainly on changes in the cardiovascular system of newborn and adult Wistar rats after long-term administration of two different types of NO-synthase inhibitors: nonspecific inhibitor NG-nitro-L-arginine methylester and specific inhibitor of neuronal NO-synthase 7-nitroindazole. A possible supplementation of decreased endogenous NO production by NO donors is discussed. Particular attention is given to the complex interplay among blood pressure, arterial geometry, including arterial wall thickness, cross-sectional area, inner diameter, and individual components of the arterial wall, as extracellular matrix, endothelial and smooth muscle cell trophicity. Some methodological remarks for determination of the arterial geometry are also presented. Better understanding of the interrelationship among the factors involved can help in explaining more accurately differences in functional manifestations of vessels in various types of hypertension. The review indicates that the current concept of NO production, effect of NO deficiency, substitution of the missing NO in failing NO production in the cardiovascular system appears to be oversimplified.

  3. Insensitivity of cardiovascular function to low power cm-/mm-microwaves.

    PubMed

    Kantz, J; Müller, J; Hadeler, K P; Landstorfer, F M; Lang, F

    2005-06-01

    A previous study failed to disclose an effect of short (15 min) exposure to low level energy microwaves (3 microW/cm2) emitted by a commercially available automobile radar system (77 GHz) for adaptive cruise control (ACC) on cardiovascular function. The present study explored whether a 15 min exposure to higher level energy microwaves of frequencies varying from 5.8 to 110 GHz influences cardiovascular function. To this end heart rate, skin temperature (thermocouple), skin conductance (Ag/AgCl electrodes), systolic and diastolic blood pressure (automatic cuff) were recorded in 50 test persons before, during and after a 15 min exposure to a sequential pattern of microwaves varying from 5.8 to 110 GHz (59.7 microW/cm2). After an equilibration period of 30 min the first group of test persons and after additional 30 min the second group of test persons were exposed. The study has been performed in a strict double blind design. While significant effects on the measured parameters were observed depending on time ("calming" effect), no significant difference was observed between exposure and sham exposure to microwaves. In view of the small scatter of the data the present study rules out physiologically relevant effects of moderate energy (59.7 microW/cm2) microwaves varying from 5.8 to 110 GHz on cardiovascular function.

  4. Toxics of Tobacco Smoke and Cardiovascular System: From Functional to Cellular Damage.

    PubMed

    Leone, Aurelio

    2015-01-01

    Manufactured tobacco contains over 4, 000 toxic substances, but only a few exert adverse cardiovascular effects. Nicotine and its metabolites, carbon monoxide, thiocyanate and some aromatic amines play a strong, although different, role to determine cardiovascular damage. Of these substances, however, nicotine, acting by the double mechanism of addiction and receptor-binding, and carbon monoxide by increasing the production of carboxyhemoglobin and hypoxia, are the main determinants of the damage. The development of the alterations of heart and blood vessels follows a typical way, initially consisting of functional responses that become irreversible pathological lesions at the time. Myocardium and endothelial cells are the targets where cigarette smoking exerts its effects. The first displays functional and pathological disorders primarily related to ischemic heart disease, cardiomyopathy, including experimental cardiomyopathy from smoking, and heart failure, while the second should be interpreted as a structure, which shows early alterations caused by smoking as clearly evident, repeatable and typically depending on smoking toxicity. Cardiovascular damage has a functional onset, which, at the time, leads to irreversible morphological damage of myocardial and endothelial cells.

  5. Positive and negative affective processing exhibit dissociable functional hubs during the viewing of affective pictures.

    PubMed

    Zhang, Wenhai; Li, Hong; Pan, Xiaohong

    2015-02-01

    Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information.

  6. Factors affecting use of preventive tests for cardiovascular risk among Greeks.

    PubMed

    Pappa, Evelina; Kontodimopoulos, Nick; Papadopoulos, Angelos A; Pallikarona, Georgia; Niakas, Dimitris; Tountas, Yannis

    2009-10-01

    Data from a Greek national representative sample was used to investigate socio-demographic, self-perceived health, and health risk factors that determine the use of cardiovascular preventive tests (blood pressure, cholesterol and blood glucose). Chi-square and logistic regression analyses were used (p < 0.05). Older age, marriage, regular family doctor and chronic diseases increased the likelihood of receiving preventive tests, whereas low education and alcohol consumption reduced the likelihood of having these tests. The effect of obesity varied. Interventions which improve the knowledge of the poorly educated and empower the preventive role of the physicians may redress the inequalities and improve the effectiveness of preventive services utilization. PMID:20054464

  7. Cardiovascular Autonomic Nervous System Function and Aerobic Capacity in Type 1 Diabetes

    PubMed Central

    Hägglund, Harriet; Uusitalo, Arja; Peltonen, Juha E.; Koponen, Anne S.; Aho, Jyrki; Tiinanen, Suvi; Seppänen, Tapio; Tulppo, Mikko; Tikkanen, Heikki O.

    2012-01-01

    Impaired cardiovascular autonomic nervous system (ANS) function has been reported in type 1 diabetes (T1D) patients. ANS function, evaluated by heart rate variability (HRV), systolic blood pressure variability (SBPV), and baroreflex sensitivity (BRS), has been linked to aerobic capacity (VO2peak) in healthy subjects, but this relationship is unknown in T1D. We examined cardiovascular ANS function at rest and during function tests, and its relations to VO2peak in T1D individuals. Ten T1D patients (34 ± 7 years) and 11 healthy control (CON; 31 ± 6 years) age and leisure-time physical activity-matched men were studied. ANS function was recorded at rest and during active standing and handgrip. Determination of VO2peak was obtained with a graded cycle ergometer test. During ANS recordings SBPV, BRS, and resting HRV did not differ between groups, but alpha1 responses to maneuvers in detrended fluctuation analyses were smaller in T1D (active standing; 32%, handgrip; 20%, medians) than in CON (active standing; 71%, handgrip; 54%, p < 0.05). VO2peak was lower in T1D (36 ± 4 ml kg−1 min−1) than in CON (45 ± 9 ml kg−1 min−1, p < 0.05). Resting HRV measures, RMSSD, HF, and SD1 correlated with VO2peak in CON (p < 0.05) and when analyzing groups together. These results suggest that T1D had lower VO2peak, weaker HRV response to maneuvers, but not impaired cardiovascular ANS function at rest compared with CON. Resting parasympathetic cardiac activity correlated with VO2peak in CON but not in T1D. Detrended fluctuation analysis could be a sensitive detector of changes in cardiac ANS function in T1D. PMID:22973238

  8. Association between Birth Characteristics and Cardiovascular Autonomic Function at Mid-Life

    PubMed Central

    Perkiömäki, Nelli; Auvinen, Juha; Tulppo, Mikko P.; Hautala, Arto J.; Perkiömäki, Juha; Karhunen, Ville; Keinänen-Kiukaanniemi, Sirkka; Puukka, Katri; Ruokonen, Aimo; Järvelin, Marjo-Riitta; Huikuri, Heikki V.

    2016-01-01

    Background Low birth weight is associated with an increased risk of cardiovascular diseases in adulthood. As abnormal cardiac autonomic function is a common feature in cardiovascular diseases, we tested the hypothesis that low birth weight may also be associated with poorer cardiac autonomic function in middle-aged subjects. Methods At the age of 46, the subjects of the Northern Finland Birth Cohort 1966 were invited to examinations including questionnaires about health status and life style and measurement of vagally-mediated heart rate variability (rMSSD) from R-R intervals (RRi) and spontaneous baroreflex sensitivity (BRS) in both seated and standing positions. Maternal parameters had been collected in 1965–1966 since the 16th gestational week and birth variables immediately after delivery. For rMSSD, 1,799 men and 2,279 women without cardiorespiratory diseases and diabetes were included and 902 men and 1,020 women for BRS. The analyses were adjusted for maternal (age, anthropometry, socioeconomics, parity, gestational smoking) and adult variables (life style, anthropometry, blood pressure, glycemic and lipid status) potentially confounding the relationship between birth weight and autonomic function. Results In men, birth weight correlated negatively with seated (r = -0.058, p = 0.014) and standing rMSSD (r = -0.090, p<0.001), as well as with standing BRS (r = -0.092, p = 0.006). These observations were verified using relevant birth weight categories (<2,500 g; 2,500–3,999 g; ≥4,000 g). In women, birth weight was positively correlated with seated BRS (r = 0.081, p = 0.010), but none of the other measures of cardiovascular autonomic function. These correlations remained significant after adjustment for potential confounders (p<0.05 for all). Conclusions In men, higher birth weight was independently associated with poorer cardiac autonomic function at mid-life. Same association was not observed in women. Our findings suggest that higher, not lower, birth

  9. Affective and Cardiovascular Responding to Unpleasant Events from Adolescence to Old Age: Complexity of Events Matters

    ERIC Educational Resources Information Center

    Wrzus, Cornelia; Muller, Viktor; Wagner, Gert G.; Lindenberger, Ulman; Riediger, Michaela

    2013-01-01

    Two studies investigated the "overpowering hypothesis" as a possible explanation for the currently inconclusive empirical picture on age differences in affective responding to unpleasant events. The overpowering hypothesis predicts that age differences in affective responding are particularly evident in highly resource-demanding situations that…

  10. Hostility and Facial Affect Recognition: Effects of a Cold Pressor Stressor on Accuracy and Cardiovascular Reactivity

    ERIC Educational Resources Information Center

    Herridge, Matt L.; Harrison, David W.; Mollet, Gina A.; Shenal, Brian V.

    2004-01-01

    The effects of hostility and a cold pressor stressor on the accuracy of facial affect perception were examined in the present experiment. A mechanism whereby physiological arousal level is mediated by systems which also mediate accuracy of an individual's interpretation of affective cues is described. Right-handed participants were classified as…

  11. School burnout and cardiovascular functioning in young adult males: a hemodynamic perspective.

    PubMed

    May, Ross W; Sanchez-Gonzalez, Marcos A; Brown, Preston C; Koutnik, Andrew P; Fincham, Frank D

    2014-01-01

    This study investigated aortic and brachial hemodynamic functioning that may link school burnout to cardiovascular risk factors. Methodological improvements from previous research were implemented including (1) statistical control of depressive and anxiety symptoms (2) resting, stress-induced and cardiac recovery condition comparisons and (3) use of pulse wave analysis. Forty undergraduate young adult males completed self-report measures of school burnout, trait anxiety and depressive symptoms. Participants then completed a protocol consisting of a 10-min seated rest, 5-min baseline (BASE), 3-min cold pressor test (CPT) and a 3-min recovery period (REC). Indices of brachial and aortic hemodynamics were obtained by means of pulse wave analysis via applanation tonometry. Controlling for anxiety and depressive symptoms, planned contrasts identified no differences in cardiovascular parameters at BASE between participants in burnout and non-burnout groups. However, negative changes in hemodynamic indices occurred in burnout participants at CPT and REC as evidenced by increased aortic and brachial systolic and diastolic blood pressures, increased left ventricular work and increased myocardial oxygen consumption. Findings suggest that school burnout symptoms are associated with cardiac hyperactivity during conditions of cardiac stress and recovery and therefore may be associated with the early manifestations of cardiovascular disease. Future studies are suggested to reveal underlying autonomic mechanisms explaining hemodynamics functioning in individuals with school burnout symptomatology.

  12. Effect of 30-min +3 Gz centrifugation on vestibular and autonomic cardiovascular function

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Wood, Scott J.; Brown, Troy E.; Harm, Deborah L.; Rupert, A. H.

    2003-01-01

    INTRODUCTION: Repeated exposure to increased +Gz enhances human baroreflex responsiveness and improves tolerance to cardiovascular stress. However, it is not known whether such enhancements might also result from a single, more prolonged exposure to increased +Gz. Our study was designed to investigate whether baroreflex function and orthostatic tolerance are acutely improved by a single prolonged exposure to +3 Gz, and moreover, whether changes in autonomic cardiovascular function resulting from exposure to increased +Gz are correlated with changes in otolith function. METHODS: We exposed 15 healthy human subjects to +3 Gz centrifugation for up to 30 min or until symptoms of incipient G-induced loss of consciousness (G-LOC) ensued. Tests of autonomic cardiovascular function both before and after centrifugation included: 1) power spectral determinations of beat-to-beat R-R intervals and arterial pressures; 2) carotid-cardiac baroreflex tests; 3) Valsalva tests; and 4) 30-min head-up tilt tests. Otolith function was assessed during centrifugation by the linear vestibulo-ocular reflex and both before and after centrifugation by measurements of ocular counter-rolling and dynamic posturography. RESULTS: Of the 15 subjects who underwent prolonged +3 Gz, 4 were intolerant to 30 min of head-up tilt before centrifugation but became tolerant to such tilt after centrifugation. The Valsalva-related baroreflex as well as a measure of the carotid-cardiac baroreflex were also enhanced after centrifugation. No significant vestibular-autonomic relationships were detected beyond a vestibular-cerebrovascular interaction reported earlier in a subset of seven participants. CONCLUSIONS: A single prolonged exposure to +3 Gz centrifugation acutely improves baroreflex function and orthostatic tolerance.

  13. Function formula oriented construction of Bayesian inference nets for diagnosis of cardiovascular disease.

    PubMed

    Sekar, Booma Devi; Dong, Mingchui

    2014-01-01

    An intelligent cardiovascular disease (CVD) diagnosis system using hemodynamic parameters (HDPs) derived from sphygmogram (SPG) signal is presented to support the emerging patient-centric healthcare models. To replicate clinical approach of diagnosis through a staged decision process, the Bayesian inference nets (BIN) are adapted. New approaches to construct a hierarchical multistage BIN using defined function formulas and a method employing fuzzy logic (FL) technology to quantify inference nodes with dynamic values of statistical parameters are proposed. The suggested methodology is validated by constructing hierarchical Bayesian fuzzy inference nets (HBFIN) to diagnose various heart pathologies from the deduced HDPs. The preliminary diagnostic results show that the proposed methodology has salient validity and effectiveness in the diagnosis of cardiovascular disease.

  14. Vascular and cognitive functions associated with cardiovascular disease in the elderly

    PubMed Central

    Cohen, Ronald A.; Poppas, Athena; Forman, Daniel E.; Hoth, Karin F.; Haley, Andreana P.; Gunstad, John; Jefferson, Angela L.; Tate, David F.; Paul, Robert H.; Sweet, Lawrence H.; Ono, Mokato; Jerskey, Beth A.; Gerhard-Herman, Marie

    2009-01-01

    This study examines the relationship between systemic vascular function, neurocognitive performance, and structural brain abnormalities on magnetic resonance imaging (MRI) among geriatric outpatients with treated, stable cardiovascular disease and no history of neurological illness (n = 88, ages 56–85 years). Vascular function was assessed by cardiac ejection fraction and output, sequential systolic and diastolic blood pressures, flow mediated brachial artery reactivity (BAR), and carotid intima media thickness (IMT). White matter hyperintensities (WMH) on MRI were quantified and examined relative to cognitive and vascular function. Principal component analysis revealed two primary vascular components: one associated with cardiac function, the other with atherosclerotic burden/endothelial dysfunction. Both factors were significantly associated with cognitive function and WMH volume. Reduced systolic variability and increased IMT were most strongly related to reduced attention, executive function, and information-processing speed. These findings suggest the possibility that systemic vascular indices may provide proxy measures of cerebrovascular dysfunction and reinforce the importance of achieving greater understanding of interaction between systemic vascular disease and brain dysfunction among elderly people with cardiovascular disease. PMID:18608677

  15. Impacts of nanoparticles on cardiovascular diseases: modulating metabolism and function of endothelial cells.

    PubMed

    Meng, Jie; Yang, Xian-da; Jia, Lee; Liang, Xing-Jie; Wang, Chen

    2012-10-01

    Endothelial cells have very important functions, one of which is their contribution to regulating molecule and nutrient exchanges between the blood and peripheral tissues. Dysfunction of endothelial cells plays an essential role in the progression of cardiovascular diseases (CVD) such as atherosclerosis and coronary heart disease. With the recent progress of nanotechnology, increasing numbers of studies have focused on the effects of nanoparticles on CVD. In this article, we review the biological characters of endothelial cells, evaluate the impacts of nanoparticles on the behavior and functions of endothelial cells, analyze advantages and disadvantages of various nanoparticles, and discuss potential applications of nanoparticles to CVD treatment.

  16. MR evaluation of cardiovascular physiology in congenital heart disease: flow and function.

    PubMed

    Weber, Oliver M; Higgins, Charles B

    2006-01-01

    Cardiovascular magnetic resonance (CMR) has become the method of choice in the evaluation of a number of questions in congenital heart disease. In addition to morphology, modern CMR techniques allow the visualization of function and flow in a temporally resolved manner. Among the pathologies where these methods play a major role are shunts, septal defects, aortic coarctation, anomalies of the pulmonary arteries, and valvular regurgitation. This paper explains the basics of functional and flow encoded CMR and discusses their application in the assessment of several types of congenital heart disease.

  17. Effect of taurine and potential interactions with caffeine on cardiovascular function.

    PubMed

    Schaffer, Stephen W; Shimada, Kayoko; Jong, Chian Ju; Ito, Takashi; Azuma, Junichi; Takahashi, Kyoko

    2014-05-01

    The major impetus behind the rise in energy drink popularity among adults is their ability to heighten mental alertness, improve physical performance and supply energy. However, accompanying the exponential growth in energy drink usage have been recent case reports and analyses from the National Poison Data System, raising questions regarding the safety of energy drinks. Most of the safety concerns have centered on the effect of energy drinks on cardiovascular and central nervous system function. Although the effects of caffeine excess have been widely studied, little information is available on potential interactions between the other active ingredients of energy drinks and caffeine. One of the active ingredients often mentioned as a candidate for interactions with caffeine is the beta-amino acid, taurine. Although taurine is considered a conditionally essential nutrient for humans and is thought to play a key role in several human diseases, clinical studies evaluating the effects of taurine are limited. However, based on this review regarding possible interactions between caffeine and taurine, we conclude that taurine should neutralize several untoward effects of caffeine excess. In agreement with this conclusion, the European Union's Scientific Committee on Food published a report in March 2003 summarizing its investigation into potential interactions of the ingredients in energy drinks. At the cardiovascular level, they concluded that "if there are any interactions between caffeine and taurine, taurine might reduce the cardiovascular effects of caffeine." Although these interactions remain to be further examined in humans, the physiological functions of taurine appear to be inconsistent with the adverse cardiovascular symptoms associated with excessive consumption of caffeine-taurine containing beverages.

  18. A Cross-Sectional Study of Ageing and Cardiovascular Function over the Baboon Lifespan

    PubMed Central

    Yeung, Kristen R.; Pears, Suzanne; Heffernan, Scott J.; Makris, Angela; Hennessy, Annemarie; Lind, Joanne M.

    2016-01-01

    Background Ageing is associated with changes at the molecular and cellular level that can alter cardiovascular function and ultimately lead to disease. The baboon is an ideal model for studying ageing due to the similarities in genetic, anatomical, physiological and biochemical characteristics with humans. The aim of this cross-sectional study was to investigate the changes in cardiovascular profile of baboons over the course of their lifespan. Methods Data were collected from 109 healthy baboons (Papio hamadryas) at the Australian National Baboon Colony. A linear regression model, adjusting for sex, was used to analyse the association between age and markers of ageing with P < 0.01 considered significant. Results Male (n = 49, 1.5–28.5 years) and female (n = 60, 1.8–24.6 years) baboons were included in the study. Age was significantly correlated with systolic (R2 = 0.23, P < 0.001) and diastolic blood pressure (R2 = 0.44, P < 0.001), with blood pressure increasing with age. Age was also highly correlated with core augmentation index (R2 = 0.17, P < 0.001) and core pulse pressure (R2 = 0.30, P < 0.001). Creatinine and urea were significantly higher in older animals compared to young animals (P < 0.001 for both). Older animals (>12 years) had significantly shorter telomeres when compared to younger (<3 years) baboons (P = 0.001). Conclusion This study is the first to demonstrate that cardiovascular function alters with age in the baboon. This research identifies similarities within cardiovascular parameters between humans and baboon even though the length of life differs between the two species. PMID:27427971

  19. Exercise training and artery function in humans: nonresponse and its relationship to cardiovascular risk factors.

    PubMed

    Green, Daniel J; Eijsvogels, Thijs; Bouts, Yvette M; Maiorana, Andrew J; Naylor, Louise H; Scholten, Ralph R; Spaanderman, Marc E A; Pugh, Christopher J A; Sprung, Victoria S; Schreuder, Tim; Jones, Helen; Cable, Tim; Hopman, Maria T E; Thijssen, Dick H J

    2014-08-15

    The objectives of our study were to examine 1) the proportion of responders and nonresponders to exercise training in terms of vascular function; 2) a priori factors related to exercise training-induced changes in conduit artery function, and 3) the contribution of traditional cardiovascular risk factors to exercise-induced changes in artery function. We pooled data from our laboratories involving 182 subjects who underwent supervised, large-muscle group, endurance-type exercise training interventions with pre-/posttraining measures of flow-mediated dilation (FMD%) to assess artery function. All studies adopted an identical FMD protocol (5-min ischemia, distal cuff inflation), contemporary echo-Doppler methodology, and observer-independent automated analysis. Linear regression analysis was used to identify factors contributing to changes in FMD%. We found that cardiopulmonary fitness improved, and weight, body mass index (BMI), cholesterol, and mean arterial pressure (MAP) decreased after training, while FMD% increased in 76% of subjects (P < 0.001). Training-induced increase in FMD% was predicted by lower body weight (β = -0.212), lower baseline FMD% (β = -0.469), lower training frequency (β = -0.256), and longer training duration (β = 0.367) (combined: P < 0.001, r = 0.63). With the exception of a modest correlation with total cholesterol (r = -0.243, P < 0.01), changes in traditional cardiovascular risk factors were not significantly related to changes in FMD% (P > 0.05). In conclusion, we found that, while some subjects do not demonstrate increases following exercise training, improvement in FMD% is present in those with lower pretraining body weight and endothelial function. Moreover, exercise training-induced change in FMD% did not correlate with changes in traditional cardiovascular risk factors, indicating that some cardioprotective effects of exercise training are independent of improvement in risk factors.

  20. Glyphosate-based herbicides potently affect cardiovascular system in mammals: review of the literature.

    PubMed

    Gress, Steeve; Lemoine, Sandrine; Séralini, Gilles-Eric; Puddu, Paolo Emilio

    2015-04-01

    In glyphosate (G)-based herbicides (GBHs), the declared active principle G is mixed with several adjuvants that help it to penetrate the plants' cell membranes and its stabilization and liposolubility. Its utilization is growing with genetically modified organisms engineered to tolerate GBH. Millions of farmers suffer poisoning and death in developing countries, and occupational exposures and suicide make GBH toxicity a worldwide concern. As GBH is found in human plasma, widespread hospital facilities for measuring it should be encouraged. Plasma determination is an essential prerequisite for risk assessment in GBH intoxication. Only when standard ECGs were performed, at least one abnormal ECG was detected in the large majority of cases after intoxication. QTc prolongation and arrhythmias along with first-degree atrioventricular block were observed after GBH intoxication. Thus, life-threatening arrhythmias might be the cause of death in GBH intoxication. Cardiac cellular effects of GBH were reviewed along with few case reports in men and scanty larger studies. We observed in two mammalian species (rats and rabbits) direct cardiac electrophysiological changes, conduction blocks and arrhythmias among GBH-mediated effects. Plasmatic (and urine) level determinations of G and electrocardiographic Holter monitoring seem warranted to ascertain whether cardiovascular risk among agro-alimentary workers might be defined.

  1. [Secretory function of the endothelium as a factor of vascular tone regulation in the norm and in cardiovascular pathology].

    PubMed

    Medvedeva, N A; Gavrilova, S A; Grafov, M A; Davydova, M P; Petrukhina, V A

    2001-11-01

    Endothelin-1 and nitric oxide are the most potent factors of the endothelium-derived substances. The factors play opposite roles in regulation of cardiovascular system, and their interaction underlies the balance of vasoconstrictor and vasodilator influences on vascular tone under normal conditions. In our experiments, changes in endothelin-1 blood concentration were associated with affected production of endogenous nitric oxide. The altered interrelationships between the endothelium-derived vasoactive substances may precede pathological shifts in the cardiovascular system.

  2. SIRT1 Gene Polymorphisms Affect the Protein Expression in Cardiovascular Diseases

    PubMed Central

    Kilic, Ulkan; Gok, Ozlem; Bacaksiz, Ahmet; Izmirli, Muzeyyen; Elibol-Can, Birsen; Uysal, Omer

    2014-01-01

    Cardiovascular disease (CVD), the leading cause of death worldwide, is related to gene-environment interactions due to epigenetic factors. SIRT1 protein and its downstream pathways are critical for both normal homeostasis and protection from CVD-induced defects. The aim of this study was to investigate the association between SIRT1 single nucleotide polymorphisms (SNPs) (rs7895833 A>G in the promoter region, rs7069102 C>G in intron 4 and rs2273773 C>T in exon 5 silent mutation) and SIRT1 and eNOS (endothelial nitric oxide synthase) protein expression as well as total antioxidant status (TAS), total oxidant status (TOS) and oxidative stress index (OSI) in CVD patients as compared to controls. The frequencies of mutant genotypes and alleles for rs7069102 and rs2273773 were significantly higher in patients with CVD compared to control group. The risk for CVD was increased by 2.4 times for rs7069102 and 1.9 times for rs2273773 in carriers of mutant allele compared with carriers of wild-type allele pointing the protective role of C allele for both SNPs against CVD. For rs7895833, there was no significant difference in genotype and allele distributions between groups. SIRT1 protein, TAS, TOS and OSI levels significantly increased in patients as compared to control group. In contrast, level of eNOS protein was considerably low in the CVD patients. An increase in the SIRT1 expression in the CVD patients carrying mutant genotype for rs7069102 and heterozygote genotype for all three SNPs was observed. This is the first study reporting an association between SIRT1 gene polymorphisms and the levels of SIRT1 and eNOS expressions as well as TAS, TOS and OSI. PMID:24587358

  3. The role of nodose ganglia in the regulation of cardiovascular function following pulmonary exposure to ultraffine titanium dioxide

    PubMed Central

    Kan, Hong; Wu, Zhongxin; Lin, Yen-Chang; Chen, Teh-Hsun; Cumpston, Jared L; Kashon, Michael L; Leonard, Steve; Munson, Albert E; Castranova, Vincent

    2015-01-01

    The inhalation of nanosized air pollutant particles is a recognised risk factor for cardiovascular disease; however, the link between occupational exposure to engineered nanoparticles and adverse cardiovascular events remains unclear. In the present study, the authors demonstrated that pulmonary exposure of rats to ultrafine titanium dioxide (UFTiO2) significantly increased heart rate and depressed diastolic function of the heart in response to isoproterenol. Moreover, pulmonary inhalation of UFTiO2 elevated mean and diastolic blood pressure in response to norepinephrine. Pretreatment of the rats ip with the transient receptor potential (TRP) channel blocker ruthenium red inhibited substance P synthesis in nodose ganglia and associated functional and biological changes in the cardiovascular system. In conclusion, the effects of pulmonary inhalation of UFTiO2 on cardiovascular function are most likely triggered by a lung-nodose ganglia-regulated pathway via the activation of TRP channels in the lung. PMID:23593933

  4. Maternal Cardiovascular Function in Normal Pregnancy: Evidence of Maladaptation to Chronic Volume Overload.

    PubMed

    Melchiorre, Karen; Sharma, Rajan; Khalil, Asma; Thilaganathan, Baskaran

    2016-04-01

    The aim of this study was to investigate cardiac functional status in pregnancy using a comprehensive approach taking into account the simultaneous changes in loading and geometry, as well as maternal age and anthropometric indices. This was a prospective cross-sectional study of 559 nulliparous pregnant women assessed at 4 time points during pregnancy and at 1 year postpartum. All women underwent conventional echocardiography and tissue Doppler velocities and strain rate analysis at multiple cardiac sites. Mean arterial pressure and total vascular resistance index significantly decreased (both P<0.001) during the first 2 trimesters of pregnancy and increased thereafter. Stroke volume index and cardiac index showed the opposite trend compared with mean arterial pressure and total vascular resistance index (both P<0.05). Myocardial and ventricular function were significantly enhanced in the first 2 trimesters but progressively declined thereafter. By the end of pregnancy, significant chamber diastolic dysfunction and impaired myocardial relaxation was evident in 17.9% and 28.4% of women, respectively, whereas myocardial contractility was preserved. There was full recovery of cardiac function at 1 year postpartum. Cardiovascular changes during pregnancy are thought to represent a physiological adaptation to volume overload. The findings of a drop in stroke volume index, impaired myocardial relaxation with diastolic dysfunction, and a tendency toward eccentric remodeling in a significant proportion of cases at term are suggestive of cardiovascular maladaptation to the volume-overloaded state in some apparently normal pregnancies. These unexpected cardiovascular findings have important implications for the management of both normal and pathological pregnancy states.

  5. Effects of cacao liquor polyphenols on cardiovascular and autonomic nervous functions in hypercholesterolaemic rabbits.

    PubMed

    Akita, Megumi; Kuwahara, Masayoshi; Itoh, Fumi; Nakano, Yoshihisa; Osakabe, Naomi; Kurosawa, Tohru; Tsubone, Hirokazu

    2008-12-01

    Many epidemiological studies have shown that polyphenols can reduce the risk of mortality from cardiovascular diseases. This study tested the hypothesis that cacao liquor polyphenols have the properties to restore the cardiovascular and autonomic nervous function in an animal model of familial hypercholesterolaemia. Male Kurosawa and Kusanagi-hypercholesterolaemic rabbits were housed in individual cages in a room where a 12-hr light:dark cycle (lights-on at 8:00 and lights-off at 20:00) was maintained. At 3 months of age, they were divided into two groups (standard diet and cacao liquor polyphenol) and the animals received 100 g of the respective diets per day and were provided with tap water ad libitum. Heart rate and blood pressure were measured by a telemetry system. To clarify the autonomic nervous function, power spectral analysis of heart rate variability, baroreflex sensitivity and autonomic nervous tone were measured. After 6 months of dietary administration of cacao liquor polyphenols, heart rate and blood pressure were lowered but plasma lipid concentrations were unchanged. The area of atherosclerotic lesions in the aorta in the cacao liquor polyphenol group was significantly smaller than that in the standard diet group. The high-frequency power of heart rate variability in the rabbits in the standard diet group was significantly decreased with ageing, but that in the cacao liquor polyphenol group was not different between short-term and long-term treatment. Moreover, cacao liquor polyphenols preserved parasympathetic nervous tone, although that in the standard diet group was significantly decreased with ageing. We conclude that cacao liquor polyphenols may play an important role to protect cardiovascular and autonomic nervous functions.

  6. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease.

    PubMed

    Riwanto, Meliana; Landmesser, Ulf

    2013-12-01

    Prospective population studies in the primary prevention setting have shown that reduced plasma levels of HDL cholesterol are associated with an increased risk of coronary disease and myocardial infarction. Experimental and translational studies have further revealed several potential anti-atherogenic effects of HDL, including protective effects on endothelial cell functions. HDL has been suggested to protect endothelial cell functions by prevention of oxidation of LDL and its adverse endothelial effects. Moreover, HDL from healthy subjects can directly stimulate endothelial cell production of nitric oxide and anti-inflammatory, anti-apoptotic, and anti-thrombotic effects as well as endothelial repair processes. However, several recent clinical trials using HDL cholesterol-raising agents, such as torcetrapib, dalcetrapib, and niacin, did not demonstrate a significant reduction of cardiovascular events in patients with coronary disease. Of note, growing evidence suggests that the vascular effects of HDL can be highly heterogeneous and vasoprotective properties of HDL are altered in patients with coronary disease. Characterization of underlying mechanisms and understanding of the clinical relevance of this "HDL dysfunction" is currently an active field of cardiovascular research. Notably, in some recent studies no clear association of higher HDL cholesterol levels with a reduced risk of cardiovascular events was observed in patients with already established coronary disease. A greater understanding of mechanisms of action of HDL and its altered vascular effects is therefore critical within the context of HDL-targeted therapies. In this review, we will address different effects of HDL on endothelial cell functions potentially relevant to atherosclerotic vascular disease and explore molecular mechanisms leading to "dysfunctional HDL".

  7. Maternal Cardiovascular Function in Normal Pregnancy: Evidence of Maladaptation to Chronic Volume Overload.

    PubMed

    Melchiorre, Karen; Sharma, Rajan; Khalil, Asma; Thilaganathan, Baskaran

    2016-04-01

    The aim of this study was to investigate cardiac functional status in pregnancy using a comprehensive approach taking into account the simultaneous changes in loading and geometry, as well as maternal age and anthropometric indices. This was a prospective cross-sectional study of 559 nulliparous pregnant women assessed at 4 time points during pregnancy and at 1 year postpartum. All women underwent conventional echocardiography and tissue Doppler velocities and strain rate analysis at multiple cardiac sites. Mean arterial pressure and total vascular resistance index significantly decreased (both P<0.001) during the first 2 trimesters of pregnancy and increased thereafter. Stroke volume index and cardiac index showed the opposite trend compared with mean arterial pressure and total vascular resistance index (both P<0.05). Myocardial and ventricular function were significantly enhanced in the first 2 trimesters but progressively declined thereafter. By the end of pregnancy, significant chamber diastolic dysfunction and impaired myocardial relaxation was evident in 17.9% and 28.4% of women, respectively, whereas myocardial contractility was preserved. There was full recovery of cardiac function at 1 year postpartum. Cardiovascular changes during pregnancy are thought to represent a physiological adaptation to volume overload. The findings of a drop in stroke volume index, impaired myocardial relaxation with diastolic dysfunction, and a tendency toward eccentric remodeling in a significant proportion of cases at term are suggestive of cardiovascular maladaptation to the volume-overloaded state in some apparently normal pregnancies. These unexpected cardiovascular findings have important implications for the management of both normal and pathological pregnancy states. PMID:26962206

  8. Affect integration and reflective function: clarification of central conceptual issues.

    PubMed

    Solbakken, Ole André; Hansen, Roger Sandvik; Monsen, Jon Trygve

    2011-07-01

    The importance of affect regulation, modulation or integration for higher-order reflection and adequate functioning is increasingly emphasized across different therapeutic approaches and theories of change. These processes are probably central to any psychotherapeutic endeavor, whether explicitly conceptualized or not, and in recent years a number of therapeutic approaches have been developed that explicitly target them as a primary area of change. However, there still is important lack of clarity in the field regarding the understanding and operationalization of affect integration, particularly when it comes to specifying underlying mechanisms, the significance of different affect states, and the establishment of operational criteria for measurement. The conceptual relationship between affect integration and reflective function thus remains ambiguous. The present article addresses these topics, indicating ways in which a more complex and exhaustive understanding of integration of affect, cognition and behavior can be attained.

  9. Modeling and Simulation Approaches for Cardiovascular Function and Their Role in Safety Assessment

    PubMed Central

    Collins, TA; Bergenholm, L; Abdulla, T; Yates, JWT; Evans, N; Chappell, MJ; Mettetal, JT

    2015-01-01

    Systems pharmacology modeling and pharmacokinetic-pharmacodynamic (PK/PD) analysis of drug-induced effects on cardiovascular (CV) function plays a crucial role in understanding the safety risk of new drugs. The aim of this review is to outline the current modeling and simulation (M&S) approaches to describe and translate drug-induced CV effects, with an emphasis on how this impacts drug safety assessment. Current limitations are highlighted and recommendations are made for future effort in this vital area of drug research. PMID:26225237

  10. Modeling and Simulation Approaches for Cardiovascular Function and Their Role in Safety Assessment.

    PubMed

    Collins, T A; Bergenholm, L; Abdulla, T; Yates, Jwt; Evans, N; Chappell, M J; Mettetal, J T

    2015-03-01

    Systems pharmacology modeling and pharmacokinetic-pharmacodynamic (PK/PD) analysis of drug-induced effects on cardiovascular (CV) function plays a crucial role in understanding the safety risk of new drugs. The aim of this review is to outline the current modeling and simulation (M&S) approaches to describe and translate drug-induced CV effects, with an emphasis on how this impacts drug safety assessment. Current limitations are highlighted and recommendations are made for future effort in this vital area of drug research.

  11. How Does Maternal Employment Affect Children's Socioemotional Functioning?

    ERIC Educational Resources Information Center

    Lam, Gigi

    2015-01-01

    The maternal employment becomes an irreversible trend across the globe. The effect of maternal employment on children's socioemotional functioning is so pervasive that it warrants special attention to investigate into the issue. A trajectory of analytical framework of how maternal employment affects children's socioemotional functioning originates…

  12. Effects of high flavanol dark chocolate on cardiovascular function and platelet aggregation.

    PubMed

    Rull, Gurvinder; Mohd-Zain, Zetty N; Shiel, Julian; Lundberg, Martina H; Collier, David J; Johnston, Atholl; Warner, Timothy D; Corder, Roger

    2015-08-01

    Regular consumption of chocolate and cocoa products has been linked to reduced cardiovascular mortality. This study compared the effects of high flavanol dark chocolate (HFDC; 1064mg flavanols/day for 6weeks) and low flavanol dark chocolate (LFDC; 88mg flavanols/day for 6weeks) on blood pressure, heart rate, vascular function and platelet aggregation in men with pre-hypertension or mild hypertension. Vascular function was assessed by pulse wave analysis using radial artery applanation tonometry in combination with inhaled salbutamol (0.4mg) to assess changes due to endothelium-dependent vasodilatation. HFDC did not significantly reduce blood pressure compared to baseline or LFDC. Heart rate was increased by LFDC compared to baseline, but not by HFDC. Vascular responses to salbutamol tended to be greater after HFDC. Platelet aggregation induced by collagen or the thromboxane analogue U46619 was unchanged after LFDC or HFDC, whereas both chocolates reduced responses to ADP and the thrombin receptor activator peptide, SFLLRNamide (TRAP6), relative to baseline. Pre-incubation of platelets with theobromine also attenuated platelet aggregation induced by ADP or TRAP6. We conclude that consumption of HFDC confers modest improvements in cardiovascular function. Platelet aggregation is modulated by a flavanol-independent mechanism that is likely due to theobromine.

  13. Impact of functional foods on prevention of cardiovascular disease and diabetes.

    PubMed

    Sikand, Geeta; Kris-Etherton, Penny; Boulos, Nancy Mariam

    2015-06-01

    A healthy dietary pattern is a cornerstone for the prevention and treatment of cardiovascular disease (CVD) and type 2 diabetes (T2DM). Compelling scientific evidence has shown many health effects of individual foods (including herbs and spices), beverages, and their constituent nutrients and bioactive components on risk of chronic disease and associated risk factors. The focus of functional foods research that is reviewed herein has been on assessing the health effects and underlying mechanisms of action of fruits and vegetables, whole grains, dairy products including fermented products, legumes, nuts, green tea, spices, olive oil, seafood, red wine, herbs, and spices. The unique health benefits of these functional foods have been the basis for recommending their inclusion in a healthy dietary pattern. A better understanding of strategies for optimally including functional foods in a healthy dietary pattern will confer greater benefits on the prevention and treatment of CVD and T2DM. PMID:25899657

  14. Effects of repeated long duration +2Gz load on man's cardiovascular function

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ken-ichi; Hirayanagi, Kaname; Sasaki, Tsuyoshi; Kinoue, Takaaki; Ito, Masao; Miyamoto, Akira; Igarashi, Makoto; Yajima, Kazuyoshi

    Usefulness of a short-arm human centrifuge is expected when it is used in space as a countermeasure against cardiovascular deconditioning, problem of bone-calcium metabolism, etc. However, nothing is solidly established regarding the most desirable program for artificial G application. Accordingly, this study was designed to analytically evaluate the effects of repeated long duration +Gz load on human cardiovascular function. Recently heart rate spectral analysis has been recognized as a powerful tool for quantitatively evaluating parasympathetic and sympathetic activity separately in human. It is reported that power of the high frequency component (HF-p) is mediated selectively by parasympathetic activity and the power ratio of low to high frequency components(LF/HF) is indicative of cardiac sympathetic activity or cardiac sympathovagal balance. Sequence method is developed to examine spontaneous baroreceptor reflex sensitivity (BRS). We studied cardiovascular control function by using these methods in 9 healthy men before and after 7 days of daily repeated 1hour +2Gz load. When compared with the data of pre-G load period, post-G load period, decrease of HR, increases of HF-p and BRS were statistically significant. SBP, DBP and LF/HF tended to decrease, however, these changes were not statistically significant. This results indicate that repeated +2Gz load increases parasympathetic activity and arterial baroreceptor-cardiac reflex sensitivity. In recent years, many investigators suggest that space flight and head-down bedrest leads to impaired baroreceptor-cardiac reflex responses and decrease of parasympathetic activity, which may contribute to orthostatic intolerance. So our results suggest that daily repeated 1hour +2Gz load would be useful in preventing post-flight orthostatic intolerance.

  15. Mitochondria DNA mutations cause sex-dependent development of hypertension and alterations in cardiovascular function.

    PubMed

    Golob, Mark J; Tian, Lian; Wang, Zhijie; Zimmerman, Todd A; Caneba, Christine A; Hacker, Timothy A; Song, Guoqing; Chesler, Naomi C

    2015-02-01

    Aging is associated with conduit artery stiffening that is a risk factor for and can precede hypertension and ventricular dysfunction. Increases in mitochondria DNA (mtDNA) frequency have been correlated with aging. Mice with a mutation in the encoding domain (D257A) of a proof-reading deficient version of mtDNA polymerase-γ (POLG) have musculoskeletal features of premature aging and a shortened lifespan. However, few studies using these mice have investigated the effects of mtDNA mutations on cardiovascular function. We hypothesized that the proof-reading deficient mtDNA POLG leads to arterial stiffening, hypertension, and ventricular hypertrophy. Ten to twelve month-old D257A mice (n=13) and age- and sex-matched wild-type controls (n=13) were catheterized for hemodynamic and ventricular function measurements. Left common carotid arteries (LCCA) were harvested for mechanical tests followed by histology. Male D257A mice had pulmonary and systemic hypertension, arterial stiffening, larger LCCA diameter (701±45 vs. 597±60μm), shorter LCCA axial length (8.96±0.56 vs. 10.10±0.80mm), and reduced hematocrit (29.1±6.1 vs. 41.3±8.1; all p<0.05). Male and female D257A mice had biventricular hypertrophy (p<0.05). Female D257A mice did not have significant increases in pressure or arterial stiffening, suggesting that the mechanisms of hypertension or arterial stiffening from mtDNA mutations differ based on sex. Our results lend insight into the mechanisms of age-related cardiovascular disease and may point to novel treatment strategies to address cardiovascular mortality in the elderly. PMID:25582357

  16. Effects of repeated long duration +2Gz load on man's cardiovascular function.

    PubMed

    Iwasaki, K; Hirayanagi, K I; Sasaki, T; Kinoue, T; Ito, M; Miyamoto, A; Igarashi, M; Yajima, K

    1998-01-01

    Usefulness of a short-arm human centrifuge is expected when it is used in space as a countermeasure against cardiovascular deconditioning, problem of bone-calcium metabolism, etc. However, nothing is solidly established regarding the most desirable program for artificial G application. Accordingly, this study was designed to analytically evaluate the effects of repeated long duration +Gz load on human cardiovascular function. Recently heart rate spectral analysis has been recognized as a powerful tool for quantitatively evaluating parasympathetic and sympathetic activity separately in human. It is reported that power of the high frequency component (HF-p) is mediated selectively by parasympathetic activity and the power ratio of low to high frequency components(LF/HF) is indicative of cardiac sympathetic activity or cardiac sympathovagal balance. Sequence method is developed to examine spontaneous baroreceptor reflex sensitivity (BRS). We studied cardiovascular control function by using these methods in 9 healthy men before and after 7 days of daily repeated 1hour +2Gz load. When compared with the data of pre-G load period, post-G load period, decrease of HR, increases of HF-p and BRS were statistically significant. SBP, DBP and LF/HF tended to decrease, however, these changes were not statistically significant. This results indicate that repeated +2Gz load increases parasympathetic activity and arterial baroreceptor-cardiac reflex sensitivity. In recent years, many investigators suggest that space flight and head-down bedrest leads to impaired baroreceptor-cardiac reflex responses and decrease of parasympathetic activity, which may contribute to orthostatic intolerance. So our results suggest that daily repeated 1hour +2Gz load would be useful in preventing post-flight orthostatic intolerance. PMID:11541601

  17. Effect of Red Bull energy drink on cardiovascular and renal function.

    PubMed

    Ragsdale, Frances R; Gronli, Tyler D; Batool, Narjes; Haight, Nicole; Mehaffey, April; McMahon, Erin C; Nalli, Thomas W; Mannello, Carla M; Sell, Crystal J; McCann, Patrick J; Kastello, Gary M; Hooks, Tisha; Wilson, Ted

    2010-04-01

    Energy drink consumption has been anecdotally linked to the development of adverse cardiovascular effects in consumers, although clinical trials to support this link are lacking. The effects of Red Bull energy drink on cardiovascular and neurologic functions were examined in college-aged students enrolled at Winona State University. In a double-blind experiment where normal calorie and low calorie Red Bull were compared to normal and low calorie placebos, no changes in overall cardiovascular function nor blood glucose (mg/dL) were recorded in any participant (n = 68) throughout a 2-h test period. However, in the second experiment, nine male and twelve female participants subjected to a cold pressor test (CPT) before and after Red Bull consumption showed a significant increase in blood sugar levels pre- and post Red Bull consumption. There was a significant increase in diastolic blood pressure of the male volunteers immediately after submersion of the hand in the 5 degrees C water for the CPT. Under the influence of Red Bull, the increase in diastolic pressure for the male participants during the CPT was negated. There were no significant changes in the blood pressure of the female participants for the CPT with or without Red Bull. Finally, the CPT was used to evaluate pain threshold and pain tolerance before and after Red Bull consumption. Red Bull consumption was associated with a significant increase in pain tolerance in all participants. These findings suggest that Red Bull consumption ameliorates changes in blood pressure during stressful experiences and increases the participants' pain tolerance.

  18. Mitochondria DNA mutations cause sex-dependent development of hypertension and alterations in cardiovascular function

    PubMed Central

    Golob, Mark J.; Tian, Lian; Wang, Zhijie; Zimmerman, Todd A.; Caneba, Christine A.; Hacker, Timothy A.; Song, Guoqing; Chesler, Naomi C.

