Science.gov

Sample records for affect catalytic activity

  1. How absorbed hydrogen affects the catalytic activity of transition metals.

    PubMed

    Aleksandrov, Hristiyan A; Kozlov, Sergey M; Schauermann, Swetlana; Vayssilov, Georgi N; Neyman, Konstantin M

    2014-12-01

    Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.

  2. Lethal Factor Active-Site Mutations Affect Catalytic Activity In Vitro

    PubMed Central

    Hammond, S. E.; Hanna, P. C.

    1998-01-01

    The lethal factor (LF) protein of Bacillus anthracis lethal toxin contains the thermolysin-like active-site and zinc-binding consensus motif HEXXH (K. R. Klimpel, N. Arora, and S. H. Leppla, Mol. Microbiol. 13:1093–1100, 1994). LF is hypothesized to act as a Zn2+ metalloprotease in the cytoplasm of macrophages, but no proteolytic activities have been previously shown on any target substrate. Here, synthetic peptides are hydrolyzed by LF in vitro. Mass spectroscopy and peptide sequencing of isolated cleavage products separated by reverse-phase high-pressure liquid chromatography indicate that LF seems to prefer proline-containing substrates. Substitution mutations within the consensus active-site residues completely abolish all in vitro catalytic functions, as does addition of 1,10-phenanthroline, EDTA, and certain amino acid hydroxamates, including the novel zinc metalloprotease inhibitor ZINCOV. In contrast, the protease inhibitors bestatin and lysine CMK, previously shown to block LF activity on macrophages, did not block LF activity in vitro. These data provide the first direct evidence that LF may act as an endopeptidase. PMID:9573135

  3. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal.

    PubMed

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence.

  4. Catalytic activities of Werner protein are affected by adduction with 4-hydroxy-2-nonenal

    PubMed Central

    Czerwińska, Jolanta; Poznański, Jarosław; Dębski, Janusz; Bukowy, Zuzanna; Bohr, Vilhelm A.; Tudek, Barbara; Speina, Elżbieta

    2014-01-01

    4-Hydroxy-2-nonenal (HNE) is a reactive α,β-unsaturated aldehyde generated during oxidative stress and subsequent peroxidation of polyunsaturated fatty acids. Here, Werner protein (WRN) was identified as a novel target for modification by HNE. Werner syndrome arises through mutations in the WRN gene that encodes the RecQ DNA helicase which is critical for maintaining genomic stability. This hereditary disease is associated with chromosomal instability, premature aging and cancer predisposition. WRN appears to participate in the cellular response to oxidative stress and cells devoid of WRN display elevated levels of oxidative DNA damage. We demonstrated that helicase/ATPase and exonuclease activities of HNE-modified WRN protein were inhibited both in vitro and in immunocomplexes purified from the cell extracts. Sites of HNE adduction in human WRN were identified at Lys577, Cys727, His1290, Cys1367, Lys1371 and Lys1389. We applied in silico modeling of the helicase and RQC domains of WRN protein with HNE adducted to Lys577 and Cys727 and provided a potential mechanism of the observed deregulation of the protein catalytic activities. In light of the obtained results, we postulate that HNE adduction to WRN is a post-translational modification, which may affect WRN conformational stability and function, contributing to features and diseases associated with premature senescence. PMID:25170083

  5. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver.

    PubMed

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J; Cook, Edwin; Das, Soma; Ratain, Mark J

    2014-10-15

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74-217% and 52%, 39-105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6-58%; 47%, 9-58%; and 52%, 24-75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs.

  6. A new understanding of how temperature affects the catalytic activity of enzymes.

    PubMed

    Daniel, Roy M; Danson, Michael J

    2010-10-01

    The two established thermal properties of enzymes are their activation energy and their thermal stability, but experimental data do not match the expectations of these two properties. The recently proposed Equilibrium Model (EM) provides a quantitative explanation of enzyme thermal behaviour under reaction conditions by introducing an inactive (but not denatured) intermediate in rapid equilibrium with the active form. It was formulated as a mathematical model, and fits the known experimental data. Importantly, the EM gives rise to a number of new insights into the molecular basis of the temperature control of enzymes and their environmental adaptation and evolution, it is consistent with active site properties, and it has fundamental implications for enzyme engineering and other areas of biotechnology.