    2015-01-01

    Aging is associated with conduit artery stiffening that is a risk factor for and can precede hypertension and ventricular dysfunction. Increases in mitochondria DNA (mtDNA) frequency have been correlated with aging. Mice with a mutation in the encoding domain (D257A) of a proof-reading deficient version of mtDNA polymerase-γ (POLG) have musculoskeletal features of premature aging and a shortened lifespan. However, few studies using these mice have investigated the effects of mtDNA mutations on cardiovascular function. We hypothesized that the proof-reading deficient mtDNA POLG leads to arterial stiffening, hypertension, and ventricular hypertrophy. Ten to twelve month-old D257A mice (n=13) and age- and sex-matched wild-type controls (n=13) were catheterized for hemodynamic and ventricular function measurements. Left common carotid arteries (LCCA) were harvested for mechanical tests followed by histology. Male D257A mice had pulmonary and systemic hypertension, arterial stiffening, larger LCCA diameter (701 ± 45 vs. 597 ± 60 μm), shorter LCCA axial length (8.96 ± 0.56 vs. 10.10 ± 0.80 mm), and reduced hematocrit (29.1 ± 6.1 vs. 41.3 ± 8.1; all p<0.05). Male and female D257A mice had biventricular hypertrophy (p<0.05). Female D257A mice did not have significant increases in pressure or arterial stiffening, suggesting that the mechanisms of hypertension or arterial stiffening from mtDNA mutations differ based on sex. Our results lend insight into the mechanisms of age-related cardiovascular disease and may point to novel treatment strategies to address cardiovascular mortality in the elderly. PMID:25582357

  19. Apelin acts in the subfornical organ to influence neuronal excitability and cardiovascular function.

    PubMed

    Dai, Li; Smith, Pauline M; Kuksis, Markus; Ferguson, Alastair V

    2013-07-01

    Apelin is an adipocyte-derived hormone involved in the regulation of water balance, food intake and the cardiovascular system partially through actions in the CNS. The subfornical organ (SFO) is a circumventricular organ with identified roles in body fluid homeostasis, cardiovascular control and energy balance. The SFO lacks a normal blood-brain barrier, and is thus able to detect circulating signalling molecules such as angiotensin II and leptin. In this study, we investigated actions of apelin-13, the predominant apelin isoform in brain and circulatory system, on the excitability of dissociated SFO neurons using electrophysiological approaches, and determined the cardiovascular consequences of direct administration into the SFO of anaesthetized rats. Whole cell current clamp recording revealed that bath-applied 100 nm apelin-13 directly influences the excitability of the majority of SFO neurons by eliciting either depolarizing (31.8%, mean 7.0 ± 0.8 mV) or hyperpolarizing (28.6%, mean -10.4 ± 1.8 mV) responses. Using voltage-clamp techniques, we also identified modulatory actions of apelin-13 on specific ion channels, demonstrating that apelin-13 activates a non-selective cationic conductance to depolarize SFO neurons while activation of the delayed rectifier potassium conductance underlies hyperpolarizing effects. In anaesthetized rats, microinjection of apelin into SFO decreased both blood pressure (BP) (mean area under the curve -1492.3 ± 357.1 mmHg.s, n = 5) and heart rate (HR) (-32.4 ± 10.39 beats, n = 5). Our data suggest that circulating apelin can directly affect BP and HR as a consequence of the ability of this peptide to modulate the excitability of SFO neurons.

  20. Apelin acts in the subfornical organ to influence neuronal excitability and cardiovascular function

    PubMed Central

    Dai, Li; Smith, Pauline M; Kuksis, Markus; Ferguson, Alastair V

    2013-01-01

    Apelin is an adipocyte-derived hormone involved in the regulation of water balance, food intake and the cardiovascular system partially through actions in the CNS. The subfornical organ (SFO) is a circumventricular organ with identified roles in body fluid homeostasis, cardiovascular control and energy balance. The SFO lacks a normal blood–brain barrier, and is thus able to detect circulating signalling molecules such as angiotensin II and leptin. In this study, we investigated actions of apelin-13, the predominant apelin isoform in brain and circulatory system, on the excitability of dissociated SFO neurons using electrophysiological approaches, and determined the cardiovascular consequences of direct administration into the SFO of anaesthetized rats. Whole cell current clamp recording revealed that bath-applied 100 nm apelin-13 directly influences the excitability of the majority of SFO neurons by eliciting either depolarizing (31.8%, mean 7.0 ± 0.8 mV) or hyperpolarizing (28.6%, mean −10.4 ± 1.8 mV) responses. Using voltage-clamp techniques, we also identified modulatory actions of apelin-13 on specific ion channels, demonstrating that apelin-13 activates a non-selective cationic conductance to depolarize SFO neurons while activation of the delayed rectifier potassium conductance underlies hyperpolarizing effects. In anaesthetized rats, microinjection of apelin into SFO decreased both blood pressure (BP) (mean area under the curve −1492.3 ± 357.1 mmHg.s, n= 5) and heart rate (HR) (−32.4 ± 10.39 beats, n= 5). Our data suggest that circulating apelin can directly affect BP and HR as a consequence of the ability of this peptide to modulate the excitability of SFO neurons. PMID:23629509

  1. Effects of High Dietary HEME Iron and Radiation on Cardiovascular Function

    NASA Technical Reports Server (NTRS)

    Westby, Christian M.; Brown, A. K.; Platts, S. H.

    2012-01-01

    The radiation related health risks to astronauts is of particular concern to NASA. Data support that exposure to radiation is associated with a number of disorders including a heightened risk for cardiovascular diseases. Independent of radiation, altered nutrient status (e.g. high dietary iron) also increases ones risk for cardiovascular disease. However, it is unknown whether exposure to radiation in combination with high dietary iron further increases ones cardiovascular risk. The intent of our proposal is to generate compulsory data examining the combined effect of radiation exposure and iron overload on sensitivity to radiation injury to address HRP risks: 1) Risk Factor of Inadequate Nutrition; 2) Risk of Cardiac Rhythm Problems; and 3) Risk of Degenerative Tissue or other Health Effects from Space Radiation. Towards our goal we propose two distinct pilot studies using the following specific aims: Vascular Aim 1: To determine the short-term consequences of the independent and combined effects of exposure to gamma radiation and elevated body iron stores on measures of endothelial function and cell viability and integrity. We hypothesize that animals that have high body iron stores and are exposed to gamma radiation will show a greater reduction in endothelial dependent nitric oxid production and larger pathological changes in endothelial integrity than animals that have only 1 of those treatments (either high iron stores or exposure to gamma radiation). Vascular Aim 2: Identify and compare the effects of gamma radiation and elevated body iron stores on the genetic and epigenetic regulation of proteins associated with endothelial cell function. We hypothesize that modifications of epigenetic control and posttranslational expression of proteins associated with endothelial cell function will be differentially altered in rats with high body iron stores and exposed to gamma radiation compared to rats with only 1 type of treatment. Cardiac Aim 1: To determine the

  2. Resting State Functional Connectivity within the Cingulate Cortex Jointly Predicts Agreeableness and Stressor-Evoked Cardiovascular Reactivity

    PubMed Central

    Ryan, John P.; Sheu, Lei K.; Gianaros, Peter J.

    2010-01-01

    Exaggerated cardiovascular reactivity to stress confers risk for cardiovascular disease. Further, individual differences in stressor-evoked cardiovascular reactivity covary with the functionality of cortical and limbic brain areas, particularly within the cingulate cortex. What remains unclear, however, is how individual differences in personality traits interact with cingulate functionality in the prediction of stressor-evoked cardiovascular reactivity. Accordingly, we tested the associations between (i) a particular personality trait, Agreeableness, which is associated with emotional reactions to conflict, (ii) resting state functional connectivity within the cingulate cortex, and (iii) stressor-evoked blood pressure (BP) reactivity. Participants (N=39, 19 men, aged 20–37 yrs) completed a resting functional connectivity MRI protocol, followed by two standardized stressor tasks that engaged conflict processing and evoked BP reactivity. Agreeableness covaried positively with BP reactivity across individuals. Moreover, connectivity analyses demonstrated that a more positive functional connectivity between the posterior cingulate (BA31) and the perigenual anterior cingulate (BA32) covaried positively with Agreeableness and with BP reactivity. Finally, statistical mediation analyses demonstrated that BA31–BA32 connectivity mediated the covariation between Agreeableness and BP reactivity. Functional connectivity within the cingulate appears to link Agreeableness and a risk factor for cardiovascular disease, stressor-evoked BP reactivity. PMID:21130172

  3. Histamine H3 receptors--general characterization and their function in the cardiovascular system.

    PubMed

    Malinowska, B; Godlewski, G; Schlicker, E

    1998-06-01

    The histamine H3 receptor was initially identified as a presynaptic autoreceptor controlling histamine release and synthesis in the brain. It belongs to the superfamily of G protein-coupled receptors. The existence of the H3 receptor which has not yet been cloned was definitely established by the design of highly potent and selective agonists (R-(-)-alpha-methylhistamine, imetit) and antagonists (thioperamide, clobenpropit). These receptors also occur as heteroreceptors both in the central nervous system and on peripheral neurons of the gastrointestinal and bronchial tract, where they regulate the release of a variety of neurotransmitters. In the cardiovascular system, histamine H3 receptors are mainly located presynaptically on the postganglionic sympathetic nerve fibers innervating the blood vessels and the heart. Their activation leads to the inhibition of noradrenaline release and consequently to the reduction of the neurogenic vasopressor and cardiostimulatory responses. The presence of such receptors has been shown both in vitro (human, pig, guinea-pig, rabbit, rat isolated tissues) and in vivo (rat, guinea-pig). The vascular and cardiac presynaptic H3 receptors may be activated by endogenous histamine. The vascular H3 receptors appear to be operative in hypertension and interact with presynaptic alpha 2-adrenoceptors. Postsynaptic vasodilatatory H3 receptors have been detected in several vascular beds as well. H3 receptor ligands affect basal cardiovascular parameters in conscious and anesthetized guinea-pigs but not rats. Presynaptic H3 receptors may play a role in the pathophysiology of headache and cardiac ischemia.

  4. [Factors affecting the control of blood pressure and lipid levels in patients with cardiovascular disease: the PREseAP Study].

    PubMed

    Orozco-Beltrán, Domingo; Brotons, Carlos; Moral, Irene; Soriano, Nuria; Del Valle, María A; Rodríguez, Ana I; Pepió, Josep M; Pastor, Ana

    2008-03-01

    The aim of this observational study was to identify factors influencing the control of blood pressure (i.e., <140/90 mmHg, or <130/80 mmHg in diabetic patients) and low-density lipoprotein (LDL) cholesterol level (<100 mg/dL) in 1223 patients with cardiovascular disease. Overall, 70.2% of patients were men, and their mean age was 66.4 years. Blood pressure was poorly controlled in 50.9% (95% confidence interval [CI], 46.9%-54.8%) and the LDL cholesterol level was poorly controlled in 60.1% (95% CI, 56.3%-63.9%). Determinants of poor blood pressure control were diabetes, hypertension, no previous diagnosis of heart failure, previous diagnosis of peripheral artery disease or stroke, obesity, and no lipid-lowering treatment. Determinants of poor LDL cholesterol control were no lipid-lowering treatment, no previous diagnosis of ischemic heart disease, no antihypertensive treatment, and dyslipidemia. The factors affecting blood pressure control were different from those affecting LDL cholesterol control, an observation that should be taken into account when implementing treatment recommendations for achieving therapeutic objectives in secondary prevention. PMID:18361907

  5. [Factors affecting the control of blood pressure and lipid levels in patients with cardiovascular disease: the PREseAP Study].

    PubMed

    Orozco-Beltrán, Domingo; Brotons, Carlos; Moral, Irene; Soriano, Nuria; Del Valle, María A; Rodríguez, Ana I; Pepió, Josep M; Pastor, Ana

    2008-03-01

    The aim of this observational study was to identify factors influencing the control of blood pressure (i.e., <140/90 mmHg, or <130/80 mmHg in diabetic patients) and low-density lipoprotein (LDL) cholesterol level (<100 mg/dL) in 1223 patients with cardiovascular disease. Overall, 70.2% of patients were men, and their mean age was 66.4 years. Blood pressure was poorly controlled in 50.9% (95% confidence interval [CI], 46.9%-54.8%) and the LDL cholesterol level was poorly controlled in 60.1% (95% CI, 56.3%-63.9%). Determinants of poor blood pressure control were diabetes, hypertension, no previous diagnosis of heart failure, previous diagnosis of peripheral artery disease or stroke, obesity, and no lipid-lowering treatment. Determinants of poor LDL cholesterol control were no lipid-lowering treatment, no previous diagnosis of ischemic heart disease, no antihypertensive treatment, and dyslipidemia. The factors affecting blood pressure control were different from those affecting LDL cholesterol control, an observation that should be taken into account when implementing treatment recommendations for achieving therapeutic objectives in secondary prevention.

  6. Initial Sensorimotor and Cardiovascular Data Acquired from Soyuz Landings: Establishing a Functional Performance Recovery Time Constant

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kozlovskaya, I. B.; Kofman, I. S.; Tomilovskaya, E. S.; Cerisano, J. M.; Bloomberg, J. J.; Stenger, M. B.; Platts, S. H.; Rukavishnikov, I. V.; Fomina, E. V.; Lee, S. M. C.; Wood, S. J.; Mulavara, A. P.; Feiveson, A. H.; Fisher, E. A.

    2015-01-01

    INTRODUCTION Testing of crew responses following long-duration flights has not been previously possible until a minimum of more than 24 hours after landing. As a result, it has not been possible to determine the trend of the early recovery process, nor has it been possible to accurately assess the full impact of the decrements associated with long-duration flight. To overcome these limitations, both the Russian and U.S. programs have implemented joint testing at the Soyuz landing site. This International Space Station research effort has been identified as the functional Field Test, and represents data collect on NASA, Russian, European Space Agency, and Japanese Aerospace Exploration Agency crews. RESEARCH The primary goal of this research is to determine functional abilities associated with long-duration space flight crews beginning as soon after landing as possible on the day of landing (typically within 1 to 1.5 hours). This goal has both sensorimotor and cardiovascular elements. To date, a total of 15 subjects have participated in a 'pilot' version of the full 'field test'. The full version of the 'field test' will assess functional sensorimotor measurements included hand/eye coordination, standing from a seated position (sit-to-stand), walking normally without falling, measurement of dynamic visual acuity, discriminating different forces generated with the hands (both strength and ability to judge just noticeable differences of force), standing from a prone position, coordinated walking involving tandem heel-to-toe placement (tested with eyes both closed and open), walking normally while avoiding obstacles of differing heights, and determining postural ataxia while standing (measurement of quiet stance). Sensorimotor performance has been obtained using video records, and data from body worn inertial sensors. The cardiovascular portion of the investigation has measured blood pressure and heart rate during a timed stand test in conjunction with postural ataxia

  7. Diet and Gut Microbial Function in Metabolic and Cardiovascular Disease Risk.

    PubMed

    Meyer, Katie A; Bennett, Brian J

    2016-10-01

    Over the past decade, the gut microbiome has emerged as a novel and largely unexplored source of variability for metabolic and cardiovascular disease risk, including diabetes. Animal and human studies support several possible pathways through which the gut microbiome may impact health, including the production of health-related metabolites from dietary sources. Diet is considered important to shaping the gut microbiota; in addition, gut microbiota influence the metabolism of many dietary components. In the present paper, we address the distinction between compositional and functional analysis of the gut microbiota. We focus on literature that highlights the value of moving beyond surveys of microbial composition to measuring gut microbial functioning to delineate mechanisms related to the interplay between diet and gut microbiota in cardiometabolic health. PMID:27541295

  8. Countermeasures for Maintenance of Cardiovascular and Muscle Function in Space Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this session, Session FA2, the discussion focuses on the following topics: Effects of Repeated Long Duration +2Gz Load on Man's Cardiovascular Function; Certain Approaches to the Development of On-Board Automated Training System; Cardiac, Arterial, and Venous Adaptation to Og during 6 Month MIR-Spaceflights with and without "Thigh Cuffs" (93-95); Space Cycle(TM) Induced Physiologic Responses; Muscular Deconditioning During Long-term Spaceflight Exercise Recommendations to Optimize Crew Performance; Structure And Function of Knee Extensors After Long-Duration Spaceflight in Man, Effects of Countermeasure Exercise Training; Force and power characteristics of an exercise ergometer designed for use in space; and The simulating of overgravity conditions for astronauts' motor apparatus at the conditions of the training for orbital flights.

  9. The different role of sex hormones on female cardiovascular physiology and function: not only oestrogens.

    PubMed

    Salerni, Sara; Di Francescomarino, Samanta; Cadeddu, Christian; Acquistapace, Flavio; Maffei, Silvia; Gallina, Sabina

    2015-06-01

    Human response to different physiologic stimuli and cardiovascular (CV) adaptation to various pathologies seem to be gender specific. Sex-steroid hormones have been postulated as the major contributors towards these sex-related differences. This review will discuss current evidence on gender differences in CV function and remodelling, and will present the different role of the principal sex-steroid hormones on female heart. Starting from a review of sex hormones synthesis, receptors and CV signalling, we will summarize the current knowledge concerning the role of sex hormones on the regulation of our daily activities throughout the life, via the modulation of autonomic nervous system, excitation-contraction coupling pathway and ion channels activity. Many unresolved questions remain even if oestrogen effects on myocardial remodelling and function have been extensively studied. So this work will focus attention also on the controversial and complex relationship existing between androgens, progesterone and female heart.

  10. Ambulatory blood pressure monitoring and cardiovascular function tests in multiple system atrophy.

    PubMed

    Frongillo, D; Stocchi, F; Buccolini, P; Stecconi, P; Viselli, F; Ruggieri, S; Cannata, D

    1995-01-01

    Cardiovascular tests (CT) of autonomic function and non-invasive ambulatory blood pressure (BP) and heart rate (HR) monitoring were performed in 17 patients with multiple system atrophy (MSA) (mean age 61 +/- 9 years) and in 12 healthy subjects matched for sex and age. CT showed severe autonomic dysfunction with orthostatic hypertension (OH) in eight patients with MSA (47%) (Group I). The remaining nine out of the 17 patients didn't show BP abnormalities during CT but an impaired HR reflex response was found (Group II). BP monitoring showed a reversed circadian BP rhythm in Group I with higher night-time than day-time values, a blunted circadian BP pattern in Group II and a normal day-night BP reduction in controls. Day-night HR reduction was poor in Group II and absent in Group I. Post-prandial hypotension was evaluated after a standard meal. In Group I systolic/diastolic BP fell within 30 minutes after meal (from 135 +/- 16/89 +/- 13 to 118 +/- 17/73 +/- 12 mmHg; p < 0.05) and after two hours had not returned to basal levels. In Group II a reduction of only systolic BP was found within 45 minutes after meal and persisted for one hour. OH clinically identifies a subgroup of MSA patients with a more severe BP dysregulation characterized by severe post-prandial hypotension and reversed circadian BP rhythm. CT and ambulatory BP monitoring are useful tools in identifying early stage of cardiovascular autonomic impairment.

  11. Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system.

    PubMed

    Ikeda, Yoshiyuki; Shirakabe, Akihiro; Brady, Christopher; Zablocki, Daniela; Ohishi, Mitsuru; Sadoshima, Junichi

    2015-01-01

    Mitochondria are essential organelles that produce the cellular energy source, ATP. Dysfunctional mitochondria are involved in the pathophysiology of heart disease, which is associated with reduced levels of ATP and excessive production of reactive oxygen species. Mitochondria are dynamic organelles that change their morphology through fission and fusion in order to maintain their function. Fusion connects neighboring depolarized mitochondria and mixes their contents to maintain membrane potential. In contrast, fission segregates damaged mitochondria from intact ones, where the damaged part of mitochondria is subjected to mitophagy whereas the intact part to fusion. It is generally believed that mitochondrial fusion is beneficial for the heart, especially under stress conditions, because it consolidates the mitochondria's ability to supply energy. However, both excessive fusion and insufficient fission disrupt the mitochondrial quality control mechanism and potentiate cell death. In this review, we discuss the role of mitochondrial dynamics and mitophagy in the heart and the cardiomyocytes therein, with a focus on their roles in cardiovascular disease. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".

  12. PPARs, Cardiovascular Metabolism, and Function: Near- or Far-from-Equilibrium Pathways

    PubMed Central

    Lecarpentier, Yves; Claes, Victor; Hébert, Jean-Louis

    2010-01-01

    Peroxisome proliferator-activated receptors (PPAR α, β/δ and γ) play a key role in metabolic regulatory processes and gene regulation of cellular metabolism, particularly in the cardiovascular system. Moreover, PPARs have various extra metabolic roles, in circadian rhythms, inflammation and oxidative stress. In this review, we focus mainly on the effects of PPARs on some thermodynamic processes, which can behave either near equilibrium, or far-from-equilibrium. New functions of PPARs are reported in the arrhythmogenic right ventricular cardiomyopathy, a human genetic heart disease. It is now possible to link the genetic desmosomal abnormalitiy to the presence of fat in the right ventricle, partly due to an overexpression of PPARγ. Moreover, PPARs are directly or indirectly involved in cellular oscillatory processes such as the Wnt-b-catenin pathway, circadian rhythms of arterial blood pressure and cardiac frequency and glycolysis metabolic pathway. Dysfunction of clock genes and PPARγ may lead to hyperphagia, obesity, metabolic syndrome, myocardial infarction and sudden cardiac death, In pathological conditions, regulatory processes of the cardiovascular system may bifurcate towards new states, such as those encountered in hypertension, type 2 diabetes, and heart failure. Numerous of these oscillatory mechanisms, organized in time and space, behave far from equilibrium and are “dissipative structures”. PMID:20706650

  13. Acute effects of COREXIT EC9500A on cardiovascular functions in rats.

    PubMed

    Krajnak, Kristine; Kan, Hong; Waugh, Stacey; Miller, G Roger; Johnson, Claud; Roberts, Jenny R; Goldsmith, William Travis; Jackson, Mark; McKinney, Walter; Frazer, David; Kashon, Michael L; Castranova, Vincent

    2011-01-01

    These studies characterized cardiovascular responses after an acute inhalation exposure to COREXIT EC9500A, the oil dispersant used in the Deepwater Horizon oil spill. Male Sprague-Dawley rats underwent a single 5-h inhalation exposure to COREXIT EC9500A (average exposure level 27.12 mg/m(3)) or air. On d 1 and 7 following the exposure, rats were implanted with indwelling catheters and changes in heart rate and blood pressure were assessed in response to increasing levels of adrenoreceptor agonists. A separate group of rats was euthanized at the same time points, ventral tail arteries were dissected, and vascular tone along with dose-dependent responses to vasoconstricting and dilating factors were assessed in vitro. Agonist-induced dose-dependent increases in heart rate and blood pressure were greater in COREXIT EC9500A-exposed than in air-exposed rats at 1 d but not 7 d after the exposure. COREXIT EC9500A exposure also induced a rise in basal tone and reduced responsiveness of tail arteries to acetylcholine-induced vasodilation at 1 d but not 7 d following the exposure. These findings demonstrate that an acute exposure to COREXIT EC9500A exerts transient effects on cardiovascular and peripheral vascular functions.

  14. Cardiovascular control, autonomic function, and elite endurance performance in spinal cord injury.

    PubMed

    West, C R; Gee, C M; Voss, C; Hubli, M; Currie, K D; Schmid, J; Krassioukov, A V

    2015-08-01

    We aimed to determine the relationship between level of injury, completeness of injury, resting as well as exercise hemodynamics, and endurance performance in athletes with spinal cord injury (SCI). Twenty-three elite male paracycling athletes (C3-T8) were assessed for neurological level/completeness of injury, autonomic completeness of injury, resting cardiovascular function, and time to complete a 17.3-km World Championship time-trial test. A subset were also fitted with heart rate (HR) monitors and their cycles were fitted with a global positioning systems device (n = 15). Thoracic SCI exhibited higher seated systolic blood pressure along with superior time-trial performance compared with cervical SCI (all P < 0.01). When further stratified by autonomic completeness of injury, the four athletes with cervical autonomic incomplete SCI exhibited a faster time-trial time and a higher average speed compared with cervical autonomic complete SCI (all P < 0.042). Maximum and average HR also tended to be higher in cervical autonomic incomplete vs autonomic complete. There were no differences in time-trial time, HR, or speed between thoracic autonomic complete vs incomplete SCI. In conclusion, autonomic completeness of injury and the consequent ability of the cardiovascular system to respond to exercise appear to be a critical determinant of endurance performance in elite athletes with cervical SCI.

  15. Development of cardiovascular function in the marine gastropod Littorina obtusata (Linnaeus).

    PubMed

    Bitterli, Tabitha S; Rundle, Simon D; Spicer, John I

    2012-07-01

    The molluscan cardiovascular system typically incorporates a transient extracardiac structure, the larval heart, early in development, but the functional importance of this structure is unclear. We documented the ontogeny and regulatory ability of the larval heart in relation to two other circulatory structures, the true heart and the velum, in the intertidal gastropod Littorina obtusata. There was a mismatch between the appearance of the larval heart and the velum. Velar lobes appeared early in development (day 4), but the larval heart did not begin beating until day 13. The beating of the larval heart reached a maximum on day 17 and then decreased until the structure itself disappeared (day 24). The true heart began to beat on day 17. Its rate of beating increased as that of the larval heart decreased, possibly suggesting a gradual shift from a larval heart-driven to a true heart-driven circulation. The true heart was not sensitive to acutely declining P(O(2)) shortly after it began to beat, but increased in activity in response to acutely declining P(O(2)) by day 21. Larval heart responses were similar to those of the true heart, with early insensitivity to declining P(O(2)) (day 13) followed by a response by day 15. Increased velum-driven rotational activity under acutely declining P(O(2)) was greatest in early developmental stages. Together, these findings point to cardiovascular function in L. obtusata larvae being the result of a complex interaction between velum, larval and true heart activities, with the functions of the three structures coinciding but their relative importance changing throughout larval development. PMID:22675194

  16. Neuropeptides in cardiovascular control.

    PubMed

    Ganong, W F

    1984-12-01

    Neuropeptides can affect cardiovascular function in various ways. They can serve as cotransmitters in the autonomic nervous system; for example, vasoactive intestinal peptide (VIP) is released with acetylcholine and neuropeptide Y with norepinephrine from postganglionic neurons. Substance P and, presumably, other peptides can can affect cardiovascular function when released near blood vessels by antidromically conducted impulses in branches of stimulated sensory neurons. In the central nervous system, many different neuropeptides appear to function as transmitters or contransmittes in the neural pathways that regulate the cardiovascular system. In addition neuropeptides such as vasopressin and angiotensin II also circulate as hormones that are involved in cardiovascular control. Large doses of exogenous vasopressin are required to increase blood pressure in normal animals because the increase in total peripheral resistance produced by the hormones is accompanied by a decrease in cardiac output. However, studies with synthetic peptides that selectively antagonize the vasopressor action of vasopressin indicate that circulating vasopressin is important in maintaining blood pressure when animals are hypovolemic due to dehydration, haemorrhage or adrenocortical insufficiency. VIP dilates blood vessels and stimulates renin secretion by a direct action on the juxtaglomerular cells. Renin secretion is stimulated when the concentration of VIP in plasma exceeds 75 pmol/litre, and higher values are seen in a number of conditions. Neostigmine, a drug which increases the secretion of endogenous VIP, also increases renin secretion, and this increase is not blocked by renal denervation or propranolol. Thus, VIP may be a physiologically significant renin stimulating hormone.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. THE MITOCHONDRIAL PARADIGM FOR CARDIOVASCULAR DISEASE SUSCEPTIBILITY AND CELLULAR FUNCTION: A COMPLEMENTARY CONCEPT TO MENDELIAN GENETICS

    PubMed Central

    Kryzwanski, David M.; Moellering, Douglas; Fetterman, Jessica L.; Dunham-Snary, Kimberly J.; Sammy, Melissa J.; Ballinger, Scott W.

    2013-01-01

    While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial – nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success. PMID:21647091

  18. Quantification of cardiovascular disease biomarkers via functionalized magnetic beads and on-demand detachable quantum dots.

    PubMed

    Park, Hoyoung; Lee, Jong-Wook; Hwang, Mintai P; Lee, Kwan Hyi

    2013-09-21

    Cardiovascular disease (CVD) is a potent cause of mortality in both advanced and developing countries. While soluble CD40L (sCD40L) has been implicated as a correlative factor among CVD patients, methods to quantify sCD40L are not yet well-established. In this paper, we present an ability to separate and quantify sCD40L via a simple immunomagnetic assay. Composed of functionalized magnetic beads conferred with directionality and on-demand detachable quantum dots for subsequent optical analysis, our system utilizes the competitive nature of imidazole and nickel ions for histidine. In essence, we demonstrate the capacity to effectively separate and detect sCD40L within a clinically relevant range that contains the cut-off value for acute coronary disease. While sCD40L was used to conduct this study, we envision the use of our system for the separation and quantification of other biomarkers. PMID:23893124

  19. Quantification of cardiovascular disease biomarkers via functionalized magnetic beads and on-demand detachable quantum dots

    NASA Astrophysics Data System (ADS)

    Park, Hoyoung; Lee, Jong-Wook; Hwang, Mintai P.; Lee, Kwan Hyi

    2013-08-01

    Cardiovascular disease (CVD) is a potent cause of mortality in both advanced and developing countries. While soluble CD40L (sCD40L) has been implicated as a correlative factor among CVD patients, methods to quantify sCD40L are not yet well-established. In this paper, we present an ability to separate and quantify sCD40L via a simple immunomagnetic assay. Composed of functionalized magnetic beads conferred with directionality and on-demand detachable quantum dots for subsequent optical analysis, our system utilizes the competitive nature of imidazole and nickel ions for histidine. In essence, we demonstrate the capacity to effectively separate and detect sCD40L within a clinically relevant range that contains the cut-off value for acute coronary disease. While sCD40L was used to conduct this study, we envision the use of our system for the separation and quantification of other biomarkers.

  20. Cognitive function in the affective disorders: a prospective study.

    PubMed

    Bulbena, A; Berrios, G E

    1993-01-01

    A prospective, controlled study of 50 subjects confirmed claims that major depression or mania may cause temporary disorders of attention, memory, visuo-spatial function, and choice reaction time, and cause-independently of medication-the appearance of glabellar tap, positive hand-face test, nuchocephalic reflex, and graphesthesia. On follow-up, all these phenomena either disappeared or markedly improved. Age and age of onset, but not pre-morbid intelligence or history of ECT, seemed to modulate the severity of the cognitive impairment. Presence of delusions predicted poor (but reversible) visuo-spatial function. Cognitive impairment accompanied by reversible soft neurological signs was more marked but patients thus affected surprisingly showed lower depressive scores; this was interpreted as representing a secondary, 'organic' form of affective disorder (i.e. a behavioural phenocopy of depression) characterised by a reduced capacity to experience depressive symptoms and by little improvement at follow-up.

  1. [Adipose tissue secretory function: implication in metabolic and cardiovascular complications of obesity].

    PubMed

    Guerre-Millo, Michèle

    2006-01-01

    The adipose tissue exerts a double function that is crucial for energy homeostasis. On the one hand, it is the only organ suited to stock triglycerides in highly specialized cells, the adipocytes. On the other hand, the adipose tissue produces biologically active molecules, collectively named "adipokines", which have been implicated in energy balance and glucose and lipid metabolism. Both adipocytes and cells of the stromal fraction participate in this function of secretion. The adipokines acts locally, in an autocrine or paracrine manner, and distantly (endocrine), on various targets, including muscles, the liver and the hypothalamus. Some adipokines, as TNFalpha and IL6, promote insulin resistance and inflammation, whereas others, as leptin and adiponectin, are required for energy and glucose homeostasis. In obesity, adipose cell hypertrophy and the recruitment of macrophages alter the secretory function and induce an inflammatory profile in the adipose tissue. Analyses of gene expression suggest that hypoxia is one of the factors favoring the attraction of the macrophages. The local and systemic consequences of interactions between macrophages and adipocytes are currently actively studied, to understand their potential implication in the metabolic and cardiovascular complications associated with obesity.

  2. Functional importance of T-type voltage-gated calcium channels in the cardiovascular and renal system: news from the world of knockout mice.

    PubMed

    Hansen, Pernille B L

    2015-02-15

    Over the years, it has been discussed whether T-type calcium channels Cav3 play a role in the cardiovascular and renal system. T-type channels have been reported to play an important role in renal hemodynamics, contractility of resistance vessels, and pacemaker activity in the heart. However, the lack of highly specific blockers cast doubt on the conclusions. As new T-type channel antagonists are being designed, the roles of T-type channels in cardiovascular and renal pathology need to be elucidated before T-type blockers can be clinically useful. Two types of T-type channels, Cav3.1 and Cav3.2, are expressed in blood vessels, the kidney, and the heart. Studies with gene-deficient mice have provided a way to investigate the Cav3.1 and Cav3.2 channels and their role in the cardiovascular system. This review discusses the results from these knockout mice. Evaluation of the literature leads to the conclusion that Cav3.1 and Cav3.2 channels have important, but different, functions in mice. T-type Cav3.1 channels affect heart rate, whereas Cav3.2 channels are involved in cardiac hypertrophy. In the vascular system, Cav3.2 activation leads to dilation of blood vessels, whereas Cav3.1 channels are mainly suggested to affect constriction. The Cav3.1 channel is also involved in neointima formation following vascular damage. In the kidney, Cav3.1 regulates plasma flow and Cav3.2 plays a role setting glomerular filtration rate. In conclusion, Cav3.1 and Cav3.2 are new therapeutic targets in several cardiovascular pathologies, but the use of T-type blockers should be specifically directed to the disease and to the channel subtype.

  3. Forebrain neural patterns associated with sex differences in autonomic and cardiovascular function during baroreceptor unloading.

    PubMed

    Kimmerly, D S; Wong, S; Menon, R; Shoemaker, J K

    2007-02-01

    Generally, women demonstrate smaller autonomic and cardiovascular reactions to stress, compared with men. The mechanism of this sex-dependent difference is unknown, although reduced baroreflex sensitivity may be involved. Recently, we identified a cortical network associated with autonomic cardiovascular responses to baroreceptor unloading in men. The current investigation examined whether differences in the neural activity patterns within this network were related to sex-related physiological responses to lower body negative pressure (LBNP, 5, 15, and 35 mmHg). Forebrain activity in healthy men and women (n = 8 each) was measured using functional magnetic resonance imaging with blood oxygen level-dependent (BOLD) contrast. Stroke volume (SV), heart rate (HR), and muscle sympathetic nerve activity (MSNA) were collected on a separate day. Men had larger decreases in SV than women (P < 0.01) during 35 mmHg LBNP only. At 35 mmHg LBNP, HR increased more in males then females (9 +/- 1 beats/min vs. 4 +/- 1 beats/min, P < 0.05). Compared with women, increases in total MSNA were similar at 15 mmHg LBNP but greater during 35 mmHg LBNP in men [1,067 +/- 123 vs. 658 +/- 103 arbitrary units (au), P < 0.05]. BOLD signal changes (P < 0.005, uncorrected) were identified within discrete forebrain regions associated with these sex-specific HR and MSNA responses. Men had larger increases in BOLD signal within the right insula and dorsal anterior cingulate cortex than women. Furthermore, men demonstrated greater BOLD signal reductions in the right amygdala, left insula, ventral anterior cingulate, and ventral medial prefrontal cortex vs. women. The greater changes in forebrain activity in men vs. women may have contributed to the elevated HR and sympathetic responses observed in men during 35 mmHg LBNP. PMID:17272671

  4. Cardiovascular function, compliance, and connective tissue remodeling in the turtle, Trachemys scripta, following thermal acclimation

    PubMed Central

    Keen, Adam N.; Crossley, Dane A.

    2016-01-01

    Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in

  5. Impaired cardiovascular structure and function in adult survivors of severe acute malnutrition.

    PubMed

    Tennant, Ingrid A; Barnett, Alan T; Thompson, Debbie S; Kips, Jan; Boyne, Michael S; Chung, Edward E; Chung, Andrene P; Osmond, Clive; Hanson, Mark A; Gluckman, Peter D; Segers, Patrick; Cruickshank, J Kennedy; Forrester, Terrence E

    2014-09-01

    Malnutrition below 5 years remains a global health issue. Severe acute malnutrition (SAM) presents in childhood as oedematous (kwashiorkor) or nonoedematous (marasmic) forms, with unknown long-term cardiovascular consequences. We hypothesized that cardiovascular structure and function would be poorer in SAM survivors than unexposed controls. We studied 116 adult SAM survivors, 54 after marasmus, 62 kwashiorkor, and 45 age/sex/body mass index-matched community controls who had standardized anthropometry, blood pressure, echocardiography, and arterial tonometry performed. Left ventricular indices and outflow tract diameter, carotid parameters, and pulse wave velocity were measured, with systemic vascular resistance calculated. All were expressed as SD scores. Mean (SD) age was 28.8±7.8 years (55% men). Adjusting for age, sex, height, and weight, SAM survivors had mean (SE) reductions for left ventricular outflow tract diameter of 0.67 (0.16; P<0.001), stroke volume 0.44 (0.17; P=0.009), cardiac output 0.5 (0.16; P=0.001), and pulse wave velocity 0.32 (0.15; P=0.03) compared with controls but higher diastolic blood pressures (by 4.3; 1.2-7.3 mm Hg; P=0.007). Systemic vascular resistance was higher in marasmus and kwashiorkor survivors (30.2 [1.2] and 30.8 [1.1], respectively) than controls 25.3 (0.8), overall difference 5.5 (95% confidence interval, 2.8-8.4 mm Hg min/L; P<0.0001). No evidence of large vessel or cardiac remodeling was found, except closer relationships between these indices in former marasmic survivors. Other parameters did not differ between SAM survivor groups. We conclude that adult SAM survivors had smaller outflow tracts and cardiac output when compared with controls, yet markedly elevated peripheral resistance. Malnutrition survivors are thus likely to develop excess hypertension in later life, especially when exposed to obesity.

  6. Cardiovascular function, compliance, and connective tissue remodeling in the turtle, Trachemys scripta, following thermal acclimation.

    PubMed

    Keen, Adam N; Shiels, Holly A; Crossley, Dane A

    2016-07-01

    Low temperature directly alters cardiovascular physiology in freshwater turtles, causing bradycardia, arterial hypotension, and a reduction in systemic blood pressure. At the same time, blood viscosity and systemic resistance increase, as does sensitivity to cardiac preload (e.g., via the Frank-Starling response). However, the long-term effects of these seasonal responses on the cardiovascular system are unclear. We acclimated red-eared slider turtles to a control temperature (25°C) or to chronic cold (5°C). To differentiate the direct effects of temperature from a cold-induced remodeling response, all measurements were conducted at the control temperature (25°C). In anesthetized turtles, cold acclimation reduced systemic resistance by 1.8-fold and increased systemic blood flow by 1.4-fold, resulting in a 2.3-fold higher right to left (R-L; net systemic) cardiac shunt flow and a 1.8-fold greater shunt fraction. Following a volume load by bolus injection of saline (calculated to increase stroke volume by 5-fold, ∼2.2% of total blood volume), systemic resistance was reduced while pulmonary blood flow and systemic pressure increased. An increased systemic blood flow meant the R-L cardiac shunt was further pronounced. In the isolated ventricle, passive stiffness was increased following cold acclimation with 4.2-fold greater collagen deposition in the myocardium. Histological sections of the major outflow arteries revealed a 1.4-fold higher elastin content in cold-acclimated animals. These results suggest that cold acclimation alters cardiac shunting patterns with an increased R-L shunt flow, achieved through reducing systemic resistance and increasing systemic blood flow. Furthermore, our data suggests that cold-induced cardiac remodeling may reduce the stress of high cardiac preload by increasing compliance of the vasculature and decreasing compliance of the ventricle. Together, these responses could compensate for reduced systolic function at low temperatures in

  7. Exposure for ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats*

    EPA Science Inventory

    Rationale: Exposure to particulate matter is a risk factor for cardiopulmonary disease but the related molecular mechanisms are poorly understood. Previously we studied cardiovascular responses in healthy WKY rats following inhalation exposure to ultrafine carbon particles (UfCPs...

  8. Pre-Transplant Cardiovascular Risk Factors Affect Kidney Allograft Survival: A Multi-Center Study in Korea

    PubMed Central

    Lee, Jung Pyo; Bae, Eunjin; Kang, Eunjeong; Kim, Hack-Lyoung; Kim, Yong-Jin; Oh, Yun Kyu; Kim, Yon Su; Kim, Young Hoon; Lim, Chun Soo

    2016-01-01

    Background Pre-transplant cardiovascular (CV) risk factors affect the development of CV events even after successful kidney transplantation (KT). However, the impact of pre-transplant CV risk factors on allograft failure (GF) has not been reported. Methods and Findings We analyzed the graft outcomes of 2,902 KT recipients who were enrolled in a multi-center cohort from 1997 to 2012. We calculated the pre-transplant CV risk scores based on the Framingham risk model using age, gender, total cholesterol level, smoking status, and history of hypertension. Vascular disease (a composite of ischemic heart disease, peripheral vascular disease, and cerebrovascular disease) was noted in 6.5% of the patients. During the median follow-up of 6.4 years, 286 (9.9%) patients had developed GF. In the multivariable-adjusted Cox proportional hazard model, pre-transplant vascular disease was associated with an increased risk of GF (HR 2.51; 95% CI 1.66–3.80). The HR for GF (comparing the highest with the lowest tertile regarding the pre-transplant CV risk scores) was 1.65 (95% CI 1.22–2.23). In the competing risk model, both pre-transplant vascular disease and CV risk score were independent risk factors for GF. Moreover, the addition of the CV risk score, the pre-transplant vascular disease, or both had a better predictability for GF compared to the traditional GF risk factors. Conclusions In conclusion, both vascular disease and pre-transplant CV risk score were independently associated with GF in this multi-center study. Pre-transplant CV risk assessments could be useful in predicting GF in KT recipients. PMID:27501048

  9. Psychosocial Work Characteristics Predict Cardiovascular Disease Risk Factors and Health Functioning in Rural Women: The Wisconsin Rural Women's Health Study

    ERIC Educational Resources Information Center

    Chikani, Vatsal; Reding, Douglas; Gunderson, Paul; McCarty, Catherine A.

    2005-01-01

    Background: The aim of the present study is to investigate the association between psychosocial work characteristics and health functioning and cardiovascular disease risk factors among rural women of central Wisconsin and compare psychosocial work characteristics between farm and nonfarm women. Methods: Stratified sampling was used to select a…

  10. Method and apparatus for monitoring dynamic cardiovascular function using n-dimensional representatives of critical functions

    NASA Technical Reports Server (NTRS)

    Westinskow, Dwayne (Inventor); Agutter, James (Inventor); Syroid, Noah (Inventor); Strayer, David (Inventor); Albert, Robert (Inventor); Wachter, S. Blake (Inventor); Drews, Frank (Inventor)

    2010-01-01

    A method, system, apparatus and device for the monitoring, diagnosis and evaluation of the state of a dynamic pulmonary system is disclosed. This method and system provides the processing means for receiving sensed and/or simulated data, converting such data into a displayable object format and displaying such objects in a manner such that the interrelationships between the respective variables can be correlated and identified by a user. This invention provides for the rapid cognitive grasp of the overall state of a pulmonary critical function with respect to a dynamic system.

  11. Influence of Tai Chi exercise cycle on the senile respiratory and cardiovascular circulatory function

    PubMed Central

    Song, Qing-Hua; Xu, Rong-Mei; Shen, Guo-Qing; Zhang, Quan-Hai; Ma, Ming; Zhao, Xin-Ping; Guo, Yan-Hua; Wang, Yi

    2014-01-01

    Objective: Observe the improvement effect of different cycles of Tai Chi exercise on the senile respiratory and cardiovascular circulatory function. Methods: Select 180 elderly men who don’t usually do the fitness exercise and then ask them to do Tai Chi exercise. Test their related indicators respectively prior to exercise and upon exercise for 3 months, 6 months and 12 months. ① The cardiac pump function indicator: “Stroke Volume”, “Ejection Fraction” and “Heart Rate”; ② Rheoencephalogram (REG) indicator: “Inflow time”, “Wave Amplitude”; ③ Pulmonary ventilation indicator: “Vital Capacity” (VC), “Maximum Minute Ventilation” (MMV). Results: ① Compared with the indicators before exercise, each indicator has no significant difference after 3 months of exercise and a part of indicators are improved after 6 months of exercise, but most indicators have no significant differences; ② After 12 months of the exercise, compared with those indicators before exercise, the tested indicators are obviously improved. Specific data indicates that stroke volume (mL) is increased to 71.82 ± 10.93 from 66.21 ± 11.35 and the ejection fraction (%) is improved to 67.89 ± 4.94 from 60.54 ± 5.02, but the heart rate (times/min) is reduced to 67.15 ± 8.39 from 76.62 ± 8.40, mean P<0.05; inflow time (s) is shortened to 0.13 ± 0.04 from 0.17 ± 0.05; the amplitude (Ω) is increased to 1.19 ± 0.23 from 0.97 ± 0.21 before exercise and mean P<0.05; the vital capacity (L) is increased to 3.57 ± 1.39 from 2.84 ± 0.32; maximum minute ventilation (L/min) is improved to 117.25 ± 14.86 from 97.26 ± 14.71, mean P<0.05. Conclusion: The short-term Tai Chi exercise that is less than six months the following 6 months has no significant effect on the senile respiratory and cardiovascular circulatory function, however, with the longer exercise duration, after 12 months’ exercise, it can significantly improve the effect. PMID:24753776

  12. Validation of Spectral Analysis as a Noninvasive Tool to Assess Autonomic Regulation of Cardiovascular Function

    NASA Technical Reports Server (NTRS)

    Knapp, Charles F.; Evans, Joyce M.

    1996-01-01

    A major focus of our program has been to develop a sensitive noninvasive procedure to quantify early weightlessness-induced changes in cardiovascular function or potential dysfunction. Forty studies of healthy young volunteers (10 men and 10 women, each studied twice) were conducted to determine changes in the sympatho-vagal balance of autonomic control of cardiovascular regulation during graded headward and footward blood volume shifts. Changes in sympatho-vagal balance were classified by changes in the mean levels and spectral content of cardiovascular variables and verified by changes in circulating levels of catecholamines and pancreatic polypeptide. Possible shifts in intra/extravascular fluid were assessed from changes in hematocrit and plasma mass density while changes in the stimulus to regulate plasma volume were determined from Plasma Renin Activity (PRA). Autonomic blockade was used to unmask the relative contribution of sympathetic and parasympathetic efferent influences in response to 10 min each of 0, 20 and 40 mmHg Lower Body Negative Pressure (LBNP) and 15 and 30 mmHg Positive Pressure (LBPP). The combination of muscarinic blockade with graded LBNP and LBPP was used to evoke graded increases and decreases in sympathetic activity without parasympathetic contributions. The combination of beta blockade with graded LBNP and LBPP was used to produce graded increases and decreases in parasympathetic activity without beta sympathetic contributions. Finally, a combination of both beta and muscarinic blockades with LBNP and LBPP was used to determine the contribution from other, primarily alpha adrenergic, sources. Mean values, spectral analyses and time frequency analysis of R-R interval (HR), Arterial Pressure (AP), peripheral blood flow (RF), Stroke Volume (SV) and peripheral resistance (TPR) were performed for all phases of the study. Skin blood Flow (SF) was also measured in other studies and similarly analyzed. Spectra were examined for changes in

  13. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine

    PubMed Central

    Hinderer, Svenja; Brauchle, Eva

    2015-01-01

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug‐free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus‐free vascular substitutes that are smaller than 6 mm, and stem cell‐recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off‐the‐shelf biomaterials as well as automatable and up‐scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact‐ and marker‐free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  14. A central function for perlecan in skeletal muscle and cardiovascular development

    PubMed Central

    Zoeller, Jason J.; McQuillan, Angela; Whitelock, John; Ho, Shiu-Ying; Iozzo, Renato V.

    2008-01-01

    Perlecan's developmental functions are difficult to dissect in placental animals because perlecan disruption is embryonic lethal. In contrast to mammals, cardiovascular function is not essential for early zebrafish development because the embryos obtain adequate oxygen by diffusion. In this study, we use targeted protein depletion coupled with protein-based rescue experiments to investigate the involvement of perlecan and its C-terminal domain V/endorepellin in zebrafish development. The perlecan morphants show a severe myopathy characterized by abnormal actin filament orientation and disorganized sarcomeres, suggesting an involvement of perlecan in myopathies. In the perlecan morphants, primary intersegmental vessel sprouts, which develop through angiogenesis, fail to extend and show reduced protrusive activity. Live videomicroscopy confirms the abnormal swimming pattern caused by the myopathy and anomalous head and trunk vessel circulation. The phenotype is partially rescued by microinjection of human perlecan or endorepellin. These findings indicate that perlecan is essential for the integrity of somitic muscle and developmental angiogenesis and that endorepellin mediates most of these biological activities. PMID:18426981

  15. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine.

    PubMed

    Hinderer, Svenja; Brauchle, Eva; Schenke-Layland, Katja

    2015-11-18

    Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted. PMID:25778713

  16. Artificial Gravity with Ergometric Exercise Training Improves Cardiovascular Function in Ambulatory Men

    NASA Astrophysics Data System (ADS)

    Sun, Xi-Qing; Zhu, Chao; Shang, Shu; Yao, Yong-Jie

    2008-06-01

    The necessity of preventing physiological deconditioning in astronauts exposed to long-term space flights is well known. Artificial gravity training via short-arm centrifugation as a countermeasure to microgravity has been considered for many years. However, an optimal duration, level and rate of exposure to artificial gravity have not yet been determined. The purpose of the present study was to investigate the cardiovascular effects of three weeks of intermittent artificial gravity with ergometric exercise training on normal ambulatory men. During 3 weeks experiment, eight healthy male subjects received alternate +1 to +2 Gz (at the foot) short-arm centrifuge training with 30 W ergometric exercise for 30 min per day. Cardiac function, heart rate variability, heart rate and blood pressure were measured before and after training. Stroke volume and total peripheral resistance increased significantly after 3 weeks training, compared with the pre-training baseline. Left ventricular ejection time (LVET) and ejection fraction increased significantly after 3 weeks training, while heart rate, the ratio of pre-ejection period to LVET, and the ratio of low frequency to high frequency power decreased significantly after 3 weeks training. These results suggest that three weeks short-arm centrifuge training with ergometric exercise could improve human cardiac systolic and pumping functions, and increase cardiac vagal modulation.

  17. The matricellular protein thrombospondin-1 globally regulates cardiovascular function and responses to stress via CD47.

    PubMed

    Roberts, David D; Miller, Thomas W; Rogers, Natasha M; Yao, Mingyi; Isenberg, Jeffrey S

    2012-04-01

    Matricellular proteins play diverse roles in modulating cell behavior by engaging specific cell surface receptors and interacting with extracellular matrix proteins, secreted enzymes, and growth factors. Studies of such interactions involving thrombospondin-1 have revealed several physiological functions and roles in the pathogenesis of injury responses and cancer, but the relatively mild phenotypes of mice lacking thrombospondin-1 suggested that thrombospondin-1 would not be a central player that could be exploited therapeutically. Recent research focusing on signaling through its receptor CD47, however, has uncovered more critical roles for thrombospondin-1 in acute regulation of cardiovascular dynamics, hemostasis, immunity, and mitochondrial homeostasis. Several of these functions are mediated by potent and redundant inhibition of the canonical nitric oxide pathway. Conversely, elevated tissue thrombospondin-1 levels in major chronic diseases of aging may account for the deficient nitric oxide signaling that characterizes these diseases, and experimental therapeutics targeting CD47 show promise for treating such chronic diseases as well as acute stress conditions that are associated with elevated thrombospondin-1 expression.

  18. Cardiac Structure and Function in Humans: A New Cardiovascular Physiology Laboratory

    ERIC Educational Resources Information Center

    Song, Su; Burleson, Paul D.; Passo, Stanley; Messina, Edward J.; Levine, Norman; Thompson, Carl I.; Belloni, Francis L.; Recchia, Fabio A.; Ojaimi, Caroline; Kaley, Gabor; Hintze, Thomas H.

    2009-01-01

    As the traditional cardiovascular control laboratory has disappeared from the first-year medical school curriculum, we have recognized the need to develop another "hands-on" experience as a vehicle for wide-ranging discussions of cardiovascular control mechanisms. Using an echocardiograph, an automatic blood pressure cuff, and a reclining bicycle,…

  19. Factors affecting sexual function in menopause: A review article.

    PubMed

    Nazarpour, Soheila; Simbar, Masoumeh; Tehrani, Fahimeh Ramezani

    2016-08-01

    This study aimed to systematically review the articles on factors affecting sexual function during menopause. Searching articles indexed in Pubmed, Science Direct, Iranmedex, EMBASE, Scopus, and Scientific Information Database databases, a total number of 42 studies published between 2003 and 2013 were selected. Age, estrogen deficiency, type of menopause, chronic medical problems, partner's sex problems, severity of menopause symptoms, dystocia history, and health status were the physical factors influencing sexual function of menopausal women. There were conflicting results regarding the amount of androgens, hormonal therapy, exercise/physical activity, and obstetric history. In the mental-emotional area, all studies confirmed the impact of depression and anxiety. Social factors, including smoking, alcohol consumption, the quality of relationship with husband, partner's loyalty, sexual knowledge, access to health care, a history of divorce or the death of a husband, living apart from a spouse, and a negative understanding of women's health were found to affect sexual function; however, there were conflicting results regarding the effects of education, occupation, socioeconomic status, marital duration, and frequency of sexual intercourse. PMID:27590367

  20. Alcohol exposure leads to unrecoverable cardiovascular defects along with edema and motor function changes in developing zebrafish larvae

    PubMed Central

    Li, Xu; Gao, Aiai; Wang, Yanan; Chen, Man; Peng, Jun; Yan, Huaying; Zhao, Xin; Feng, Xizeng

    2016-01-01

    ABSTRACT Maternal alcohol consumption during pregnancy can cause a series of developmental disorders in the fetus called FAS (fetal alcohol syndrome). In the present study we exposed zebrafish embryos to 1% and 2% alcohol and observed the morphology of heart and blood vessels during and after exposure to investigate motor function alterations, and damage and recovery to the cardiovascular system. The results showed that alcohol exposure could induce heart deformation, slower heart rate, and incomplete blood vessels and pericardium. After stopping exposure, larvae exposed to 1% alcohol could recover only in heart morphology, but larvae in 2% alcohol could not recover either morphology or function of cardiovascular system. The edema-like characteristics in the 2% alcohol group became more conspicuous afterwards, with destruction in the dorsal aorta, coarctation in segmental arteries and a decrease in motor function, implying more serious unrecoverable cardiovascular defects in the 2% group. The damaged blood vessels in the 2% alcohol group resulted in an alteration in permeability and a decrease of blood volume, which were the causes of edema in pathology. These findings contribute towards a better understanding of ethanol-induced cardiovascular abnormalities and co-syndrome in patients with FAS, and warns against excessive maternal alcohol consumption during pregnancy. PMID:27422904

  1. Alcohol exposure leads to unrecoverable cardiovascular defects along with edema and motor function changes in developing zebrafish larvae.

    PubMed

    Li, Xu; Gao, Aiai; Wang, Yanan; Chen, Man; Peng, Jun; Yan, Huaying; Zhao, Xin; Feng, Xizeng; Chen, Dongyan

    2016-01-01

    Maternal alcohol consumption during pregnancy can cause a series of developmental disorders in the fetus called FAS (fetal alcohol syndrome). In the present study we exposed zebrafish embryos to 1% and 2% alcohol and observed the morphology of heart and blood vessels during and after exposure to investigate motor function alterations, and damage and recovery to the cardiovascular system. The results showed that alcohol exposure could induce heart deformation, slower heart rate, and incomplete blood vessels and pericardium. After stopping exposure, larvae exposed to 1% alcohol could recover only in heart morphology, but larvae in 2% alcohol could not recover either morphology or function of cardiovascular system. The edema-like characteristics in the 2% alcohol group became more conspicuous afterwards, with destruction in the dorsal aorta, coarctation in segmental arteries and a decrease in motor function, implying more serious unrecoverable cardiovascular defects in the 2% group. The damaged blood vessels in the 2% alcohol group resulted in an alteration in permeability and a decrease of blood volume, which were the causes of edema in pathology. These findings contribute towards a better understanding of ethanol-induced cardiovascular abnormalities and co-syndrome in patients with FAS, and warns against excessive maternal alcohol consumption during pregnancy. PMID:27422904

  2. Sex and the Cardiovascular System: The Intriguing Tale of How Women and Men Regulate Cardiovascular Function Differently

    ERIC Educational Resources Information Center

    Huxley, Virginia H.

    2007-01-01

    The ability to recognize and appreciate from a reproductive standpoint that males and females possess different attributes has been long standing. Only more recently have we begun to look more deeply into both the similarities and differences between men and women, as well as between boys and girls, with respect to the structure and function of…

  3. Microbial composition affects the functioning of estuarine sediments

    PubMed Central

    Reed, Heather E; Martiny, Jennifer BH

    2013-01-01

    Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment's origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments. PMID:23235294

  4. Cardiovascular function in term fetal sheep conceived, gestated and studied in the hypobaric hypoxia of the Andean altiplano.

    PubMed

    Herrera, Emilio A; Rojas, Rodrigo T; Krause, Bernardo J; Ebensperger, Germán; Reyes, Roberto V; Giussani, Dino A; Parer, Julian T; Llanos, Aníbal J

    2016-03-01

    High-altitude hypoxia causes intrauterine growth restriction and cardiovascular programming. However, adult humans and animals that have evolved at altitude show certain protection against the effects of chronic hypoxia. Whether the highland fetus shows similar protection against high altitude gestation is unclear. We tested the hypothesis that high-altitude fetal sheep have evolved cardiovascular compensatory mechanisms to withstand chronic hypoxia that are different from lowland sheep. We studied seven high-altitude (HA; 3600 m) and eight low-altitude (LA; 520 m) pregnant sheep at ∼90% gestation. Pregnant ewes and fetuses were instrumented for cardiovascular investigation. A three-period experimental protocol was performed in vivo: 30 min of basal, 1 h of acute superimposed hypoxia (∼10% O2) and 30 min of recovery. Further, we determined ex vivo fetal cerebral and femoral arterial function. HA pregnancy led to chronic fetal hypoxia, growth restriction and altered cardiovascular function. During acute superimposed hypoxia, LA fetuses redistributed blood flow favouring the brain, heart and adrenals, whereas HA fetuses showed a blunted cardiovascular response. Importantly, HA fetuses have a marked reduction in umbilical blood flow versus LA. Isolated cerebral arteries from HA fetuses showed a higher contractile capacity but a diminished response to catecholamines. In contrast, femoral arteries from HA fetuses showed decreased contractile capacity and increased adrenergic contractility. The blunting of the cardiovascular responses to hypoxia in fetuses raised in the Alto Andino may indicate a change in control strategy triggered by chronic hypoxia, switching towards compensatory mechanisms that are more cost-effective in terms of oxygen uptake.

  5. Bioenergetic function in cardiovascular cells: the importance of the reserve capacity and its biological regulation

    PubMed Central

    Sansbury, Brian E.; Jones, Steven P.; Riggs, Daniel W.; Darley-Usmar, Victor M.; Hill, Bradford G.

    2010-01-01

    The ability of the cell to generate sufficient energy through oxidative phosphorylation and to maintain healthy pools of mitochondria are critical for survival and maintenance of normal biological function, especially during periods of increased oxidative stress. Mitochondria in most cardiovascular cells function at a basal level that only draws upon a small fraction of the total bioenergetic capability of the organelle; the apparent respiratory state of mitochondria in these cells is often close to state 4. The difference between the basal and maximal activity, equivalent to state 3, of the respiratory chain is called the reserve capacity. We hypothesize that the reserve capacity serves the increased energy demands for maintenance of organ function and cellular repair. However, the factors that determine the volume of the reserve capacity and its relevance to biology are not well understood. In this study, we first examined whether responses to 4-hydroxynonenal (HNE), a lipid peroxidation product found in atherosclerotic lesions and the diseased heart, differ between vascular smooth muscle cells, adult mouse cardiomyocytes, and rat neonatal cardiomyocytes. In both types of cardiomyocytes, oxygen consumption increased after HNE treatment, while oxygen consumption in smooth muscle cells decreased. The increase in oxygen consumption in cardiomyocytes decreased the reserve capacity and shifted the apparent respiratory state closer to state 3. Neonatal rat cardiomyocytes respiring on pyruvate alone had a fourfold higher reserve capacity than cells with glucose as the sole substrate, and these cells were more resistant to mitochondrial dysfunction induced by 4-HNE. The integration of the concepts of reserve capacity and state-apparent are discussed along with the proposal of two potential models by which mitochondria respond to stress. PMID:21147079

  6. Circadian regulation of cardiovascular function: a role for vasoactive intestinal peptide

    PubMed Central

    Schroeder, Analyne; Loh, Dawn H.; Jordan, Maria C.; Roos, Kenneth P.

    2011-01-01

    The circadian system, driven by the suprachiasmatic nucleus (SCN), regulates properties of cardiovascular function. The dysfunction of this timing system can result in cardiac pathology. The neuropeptide vasoactive intestinal peptide (VIP) is crucial for circadian rhythms in a number of biological processes including SCN electrical activity and wheel running behavior. Anatomic evidence indicates that SCN neurons expressing VIP are well positioned to drive circadian regulation of cardiac function through interactions with the autonomic centers. In this study, we tested the hypothesis that loss of VIP would result in circadian deficits in heart rate (HR) and clock gene expression in cardiac tissue. We implanted radiotelemetry devices into VIP-deficient mice and wild-type (WT) controls and continuously recorded HR, body temperature, and cage activity in freely moving mice. Under light-dark conditions, VIP-deficient mice displayed weak rhythms in HR, body temperature, and cage activity, with onsets that were advanced in phase compared with WT mice. Similarly, clock gene expression in cardiac tissue was rhythmic but phase advanced in mutant mice. In constant darkness, the normal circadian rhythms in HR were lost in VIP-deficient mice; however, most mutant mice continued to exhibit circadian rhythms of body temperature with shortened free-running period. The loss of VIP altered, but did not abolish, autonomic regulation of HR. Analysis of the echocardiograms did not find any evidence for a loss of cardiac function in VIP-deficient mice, and the size of the hearts did not differ between genotypes. These results demonstrate that VIP is an important regulator of physiological circadian rhythmicity in the heart. PMID:20952671

  7. Orange juice–derived flavanone and phenolic metabolites do not acutely affect cardiovascular risk biomarkers: a randomized, placebo-controlled, crossover trial in men at moderate risk of cardiovascular disease12345

    PubMed Central

    Schär, Manuel Y; Curtis, Peter J; Hazim, Sara; Ostertag, Luisa M; Kay, Colin D; Potter, John F; Cassidy, Aedín

    2015-01-01

    Background: Epidemiologic data suggest inverse associations between citrus flavanone intake and cardiovascular disease (CVD) risk. However, insufficient randomized controlled trial data limit our understanding of the mechanisms by which flavanones and their metabolites potentially reduce cardiovascular risk factors. Objective: We examined the effects of orange juice or a dose-matched hesperidin supplement on plasma concentrations of established and novel flavanone metabolites and their effects on cardiovascular risk biomarkers in men at moderate CVD risk. Design: In an acute, randomized, placebo-controlled crossover trial, 16 fasted participants (aged 51–69 y) received orange juice or a hesperidin supplement (both providing 320 mg hesperidin) or control (all matched for sugar and vitamin C content). At baseline and 5 h postintake, endothelial function (primary outcome), blood pressure, arterial stiffness, cardiac autonomic function, platelet activation, and NADPH oxidase gene expression and plasma flavanone metabolites were assessed. Before each intervention, a diet low in flavonoids, nitrate/nitrite, alcohol, and caffeine was followed, and a standardized low-flavonoid evening meal was consumed. Results: Orange juice intake significantly elevated mean ± SEM plasma concentrations of 8 flavanone (1.75 ± 0.35 μmol/L, P < 0.0001) and 15 phenolic (13.27 ± 2.22 μmol/L, P < 0.0001) metabolites compared with control at 5 h postconsumption. Despite increased plasma flavanone and phenolic metabolite concentrations, cardiovascular risk biomarkers were unaltered. After hesperidin supplement intake, flavanone metabolites were not different from the control, suggesting altered absorption/metabolism compared with the orange juice matrix. Conclusions: After single-dose flavanone intake within orange juice, circulating flavanone and phenolic metabolites collectively reached a concentration of 15.20 ± 2.15 μmol/L, but no effects were observed on cardiovascular risk

  8. Breakfast cereal and caffeinated coffee: effects on working memory, attention, mood, and cardiovascular function.

    PubMed

    Smith, A P; Clark, R; Gallagher, J

    1999-08-01

    This study examined the effects of breakfast cereal and caffeinated coffee on working memory, attention, mood, and cardiovascular function. One hundred and forty-four volunteers (72 male, 72 female, mean age 21 years) were assigned to one of the groups formed by combining breakfast (cereal versus no breakfast) and caffeine (caffeinated versus decaffeinated coffee) conditions. The volunteers completed a baseline session between 0800 and 0845 h. The breakfast/caffeine administration took place between 0845 and 0915 h. They then completed another test session (starting at 0945) and had a coffee break at 1045, followed by a final session starting at 1145. The results showed that those who consumed breakfast cereal had a more positive mood at the start of the test sessions, performed better on a spatial memory task, and felt calmer at the end of the test session than those in the no breakfast condition. Ingestion of caffeine had no effect on initial mood or working memory, but it did improve encoding of new information and counteracted the fatigue that developed over the test session. Caffeine increased blood pressure and pulse rate, whereas breakfast cereal consumption only had an effect on pulse. Overall, these results confirm previous findings on the effects of breakfast and caffeine, and demonstrate distinct profiles for two common examples of early-morning food and drink, breakfast cereal and caffeinated coffee.

  9. Oxygen transport and cardiovascular function at extreme altitude: lessons from Operation Everest II

    NASA Technical Reports Server (NTRS)

    Sutton, J. R.; Reeves, J. T.; Groves, B. M.; Wagner, P. D.; Alexander, J. K.; Hultgren, H. N.; Cymerman, A.; Houston, C. S.

    1992-01-01

    Operation Everest II was designed to examine the physiological responses to gradual decompression simulating an ascent of Mt Everest (8,848 m) to an inspired PO2 of 43 mmHg. The principal studies conducted were cardiovascular, respiratory, muscular-skeletal and metabolic responses to exercise. Eight healthy males aged 21-31 years began the "ascent" and six successfully reached the "summit", where their resting arterial blood gases were PO2 = 30 mmHg and PCO2 = 11 mmHg, pH = 7.56. Their maximal oxygen uptake decreased from 3.98 +/- 0.2 L/min at sea level to 1.17 +/- 0.08 L/min at PIO2 43 mmHg. The principal factors responsible for oxygen transport from the atmosphere to tissues were (1) Alveolar ventilation--a four fold increase. (2) Diffusion from the alveolus to end capillary blood--unchanged. (3) Cardiac function (assessed by hemodynamics, echocardiography and electrocardiography)--normal--although maximum cardiac output and heart rate were reduced. (4) Oxygen extraction--maximal with PvO2 14.8 +/- 1 mmHg. With increasing altitude maximal blood and muscle lactate progressively declined although at any submaximal intensity blood and muscle lactate was higher at higher altitudes.

  10. Antigravity suit inflation: kidney function and cardiovascular and hormonal responses in men.

    PubMed

    Geelen, G; Kravik, S E; Hadj-Aissa, A; Leftheriotis, G; Vincent, M; Bizollon, C A; Sem-Jacobsen, C W; Greenleaf, J E; Gharib, C

    1989-02-01

    To investigate the effects of lower body positive pressure (LBPP) on kidney function while controlling certain cardiovascular and endocrine responses, seven men [35 +/- 2 (SE) yr] underwent 30 min of sitting and then 4.5 h of 70 degrees head-up tilt. An antigravity suit was applied (60 Torr legs, 30 Torr abdomen) during the last 3 h of tilt. A similar noninflation experiment was conducted where the suited subjects were tilted for 3.5 h. To provide adequate urine flow, the subjects were hydrated during the course of both experiments. Immediately after inflation, mean arterial pressure increased by 8 +/- 3 Torr and pulse rate decreased by 16 +/- 3 beats/min. Plasma renin activity and aldosterone were maximally suppressed (P less than 0.05) after 2.5 h of inflation. Plasma vasopressin decreased by 40-50% (P less than 0.05) and plasma sodium and potassium remained unchanged during both experiments. Glomerular filtration rate was not increased significantly by inflation, whereas inflation induced marked increases (P less than 0.05) in effective renal plasma flow (ERPF), urine flow, osmolar and free water clearances, and total and fractional sodium excretion. No such changes occurred during control. Thus, LBPP induces 1) a significant increase in ERPF and 2) significant changes in kidney excretory patterns similar to those observed during water immersion or the early phase of bed rest, situations that also result in central vascular volume expansion.

  11. Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia.

    PubMed

    Zhang, Rongli; Hess, Douglas T; Qian, Zhaoxia; Hausladen, Alfred; Fonseca, Fabio; Chaube, Ruchi; Reynolds, James D; Stamler, Jonathan S

    2015-05-19

    Oxygen delivery by Hb is essential for vertebrate life. Three amino acids in Hb are strictly conserved in all mammals and birds, but only two of those, a His and a Phe that stabilize the heme moiety, are needed to carry O2. The third conserved residue is a Cys within the β-chain (βCys93) that has been assigned a role in S-nitrosothiol (SNO)-based hypoxic vasodilation by RBCs. Under this model, the delivery of SNO-based NO bioactivity by Hb redefines the respiratory cycle as a triune system (NO/O2/CO2). However, the physiological ramifications of RBC-mediated vasodilation are unknown, and the apparently essential nature of βCys93 remains unclear. Here we report that mice with a βCys93Ala mutation are deficient in hypoxic vasodilation that governs blood flow autoregulation, the classic physiological mechanism that controls tissue oxygenation but whose molecular basis has been a longstanding mystery. Peripheral blood flow and tissue oxygenation are decreased at baseline in mutant animals and decline excessively during hypoxia. In addition, βCys93Ala mutation results in myocardial ischemia under basal normoxic conditions and in acute cardiac decompensation and enhanced mortality during transient hypoxia. Fetal viability is diminished also. Thus, βCys93-derived SNO bioactivity is essential for tissue oxygenation by RBCs within the respiratory cycle that is required for both normal cardiovascular function and circulatory adaptation to hypoxia.

  12. Cardiovascular anatomy and cardiac function in the air-breathing swamp eel (Monopterus albus).

    PubMed

    Iversen, Nina K; Lauridsen, Henrik; Do, Thi Thanh Huong; Nguyen, Van Cong; Gesser, Hans; Buchanan, Rasmus; Bayley, Mark; Pedersen, Michael; Wang, Tobias

    2013-01-01

    Monopterus albus, a swamp eel inhabiting the freshwaters of South East Asia, relies on an extensive vascularisation of the buccal cavity, pharynx and anterior oesophagus for gas exchange, while the gills are much reduced. In the present study we describe the macro-circulation in the cephalic region and the vascularisation of the buccal cavity of M. albus using vascular fillings and micro-computed tomography (μCT). We also show that M. albus has the capacity to use the buccal cavity for aquatic gas exchange, being able to maintain normal arterial blood gas composition, blood pressure, heart rate and cardiac output throughout 10h of forced submergence. M. albus therefore can be characterised as a facultative air-breather. Because M. albus aestivates for many months in moist mud during the dry season we characterised in vivo cardiovascular function during exposure to anoxia as well as the effects of anoxia on in vitro contractility of strip preparations from atria and ventricle. Both studies revealed a low anoxia tolerance, rendering it unlikely that M. albus can survive prolonged exposure to anoxia.

  13. The influence of rehydration mode after exercise dehydration on cardiovascular function.

    PubMed

    McDermott, Brendon P; Casa, Douglas J; Lee, Elaine C; Yamamoto, Linda M; Beasley, Kathleen N; Emmanuel, Holly; Pescatello, Linda S; Kraemer, William J; Anderson, Jeffrey M; Armstrong, Lawrence E; Maresh, Carl M

    2013-08-01

    Our purpose was to compare the common modes of rehydration (REHY) on cardiovascular and fluid regulation recovery after exercise dehydration (EXDE). Twelve nonheat-acclimatized trained subjects (age: 23 ± 4 years, weight: 81.3 ± 3.7 kg, height: 180 ± 6 cm, V[Combining Dot Above]O2max: 56.9 ± 4.4 ml·min·kg , and body fat: 7.8 ± 3.0%) completed 20-hour fluid restriction and 2-hour EXDE to -4% body mass, and then were rehydrated to -2% body mass in a randomized, crossover design. The REHY methods included no fluid (NF), ad libitum, oral (OR), intravenous (IV), and a combination of IV and OR (IV + OR) of 1/2-normal saline (0.45% NaCl). The REHY occurred for 30 minutes, and the subjects were observed during rest for 30 minutes. Seated, standing, and mean arterial pressure (MAP) and blood pressure (BP) were measured every 15 minutes throughout REHY. Heart rate (HR), plasma arginine vasopressin concentration [AVP], and thirst perception were measured throughout REHY. The EXDE resulted in a body mass loss of 4.32 ± 0.22%. The REHY returned the subjects to -2.13 ± 0.47% body mass for controlled trials. Seated systolic BP was greater for IV + OR compared with that for OR (p = 0.015). Seated systolic BP and MAP during REHY showed that IV + OR was greater than OR, independent of time (p ≤ 0.011). Upon standing, IV + OR demonstrated a greater BP than both NF (p = 0.012) and OR (p = 0.031) did. The HR was reduced by IV and IV + OR to a greater extent than NF at REHY30 and REHY60 (p < 0.05). The IV + OR [AVP] demonstrated a strong trend for decreasing over time (p = 0.054) and was significantly less than NF at REHY60 (p = 0.003). Practical application seeking to restore cardiovascular function after EXDE, the combined use of IV + OR rather than a single REHY method seems to be most expedient.

  14. Previous exercise training has a beneficial effect on renal and cardiovascular function in a model of diabetes.

    PubMed

    Silva, Kleiton Augusto dos Santos; Luiz, Rafael da Silva; Rampaso, Rodolfo Rosseto; de Abreu, Nayda Parísio; Moreira, Édson Dias; Mostarda, Cristiano Teixeira; De Angelis, Kátia; de Paulo Castro Teixeira, Vicente; Irigoyen, Maria Cláudia; Schor, Nestor

    2012-01-01

    Exercise training (ET) is an important intervention for chronic diseases such as diabetes mellitus (DM). However, it is not known whether previous exercise training intervention alters the physiological and medical complications of these diseases. We investigated the effects of previous ET on the progression of renal disease and cardiovascular autonomic control in rats with streptozotocin (STZ)-induced DM. Male Wistar rats were divided into five groups. All groups were followed for 15 weeks. Trained control and trained diabetic rats underwent 10 weeks of exercise training, whereas previously trained diabetic rats underwent 14 weeks of exercise training. Renal function, proteinuria, renal sympathetic nerve activity (RSNA) and the echocardiographic parameters autonomic modulation and baroreflex sensitivity (BRS) were evaluated. In the previously trained group, the urinary albumin/creatinine ratio was reduced compared with the sedentary diabetic and trained diabetic groups (p<0.05). Additionally, RSNA was normalized in the trained diabetic and previously trained diabetic animals (p<0.05). The ejection fraction was increased in the previously trained diabetic animals compared with the diabetic and trained diabetic groups (p<0.05), and the myocardial performance index was improved in the previously trained diabetic group compared with the diabetic and trained diabetic groups (p<0.05). In addition, the previously trained rats had improved heart rate variability and BRS in the tachycardic response and bradycardic response in relation to the diabetic group (p<0.05). This study demonstrates that previous ET improves the functional damage that affects DM. Additionally, our findings suggest that the development of renal and cardiac dysfunction can be minimized by 4 weeks of ET before the induction of DM by STZ.

  15. BIOAVAILABLE AIR PARTICULATE POLLUTION CONSTITUENTS DIRECTLY ALTER CARDIOVASCULAR FUNCTION EX VIVO

    EPA Science Inventory

    Epidemiological studies have reported associations between particulate air pollution exposure and cardiovascular (CV) effects within susceptible individuals. Particle characteristics and biological mechanisms responsible for these observations are not known. We examined whether s...

  16. Vitamin D and the cardiovascular system.

    PubMed

    Beveridge, L A; Witham, M D

    2013-08-01

    Vitamin D, a secosteroid hormone, affects multiple biological pathways via both genomic and nongenomic signalling. Several pathways have potential benefit to cardiovascular health, including effects on parathyroid hormone, the renin-angiotensin-aldosterone system, vascular endothelial growth factor and cytokine production, as well as direct effects on endothelial cell function and myocyte calcium influx. Observational data supports a link between low vitamin D metabolite levels and cardiovascular health. Cross-sectional data shows associations between low 25-hydroxyvitamin D levels and stroke, myocardial infarction, diabetes mellitus, hypertension, and heart failure. Longitudinal data also suggests a relationship with incident hypertension and new cardiovascular events. However, these associations are potentially confounded by reverse causality and by the effects that other cardiovascular risk factors have on vitamin D metabolite levels. Intervention studies to date suggest a modest antihypertensive effect of vitamin D, no effect on serum lipids, a small positive effect on insulin resistance and fasting glucose, and equivocal actions on arterial stiffness and endothelial function. Analysis of cardiovascular event data collected from osteoporosis trials does not currently show a clear signal for reduced cardiovascular events with vitamin D supplementation, but results may be confounded by the coadministration of calcium, and by the secondary nature of the analyses. Despite mechanistic and observational data that suggest a protective role for vitamin D in cardiovascular disease, intervention studies to date are less promising. Large trials using cardiovascular events as a primary outcome are needed before vitamin D can be recommended as a therapy for cardiovascular disease.

  17. Effects of isotonic and isometric exercises with mist sauna bathing on cardiovascular, thermoregulatory, and metabolic functions.

    PubMed

    Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Sugenoya, Junichi; Miwa, Chihiro; Takada, Masumi

    2014-08-01

    To clarify the effects of isometric and isotonic exercise during mist sauna bathing on the cardiovascular function, thermoregulatory function, and metabolism, six healthy young men (22 ± 1 years old, height 173 ± 4 cm, weight 65.0 ± 5.0 kg) were exposed to a mist sauna for 10 min at a temperature of 40 °C, and relative humidity of 100 % while performing or not performing ∼30 W of isometric or isotonic exercise. The effect of the exercise was assessed by measuring tympanic temperature, heart rate, systolic and diastolic blood pressure, chest sweat rate, chest skin blood flow, and plasma catecholamine and cortisol, glucose, lactate, and free fatty acid levels. Repeated measures ANOVA showed no significant differences in blood pressure, skin blood flow, sweat rate, and total amount of sweating. Tympanic temperature increased more during isotonic exercise, and heart rate increase was more marked during isotonic exercise. The changes in lactate indicated that fatigue was not very great during isometric exercise. The glucose level indicated greater energy expenditure during isometric exercise. The free fatty acid and catecholamine levels indicated that isometric exercise did not result in very great energy expenditure and stress, respectively. The results for isotonic exercise of a decrease in lactate level and an increase in plasma free fatty acid level indicated that fatigue and energy expenditure were rather large while the perceived stress was comparatively low. We concluded that isotonic exercise may be a more desirable form of exercise during mist sauna bathing given the changes in glucose and free fatty acid levels.

  18. Effects of isotonic and isometric exercises with mist sauna bathing on cardiovascular, thermoregulatory, and metabolic functions

    NASA Astrophysics Data System (ADS)

    Iwase, Satoshi; Kawahara, Yuko; Nishimura, Naoki; Nishimura, Rumiko; Sugenoya, Junichi; Miwa, Chihiro; Takada, Masumi

    2014-08-01

    To clarify the effects of isometric and isotonic exercise during mist sauna bathing on the cardiovascular function, thermoregulatory function, and metabolism, six healthy young men (22 ± 1 years old, height 173 ± 4 cm, weight 65.0 ± 5.0 kg) were exposed to a mist sauna for 10 min at a temperature of 40 °C, and relative humidity of 100 % while performing or not performing ˜30 W of isometric or isotonic exercise. The effect of the exercise was assessed by measuring tympanic temperature, heart rate, systolic and diastolic blood pressure, chest sweat rate, chest skin blood flow, and plasma catecholamine and cortisol, glucose, lactate, and free fatty acid levels. Repeated measures ANOVA showed no significant differences in blood pressure, skin blood flow, sweat rate, and total amount of sweating. Tympanic temperature increased more during isotonic exercise, and heart rate increase was more marked during isotonic exercise. The changes in lactate indicated that fatigue was not very great during isometric exercise. The glucose level indicated greater energy expenditure during isometric exercise. The free fatty acid and catecholamine levels indicated that isometric exercise did not result in very great energy expenditure and stress, respectively. The results for isotonic exercise of a decrease in lactate level and an increase in plasma free fatty acid level indicated that fatigue and energy expenditure were rather large while the perceived stress was comparatively low. We concluded that isotonic exercise may be a more desirable form of exercise during mist sauna bathing given the changes in glucose and free fatty acid levels.

  19. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.

  20. Bisphenol A affects androgen receptor function via multiple mechanisms

    PubMed Central

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B. Alex; Jetten, Anton M.; Austin, Christopher, P.; Tice, Raymond R.

    2013-01-01

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. PMID:23562765

  1. Statin adherence and risk of acute cardiovascular events among women: a cohort study accounting for time-dependent confounding affected by previous adherence

    PubMed Central

    Lavikainen, Piia; Helin-Salmivaara, Arja; Eerola, Mervi; Fang, Gang; Hartikainen, Juha; Huupponen, Risto; Korhonen, Maarit Jaana

    2016-01-01

    Objectives Previous studies on the effect of statin adherence on cardiovascular events in the primary prevention of cardiovascular disease have adjusted for time-dependent confounding, but potentially introduced bias into their estimates as adherence and confounders were measured simultaneously. We aimed to evaluate the effect when accounting for time-dependent confounding affected by previous adherence as well as time sequence between factors. Design Retrospective cohort study. Setting Finnish healthcare registers. Participants Women aged 45–64 years initiating statin use for primary prevention of cardiovascular disease in 2001–2004 (n=42 807). Outcomes Acute cardiovascular event defined as a composite of acute coronary syndrome and acute ischaemic stroke was our primary outcome. Low-energy fractures were used as a negative control outcome to evaluate the healthy-adherer effect. Results During the 3-year follow-up, 474 women experienced the primary outcome event and 557 suffered a low-energy fracture. The causal HR estimated with marginal structural model for acute cardiovascular events for all the women who remained adherent (proportion of days covered ≥80%) to statin therapy during the previous adherence assessment year was 0.78 (95% CI: 0.65 to 0.94) when compared with everybody remaining non-adherent (proportion of days covered <80%). The result was robust against alternative model specifications. Statin adherers had a potentially reduced risk of experiencing low-energy fractures compared with non-adherers (HR 0.90, 95% CI 0.76 to 1.07). Conclusions Our study, which took into account the time dependence of adherence and confounders, as well as temporal order between these factors, is support for the concept that adherence to statins in women in primary prevention decreases the risk of acute cardiovascular events by about one-fifth in comparison to non-adherence. However, part of the observed effect of statin adherence on acute cardiovascular events

  2. The predictive value of arterial stiffness on major adverse cardiovascular events in individuals with mildly impaired renal function

    PubMed Central

    Han, Jie; Wang, Xiaona; Ye, Ping; Cao, Ruihua; Yang, Xu; Xiao, Wenkai; Zhang, Yun; Bai, Yongyi; Wu, Hongmei

    2016-01-01

    Objectives Despite growing evidence that arterial stiffness has important predictive value for cardiovascular disease in patients with advanced stages of chronic kidney disease, the predictive significance of arterial stiffness in individuals with mildly impaired renal function has not been established. The aim of this study was to evaluate the predictive value of arterial stiffness on cardiovascular disease in this specific population. Materials and methods We analyzed measurements of arterial stiffness (carotid–femoral pulse-wave velocity [cf-PWV]) and the incidence of major adverse cardiovascular events (MACEs) in 1,499 subjects from a 4.8-year longitudinal study. Results A multivariate Cox proportional-hazard regression analysis showed that in individuals with normal renal function (estimated glomerular filtration rate [eGFR] ≥90 mL/min/1.73 m2), the baseline cf-PWV was not associated with occurrence of MACEs (hazard ratio 1.398, 95% confidence interval 0.748–2.613; P=0.293). In individuals with mildly impaired renal function (eGFR <90 mL/min/1.73 m2), a higher baseline cf-PWV level was associated with a higher risk of MACEs (hazard ratio 2.334, 95% confidence interval 1.082–5.036; P=0.031). Conclusion Arterial stiffness is a moderate and independent predictive factor for MACEs in individuals with mildly impaired renal function (eGFR <90 mL/min/1.73 m2). PMID:27621605

  3. The predictive value of arterial stiffness on major adverse cardiovascular events in individuals with mildly impaired renal function

    PubMed Central

    Han, Jie; Wang, Xiaona; Ye, Ping; Cao, Ruihua; Yang, Xu; Xiao, Wenkai; Zhang, Yun; Bai, Yongyi; Wu, Hongmei

    2016-01-01

    Objectives Despite growing evidence that arterial stiffness has important predictive value for cardiovascular disease in patients with advanced stages of chronic kidney disease, the predictive significance of arterial stiffness in individuals with mildly impaired renal function has not been established. The aim of this study was to evaluate the predictive value of arterial stiffness on cardiovascular disease in this specific population. Materials and methods We analyzed measurements of arterial stiffness (carotid–femoral pulse-wave velocity [cf-PWV]) and the incidence of major adverse cardiovascular events (MACEs) in 1,499 subjects from a 4.8-year longitudinal study. Results A multivariate Cox proportional-hazard regression analysis showed that in individuals with normal renal function (estimated glomerular filtration rate [eGFR] ≥90 mL/min/1.73 m2), the baseline cf-PWV was not associated with occurrence of MACEs (hazard ratio 1.398, 95% confidence interval 0.748–2.613; P=0.293). In individuals with mildly impaired renal function (eGFR <90 mL/min/1.73 m2), a higher baseline cf-PWV level was associated with a higher risk of MACEs (hazard ratio 2.334, 95% confidence interval 1.082–5.036; P=0.031). Conclusion Arterial stiffness is a moderate and independent predictive factor for MACEs in individuals with mildly impaired renal function (eGFR <90 mL/min/1.73 m2).

  4. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  5. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing. PMID:20336685

  6. Functional roles affect diversity-succession relationships for boreal beetles.

    PubMed

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  7. The effect of passive heating and head cooling on perception, cardiovascular function and cognitive performance in the heat.

    PubMed

    Simmons, Shona E; Saxby, Brian K; McGlone, Francis P; Jones, David A

    2008-09-01

    The present study examined the effects of raising both skin temperature and core temperature, separately and in combination, on perceptions of heat-related fatigue (alertness, contentment, calmness and thermal comfort), cardiovascular function and on objective measures of cognitive performance (reaction time and accuracy). Ten (six males) subjects had cognitive performance assessed in three conditions; at low skin and low core temperature (LL), at high skin and low core temperature (HL) and at high skin and high core temperatures (HH). In one trial, subjects had their head and neck cooled (HC); the other trial was a control (CON). Raising skin temperature increased heart rate and decreased perception of thermal comfort (P < 0.05), whereas raising both skin and core temperature decreased perception of heat-related fatigue (P < 0.05) and increased cardiovascular strain (P < 0.05) resulting in decrements in cognitive performance shown by faster reaction times (P < 0.05) and a loss of accuracy (P < 0.05). At high skin and core temperatures, cooling the head and neck improved feelings of heat-related fatigue (P < 0.05) and cardiovascular strain (P < 0.05), but had no effect on cognitive performance. In conclusion, the results of this study suggest that feelings of heat-related fatigue and cardiovascular strain can be attributed to a combination of elevated skin and core body temperature, whereas decrements in cognitive performance can be attributed to an elevated core temperature.

  8. To what extent does urbanisation affect fragmented grassland functioning?

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban

  9. To what extent does urbanisation affect fragmented grassland functioning?

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban

  10. Forebrain regions associated with postexercise differences in autonomic and cardiovascular function during baroreceptor unloading.

    PubMed

    Kimmerly, D S; Wong, S W; Salzer, D; Menon, R; Shoemaker, J K

    2007-07-01

    The cortical regions representing peripheral autonomic reactions in humans are poorly understood. This study examined whether changes in forebrain activity were associated with the altered physiological responses to lower body negative pressure (LBNP) following a single bout of dynamic exercise (POST-EX). We hypothesized that, compared with the nonexercised condition (NO-EX), POST-EX would elicit greater reductions in stroke volume (SV) and larger increases in heart rate (HR) and muscle sympathetic nerve activity (MSNA) during LBNP (5, 15, and 35 mmHg). Forebrain neural activity (n = 11) was measured using blood oxygen level-dependent (BOLD) functional magnetic resonance imaging. HR, SV, arterial blood pressure (ABP), and MSNA were collected separately. Compared with NO-EX, baseline ABP was reduced, whereas HR and total vascular conductance (TVC) were elevated in POST-EX (P < 0.05). In both conditions, 5 mmHg LBNP did not elicit a change (from baseline) in any physiological parameter. Compared with NO-EX, 35 mmHg LBNP-mediated decreases in SV and TVC produced greater increases in HR and MSNA during POST-EX (P < 0.05). The right posterior insula and dorsal anterior cingulate cortex demonstrated a larger decrease in BOLD at 5 mmHg LBNP but greater BOLD increase at 15 and 35 mmHg LBNP POST-EX vs. NO-EX (P < 0.005). Conversely, the thalamus and ventral medial prefrontal cortex displayed the opposite BOLD activity pattern (i.e., larger increase at 5 mmHg LBNP but greater decrease at 15 and 35 mmHg LBNP POST-EX vs. NO-EX). Our findings suggest that discrete forebrain regions may be involved with the generation of baroreflex-mediated sympathetic and cardiovascular responses elicited by moderate LBNP. PMID:17351074

  11. Functionalization of gadolinium metallofullerenes for detecting atherosclerotic plaque lesions by cardiovascular magnetic resonance

    PubMed Central

    2013-01-01

    Background The hallmark of atherosclerosis is the accumulation of plaque in vessel walls. This process is initiated when monocytic cells differentiate into macrophage foam cells under conditions with high levels of atherogenic lipoproteins. Vulnerable plaque can dislodge, enter the blood stream, and result in acute myocardial infarction and stroke. Imaging techniques such as cardiovascular magnetic resonance (CMR) provides one strategy to identify patients with plaque accumulation. Methods We synthesized an atherosclerotic-targeting contrast agent (ATCA) in which gadolinium (Gd)-containing endohedrals were functionalized and formulated into liposomes with CD36 ligands intercalated into the lipid bilayer. In vitro assays were used to assess the specificity of the ATCA for foam cells. The ability of ATCA to detect atherosclerotic plaque lesions in vivo was assessed using CMR. Results The ATCA was able to detect scavenger receptor (CD36)-expressing foam cells in vitro and were specifically internalized via the CD36 receptor as determined by focused ion beam/scanning electron microscopy (FIB-SEM) and Western blotting analysis of CD36 receptor-specific signaling pathways. The ATCA exhibited time-dependent accumulation in atherosclerotic plaque lesions of ApoE −/− mice as determined using CMR. No ATCA accumulation was observed in vessels of wild type (C57/b6) controls. Non-targeted control compounds, without the plaque-targeting moieties, were not taken up by foam cells in vitro and did not bind plaque in vivo. Importantly, the ATCA injection was well tolerated, did not demonstrate toxicity in vitro or in vivo, and no accumulation was observed in the major organs. Conclusions The ATCA is specifically internalized by CD36 receptors on atherosclerotic plaque providing enhanced visualization of lesions under physiological conditions. These ATCA may provide new tools for physicians to non-invasively detect atherosclerotic disease. PMID:23324435

  12. Distribution and function of peripheral alpha-adrenoceptors in the cardiovascular system.

    PubMed

    Ruffolo, R R

    1985-05-01

    alpha-Adrenoceptors may be subdivided based on their anatomical distribution within the synapse. Presynaptic alpha-adrenoceptors are generally of the alpha 2-subtype and modulate neurotransmitter liberation via a negative feedback mechanism. Postsynaptic alpha-adrenoceptors are usually of the alpha 1-subtype and mediate the response of the effector organ. Although this "anatomical" subclassification is generally applicable, many exceptions exist. A more useful classification of alpha-adrenoceptor subtypes is based on a pharmacological characterization in which selective agonists and antagonists are used. Peripheral alpha-adrenoceptors are critical in the regulation of the cardiovascular system. Postsynaptic alpha-adrenoceptors in arteries and veins represent a mixed population of alpha 1/alpha 2-adrenoceptors, with both subtypes mediating vasoconstriction. In the peripheral arterial circulation, postsynaptic vascular alpha 1-adrenoceptors are found in the adrenergic neuroeffector junction, whereas postsynaptic vascular alpha 2-adrenoceptors are located extrajunctionally. In the venous circulation, it appears that alpha 2-adrenoceptors may be predominantly junctional, whereas alpha 1-adrenoceptors may be predominantly extrajunctional. It has been proposed that junctional alpha-adrenoceptors will respond predominantly to norepinephrine liberated from sympathetic neurons, whereas extrajunctional alpha-adrenoceptors likely respond to circulating catecholamines. The functional role of extrajunctional alpha-adrenoceptors may be more important in disease states such as hypertension and congestive heart failure where circulating levels of catecholamines may be high and contribute to the maintenance of elevated vascular resistance. alpha 2-Adrenoceptors are also associated with the intima and may play a role in the release of an endogenous relaxing factor from the endothelium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2989947

  13. Hydrogen sulfide regulates cardiovascular function by influencing the excitability of subfornical organ neurons.

    PubMed

    Kuksis, Markus; Smith, Pauline M; Ferguson, Alastair V

    2014-01-01

    Hydrogen sulfide (H2S), a gasotransmitter endogenously found in the central nervous system, has recently been suggested to act as a signalling molecule in the brain having beneficial effects on cardiovascular function. This study was thus undertaken to investigate the effect of NaHS (an H2S donor) in the subfornical organ (SFO), a central nervous system site important to blood pressure regulation. We used male Sprague-Dawley rats for both in vivo and in vitro experiments. We first used RT-PCR to confirm our previous microarray analyses showing that mRNAs for the enzymes required to produce H2S are expressed in the SFO. We then used microinjection techniques to investigate the physiological effects of NaHS in SFO, and found that NaHS microinjection (5 nmol) significantly increased blood pressure (mean AUC = 853.5±105.7 mmHg*s, n = 5). Further, we used patch-clamp electrophysiology and found that 97.8% (88 of 90) of neurons depolarized in response to NaHS. This response was found to be concentration dependent with an EC50 of 35.6 µM. Coupled with the depolarized membrane potential, we observed an overall increase in neuronal excitability using an analysis of rheobase and action potential firing patterns. This study has provided the first evidence of NaHS and thus H2S actions and their cellular correlates in SFO, implicating this brain area as a site where H2S may act to control blood pressure.

  14. Clinical and Biochemical Markers of Cardiovascular Structure and Function in Women With the Metabolic Syndrome.

    PubMed

    Velarde, Gladys P; Sherazi, Saadia; Kraemer, Dale F; Bravo-Jaimes, Katia; Butterfield, Ryan; Amico, Tonja; Steinmetz, Sherry D; Guzman, Maricela; Martin, Dale; Dodani, Sunita; Smith, Brian H

    2015-12-01

    The pathobiological impact of individual components of the metabolic syndrome (MS) on cardiac structural and functional parameters in women with isolated MS is not known. The objectives of this study were (1) to compare biochemical (prothrombotic, lipogenic, and inflammatory) and imaging (carotid intima-media thickening and basic cardiac structural measurements) markers in women with and without MS and (2) to examine if any of these markers associated or predicted cardiac structural differences between the 2 groups. This cross-sectional pilot study included 88 women with MS and 35 women without it. MS was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Patients with diagnosis of diabetes were excluded. Compared with healthy subjects, women with MS had higher levels of intercellular adhesion molecule, myeloperoxidase, C-reactive protein, plasminogen activator inhibitor-1, leptin, apolipoprotein-B, and lower levels of apolipoprotein-A1 (p <0.001 for all). They also had higher mean ventricular septum, posterior wall thickness, left ventricular (LV) mass, carotid intima-media thickness (p <0.001 for all), and left atrial diameter (p = 0.015). In multivariable regression models, waist circumference and systolic blood pressure (BP) were significant predictors of: ventricular septum (p = 0.005 and p = 0.001, respectively), posterior wall thickness (p = 0.008 and p = 0.040, respectively), and LV mass (p <0.001 and p = 0.013, respectively). Significant predictors for carotid intima-media thickness were systolic BP, glucose, and leptin (p <0.0001, p = 0.034, and p = 0.002, respectively). In conclusion, there are significant clinical, biochemical, and cardiovascular structural differences in women with isolated MS compared with those without. Waist circumference and systolic BP had the strongest association with cardiac structural differences in this group of women.