  7. N-glycosylation does not affect the catalytic activity of ricin a chain but stimulates cytotoxicity by promoting its transport out of the endoplasmic reticulum.

    PubMed

    Yan, Qing; Li, Xiao-Ping; Tumer, Nilgun E

    2012-11-01

    Ricin A chain (RTA) depurinates the α-sarcin/ricin loop after it undergoes retrograde trafficking to the cytosol. The structural features of RTA involved in intracellular transport are not known. To explore this, we fused enhanced green fluorescent protein (EGFP) to precursor (preRTA-EGFP), containing a 35-residue leader, and mature RTA (matRTA-EGFP). Both were enzymatically active and toxic in Saccharomyces cerevisiae. PreRTA-EGFP was localized in the endoplasmic reticulum (ER) initially and was subsequently transported to the vacuole, whereas matRTA-EGFP remained in the cytosol, indicating that ER localization is a prerequisite for vacuole transport. When the two glycosylation sites in RTA were mutated, the mature form was fully active and toxic, suggesting that the mutations do not affect catalytic activity. However, nonglycosylated preRTA-EGFP had reduced toxicity, depurination and delayed vacuole transport, indicating that N-glycosylation affects transport of RTA out of the ER. Point mutations in the C-terminal hydrophobic region restricted RTA to the ER and eliminated toxicity and depurination, indicating that this sequence is critical for ER exit. These results demonstrate that N-glycosylation and the C-terminal hydrophobic region stimulate the toxicity of RTA by promoting ER export. The timing of depurination coincided with the timing of vacuole transport, suggesting that RTA may enter the cytosol during vacuole transport.

  8. Method to produce catalytically active nanocomposite coatings

    DOEpatents

    Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat

    2016-02-09

    A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.

  9. Heterogeneous catalytic degradation of phenolic substrates: catalysts activity.

    PubMed

    Liotta, L F; Gruttadauria, M; Di Carlo, G; Perrini, G; Librando, V

    2009-03-15

    This review article explored the catalytic degradation of phenol and some phenols derivates by means of advanced oxidation processes (AOPs). Among them, only the heterogeneous catalyzed processes based on catalytic wet peroxide oxidation, catalytic ozonation and catalytic wet oxidation were reviewed. Also selected recent examples about heterogeneous photocatalytic AOPs will be presented. In details, the present review contains: (i) data concerning catalytic wet peroxide oxidation of phenolic compounds over metal-exchanged zeolites, hydrotalcites, metal-exchanged clays and resins. (ii) Use of cobalt-based catalysts, hydrotalcite-like compounds, active carbons in the catalytic ozonation process. (iii) Activity of transition metal oxides, active carbons and supported noble metals catalysts in the catalytic wet oxidation of phenol and acetic acid. The most relevant results in terms of catalytic activity for each class of catalysts were reported.

  10. Factors affecting the catalytic oligomerization of methane via microwave heating

    NASA Astrophysics Data System (ADS)

    Conde, Luis Daniel

    Catalytic microwave heating has been used as a method for the oligomerization of methane to higher hydrocarbons. Many catalysts were tested in this reaction. Nickel powder, raney nickel, iron powder and activated carbon were the most active and efficient catalysts for the production of higher hydrocarbons. When helium was used as a diluent gas and the applied power was optimized, the selectivities were controlled to the most desired products. In general, the most abundant products for all the experiments were C2s. Iron powder was active only at high power (1130 W). At these conditions acetylene was avoided and ethylene and ethane were produced in the same proportion. Activated carbon catalysts with helium as diluent led to a selectivity towards benzene up to 33%. Some manganese oxides such as OMS-1, OMS-2 and MnO2 (dielectric constant, epsilon ≈ 104) were not active in these reactions. These data suggest that the dielectric constant is not the most important factor in the oligomerization of methane via microwave heating. Conversion and activities of these materials are not proportionally related to the surface area of the catalysts. Higher catalytic activity was observed for Raney nickel than for regular nickel powder. The maximum conversion obtained was 24% at 400 W and 10 min of irradiation time. For regular nickel powder that conversion can be achieved only after 700 W of power and more than 20 min of reaction. BET surface area, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Temperature-Programmed Desorption and Reduction analysis were performed to characterize the catalyst before and after reaction. Deactivation of Raney nickel by fouling and sintering was observed after 500 W and/or 15 min of reaction. The effect of microwave radiation frequency on activity and product distribution for methane oligomerization has been studied. Nickel, iron, and activated carbon catalysts were used in these studies. Experiments were done with pure methane

  11. EGFR kinase possesses a broad specificity for ErbB phosphorylation sites, and ligand increases catalytic-centre activity without affecting substrate binding affinity

    PubMed Central

    2005-01-01

    We previously found that EGF (epidermal growth factor) increases the EGFR (EGF receptor) kinase-binding affinity towards the major tyrosine phosphorylation sites in downstream adaptor proteins such as Gab1 (Grb2-associated binding protein 1) and Shc [Src homology 2 (SH2) domain and collagen containing protein], but not that towards EGFR autophosphorylation sites [Fan, Wong, Deb and Johnson (2004) J. Biol. Chem. 279, 38143–38150]. EGFR activation can also result in transphosphorylation of tyrosine resides in the C-terminal region of the related receptors ErbB2, ErbB3 and ErbB4 in heterodimers which are formed upon ligand stimulation. In the present study, we investigated the specificity of EGFR kinase by comparing the steady state kinetic parameters for peptides derived from all four ErbBs in the absence or presence of EGF. Our results demonstrated that (i) EGFR kinase can efficiently phosphorylate a broad range of diverse peptide sequences representing ErbB sites; (ii) certain ErbB2, ErbB3 and ErbB4 sites had higher specificity constants than any EGFR sequence and (iii) EGF stimulation consistently increases the kcat approx. 5-fold, but does not significantly alter the Km for any ErbB peptides. Furthermore, peptides containing lysine at position −2 or −3 N-terminal to the target tyrosine were found to be poor EGFR kinase substrates, and substitution of these lysines with glutamine decreased the Km and increased the kcat for these substrates. We conclude that EGFR kinase-mediated ErbB transphosphorylations are mostly controlled at the level of oligomerization, and not by a preference of the EGFR kinase for phosphorylation sites in any particular ErbB. The results also demonstrated that, unlike phosphorylation sites in select downstream targets, EGF does not regulate the recognition of phosphorylation sites in the C-terminal region of any of the ErbBs. PMID:16122376

  12. [Effect Of Polyelectrolytes on Catalytic Activity of Alcohol Dehydrogenase].

    PubMed

    Dubrovsky, A V; Musina, E V; Kim, A L; Tikhonenko, S A

    2016-01-01

    Fluorescent and optical spectroscopy were used to study the interaction of alcohol dehydrogenase (ADH) with negatively charged polystyrene sulfonate (PSS) and dextran sulfate (DS), as well as positively charged poly(diallyldimethylammonium) (PDADMA). As found, DS and PDADMA did not affect the structural and catalytic enzyme properties. In contrast, PSS slightly decreased the protein self-fluorescence over 1 h of incubation, which is associated with partial destruction of its quaternary (globular) structure. Investigation of the ADH activity with and without PSS showed its dependency on the incubation time and the PSS presence. Sodium chloride (2.0 M and 0.2 M) or ammonium sulfate (0.1 M) added to the reaction mixture did not completely protect the enzyme quaternary structure from the PSS action. However ammonium sulfate or 0.2 M sodium chloride stabilized the enzyme and partially inhibited the negative PSS effect.