  15. Hydrogen Sulfide Regulates Cardiovascular Function by Influencing the Excitability of Subfornical Organ Neurons

    PubMed Central

    Kuksis, Markus; Smith, Pauline M.; Ferguson, Alastair V.

    2014-01-01

    Hydrogen sulfide (H2S), a gasotransmitter endogenously found in the central nervous system, has recently been suggested to act as a signalling molecule in the brain having beneficial effects on cardiovascular function. This study was thus undertaken to investigate the effect of NaHS (an H2S donor) in the subfornical organ (SFO), a central nervous system site important to blood pressure regulation. We used male Sprague-Dawley rats for both in vivo and in vitro experiments. We first used RT-PCR to confirm our previous microarray analyses showing that mRNAs for the enzymes required to produce H2S are expressed in the SFO. We then used microinjection techniques to investigate the physiological effects of NaHS in SFO, and found that NaHS microinjection (5 nmol) significantly increased blood pressure (mean AUC = 853.5±105.7 mmHg*s, n = 5). Further, we used patch-clamp electrophysiology and found that 97.8% (88 of 90) of neurons depolarized in response to NaHS. This response was found to be concentration dependent with an EC50 of 35.6 µM. Coupled with the depolarized membrane potential, we observed an overall increase in neuronal excitability using an analysis of rheobase and action potential firing patterns. This study has provided the first evidence of NaHS and thus H2S actions and their cellular correlates in SFO, implicating this brain area as a site where H2S may act to control blood pressure. PMID:25144759

  16. Clinical and Biochemical Markers of Cardiovascular Structure and Function in Women With the Metabolic Syndrome.

    PubMed

    Velarde, Gladys P; Sherazi, Saadia; Kraemer, Dale F; Bravo-Jaimes, Katia; Butterfield, Ryan; Amico, Tonja; Steinmetz, Sherry D; Guzman, Maricela; Martin, Dale; Dodani, Sunita; Smith, Brian H

    2015-12-01

    The pathobiological impact of individual components of the metabolic syndrome (MS) on cardiac structural and functional parameters in women with isolated MS is not known. The objectives of this study were (1) to compare biochemical (prothrombotic, lipogenic, and inflammatory) and imaging (carotid intima-media thickening and basic cardiac structural measurements) markers in women with and without MS and (2) to examine if any of these markers associated or predicted cardiac structural differences between the 2 groups. This cross-sectional pilot study included 88 women with MS and 35 women without it. MS was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Patients with diagnosis of diabetes were excluded. Compared with healthy subjects, women with MS had higher levels of intercellular adhesion molecule, myeloperoxidase, C-reactive protein, plasminogen activator inhibitor-1, leptin, apolipoprotein-B, and lower levels of apolipoprotein-A1 (p <0.001 for all). They also had higher mean ventricular septum, posterior wall thickness, left ventricular (LV) mass, carotid intima-media thickness (p <0.001 for all), and left atrial diameter (p = 0.015). In multivariable regression models, waist circumference and systolic blood pressure (BP) were significant predictors of: ventricular septum (p = 0.005 and p = 0.001, respectively), posterior wall thickness (p = 0.008 and p = 0.040, respectively), and LV mass (p <0.001 and p = 0.013, respectively). Significant predictors for carotid intima-media thickness were systolic BP, glucose, and leptin (p <0.0001, p = 0.034, and p = 0.002, respectively). In conclusion, there are significant clinical, biochemical, and cardiovascular structural differences in women with isolated MS compared with those without. Waist circumference and systolic BP had the strongest association with cardiac structural differences in this group of women. PMID:26482181

  17. Function of remote non-infarcted myocardium after STEMI: analysis with cardiovascular magnetic resonance.

    PubMed

    Husser, Oliver; Chaustre, Fabian; Sanchis, Juan; Nunez, Julio; Monmeneu, Jose V; Lopez-Lereu, Maria P; Bonanad, Clara; Gomez, Cristina; Oltra, Ricardo; Llacer, Angel; Riegger, Günter A J; Chorro, Francisco J; Bodi, Vicente

    2012-12-01

    To evaluate remote myocardial function after ST-elevation myocardial infarction (STEMI) and the impact of infarct size (IS) using cardiovascular magnetic resonance (CMR). 161 patients and 15 controls underwent CMR at 1st week and 6th month after STEMI. Using the 17-segments model, segments were categorized into infarcted, adjacent and remote myocardium. Relative systolic wall thickening (SWT, %) was assessed using the centerline method. IS (% of left ventricular mass) was determined in late enhancement imaging. Overall, in remote myocardium, SWT was comparable (83 ± 32) to controls (77 ± 25, P = .5) and did not increase significantly (P = .2) at the 6th month (88 ± 35, P = .3 vs. control). When IS was categorized into tertiles (<13.6%, (n = 49), 13.7-28.2%, (n = 60), >28.2%, (n = 52)), SWT in the remote area at the 1st week was not different from controls, regardless of infarct size (p between .2 and .8 for all tertiles). At 6 months, SWT was larger compared to controls only in small infarctions (98 ± 34 vs. 77 ± 25, P = .03). In medium and large infarctions there was no difference in SWT of the remote area compared to controls (87 ± 33 and 79 ± 34, P = .3 and P = .09) and there was no significant increase at 6 months (P between .2 and .9). In remote myocardium there was no difference in contractility compared to controls after STEMI. After 6 month a slight hypercontractility can only be observed in small infarctions. In medium and large infarctions no difference of SWT in remote myocardium compared to controls can be observed.

  18. Ingestion of sodium plus water improves cardiovascular function and performance during dehydrating cycling in the heat.

    PubMed

    Hamouti, N; Fernández-Elías, V E; Ortega, J F; Mora-Rodriguez, R

    2014-06-01

    We studied if salt and water ingestion alleviates the physiological strain caused by dehydrating exercise in the heat. Ten trained male cyclists (VO2max : 60 ± 7 mL/kg/min) completed three randomized trials in a hot-dry environment (33 °C, 30% rh, 2.5 m/s airflow). Ninety minutes before the exercise, participants ingested 10 mL of water/kg body mass either alone (CON trial) or with salt to result in concentrations of 82 or 164 mM Na(+) (ModNa(+) or HighNa(+) trial, respectively). Then, participants cycled at 63% of VO2 m ⁢ a x for 120 min immediately followed by a time-trial. After 120 min of exercise, the reduction in plasma volume was lessened with ModNa(+) and HighNa(+) trials (-11.9 ± 2.1 and -9.8 ± 4.2%) in comparison with CON (-16.4 ± 3.2%; P < 0.05). However, heat accumulation or dissipation (forearm skin blood flow and sweat rate) were not improved by salt ingestion. In contrast, both salt trials maintained cardiac output (∼ 1.3 ± 1.4 L/min; P < 0.05) and stroke volume (∼ 10 ± 11 mL/beat; P < 0.05) above CON after 120 min of exercise. Furthermore, the salt trials equally improved time-trial performance by 7.4% above CON (∼ 289 ± 42 vs 269 ± 50 W, respectively; P < 0.05). Our data suggest that pre-exercise ingestion of salt plus water maintains higher plasma volume during dehydrating exercise in the heat without thermoregulatory effects. However, it maintains cardiovascular function and improves cycling performance.

  19. Hydralazine administration activates sympathetic preganglionic neurons whose activity mobilizes glucose and increases cardiovascular function.

    PubMed

    Parker, Lindsay M; Damanhuri, Hanafi A; Fletcher, Sophie P S; Goodchild, Ann K

    2015-04-16

    Hypotensive drugs have been used to identify central neurons that mediate compensatory baroreceptor reflex responses. Such drugs also increase blood glucose. Our aim was to identify the neurochemical phenotypes of sympathetic preganglionic neurons (SPN) and adrenal chromaffin cells activated following hydralazine (HDZ; 10mg/kg) administration in rats, and utilize this and SPN target organ destination to ascribe their function as cardiovascular or glucose regulating. Blood glucose was measured and adrenal chromaffin cell activation was assessed using c-Fos immunoreactivity (-ir) and phosphorylation of tyrosine hydroxylase, respectively. The activation and neurochemical phenotype of SPN innervating the adrenal glands and celiac ganglia were determined using the retrograde tracer cholera toxin B subunit, in combination with in situ hybridization and immunohistochemistry. Blood glucose was elevated at multiple time points following HDZ administration but little evidence of chromaffin cell activation was seen suggesting non-adrenal mechanisms contribute to the sustained hyperglycemia. 16±0.1% of T4-T11 SPN contained c-Fos and of these: 24.3±1.4% projected to adrenal glands and 29±5.5% projected to celiac ganglia with the rest innervating other targets. 62.8±1.4% of SPN innervating adrenal glands were activated and 29.9±3.3% expressed PPE mRNA whereas 53.2±8.6% of SPN innervating celiac ganglia were activated and 31.2±8.8% expressed PPE mRNA. CART-ir SPN innervating each target were also activated and did not co-express PPE mRNA. Neurochemical coding reveals that HDZ administration activates both PPE+SPN, whose activity increase glucose mobilization causing hyperglycemia, as well as CART+SPN whose activity drive vasomotor responses mediated by baroreceptor unloading to raise vascular tone and heart rate.

  20. Integrating Negative Affect Measures in a Measurement Model: Assessing the Function of Negative Affect as Interference to Self-Regulation

    ERIC Educational Resources Information Center

    Magno, Carlo

    2010-01-01

    The present study investigated the composition of negative affect and its function as inhibitory to thought processes such as self-regulation. Negative affect in the present study were composed of anxiety, worry, thought suppression, and fear of negative evaluation. These four factors were selected based on the criteria of negative affect by…

  1. Does Ramadan Fasting Adversely Affect Cognitive Function in Young Females?

    PubMed Central

    Ghayour Najafabadi, Mahboubeh; Rahbar Nikoukar, Laya; Memari, Amir; Ekhtiari, Hamed; Beygi, Sara

    2015-01-01

    We examined the effects of Ramadan fasting on cognitive function in 17 female athletes. Data were obtained from participants of two fasting (n = 9) and nonfasting (n = 8) groups at three periods of the study (before Ramadan, at the third week in Ramadan, and after Ramadan). Digit span test (DST) and Stroop color test were employed to assess short-term memory and inhibition/cognitive flexibility at each time point. There were no significant changes for DST and Stroop task 1 in both groups, whereas Stroop task 2 and task 3 showed significant improvements in Ramadan condition (p < 0.05). Interference indices did not change significantly across the study except in post-Ramadan period of fasting group (p < 0.05). Group × week interaction was significant only for error numbers (p < 0.05). Athletes in nonfasting showed a significant decrease in number of errors in Ramadan compared to baseline (p < 0.05). The results suggest that Ramadan fasting may not adversely affect cognitive function in female athletes. PMID:26697263

  2. Quality of life is not negatively affected by diet and exercise intervention in healthy men with cardiovascular risk factors.

    PubMed

    Hellénius, M L; Dahlöf, C; Aberg, H; Krakau, I; de Faire, U

    1995-02-01

    Health-related quality of life was assessed in a diet and exercise intervention study among 157 healthy men aged 35-60 years (mean +/- s.d.; 46.2 +/- 5.0) with moderately raised cardiovascular risk factors. The men were randomized to four groups, diet (D, n = 40), exercise (E, n = 39), diet plus exercise (DE, n = 39), and no active intervention (controls (C) n = 39). Quality of life was measured with two self-administered questionnaires; Subjective Symptoms Assessment Profile and Minor Symptom Evaluation Profile, at baseline and after 1.5, 3 and 6 months. Cardiovascular risk factors were investigated at baseline and after 6 months. As a result of changes in dietary habits and physical exercise in the three intervention groups, several important cardiovascular risk factors were significantly reduced. The quality of life/well-being did not differ between the four groups and did not change significantly in any of the groups during the study. There was, however, a tendency towards fewer gastrointestinal symptoms in group D and fewer cardiac symptoms in group DE. We conclude that advice on lifestyle changes in the form of diet and exercise reduce risk factors in middle-aged men without negative effects on their quality of life.

  3. Oral administration of veratric acid, a constituent of vegetables and fruits, prevents cardiovascular remodelling in hypertensive rats: a functional evaluation.

    PubMed

    Saravanakumar, Murugesan; Raja, Boobalan; Manivannan, Jeganathan; Silambarasan, Thangarasu; Prahalathan, Pichavaram; Kumar, Subramanian; Mishra, Santosh Kumar

    2015-11-14

    In our previous studies, veratric acid (VA) shows beneficial effect on hypertension and its associated dyslipidaemia. In continuation, this study was designed to investigate the effect of VA, one of the major benzoic acid derivatives from vegetables and fruits, on cardiovascular remodelling in hypertensive rats, primarily assessed by functional studies using Langendorff isolated heart system and organ bath system. Hypertension was induced in male albino Wistar rats by oral administration of N ω -nitro-l-arginine methyl ester hydrochloride (l-NAME) (40 mg/kg body weight (b.w.)) in drinking water for 4 weeks. VA was orally administered at a dose of 40 mg/kg b.w. l-NAME-treated rats showed impaired cardiac ventricular and vascular function, evaluated by Langendorff isolated heart system and organ bath studies, respectively; a significant increase in the lipid peroxidation products such as thiobarbituric acid-reactive substances and lipid hydroperoxides in aorta; and a significant decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase and levels of GSH, vitamin C and vitamin E in aorta. Fibrotic remodelling of the aorta and heart were assessed by Masson's Trichrome staining and Van Gieson's staining, respectively. In addition, l-NAME rats showed increased heart fibronectin expression assessed by immunohistochemical analysis. VA supplementation throughout the experimental period significantly normalised cardiovascular function, oxidative stress, antioxidant status and fibrotic remodelling of tissues. These results of the present study conclude that VA acts as a protective agent against hypertension-associated cardiovascular remodelling.

  4. Weight-loss changes PPAR expression, reduces atherosclerosis and improves cardiovascular function in obese insulin-resistant mice

    SciTech Connect

    Verreth, Wim; Verhamme, Peter; Pelat, Michael; Ganame, Javier; Bielicki, John K.; Mertens, Ann; Quarck, Rozenn; Benhabiles, Nora; Marguerie, Gerard; Mackness, Bharti; Mackness, Mike; Ninio, Ewa; Herregods, Marie-Christine; Balligand, Jean-Luc; Holvoet, Paul

    2003-09-01

    Weight-loss in obese insulin-resistant, but not in insulin-sensitive, persons reduces CHD risk. It is not known to what extent changes in the adipose gene expression profile are important for reducing CHD risk. We studied the effect of diet restriction-induced weight-loss on gene expression in adipose tissue, atherosclerosis and cardiovascular function in mice with combined leptin and LDL-receptor deficiency. Obesity, hypertriglyceridemia and insulin-resistance are associated with hypertension, impaired left ventricle function and accelerated atherosclerosis in those mice. Diet restriction during 12 weeks caused a 45% weight-loss and changes in the gene expression in adipose tissue of PPARa and PPAR? and of key genes regulating glucose transport and insulin sensitivity, lipid metabolism, oxidative stress and inflammation, most of which are under the transcriptional control of PPARs. These changes were associated with increased insulin-sensitivity, decreased hypertriglyceridemia, reduced mean 24-hour blood pressure and heart rate, restored circadian variations of blood pressure and heart rate, increased ejection fraction, and reduced atherosclerosis. Thus, induction of PPARa and PPAR? in adipose tissue is a key mechanism for reducing atherosclerosis and improving cardiovascular function resulting from weight-loss. Our observations point to the critical role of PPARs in the pathogenesis of cardiovascular features of the metabolic syndrome.

  5. Functional Roles Affect Diversity-Succession Relationships for Boreal Beetles

    PubMed Central

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of “functional” groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience. PMID:23977350

  6. Functional cardiovascular action of L-cysteine microinjected into pressor sites of the rostral ventrolateral medulla of the rat.

    PubMed

    Takemoto, Yumi

    2014-04-01

    The endogenous sulfur-containing amino acid L-cysteine injected into the cerebrospinal fluid space of the cisterna magna increases arterial blood pressure (ABP) and heart rate (HR) in the freely moving rat. The present study examined (1) cardiovascular responses to L-cysteine microinjected into the rostral ventrolateral medulla (RVLM), where a group of neurons regulate activities of cardiovascular sympathetic neurons and (2) involvement of ionotropic excitatory amino acid (iEAA) receptors in response. In the RVLM of urethane-anesthetized rats accessed ventrally and identified with pressor responses to L-glutamate (10 mM, 34 nl), microinjections of L-cysteine increased ABP and HR dose dependently (3-100 mM, 34 nl). The cardiovascular responses to L-cysteine (30 mM) were not attenuated by a prior injection of either antagonist alone, MK801 (20 mM, 68 nl) for the NMDA type of iEAA receptors, or CNQX (2 mM) for the non-NMDA type. However, inhibition of both NMDA and non-NMDA receptors with additional prior injection of either antagonist completely blocked those responses to L-cysteine. The results indicate that L-cysteine has functional cardiovascular action in the RVLM of the anesthetized rat, and the responses to L-cysteine involve both NMDA and non-NMDA receptors albeit in a mutually exclusive parallel fashion. The findings may suggest endogenous roles of L-cysteine indirectly via iEAA receptors in the neuronal network of the RVLM for cardiovascular regulation in physiological and pathological situations.

  7. Strategies and methods to study sex differences in cardiovascular structure and function: a guide for basic scientists

    PubMed Central

    2011-01-01

    Background Cardiovascular disease remains the primary cause of death worldwide. In the US, deaths due to cardiovascular disease for women exceed those of men. While cultural and psychosocial factors such as education, economic status, marital status and access to healthcare contribute to sex differences in adverse outcomes, physiological and molecular bases of differences between women and men that contribute to development of cardiovascular disease and response to therapy remain underexplored. Methods This article describes concepts, methods and procedures to assist in the design of animal and tissue/cell based studies of sex differences in cardiovascular structure, function and models of disease. Results To address knowledge gaps, study designs must incorporate appropriate experimental material including species/strain characteristics, sex and hormonal status. Determining whether a sex difference exists in a trait must take into account the reproductive status and history of the animal including those used for tissue (cell) harvest, such as the presence of gonadal steroids at the time of testing, during development or number of pregnancies. When selecting the type of experimental animal, additional consideration should be given to diet requirements (soy or plant based influencing consumption of phytoestrogen), lifespan, frequency of estrous cycle in females, and ability to investigate developmental or environmental components of disease modulation. Stress imposed by disruption of sleep/wake cycles, patterns of social interaction (or degree of social isolation), or handling may influence adrenal hormones that interact with pathways activated by the sex steroid hormones. Care must be given to selection of hormonal treatment and route of administration. Conclusions Accounting for sex in the design and interpretation of studies including pharmacological effects of drugs is essential to increase the foundation of basic knowledge upon which to build translational

  8. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function.

    PubMed

    Spary, Emma J; Maqbool, Azhar; Batten, Trevor F C

    2009-11-01

    Oestrogen is considered beneficial to cardiovascular health through protective effects not only on the heart and vasculature, but also on the autonomic nervous system via actions on oestrogen receptors. A plethora of evidence supports a role for the hormone within the central nervous system in modulating the pathways regulating cardiovascular function. A complex interaction of several brainstem, spinal and forebrain nuclei is required to receive, integrate and co-ordinate inputs that contribute appropriate autonomic reflex responses to changes in blood pressure and other cardiovascular parameters. Central effects of oestrogen and oestrogen receptors have already been demonstrated in many of these areas. In addition to the classical nuclear oestrogen receptors (ERalpha and ERbeta) a recently discovered G-protein coupled receptor, GPR30, has been shown to be a novel mediator of oestrogenic action. Many anatomical and molecular studies have described a considerable overlap in the regional expression of these receptors; however, the receptors do exhibit specific characteristics and subtype specific expression is found in many autonomic brain areas, for example ERbeta appears to predominate in the hypothalamic paraventricular nucleus, whilst ERalpha is important in the nucleus of the solitary tract. This review provides an overview of the available information on the localisation of oestrogen receptor subtypes and their multitude of possible modulatory actions in different groups of neurochemically and functionally defined neurones in autonomic-related areas of the brain.

  9. Association of digital vascular function with cardiovascular risk factors: a population study

    PubMed Central

    Kuznetsova, Tatiana; Van Vlierberghe, Eline; Knez, Judita; Szczesny, Gregory; Thijs, Lutgarde; Jozeau, Dominique; Balestra, Costantino; D'hooge, Jan; Staessen, Jan A

    2014-01-01

    Objectives Vasodilation of the peripheral arteries during reactive hyperaemia depends in part on release of nitric oxide from endothelial cells. Previous studies mainly employed a fingertip tonometric device to derive pulse wave amplitude (PWA) and PWA hyperaemic changes. An alternative approach is based on photoplethysmography (PPG). We sought to evaluate the correlates of digital PPG PWA hyperaemic responses as a measure of peripheral vascular function. Design The Flemish Study on Environment, Genes and Health Outcomes (FLEMENGHO) is a population-based cohort study. Setting Respondents were examined at one centre in northern Belgium. Participants For this analysis, our sample consisted of 311 former participants (53.5% women; mean age 52.6 years; 43.1% hypertensive), who were examined from January 2010 until March 2012 (response rate 85.1%). Primary outcome measures Using a fingertip PPG device, we measured digital PWA at baseline and at 30 s intervals for 4 min during reactive hyperaemia induced by a 5 min forearm cuff occlusion. We performed stepwise regression to identify correlates of the hyperaemic response ratio for each 30 s interval after cuff deflation. Results The maximal hyperaemic response was detected in the 30–60 s interval. The explained variance for the PPG PWA ratio ranged from 9.7% at 0–30 s interval to 22.5% at 60–90 s time interval. The hyperaemic response at each 30 s interval was significantly higher in women compared with men (p≤0.001). The PPG PWA changes at 0–90 s intervals decreased with current smoking (p≤0.0007) and at 0–240 s intervals decreased with higher body mass index (p≤0.035). These associations with sex, current smoking and body mass index were mutually independent. Conclusions Our study is the first to implement the new PPG technique to measure digital PWA hyperaemic changes in a general population. Hyperaemic response, as measured by PPG, is inversely associated with traditional

  10. At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction.

    PubMed

    Montecucco, Fabrizio; Di Marzo, Vincenzo

    2012-06-01

    Starting from the well-documented effects of marijuana smoking on heart rate and blood pressure, the cardiovascular effects of Δ⁹-tetrahydrocannabinol (THC, the main psychotropic ingredient of Cannabis) and endocannabinoids [THC endogenous counterparts that activate cannabinoid receptor type 1 (CB₁) and 2 (CB₂)] have been thoroughly investigated. These studies were mostly aimed at establishing the molecular bases of the hypotensive actions of THC, endocannabinoids and related molecules, but also evaluated their therapeutic potential in cardiac injury protection, metabolic cardiovascular risk factors and atherosclerotic plaque vulnerability. The results of these investigations, reviewed here, also served to highlight some of the most peculiar aspects of endocannabinoid signaling, such as redundancy in endocannabinoid targets and the often dualistic role of CB₁ and CB₂ receptors during pathological conditions. PMID:22503477

  11. Daily kiwifruit consumption did not improve blood pressure and markers of cardiovascular function in men with hypercholesterolemia.

    PubMed

    Gammon, Cheryl S; Kruger, Rozanne; Brown, Stephen J; Conlon, Cathryn A; von Hurst, Pamela R; Stonehouse, Welma

    2014-03-01

    Increasing fruit and vegetable consumption is a key lifestyle modification in the prevention and treatment of hypertension. Kiwifruit has previously been shown to have favorable effects on blood pressure (BP), likely through inhibiting angiotensin I-converting enzyme activity. We hypothesized that the replacement of 2 fruit servings in a healthy diet with 2 green kiwifruit a day would significantly improve BP and other markers of cardiovascular function, including heart rate, stroke volume, cardiac output, and total peripheral resistance, in a group of hypercholesterolemic men. Using a controlled cross-over study design, 85 subjects completed a 4-week healthy diet run-in period before randomization to one of two 4-week intervention sequences in which they either consumed 2 green kiwifruit a day plus a healthy diet (intervention) or consumed a healthy diet alone (control). Blood pressure and other measures of cardiovascular function (using a Finometer MIDI [Finapres Medical Systems B.V, Amsterdam, The Netherlands] and standard oscillometric device) and anthropometric measurements were taken before and at the end of the treatment periods. A physical activity questionnaire was completed during the last visit. Subjects were found to be predominantly normotensive (43.5%) or prehypertensive (50.6%) and quite physically active (>30 minutes of moderate to vigorous physical activity/day in >80% subjects). No significant differences were seen for BP or any of the other markers, including heart rate, stroke volume, cardiac output, and total peripheral resistance. In conclusion, in this hypercholesterolemic, nonhypertensive group, no beneficial effects on BP or other markers of cardiovascular function were seen when consuming 2 kiwifruit a day against the background of a healthy diet.

  12. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system.

    PubMed

    Tinker, Andrew; Aziz, Qadeer; Thomas, Alison

    2014-01-01

    ATP-sensitive potassium channels (K(ATP)) are widely distributed and present in a number of tissues including muscle, pancreatic beta cells and the brain. Their activity is regulated by adenine nucleotides, characteristically being activated by falling ATP and rising ADP levels. Thus, they link cellular metabolism with membrane excitability. Recent studies using genetically modified mice and genomic studies in patients have implicated K(ATP) channels in a number of physiological and pathological processes. In this review, we focus on their role in cellular function and protection particularly in the cardiovascular system.

  13. The Function of Rho-Associated Kinases ROCK1 and ROCK2 in the Pathogenesis of Cardiovascular Disease

    PubMed Central

    Hartmann, Svenja; Ridley, Anne J.; Lutz, Susanne

    2015-01-01

    Rho-associated kinases ROCK1 and ROCK2 are serine/threonine kinases that are downstream targets of the small GTPases RhoA, RhoB, and RhoC. ROCKs are involved in diverse cellular activities including actin cytoskeleton organization, cell adhesion and motility, proliferation and apoptosis, remodeling of the extracellular matrix and smooth muscle cell contraction. The role of ROCK1 and ROCK2 has long been considered to be similar; however, it is now clear that they do not always have the same functions. Moreover, depending on their subcellular localization, activation, and other environmental factors, ROCK signaling can have different effects on cellular function. With respect to the heart, findings in isoform-specific knockout mice argue for a role of ROCK1 and ROCK2 in the pathogenesis of cardiac fibrosis and cardiac hypertrophy, respectively. Increased ROCK activity could play a pivotal role in processes leading to cardiovascular diseases such as hypertension, pulmonary hypertension, angina pectoris, vasospastic angina, heart failure, and stroke, and thus ROCK activity is a potential new biomarker for heart disease. Pharmacological ROCK inhibition reduces the enhanced ROCK activity in patients, accompanied with a measurable improvement in medical condition. In this review, we focus on recent findings regarding ROCK signaling in the pathogenesis of cardiovascular disease, with a special focus on differences between ROCK1 and ROCK2 function. PMID:26635606

  14. Effects of potassium chloride and potassium bicarbonate on endothelial function, cardiovascular risk factors, and bone turnover in mild hypertensives.

    PubMed

    He, Feng J; Marciniak, Maciej; Carney, Christine; Markandu, Nirmala D; Anand, Vidya; Fraser, William D; Dalton, R Neil; Kaski, Juan C; MacGregor, Graham A

    2010-03-01

    To determine the effects of potassium supplementation on endothelial function, cardiovascular risk factors, and bone turnover and to compare potassium chloride with potassium bicarbonate, we carried out a 12-week randomized, double-blind, placebo-controlled crossover trial in 42 individuals with untreated mildly raised blood pressure. Urinary potassium was 77+/-16, 122+/-25, and 125+/-27 mmol/24 hours after 4 weeks on placebo, potassium chloride, and potassium bicarbonate, respectively. There were no significant differences in office blood pressure among the 3 treatment periods, and only 24-hour and daytime systolic blood pressures were slightly lower with potassium chloride. Compared with placebo, both potassium chloride and potassium bicarbonate significantly improved endothelial function as measured by brachial artery flow-mediated dilatation, increased arterial compliance as assessed by carotid-femoral pulse wave velocity, decreased left ventricular mass, and improved left ventricular diastolic function. There was no significant difference between the 2 potassium salts in these measurements. The study also showed that potassium chloride reduced 24-hour urinary albumin and albumin:creatinine ratio, and potassium bicarbonate decreased 24-hour urinary calcium, calcium:creatinine ratio, and plasma C-terminal cross-linking telopeptide of type 1 collagen significantly. These results demonstrated that an increase in potassium intake had beneficial effects on the cardiovascular system, and potassium bicarbonate may improve bone health. Importantly, these effects were found in individuals who already had a relatively low-salt and high-potassium intake.

  15. Cardiovascular responses to exercise as functions of absolute and relative work load

    NASA Technical Reports Server (NTRS)

    Lewis, S. F.; Taylor, W. F.; Graham, R. M.; Pettinger, W. A.; Schutte, J. E.; Blomqvist, C. G.

    1983-01-01

    The roles of absolute and relative oxygen uptake (VO2 and percent of muscle group specific VO2-max) as determinants of the cardiovascular and ventilatory responses to exercise over a wide range of active muscle mass are investigated. Experiments were conducted using four types of dynamic exercise: one-arm curl, one-arm cranking, and one and two-leg cycling at four different relative work loads (25, 50, 75, and 100 percent of VO2-max) for the corresponding muscle group. Results show that VO2 during maximal one-arm curl, one-arm cranking, and one-leg cycling averaged 20, 50, and 75 percent, respectively, of that for maximal two-leg cycling. Cardiac output was determined to be linearly related to VO2 with a similar slope and intercept for each type of exercise, and the heart rate at a given percent VO2-max was higher with larger active muscle mass. It is concluded that the cardiovascular responses to exercise was determined to a large extent by the active muscle mass and the absolute oxygen uptake, with the principal feature appearing to be the tight linkage between systematic oxygen transport and utilization.

  16. Effects of bioactive constituents in functional cocoa products on cardiovascular health in humans.

    PubMed

    Sarriá, Beatriz; Martínez-López, Sara; Sierra-Cinos, José Luis; Garcia-Diz, Luis; Goya, Luis; Mateos, Raquel; Bravo, Laura

    2015-05-01

    Cocoa manufacturers are producing novel products increasing polyphenols, methylxanthines or dietary fibre to improve purported health benefits. We attempt to explain the contribution of cocoa bioactive compounds to cardiovascular effects observed in previous studies, placing particular emphasis on methylxanthines. We focused on a soluble cocoa product rich in dietary fibre (DFCP) and a product rich in polyphenols (PPCP). Effects of regularly consuming DFCP (providing daily 10.17 g, 43.8 mg and 168.6 mg of total-dietary-fibre, flavanols and methylxanthines, respectively) as well as PPCP (providing daily 3.74 g, 45.3 mg and 109.8 mg of total-dietary-fibre, flavanols and methylxanthines, respectively) on cardiovascular health were assessed in two controlled, cross-over studies in free-living normocholesterolemic and moderately hypercholesterolemic subjects. Both products increased HDL-cholesterol concentrations, whereas only DFCP decreased glucose and IL-1β levels in all subjects. Flavanols appeared to be responsible for the increase in HDL-cholesterol, whereas insoluble-dietary-fibre and theobromine in DFCP were associated with the hypoglycemic and anti-inflammatory effects observed.

  17. Concomitant gastroparesis negatively affects children with functional gallbladder disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to determine whether concomitant gastroparesis and biliary dyskinesia (BD) occur in children, and if so, to determine whether concomitant gastroparesis affects clinical outcome in children with BD. We conducted a retrospective chart review of children with BD (ejecti...

  18. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure

    PubMed Central

    Peng, Yu-Hsuan; Sweet, Douglas H.; Lin, Shiuan-Pey; Yu, Chung-Ping; Lee Chao, Pei-Dawn; Hou, Yu-Chi

    2015-01-01

    Chronic kidney disease (CKD) is a major health problem worldwide. Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are highly protein-bound nephro-cardiovascular toxins, which are not efficiently removed through hemodialysis. The renal excretions of IS and PCS were mediated by organic anion transporters (OATs) such as OAT1 and OAT3. Green tea (GT) is a popular beverage containing plenty of catechins. Previous pharmacokinetic studies of teas have shown that the major molecules present in the bloodstream are the glucuronides/sulfates of tea catechins, which are putative substrates of OATs. Here we demonstrated that GT ingestion significantly elevated the systemic exposures of endogenous IS and PCS in rats with chronic renal failure (CRF). More importantly, GT also significantly increased the levels of serum creatinine (Cr) and blood urea nitrogen (BUN) in CRF rats. Mechanism studies indicated that the serum metabolites of GT (GTM) inhibited the uptake transporting functions of OAT1 and OAT3. In conclusion, GT inhibited the elimination of nephro-cardiovascular toxins such as IS and PCS, and deteriorated the renal function in CRF rats. PMID:26552961

  19. Green tea inhibited the elimination of nephro-cardiovascular toxins and deteriorated the renal function in rats with renal failure.

    PubMed

    Peng, Yu-Hsuan; Sweet, Douglas H; Lin, Shiuan-Pey; Yu, Chung-Ping; Lee Chao, Pei-Dawn; Hou, Yu-Chi

    2015-11-10

    Chronic kidney disease (CKD) is a major health problem worldwide. Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are highly protein-bound nephro-cardiovascular toxins, which are not efficiently removed through hemodialysis. The renal excretions of IS and PCS were mediated by organic anion transporters (OATs) such as OAT1 and OAT3. Green tea (GT) is a popular beverage containing plenty of catechins. Previous pharmacokinetic studies of teas have shown that the major molecules present in the bloodstream are the glucuronides/sulfates of tea catechins, which are putative substrates of OATs. Here we demonstrated that GT ingestion significantly elevated the systemic exposures of endogenous IS and PCS in rats with chronic renal failure (CRF). More importantly, GT also significantly increased the levels of serum creatinine (Cr) and blood urea nitrogen (BUN) in CRF rats. Mechanism studies indicated that the serum metabolites of GT (GTM) inhibited the uptake transporting functions of OAT1 and OAT3. In conclusion, GT inhibited the elimination of nephro-cardiovascular toxins such as IS and PCS, and deteriorated the renal function in CRF rats.

  20. Alteration of cardiovascular autonomic functions by vegetarian diets in postmenopausal women is related to LDL cholesterol levels.

    PubMed

    Fu, Chin-Hua; Yang, Cheryl C H; Lin, Chin-Lon; Kuo, Terry B J

    2008-04-30

    This study was designed to test the hypothesis that alteration of cardiovascular autonomic functions by vegetarian diets in healthy postmenopausal women is related to lipid metabolism. A total of 70 healthy postmenopausal women not on hormone therapy participated in this study: 35 were vegetarians (mean age 55.0 years) and 35 were omnivores (mean age 55.1 years). Cardiovascular autonomic functions and baroreflex sensitivity were evaluated by specific frequency-domain measures of heart rate variability (HRV) and arterial blood pressure fluctuation. The vegetarians had statistically significant lowered blood pressure, total cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, and fasting glucose levels compared with the omnivores. The vegetarians exhibited a significant higher total power, low-frequency (LF; 0.04-0.15 Hz) and high-frequency (HF; 0.15-0.4 Hz) of HRV and increased baroreflex sensitivity measures [Brr(LF) and Brr(HF)] compared with the omnivores. Total power, LF and HF of HRV, Brr(LF), and Brr(HF) were significantly and negatively correlated with LDL-cholesterol concentrations (P < 0.01). We concluded that the increases of cardiac vagal activity and baroreflex sensitivity by vegetarian diets in postmenopausal women are inversely related to LDL-cholesterol levels.

  1. The research on endothelial function in women and men at risk for cardiovascular disease (REWARD) study: methodology

    PubMed Central

    2011-01-01

    Background Endothelial function has been shown to be a highly sensitive marker for the overall cardiovascular risk of an individual. Furthermore, there is evidence of important sex differences in endothelial function that may underlie the differential presentation of cardiovascular disease (CVD) in women relative to men. As such, measuring endothelial function may have sex-specific prognostic value for the prediction of CVD events, thus improving risk stratification for the overall prediction of CVD in both men and women. The primary objective of this study is to assess the clinical utility of the forearm hyperaemic reactivity (FHR) test (a proxy measure of endothelial function) for the prediction of CVD events in men vs. women using a novel, noninvasive nuclear medicine -based approach. It is hypothesised that: 1) endothelial dysfunction will be a significant predictor of 5-year CVD events independent of baseline stress test results, clinical, demographic, and psychological variables in both men and women; and 2) endothelial dysfunction will be a better predictor of 5-year CVD events in women compared to men. Methods/Design A total of 1972 patients (812 men and 1160 women) undergoing a dipyridamole stress testing were recruited. Medical history, CVD risk factors, health behaviours, psychological status, and gender identity were assessed via structured interview or self-report questionnaires at baseline. In addition, FHR was assessed, as well as levels of sex hormones via blood draw. Patients will be followed for 5 years to assess major CVD events (cardiac mortality, non-fatal MI, revascularization procedures, and cerebrovascular events). Discussion This is the first study to determine the extent and nature of any sex differences in the ability of endothelial function to predict CVD events. We believe the results of this study will provide data that will better inform the choice of diagnostic tests in men and women and bring the quality of risk stratification in

  2. SUMO1 Affects Synaptic Function, Spine Density and Memory.

    PubMed

    Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E

    2015-01-01

    Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678

  3. Age Differences in Affective and Cardiovascular Responses to a Negative Social Interaction: The Role of Goals, Appraisals, and Emotion Regulation

    ERIC Educational Resources Information Center

    Luong, Gloria; Charles, Susan T.

    2014-01-01

    Older adults often report less affective reactivity to interpersonal tensions than younger individuals, but few studies have directly investigated mechanisms explaining this effect. The current study examined whether older adults' differential endorsement of goals, appraisals, and emotion regulation strategies (i.e., conflict…

  4. Anger, Anxiety, and Depression as Risk Factors for Cardiovascular Disease: The Problems and Implications of Overlapping Affective Dispositions

    ERIC Educational Resources Information Center

    Sul, Jerry; Bunde, James

    2005-01-01

    Several recent reviews (e.g., L. C. Gallo & K. Matthews, 2003; A. Rozanski, J. A. Blumenthal, & J. Kaplan, 1999; R. Rugulies, 2002) have identified 3 affective dispositions--depression, anxiety, and anger-hostility--as putative risk factors for coronary heart disease. There are, however, mixed and negative results. Following a critical summary of…

  5. Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker.

    PubMed

    Kumar, Vinod; Brent, Jack R; Shorie, Munish; Kaur, Harmanjit; Chadha, Gaganpreet; Thomas, Andrew G; Lewis, Edward A; Rooney, Aidan P; Nguyen, Lan; Zhong, Xiang Li; Burke, M Grace; Haigh, Sarah J; Walton, Alex; McNaughter, Paul D; Tedstone, Aleksander A; Savjani, Nicky; Muryn, Christopher A; O'Brien, Paul; Ganguli, Ashok K; Lewis, David J; Sabherwal, Priyanka

    2016-09-01

    We report the electrochemical detection of the redox active cardiac biomarker myoglobin (Mb) using aptamer-functionalized black phosphorus nanostructured electrodes by measuring direct electron transfer. The as-synthesized few-layer black phosphorus nanosheets have been functionalized with poly-l-lysine (PLL) to facilitate binding with generated anti-Mb DNA aptamers on nanostructured electrodes. This aptasensor platform has a record-low detection limit (∼0.524 pg mL(-1)) and sensitivity (36 μA pg(-1) mL cm(-2)) toward Mb with a dynamic response range from 1 pg mL(-1) to 16 μg mL(-1) for Mb in serum samples. This strategy opens up avenues to bedside technologies for multiplexed diagnosis of cardiovascular diseases in complex human samples.

  6. Nanostructured Aptamer-Functionalized Black Phosphorus Sensing Platform for Label-Free Detection of Myoglobin, a Cardiovascular Disease Biomarker.

    PubMed

    Kumar, Vinod; Brent, Jack R; Shorie, Munish; Kaur, Harmanjit; Chadha, Gaganpreet; Thomas, Andrew G; Lewis, Edward A; Rooney, Aidan P; Nguyen, Lan; Zhong, Xiang Li; Burke, M Grace; Haigh, Sarah J; Walton, Alex; McNaughter, Paul D; Tedstone, Aleksander A; Savjani, Nicky; Muryn, Christopher A; O'Brien, Paul; Ganguli, Ashok K; Lewis, David J; Sabherwal, Priyanka

    2016-09-01

    We report the electrochemical detection of the redox active cardiac biomarker myoglobin (Mb) using aptamer-functionalized black phosphorus nanostructured electrodes by measuring direct electron transfer. The as-synthesized few-layer black phosphorus nanosheets have been functionalized with poly-l-lysine (PLL) to facilitate binding with generated anti-Mb DNA aptamers on nanostructured electrodes. This aptasensor platform has a record-low detection limit (∼0.524 pg mL(-1)) and sensitivity (36 μA pg(-1) mL cm(-2)) toward Mb with a dynamic response range from 1 pg mL(-1) to 16 μg mL(-1) for Mb in serum samples. This strategy opens up avenues to bedside technologies for multiplexed diagnosis of cardiovascular diseases in complex human samples. PMID:27508925

  7. Gene expression profiling during intensive cardiovascular lifestyle modification: Relationships with vascular function and weight loss

    PubMed Central

    Blackburn, Heather L.; McErlean, Seóna; Jellema, Gera L.; van Laar, Ryan; Vernalis, Marina N.; Ellsworth, Darrell L.

    2015-01-01

    Heart disease and related sequelae are a leading cause of death and healthcare expenditure throughout the world. Although many patients opt for surgical interventions, lifestyle modification programs focusing on nutrition and exercise have shown substantial health benefits and are becoming increasing popular. We conducted a year-long lifestyle modification program to mediate cardiovascular risk through traditional risk factors and to investigate how molecular changes, if present, may contribute to long-term risk reduction. Here we describe the lifestyle intervention, including clinical and molecular data collected, and provide details of the experimental methods and quality control parameters for the gene expression data generated from participants and non-intervention controls. Our findings suggest successful and sustained modulation of gene expression through healthy lifestyle changes may have beneficial effects on vascular health that cannot be discerned from traditional risk factor profiles. The data are deposited in the Gene Expression Omnibus, series GSE46097 and GSE66175. PMID:26484175

  8. Cardiovascular and neurohumoral responses to behavioral challenge as a function of race and sex.

    PubMed

    Tischenkel, N J; Saab, P G; Schneiderman, N; Nelesen, R A; Pasin, R D; Goldstein, D A; Spitzer, S B; Woo-Ming, R; Weidler, D J

    1989-01-01

    Cardiovascular and hormonal responses to a structured interview, an electronic video game, a cold pressor test, and exercise on a bicycle ergometer were assessed in eighty-three 25- to 44-year-old normotensive Black and White men and women. Blacks showed significantly greater diastolic blood pressure (DBP) responses than Whites during the cold pressor test, which were not accounted for by an increase in plasma catecholamines. Exercise produced reliably greater systolic blood pressure (SBP) increases in Black women than in Black men or White women. Men showed significantly greater SBP and DBP changes than women during the video game. These findings suggest that the pattern of physiological reactivity elicited by challenge is related to the race and sex of the subjects. PMID:2698349

  9. Longitudinal and transverse right ventricular function in pulmonary hypertension: cardiovascular magnetic resonance imaging study from the ASPIRE registry

    PubMed Central

    Rajaram, Smitha; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M.; Kiely, David G.

    2015-01-01

    Abstract Right ventricular (RV) function is a strong predictor of outcome in cardiovascular diseases. Two components of RV function, longitudinal and transverse motion, have been investigated in pulmonary hypertension (PH). However, their individual clinical significance remains uncertain. The aim of this study was to determine the factors associated with transverse and longitudinal RV motion in patients with PH. In 149 treatment-naive patients with PH and 16 patients with suspected PH found to have mean pulmonary arterial pressure of <20 mmHg, cardiovascular magnetic resonance imaging was performed within 24 hours of right heart catheterization. In patients with PH, fractional longitudinal motion (fractional tricuspid annulus to apex distance [f-TAAD]) was significantly greater than fractional transverse motion (fractional septum to free wall distance [f-SFD]; P = 0.002). In patients without PH, no significant difference between f-SFD and f-TAAD was identified (P = 0.442). Longitudinal RV motion was singularly associated with RV ejection fraction independent of age, invasive hemodynamics, and cardiac magnetic resonance measurements (P = 0.024). In contrast, transverse RV motion was independently associated with left ventricular eccentricity (P = 0.036) in addition to RV ejection fraction (P = 0.014). In conclusion, RV motion is significantly greater in the longitudinal direction in patients with PH, whereas patients without PH have equal contributions of transverse and longitudinal motion. Longitudinal RV motion is primarily associated with global RV pump function in PH. Transverse RV motion not only reflects global pump function but is independently influenced by ventricular interaction in patients with PH. PMID:26401257

  10. Longitudinal and transverse right ventricular function in pulmonary hypertension: cardiovascular magnetic resonance imaging study from the ASPIRE registry.