  13. Catalytic activities of zeolite compounds for decomposing aqueous ozone.

    PubMed

    Kusuda, Ai; Kitayama, Mikito; Ohta, Yoshio

    2013-12-01

    The advanced oxidation process (AOP), chemical oxidation using aqueous ozone in the presence of appropriate catalysts to generate highly reactive oxygen species, offers an attractive option for removing poorly biodegradable pollutants. Using the commercial zeolite powders with various Si/Al ratios and crystal structures, their catalytic activities for decomposing aqueous ozone were evaluated by continuously flowing ozone to water containing the zeolite powders. The hydrophilic zeolites (low Si/Al ratio) with alkali cations in the crystal structures were found to possess high catalytic activity for decomposing aqueous ozone. The hydrophobic zeolite compounds (high Si/Al ratio) were found to absorb ozone very well, but to have no catalytic activity for decomposing aqueous ozone. Their catalytic activities were also evaluated by using the fixed bed column method. When alkali cations were removed by acid rinsing or substituted by alkali-earth cations, the catalytic activities was significantly deteriorated. These results suggest that the metal cations on the crystal surface of the hydrophilic zeolite would play a key role for catalytic activity for decomposing aqueous ozone.

  14. A spectroscopic and catalytic investigation of active phase-support interactions

    SciTech Connect

    Haller, G.L.

    1991-01-01

    Active catalytic phases (metal, mixed metals, oxide or mixed oxides) interacting with oxide support on which the active phase is dispersed can affect the percentage exposed, the morphology of supported particles, the degree of reducibility of cations, etc., in a variety of ways. Our objective is to characterize the physical chemistry of the active phase-oxide support by spectroscopic methods and to correlate this structure with catalytic function. The three systems discussed in this progress report are Ag/TiO{sub 2}, Ru-Cu/SiO{sub 2} and SiO{sub 2}/Al{sub 2}O{sub 3}. 24 refs., 3 figs., 2 tabs.

  15. Catalytic Activation of Nitrogen Dioxide for Selective Synthesis of Nitroorganics

    DTIC Science & Technology

    2015-01-15

    AFRL-OSR-VA-TR-2015-0035 Catalytic activation of nitrogen dioxide for selective synthesis SETH BROWN UNIVERSITY OF NOTRE DAME DU LAC Final Report 01...8-98) v Prescribed by ANSI Std. Z39.18 12-01-2015 Final 15 Aug 2011 - 14 Aug 2014 Catalytic activation of nitrogen dioxide for selective synthesis...reductive elimination of the nitroarene has not. Nitrogen dioxide can be used as a source of the nitro group in reactions with arylboronic acids or their

  16. Catalytically active nanomaterials: a promising candidate for artificial enzymes.

    PubMed

    Lin, Youhui; Ren, Jinsong; Qu, Xiaogang

    2014-04-15

    Natural enzymes, exquisite biocatalysts mediating every biological process in living organisms, are able to accelerate the rate of chemical reactions up to 10(19) times for specific substrates and reactions. However, the practical application of enzymes is often hampered by their intrinsic drawbacks, such as low operational stability, sensitivity of catalytic activity to environmental conditions, and high costs in preparation and purification. Therefore, the discovery and development of artificial enzymes is highly desired. Recently, the merging of nanotechnology with biology has ignited extensive research efforts for designing functional nanomaterials that exhibit various properties intrinsic to enzymes. As a promising candidate for artificial enzymes, catalytically active nanomaterials (nanozymes) show several advantages over natural enzymes, such as controlled synthesis in low cost, tunability in catalytic activities, as well as high stability against stringent conditions. In this Account, we focus on our recent progress in exploring and constructing such nanoparticulate artificial enzymes, including graphene oxide, graphene-hemin nanocomposites, carbon nanotubes, carbon nanodots, mesoporous silica-encapsulated gold nanoparticles, gold nanoclusters, and nanoceria. According to their structural characteristics, these enzyme mimics are categorized into three classes: carbon-, metal-, and metal-oxide-based nanomaterials. We aim to highlight the important role of catalytic nanomaterials in the fields of biomimetics. First, we provide a practical introduction to the identification of these nanozymes, the source of the enzyme-like activities, and the enhancement of activities via rational design and engineering. Then we briefly describe new or enhanced applications of certain nanozymes in biomedical diagnosis, environmental monitoring, and therapeutics. For instance, we have successfully used these biomimetic catalysts as colorimetric probes for the detection of

  17. Structural Basis for the Catalytic Activity of Human SER/THR Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E.

    2004-01-01

    Serinekhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth. Here we report the 1.6 Angstrom resolution crystal structure of PP5 catalytic domain with metal and phosphate ions in the active site. The structure reveals a mechanism for PPS-mediated catalysis that requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1),-M(sub 2)-His(sup 427)-W(sup 2)-His(sup 304)-Asp(sup 274) catalytic motif, and provides a structural basis for the exceptional catalytic proficiency of protein phosphatases placing them among the most powerful catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of PP5 should aid development of specific inhibitors.

  18. Catalytically Active Regenerative Sorbent beds (CARS) for airborne contaminants.

    PubMed

    Akse, J R; Thompson, J O

    1995-01-01

    The Pd on Al2O3 catalyst used in the projected Space Station's Trace Contaminant Control System (TCCS) catalytic oxidizer can be poisoned by volatile halogen-, sulfur-, and nitrogen-containing organic species. Catalytically Active Regenerable Sorbents (CARS) eliminate these problematic contaminants and the large carbon bed used for their elimination in a three-step process. Contaminants are conventionally adsorbed by the CARS bed. After saturation, the bed is connected to an off-line recirculation loop, filled with hydrogen, and then heated. At temperature, contaminants are hydrogenated on catalytic sites within the bed, forming simple alkanes and acid gases that are efficiently converted to innocuous salts in an in-line alkaline bed. The CARS bed is regenerated by this cycle and alkane gases are released to be safely oxidized in the catalytic oxidizer. A challenge mixture containing Freon-113, thiophene, trichloroethylene, Halon-1301, and dichloromethane at 1670, 75, 81, 68, and 83 mg/m3 was successfully treated using this technology, demonstrating the CARS feasibility.

  19. Treatment of activated carbon to enhance catalytic activity for reduction of nitric oxide with ammonia

    SciTech Connect

    Ku, B.J.; Rhee, H.K. . Dept. of Chemical Engineering); Lee, J.K.; Park, D. )

    1994-11-01

    Catalytic activity of activated carbon treated with various techniques was examined in a fixed bed reactor for the reduction of nitric oxide with ammonia at 150 C. Activated carbon derived from coconut shell impregnated with an aqueous solution of ammonium sulfate, further treated with sulfuric acid, dried at 120 C, and then heated in an inert gas stream at 400 C, showed the highest catalytic activity within the range of experimental conditions. The enhancement of catalytic activity of modified activated carbon could be attributed to the increase in the amount of oxygen function groups which increased the adsorption site for ammonia. Catalytic activity of activated carbons depended on the surface area and the oxygen content as well.

  20. The catalytic and photocatalytic activity of coal fly ashes

    NASA Astrophysics Data System (ADS)

    Dlugi, Ralph; Güsten, Hans

    Great differences in the catalytic and photocatalytic activity of two samples of fly ash from two different coal-fired power plants have been demonstrated to exist for two reactions of environmental significance, namely, the heterogeneous SO 2 oxidation in a smog chamber and the photochemical degradation of two polynuclear aromatic hydrocarbons adsorbed onto the fly ashes. At a relative humidity (r.h.) of 80%, the reaction rate for the heterogeneous SO 2 oxidation on an acidic fly ash (pH 5.65) is ten times higher than for the oxidation on a fly ash of pH 9.3. Compared to silica gel, the 'acidic' fly ash gives rise to a faster photocatalytic degradation of anthracene and phenanthrene, while the same aromatic hydrocarbons are highly resistant to photodegradation when adsorbed on the fly ash of pH 9.3. Possible explanations and environmental consequences of the differing catalytic activity of fly ashes are discussed.