    PubMed

    Swift, Andrew J; Rajaram, Smitha; Capener, Dave; Elliot, Charlie; Condliffe, Robin; Wild, Jim M; Kiely, David G

    2015-09-01

    Right ventricular (RV) function is a strong predictor of outcome in cardiovascular diseases. Two components of RV function, longitudinal and transverse motion, have been investigated in pulmonary hypertension (PH). However, their individual clinical significance remains uncertain. The aim of this study was to determine the factors associated with transverse and longitudinal RV motion in patients with PH. In 149 treatment-naive patients with PH and 16 patients with suspected PH found to have mean pulmonary arterial pressure of <20 mmHg, cardiovascular magnetic resonance imaging was performed within 24 hours of right heart catheterization. In patients with PH, fractional longitudinal motion (fractional tricuspid annulus to apex distance [f-TAAD]) was significantly greater than fractional transverse motion (fractional septum to free wall distance [f-SFD]; P = 0.002). In patients without PH, no significant difference between f-SFD and f-TAAD was identified (P = 0.442). Longitudinal RV motion was singularly associated with RV ejection fraction independent of age, invasive hemodynamics, and cardiac magnetic resonance measurements (P = 0.024). In contrast, transverse RV motion was independently associated with left ventricular eccentricity (P = 0.036) in addition to RV ejection fraction (P = 0.014). In conclusion, RV motion is significantly greater in the longitudinal direction in patients with PH, whereas patients without PH have equal contributions of transverse and longitudinal motion. Longitudinal RV motion is primarily associated with global RV pump function in PH. Transverse RV motion not only reflects global pump function but is independently influenced by ventricular interaction in patients with PH. PMID:26401257

  11. Effects of simulated heat waves on cardiovascular functions in senile mice.

    PubMed

    Zhang, Xiakun; Lu, Jing; Zhang, Shuyu; Wang, Chunling; Wang, Baojian; Guo, Pinwen; Dong, Lina

    2014-08-01

    The mechanism of the effects of simulated heat waves on cardiovascular disease in senile mice was investigated. Heat waves were simulated in a TEM1880 meteorological environment simulation chamber, according to a heat wave that occurred in July 2001 in Nanjing, China. Eighteen senile mice were divided into control, heat wave, and heat wave BH4 groups, respectively. Mice in the heat wave and heat wave BH4 groups were exposed to simulated heat waves in the simulation chamber. The levels of ET-1, NO, HSP60, SOD, TNF, sICAM-1, and HIF-1α in each group of mice were measured after heat wave simulation. Results show that heat waves decreased SOD activity in the myocardial tissue of senile mice, increased NO, HSP60, TNF, sICAM-1, and HIF-1α levels, and slightly decreased ET-1 levels, BH4 can relieve the effects of heat waves on various biological indicators. After a comprehensive analysis of the experiments above, we draw the followings conclusions regarding the influence of heat waves on senile mice: excess HSP60 activated immune cells, and induced endothelial cells and macrophages to secrete large amounts of ICAM-1, TNF-α, and other inflammatory cytokines, it also activated the inflammation response in the body and damaged the coronary endothelial cell structure, which increased the permeability of blood vessel intima and decreased SOD activity in cardiac tissues. The oxidation of lipoproteins in the blood increased, and large amounts of cholesterol were generated. Cholesterol penetrated the intima and deposited on the blood vessel wall, forming atherosclerosis and leading to the occurrence of cardiovascular disease in senile mice. These results maybe are useful for studying the effects of heat waves on elderly humans, which we discussed in the discussion chapter. PMID:25101768

  12. Peripheral chemoreceptor control of cardiovascular function at rest and during exercise in heart failure patients.

    PubMed

    Edgell, Heather; McMurtry, M Sean; Haykowsky, Mark J; Paterson, Ian; Ezekowitz, Justin A; Dyck, Jason R B; Stickland, Michael K

    2015-04-01

    Peripheral chemoreceptor activity/sensitivity is enhanced in chronic heart failure (HF), and sensitivity is linked to greater mortality. This study aimed to determine the role of the peripheral chemoreceptor in cardiovascular control at rest and during exercise in HF patients and controls. Clinically stable HF patients (n = 11; ejection fraction: 39 ± 5%) and risk-matched controls (n = 10; ejection fraction: 65 ± 2%) performed randomized trials with or without dopamine infusion (2 μg·min(-1)·kg(-1)) at rest and during 40% maximal voluntary contraction handgrip (HG) exercise, and a resting trial of 2 min of inspired 100% oxygen. Both dopamine and hyperoxia were used to inhibit the peripheral chemoreceptor. At rest in HF patients, dopamine decreased ventilation (P = 0.02), decreased total peripheral resistance index (P = 0.003), and increased cardiac and stroke indexes (P ≤ 0.01), yet there was no effect of dopamine on these variables in controls (P ≥ 0.7). Hyperoxia lowered ventilation in HF (P = 0.01), but not in controls (P = 0.9), indicating suppression of the peripheral chemoreceptors in HF. However, no decrease of total peripheral resistance index was observed in HF. As expected, HG increased heart rate, ventilation, and brachial conductance of the nonexercising arm in controls and HF patients. During dopamine infusion, there were no changes in mean arterial pressure, heart rate, or ventilation responses to HG in either group (P ≥ 0.26); however, brachial conductance increased with dopamine in the control group (P = 0.004), but decreased in HF (P = 0.02). Our findings indicate that the peripheral chemoreceptor contributes to cardiovascular control at rest in HF patients and during exercise in risk-matched controls.

  13. Telomerase deficiency affects normal brain functions in mice.

    PubMed

    Lee, Jaehoon; Jo, Yong Sang; Sung, Young Hoon; Hwang, In Koo; Kim, Hyuk; Kim, Song-Yi; Yi, Sun Shin; Choi, June-Seek; Sun, Woong; Seong, Je Kyung; Lee, Han-Woong

    2010-02-01

    Telomerase maintains telomere structures and chromosome stability, and it is essential for preserving the characteristics of stem and progenitor cells. In the brain, the hippocampus and the olfactory bulbs are continuously supplied with neural stem and progenitor cells that are required for adult neurogenesis throughout the life. Therefore, we examined whether telomerase plays important roles in maintaining normal brain functions in vivo. Telomerase reverse transcriptase (TERT) expression was observed in the hippocampus, the olfactory bulbs, and the cerebellum, but the telomerase RNA component (TERC) was not detected in hippocampus and olfactory bulbs. Interestingly, TERT-deficient mice exhibited significantly altered anxiety-like behaviors and abnormal olfaction measuring the functions of the hippocampus and the olfactory bulbs, respectively. However, the cerebellum-dependent behavior was not changed in these mutant mice. These results suggest that TERT is constitutively expressed in the hippocampus and the olfactory bulbs, and that it is important for regulating normal brain functions. PMID:19685288

  14. Fetal urinoma and prenatal hydronephrosis: how is renal function affected?

    PubMed Central

    Oktar, Tayfun; Salabaş, Emre; Kalelioğlu, İbrahim; Atar, Arda; Ander, Haluk; Ziylan, Orhan; Has, Recep; Yüksel, Atıl

    2013-01-01

    Objective: In our study, the functional prognosis of kidneys with prenatal urinomas were investigated. Material and methods: Between 2006 and 2010, fetal urinomas were detected in 19 fetuses using prenatal ultrasonography (US), and the medical records were reviewed retrospectively. Of the 19 cases, the follow-up data were available for 10 fetuses. The gestational age at diagnosis, prognosis of urinomas, clinical course and renal functions were recorded. Postnatal renal functions were assessed with renal scintigraphy. Results: Unilateral urinomas and increased parenchyma echogenicity in the ipsilateral kidney were detected in all of the fetuses. Of the 10 fetuses with follow-up data, the option of termination was offered in 6 cases of anhydramnios, including 3 cases with signs of infravesical obstruction (a possible posterior urethral valve (PUV) and poor prognostic factors and 3 cases with unilateral hydronephrosis and increased echogenicity in the contralateral kidney. Only one family agreed the termination. The other 5 fetuses died during the early postnatal period. The average postnatal follow-up period in the 4 surviving fetuses was 22.5 months (8–38 months). One patient with a PUV underwent ablation surgery during the early postnatal period. In the postnatal period, none of the 4 kidneys that were ipsilateral to the urinoma were functional on scintigraphic evaluation. The urinomas disappeared in 3 cases. Nephrectomy was performed in one case due to recurrent urinary tract infections. Conclusion: In our study, no function was detected in the ipsilateral kidney of surviving patients with urinomas. Upper urinary tract dilatation accompanied by a urinoma is a poor prognostic factor for renal function. PMID:26328088

  15. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  16. Can Particulate Pollution Affect Lung Function in Healthy Adults?

    EPA Science Inventory

    Accompanying editorial to paper from Harvard by Rice et al. entitled "Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart StudyBy almost any measure the Clean Air Act and its amendments has to be considered as one...

  17. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria.

  18. Impact of personal and ambient-level exposures to nitrogen dioxide and particulate matter on cardiovascular function

    PubMed Central

    Williams, Ron; Brook, Rob; Bard, Rob; Conner, Teri; Shin, Hwashin; Burnett, Rick

    2011-01-01

    This work explored the association between nitrogen dioxide (NO2) and PM2.5 components with changes in cardiovascular function in an adult non-smoking cohort. The cohort consisted of 65 volunteers participating in the US EPA’s Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study. Systolic and diastolic blood pressure (SBP, DBP), heart rate (HR), brachial artery diameter (BAD), brachial artery flow-mediated dilatation (FMD) and nitroglycerin-mediated arterial dilatation (NMD) were collected by in-home examinations. A maximum of 336 daily environmental and health effect observations were obtained. Daily potassium air concentrations were associated with significant decreases in DBP (−0.0447 mmHg/ng/m3 ± 0.0132, p = 0.0016, lag day 0) among participants compliant with the personal monitoring protocol. Personal NO2 exposures resulted in significant changes in BAD (e.g., 0.0041 mm/ppb ± 0.0019, p = 0.0353, lag day 1) and FMD (0.0612 ±0.0235, p = 0.0103, lag day 0) among other findings. PMID:21711166

  19. Identification of an endogenous alpha-adrenergic receptor antagonist: studies on its possible role in endocrine and cardiovascular function

    SciTech Connect

    Dunbar, J.C.; Wider, M.; House, F.; Campbell, R.

    1986-03-01

    The concept of ..cap alpha.. and ..beta.. adrenergic receptors that are regulated by epinephrine or norepinephrine (NE) is well established. The reported receptor antagonists have been synthetic. A peptide extracted from the duodenal mucosa with ..cap alpha..-2 antagonist properties has been identified. It specifically inhibits /sup 3/H-yohimbine binding (..cap alpha..-2) but not /sup 3/H dihydroalprenolol (..beta..) binding in whole brain membranes. Partially purified preparations of the alpha receptor binding inhibitor (ABI) were tested for endocrine pancreatic and cardiovascular effects. When isolated islets were incubated in the presence of ABI with and without NE, ABI along did not alter insulin secretion but completely reversed the NE suppression of glucose stimulated insulin release. Glucagon secretion by these same islets was enhanced by ABI and augmented the stimulatory effect of NE. Intravenous (I.V.) infusion of ABI increased serum insulin in the presence of NE and decreased the serum glucose response to a glucose load. Infusion of ABI into the 4th ventricle, or I.V. resulted in a decrease (50-60%) in systolic and diastolic blood pressure as well as a decrease (10-20%) in heart rate. From these studies the authors conclude that a duodenal peptide with the capacity to inhibit ..cap alpha..-2 agonist binding may play a role in endocrine and cardiovascular functions.

  20. Dose-dependent effects of intravenous lorazepam on cardiovascular activity, plasma catecholamines and psychological function during rest and mental stress.

    PubMed

    Tulen, J H; Moleman, P; Boomsma, F; van Steenis, H G; van den Heuij, V J

    1991-01-01

    Dose-dependent effects of intravenously administered lorazepam on psychophysiological activity during rest and mental stress were studied in order to examine differential responses to doses which may induce anxiolysis or sedation. In a double-blind randomized cross-over study, nine male volunteers participated in a placebo and a lorazepam session, during which the subjects repeatedly performed a 10-min version of the Stroop Color Word Test (CWT), with 10 min of rest between the CWTs. Lorazepam was administered before each rest period in increasing doses of 0.0, 0.6, 0.13, 0.25 and 0.5 mg (total cumulative dose: 0.94 mg). Heart rate showed a dose-dependent decrease during rest with an ED50 of 0.13 mg lorazepam, while lorazepam had no effect on the cardiovascular and plasma catecholamine response magnitudes to the CWT. Subjective fatigue and reaction time increased significantly after 0.94 mg lorazepam, while at the same dose vigor decreased; state anxiety after the CWT was not influenced by lorazepam. These data show differential effects of lorazepam on cardiovascular, biochemical and psychological function. While heart rate was suppressed at low doses during rest and reaction time and subjective fatigue increased at doses which induced sedation, state anxiety and physiological response patterns to the CWT were not influenced by lorazepam.

  1. In Utero Exposure to a Cardiac Teratogen Causes Reversible Deficits in Postnatal Cardiovascular Function, But Altered Adaptation to the Burden of Pregnancy.

    PubMed

    Aasa, Kristiina L; Maciver, Rebecca D; Ramchandani, Shyamlal; Adams, Michael A; Ozolinš, Terence R S

    2015-11-01

    Congenital heart defects (CHD) are the most common birth anomaly and while many resolve spontaneously by 1 year of age, the lifelong burden on survivors is poorly understood. Using a rat model of chemically induced CHD that resolve postnatally, we sought to characterize the postnatal changes in cardiac function, and to investigate whether resolved CHD affects the ability to adapt to the increased the cardiovascular (CV) burden of pregnancy. To generate rats with resolved CHD, pregnant rats were administered distilled water or dimethadione (DMO) [300 mg/kg b.i.d. on gestation day (gd) 9 and 10] and pups delivered naturally. To characterize structural and functional changes in the heart, treated and control offspring were scanned by echocardiography on postnatal day 4, 21, and 10-12 weeks. Radiotelemeters were implanted for continuous monitoring of hemodynamics. Females were mated and scanned by echocardiography on gd12 and gd18 during pregnancy. On gd18, maternal hearts were collected for structural and molecular assessment. Postnatal echocardiography revealed numerous structural and functional differences in treated offspring compared with control; however, these resolved by 10-12 weeks of age. The CV demand of pregnancy revealed differences between treated and control offspring with respect to mean arterial pressure, CV function, cardiac strain, and left ventricular gene expression. In utero exposure to DMO also affected the subsequent generation. Gd18 fetal and placental weights were increased in treated F2 offspring. This study demonstrates that in utero chemical exposure may permanently alter the capacity of the postnatal heart to adapt to pregnancy and this may have transgenerational effects.

  2. SLE-associated risk factors affect DC function.

    PubMed

    Son, Myoungsun; Kim, Sun Jung; Diamond, Betty

    2016-01-01

    Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non-activated, non-immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC-intrinsic abnormalities or DC-extrinsic regulators of function can predispose to autoimmunity.

  3. SLE-associated risk factors affect DC function.

    PubMed

    Son, Myoungsun; Kim, Sun Jung; Diamond, Betty

    2016-01-01

    Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non-activated, non-immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC-intrinsic abnormalities or DC-extrinsic regulators of function can predispose to autoimmunity. PMID:26683148

  4. SLE-associated risk factors affect DC function

    PubMed Central

    Son, Myoungsun; Kim, Sun Jung; Diamond, Betty

    2016-01-01

    Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non-activated, non-immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC-intrinsic abnormalities or DC-extrinsic regulators of function can predispose to autoimmunity. PMID:26683148

  5. Prenatal drug exposure affects neonatal brain functional connectivity.

    PubMed

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention.

  6. Prenatal drug exposure affects neonatal brain functional connectivity.

    PubMed

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  7. Nuclear cyclophilins affect spliceosome assembly and function in vitro.

    PubMed

    Adams, B M; Coates, Miranda N; Jackson, S RaElle; Jurica, Melissa S; Davis, Tara L

    2015-07-15

    Cyclophilins are ubiquitously expressed proteins that bind to prolines and can catalyse cis/trans isomerization of proline residues. There are 17 annotated members of the cyclophilin family in humans, ubiquitously expressed and localized variously to the cytoplasm, nucleus or mitochondria. Surprisingly, all eight of the nuclear localized cyclophilins are found associated with spliceosomal complexes. However, their particular functions within this context are unknown. We have therefore adapted three established assays for in vitro pre-mRNA splicing to probe the functional roles of nuclear cyclophilins in the context of the human spliceosome. We find that four of the eight spliceosom-associated cyclophilins exert strong effects on splicing in vitro. These effects are dose-dependent and, remarkably, uniquely characteristic of each cyclophilin. Using both qualitative and quantitative means, we show that at least half of the nuclear cyclophilins can act as regulatory factors of spliceosome function in vitro. The present work provides the first quantifiable evidence that nuclear cyclophilins are splicing factors and provides a novel approach for future work into small molecule-based modulation of pre-mRNA splicing.

  8. Development of affective theory of mind across adolescence: disentangling the role of executive functions.

    PubMed

    Vetter, Nora C; Altgassen, Mareike; Phillips, Louise; Mahy, Caitlin E V; Kliegel, Matthias

    2013-01-01

    Theory of mind, the ability to understand mental states, involves inferences about others' cognitive (cognitive theory of mind) and emotional (affective theory of mind) mental states. The current study explored the role of executive functions in developing affective theory of mind across adolescence. Affective theory of mind and three subcomponents of executive functions (inhibition, updating, and shifting) were measured. Affective theory of mind was positively related to age, and all three executive functions. Specifically, inhibition explained the largest amount of variance in age-related differences in affective theory of mind.

  9. The effect of negative affect on cognition: Anxiety, not anger, impairs executive function.

    PubMed

    Shields, Grant S; Moons, Wesley G; Tewell, Carl A; Yonelinas, Andrew P

    2016-09-01

    It is often assumed that negative affect impairs the executive functions that underlie our ability to control and focus our thoughts. However, support for this claim has been mixed. Recent work has suggested that different negative affective states like anxiety and anger may reflect physiologically separable states with distinct effects on cognition. However, the effects of these 2 affective states on executive function have never been assessed. As such, we induced anxiety or anger in participants and examined the effects on executive function. We found that anger did not impair executive function relative to a neutral mood, whereas anxiety did. In addition, self-reports of induced anxiety, but not anger, predicted impairments in executive function. These results support functional models of affect and cognition, and highlight the need to consider differences between anxiety and anger when investigating the influence of negative affect on fundamental cognitive processes such as memory and executive function. (PsycINFO Database Record PMID:27100367

  10. Does prolonged cycling of moderate intensity affect immune cell function?

    PubMed Central

    Scharhag, J; Meyer, T; Gabriel, H; Schlick, B; Faude, O; Kindermann, W; Shephard, R

    2005-01-01

    Background: Prolonged exercise may induce temporary immunosuppression with a presumed increased susceptibility for infection. However, there are only few data on immune cell function after prolonged cycling at moderate intensities typical for road cycling training sessions. Methods: The present study examined the influence on immune cell function of 4 h of cycling at a constant intensity of 70% of the individual anaerobic threshold. Interleukin-6 (IL-6) and C-reactive protein (CRP), leukocyte and lymphocyte populations, activities of natural killer (NK), neutrophils, and monocytes were examined before and after exercise, and also on a control day without exercise. Results: Cycling for 4 h induced a moderate acute phase response with increases in IL-6 from 1.0 (SD 0.5) before to 9.6 (5.6) pg/ml 1 h after exercise and CRP from 0.5 (SD 0.4) before to 1.8 (1.3) mg/l 1 day after exercise. Although absolute numbers of circulating NK cells, monocytes, and neutrophils increased during exercise, on a per cell basis NK cell activity, neutrophil and monocyte phagocytosis, and monocyte oxidative burst did not significantly change after exercise. However, a minor effect over time for neutrophil oxidative burst was noted, tending to decrease after exercise. Conclusions: Prolonged cycling at moderate intensities does not seem to seriously alter the function of cells of the first line of defence. Therefore, the influence of a single typical road cycling training session on the immune system is only moderate and appears to be safe from an immunological point of view. PMID:15728699

  11. Yersinia enterocolitica Affects Intestinal Barrier Function in the Colon.

    PubMed

    Hering, Nina A; Fromm, Anja; Kikhney, Judith; Lee, In-Fah M; Moter, Annette; Schulzke, Jörg D; Bücker, Roland

    2016-04-01

    Infection with Yersinia enterocolitica causes acute diarrhea in early childhood. A mouse infection model presents new findings on pathological mechanisms in the colon. Symptoms involve diarrhea with watery feces and weight loss that have their functional correlates in decreased transepithelial electrical resistance and increased fluorescein permeability. Y. enterocolitica was present within the murine mucosa of both ileum and colon. Here, the bacterial insult was of focal nature and led to changes in tight junction protein expression and architecture. These findings are in concordance with observations from former cell culture studies and suggest a leak flux mechanism of diarrhea.

  12. Repeated Traumatic Brain Injury Affects Composite Cognitive Function in Piglets

    PubMed Central

    Friess, Stuart H.; Ichord, Rebecca N.; Ralston, Jill; Ryall, Karen; Helfaer, Mark A.; Smith, Colin

    2009-01-01

    Abstract Cumulative effects of repetitive mild head injury in the pediatric population are unknown. We have developed a cognitive composite dysfunction score that correlates white matter injury severity in neonatal piglets with neurobehavioral assessments of executive function, memory, learning, and problem solving. Anesthetized 3- to 5-day-old piglets were subjected to single (n = 7), double one day apart (n = 7), and double one week apart (n = 7) moderate (190 rad/s) rapid non-impact axial rotations of the head and compared to instrumented shams (n = 7). Animals experiencing two head rotations one day apart had a significantly higher mortality rate (43%) compared to the other groups and had higher failures rates in visual-based problem solving compared to instrumented shams. White matter injury, assessed by β-APP staining, was significantly higher in the double one week apart group compared to that with single injury and sham. Worsening performance on cognitive composite score correlated well with increasing severity of white matter axonal injury. In our immature large animal model of TBI, two head rotations produced poorer outcome as assessed by neuropathology and neurobehavioral functional outcomes compared to that with single rotations. More importantly, we have observed an increase in injury severity and mortality when the head rotations occur 24 h apart compared to 7 days apart. These observations have important clinical translation to infants subjected to repeated inflicted head trauma. PMID:19275468

  13. Neural and humoral controlling mechanisms of cardiovascular functions in man under weightlessness simulated by water immersion

    NASA Astrophysics Data System (ADS)

    Mano, T.; Iwase, S.; Saito, M.; Koga, K.; Abe, H.; Inamura, K.; Matsukawa, T.

    To clarify how neural and humoral mechanisms operate to control cardiovascular unctions in man under weightlessness, the response of sympathetic nerve activity was observed in healthy human subjects by means of microneurographic technique with the changes of several hemodynamic parameters and hormonal responses during thermoneutral head-out water immersion. Muscle sympathetic nerve activity was markedly suppressed by head-out immersion, concomitantly with a reduction of the leg volume, an increase of the stroke volume and a reduction of total peripheral resistance. At the same time, plasma level of norepinephrine, vasopressive and antidiuretic hormones (ADH, aldosterone, renin activity, angiotensin I·II) were reduced, while vasodepressive and diuretic hormone (ANP) was markedly increased. The systemic blood pressure was maintained almost unchanged during head-out water immersion. The suppressive response of sympathetic nerve activity seemed to be age-dependent. This response was less prominent in the elderly than in young subjects. It is concluded that the suppressive response of muscle sympathetic activity plays an important role to maintain hemodynamic homeostasis under weightlessness to compensate for the cephalad fluid shift and the resultant increase of the stroke volume in cooperation with the hormonal responses.

  14. Functional analysis of hypothalamic control of the cardiovascular responses accompanying emotional behavior.

    PubMed

    Smith, O A; Astley, C A; DeVito, J L; Stein, J M; Walsh, K E

    1980-06-01

    The cardiovascular (CV) responses to an acute emotional situation in unanesthetized, chair-restrained baboons include elevations in heart rate, blood pressure, and terminal aortic flow and a complex biphasic reduction in renal flow. The same CV responses can be produced by stimulating an area in the hypothalamus. Furthermore, bilateral ablation of the hypothalamic area eliminates CV responses to the emotional behavior while responses to exercise, free feed, and lever press remain unaltered. This effect is not due to memory loss, loss of emotionality, or a general loss of CV regulatory capacity. Efferent projections of the hypothalamic site were traced by means of autoradiography and afferent sources were traced by horseradish peroxidase injections. Efferents include projections to amygdala, central gray, zona incerta, midline thalamic nuclei, dorsal midbrain tegmentum, the parabrachial region. Afferents were widely distributed and included inputs from the subiculum, amygdala, septal area, central gray, locus ceruleus, interpeduncular nucleus, and bilateral labeling in and around the dorsal motor nucleus of X and the nucleus ambiguus.

  15. Effect of acute exercise and cardiovascular fitness on cognitive function: an event-related cortical desynchronization study.

    PubMed

    Chang, Yu-Kai; Chu, Chien-Heng; Wang, Chun-Chih; Song, Tai-Fen; Wei, Gao-Xia

    2015-03-01

    This study aimed to clarify the effects of acute exercise and cardiovascular fitness on cognitive function using the Stroop test and event-related desynchronization (ERD) in an aged population. Old adults (63.10 ± 2.89 years) were first assigned to either a high-fitness or a low-fitness group, and they were then subjected to an acute exercise treatment and a reading control treatment in a counterbalanced order. Alpha ERD was recorded during the Stroop test, which was administered after both treatments. Acute exercise improved cognitive performance regardless of the level of cognition, and old adults with higher fitness levels received greater benefits from acute exercise. Additionally, acute exercise, rather than overall fitness, elicited greater lower and upper alpha ERDs relative to the control condition. These findings indirectly suggest that the beneficial effects of acute exercise on cognitive performance may result from exercise-induced attentional control observed during frontal neural excitation. PMID:25308605

  16. Does vitamin C deficiency affect cognitive development and function?

    PubMed

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-09-01

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(-/-) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies.

  17. Does Vitamin C Deficiency Affect Cognitive Development and Function?

    PubMed Central

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-01-01

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(−/−) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies. PMID:25244370

  18. Endocannabinoids affect the reproductive functions in teleosts and amphibians.

    PubMed

    Cottone, E; Guastalla, A; Mackie, K; Franzoni, M F

    2008-04-16

    Following the discovery in the brain of the bonyfish Fugu rubripes of two genes encoding for type 1 cannabinoid receptors (CB1A and CB1B), investigations on the phylogeny of these receptors have indicated that the cannabinergic system is highly conserved. Among the multiple functions modulated by cannabinoids/endocannabinoids through the CB1 receptors one of the more investigated is the mammalian reproduction. Therefore, since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, the major aim of the present paper was to review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, namely bonyfish and amphibians. The expression and distribution of CB1 receptors were investigated in the CNS and gonads of two teleosts, Pelvicachromis pulcher and Carassius auratus as well as in the anuran amphibians Xenopus laevis and Rana esculenta. In general the large diffusion of neurons targeted by cannabinoids in both fish and amphibian forebrain indicate endocannabinoids as pivotal local messengers in several neural circuits involved in either sensory integrative activities, like the olfactory processes (in amphibians) and food response (in bonyfish), or neuroendocrine machinery (in both). By using immunohistochemistry for CB1 and GnRH-I, the codistribution of the two signalling molecules was found in the fish basal telencephalon and preoptic area, which are key centers for gonadotropic regulation in all vertebrates. A similar topographical codistribution was observed also in the septum of the telencephalon in Rana esculenta and Xenopus laevis. Interestingly, the double standard immunofluorescence on the same brain section, aided with a laser confocal microscope, showed that in anurans a subset of GnRH-I neurons exhibited also the CB1 immunostaining. The fact that CB1-LI-IR was found indeed in the FSH gonadotrophs of the Xenopus

  19. Consumption of bee pollen affects rat ovarian functions.

    PubMed

    Kolesarova, A; Bakova, Z; Capcarova, M; Galik, B; Juracek, M; Simko, M; Toman, R; Sirotkin, A V

    2013-12-01

    The aim of this study was to examine possible effects of bee pollen added to the feed mixture (FM) on rat ovarian functions (secretion activity and apoptosis). We evaluated the bee pollen effect on the release of insulin-like growth factor I (IGF-I) and steroid hormones (progesterone and estradiol), as well as on the expression of markers of apoptosis (Bcl-2, Bax and caspase-3) in rat ovarian fragments. Female rats (n = 15) were fed during 90 days by FM without or with rape seed bee pollen in dose either 3 kg/1000 kg FM or 5 kg/1000 kg FM. Fragments of ovaries isolated from rats of each group (totally 72 pieces) were incubated for 24 h. Hormonal secretion into the culture medium was detected by RIA. The markers of apoptosis were evaluated by Western blotting. It was observed that IGF-I release by rat ovarian fragments was significantly (p < 0.05) decreased; on the other hand, progesterone and estradiol secretion was increased after bee pollen treatment at dose 5 kg/1000 kg FM but not at 3 kg/1000 FM. Accumulation of Bcl-2 was increased by bee pollen added at 3 kg/1000 kg FM, but not at higher dose. Accumulation of Bax was increased in ovaries of rats fed by bee pollen at doses either 3 or 5 kg/1000 kg FM, whilst accumulation of caspase-3 increased after feeding with bee pollen at dose 5 kg/1000 kg FM, but not at 3 kg/1000 kg FM. Our results contribute to new insights regarding the effect of bee pollen on both secretion activity (release of growth factor IGF-I and steroid hormones progesterone and estradiol) and apoptosis (anti- and pro-apoptotic markers Bcl-2, Bax and caspase-3). Bee pollen is shown to be a potent regulator of rat ovarian functions. PMID:23137268

  20. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads.

    PubMed

    Frey-Klett, Pascale; Chavatte, Michaël; Clausse, Marie-Lise; Courrier, Sébastien; Le Roux, Christine; Raaijmakers, Jos; Martinotti, Maria Giovanna; Pierrat, Jean-Claude; Garbaye, Jean

    2005-01-01

    Here we characterized the effect of the ectomycorrhizal symbiosis on the genotypic and functional diversity of soil Pseudomonas fluorescens populations and analysed its possible consequences in terms of plant nutrition, development and health. Sixty strains of P. fluorescens were isolated from the bulk soil of a forest nursery, the ectomycorrhizosphere and the ectomycorrhizas of the Douglas fir (Pseudostuga menziesii) seedlings-Laccaria bicolor S238N. They were characterized in vitro with the following criteria: ARDRA, phosphate solubilization, siderophore, HCN and AIA production, genes of N2-fixation and antibiotic synthesis, in vitro confrontation with a range of phytopathogenic and ectomycorrhizal fungi, effect on the Douglas fir-L. bicolor symbiosis. For most of these criteria, we demonstrated that the ectomycorrhizosphere significantly structures the P. fluorescens populations and selects strains potentially beneficial to the symbiosis and to the plant. This prompts us to propose the ectomycorrhizal symbiosis as a true microbial complex where multitrophic interactions take place. Moreover it underlines the fact that this symbiosis has an indirect positive effect on plant growth, via its selective pressure on bacterial communities, in addition to its known direct positive effect. PMID:15720643

  1. Kidney function and the risk of cardiovascular disease in patients with type 2 diabetes.

    PubMed

    Wang, Yujie; Katzmarzyk, Peter T; Horswell, Ronald; Zhao, Wenhui; Johnson, Jolene; Hu, Gang

    2014-05-01

    The association of estimated glomerular filtration rate (GFR) with cardiovascular disease risk among patients with type 2 diabetes is unclear. Here we prospectively investigated the race-specific association of estimated GFR with the risk of coronary heart disease and stroke among 11,940 Caucasian and 16,451 African-American patients. During mean follow-up of 6.1-6.8 years, 6647 coronary heart disease and 2750 stroke incident cases were identified. Age- and sex-adjusted hazard ratios of coronary heart disease associated with baseline estimated GFR (90 or more, 75-89, 60-74, 30-59, and 15-29 ml/min per 1.73 m2) were 1.00, 1.04, 1.13, 1.37, and 2.07 (significant trend) for African Americans, and 1.00, 1.09, 1.10, 1.31, and 2.18 (significant trend) for Caucasians, respectively. A significantly increased stroke risk was observed among both African-American and Caucasian participants with an estimated GFR under 60 ml/min per 1.73 m2. When using the updated mean values of estimated GFR, these significant associations became stronger. Participants with mildly decreased estimated GFR (60-89 ml/min per 1.73 m2) during follow-up were also at a significantly higher risk of coronary heart disease and stroke. Thus, even mildly reduced estimated GFR at baseline (under 75 ml/min per 1.73 m2) and during follow-up (under 90 ml/min per 1.73 m2) increased the risk of incident coronary heart disease and stroke among both African-American and Caucasian type 2 diabetes patients.

  2. Stainless steel surface functionalization for immobilization of antibody fragments for cardiovascular applications.

    PubMed

    Foerster, A; Hołowacz, I; Sunil Kumar, G B; Anandakumar, S; Wall, J G; Wawrzyńska, M; Paprocka, M; Kantor, A; Kraskiewicz, H; Olsztyńska-Janus, S; Hinder, S J; Bialy, D; Podbielska, H; Kopaczyńska, M

    2016-04-01

    Stainless steel 316 L material is commonly used for the production of coronary and peripheral vessel stents. Effective biofunctionalization is a key to improving the performance and safety of the stents after implantation. This paper reports the method for the immobilization of recombinant antibody fragments (scFv) on stainless steel 316 L to facilitate human endothelial progenitor cell (EPC) growth and thus improve cell viability of the implanted stents for cardiovascular applications. The modification of stent surface was conducted in three steps. First the stent surface was coated with titania based coating to increase the density of hydroxyl groups for successful silanization. Then silanization with 3 aminopropyltriethoxysilane (APTS) was performed to provide the surface with amine groups which presence was verified using FTIR, XPS, and fluorescence microscopy. The maximum density of amine groups (4.8*10(-5) mol/cm(2)) on the surface was reached after reaction taking place in ethanol for 1 h at 60 °C and 0.04M APTS. On such prepared surface the glycosylated scFv were subsequently successfully immobilized. The influence of oxidation of scFv glycan moieties and the temperature on scFv coating were investigated. The fluorescence and confocal microscopy study indicated that the densest and most uniformly coated surface with scFv was obtained at 37 °C after oxidation of glycan chain. The results demonstrate that the scFv cannot be efficiently immobilized without prior aminosilanization of the surface. The effect of the chemical modification on the cell viability of EPC line 55.1 (HucPEC-55.1) was performed indicating that the modifications to the 316 L stainless steel are non-toxic to EPCs.

  3. Aluminum fluoride affects the structure and functions of cell membranes.

    PubMed

    Suwalsky, M; Norris, B; Villena, F; Cuevas, F; Sotomayor, P; Zatta, P

    2004-06-01

    No useful biological function for aluminum has been found. To the contrary, it might play an important role in several pathologies, which could be related to its interactions with cell membranes. On the other hand, fluoride is a normal component of body fluids, soft tissues, bones and teeth. Its sodium salt is frequently added to drinking water to prevent dental caries. However, large doses cause severe pathological alterations. In view of the toxicity of Al(3+) and F(-) ions, it was thought of interest to explore the damaging effects that AlF(3) might induce in cell membranes. With this aim, it was incubated with human erythrocytes, which were examined by phase contrast and scanning electron microscopy, and molecular models of biomembranes. The latter consisted of large unilamellar vesicles (LUV) of dimyristoylphosphatidylcholine (DMPC) and bilayers of DMPC and dimyristoylphosphatidylethanolamine (DMPE) which were studied by fluorescence spectroscopy and X-ray diffraction, respectively. In order to understand the effects of AlF(3) on ion transport (principally sodium and chloride) we used the isolated toad skin to which electrophysiological measurements were applied. It was found that AlF(3) altered the shape of erythrocytes inducing the formation of echinocytes. This effect was explained by X-ray diffraction which revealed that AlF(3) perturbed the structure of DMPC, class of lipids located in the outer monolayer of the erythrocyte membrane. This result was confirmed by fluorescence spectroscopy on DMPC LUV. The biphasic (stimulatory followed by inhibitory) effects on the isolated skin suggested changes in apical Cl(-) secretion and moderate ATPase inactivation. PMID:15110101

  4. Classical cardiovascular disease risk factors associate with vascular function and morphology in rheumatoid arthritis: a six-year prospective study

    PubMed Central

    2013-01-01

    Introduction Patients with rheumatoid arthritis (RA) are at an increased risk for cardiovascular disease (CVD). An early manifestation of CVD is endothelial dysfunction which can lead to functional and morphological vascular abnormalities. Classical CVD risk factors and inflammation are both implicated in causing endothelial dysfunction in RA. The objective of the present study was to examine the effect of baseline inflammation, cumulative inflammation, and classical CVD risk factors on the vasculature following a six-year follow-up period. Methods A total of 201 RA patients (155 females, median age (25th to 75th percentile): 61 years (53 to 67)) were examined at baseline (2006) for presence of classical CVD risk factors and determination of inflammation using C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). At follow-up (2012) patients underwent assessments of microvascular and macrovascular endothelium-dependent and endothelium-independent function, along with assessment of carotid atherosclerosis. The CRP and ESR were recorded from the baseline study visit to the follow-up visit for each patient to calculate cumulative inflammatory burden. Results Classical CVD risk factors, but not RA disease-related inflammation, predicted microvascular endothelium-dependent and endothelium-independent function, macrovascular endothelium-independent function and carotid atherosclerosis. These findings were similar in a sub-group of patients free from CVD, and not receiving non-steroidal anti-inflammatory drugs, cyclooxygenase 2 inhibitors or biologics. Cumulative inflammation was not associated with microvascular and macrovascular endothelial function, but a weak association was apparent between area under the curve for CRP and carotid atherosclerosis. Conclusions Classical CVD risk factors may be better long-term predictors of vascular function and morphology than systemic disease-related inflammation in patients with RA. Further studies are needed to

  5. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    ERIC Educational Resources Information Center

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  6. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  7. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…

  8. The cerebellum: its role in language and related cognitive and affective functions.

    PubMed

    De Smet, Hyo Jung; Paquier, Philippe; Verhoeven, Jo; Mariën, Peter

    2013-12-01

    The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral-affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed.

  9. The Effects of Tai Chi on the Renal and Cardiac Functions of Patients with Chronic Kidney and Cardiovascular Diseases

    PubMed Central

    Shi, Zhi-Min; Wen, Hai-Ping; Liu, Fu-Rong; Yao, Chun-Xia

    2014-01-01

    [Purpose] To assess the effects of Tai Chi on the renal and cardiac functions of patients with chronic kidney disease (CKD) and cardiovascular disease (CVD). [Subjects and Methods] Twenty-one patients with CKD and CVD were randomly divided into control and exercise groups. The exercise group performed Tai Chi training for 30 minutes three to five times a week for 12 weeks, while the control group did not. All patients’ renal and cardiac functions and blood lipid parameters were measured at baseline and after 12 weeks. [Results] The 12 weeks Tai Chi intervention improved the estimated glomerular filtration rate (eGFR), left ventricular ejection fraction (LVEF), and the high density lipoprotein (HDL) level, and decreased the serum creatintine (Scr) level, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and the total cholesterol (CH), triglyceride (TG) and low density lipoprotein (LDL) levels. The change in eGFR correlated negatively with the changes in CH, TG and LDL, and positively with the change in HDL. In addition, the change in SBP correlated positively with the changes in CH, TG and LDL, and negatively with the change in HDL. [Conclusion] Tai Chi training might improve the renal and cardiac functions of CKD and CVD patients via improved regulation of lipid metabolism. PMID:25435688

  10. Cardiovascular function at rest and on exercise in patients with cryptogenic fibrosing alveolitis.

    PubMed Central

    Bush, A; Busst, C M

    1988-01-01

    Cardiovascular complications are common in fibrosing alveolitis, but there have been few physiological studies of the pulmonary circulation in this condition, and those that have been carried out have usually depended on right heart catheterisation. This paper reports non-invasive measurements of effective pulmonary blood flow, oxygen uptake, pulmonary arteriovenous oxygen content differences, and estimates of mixed venous oxygen saturation in 20 patients with histologically proved cryptogenic fibrosing alveolitis at rest and while exercising on a motorized treadmill. Results were compared with those of 20 age and sex matched normal subjects, at rest and at an arbitrarily chosen oxygen uptake of 0.75 l/min. The latter results were obtained by linear interpolation. Effective pulmonary blood flow was normal at rest, but oxygen dispatch to the tissues (blood flow x blood oxygen content) was significantly reduced at rest (mean reduction 190 (SD 68) ml/l/min; p less than 0.01) and at an oxygen uptake of 0.75 l/min (mean reduction 128 (50) ml/l/min; p less than 0.02), reflecting the presence of systemic arterial hypoxaemia. Pulmonary arteriovenous oxygen content differences were similar in patients and normal subjects, but mixed venous saturation was lower in the patients at rest (mean % reduction 6.8 (2.6); p less than 0.02) and at an oxygen uptake of 0.75 l/min (mean % reduction 9.6 (2.9); p less than 0.002). It is concluded that the supply of oxygen potentially available to the tissues is reduced at rest and during exercise in patients with fibrosing alveolitis and hence, by analogy with normal people exercising under hypoxic conditions, that pulmonary blood flow is inappropriately low in this condition. The low mixed venous oxygen saturation may contribute to the development of pulmonary hypertension in some patients. The rebreathing technique used in this study may be of use in monitoring treatment; it could be applied many times to the same patient, and might be a

  11. Validity of an adaptation of the Framingham cardiovascular risk function: the VERIFICA study

    PubMed Central

    Marrugat, Jaume; Subirana, Isaac; Comín, Eva; Cabezas, Carmen; Vila, Joan; Elosua, Roberto; Nam, Byung‐Ho; Ramos, Rafel; Sala, Joan; Solanas, Pascual; Cordón, Ferran; Gené‐Badia, Joan; D'Agostino, Ralph B

    2007-01-01

    Background To assess the reliability and accuracy of the Framingham coronary heart disease (CHD) risk function adapted by the Registre Gironí del Cor (REGICOR) investigators in Spain. Methods A 5‐year follow‐up study was completed in 5732 participants aged 35–74 years. The adaptation consisted of using in the function the average population risk factor prevalence and the cumulative incidence observed in Spain instead of those from Framingham in a Cox proportional hazards model. Reliability and accuracy in estimating the observed cumulative incidence were tested with the area under the curve comparison and goodness‐of‐fit test, respectively. Results The Kaplan–Meier CHD cumulative incidence during the follow‐up was 4.0% in men and 1.7% in women. The original Framingham function and the REGICOR adapted estimates were 10.4% and 4.8%, and 3.6% and 2.0%, respectively. The REGICOR‐adapted function's estimate did not differ from the observed cumulated incidence (goodness of fit in men, p = 0.078, in women, p = 0.256), whereas all the original Framingham function estimates differed significantly (p<0.001). Reliabilities of the original Framingham function and of the best Cox model fit with the study data were similar in men (area under the receiver operator characteristic curve 0.68 and 0.69, respectively, p = 0.273), whereas the best Cox model fitted better in women (0.73 and 0.81, respectively, p<0.001). Conclusion The Framingham function adapted to local population characteristics accurately and reliably predicted the 5‐year CHD risk for patients aged 35–74 years, in contrast with the original function, which consistently overestimated the actual risk. PMID:17183014

  12. Peptides derived from the prohormone proNPQ/spexin are potent central modulators of cardiovascular and renal function and nociception

    PubMed Central

    Toll, Lawrence; Khroyan, Taline V.; Sonmez, Kemal; Ozawa, Akihiko; Lindberg, Iris; McLaughlin, Jay P.; Eans, Shainnel O.; Shahien, Amir A.; Kapusta, Daniel R.

    2012-01-01

    Computational methods have led two groups to predict the endogenous presence of a highly conserved, amidated, 14-aa neuropeptide called either spexin or NPQ. NPQ/spexin is part of a larger prohormone that contains 3 sets of RR residues, suggesting that it could yield more than one bioactive peptide; however, no in vivo activity has been demonstrated for any peptide processed from this precursor. Here we demonstrate biological activity for two peptides present within proNPQ/spexin. NPQ/spexin (NWTPQAMLYLKGAQ-NH2) and NPQ 53-70 (FISDQSRRKDLSDRPLPE) have differing renal and cardiovascular effects when administered intracerebroventricularly or intravenously into rats. Intracerebroventricular injection of NPQ/spexin produced a 13 ± 2 mmHg increase in mean arterial pressure, a 38 ± 8 bpm decrease in heart rate, and a profound decrease in urine flow rate. Intracerebroventricular administration of NPQ 53-70 produced a 26 ± 9 bpm decrease in heart rate with no change in mean arterial pressure, and a marked increase in urine flow rate. Intraventricular NPQ/spexin and NPQ 53-70 also produced antinociceptive activity in the warm water tail withdrawal assay in mice (ED50<30 and 10 nmol for NPQ/spexin and NPQ 53-70, respectively). We conclude that newly identified peptides derived from the NPQ/spexin precursor contribute to CNS-mediated control of arterial blood pressure and salt and water balance and modulate nociceptive responses.—Toll, L., Khroyan, T. V., Sonmez, K., Ozawa, A., Lindberg, I., McLaughlin, J. P., Eans, S. O., Shahien, A. A., Kapusta, D. R. Peptides derived from the prohormone proNPQ/spexin are potent central modulators of cardiovascular and renal function and nociception. PMID:22038051

  13. HDL-S1P: cardiovascular functions, disease-associated alterations, and therapeutic applications

    PubMed Central

    Levkau, Bodo

    2015-01-01

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid contained in High-density lipoproteins (HDL) and has drawn considerable attention in the lipoprotein field as numerous studies have demonstrated its contribution to several functions inherent to HDL. Some of them are partly and some entirely due to the S1P contained in HDL (HDL-S1P). Despite the presence of over 1000 different lipids in HDL, S1P stands out as it possesses its own cell surface receptors through which it exercises key physiological functions. Most of the S1P in human plasma is associated with HDL, and the amount of HDL-S1P influences the quality and quantity of HDL-dependent functions. The main binding partner of S1P in HDL is apolipoprotein M but others may also exist particularly under conditions of acute S1P elevations. HDL not only exercise functions through their S1P content but have also an impact on genuine S1P signaling by influencing S1P bioactivity and receptor presentation. HDL-S1P content is altered in human diseases such as atherosclerosis, coronary artery disease, myocardial infarction, renal insufficiency and diabetes mellitus. Low HDL-S1P has also been linked to impaired HDL functions associated with these disorders. Although the pathophysiological and molecular reasons for such disease-associated shifts in HDL-S1P are little understood, there have been successful approaches to circumvent their adverse implications by pharmacologically increasing HDL-S1P as means to improve HDL function. This mini-review will cover the current understanding of the contribution of HDL-S1P to physiological HDL function, its alteration in disease and ways for its restoration to correct HDL dysfunction. PMID:26539121

  14. Laser therapy in cardiovascular disease

    NASA Astrophysics Data System (ADS)

    Rindge, David

    2009-02-01

    Cardiovascular disease is the number one cause of death worldwide. It is broadly defined to include anything which adversely affects the heart or blood vessels. One-third of Americans have one or more forms of it. By one estimate, average human life expectancy would increase by seven years if it were eliminated. The mainstream medical model seeks mostly to "manage" cardiovascular disease with pharmaceuticals or to surgically bypass or reopen blocked vessels via angioplasty. These methods have proven highly useful and saved countless lives. Yet drug therapy may be costly and ongoing, and it carries the risk of side effects while often doing little or nothing to improve underlying health concerns. Similarly, angioplasty or surgery are invasive methods which entail risk. Laser therapy1 regenerates tissue, stimulates biological function, reduces inflammation and alleviates pain. Its efficacy and safety have been increasingly well documented in cardiovascular disease of many kinds. In this article we will explore the effects of laser therapy in angina, atherosclerosis, coronary artery disease, hypertension, hyperlipidemia, myocardial infarction, stroke and other conditions. The clinical application of various methods of laser therapy, including laserpuncture and transcutaneous, supravascular and intravenous irradiation of blood will be discussed. Implementing laser therapy in the treatment of cardiovascular disease offers the possibility of increasing the health and wellbeing of patients while reducing the costs and enhancing safety of medical care.

  15. [Use of indicators of anaerobic metabolism in the evaluation of the functional reserve of the cardiovascular system in patients operated on in the past for congenital heart defects].

    PubMed

    Mochalov, O Iu; Gritsenko, V V; Gavrilenkov, V I

    1984-05-01

    The correlation of most important parameters of the central hemodynamics with the intensity of anaerobic metabolism was studied in 65 patients operated on having congenital heart diseases and in 37 healthy patients under increased physical exercise. A mild decrease of the functional reserve of the cardiovascular system (by 7-15%) was revealed in the patients as compared with the control group.

  16. [Use of indicators of anaerobic metabolism in the evaluation of the functional reserve of the cardiovascular system in patients operated on in the past for congenital heart defects].