  1. Computationally designed variants of Escherichia coli chorismate mutase show altered catalytic activity.

    PubMed

    Lassila, Jonathan Kyle; Keeffe, Jennifer R; Oelschlaeger, Peter; Mayo, Stephen L

    2005-04-01

    Computational protein design methods were used to predict five variants of monofunctional Escherichia coli chorismate mutase expected to maintain catalytic activity. The variants were tested experimentally and three active site mutants exhibited catalytic activity similar to or greater than the wild-type enzyme. One mutant, Ala32Ser, showed increased catalytic efficiency.

  2. Activity of catalytic silver nanoparticles modulated by capping agent hydrophobicity.

    PubMed

    Janani, Seralathan; Stevenson, Priscilla; Veerappan, Anbazhagan

    2014-05-01

    In this paper, a facile in situ method is reported for the preparation of catalytic silver nanoparticles (AgNPs) using N-acyl tyramine (NATA) with variable hydrophobic acyl length. Scanning electron microscopic analysis shows that NATA exists initially as larger aggregates in alkaline aqueous solution. The addition of AgNO3 dissociates these larger aggregate and subsequently promotes the formation of self-assembled NATA and AgNPs. Characterization of AgNPs using UV-vis spectroscopy, scanning electron microscope and transmission electron microscope revealed that the hydrophobic acyl chain length of NATA does not influence the particle size, shape and morphology. All NATA-AgNPs yielded relatively identical values in full width at half-maximum (FWHM) analysis, indicating that the AgNPs prepared with NATA are relatively polydispersed at all tested acyl chain lengths. These nanoparticles are able to efficiently catalyze the reduction of 4-nitro phenol to 4-amino phenol, 2-nitro aniline to 1,2-diamino benzene, 2,4,6-trinitro phenol to 2,4,6-triamino phenol by NaBH4 in an aqueous environment. The reduction reaction rate is determined to be pseudo-first order and the apparent rate constant is linearly dependent on the hydrophobic acyl chain length of the NATA. All reaction kinetics presented an induction period, which is dependent on the N-acyl chain length, indicating that the hydrophobic effects play a critical role in bringing the substrate to the metal nanoparticle surface to induce the catalytic reaction. In this study, however, the five catalytic systems have similar size and polydispersity, differing only in terms of capping agent hydrophobicity, and shows different catalytic activity with respect to the alkyl chain length of the capping agent. As discussed, the ability to modulate the metal nanoparticles catalytic property, by modifying the capping agent hydrophobicity represents a promising future for developing an efficient nanocatalyst without altering the size

  3. Study of Single Catalytic Events at Copper-in-Charcoal: Localization of Click Activity Through Subdiffraction Observation of Single Catalytic Events.

    PubMed

    Decan, Matthew R; Scaiano, Juan C

    2015-10-15

    Single molecule fluorescence microscopy reveals that copper-in-charcoal--a high performance click catalyst- has remarkably few catalytic sites, with 90% of the charcoal particles being inactive, and for the catalytic ones the active sites represent a minute fraction (∼0.003%) of the surface. The intermittent nature of the catalytic events enables subdiffraction resolution and mapping of the catalytic sites.

  4. Bacterial lipopolysaccharide suppresses the production of catalytically active lysosomal acid hydrolases in human macrophages