    PubMed

    Mochalov, O Iu; Gritsenko, V V; Gavrilenkov, V I

    1984-05-01

    The correlation of most important parameters of the central hemodynamics with the intensity of anaerobic metabolism was studied in 65 patients operated on having congenital heart diseases and in 37 healthy patients under increased physical exercise. A mild decrease of the functional reserve of the cardiovascular system (by 7-15%) was revealed in the patients as compared with the control group. PMID:6464264

  17. Passive hind-limb cycling improves cardiac function and reduces cardiovascular disease risk in experimental spinal cord injury

    PubMed Central

    West, Christopher R; Crawford, Mark A; Poormasjedi-Meibod, Malihe-Sadat; Currie, Katharine D; Fallavollita, Andre; Yuen, Violet; McNeill, John H; Krassioukov, Andrei V

    2014-01-01

    Spinal cord injury (SCI) causes altered autonomic control and severe physical deconditioning that converge to drive maladaptive cardiac remodelling. We used a clinically relevant experimental model to investigate the cardio-metabolic responses to SCI and to establish whether passive hind-limb cycling elicits a cardio-protective effect. Initially, 21 male Wistar rats were evenly assigned to three groups: uninjured control (CON), T3 complete SCI (SCI) or T3 complete SCI plus passive hind-limb cycling (SCI-EX; 2 × 30 min day−1, 5 days week−1 for 4 weeks beginning 6 days post-SCI). On day 32, cardio-metabolic function was assessed using in vivo echocardiography, ex vivo working heart assessments, cardiac histology/molecular biology and blood lipid profiles. Twelve additional rats (n = 6 SCI and n = 6 SCI-EX) underwent in vivo echocardiography and basal haemodynamic assessments pre-SCI and at days 7, 14 and 32 post-SCI to track temporal cardiovascular changes. Compared with CON, SCI exhibited a rapid and sustained reduction in left ventricular dimensions and function that ultimately manifested as reduced contractility, increased myocardial collagen deposition and an up-regulation of transforming growth factor beta-1 (TGFβ1) and mothers against decapentaplegic homolog 3 (Smad3) mRNA. For SCI-EX, the initial reduction in left ventricular dimensions and function at day 7 post-SCI was completely reversed by day 32 post-SCI, and there were no differences in myocardial contractility between SCI-EX and CON. Collagen deposition was similar between SCI-EX and CON. TGFβ1 and Smad3 were down-regulated in SCI-EX. Blood lipid profiles were improved in SCI-EX versus SCI. We provide compelling novel evidence that passive hind-limb cycling prevents cardiac dysfunction and reduces cardiovascular disease risk in experimental SCI. PMID:24535438

  18. Case-control study on cardiovascular function in females with a history of heavy exposure to cadmium

    SciTech Connect

    Kagamimori, S.; Watanabe, M.; Nakagawa, H.; Okumura, Y.; Kawano, S.

    1986-04-01

    It has been demonstrated that cadmium (Cd) causes various disorders of the cardiovascular system. However some of them are still open to question. In the present study, the effects of Cd on the heart in females exposed to Cd were investigated. The results from the present study should promote a better understanding of the role of Cd in relation to the human cardiovascular system.

  19. Chronic sleep restriction during pregnancy--repercussion on cardiovascular and renal functioning of male offspring.

    PubMed

    Lima, Ingrid L B; Rodrigues, Aline F A C; Bergamaschi, Cássia T; Campos, Ruy R; Hirata, Aparecida E; Tufik, Sergio; Xylaras, Beatriz D P; Visniauskas, Bruna; Chagas, Jair R; Gomes, Guiomar N

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi - tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127 ± 2.6 (19); OCSR: 144 ± 2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: -2.6 ± 0.15 (9); OCRS: -1.6 ± 0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4 ± 15 (18); OSR: 60.2 ± 3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4 ± 0.2 (10); OCSR: 7.4 ± 0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring.

  20. Performance of the Framingham and SCORE cardiovascular risk prediction functions in a non-diabetic population of a Spanish health care centre: a validation study

    PubMed Central

    Barroso, Lourdes Cañón; Muro, Eloísa Cruces; Herrera, Natalio Díaz; Ochoa, Gerardo Fernández; Hueros, Juan Ignacio Calvo; Buitrago, Francisco

    2010-01-01

    Objective To analyse the 10-year performance of the original Framingham coronary risk function and of the SCORE cardiovascular death risk function in a non-diabetic population of 40–65 years of age served by a Spanish healthcare centre. Also, to estimate the percentage of patients who are candidates for antihypertensive and lipid-lowering therapy. Design Longitudinal, observational study of a retrospective cohort followed up for 10 years. Setting Primary care health centre. Patients A total of 608 non-diabetic patients of 40–65 years of age (mean 52.8 years, 56.7% women), without evidence of cardiovascular disease were studied. Main outcome measures Coronary risk at 10 years from the time of their recruitment, using the tables based on the original Framingham function, and of their 10-year risk of fatal cardiovascular disease using the SCORE tables. Results The actual incidence rates of coronary and fatal cardiovascular events were 7.9% and 1.5%, respectively. The original Framingham equation over-predicted risk by 64%, while SCORE function over-predicted risk by 40%, but the SCORE model performed better than the Framingham one for discrimination and calibration statistics. The original Framingham function classified 18.3% of the population as high risk and SCORE 9.2%. The proportions of patients who would be candidates for lipid-lowering therapy were 31.0% and 23.8% according to the original Framingham and SCORE functions, respectively, and 36.8% and 31.2% for antihypertensive therapy. Conclusion The SCORE function showed better values than the original Framingham function for each of the discrimination and calibration statistics. The original Framingham function selected a greater percentage of candidates for antihypertensive and lipid-lowering therapy. PMID:20873973

  1. Urinary Retinol-Binding Protein: Relationship to Renal Function and Cardiovascular Risk Factors in Chronic Kidney Disease

    PubMed Central

    Domingos, Maria Alice Muniz; Moreira, Silvia Regina; Gomez, Luz; Goulart, Alessandra; Lotufo, Paulo Andrade; Benseñor, Isabela; Titan, Silvia

    2016-01-01

    The role of urinary retinol-binding protein (RBP) as a biomarker of CKD in proximal tubular diseases, glomerulopathies and in transplantation is well established. However, whether urinary RBP is also a biomarker of renal damage and CKD progression in general CKD is not known. In this study, we evaluated the association of urinary RBP with renal function and cardiovascular risk factors in the baseline data of the Progredir Study, a CKD cohort in Sao Paulo, Brazil, comprising 454 participants with stages 3 and 4 CKD. In univariate analysis, urinary RBP was inversely related to estimated glomerular filtration rate (CKD-EPI eGFR) and several cardiovascular risk factors. After adjustments, however, only CKD-EPI eGFR, albuminuria, systolic blood pressure, anemia, acidosis, and left atrium diameter remained significantly related to urinary RBP. The inverse relationship of eGFR to urinary RBP (β-0.02 ± 95CI -0.02; -0.01, p<0.0001 for adjusted model) remained in all strata of albuminuria, even after adjustments: in normoalbuminuria (β-0.008 ± 95CI (-0.02; -0.001, p = 0.03), in microalbuminuria (β-0.02 ± 95CI (-0.03; -0.02, p<0,0001) and in macroalbuminuria (β-0.02 ± 95CI (-0.03; -0.01, p<0,0001). Lastly, urinary RBP was able to significantly increase the accuracy of a logistic regression model (adjusted for sex, age, SBP, diabetes and albuminuria) in diagnosing eGFR<35 ml/min/1.73m2 (AUC 0,77, 95%CI 0,72–0,81 versus AUC 0,71, 95%CI 0,65–0,75, respectively; p = 0,05). Our results suggest that urinary RBP is significantly associated to renal function in CKD in general, a finding that expands the interest in this biomarker beyond the context of proximal tubulopathies, glomerulopathies or transplantation. Urinary RBP should be further explored as a predictive marker of CKD progression. PMID:27655369

  2. Training of affect recognition (TAR) in schizophrenia--impact on functional outcome.

    PubMed

    Sachs, G; Winklbaur, B; Jagsch, R; Lasser, I; Kryspin-Exner, I; Frommann, N; Wölwer, W

    2012-07-01

    Deficits in facial affect recognition as one aspect of social cognitive deficits are treatment targets to improve functional outcome in schizophrenia. According to preliminary results antipsychotics alone show little effects on affect recognition. A few randomized intervention studies have evaluated special psychosocial treatment programs on social cognition. In this study, the effects of a computer-based training of affect recognition were investigated as well as its impact on facial affect recognition and functional outcome, particularly on patients' quality of life. Forty clinically stabilized schizophrenic patients were randomized to a six-week training on affect recognition (TAR) or treatment as usual including occupational therapy (TAU) and completed pre- and post-treatment assessments of emotion recognition, cognition, quality of life and clinical symptoms. Between pre- and post treatment, the TAR group achieved significant improvements in facial affect recognition, in particular in recognizing sad faces and, in addition, in the quality of life domain social relationship. These changes were not found in the TAU group. Furthermore, the TAR training contributes to enhancing some aspects of cognitive functioning and negative symptoms. These improvements in facial affect recognition and quality of life were independent of changes in clinical symptoms and general cognitive functions. The findings support the efficacy of an affect recognition training for patients with schizophrenia and the generalization to social relationship. Further development is needed in the impact of a psychosocial intervention in other aspects of social cognition and functional outcome.

  3. Antigravity suit inflation - Kidney function and cardiovascular and hormonal responses in men

    NASA Technical Reports Server (NTRS)

    Geelen, Ghislaine; Kravik, Stein E.; Hadj-Aissa, Aoumeur; Leftheriotis, Georges; Vincent, Madeleine

    1989-01-01

    The effect of the lower body positive pressure (LBPP) on kidney function in normal men was investigated in experiments in which the subjects underwent 30 min of sitting and then were subjected to 4.5 h of 70-deg head-up tilt. During the last 3 h of the tilt period, an antigravity suit (60 T legs, 30 T abdomen) was applied. The results showed that LBPP induces a significant increase in effective renal plasma flow and significant changes in the kidney excretory patterns, which were similar to those observed during a water immersion or the early phase of bed rest.

  4. Chronic Sleep Restriction during Pregnancy - Repercussion on Cardiovascular and Renal Functioning of Male Offspring

    PubMed Central

    Lima, Ingrid L. B.; Rodrigues, Aline F. A. C.; Bergamaschi, Cássia T.; Campos, Ruy R.; Hirata, Aparecida E.; Tufik, Sergio; Xylaras, Beatriz D. P.; Visniauskas, Bruna; Chagas, Jair R.; Gomes, Guiomar N.

    2014-01-01

    Changes in the maternal environment can induce fetal adaptations that result in the progression of chronic diseases in the offspring. The objective of the present study was to evaluate the effects of maternal chronic sleep restriction on blood pressure, renal function and cardiac baroreflex response on male offspring at adult age. Female 3-month-old Wistar rats were divided in two experimental groups: control (C) and chronic sleep restricted (CSR). Pregnancy was confirmed by vaginal smear. Chronic sleep restricted females were subjected to sleep restriction by the multiple platform technique for 20 h daily, between the 1st and 20th day of pregnancy. After birth, the litters were reduced to 6 rats per mother, and were designated as offspring from control (OC) and offspring from chronic sleep restricted (OCSR). Indirect blood pressure (BPi – tail cuff) was measured by plethysmography in male offspring at 3 months old. Following, the renal function and cardiac baroreflex response were analyzed. Values of BPi in OCSR were significantly higher compared to OC [OC: 127±2.6 (19); OCSR: 144±2.5 (17) mmHg]. The baroreflex sensitivity to the increase of blood pressure was reduced in OCSR [Slope: OC: −2.6±0.15 (9); OCRS: −1.6±0.13 (9)]. Hypothalamic activity of ACE2 was significantly reduced in OCSR compared to OC [OC: 97.4±15 (18); OSR: 60.2±3.6 (16) UAF/min/protein mg]. Renal function alteration was noticed by the increase in glomerular filtration rate (GFR) observed in OCSR [OC: 6.4±0.2 (10); OCSR: 7.4±0.3 (7)]. Chronic sleep restriction during pregnancy caused in the offspring hypertension, altered cardiac baroreflex response, reduced ACE-2 activity in the hypothalamus and renal alterations. Our data suggest that the reduction of sleeping time along the pregnancy is able to modify maternal homeostasis leading to functional alterations in offspring. PMID:25405471

  5. Predicting the accuracy of facial affect recognition: the interaction of child maltreatment and intellectual functioning.

    PubMed

    Shenk, Chad E; Putnam, Frank W; Noll, Jennie G

    2013-02-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying levels of intellectual functioning. A sample of maltreated (n=50) and nonmaltreated (n=56) adolescent females, 14 to 19 years of age, was recruited to participate in this study. Participants completed demographic and study-related questionnaires and interviews to control for potential psychological and psychiatric confounds such as symptoms of posttraumatic stress disorder, negative affect, and difficulties in emotion regulation. Participants also completed an experimental paradigm that recorded responses to facial affect displays starting in a neutral expression and changing into a full expression of one of six emotions: happiness, sadness, anger, disgust, fear, or surprise. Hierarchical multiple regression assessed the incremental advantage of evaluating the interaction between child maltreatment and intellectual functioning. Results indicated that the interaction term accounted for a significant amount of additional variance in the accurate identification of facial affect after controlling for relevant covariates and main effects. Specifically, maltreated females with lower levels of intellectual functioning were least accurate in identifying facial affect displays, whereas those with higher levels of intellectual functioning performed as well as nonmaltreated females. These results suggest that maltreatment and intellectual functioning interact to predict the recognition of facial affect, with potential long-term consequences for the interpersonal functioning of maltreated females.

  6. Predicting the accuracy of facial affect recognition: the interaction of child maltreatment and intellectual functioning.

    PubMed

    Shenk, Chad E; Putnam, Frank W; Noll, Jennie G

    2013-02-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying levels of intellectual functioning. A sample of maltreated (n=50) and nonmaltreated (n=56) adolescent females, 14 to 19 years of age, was recruited to participate in this study. Participants completed demographic and study-related questionnaires and interviews to control for potential psychological and psychiatric confounds such as symptoms of posttraumatic stress disorder, negative affect, and difficulties in emotion regulation. Participants also completed an experimental paradigm that recorded responses to facial affect displays starting in a neutral expression and changing into a full expression of one of six emotions: happiness, sadness, anger, disgust, fear, or surprise. Hierarchical multiple regression assessed the incremental advantage of evaluating the interaction between child maltreatment and intellectual functioning. Results indicated that the interaction term accounted for a significant amount of additional variance in the accurate identification of facial affect after controlling for relevant covariates and main effects. Specifically, maltreated females with lower levels of intellectual functioning were least accurate in identifying facial affect displays, whereas those with higher levels of intellectual functioning performed as well as nonmaltreated females. These results suggest that maltreatment and intellectual functioning interact to predict the recognition of facial affect, with potential long-term consequences for the interpersonal functioning of maltreated females. PMID:23036371

  7. Alterations of cardiovascular functional parameters after onset of heat stroke in rats.

    PubMed

    Young, M S; Pan, H F; Kao, T Y; Lin, M T

    1993-01-01

    The effects of heat stroke formation on electrocardiogram (ECG) and blood pressure (BP) waveform parameters were assessed in rats under urethane anesthesia. Heat stroke was induced by exposing anesthetized rats to an environmental temperature of 42 degrees C. The movement in which arterial pressure began to decrease was taken as the onset of heat stroke. It was found that the duration of either P were, Q wave, R wave, S wave, T wave or QRS complex, as well as the amplitude of either P wave, Q wave, S wave or T wave were not affected after onset of heat stroke. However, the amplitude of R wave, the P-P interval, the R-R interval and the Q-T interval were significantly decreased after onset of heat stroke. In addition, the peak amplitude of systolic wave, dicrotic notch, diastolic wave, the duration of either systolic wave, a whole BP cycle, diastolic wave or dicrotic wave, the pulse pressure, as well as the mean arterial pressure were also decreased after onset of heat stroke. On the other hand, heat stroke formation increased the heart rate. The results demonstrated that alterations of these ECG and BP waveform parameters occurred after onset of heat stroke in rats.

  8. Cardiovascular function in large to small hibernators: bears to ground squirrels.

    PubMed

    Nelson, O Lynne; Robbins, Charles T

    2015-04-01

    Mammalian hibernation has intrigued scientists due to extreme variations in normal seasonal physiological homeostasis. Numerous species manifest a hibernation phenotype although the characteristics of the hypometabolic state can be quite different. Ground squirrels (e.g., Sciuridae) are often considered the prototypical hibernator as individuals in this genus transition from an active, euthermic state (37 °C) to a nonresponsive hibernating state where torpid body temperature commonly falls to 3-5 °C. However, the hibernating state is not continuous as periodic warming and arousals occur. In contrast, the larger hibernators of genus Ursus are less hypothermic (body temperatures decline from approximately 37°-33 °C), are more reactive, and cyclical arousals do not occur. Both species dramatically reduce cardiac output during hibernation from the active state (bears ~75 % reduction in bears and ~97 % reduction in ground squirrels), and both species demonstrate hypokinetic atrial chamber activity. However, there are several important differences in cardiac function between the two groups during hibernation. Left ventricular diastolic filling volumes and stroke volumes do not differ in bears between seasons, but increased diastolic and stroke volumes during hibernation are important contributors to cardiac output in ground squirrels. Decreased cardiac muscle mass and increased ventricular stiffness have been found in bears, whereas ground squirrels have increased cardiac muscle mass and decreased ventricular stiffness during hibernation. Molecular pathways of cardiac muscle plasticity reveal differences between the species in the modification of sarcomeric proteins such as titin and α myosin heavy chain during hibernation. The differences in hibernation character are likely to account for the alternative cardiac phenotypes and functional strategies manifested by the two species. Molecular investigation coupled with better knowledge of seasonal physiological

  9. Role of creatine supplementation on exercise-induced cardiovascular function and oxidative stress

    PubMed Central

    Cunningham, Daniel; Mason, Laura; Kilduff, Liam P; McEneny, Jane

    2009-01-01

    Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabilities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 ± 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t1/2max LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, α-carotene, β-carotene, α-tocopherol, γ-tocopherol, lycopene and vitamin C). Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males. PMID:20716911

  10. Lexical and Affective Prosody in Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Grossman, Ruth B.; Bemis, Rhyannon H.; Skwerer, Daniela Plesa; Tager-Flusberg, Helen

    2010-01-01

    Purpose: To investigate the perception and production of lexical stress and processing of affective prosody in adolescents with high-functioning autism (HFA). We hypothesized preserved processing of lexical and affective prosody but atypical lexical prosody production. Method: Sixteen children with HFA and 15 typically developing (TD) peers…

  11. Endothelial lipid phosphate phosphatase-3 deficiency that disrupts the endothelial barrier function is a modifier of cardiovascular development

    PubMed Central

    Chatterjee, Ishita; Baruah, Jugajyoti; Lurie, Erin E.; Wary, Kishore K.

    2016-01-01

    Aims Lipid phosphate phosphatase-3 (LPP3) is expressed at high levels in endothelial cells (ECs). Although LPP3 is known to hydrolyse the phosphate group from lysolipids such as spingosine-1-phosphate and its structural homologues, the function of Lpp3 in ECs is not completely understood. In this study, we investigated how tyrosine-protein kinase receptor (TEK or Tie2) promoter–dependent deletion of Lpp3 alters EC activities. Methods and results Lpp3fl/fl mice were crossed with the tg.Tie2Cre transgenic line. Vasculogenesis occurred normally in embryos with Tie2Cre-mediated deletion of Lpp3 (called Lpp3ECKO), but embryonic lethality occurred in two waves, the first wave between E8.5 and E10.5, while the second between E11.5 and E13.5. Lethality in Lpp3ECKO embryos after E11.5 was accompanied by vascular leakage and haemorrhage, which likely resulted in insufficient cardiovascular development. Analyses of haematoxylin- and eosin-stained heart sections from E11.5 Lpp3ECKO embryos showed insufficient heart growth associated with decreased trabeculation, reduced growth of the compact wall, and absence of cardiac cushions. Staining followed by microscopic analyses of Lpp3ECKO embryos revealed the presence of apoptotic ECs. Furthermore, Lpp3-deficient ECs showed decreased gene expression and protein levels of Cyclin-D1, VE-cadherin, Fibronectin, Klf2, and Klf4. To determine the underlying mechanisms of vascular leakage and barrier disruption, we performed knockdown and rescue experiments in cultured ECs. LPP3 knockdown decreased transendothelial electrical resistance and increased permeability. Re-expression of β-catenin cDNA in LPP3-knockdown ECs partially restored the effect of the LPP3 loss, whereas re-expression of p120ctn cDNA did not. Conclusion These findings demonstrate the essential roles of LPP3 in the maturation of EC barrier integrity and normal cardiovascular development. PMID:27125875

  12. Cardiovascular response of individuals with spinal cord injury to dynamic functional electrical stimulation under orthostatic stress.

    PubMed

    Yoshida, Takashi; Masani, Kei; Sayenko, Dimitry G; Miyatani, Masae; Fisher, Joseph A; Popovic, Milos R

    2013-01-01

    In this pilot study, we examined how effectively functional electrical stimulation (FES) and passive stepping mitigated orthostatic hypotension in participants with chronic spinal cord injury (SCI). While being tilted head-up to 70 (°) from the supine position, the participants underwent four 10-min conditions in a random sequence: 1) no intervention, 2) passive stepping, 3) isometric FES of leg muscles, and 4) FES of leg muscles combined with passive stepping. We found that FES and passive stepping independently mitigated a decrease in stroke volume and helped to maintain the mean blood pressure. The effects of FES on stroke volume and mean blood pressure were greater than those of passive stepping. When combined, FES and passive stepping did not interfere with each other, but they also did not synergistically increase stroke volume or mean blood pressure. Thus, the present study suggests that FES delivered to lower limbs can be used in individuals with SCI to help them withstand orthostatic stress. Additional studies are needed to confirm whether this use of FES is applicable to a larger population of individuals with SCI.

  13. Active-Arm Passive-Leg Exercise Improves Cardiovascular Function in Spinal Cord Injury.

    PubMed

    West, Christopher R; Currie, Katharine D; Gee, Cameron; Krassioukov, Andrei V; Borisoff, Jaimie

    2015-11-01

    In a 43-yr-old male subject with a chronic T3 AIS A spinal cord injury, the acute cardiorespiratory responses to active upper-extremity exercise alone and combined active-arm passive-leg exercise (AAPLE) were investigated, along with the cardiorespiratory, cardiac, vascular, and body composition responses to a 6-wk AAPLE interval training intervention. AAPLE elicited superior acute maximal cardiorespiratory responses compared with upper-extremity exercise alone. In response to a 6-wk interval training regimen, AAPLE caused a 25% increase in peak oxygen uptake, a 10% increase in resting stroke volume, and a 4-fold increase in brachial artery blood flow. Conversely, there were no changes in femoral arterial function, body composition, or bone mineral density in response to training. As a potential clinical intervention, AAPLE may be advantageous over other forms of currently available exercise, owing to the minimal setup time and cost involved and the nonreliance on specialized equipment that is required for other exercise modalities.

  14. The effect of testosterone on cardiovascular disease: a critical review of the literature.

    PubMed

    Su, Jeannie J; Park, Samuel K; Hsieh, T Mike

    2014-11-01

    Cardiovascular disease is the leading cause of death in the United States. Testosterone is the principal male sex hormone and plays an important role in men's health and well-being. Historically, testosterone was believed to adversely affect cardiovascular function. However, contemporary literature has refuted this traditional thinking; testosterone has been suggested to have a protective effect on cardiovascular function through its effects on the vascular system. Data from modern research indicate that hypogonadism is closely related to the development of various cardiovascular risk factors, including hyperlipidemia and insulin resistance. Several studies have demonstrated beneficial effects of testosterone supplementation therapy on reversing symptoms of hypogonadism and improving cardiovascular disease risk profiles. In this review, we perform a critical analysis on the association between testosterone and cardiovascular disease.

  15. [General pharmacology of T-3761, a new oral quinolone antibacterial agent (2). Effect on the respiratory and cardiovascular systems, autonomic nervous system and other functions].

    PubMed

    Furuhata, K; Hiraiwa, T; Terashima, N; Arai, H; Ono, S; Hashiba, K; Maekawa, M; Kitamura, K; Nakada, Y; Mori, Y

    1995-05-01

    General pharmacological effects of T-3761, a new oral quinolone antibacterial agent, on the respiratory and cardiovascular systems, autonomic nervous system and other functions were investigated in laboratory animals. The results obtained are summarized as follows. 1. Respiratory and cardiovascular systems: Oral administration of T-3761 at doses of 100-1,000 mg/kg did not affect in conscious rats. But intravenous administration of T-3761 at doses of 10-100 mg/kg caused an increase in respiratory rate, induced hypotension, caused increase or decrease in heart rate and altered ECG patterns (elevation of T waves and reduction of voltage of QRS complexes, etc.) in anesthetized dogs. Intravenous administration of T-3761 at doses of 10-100 mg/kg showed respiratory rate increase or decrease, hypertension, heart rate decrease and ECG patterns changes (T waves elevation and extrasystole) in anesthetized rabbits. 2. Autonomic nervous system and smooth muscle organs: T-3761 increased the epinephrine-induced contraction of the isolated guinea pig vas deferens at concentration of 10(-5)-10(-4) g/ml. T-3761 decreased the acetylcholine-induced contraction of the isolated guinea pig ileum and epinephrine-induced relaxation of the isolated guinea pig trachea-chain at concentration of 10(-4) g/ml. T-3761 increased the norepinephrine-induced contraction of the isolated rabbit thoracic aorta at concentration of 10(-4) g/ml. Oral administration of T-3761 at a dose of 1,000 mg/kg exerted slight mydriasis in mice. 3. Digestive system: T-3761 decreased the spontaneous motilities of isolated ileum and colon at concentration of 10(-4) g/ml. Oral administration of T-3761 at a dose of 1,000 mg/kg inhibited gastric output and intestinal transit time in rats or mice. 4. Renal functions: Oral administration of T-3761 at a dose of 300 mg/kg increased Na+ excretion but did not affect PSP excretion in rats. 5. Hematological examinations: T-3761 showed no effects on resistance to hemolysis, blood

  16. Effects of Oral Lycopene Supplementation on Vascular Function in Patients with Cardiovascular Disease and Healthy Volunteers: A Randomised Controlled Trial

    PubMed Central

    Gajendragadkar, Parag R.; Hubsch, Annette; Mäki-Petäjä, Kaisa M.; Serg, Martin; Wilkinson, Ian B.; Cheriyan, Joseph

    2014-01-01

    Aims The mechanisms by which a ‘Mediterranean diet’ reduces cardiovascular disease (CVD) burden remain poorly understood. Lycopene is a potent antioxidant found in such diets with evidence suggesting beneficial effects. We wished to investigate the effects of lycopene on the vasculature in CVD patients and separately, in healthy volunteers (HV). Methods and Results We randomised 36 statin treated CVD patients and 36 healthy volunteers in a 2∶1 treatment allocation ratio to either 7 mg lycopene or placebo daily for 2 months in a double-blind trial. Forearm responses to intra-arterial infusions of acetylcholine (endothelium-dependent vasodilatation; EDV), sodium nitroprusside (endothelium-independent vasodilatation; EIDV), and NG-monomethyl-L-arginine (basal nitric oxide (NO) synthase activity) were measured using venous plethysmography. A range of vascular and biochemical secondary endpoints were also explored. EDV in CVD patients post-lycopene improved by 53% (95% CI: +9% to +93%, P = 0.03 vs. placebo) without changes to EIDV, or basal NO responses. HVs did not show changes in EDV after lycopene treatment. Blood pressure, arterial stiffness, lipids and hsCRP levels were unchanged for lycopene vs. placebo treatment groups in the CVD arm as well as the HV arm. At baseline, CVD patients had impaired EDV compared with HV (30% lower; 95% CI: −45% to −10%, P = 0.008), despite lower LDL cholesterol (1.2 mmol/L lower, 95% CI: −1.6 to −0.9 mmol/L, P<0.001). Post-therapy EDV responses for lycopene-treated CVD patients were similar to HVs at baseline (2% lower, 95% CI: −30% to +30%, P = 0.85), also suggesting lycopene improved endothelial function. Conclusions Lycopene supplementation improves endothelial function in CVD patients on optimal secondary prevention, but not in HVs. Trial Registration ClinicalTrials.gov NCT01100385 PMID:24911964

  17. Leukocyte Subtype Counts and Its Association with Vascular Structure and Function in Adults with Intermediate Cardiovascular Risk. MARK Study

    PubMed Central

    Gomez-Sanchez, Leticia; García-Ortiz, Luis; Recio-Rodríguez, José I.; Patino-Alonso, Maria C.; Agudo-Conde, Cristina; Rigo, Fernando; Ramos, Rafel; Martí, Ruth; Gomez-Marcos, Manuel A.

    2015-01-01

    Objectives We investigated the relationship between leukocyte subtype counts and vascular structure and function based on carotid intima-media thickness, pulse wave velocity, central augmentation index and cardio-ankle vascular index by gender in intermediate cardiovascular risk patients. Methods This study analyzed 500 subjects who were included in the MARK study, aged 35 to 74 years (mean: 60.3±8.4), 45.6% women. Measurement: Brachial ankle Pulse Wave Velocity (ba-PWV) estimate by equation, Cardio-AnkleVascular Index (CAVI) using the VaSera device and Carotid ultrasound was used to measure carotid Intima Media Thickness (IMT). The Mobil-O-Graph was used to measure the Central Augmentation Index (CAIx). Results Total leukocyte, neutrophil and monocyte counts were positively correlated with IMT (p < 0.01) in men. Monocyte count was positively correlated with CAIx in women (p < 0.01). In a multiple linear regression analysis, the IMT mean maintained a positive association with the neutrophil count (β = 1.500, p = 0.007) in men. CAIx maintained a positive association with the monocyte count (β = 2.445, p = 0.022) in women. Conclusion The results of this study suggest that the relationship between subtype circulating leukocyte counts and vascular structure and function, although small, may be different by gender. In men, the neutrophil count was positively correlated with IMT and in women, the monocyte count with CAIx, in a large sample of intermediate-risk patients. These association were maintained after adjusting for age and other confounders. Trial Registration ClinicalTrials.gov NCT01428934 PMID:25885665

  18. Plasticity of cardiovascular function in snapping turtle embryos (Chelydra serpentina): chronic hypoxia alters autonomic regulation and gene expression.

    PubMed

    Eme, John; Rhen, Turk; Tate, Kevin B; Gruchalla, Kathryn; Kohl, Zachary F; Slay, Christopher E; Crossley, Dane A

    2013-06-01

    Reptile embryos tolerate large decreases in the concentration of ambient oxygen. However, we do not fully understand the mechanisms that underlie embryonic cardiovascular short- or long-term responses to hypoxia in most species. We therefore measured cardiac growth and function in snapping turtle embryos incubated under normoxic (N21; 21% O₂) or chronic hypoxic conditions (H10; 10% O₂). We determined heart rate (fH) and mean arterial pressure (Pm) in acute normoxic (21% O₂) and acute hypoxic (10% O₂) conditions, as well as embryonic responses to cholinergic, adrenergic, and ganglionic pharmacological blockade. Compared with N21 embryos, chronic H10 embryos had smaller bodies and relatively larger hearts and were hypotensive, tachycardic, and following autonomic neural blockade showed reduced intrinsic fH at 90% of incubation. Unlike other reptile embryos, cholinergic and ganglionic receptor blockade both increased fH. β-Adrenergic receptor blockade with propranolol decreased fH, and α-adrenergic blockade with phentolamine decreased Pm. We also measured cardiac mRNA expression. Cholinergic tone was reduced in H10 embryos, but cholinergic receptor (Chrm2) mRNA levels were unchanged. However, expression of adrenergic receptor mRNA (Adrb1, Adra1a, Adra2c) and growth factor mRNA (Igf1, Igf2, Igf2r, Pdgfb) was lowered in H10 embryos. Hypoxia altered the balance between cholinergic receptors, α-adrenoreceptor and β-adrenoreceptor function, which was reflected in altered intrinsic fH and adrenergic receptor mRNA levels. This is the first study to link gene expression with morphological and cardioregulatory plasticity in a developing reptile embryo. PMID:23552497

  19. Perception of affective prosody in major depression: a link to executive functions?

    PubMed

    Uekermann, Jennifer; Abdel-Hamid, Mona; Lehmkämper, Caroline; Vollmoeller, Wolfgang; Daum, Irene

    2008-07-01

    Major depression is associated with impairments of executive functions and affect perception deficits, both being linked to dysfunction of fronto-subcortical networks. So far, little is known about the relationship between cognitive and affective deficits in major depression. In the present investigation, affect perception and executive functions were assessed in 29 patients with a diagnosis of major depression (Dep) and 29 healthy controls (HC). Both groups were comparable on IQ, age, and gender distribution. Depressed patients showed deficits of perception of affective prosody, which were significantly related to inhibition, set shifting, and working memory. Our findings suggest a significant association between cognitive deficits and affect perception impairments in major depression, which may be of considerable clinical relevance and might be addressed in treatment approaches. Future studies are desirable to investigate the nature of the association in more detail.

  20. Negative affect predicts social functioning across schizophrenia and bipolar disorder: Findings from an integrated data analysis.

    PubMed

    Grove, Tyler B; Tso, Ivy F; Chun, Jinsoo; Mueller, Savanna A; Taylor, Stephan F; Ellingrod, Vicki L; McInnis, Melvin G; Deldin, Patricia J

    2016-09-30

    Most people with a serious mental illness experience significant functional impairment despite ongoing pharmacological treatment. Thus, in order to improve outcomes, a better understanding of functional predictors is needed. This study examined negative affect, a construct comprised of negative emotional experience, as a predictor of social functioning across serious mental illnesses. One hundred twenty-seven participants with schizophrenia, 113 with schizoaffective disorder, 22 with psychosis not otherwise specified, 58 with bipolar disorder, and 84 healthy controls (N=404) completed self-report negative affect measures. Elevated levels of negative affect were observed in clinical participants compared with healthy controls. For both clinical and healthy control participants, negative affect measures were significantly correlated with social functioning, and consistently explained significant amounts of variance in functioning. For clinical participants, this relationship persisted even after accounting for cognition and positive/negative symptoms. The findings suggest that negative affect is a strong predictor of outcome across these populations and treatment of serious mental illnesses should target elevated negative affect in addition to cognition and positive/negative symptoms.

  1. Linking and Psychological Functioning in a Chinese Sample: The Multiple Mediation of Response to Positive Affect

    ERIC Educational Resources Information Center

    Yang, Hongfei; Li, Juan

    2016-01-01

    The present study examined the associations between linking, response to positive affect, and psychological functioning in Chinese college students. The results of conducting multiple mediation analyses indicated that emotion- and self-focused positive rumination mediated the relationship between linking and psychological functioning, whereas…

  2. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function.

    PubMed

    Koide, Roger T; Fernandez, Christopher; Malcolm, Glenna

    2014-01-01

    There is a growing interest amongst community ecologists in functional traits. Response traits determine membership in communities. Effect traits influence ecosystem function. One goal of community ecology is to predict the effect of environmental change on ecosystem function. Environmental change can directly and indirectly affect ecosystem function. Indirect effects are mediated through shifts in community structure. It is difficult to predict how environmental change will affect ecosystem function via the indirect route when the change in effect trait distribution is not predictable from the change in response trait distribution. When response traits function as effect traits, however, it becomes possible to predict the indirect effect of environmental change on ecosystem function. Here we illustrate four examples in which key attributes of ectomycorrhizal fungi function as both response and effect traits. While plant ecologists have discussed response and effect traits in the context of community structuring and ecosystem function, this approach has not been applied to ectomycorrhizal fungi. This is unfortunate because of the large effects of ectomycorrhizal fungi on ecosystem function. We hope to stimulate further research in this area in the hope of better predicting the ecosystem- and landscape-level effects of the fungi as influenced by changing environmental conditions.

  3. Cardiovascular group

    NASA Technical Reports Server (NTRS)

    Blomqvist, Gunnar

    1989-01-01

    As a starting point, the group defined a primary goal of maintaining in flight a level of systemic oxygen transport capacity comparable to each individual's preflight upright baseline. The goal of maintaining capacity at preflight levels would seem to be a reasonable objective for several different reasons, including the maintenance of good health in general and the preservation of sufficient cardiovascular reserve capacity to meet operational demands. It is also important not to introduce confounding variables in whatever other physiological studies are being performed. A change in the level of fitness is likely to be a significant confounding variable in the study of many organ systems. The principal component of the in-flight cardiovascular exercise program should be large-muscle activity such as treadmill exercise. It is desirable that at least one session per week be monitored to assure maintenance of proper functional levels and to provide guidance for any adjustments of the exercise prescription. Appropriate measurements include evaluation of the heart-rate/workload or the heart-rate/oxygen-uptake relationship. Respiratory gas analysis is helpful by providing better opportunities to document relative workload levels from analysis of the interrelationships among VO2, VCO2, and ventilation. The committee felt that there is no clear evidence that any particular in-flight exercise regimen is protective against orthostatic hypotension during the early readaptation phase. Some group members suggested that maintenance of the lower body muscle mass and muscle tone may be helpful. There is also evidence that late in-flight interventions to reexpand blood volume to preflight levels are helpful in preventing or minimizing postflight orthostatic hypotension.

  4. Protective effect of thymoquinone improves cardiovascular function, and attenuates oxidative stress, inflammation and apoptosis by mediating the PI3K/Akt pathway in diabetic rats.

    PubMed

    Liu, Hui; Liu, Hong-Yang; Jiang, Yi-Nong; Li, Nan

    2016-03-01

    Thymoquinone is the main active monomer extracted from black cumin and has anti‑inflammatory, antioxidant and anti‑apoptotic functions. However, the protective effects of thymoquinone on cardiovascular function in diabetes remain to be fully elucidated. The present study aimed to investigate the molecular mechanisms underling the beneficial effects of thymoquinone on the cardiovascular function in streptozotocin‑induced diabetes mellitus (DM) rats. Supplement thymoquinone may recover the insulin levels and body weight, inhibit blood glucose levels and reduce the heart rate in DM‑induced rats. The results indicated that the heart, liver and lung to body weight ratios, in addition to the blood pressure levels, were similar for each experimental group. Treatment with thymoquinone significantly reduced oxidative stress damage, inhibited the increased endothelial nitric oxide synthase protein expression and suppressed the elevation of cyclooxygenase‑2 levels in DM‑induced rats. In addition, thymoquinone significantly suppressed the promotion of tumor necrosis factor‑α and interleukin‑6 levels in the DM‑induced rats. Furthermore, administration of thymoquinone significantly reduced caspase‑3 activity and the promotion of phosphorylated‑protein kinase B (Akt) protein expression levels in DM‑induced rats. These results suggest that the protective effect of thymoquinone improves cardiovascular function and attenuates oxidative stress, inflammation and apoptosis by mediating the phosphatidylinositol 3‑kinase/Akt pathway in DM‑induced rats. PMID:26820252

  5. Cardiovascular and Cerebrovascular Disease Associated microRNAs Are Dysregulated in Placental Tissues Affected with Gestational Hypertension, Preeclampsia and Intrauterine Growth Restriction

    PubMed Central

    Hromadnikova, Ilona; Kotlabova, Katerina; Hympanova, Lucie; Krofta, Ladislav

    2015-01-01

    Aims To demonstrate that pregnancy-related complications are associated with alterations in cardiovascular and cerebrovascular microRNA expression. Gene expression of 32 microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-33a-5p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-208a-3p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p) was assessed in placental tissues, compared between groups (35 gestational hypertension, 80 preeclampsia, 35 intrauterine growth restriction and 20 normal pregnancies) and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. Initially, selection and validation of endogenous controls for microRNA expression studies in placental tissues affected by pregnancy-related complications have been carried out. Results The expression profile of microRNAs was different between pregnancy-related complications and controls. The up-regulation of miR-499a-5p was a common phenomenon shared between gestational hypertension, preeclampsia, and intrauterine growth restriction. Preeclamptic pregnancies delivering after 34 weeks of gestation and IUGR with abnormal values of flow rate in the umbilical artery demonstrated up-regulation of miR-1-3b. Preeclampsia and IUGR requiring termination of gestation before 34 weeks of gestation were associated with down-regulation of miR-26a-5p, miR-103a-3p and miR-145-5p. On the other hand, some of microRNAs (miR-16-5p, miR-100-5p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-143-3p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-342-3p, and miR-574-3p) were only down-regulated or showed a trend to down-regulation just in intrauterine growth restriction pregnancies requiring the delivery before 34 weeks of gestation. Conclusion

  6. Relationship of left ventricular hypertrophy and diastolic function with cardiovascular and renal outcomes in African Americans with hypertensive chronic kidney disease.

    PubMed

    Peterson, Gail E; de Backer, Tine; Contreras, Gabriel; Wang, Xuelei; Kendrick, Cynthia; Greene, Tom; Appel, Lawrence J; Randall, Otelio S; Lea, Janice; Smogorzewski, Miroslaw; Vagaonescu, Tudor; Phillips, Robert A

    2013-09-01

    African Americans with hypertension are at high risk for adverse outcomes from cardiovascular and renal disease. Patients with stage 3 or greater chronic kidney disease have a high prevalence of left ventricular (LV) hypertrophy and diastolic dysfunction. Our goal was to study prospectively the relationships of LV mass and diastolic function with subsequent cardiovascular and renal outcomes in the African American Study of Kidney Disease and Hypertension cohort study. Of 691 patients enrolled in the cohort, 578 had interpretable echocardiograms and complete relevant clinical data. Exposures were LV hypertrophy and diastolic parameters. Outcomes were cardiovascular events requiring hospitalization or causing death; a renal composite outcome of doubling of serum creatinine or end-stage renal disease (censoring death); and heart failure. We found strong independent relationships between LV hypertrophy and subsequent cardiovascular (hazard ratio, 1.16; 95% confidence interval, 1.05-1.27) events, but not renal outcomes. After adjustment for LV mass and clinical variables, lower systolic tissue Doppler velocities and diastolic parameters reflecting a less compliant LV (shorter deceleration time and abnormal E/A ratio) were significantly (P<0.05) associated with future heart failure events. This is the first study to show a strong relationship among LV hypertrophy, diastolic parameters, and adverse cardiac outcomes in African Americans with hypertension and chronic kidney disease. These echocardiographic risk factors may help identify high-risk patients with chronic kidney disease for aggressive therapeutic intervention.

  7. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  8. Viewing nature scenes positively affects recovery of autonomic function following acute-mental stress.

    PubMed

    Brown, Daniel K; Barton, Jo L; Gladwell, Valerie F

    2013-06-01

    A randomized crossover study explored whether viewing different scenes prior to a stressor altered autonomic function during the recovery from the stressor. The two scenes were (a) nature (composed of trees, grass, fields) or (b) built (composed of man-made, urban scenes lacking natural characteristics) environments. Autonomic function was assessed using noninvasive techniques of heart rate variability; in particular, time domain analyses evaluated parasympathetic activity, using root-mean-square of successive differences (RMSSD). During stress, secondary cardiovascular markers (heart rate, systolic and diastolic blood pressure) showed significant increases from baseline which did not differ between the two viewing conditions. Parasympathetic activity, however, was significantly higher in recovery following the stressor in the viewing scenes of nature condition compared to viewing scenes depicting built environments (RMSSD; 50.0 ± 31.3 vs 34.8 ± 14.8 ms). Thus, viewing nature scenes prior to a stressor alters autonomic activity in the recovery period. The secondary aim was to examine autonomic function during viewing of the two scenes. Standard deviation of R-R intervals (SDRR), as change from baseline, during the first 5 min of viewing nature scenes was greater than during built scenes. Overall, this suggests that nature can elicit improvements in the recovery process following a stressor.

  9. Affecting Rhomboid-3 Function Causes a Dilated Heart in Adult Drosophila

    PubMed Central

    Yu, Lin; Lee, Teresa; Lin, Na; Wolf, Matthew J.

    2010-01-01

    Drosophila is a well recognized model of several human diseases, and recent investigations have demonstrated that Drosophila can be used as a model of human heart failure. Previously, we described that optical coherence tomography (OCT) can be used to rapidly examine the cardiac function in adult, awake flies. This technique provides images that are similar to echocardiography in humans, and therefore we postulated that this approach could be combined with the vast resources that are available in the fly community to identify new mutants that have abnormal heart function, a hallmark of certain cardiovascular diseases. Using OCT to examine the cardiac function in adult Drosophila from a set of molecularly-defined genomic deficiencies from the DrosDel and Exelixis collections, we identified an abnormally enlarged cardiac chamber in a series of deficiency mutants spanning the rhomboid 3 locus. Rhomboid 3 is a member of a highly conserved family of intramembrane serine proteases and processes Spitz, an epidermal growth factor (EGF)–like ligand. Using multiple approaches based on the examination of deficiency stocks, a series of mutants in the rhomboid-Spitz–EGF receptor pathway, and cardiac-specific transgenic rescue or dominant-negative repression of EGFR, we demonstrate that rhomboid 3 mediated activation of the EGF receptor pathway is necessary for proper adult cardiac function. The importance of EGF receptor signaling in the adult Drosophila heart underscores the concept that evolutionarily conserved signaling mechanisms are required to maintain normal myocardial function. Interestingly, prior work showing the inhibition of ErbB2, a member of the EGF receptor family, in transgenic knock-out mice or individuals that received herceptin chemotherapy is associated with the development of dilated cardiomyopathy. Our results, in conjunction with the demonstration that altered ErbB2 signaling underlies certain forms of mammalian cardiomyopathy, suggest that an

  10. Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function.

    PubMed

    Shi, Xiao; Walter, Nicole A R; Harkness, John H; Neve, Kim A; Williams, Robert W; Lu, Lu; Belknap, John K; Eshleman, Amy J; Phillips, Tamara J; Janowsky, Aaron

    2016-01-01

    Methamphetamine (MA) and neurotransmitter precursors and metabolites such as tyramine, octopamine, and β-phenethylamine stimulate the G protein-coupled trace amine-associated receptor 1 (TAAR1). TAAR1 has been implicated in human conditions including obesity, schizophrenia, depression, fibromyalgia, migraine, and addiction. Additionally TAAR1 is expressed on lymphocytes and astrocytes involved in inflammation and response to infection. In brain, TAAR1 stimulation reduces synaptic dopamine availability and alters glutamatergic function. TAAR1 is also expressed at low levels in heart, and may regulate cardiovascular tone. Taar1 knockout mice orally self-administer more MA than wild type and are insensitive to its aversive effects. DBA/2J (D2) mice express a non-synonymous single nucleotide polymorphism (SNP) in Taar1 that does not respond to MA, and D2 mice are predisposed to high MA intake, compared to C57BL/6 (B6) mice. Here we demonstrate that endogenous agonists stimulate the recombinant B6 mouse TAAR1, but do not activate the D2 mouse receptor. Progeny of the B6XD2 (BxD) family of recombinant inbred (RI) strains have been used to characterize the genetic etiology of diseases, but contrary to expectations, BXDs derived 30-40 years ago express only the functional B6 Taar1 allele whereas some more recently derived BXD RI strains express the D2 allele. Data indicate that the D2 mutation arose subsequent to derivation of the original RIs. Finally, we demonstrate that SNPs in human TAAR1 alter its function, resulting in expressed, but functional, sub-functional and non-functional receptors. Our findings are important for identifying a predisposition to human diseases, as well as for developing personalized treatment options. PMID:27031617

  11. Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function

    PubMed Central

    Shi, Xiao; Walter, Nicole A. R.; Harkness, John H.; Neve, Kim A.; Williams, Robert W.; Lu, Lu; Belknap, John K.; Eshleman, Amy J.; Phillips, Tamara J.; Janowsky, Aaron

    2016-01-01

    Methamphetamine (MA) and neurotransmitter precursors and metabolites such as tyramine, octopamine, and β-phenethylamine stimulate the G protein-coupled trace amine-associated receptor 1 (TAAR1). TAAR1 has been implicated in human conditions including obesity, schizophrenia, depression, fibromyalgia, migraine, and addiction. Additionally TAAR1 is expressed on lymphocytes and astrocytes involved in inflammation and response to infection. In brain, TAAR1 stimulation reduces synaptic dopamine availability and alters glutamatergic function. TAAR1 is also expressed at low levels in heart, and may regulate cardiovascular tone. Taar1 knockout mice orally self-administer more MA than wild type and are insensitive to its aversive effects. DBA/2J (D2) mice express a non-synonymous single nucleotide polymorphism (SNP) in Taar1 that does not respond to MA, and D2 mice are predisposed to high MA intake, compared to C57BL/6 (B6) mice. Here we demonstrate that endogenous agonists stimulate the recombinant B6 mouse TAAR1, but do not activate the D2 mouse receptor. Progeny of the B6XD2 (BxD) family of recombinant inbred (RI) strains have been used to characterize the genetic etiology of diseases, but contrary to expectations, BXDs derived 30–40 years ago express only the functional B6 Taar1 allele whereas some more recently derived BXD RI strains express the D2 allele. Data indicate that the D2 mutation arose subsequent to derivation of the original RIs. Finally, we demonstrate that SNPs in human TAAR1 alter its function, resulting in expressed, but functional, sub-functional and non-functional receptors. Our findings are important for identifying a predisposition to human diseases, as well as for developing personalized treatment options. PMID:27031617

  12. Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function.

    PubMed

    Shi, Xiao; Walter, Nicole A R; Harkness, John H; Neve, Kim A; Williams, Robert W; Lu, Lu; Belknap, John K; Eshleman, Amy J; Phillips, Tamara J; Janowsky, Aaron

    2016-01-01

    Methamphetamine (MA) and neurotransmitter precursors and metabolites such as tyramine, octopamine, and β-phenethylamine stimulate the G protein-coupled trace amine-associated receptor 1 (TAAR1). TAAR1 has been implicated in human conditions including obesity, schizophrenia, depression, fibromyalgia, migraine, and addiction. Additionally TAAR1 is expressed on lymphocytes and astrocytes involved in inflammation and response to infection. In brain, TAAR1 stimulation reduces synaptic dopamine availability and alters glutamatergic function. TAAR1 is also expressed at low levels in heart, and may regulate cardiovascular tone. Taar1 knockout mice orally self-administer more MA than wild type and are insensitive to its aversive effects. DBA/2J (D2) mice express a non-synonymous single nucleotide polymorphism (SNP) in Taar1 that does not respond to MA, and D2 mice are predisposed to high MA intake, compared to C57BL/6 (B6) mice. Here we demonstrate that endogenous agonists stimulate the recombinant B6 mouse TAAR1, but do not activate the D2 mouse receptor. Progeny of the B6XD2 (BxD) family of recombinant inbred (RI) strains have been used to characterize the genetic etiology of diseases, but contrary to expectations, BXDs derived 30-40 years ago express only the functional B6 Taar1 allele whereas some more recently derived BXD RI strains express the D2 allele. Data indicate that the D2 mutation arose subsequent to derivation of the original RIs. Finally, we demonstrate that SNPs in human TAAR1 alter its function, resulting in expressed, but functional, sub-functional and non-functional receptors. Our findings are important for identifying a predisposition to human diseases, as well as for developing personalized treatment options.

  13. Cardiovascular rhythms and cardiac baroreflex sensitivity in AT(1A) receptor gain-of-function mutant mice.

    PubMed

    Palma-Rigo, Kesia; Baudrie, Véronique; Laude, Dominique; Petrel, Christophe; Clauser, Eric; Elghozi, Jean-Luc

    2010-01-01

    A mutant mouse expressing a gain-of-function of the AT(1A) angiotensin II receptor was engineered to study the consequences of a constitutive activation of this receptor on blood pressure (BP). Cardiovascular rhythms and spontaneous cardiac baroreflex sensitivity (BRS) were evaluated using telemetric BP recordings of five transgenic (AT(1A)MUT) and five wild (AT(1A)WT) mice. The circadian rhythms were described with the Chronos-Fit program. The gain of the transfer function between systolic BP (SBP) and pulse intervals used to estimate the spontaneous BRS (ms/mmHg) was calculated in the low frequency (0.15-0.60 Hz) band. Transgenic AT(1A)MUT exhibited higher BP and heart rate (HR) levels compared to controls (SBP AT(1A)MUT 134.6 +/- 5.9 mmHg vs. AT(1A)WT 110.5 +/- 5.9; p < 0.05; HR AT(1A)MUT 531.0 +/- 14.9 vs. AT(1A)WT 454.8 +/- 5.4 beats/min; p = 0.001). Spontaneous BRS was diminished in transgenic mice (AT(1A)MUT 1.23 +/- 0.17 ms/mmHg vs. AT(1A)WT 1.91 +/- 0.18 ms/mmHg; p < 0.05). Motor activity did not differ between groups. These variables exhibited circadian changes, and the differences between the strains were maintained throughout the cycle. The highest values for BP, HR, and locomotor activity were observed at night. Spontaneous BRS varied in the opposite direction, with the lowest gain estimated when BP and HR were elevated (i.e., at night, when the animals were active). It is likely the BP elevation of the mutant mice results from the amplification of the effects of AngII at different sites. Future studies are necessary to explore whether AT(1A) receptor activation at the central nervous system level effectively contributed to the observed differences. PMID:20205562

  14. A Functional Polymorphism in the 5HTR2C Gene Associated with Stress Responses Also Predicts Incident Cardiovascular Events

    PubMed Central

    Brummett, Beverly H.; Babyak, Michael A.; Jiang, Rong; Shah, Svati H.; Becker, Richard C.; Haynes, Carol; Chryst-Ladd, Megan; Craig, Damian M.; Hauser, Elizabeth R.; Siegler, Ilene C.; Kuhn, Cynthia M.; Singh, Abanish; Williams, Redford B.

    2013-01-01

    Previously we have shown that a functional nonsynonymous single nucleotide polymorphism (rs6318) of the 5HTR2C gene located on the X-chromosome is associated with hypothalamic-pituitary-adrenal axis response to a stress recall task, and with endophenotypes associated with cardiovascular disease (CVD). These findings suggest that individuals carrying the rs6318 Ser23 C allele will be at higher risk for CVD compared to Cys23 G allele carriers. The present study examined allelic variation in rs6318 as a predictor of coronary artery disease (CAD) severity and a composite endpoint of all-cause mortality or myocardial infarction (MI) among Caucasian participants consecutively recruited through the cardiac catheterization laboratory at Duke University Hospital (Durham, NC) as part of the CATHGEN biorepository. Study population consisted of 6,126 Caucasian participants (4,036 [65.9%] males and 2,090 [34.1%] females). A total of 1,769 events occurred (1,544 deaths and 225 MIs; median follow-up time =  5.3 years, interquartile range  = 3.3–8.2). Unadjusted Cox time-to-event regression models showed, compared to Cys23 G carriers, males hemizygous for Ser23 C and females homozygous for Ser23C were at increased risk for the composite endpoint of all-cause death or MI: Hazard Ratio (HR)  = 1.47, 95% confidence interval (CI)  = 1.17, 1.84, p  = .0008. Adjusting for age, rs6318 genotype was not related to body mass index, diabetes, hypertension, dyslipidemia, smoking history, number of diseased coronary arteries, or left ventricular ejection fraction in either males or females. After adjustment for these covariates the estimate for the two Ser23 C groups was modestly attenuated, but remained statistically significant: HR  = 1.38, 95% CI = 1.10, 1.73, p = .005. These findings suggest that this functional polymorphism of the 5HTR2C gene is associated with increased risk for CVD mortality and morbidity, but this association is apparently not

  15. Affect and the Brain's Functional Organization: A Resting-State Connectivity Approach

    PubMed Central

    Rohr, Christiane S.; Okon-Singer, Hadas; Craddock, R. Cameron; Villringer, Arno; Margulies, Daniel S.

    2013-01-01

    The question of how affective processing is organized in the brain is still a matter of controversial discussions. Based on previous initial evidence, several suggestions have been put forward regarding the involved brain areas: (a) right-lateralized dominance in emotional processing, (b) hemispheric dominance according to positive or negative valence, (c) one network for all emotional processing and (d) region-specific discrete emotion matching. We examined these hypotheses by investigating intrinsic functional connectivity patterns that covary with results of the Positive and Negative Affective Schedule (PANAS) from 65 participants. This approach has the advantage of being able to test connectivity rather than activation, and not requiring a potentially confounding task. Voxelwise functional connectivity from 200 regions-of-interest covering the whole brain was assessed. Positive and negative affect covaried with functional connectivity involving a shared set of regions, including the medial prefrontal cortex, the anterior cingulate, the visual cortex and the cerebellum. In addition, each affective domain had unique connectivity patterns, and the lateralization index showed a right hemispheric dominance for negative affect. Therefore, our results suggest a predominantly right-hemispheric network with affect-specific elements as the underlying organization of emotional processes. PMID:23935850

  16. Autophagy in cardiovascular biology

    PubMed Central

    Lavandero, Sergio; Chiong, Mario; Rothermel, Beverly A.; Hill, Joseph A.

    2015-01-01

    Cardiovascular disease is the leading cause of death worldwide. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been widely characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, and macrophages. In all cases, a window of optimal autophagic activity appears to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. In this Review, we discuss the potential for targeting autophagy therapeutically and our vision for where this exciting biology may lead in the future. PMID:25654551

  17. Autophagy in cardiovascular biology.

    PubMed

    Lavandero, Sergio; Chiong, Mario; Rothermel, Beverly A; Hill, Joseph A

    2015-01-01

    Cardiovascular disease is the leading cause of death worldwide. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been widely characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, and macrophages. In all cases, a window of optimal autophagic activity appears to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. In this Review, we discuss the potential for targeting autophagy therapeutically and our vision for where this exciting biology may lead in the future.

  18. Sexual function and affect in parkinsonian men treated with L-dopa.

    PubMed

    Brown, E; Brown, G M; Kofman, O; Quarrington, B

    1978-12-01

    Using psychiatric interviews, sexual and affect rating scales, hormonal studies, and neurologic assessment, the authors assessed the effect of L-dopa treatment on men with Parkinson's disease. Patients demonstrated variable affect changes. Approximately one-half of the patients reported an increased sexual interest that was not related to improvement in locomotor function. Hormonal factors appeared to be involved. The findings suggest that male parkinsonian patients who possess an intact hypothalamic-pituitary-gonadal axis experience increased sexual function related to L-dopa treatment.

  19. Flash fire and slow burn: women's cardiovascular reactivity and recovery following hostile and benevolent sexism.

    PubMed

    Salomon, Kristen; Burgess, Kaleena D; Bosson, Jennifer K

    2015-04-01

    Women's cardiovascular responses to sexist treatment are documented, but researchers have yet to consider these responses separately as a function of sexism type (hostile vs. benevolent). This study demonstrates distinct effects of hostile and benevolent sexism for women's cardiovascular responses that indicate increased risk for cardiovascular disease. Female participants performed a demanding insight task after exposure to a male researcher who offered them a hostilely sexist, benevolently sexist, or nonsexist comment. Women displayed heightened cardiovascular reactivity (increases from baseline) during the task following hostile sexism, and they displayed impaired cardiovascular recovery (return to baseline after the task) following benevolent sexism. The effects seen in the hostile condition were mediated by self-reported anger. These findings indicate that women's affective responses to hostile and benevolent sexism differ but that exposure to both forms of sexism may have negative cardiovascular consequences.

  20. [Sleep rhythm and cardiovascular diseases].

    PubMed

    Maemura, Koji

    2012-07-01

    Sleep disturbance is a common problem in general adult population. Recent evidence suggests the link between the occurrence of cardiovascular events and several sleep disturbances including sleep apnea syndrome, insomnia and periodic limb movements during sleep. Sleep duration may affect the cardiovascular outcome. Shift work also may increase the risk of ischemic heart disease. Normalization of sleep rhythm has a potential to be a therapeutic target of ischemic heart diseases, although further study is required to evaluate the preventive effect on cardiovascular events. Here we describe the current understandings regarding the roles of sleep disorders during the pathogenesis of cardiovascular events. PMID:22844804

  1. Impact of Continuous Erythropoietin Receptor Activator on Selected Biomarkers of Cardiovascular Disease and Left Ventricle Structure and Function in Chronic Kidney Disease

    PubMed Central

    Rysz, Jacek; Franczyk, Beata; Baj, Zbigniew; Majewska, Ewa

    2016-01-01

    Background. Cardiovascular morbidity and mortality are very high in patients with chronic kidney disease (CKD). The purpose of this study is to evaluate the impact of continuous erythropoietin receptor activator (CERA) on selected biomarkers of cardiovascular disease, left ventricle structure, and function in CKD. Material and Methods. Peripheral blood was collected from 25 CKD patients before and after CERA treatment and 20 healthy subjects. In serum samples, we assessed inflammatory markers (IL-1β, TNF-RI, TNF-RII, sFas, sFasL, MMP-9, TIMP-1, and TGF-β1), endothelial dysfunction markers (sE-selectin, sICAM-1, and sVCAM-1), and volume-related marker (NT-proBNP). All subjects underwent echocardiography and were evaluated for selected biochemical parameters (Hb, creatinine, and CRP). Results. Evaluated biomarkers and echocardiographic parameters of left ventricle structure were significantly increased but left ventricle EF was significantly decreased in CKD patients compared to controls. After CERA treatment, we observed a significant increase of Hb and left ventricle EF and a significant decrease of NT-proBNP and MMP-9. There was a significant negative correlation between Hb and TNF-RI, sICAM-1, and IL-1β. Conclusions. Our results indicate that selected biomarkers related to cardiovascular risk are significantly increased in CKD patients compared to controls. CERA treatment has anti-inflammatory action, diminishes endothelial dysfunction, and improves left ventricle function in these patients. PMID:27034745

  2. Effects of High-Intensity Interval Training versus Continuous Training on Physical Fitness, Cardiovascular Function and Quality of Life in Heart Failure Patients

    PubMed Central

    Benda, Nathalie M. M.; Seeger, Joost P. H.; Stevens, Guus G. C. F.; Hijmans-Kersten, Bregina T. P.; van Dijk, Arie P. J.; Bellersen, Louise; Lamfers, Evert J. P.; Hopman, Maria T. E.; Thijssen, Dick H. J.

    2015-01-01

    Introduction Physical fitness is an important prognostic factor in heart failure (HF). To improve fitness, different types of exercise have been explored, with recent focus on high-intensity interval training (HIT). We comprehensively compared effects of HIT versus continuous training (CT) in HF patients NYHA II-III on physical fitness, cardiovascular function and structure, and quality of life, and hypothesize that HIT leads to superior improvements compared to CT. Methods Twenty HF patients (male:female 19:1, 64±8 yrs, ejection fraction 38±6%) were allocated to 12-weeks of HIT (10*1-minute at 90% maximal workload—alternated by 2.5 minutes at 30% maximal workload) or CT (30 minutes at 60–75% of maximal workload). Before and after intervention, we examined physical fitness (incremental cycling test), cardiac function and structure (echocardiography), vascular function and structure (ultrasound) and quality of life (SF-36, Minnesota living with HF questionnaire (MLHFQ)). Results Training improved maximal workload, peak oxygen uptake (VO2peak) related to the predicted VO2peak, oxygen uptake at the anaerobic threshold, and maximal oxygen pulse (all P<0.05), whilst no differences were present between HIT and CT (N.S.). We found no major changes in resting cardiovascular function and structure. SF-36 physical function score improved after training (P<0.05), whilst SF-36 total score and MLHFQ did not change after training (N.S.). Conclusion Training induced significant improvements in parameters of physical fitness, although no evidence for superiority of HIT over CT was demonstrated. No major effect of training was found on cardiovascular structure and function or quality of life in HF patients NYHA II-III. Trial Registration Nederlands Trial Register NTR3671 PMID:26517867

  3. The prodromal phase of obesity-related chronic kidney disease: early alterations in cardiovascular and renal function in obese children and adolescents.

    PubMed

    Doyon, Anke; Schaefer, Franz

    2013-11-01

    Childhood overweight and obesity is a relevant health condition with multi-organ involvement. Obesity shows significant tracking into adult life and is associated with an increased risk of serious adverse health outcomes both during childhood and later adulthood. The classical sequelae of obesity such as hypertension, metabolic syndrome and inflammation do develop at a paediatric age. Cardiovascular consequences, such as increased carotid intima-media thickness, and left ventricular hypertrophy, as well as functional alterations of the heart and arteries, are commonly traceable at an early age. Renal involvement can occur at a young age and is associated with a high probability of progressive chronic kidney disease. There is solid evidence suggesting that consequent treatment including both lifestyle changes and pharmacological therapy can reduce cardiovascular, metabolic and renal risks in obese children and adolescents.

  4. [The functional state of the cardiovascular system and the level of physical performance in 7-8-year-old children under conditions of aerotechnogenic pollution].

    PubMed

    Tuliakova, O V

    2012-01-01

    The aim of the study was to investigate the functional state of the cardiovascular system and the level of physical performance in 7-8-year-old children living in the urban area where air pollution caused by heavy vehicle traffic is high. The cardiovascular system and physical performance were evaluated using the conventional methods in 7-8-year-old 1097 children: a control group included 652 children (363 boys and 289 girls) and a comparison group consisted of 445 persons (239 boys and 206 girls). Under aerotechnogenic pollution, diastolic and mean blood pressures were found to be higher in both groups; the maximum oxygen consumption was lower in the boys and the girls had a decreased heart rate following 4-minute exercise.

  5. Acute Zonal Occult Outer Retinopathy in Japanese Patients: Clinical Features, Visual Function, and Factors Affecting Visual Function

    PubMed Central

    Saito, Saho; Saito, Wataru; Saito, Michiyuki; Hashimoto, Yuki; Mori, Shohei; Noda, Kousuke; Namba, Kenichi; Ishida, Susumu

    2015-01-01

    Purpose To evaluate the clinical features and investigate their relationship with visual function in Japanese patients with acute zonal occult outer retinopathy (AZOOR). Methods Fifty-two eyes of 38 Japanese AZOOR patients (31 female and 7 male patients; mean age at first visit, 35.0 years; median follow-up duration, 31 months) were retrospectively collected: 31 untreated eyes with good visual acuity and 21 systemic corticosteroid-treated eyes with progressive visual acuity loss. Variables affecting the logMAR values of best-corrected visual acuity (BCVA) and the mean deviation (MD) on Humphrey perimetry at initial and final visits were examined using multiple stepwise linear regression analysis. Results In untreated eyes, the mean MD at the final visit was significantly higher than that at the initial visit (P = 0.00002). In corticosteroid-treated eyes, the logMAR BCVA and MD at the final visit were significantly better than the initial values (P = 0.007 and P = 0.02, respectively). The final logMAR BCVA was 0.0 or less in 85% of patients. Variables affecting initial visual function were moderate anterior vitreous cells, myopia severity, and a-wave amplitudes on electroretinography; factors affecting final visual function were the initial MD values, female sex, moderate anterior vitreous cells, and retinal atrophy. Conclusions Our data indicated that visual functions in enrolled patients significantly improved spontaneously or after systemic corticosteroids therapy, suggesting that Japanese patients with AZOOR have good visual outcomes during the follow-up period of this study. Furthermore, initial visual field defects, gender, anterior vitreous cells, and retinal atrophy affected final visual functions in these patients. PMID:25919689

  6. Soy provides modest benefits on endothelial function without affecting inflammatory biomarkers in adults at cardiometabolic risk

    PubMed Central

    Reverri, Elizabeth J.; LaSalle, Colette D.; Franke, Adrian A.; Steinberg, Francene M.

    2015-01-01

    Scope Systemic inflammation, endothelial dysfunction, and oxidative stress are involved in the pathogenesis of the metabolic syndrome (MetS). Epidemiological evidence supports an association between whole soy food consumption and reduced risk of cardiovascular disease (CVD). The objective of this randomized, controlled, crossover study was to evaluate the effects of soy nut consumption on inflammatory biomarkers and endothelial function and to assess whether isoflavone metabolism to secondary products, equol and/or O-desmethylangolensin (ODMA), modifies these responses. Methods and Results n=17 adults at cardiometabolic risk were randomly assigned to the order of two snack interventions, soy nuts and macronutrient-matched control snack, for four weeks each, separated by a two week washout period. Outcome measures included biomarkers of inflammation, oxidative stress, and glycemic control (ELISA and clinical analyzers), endothelial function and arterial stiffness (peripheral arterial tonometry (PAT)), and isoflavone metabolites (LC-MS/MS). Results revealed that consuming soy nuts improved arterial stiffness as assessed by the augmentation index using PAT (P=0.03), despite lack of improvement in inflammatory biomarkers. Addition of equol and/ODMA production status as covariates did not significantly change these results. Conclusions Soy nuts when added to a usual diet for one month provide some benefit on arterial stiffness in adults at cardiometabolic risk. PMID:25351805

  7. Handgrip Strength, Positive Affect, and Perceived Health Are Prospectively Associated with Fewer Functional Limitations among Centenarians

    ERIC Educational Resources Information Center

    Franke, Warren D.; Margrett, Jennifer A.; Heinz, Melinda; Martin, Peter

    2012-01-01

    This study assessed the association between perceived health, fatigue, positive and negative affect, handgrip strength, objectively measured physical activity, body mass index, and self-reported functional limitations, assessed 6 months later, among 11 centenarians (age = 102 plus or minus 1). Activities of daily living, assessed 6 months prior to…

  8. Weight Reduction in Athletes May Adversely Affect the Phagocytic Function of Monocytes.

    ERIC Educational Resources Information Center

    Kono, Ichiro; And Others

    1988-01-01

    Study of the monocyte phagocytic function in nine competitive athletes before and after a two-week weight reduction (through calorie restriction) program revealed that their pre-program phagocytic activity was higher than in sedentary controls but decreased significantly after the program. This suggests calorie restriction may affect the human…

  9. Automatic facial responses to affective stimuli in high-functioning adults with autism spectrum disorder.

    PubMed

    Mathersul, Danielle; McDonald, Skye; Rushby, Jacqueline A

    2013-01-17

    Individuals with autism spectrum disorder (ASD) demonstrate atypical behavioural responses to affective stimuli, although the underlying mechanisms remain unclear. Investigating automatic responses to these stimuli may help elucidate these mechanisms. 18 high-functioning adults with ASDs and 18 typically developing controls viewed 54 extreme pleasant (erotica), extreme unpleasant (mutilations), and non-social neutral images from the International Affective Picture System (IAPS). Two-thirds of images received an acoustic startle probe 3s post-picture onset. Facial electromyography (EMG) activity (orbicularis, zygomaticus, corrugator), skin conductance (SCR) and cardiac responses were recorded. The adults with ASDs demonstrated typical affective startle modulation and automatic facial EMG responses but atypical autonomic (SCRs and cardiac) responses, suggesting a failure to orient to, or a deliberate effort to disconnect from, socially relevant stimuli (erotica, mutilations). These results have implications for neural systems known to underlie affective processes, including the orbitofrontal cortex and amygdala. PMID:23142408

  10. Factors affecting longitudinal functional decline and survival in amyotrophic lateral sclerosis patients.

    PubMed

    Watanabe, Hazuki; Atsuta, Naoki; Nakamura, Ryoichi; Hirakawa, Akihiro; Watanabe, Hirohisa; Ito, Mizuki; Senda, Jo; Katsuno, Masahisa; Izumi, Yuishin; Morita, Mitsuya; Tomiyama, Hiroyuki; Taniguchi, Akira; Aiba, Ikuko; Abe, Koji; Mizoguchi, Kouichi; Oda, Masaya; Kano, Osamu; Okamoto, Koichi; Kuwabara, Satoshi; Hasegawa, Kazuko; Imai, Takashi; Aoki, Masashi; Tsuji, Shoji; Nakano, Imaharu; Kaji, Ryuji; Sobue, Gen

    2015-06-01

    Our objective was to elucidate the clinical factors affecting functional decline and survival in Japanese amyotrophic lateral sclerosis (ALS) patients. We constructed a multicenter prospective ALS cohort that included 451 sporadic ALS patients in the analysis. We longitudinally utilized the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) as the functional scale, and determined the timing of introduction of a tracheostomy for positive-pressure ventilation and death. A joint modelling approach was employed to identify prognostic factors for functional decline and survival. Age at onset was a common prognostic factor for both functional decline and survival (p < 0.001, p < 0.001, respectively). Female gender (p = 0.019) and initial symptoms, including upper limb weakness (p = 0.010), lower limb weakness (p = 0.008) or bulbar symptoms (p = 0.005), were related to early functional decline, whereas neck weakness as an initial symptom (p = 0.018), non-use of riluzole (p = 0.030) and proximal dominant muscle weakness in the upper extremities (p = 0.01) were related to a shorter survival time. A decline in the ALSFRS-R score was correlated with a shortened survival time (p < 0.001). In conclusion, the factors affecting functional decline and survival in ALS were common in part but different to some extent. This difference has not been previously well recognized but is informative in clinical practice and for conducting trials.

  11. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  12. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  13. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  14. Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain.

    PubMed

    Shah, Disha; Blockx, Ines; Keliris, Georgios A; Kara, Firat; Jonckers, Elisabeth; Verhoye, Marleen; Van der Linden, Annemie

    2016-07-01

    Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders. PMID:26195064

  15. Protein-protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease.

    PubMed

    Tran, M Khang; Kurakula, Kondababu; Koenis, Duco S; de Vries, Carlie J M

    2016-02-01

    FHL2 belongs to the LIM-domain only proteins and contains four and a half LIM domains, each of which are composed of two zinc finger structures. FHL2 exhibits specific interaction with proteins exhibiting diverse functions, including transmembrane receptors, transcription factors and transcription co-regulators, enzymes, and structural proteins. The function of these proteins is regulated by FHL2, which modulates intracellular signal transduction pathways involved in a plethora of cellular tasks. The present review summarizes the current knowledge on the protein interactome of FHL2 and provides an overview of the functional implication of these interactions in apoptosis, migration, and regulation of nuclear receptor function. FHL2 was originally identified in the heart and there is extensive literature available on the role of FHL2 in the cardiovascular system, which is also summarized in this review. PMID:26548523

  16. An investigation on pharmacy functions and services affecting satisfaction of patients with prescriptions in community pharmacies.

    PubMed

    Sakurai, Hidehiko; Nakajima, Fumio; Tada, Yuichirou; Yoshikawa, Emi; Iwahashi, Yoshiki; Fujita, Kenji; Hayase, Yukitoshi

    2009-05-01

    Various functions expected by patient expects are needed with progress in the system for separation of dispensing and prescribing functions. In this investigation, the relationship between patient satisfaction and pharmacy function were analyzed quantitatively. A questionnaire survey was conducted in 178 community pharmacies. Questions on pharmacy functions and services totaled 87 items concerning information service, amenities, safety, personnel training, etc. The questionnaires for patients had five-grade scales and composed 11 items (observed variables). Based on the results, "the percentage of satisfied patients" was determined. Multivariate analysis was performed to investigate the relationship between patient satisfaction and pharmacy functions or services provided, to confirm patient's evaluation of the pharmacy, and how factors affected comprehensive satisfaction. In correlation analysis, "the number of pharmacists" and "comprehensive satisfaction" had a negative correlation. Other interesting results were obtained. As a results of factor analysis, three latent factors were obtained: the "human factor," "patients' convenience," and "environmental factor," Multiple regression analysis showed that the "human factor" affected "comprehensive satisfaction" the most. Various pharmacy functions and services influence patient satisfaction, and improvement in their quality increases patient satisfaction. This will result in the practice of patient-centered medicine.

  17. Functions and sources of perceived social support among children affected by HIV/AIDS in China.

    PubMed

    Zhao, Guoxiang; Li, Xiaoming; Fang, Xiaoyi; Zhao, Junfeng; Hong, Yan; Lin, Xiuyun; Stanton, Bonita

    2011-06-01

    While the relationship between perceived social support (PSS) and psychosocial well-being has been well documented in the global literature, existing studies also suggest the existence of multiple domains in definition and measurement of PSS. The current study, utilizing data from 1299 rural children affected by HIV/AIDS in central China, examines the relative importance of PSS functional measures (informational/emotional, material/tangible, affectionate, and social interaction) and PSS structural measures (family/relatives, teachers, friends, and significant others) in predicting psychosocial outcomes including internalizing problems, externalizing problems, and educational resilience. Both functional and structural measures of PSS provided reliable measures of related but unique aspects of PSS. The findings of the current study confirmed the previous results that PSS is highly correlated with children's psychosocial well-being and such correlations vary by functions and sources of the PSS as well as different psychosocial outcomes. The findings in the current study suggested the roles of specific social support functions or resources may need to be assessed in relation to specific psychosocial outcome and the context of children's lives. The strong association between PSS and psychosocial outcomes underscores the importance of adequate social support to alleviate stressful life events and improve psychosocial well-being of children affected by HIV/AIDS. Meanwhile, the study findings call for gender and developmentally appropriate and situation-specific social support for children and families affected by HIV/AIDS. PMID:21287421

  18. Social-adaptive and psychological functioning of patients affected by Fabry disease.

    PubMed

    Laney, Dawn Alyssia; Gruskin, Daniel J; Fernhoff, Paul M; Cubells, Joseph F; Ousley, Opal Y; Hipp, Heather; Mehta, Ami J

    2010-12-01

    Fabry disease (FD) is an X-linked lysosomal storage disorder caused by the deficiency of alpha-galactosidase A. In addition to the debilitating physical symptoms of FD, there are also under-recognized and poorly characterized psychiatric features. As a first step toward characterizing psychiatric features of FD, we administered the Achenbach adult self report questionnaire to 30 FD patients and the Achenbach adult behavior checklist questionnaire to 28 partners/parents/friends of FD patients. Data from at least one of the questionnaires were available on 33 subjects. Analysis focused on social-adaptive functioning in various aspects of daily life and on criteria related to the Diagnostic and statistical manual of mental disorders IV (DSM-IV). Adaptive functioning scale values, which primarily measure social and relationship functioning and occupational success, showed that eight FD patients (six female and two male) had mean adaptive functioning deficits as compared to population norms. Greater rates of depression (P < 0.01), anxiety (P = 0.05), depression and anxiety (P = 0.03), antisocial personality (P < 0.001), attention-deficit/hyperactivity (AD/H; P < 0.01), hyperactivity-impulsivity (P < 0.01), and aggressive behavior (P = 0.03) were associated with poorer adaptive functioning. Decreased social-adaptive functioning in this study was not statistically significantly associated to disease severity, pain, or level of vitality. This study shows for the first time that FD patients, particularly women, are affected by decreased social-adaptive functioning. Comprehensive treatment plans for FD should consider assessments and interventions to evaluate and improve social, occupational, and psychological functioning. Attention to the behavioral aspects of FD could lead to improved treatment outcome and improved quality of life. Individuals affected by Fabry disease exhibited social-adaptive functioning deficits that were significantly correlated with anxiety

  19. Cognitive Function in Adolescent Patients with Anorexia Nervosa and Unipolar Affective Disorders.

    PubMed

    Sarrar, Lea; Holzhausen, Martin; Warschburger, Petra; Pfeiffer, Ernst; Lehmkuhl, Ulrike; Schneider, Nora

    2016-05-01

    Studies have shown impairments in cognitive function among adult patients with anorexia nervosa (AN) and affective disorders (AD). The association between cognitive dysfunctions, AN and AD as well as the specificity for these psychiatric diagnoses remains unclear. Therefore, we examined cognitive flexibility and processing speed in 47 female adolescent patients with AN, 21 female adolescent patients with unipolar affective disorders and 48 female healthy adolescents. All participants completed a neuropsychological test battery. There were no significant group differences regarding cognitive function, except for psychomotor processing speed with poorer performance in patients with AN. A further analysis revealed that all groups performed with the normal range, although patients with AN were over represented in the poorest performing quartile. We found no severe cognitive impairments in either patient group. Nevertheless, belonging to the AN group contributed significantly to poor performances in neuropsychological tasks. Therefore, we conclude that the risk for cognitive impairments is slightly higher for patients with AN.

  20. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Lee, Rico S C; Hermens, Daniel F; Naismith, Sharon L; White, Django; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in

  1. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Lee, Rico S C; Hermens, Daniel F; Naismith, Sharon L; White, Django; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in

  2. Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function

    PubMed Central

    Schwarz, Nicole; Leube, Rudolf E.

    2016-01-01

    Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases. PMID:27399781

  3. Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders.

    PubMed

    Paul, Evan D; Lowry, Christopher A

    2013-12-01

    Over 20 years ago, Deakin and Graeff hypothesized about the role of different serotonergic pathways in controlling the behavioral and physiologic responses to aversive stimuli, and how compromise of these pathways could lead to specific symptoms of anxiety and affective disorders. A growing body of evidence suggests these serotonergic pathways arise from topographically organized subpopulations of serotonergic neurons located in the dorsal and median raphe nuclei. We argue that serotonergic neurons in the dorsal/caudal parts of the dorsal raphe nucleus project to forebrain limbic regions involved in stress/conflict anxiety-related processes, which may be relevant for anxiety and affective disorders. Serotonergic neurons in the "lateral wings" of the dorsal raphe nucleus provide inhibitory control over structures controlling fight-or-flight responses. Dysfunction of this pathway could be relevant for panic disorder. Finally, serotonergic neurons in the median raphe nucleus, and the developmentally and functionally-related interfascicular part of the dorsal raphe nucleus, give rise to forebrain limbic projections that are involved in tolerance and coping with aversive stimuli, which could be important for affective disorders like depression. Elucidating the mechanisms through which stress activates these topographically and functionally distinct serotonergic pathways, and how dysfunction of these pathways leads to symptoms of neuropsychiatric disorders, may lead to the development of novel approaches to both the prevention and treatment of anxiety and affective disorders.

  4. Associations between early adrenarche, affective brain function and mental health in children

    PubMed Central

    Whittle, Sarah; Simmons, Julian G.; Byrne, Michelle L.; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L.; Olsson, Craig A.; Dudgeon, Paul; Mundy, Lisa K.; Patton, George C.

    2015-01-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology. PMID:25678548

  5. Associations between early adrenarche, affective brain function and mental health in children.

    PubMed

    Whittle, Sarah; Simmons, Julian G; Byrne, Michelle L; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L; Olsson, Craig A; Dudgeon, Paul; Mundy, Lisa K; Patton, George C; Allen, Nicholas B

    2015-09-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology.

  6. Revealing how species loss affects ecosystem function: the trait-based Price Equation partition.

    PubMed

    Fox, Jeremy W; Harpole, W Stanley

    2008-01-01

    Species loss can alter ecosystem function. Recent work proposes a general theoretical framework, the "Price Equation partition," for understanding how species loss affects ecosystem functions that comprise the summed contributions of individual species (e.g., primary production). The Price Equation partition shows how the difference in function between a pre-species-loss site and a post-loss site can be partitioned into effects of random loss of species richness (species-richness effect; SRE), nonrandom loss of high- or low-functioning species (species-composition effect; SCE), and post-loss changes in the functional contributions of the remaining species (context-dependence effect; CDE). However, the Price Equation partition is silent on the underlying determinants of species' functional contributions. Here we extend the Price Equation partition by using multiple regression to describe how species' functional contributions depend on species' traits. This allows us to reexpress the SCE and CDE in terms of nonrandom loss of species with particular traits (trait-based SCE), and post-loss changes in species' traits and in the relationship between species' traits and species' functional contributions (trait-based CDE). We apply this new trait-based Price Equation partition to studies of species loss from grassland plant communities and protist microcosm food webs. In both studies, post-loss changes in the relationship between species' traits and their functional contributions alter ecosystem function more than nonrandom loss of species with particular traits. The protist microcosm data also illustrate how the trait-based Price Equation partition can be applied when species' functional contributions depend in part on the traits of other species. To do this, we define "synecological" traits that quantify how unique species are (e.g., in diet) compared to other species. Context dependence in the protist microcosm experiment arises in part because species loss alters the

  7. Affective Response to a Loved One's Pain: Insula Activity as a Function of Individual Differences

    PubMed Central

    Mazzola, Viridiana; Latorre, Valeria; Petito, Annamaria; Gentili, Nicoletta; Fazio, Leonardo; Popolizio, Teresa; Blasi, Giuseppe; Arciero, Giampiero; Bondolfi, Guido

    2010-01-01

    Individual variability in emotion processing may be associated with genetic variation as well as with psychological predispositions such as dispositional affect styles. Our previous fMRI study demonstrated that amygdala reactivity was independently predicted by affective-cognitive styles (phobic prone or eating disorders prone) and genotype of the serotonin transporter in a discrimination task of fearful facial expressions. Since the insula is associated with the subjective evaluation of bodily states and is involved in human feelings, we explored whether its activity could also vary in function of individual differences. In the present fMRI study, the association between dispositional affects and insula reactivity has been examined in two groups of healthy participants categorized according to affective-cognitive styles (phobic prone or eating disorders prone). Images of the faces of partners and strangers, in both painful and neutral situations, were used as visual stimuli. Interaction analyses indicate significantly different activations in the two groups in reaction to a loved one's pain: the phobic prone group exhibited greater activation in the left posterior insula. These results demonstrate that affective-cognitive style is associated with insula activity in pain empathy processing, suggesting a greater involvement of the insula in feelings for a certain cohort of people. In the mapping of individual differences, these results shed new light on variability in neural networks of emotion. PMID:21179564

  8. Advancing cardiovascular tissue engineering

    PubMed Central

    Truskey, George A.

    2016-01-01

    Cardiovascular tissue engineering offers the promise of biologically based repair of injured and damaged blood vessels, valves, and cardiac tissue. Major advances in cardiovascular tissue engineering over the past few years involve improved methods to promote the establishment and differentiation of induced pluripotent stem cells (iPSCs), scaffolds from decellularized tissue that may produce more highly differentiated tissues and advance clinical translation, improved methods to promote vascularization, and novel in vitro microphysiological systems to model normal and diseased tissue function. iPSC technology holds great promise, but robust methods are needed to further promote differentiation. Differentiation can be further enhanced with chemical, electrical, or mechanical stimuli. PMID:27303643

  9. How the sourdough may affect the functional features of leavened baked goods.

    PubMed

    Gobbetti, Marco; Rizzello, Carlo G; Di Cagno, Raffaella; De Angelis, Maria

    2014-02-01

    Sourdough fermentation is one of the oldest food biotechnologies, which has been studied and recently rediscovered for its effect on the sensory, structural, nutritional and shelf life properties of leavened baked goods. Acidification, proteolysis and activation of a number of enzymes as well as the synthesis of microbial metabolites cause several changes during sourdough fermentation, which affect the dough and baked good matrix, and influence the nutritional/functional quality. Currently, the literature is particularly rich of results, which show how the sourdough fermentation may affect the functional features of leavened baked goods. In the form of pre-treating raw materials, fermentation through sourdough may stabilize or to increase the functional value of bran fractions and wheat germ. Sourdough fermentation may decrease the glycaemic response of baked goods, improve the properties and bioavailability of dietary fibre complex and phytochemicals, and may increase the uptake of minerals. Microbial metabolism during sourdough fermentation may also produce new nutritionally active compounds, such as peptides and amino acid derivatives (e.g., γ-amino butyric acid) with various functionalities, and potentially prebiotic exo-polysaccharides. The wheat flour digested via fungal proteases and selected sourdough lactobacilli has been demonstrated to be probably safe for celiac patients.

  10. How the sourdough may affect the functional features of leavened baked goods.

    PubMed

    Gobbetti, Marco; Rizzello, Carlo G; Di Cagno, Raffaella; De Angelis, Maria

    2014-02-01

    Sourdough fermentation is one of the oldest food biotechnologies, which has been studied and recently rediscovered for its effect on the sensory, structural, nutritional and shelf life properties of leavened baked goods. Acidification, proteolysis and activation of a number of enzymes as well as the synthesis of microbial metabolites cause several changes during sourdough fermentation, which affect the dough and baked good matrix, and influence the nutritional/functional quality. Currently, the literature is particularly rich of results, which show how the sourdough fermentation may affect the functional features of leavened baked goods. In the form of pre-treating raw materials, fermentation through sourdough may stabilize or to increase the functional value of bran fractions and wheat germ. Sourdough fermentation may decrease the glycaemic response of baked goods, improve the properties and bioavailability of dietary fibre complex and phytochemicals, and may increase the uptake of minerals. Microbial metabolism during sourdough fermentation may also produce new nutritionally active compounds, such as peptides and amino acid derivatives (e.g., γ-amino butyric acid) with various functionalities, and potentially prebiotic exo-polysaccharides. The wheat flour digested via fungal proteases and selected sourdough lactobacilli has been demonstrated to be probably safe for celiac patients. PMID:24230470

  11. Cardiovascular Disease Consequences of CKD.

    PubMed

    Go, Alan S

    2016-07-01

    Chronic kidney disease, defined as reduced glomerular filtration rate (estimated using serum creatinine- and/or serum cystatin C-based equations) or excess urinary protein excretion, affects approximately 13% of adult Americans and is linked to a variety of clinical complications. Although persons with end-stage renal disease requiring chronic dialysis therapy experience a substantially high cardiovascular burden, whether mild-to-moderate chronic kidney disease is an independent risk factor for fatal and nonfatal cardiovascular events has been more controversial. This review evaluates the current evidence about the clinical and subclinical cardiovascular consequences associated with chronic kidney disease of varying levels of severity. In addition, it discusses the predictors of adverse cardiovascular outcomes while also focusing on recent insights into the relationships between chronic kidney disease and cardiovascular disease from the Chronic Renal Insufficiency Cohort study, a large current prospective cohort study of adults from across the spectrum of chronic kidney disease. PMID:27475660

  12. Tea and Cardiovascular Disease

    PubMed Central

    Deka, Apranta; Vita, Joseph A.

    2011-01-01

    There is increasing evidence for a protective effect of tea consumption against cardiovascular disease. This review summarizes the available epidemiological data providing evidence for and against such an effect. We also review observational and intervention studies that investigated an effect of tea and tea extracts on cardiovascular risk factors, including blood pressure, serum lipids, diabetes mellitus, and obesity. Finally, we review potential mechanisms of benefit, including anti-inflammatory, anti-oxidant, and anti-proliferative effects, as well as favorable effects on endothelial function. Overall, the observational data suggest a benefit, but results are mixed and likely confounded by lifestyle and background dietary factors. The weight of evidence indicates favorable effects on risk factors and a number of plausible mechanisms have been elucidated in experimental and translational human studies. Despite the growing body evidence, it remains uncertain whether tea consumption should be recommended to the general population or to patients as a strategy to reduce cardiovascular risk. PMID:21477653

  13. Mitochondria and Cardiovascular Aging

    PubMed Central

    Dai, Dao-Fu; Ungvari, Zoltan

    2013-01-01

    Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (e.g. renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics and exercise training. PMID:22499901

  14. Arsenic exposure and cardiovascular disorders: an overview.

    PubMed

    Balakumar, Pitchai; Kaur, Jagdeep

    2009-12-01

    The incidence of arsenic toxicity has been observed in various countries including Taiwan, Bangladesh, India, Argentina, Australia, Chile, China, Hungary, Peru, Thailand, Mexico and United States of America. Arsenic is a ubiquitous element present in drinking water, and its exposure is associated with various cardiovascular disorders. Arsenic exposure plays a key role in the pathogenesis of vascular endothelial dysfunction as it inactivates endothelial nitric oxide synthase, leading to reduction in the generation and bioavailability of nitric oxide. In addition, the chronic arsenic exposure induces high oxidative stress, which may affect the structure and function of cardiovascular system. Further, the arsenic exposure has been noted to induce atherosclerosis by increasing the platelet aggregation and reducing fibrinolysis. Moreover, arsenic exposure may cause arrhythmia by increasing the QT interval and accelerating the cellular calcium overload. The chronic exposure to arsenic upregulates the expression of tumor necrosis factor-alpha, interleukin-1, vascular cell adhesion molecule and vascular endothelial growth factor to induce cardiovascular pathogenesis. The present review critically discussed the detrimental role of arsenic in the cardiovascular system.

  15. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia

    PubMed Central

    Grisé, Kenneth N.; Olver, T. Dylan; McDonald, Matthew W.; Dey, Adwitia; Jiang, Mao; Lacefield, James C.; Shoemaker, J. Kevin; Noble, Earl G.; Melling, C. W. James

    2016-01-01

    Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9–17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM. PMID:26885531

  16. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia.

    PubMed

    Grisé, Kenneth N; Olver, T Dylan; McDonald, Matthew W; Dey, Adwitia; Jiang, Mao; Lacefield, James C; Shoemaker, J Kevin; Noble, Earl G; Melling, C W James

    2016-01-01

    Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9-17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM. PMID:26885531

  17. Effect of glycerol-induced hyperhydration on thermoregulatory and cardiovascular functions and endurance performance during prolonged cycling in a 25 degrees C environment.

    PubMed

    Goulet, Eric D B; Robergs, Robert A; Labrecque, Susan; Royer, Donald; Dionne, Isabelle J

    2006-04-01

    We compared the effect of glycerol-induced hyperhydration (GIH) to that of water-induced hyperhydration (WIH) on cardiovascular and thermoregulatory functions and endurance performance (EP) during prolonged cycling in a temperate climate in subjects consuming fluid during exercise. At weekly intervals, 6 trained male subjects ingested, in a randomized, double-blind, counterbalanced fashion, either a glycerol (1.2 g glycerol/kg bodyweight (BW) with 26 mL/kg BW of water-aspartame-flavored fluid) or placebo solution (water-aspartame-flavored fluid only) over a 2 h period. Subjects then performed 2 h of cycling at 66% of the maximal oxygen consumption (VO(2) max) and 25 degrees C while drinking 500 mL/h of sports drink, which was followed by a step-incremented cycling test to exhaustion. Levels of hyperhydration did not differ significantly between treatments before exercise. During exercise, GIH significantly reduced urine production by 246 mL. GIH did not increase sweat rate nor did it decrease heart rate, rectal temperature, or perceived exertion during exercise as compared with WIH. EP was not significantly different between treatments. Neither treatment induced undesirable side effects. It is concluded that, compared with WIH, GIH decreases urine production, but does not improve cardiovascular or thermoregulatory functions, nor does it improve EP during 2 h of cycling in a 25 degrees C environment in trained athletes consuming 500 mL/h of fluid during exercise.

  18. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.

  19. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  20. Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice.

    PubMed

    Rodriguez-Sosa, Jose R; Bondareva, Alla; Tang, Lin; Avelar, Gleide F; Coyle, Krysta M; Modelski, Mark; Alpaugh, Whitney; Conley, Alan; Wynne-Edwards, Katherine; França, Luiz R; Meyers, Stuart; Dobrinski, Ina

    2014-12-01

    Di-n-Butyl (DBP) and Di-(2-EthylHexyl) (DEHP) phthalates can leach from daily-use products resulting in environmental exposure. In male rodents, phthalate exposure results in reproductive effects. To evaluate effects on the immature primate testis, testis fragments from 6-month-old rhesus macaques were grafted subcutaneously to immune-deficient mice, which were exposed to 0, 10, or 500 mg/kg of DBP or DEHP for 14 weeks or 28 weeks (DBP only). DBP exposure reduced the expression of key steroidogenic genes, indicating that Leydig cell function was compromised. Exposure to 500 mg/kg impaired tubule formation and germ cell differentiation and reduced numbers of spermatogonia. Exposure to 10 mg/kg did not affect development, but reduced Sertoli cell number and resulted in increased expression of inhibin B. Exposure to DEHP for 14 week also affected steroidogenic genes expression. Therefore, long-term exposure to phthalate esters affected development and function of the primate testis in a time and dosage dependent manner.

  1. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis

    PubMed Central

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-01-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios. PMID:26028216

  2. Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice

    PubMed Central

    Rodriguez-Sosa, Jose R; Bondareva, Alla; Tang, Lin; Avelar, Gleide F.; Coyle, Krysta M.; Modelski, Mark; Alpaugh, Whitney; Conley, Alan; Wynne-Edwards, Katherine; França, Luiz R; Meyers, Stuart; Dobrinski, Ina

    2014-01-01

    Di-n-Butyl (DBP) and Di-(2-EthylHexyl) (DEHP) phthalates can leach from daily-use products resulting in environmental exposure. In male rodents, phthalate exposure results in reproductive effects. To evaluate effects on the immature primate testis, testis fragments from 6-month-old rhesus macaques were grafted subcutaneously to immune-deficient mice, which were exposed to 0, 10, or 500 mg/kg of DBP or DEHP for 14 weeks or 28 weeks (DBP only). DBP exposure reduced the expression of key steroidogenic genes, indicating that Leydig cell function was compromised. Exposure to 500 mg/kg impaired tubule formation and germ cell differentiation and reduced numbers of spermatogonia. Exposure to 10 mg/kg did not affect development, but reduced Sertoli cell number and resulted in increased expression of inhibin B. Exposure to DEHP for 14 week also affected steroidogenic genes expression. Therefore, long-term exposure to phthalate esters affected development and function of the primate testis in a time and dosage dependent manner. PMID:25450860

  3. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-06-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios.

  4. The Effect of Coffee and Quantity of Consumption on Specific Cardiovascular and All-Cause Mortality: Coffee Consumption Does Not Affect Mortality.

    PubMed

    Loomba, Rohit S; Aggarwal, Saurabh; Arora, Rohit R

    2016-01-01

    Previous studies have examined whether or not an association exists between the consumption of caffeinated coffee to all-cause and cardiovascular mortality. This study aimed to delineate this association using population representative data from the National Health and Nutrition Examination Survey III. Patients were included in the study if all the following criteria were met: (1) follow-up mortality data were available, (2) age of at least 45 years, and (3) reported amount of average coffee consumption. A total of 8608 patients were included, with patients stratified into the following groups of average daily coffee consumption: (1) no coffee consumption, (2) less than 1 cup, (3) 1 cup a day, (4) 2-3 cups, (5) 4-5 cups, (6) more than 6 cups a day. Odds ratios, 95% confidence intervals, and P values were calculated for univariate analysis to compare the prevalence of all-cause mortality, ischemia-related mortality, congestive heart failure-related mortality, and stroke-related mortality, using the no coffee consumption group as reference. These were then adjusted for confounding factors for a multivariate analysis. P < 0.05 were considered statistically significant. Univariate analysis demonstrated an association between coffee consumption and mortality, although this became insignificant on multivariate analysis. Coffee consumption, thus, does not seem to impact all-cause mortality or specific cardiovascular mortality. These findings do differ from those of recently published studies. Coffee consumption of any quantity seems to be safe without any increased mortality risk. There may be some protective effects but additional data are needed to further delineate this.

  5. Modulation of α power and functional connectivity during facial affect recognition.

    PubMed

    Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan

    2013-04-01

    Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.

  6. Functional connectivity of pain-mediated affect regulation in Borderline Personality Disorder.

    PubMed

    Niedtfeld, Inga; Kirsch, Peter; Schulze, Lars; Herpertz, Sabine C; Bohus, Martin; Schmahl, Christian

    2012-01-01

    Affective instability and self-injurious behavior are important features of Borderline Personality Disorder. Whereas affective instability may be caused by a pattern of limbic hyperreactivity paired with dysfunctional prefrontal regulation mechanisms, painful stimulation was found to reduce affective arousal at the neural level, possibly underlying the soothing effect of pain in BPD.We used psychophysiological interactions to analyze functional connectivity of (para-) limbic brain structures (i.e. amygdala, insula, anterior cingulate cortex) in Borderline Personality Disorder in response to painful stimulation. Therefore, we re-analyzed a dataset from 20 patients with Borderline Personality Disorder and 23 healthy controls who took part in an fMRI-task inducing negative (versus neutral) affect and subsequently applying heat pain (versus warmth perception).Results suggest an enhanced negative coupling between limbic as well as paralimbic regions and prefrontal regions, specifically with the medial and dorsolateral prefrontal cortex, when patients experienced pain in addition to emotional arousing pictures. When neutral pictures were combined with painful heat sensation, we found positive connectivity in Borderline Personality Disorder between (para-)limbic brain areas and parts of the basal ganglia (lentiform nucleus, putamen), as well areas involved in self-referential processing (precuneus and posterior cingulate).We found further evidence for alterations in the emotion regulation process in Borderline Personality Disorder, in the way that pain improves the inhibition of limbic activity by prefrontal areas. This study provides new insights in pain processing in BPD, including enhanced coupling of limbic structures and basal ganglia. PMID:22428013

  7. Arrestins in the cardiovascular system.

    PubMed

    Lymperopoulos, Anastasios; Bathgate, Ashley

    2013-01-01

    Of the four mammalian arrestins, only the β-arrestins (βarrs; Arrestin2 and -3) are expressed throughout the cardiovascular system, where they regulate, as either desensitizers/internalizers or signal transducers, several G-protein-coupled receptors (GPCRs) critical for cardiovascular homeostasis. The cardiovascular roles of βarrs have been delineated at an accelerated pace via a variety of techniques and tools, such as knockout mice, siRNA knockdown, artificial or naturally occurring polymorphic GPCRs, and availability of new βarr "biased" GPCR ligands. This chapter summarizes the current knowledge of cardiovascular arrestin physiology and pharmacology, addressing the individual cardiovascular receptors affected by βarrs in vivo, as well as the individual cell types, tissues, and organs of the cardiovascular system in which βarr effects are exerted; for example, cardiac myocyte or fibroblast, vascular smooth muscle, adrenal gland and platelet. In the broader scope of cardiovascular βarr pharmacology, a discussion of the βarr "bias" of certain cardiovascular GPCR ligands is also included.

  8. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function.

    PubMed

    Tajnik, Mojca; Rogalska, Malgorzata Ewa; Bussani, Erica; Barbon, Elena; Balestra, Dario; Pinotti, Mirko; Pagani, Franco

    2016-05-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  9. Laterality affects spontaneous recovery of contralateral hand motor function following motor cortex injury in rhesus monkeys.

    PubMed

    Darling, Warren G; Helle, Nicole; Pizzimenti, Marc A; Rotella, Diane L; Hynes, Stephanie M; Ge, Jizhi; Stilwell-Morecraft, Kimberly S; Morecraft, Robert J

    2013-07-01

    The purpose of this study was to test whether brain laterality influences spontaneous recovery of hand motor function after controlled brain injuries to arm areas of M1 and lateral premotor cortex (LPMC) of the hemisphere contralateral to the preferred hand in rhesus monkeys. We hypothesized that monkeys with stronger hand preference would exhibit poorer recovery of skilled hand use after such brain injury. Degree of handedness was assessed using a standard dexterity board task in which subjects could use either hand to retrieve small food pellets. Fine hand/digit motor function was assessed using a modified dexterity board before and after the M1 and LPMC lesions in ten monkeys. We found a strong negative relationship between the degree of handedness and the recovery of manipulation skill, demonstrating that higher hand preference was associated with poorer recovery of hand fine motor function. We also observed that monkeys with larger lesions within M1 and LPMC had greater initial impairment of manipulation and poorer recovery of reaching skill. We conclude that monkeys with a stronger hand preference are likely to show poorer recovery of contralesional hand fine motor skill after isolated brain lesions affecting the lateral frontal motor areas. These data may be extended to suggest that humans who exhibit weak hand dominance, and perhaps individuals who use both hands for fine motor tasks, may have a more favorable potential for recovery after a unilateral stroke or brain injury affecting the lateral cortical motor areas than individuals with a high degree of hand dominance.

  10. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  11. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic.

    PubMed

    Frank-Fahle, Béatrice A; Yergeau, Etienne; Greer, Charles W; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.

  12. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function

    PubMed Central

    Bussani, Erica; Barbon, Elena; Pinotti, Mirko; Pagani, Franco

    2016-01-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  13. Effects of light therapy on neuropsychological function and mood in seasonal affective disorder.

    PubMed Central

    Michalon, M; Eskes, G A; Mate-Kole, C C

    1997-01-01

    To date, little attention has been paid to changes in neuropsychological function in seasonal affective disorders (SAD). In this study, we investigated the performance of 30 patients with SAD on a wide range of cognitive variables before and after 2 weeks of light treatment with either white or placebo red light, as well as later in the summertime. Performance of subjects with SAD on neuropsychological tests was compared with a group of 29 age- and education-matched healthy control subjects. The most consistent deficits associated with SAD were on tests of cognitive failures, visual memory, and visual-construction skills. In contrast to specific bright light effects on psychiatric measures, reports of cognitive failures did not change with either light treatment. Visual memory and constructional deficits responded nonspecifically to treatment with either white or the presumed placebo red light. Surprisingly, visual memory deficits were seen again in the summer, at a time when mood, cognitive failures, and other cognitive functions appeared at normal levels. These data suggest that cognitive functioning is affected by SAD. In addition, light treatment may have differential effects on mood and cognition. PMID:9002389

  14. Image-Based Computational Fluid Dynamics in Blood Vessel Models: Toward Developing a Prognostic Tool to Assess Cardiovascular Function Changes in Prolonged Space Flights

    NASA Technical Reports Server (NTRS)

    Chatzimavroudis, George P.; Spirka, Thomas A.; Setser, Randolph M.; Myers, Jerry G.

    2004-01-01

    One of NASA's objectives is to be able to perform a complete, pre-flight, evaluation of cardiovascular changes in astronauts scheduled for prolonged space missions. Computational fluid dynamics (CFD) has shown promise as a method for estimating cardiovascular function during reduced gravity conditions. For this purpose, MRI can provide geometrical information, to reconstruct vessel geometries, and measure all spatial velocity components, providing location specific boundary conditions. The objective of this study was to investigate the reliability of MRI-based model reconstruction and measured boundary conditions for CFD simulations. An aortic arch model and a carotid bifurcation model were scanned in a 1.5T Siemens MRI scanner. Axial MRI acquisitions provided images for geometry reconstruction (slice thickness 3 and 5 mm; pixel size 1x1 and 0.5x0.5 square millimeters). Velocity acquisitions provided measured inlet boundary conditions and localized three-directional steady-flow velocity data (0.7-3.0 L/min). The vessel walls were isolated using NIH provided software (ImageJ) and lofted to form the geometric surface. Constructed and idealized geometries were imported into a commercial CFD code for meshing and simulation. Contour and vector plots of the velocity showed identical features between the MRI velocity data, the MRI-based CFD data, and the idealized-geometry CFD data, with less than 10% differences in the local velocity values. CFD results on models reconstructed from different MRI resolution settings showed insignificant differences (less than 5%). This study illustrated, quantitatively, that reliable CFD simulations can be performed with MRI reconstructed models and gives evidence that a future, subject-specific, computational evaluation of the cardiovascular system alteration during space travel is feasible.

  15. Dietary protein during gestation affects circulating indicators of placental function and fetal development in heifers.

    PubMed

    Sullivan, T M; Micke, G C; Magalhaes, R S; Martin, G B; Wallace, C R; Green, J A; Perry, V E A

    2009-04-01

    The influences of nutritional protein during the first and second trimesters of pregnancy on placental hormones and fetal growth were determined in composite beef heifers. At artificial insemination, heifers were stratified by weight within each composite genotype into 4 treatment groups: High High (HH=1.4kg crude protein (CP)/day for first and second trimesters of gestation; n=16), High Low (HL=1.4kg CP/day for first trimester and 0.4kg CP/day for second trimester; n=19), Low High (LH=0.4kg CP/day for first trimester and 1.4kg CP/day for second trimester; n=17) or Low Low (LL=0.4kg CP/day for first and second trimesters; n=19). Maternal plasma bovine pregnancy associated glycoprotein (bPAG) and progesterone (P4) were determined at gestation day (gd) 28, 82, 179 and 271 (mean gestation length 286 days) in addition to P4 at term. Estrone sulphate (ES) and bovine placental lactogen (bPL) concentrations were measured at gd 124, 179, 236 and 271 and at term in addition to ES at gd 82. Low dietary protein increased placental function as indicated by increased bPAG (P<0.001) and ES (P=0.02) concentrations in first trimester and increased bPL concentrations (P=0.01) in the second trimester of gestation. In the third trimester, when dietary treatment had ceased, placental function was no longer associated with previous dietary treatments. Dam genotype affected placental function as measured by bPL (P<0.001) and ES concentrations (P=0.02). Calf gender, heifer age and maternal insulin-like growth factor (IGF)-I, -II and leptin did not affect hormonal indicators or circulating markers of placental function. Enhanced placental function during the third trimester, as measured by ES, was associated with increased calf birth weight (P=0.003).

  16. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    PubMed Central

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  17. Relationship between autonomic cardiovascular control, case definition, clinical symptoms, and functional disability in adolescent chronic fatigue syndrome: an exploratory study

    PubMed Central

    2013-01-01

    Chronic Fatigue Syndrome (CFS) is characterized by severe impairment and multiple symptoms. Autonomic dysregulation has been demonstrated in several studies. We aimed at exploring the relationship between indices of autonomic cardiovascular control, the case definition from Centers for Disease Control and Prevention (CDC criteria), important clinical symptoms, and disability in adolescent chronic fatigue syndrome. 38 CFS patients aged 12–18 years were recruited according to a wide case definition (ie. not requiring accompanying symptoms) and subjected to head-up tilt test (HUT) and a questionnaire. The relationships between variables were explored with multiple linear regression analyses. In the final models, disability was positively associated with symptoms of cognitive impairments (p<0.001), hypersensitivity (p<0.001), fatigue (p=0.003) and age (p=0.007). Symptoms of cognitive impairments were associated with age (p=0.002), heart rate (HR) at baseline (p=0.01), and HR response during HUT (p=0.02). Hypersensitivity was associated with HR response during HUT (p=0.001), high-frequency variability of heart rate (HF-RRI) at baseline (p=0.05), and adherence to the CDC criteria (p=0.005). Fatigue was associated with gender (p=0.007) and adherence to the CDC criteria (p=0.04). In conclusion, a) The disability of CFS patients is not only related to fatigue but to other symptoms as well; b) Altered cardiovascular autonomic control is associated with certain symptoms; c) The CDC criteria are poorly associated with disability, symptoms, and indices of altered autonomic nervous activity. PMID:23388153

  18. The Functional Effect of Teacher Positive and Neutral Affect on Task Performance of Students with Significant Disabilities

    ERIC Educational Resources Information Center

    Park, Sungho; Singer, George H. S.; Gibson, Mary

    2005-01-01

    The study uses an alternating treatment design to evaluate the functional effect of teacher's affect on students' task performance. Tradition in special education holds that teachers should engage students using positive and enthusiastic affect for task presentations and praise. To test this assumption, we compared two affective conditions. Three…

  19. Reactive oxygen species: players in the cardiovascular effects of testosterone.

    PubMed

    Tostes, Rita C; Carneiro, Fernando S; Carvalho, Maria Helena C; Reckelhoff, Jane F

    2016-01-01

    Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed.

  20. Six-Digit CPK and Mildly Affected Renal Function in McArdle Disease

    PubMed Central

    Mcinnes, Andrew D.; DeGroote, Richard J.

    2014-01-01

    A previously healthy, white 12-year-old girl presented with diffuse body aches and poor perfusion. She developed severe respiratory failure and marked rhabdomyolysis and was mechanically ventilated. Although her CPK peaked at 500,000 IU/L, her renal function was mildly affected and her creatinine did not exceed the 0.8 mg/dL. The rhabdomyolysis was gradually resolved following aggressive fluid hydration. The patient did not require dialysis and made a complete recovery. Genetic studies revealed the diagnosis of McArdle disease. PMID:25371840

  1. Relation Between Change in Renal Function and Cardiovascular Outcomes in Atorvastatin-Treated Patients (from the Treating to New Targets [TNT] Study).

    PubMed

    Shepherd, James; Breazna, Andrei; Deedwania, Prakash C; LaRosa, John C; Wenger, Nanette K; Messig, Michael; Wilson, Daniel J

    2016-04-15

    Statins may have nephroprotective as well as cardioprotective effects in patients with cardiovascular disease. In the Treating to New Targets (TNT) study (NCT00327691), patients with coronary heart disease (CHD) were randomized to atorvastatin 10 or 80 mg/day and followed for 4.9 years. The relation between intrastudy change in estimated glomerular filtration rate (eGFR) from baseline and the risk of major cardiovascular events (MCVEs, defined as CHD death, nonfatal non-procedure-related myocardial infarction, resuscitated cardiac arrest, or fatal or nonfatal stroke) was assessed among 9,500 patients stratified by renal function: improving (change in eGFR more than +2 ml/min/1.73 m(2)), stable (-2 to +2 ml/min/1.73 m(2)), and worsening (less than -2 ml/min/1.73 m(2)). Compared with patients with worsening renal function (1,479 patients, 15.6%), the rate of MCVEs was 28% lower in patients with stable renal function (2,241 patients, 23.6%) (hazard ratio [HR] 0.72; 95% confidence interval [CI] 0.60 to 0.87; p = 0.0005) and 64% lower in patients with improving renal function (5,780 patients, 60.8%; HR 0.36; 95% CI 0.30 to 0.43; p <0.0001). For each 1 ml/min/1.73 m(2) increase in eGFR, the absolute reduction in the rate of MCVEs was 2.7% (HR 0.973; 95% CI 0.967 to 0.980; p <0.0001). An absolute MCVE rate reduction per 1 ml/min/1.73 m(2) increase in eGFR of 2.0% was reported with atorvastatin 10 mg and 3.3% with atorvastatin 80 mg. In conclusion, intrastudy stabilization or increase in eGFR in atorvastatin-treated patients with CHD from the TNT study was associated with a reduced rate of MCVEs. Statin-treated CHD patients with progressive renal impairment are at high risk for future cardiovascular events.

  2. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.

  3. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective. PMID:27509764

  4. Melanocortin-4 receptor activation stimulates hypothalamic brain-derived neurotrophic factor release to regulate food intake, body temperature and cardiovascular function.

    PubMed

    Nicholson, J R; Peter, J-C; Lecourt, A-C; Barde, Y-A; Hofbauer, K G

    2007-12-01

    In the present study, we aimed to investigate the neuromodulatory role played by hypothalamic brain-derived neurotrophic factor (BDNF) in the regulation of acute cardiovascular and feeding responses to melanocortin-4 receptor (MC4R) activation. In vitro, a selective MC4R agonist, MK1, stimulated BDNF release from isolated rat hypothalami and this effect was blocked by preincubation with the MC3/4R antagonist SHU-9119. In vivo, peripheral administration of MK1 decreased food intake in rats and this effect was blocked by pretreatment with an anti-BDNF antibody administered into the third ventricle. When anorexia was induced with the cannabinoid-1 receptor (CB1R) antagonist AM251, the anti-BDNF antibody did not prevent the reduction in food intake. Peripheral administration of MK1 also increased mean arterial pressure, heart rate and body temperature. These effects were prevented by pretreatment with the anti-BDNF antibody whereas the intracerebroventricular administration of BDNF caused changes similar to those of MK1. These findings demonstrate for the first time that activation of MC4R leads to an acute release of BDNF in the hypothalamus. This release is a prerequisite for MC4R-induced effects on appetite, body temperature and cardiovascular function. By contrast, CB1R antagonist-mediated anorexia is independent of the MC4R/BDNF pathway. Overall, these results show that BDNF is an important downstream mediator of the MC4R pathway. PMID:18001327

  5. Factors affecting recovery of postoperative bowel function after pediatric laparoscopic surgery

    PubMed Central

    Michelet, Daphnée; Andreu-Gallien, Juliette; Skhiri, Alia; Bonnard, Arnaud; Nivoche, Yves; Dahmani, Souhayl

    2016-01-01

    Background and Aims: Laparoscopic pediatric surgery allows a rapid postoperative rehabilitation and hospital discharge. However, the optimal postoperative pain management preserving advantages of this surgical technique remains to be determined. This study aimed to identify factors affecting the postoperative recovery of bowel function after laparoscopic surgery in children. Material and Methods: A retrospective analysis of factors affecting recovery of bowel function in children and infants undergoing laparoscopic surgery between January 1, 2009 and September 30, 2009, was performed. Factors included were: Age, weight, extent of surgery (extensive, regional or local), chronic pain (sickle cell disease or chronic intestinal inflammatory disease), American Society of Anaesthesiologists status, postoperative analgesia (ketamine, morphine, nalbuphine, paracetamol, nonsteroidal anti-inflammatory drugs [NSAIDs], nefopam, regional analgesia) both in the Postanesthesia Care Unit and in the surgical ward; and surgical complications. Data analysis used classification and regression tree analysis (CART) with a 10-fold cross validation. Results: One hundred and sixty six patients were included in the analysis. Recovery of bowel function depended upon: The extent of surgery, the occurrence of postoperative surgical complications, the administration of postoperative morphine in the surgical ward, the coadministration of paracetamol and NSAIDs and/or nefopam in the surgical ward and the emergency character of the surgery. The CART method generated a decision tree with eight terminal nodes. The percentage of explained variability of the model and the cross validation were 58% and 49%, respectively. Conclusion: Multimodal analgesia using nonopioid analgesia that allows decreasing postoperative morphine consumption should be considered for the speed of bowel function recovery after laparoscopic pediatric surgery. PMID:27625488

  6. Factors affecting recovery of postoperative bowel function after pediatric laparoscopic surgery

    PubMed Central

    Michelet, Daphnée; Andreu-Gallien, Juliette; Skhiri, Alia; Bonnard, Arnaud; Nivoche, Yves; Dahmani, Souhayl

    2016-01-01

    Background and Aims: Laparoscopic pediatric surgery allows a rapid postoperative rehabilitation and hospital discharge. However, the optimal postoperative pain management preserving advantages of this surgical technique remains to be determined. This study aimed to identify factors affecting the postoperative recovery of bowel function after laparoscopic surgery in children. Material and Methods: A retrospective analysis of factors affecting recovery of bowel function in children and infants undergoing laparoscopic surgery between January 1, 2009 and September 30, 2009, was performed. Factors included were: Age, weight, extent of surgery (extensive, regional or local), chronic pain (sickle cell disease or chronic intestinal inflammatory disease), American Society of Anaesthesiologists status, postoperative analgesia (ketamine, morphine, nalbuphine, paracetamol, nonsteroidal anti-inflammatory drugs [NSAIDs], nefopam, regional analgesia) both in the Postanesthesia Care Unit and in the surgical ward; and surgical complications. Data analysis used classification and regression tree analysis (CART) with a 10-fold cross validation. Results: One hundred and sixty six patients were included in the analysis. Recovery of bowel function depended upon: The extent of surgery, the occurrence of postoperative surgical complications, the administration of postoperative morphine in the surgical ward, the coadministration of paracetamol and NSAIDs and/or nefopam in the surgical ward and the emergency character of the surgery. The CART method generated a decision tree with eight terminal nodes. The percentage of explained variability of the model and the cross validation were 58% and 49%, respectively. Conclusion: Multimodal analgesia using nonopioid analgesia that allows decreasing postoperative morphine consumption should be considered for the speed of bowel function recovery after laparoscopic pediatric surgery.

  7. Functional Connectivity under Anticipation of Shock: Correlates of Trait Anxious Affect versus Induced Anxiety.

    PubMed

    Bijsterbosch, Janine; Smith, Stephen; Bishop, Sonia J

    2015-09-01

    Sustained anxiety about potential future negative events is an important feature of anxiety disorders. In this study, we used a novel anticipation of shock paradigm to investigate individual differences in functional connectivity during prolonged threat of shock. We examined the correlates of between-participant differences in trait anxious affect and induced anxiety, where the latter reflects changes in self-reported anxiety resulting from the shock manipulation. Dissociable effects of trait anxious affect and induced anxiety were observed. Participants with high scores on a latent dimension of anxious affect showed less increase in ventromedial pFC-amygdala connectivity between periods of safety and shock anticipation. Meanwhile, lower levels of induced anxiety were linked to greater augmentation of dorsolateral pFC-anterior insula connectivity during shock anticipation. These findings suggest that ventromedial pFC-amygdala and dorsolateral pFC-insula networks might both contribute to regulation of sustained fear responses, with their recruitment varying independently across participants. The former might reflect an evolutionarily old mechanism for reducing fear or anxiety, whereas the latter might reflect a complementary mechanism by which cognitive control can be implemented to diminish fear responses generated due to anticipation of aversive stimuli or events. These two circuits might provide complementary, alternate targets for exploration in future pharmacological and cognitive intervention studies. PMID:25961638

  8. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise.

  9. Light availability affects stream biofilm bacterial community composition and function, but not diversity.

    PubMed

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R; Battin, Tom J; Bengtsson, Mia M

    2015-12-01

    Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5-152 μmole photons s(-1)  m(-2) ) and combined 454-pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph-derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure-function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes.

  10. Light availability affects stream biofilm bacterial community composition and function, but not diversity.

    PubMed

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R; Battin, Tom J; Bengtsson, Mia M

    2015-12-01

    Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5-152 μmole photons s(-1)  m(-2) ) and combined 454-pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph-derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure-function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911

  11. The consequences of depressive affect on functioning in relation to Cluster B personality disorder features.

    PubMed

    Miller, Joshua D; Gaughan, Eric T; Pryor, Lauren R; Kamen, Charles

    2009-05-01

    The authors examined the effects of depressed affect (DA) on functioning measured by behavioral tasks pertaining to abstract reasoning, social functioning, and delay of gratification in relation to Cluster B personality disorder features (PDs) in a clinical sample. Individuals were randomly assigned to either a DA induction or control condition. Consistent with clinical conceptualizations, the authors expected that Cluster B PD symptoms would be related to maladaptive responding (e.g., poorer delay of gratification) when experiencing DA. As hypothesized, many of the relations between the Cluster B PDs and functioning were moderated by DA (e.g., borderline PD was negatively related to abstract reasoning, but only in the DA condition). However, many of the Cluster B PDs symptom counts were related to more adaptive responses in the DA condition (e.g., less aggressive social functioning, better delay of gratification). The authors speculate that individuals with Cluster B PDs may be more likely to respond maladaptively to alternative negative mood states, such as anger and fear.

  12. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  13. Clinical relationship of myocardial sympathetic nervous activity to cardiovascular functions in chronic heart failure: assessment by myocardial scintigraphy with 123I-metaiodobenzylguanidine.

    PubMed

    Wada, Yukoh; Miura, Masaetsu; Fujiwara, Satomi; Mori, Shunpei; Seiji, Kazumasa; Kimura, Tokihisa

    2003-12-01

    The aim of this study was to clarify the relationship between cardiac sympathetic nervous activity (SNA) assessed by radioiodinated metaiodobenzylguanidine (123I-MIBG), an analogue of norepinephrine and cardiovascular functions in patients with chronic heart failure (CHF). Subjects were 17 patients with CHF. A dose of 111 MBq of 123I-MIBG was administered intravenously, and 5-minute anterior planar images were obtained 15 minutes (early image) and 3 hours (delayed image) after the injection. The heart/mediastinum (H/M) count ratio was defined to quantify cardiac 123I-MIBG uptake. The washout ratio (WR) of 123I-MIBG from the heart was calculated as follows: (early counts-delayed counts)/early counts x 100 (%). Echocardiography was performed on all patients within 1 week of 123I-MIBG scintigraphy to measure stroke volume index (SVI). Blood pressure and heart rate (HR) in the resting state were also recorded to calculate cardiovascular functions including cardiac output, pulse pressure (PP), and mean blood pressure. Significant linear correlations were found between the early H/M ratio of 123I-MIBG and SVI, and between the delayed H/M ratio of 123I-MIBG and SVI, respectively. WR of 123I-MIBG was correlated with HR, and was inversely correlated with SVI and with PP, respectively. It is likely that a decrease in SVI is associated with enhanced cardiac SNA in severe CHF. 123I-MIBG scintigraphy is effective in assessing the cardiac functional status and SNA in patients with CHF in vivo. Moreover, changes in PP and HR indicate well alteration in SNA. PMID:14690018

  14. Effects of krill oil on endothelial function and other cardiovascular risk factors in participants with type 2 diabetes, a randomized controlled trial

    PubMed Central

    Lobraico, Jessika M; DiLello, Lauren C; Butler, Amber D; Cordisco, Marie Elena; Petrini, Joann R; Ahmadi, Ramin

    2015-01-01

    Objective The purpose of this trial was to evaluate the effect of krill oil supplementation, a source of ω-3 fatty acids, on cardiovascular disease risk factors and blood glucose control among participants with type 2 diabetes. Research design and methods A randomized, double-blind controlled cross-over trial was employed. Outcomes assessed were: endothelial function, blood lipids, glucose, glycated hemoglobin, serum antioxidant level, C peptide, and calculated Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) scores. Participants were randomized to either krill oil or olive oil supplementation for 4 weeks, underwent a 2-week washout period, and then crossed to the other supplementation for 4 weeks. All participants were then offered an additional 17 weeks of krill supplementation. Testing occurred at 3 time points: baseline, after first supplementation, and after second supplementation. Testing also occurred after an optional 17 weeks of krill oil supplementation. Difference scores were calculated for each participant in both sequences (ie, differences in outcome measures in the first and second period of the sequence). The mean and SD of the scores in the 2 sequence groups were used to test for differences between treatment effects at a significance level of p<0.05. Results A total of 47 participants were included in the initial cross-over study. Participants who received krill oil for 4 weeks had an improvement in their endothelial function and a reduction in blood C peptide levels and HOMA scores as compared with the olive oil. A total of 34 participants completed the additional 17-week supplementation period. When compared with their respective baseline measures, these participants had a statistically significant improvement in endothelial function and blood high-density lipoprotein (HDL). Conclusions Krill oil may lead to moderate improvement of cardiovascular risks, specifically endothelial dysfunction and HDL in patients with type 2

  15. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  16. Attachment style predicts affect, cognitive appraisals, and social functioning in daily life.

    PubMed

    Sheinbaum, Tamara; Kwapil, Thomas R; Ballespí, Sergi; Mitjavila, Mercè; Chun, Charlotte A; Silvia, Paul J; Barrantes-Vidal, Neus

    2015-01-01

    The way in which attachment styles are expressed in the moment as individuals navigate their real-life settings has remained an area largely untapped by attachment research. The present study examined how adult attachment styles are expressed in daily life using experience sampling methodology (ESM) in a sample of 206 Spanish young adults. Participants were administered the Attachment Style Interview (ASI) and received personal digital assistants that signaled them randomly eight times per day for 1 week to complete questionnaires about their current experiences and social context. As hypothesized, participants' momentary affective states, cognitive appraisals, and social functioning varied in meaningful ways as a function of their attachment style. Individuals with an anxious attachment, as compared with securely attached individuals, endorsed experiences that were congruent with hyperactivating tendencies, such as higher negative affect, stress, and perceived social rejection. By contrast, individuals with an avoidant attachment, relative to individuals with a secure attachment, endorsed experiences that were consistent with deactivating tendencies, such as decreased positive states and a decreased desire to be with others when alone. Furthermore, the expression of attachment styles in social contexts was shown to be dependent upon the subjective appraisal of the closeness of social contacts, and not merely upon the presence of social interactions. The findings support the ecological validity of the ASI and the person-by-situation character of attachment theory. Moreover, they highlight the utility of ESM for investigating how the predictions derived from attachment theory play out in the natural flow of real life.

  17. Family Functioning and Child Behavioral Problems in Households Affected by HIV and AIDS in Kenya.

    PubMed

    Thurman, Tonya R; Kidman, Rachel; Nice, Johanna; Ikamari, Lawrence

    2015-08-01

    HIV places acute stressors on affected children and families; especially in resource limited contexts like sub-Saharan Africa. Despite their importance, the epidemic's potential consequences for family dynamics and children's psychological health are understudied. Using a population-based sample of 2,487 caregivers and 3,423 children aged 8-14 years from the Central Province of Kenya, analyses were conducted to examine whether parental illness and loss were associated with family functioning and children's externalizing behaviors. After controlling for demographics, a significant relationship between parental illness and externalizing behaviors was found among children of both genders. Orphan status was associated with behavioral problems among only girls. Regardless of gender, children experiencing both parental loss and illness fared the worst. Family functioning measured from the perspective of both caregivers and children also had an independent and important relationship with behavioral problems. Findings suggest that psychological and behavioral health needs may be elevated in households coping with serious illness and reiterate the importance of a family-centered approach for HIV-affected children.

  18. DHHC2 Affects Palmitoylation, Stability, and Functions of Tetraspanins CD9 and CD151

    PubMed Central

    Sharma, Chandan; Yang, Xiuwei H.

    2008-01-01

    Although palmitoylation markedly affects tetraspanin protein biochemistry and functions, relevant palmitoylating enzymes were not known. There are 23 mammalian “DHHC” (Asp-His-His-Cys) proteins, which presumably palmitoylate different sets of protein substrates. Among DHHC proteins tested, DHHC2 best stimulated palmitoylation of tetraspanins CD9 and CD151, whereas inactive DHHC2 (containing DH→AA or C→S mutations within the DHHC motif) failed to promote palmitoylation. Furthermore, DHHC2 associated with CD9 and CD151, but not other cell surface proteins, and DHHC2 knockdown diminished CD9 and CD151 palmitoylation. Knockdown of six other Golgi-resident DHHC proteins (DHHC3, -4, -8, -17, -18, and -21) had no effect on CD9 or CD151. DHHC2 selectively affected tetraspanin palmitoylation, but not the palmitoylations of integrin β4 subunit and bulk proteins visible in [3H]palmitate-labeled whole cell lysates. DHHC2-dependent palmitoylation also had multiple functional effects. First, it promoted physical associations between CD9 and CD151, and between α3 integrin and other proteins. Second, it protected CD151 and CD9 from lysosomal degradation. Third, the presence of DHHC2, but not other DHHC proteins, shifted cells away from a dispersed state and toward increased cell–cell contacts. PMID:18508921

  19. Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites.

    PubMed

    Dong, Chun-Hai; Tang, Wei-Ping; Liu, Jia-Yao

    2013-03-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G- and F-actin binding. The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A, R137/A) form another actin binding site that is important for F-actin binding. Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G-actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization. PMID:23190411

  20. Mammalian target of rapamycin signaling in diabetic cardiovascular disease.

    PubMed

    Chong, Zhao Zhong; Maiese, Kenneth

    2012-07-16

    Diabetes mellitus currently affects more than 170 million individuals worldwide and is expected to afflict another 200 million individuals in the next 30 years. Complications of diabetes as a result of oxidant stress affect multiple systems throughout the body, but involvement of the cardiovascular system may be one of the most severe in light of the impact upon cardiac and vascular function that can result in rapid morbidity and mortality for individuals. Given these concerns, the signaling pathways of the mammalian target of rapamycin (mTOR) offer exciting prospects for the development of novel therapies for the cardiovascular complications of diabetes. In the cardiovascular and metabolic systems, mTOR and its multi-protein complexes of TORC1 and TORC2 regulate insulin release and signaling, endothelial cell survival and growth, cardiomyocyte proliferation, resistance to β-cell injury, and cell longevity. Yet, mTOR can, at times, alter insulin signaling and lead to insulin resistance in the cardiovascular system during diabetes mellitus. It is therefore vital to understand the complex relationship mTOR and its downstream pathways hold during metabolic disease in order to develop novel strategies for the complications of diabetes mellitus in the cardiovascular system.

  1. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-01-01

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence. PMID:21170334

  2. 4-Quinolone drugs affect cell cycle progression and function of human lymphocytes in vitro.

    PubMed Central

    Forsgren, A; Schlossman, S F; Tedder, T F

    1987-01-01

    Most antibacterial agents do not affect human lymphocyte function, but a few are inhibitory. In contrast, a pronounced increase in the incorporation of [3H]thymidine in the presence of 4-quinolones was observed in these studies. The uptake of [3H]thymidine into DNA (trichloroacetic acid precipitable) was significantly increased in phytohemagglutinin-stimulated human lymphocytes when they were exposed to eight new 4-quinolone derivatives, ciprofloxacin, norfloxacin, ofloxacin, A-56619, A-56620, amifloxacin, enoxacin, and pefloxacin, at 1.6 to 6.25 micrograms/ml for 5 days. Four less antibacterially active 4-quinolones (nalidixic acid, cinoxacin, flumequine, and pipemidic acid) stimulated [3H]thymidine incorporation only at higher concentrations or not at all. Kinetic studies showed that incorporation of [3H]thymidine was not affected or slightly inhibited by ciprofloxacin 2 days after phytohemagglutinin stimulation but was increased on days 3 to 6. The total incorporation of [3H]thymidine from day 1 to day 6 after phytohemagglutinin stimulation was increased by 42 to 45% at 5 to 20 micrograms of ciprofloxacin per ml. Increased [3H]thymidine incorporation was also seen when human lymphocytes were stimulated with mitogens other than phytohemagglutinin. Ciprofloxacin added at the start of the culture had a more pronounced effect on [3H]thymidine incorporation than when added later. In spite of the apparent increase in DNA synthesis, lymphocyte growth was inhibited by 20 micrograms of ciprofloxacin per ml, and cell cycle analysis showed that ciprofloxacin inhibited progression through the cell cycle. In addition, immunoglobulin secretion by human lymphocytes stimulated by pokeweed mitogen for Epstein-Barr virus was inhibited by approximately 50% at 5 micrograms of ciprofloxacin per ml. These results suggest that the 4-quinolone drugs may also affect eucaryotic cell function in vitro, but additional studies are needed to establish an in vivo relevance. PMID:3606076

  3. Relationship of mercury to cognitive, affective and perceptual motor functioning in a normal sample in Hawaii

    SciTech Connect

    Sine, L.F.

    1983-01-01

    Although the effects of toxic levels of mercury have been well documented, the effects of subclinical levels of mercury on normal populations have generally not been studied. The purpose of this investigation was to assess the impact of mercury risk factors on cognition, affect, psychopathology, and known mercury-related symptoms in a normal sample in Hawaii exposed to subclinical although elevated levels of elemental mercury through inhalation associated with volcanic activity and of methylmercury mostly through ingestion of large ocean species fish. The following summarizes the findings and conclusions of the study: 1) a four week test-retest reliability using 41 of the subjects showed that the 41 measures used in the study exhibited an average correlation of .78. Using all 413 subjects, the average internal consistency measured by Cronbach's ..cap alpha.. was .82 for the 17 affect, psychopathology, and symptom measures; 2) nine mercury source variables were used to predict the amount of total mercury in hair. Interestingly, none of the source variables predicted hair total mercury; 3) the source variables in addition to hair total mercury and statistical control variables were used to predict the twenty-two functioning variables in the four domains cited above with a relative absence of relationships noted. This finding indicates that the normal population in Hawaii appears not to be at risk; and 4) one historical mercury source variable, reported fish intake when young, related to six functioning variables - the psychopathology measures of Somatization, Obsessive-Compulsive and Anxiety as well as the Sensory, Affect and Mental symptoms - with Beta weights in the .15 to .20 range. The implications of the findings were discussed and suggestions offered for future research especially with respect to specific high risk subgroups.

  4. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    PubMed Central

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  5. Realistic changes in seaweed biodiversity affect multiple ecosystem functions on a rocky shore.

    PubMed

    Bracken, Matthew E S; Williams, Susan L

    2013-09-01

    Given current threats to biodiversity, understanding the effects of diversity changes on the functions and services associated with intact ecosystems is of paramount importance. However, limited realism in most biodiversity studies makes it difficult to link the large and growing body of evidence for important functional consequences of biodiversity change to real-world losses of biodiversity. Here, we explored two methods of incorporating realism into biodiversity research: (1) the use of two-, five-, and eight-species assemblages that mimicked those that we observed in surveys of seaweed biodiversity patterns on a northern California (USA) rocky shore and the explicit comparison of those assemblages to random assemblages compiled from the same local species pool; and (2) the measurement of two fundamental ecosystem functions, nitrate uptake and photosynthesis, both of which contribute to growth of primary producers. Specifically, we measured nitrate uptake rates of seaweed assemblages as a function of initial nitrate concentrations and photosynthetic rates as a function of irradiance levels for both realistic and random assemblages of seaweeds. We only observed changes in ecosystem functioning along a richness gradient for realistic assemblages, and both maximum nitrate uptake rates (V(max)) and photosynthetic light use efficiency values (alpha(p) = P(max)/I(K)) were higher in realistic assemblages than in random assemblages. Furthermore, the parameter affected by changes in richness depended on the function being measured. Both V(max) and alpha(p) declined with increasing richness in nonrandom assemblages due to a combination of species identity effects (for V(max) and overyielding effects (for both V(max) and alpha(p)). In contrast, neither nitrate uptake efficiency values (alpha(N) = V(max)/K(s)), nor maximum photosynthetic rates (Pmax) changed along the gradient in seaweed species richness. Furthermore, overyielding was only evident in realistic assemblages

  6. Earthworm-Mycorrhiza Interactions Can Affect the Diversity, Structure and Functioning of Establishing Model Grassland Communities

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m−2). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  7. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules.

    PubMed

    Tikka, Saara; Monogioudi, Evanthia; Gotsopoulos, Athanasios; Soliymani, Rabah; Pezzini, Francesco; Scifo, Enzo; Uusi-Rauva, Kristiina; Tyynelä, Jaana; Baumann, Marc; Jalanko, Anu; Simonati, Alessandro; Lalowski, Maciej

    2016-03-01

    Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood

  8. Erectile dysfunction in the cardiovascular patient.

    PubMed

    Vlachopoulos, Charalambos; Jackson, Graham; Stefanadis, Christodoulos; Montorsi, Piero

    2013-07-01

    Erectile dysfunction is common in the patient with cardiovascular disease. It is an important component of the quality of life and it also confers an independent risk for future cardiovascular events. The usual 3-year time period between the onset of erectile dysfunction symptoms and a cardiovascular event offers an opportunity for risk mitigation. Thus, sexual function should be incorporated into cardiovascular disease risk assessment for all men. A comprehensive approach to cardiovascular risk reduction (comprising of both lifestyle changes and pharmacological treatment) improves overall vascular health, including sexual function. Proper sexual counselling improves the quality of life and increases adherence to medication. This review explores the critical connection between erectile dysfunction and cardiovascular disease and evaluates how this relationship may influence clinical practice. Algorithms for the management of patient with erectile dysfunction according to the risk for sexual activity and future cardiovascular events are proposed.

  9. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance.

  10. Aesthetic and Functional Rehabilitation of the Primary Dentition Affected by Amelogenesis Imperfecta

    PubMed Central

    Marquezin, Maria Carolina Salomé; Zancopé, Bruna Raquel; Pacheco, Larissa Ferreira; Gavião, Maria Beatriz Duarte; Pascon, Fernanda Miori

    2015-01-01

    The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child's psychosocial development. PMID:25705526

  11. Aesthetic and functional rehabilitation of the primary dentition affected by amelogenesis imperfecta.

    PubMed

    Marquezin, Maria Carolina Salomé; Zancopé, Bruna Raquel; Pacheco, Larissa Ferreira; Gavião, Maria Beatriz Duarte; Pascon, Fernanda Miori

    2015-01-01

    The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child's psychosocial development. PMID:25705526

  12. Prospective Memory Function in Late Adulthood: Affect at Encoding and Resource Allocation Costs

    PubMed Central

    Henry, Julie D.; Joeffry, Sebastian; Terrett, Gill; Ballhausen, Nicola; Kliegel, Matthias; Rendell, Peter G.

    2015-01-01

    Some studies have found that prospective memory (PM) cues which are emotionally valenced influence age effects in prospective remembering, but it remains unclear whether this effect reflects the operation of processes implemented at encoding or retrieval. In addition, none of the prior ageing studies of valence on PM function have examined potential costs of engaging in different valence conditions, or resource allocation trade-offs between the PM and the ongoing task. In the present study, younger, young-old and old-old adults completed a PM task in which the valence of the cues varied systematically (positive, negative or neutral) at encoding, but was kept constant (neutral) at retrieval. The results indicated that PM accuracy did not vary as a function of affect at encoding, and that this effect did not interact with age group. There was also no main or interaction effect of valence on PM reaction time in PM cue trials, indicating that valence costs across the three encoding conditions were equivalent. Old-old adults’ PM accuracy was reduced relative to both young-old and younger adults. Prospective remembering incurred dual-task costs for all three groups. Analyses of reaction time data suggested that for both young-old and old-old, these costs were greater, implying differential resource allocation cost trade-offs. However, when reaction time data were expressed as a proportional change that adjusted for the general slowing of the older adults, costs did not differ as a function of group. PMID:25893540

  13. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding

    PubMed Central

    Canault, Matthias; Ghalloussi, Dorsaf; Grosdidier, Charlotte; Guinier, Marie; Perret, Claire; Chelghoum, Nadjim; Germain, Marine; Raslova, Hana; Peiretti, Franck; Morange, Pierre E.; Saut, Noemie; Pillois, Xavier; Nurden, Alan T.; Cambien, François; Pierres, Anne; van den Berg, Timo K.; Kuijpers, Taco W.; Tregouet, David-Alexandre

    2014-01-01

    The nature of an inherited platelet disorder was investigated in three siblings affected by severe bleeding. Using whole-exome sequencing, we identified the culprit mutation (cG742T) in the RAS guanyl-releasing protein-2 (RASGRP2) gene coding for calcium- and DAG-regulated guanine exchange factor-1 (CalDAG-GEFI). Platelets from individuals carrying the mutation present a reduced ability to activate Rap1 and to perform proper αIIbβ3 integrin inside-out signaling. Expression of CalDAG-GEFI mutant in HEK293T cells abolished Rap1 activation upon stimulation. Nevertheless, the PKC- and ADP-dependent pathways allow residual platelet activation in the absence of functional CalDAG-GEFI. The mutation impairs the platelet’s ability to form thrombi under flow and spread normally as a consequence of reduced Rac1 GTP-binding. Functional deficiencies were confined to platelets and megakaryocytes with no leukocyte alteration. This contrasts with the phenotype seen in type III leukocyte adhesion deficiency caused by the absence of kindlin-3. Heterozygous did not suffer from bleeding and have normal platelet aggregation; however, their platelets mimicked homozygous ones by failing to undergo normal adhesion under flow and spreading. Rescue experiments on cultured patient megakaryocytes corrected the functional deficiency after transfection with wild-type RASGRP2. Remarkably, the presence of a single normal allele is sufficient to prevent bleeding, making CalDAG-GEFI a novel and potentially safe therapeutic target to prevent thrombosis. PMID:24958846

  14. Proliferation of Purple Sulphur Bacteria at the Sediment Surface Affects Intertidal Mat Diversity and Functionality

    PubMed Central

    Hubas, Cédric; Jesus, Bruno; Ruivo, Mickael; Meziane, Tarik; Thiney, Najet; Davoult, Dominique; Spilmont, Nicolas; Paterson, David M.; Jeanthon, Christian

    2013-01-01

    There is a relative absence of studies dealing with mats of purple sulphur bacteria in the intertidal zone. These bacteria display an array of metabolic pathways that allow them to disperse and develop under a wide variety of conditions, making these mats important in terms of ecosystem processes and functions. Mass blooms of purple sulphur bacteria develop during summer on sediments in the intertidal zone especially on macroalgal deposits. The microbial composition of different types of mats differentially affected by the development of purple sulphur bacteria was examined, at low tide, using a set of biochemical markers (fatty acids, pigments) and composition was assessed against their influence on ecosystem functions (sediment cohesiveness, CO2 fixation). We demonstrated that proliferation of purple sulphur bacteria has a major impact on intertidal mats diversity and fu