    PubMed Central

    1986-01-01

    Sub-microgram quantities of bacterial lipopolysaccharide (LPS) have been found to substantially reduce the intracellular catalytic activities of three representative lysosomal enzymes (namely, acid phosphatase, hexosaminidase, and beta-glucuronidase) in human monocyte- derived macrophages. This response was not associated with a concurrent increase in enzyme catalytic activity in the culture supernatant, and hence, could not be explained by mobilization of preformed material. By conducting experiments in the presence and absence of indomethacin, a cyclooxygenase inhibitor, the reduction in lysosomal enzyme catalytic activities was shown not to be dependent on the ability of LPS to induce prostaglandin E2 production. The response was not found to be the result of a more generalized LPS-dependent reduction in the ability of the cells to synthesize protein, since the presence of LPS in macrophage cultures did not appreciably affect the amount of [35S]methionine incorporated into total cellular proteins. A kinetic analysis of the effect of LPS on the down-regulation of enzyme catalytic activities indicated that this was an early response of the cells to LPS exposure. An investigation of the effects of blockade of enzyme catabolism (using the lysosomotropic weak-base, methylamine) indicated that the reduction of catalytic enzyme activities in response to LPS was probably due to a decreased rate of production of active product, rather than an enhanced rate of enzyme catabolism. This suggestion was confirmed by experiments in which the synthesis of pro- hexosaminidase (measured by biosynthetic labeling with [35S]methionine and specific immunoprecipitation of labeled pro-hexosaminidase) was found to be reduced by 42% after a 24-h exposure to LPS (although the synthesis of complement component C3 was stimulated by a factor of 4.5). It is suggested that the ability of LPS to regulate the functional expression of protein products contributes to changes in the overall

  5. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant.

    PubMed

    Hamasy, A; Wang, Q; Blomberg, K E M; Mohammad, D K; Yu, L; Vihinen, M; Berglöf, A; Smith, C I E

    2017-01-01

    Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance.

  6. Substitution scanning identifies a novel, catalytically active ibrutinib-resistant BTK cysteine 481 to threonine (C481T) variant

    PubMed Central

    Hamasy, A; Wang, Q; Blomberg, K E M; Mohammad, D K; Yu, L; Vihinen, M; Berglöf, A; Smith, C I E

    2017-01-01

    Irreversible Bruton tyrosine kinase (BTK) inhibitors, ibrutinib and acalabrutinib have demonstrated remarkable clinical responses in multiple B-cell malignancies. Acquired resistance has been identified in a sub-population of patients in which mutations affecting BTK predominantly substitute cysteine 481 in the kinase domain for catalytically active serine, thereby ablating covalent binding of inhibitors. Activating substitutions in the BTK substrate phospholipase Cγ2 (PLCγ2) instead confers resistance independent of BTK. Herein, we generated all six possible amino acid substitutions due to single nucleotide alterations for the cysteine 481 codon, in addition to threonine, requiring two nucleotide substitutions, and performed functional analysis. Replacement by arginine, phenylalanine, tryptophan or tyrosine completely inactivated the catalytic activity, whereas substitution with glycine caused severe impairment. BTK with threonine replacement was catalytically active, similar to substitution with serine. We identify three potential ibrutinib resistance scenarios for cysteine 481 replacement: (1) Serine, being catalytically active and therefore predominating among patients. (2) Threonine, also being catalytically active, but predicted to be scarce, because two nucleotide changes are needed. (3) As BTK variants replaced with other residues are catalytically inactive, they presumably need compensatory mutations, therefore being very scarce. Glycine and tryptophan variants were not yet reported but likely also provide resistance. PMID:27282255

  7. Size Effects in the Catalytic Activity of Unsupported Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Weber, Alfred P.; Seipenbusch, Martin; Kasper, Gerhard

    2003-08-01

    The influence of the size of nanoparticles on their catalytic activity was investigated for two systems on unsupported, i.e. gasborne nanoparticles. For the oxidation of hydrogen on Pt nanoparticle agglomerates, transport processes had to be taken into account to extract the real nanoparticle size effects. The results indicate an optimum particle size for the catalytic activity below 5nm which points clearly toward a real volume effect. In the case of the methanation reaction on gasborne Ni nanoparticles, no transport limitations were observed and the product concentration was directly proportional to the activity of the primary particles. We found an activity maximum for particles of about 19nm in diameter. This size is too large to be attributed to a real nanoparticle size effect induced by the electronic band structure. Therefore, we concluded that the particle size influences the adsorption behavior of the carbon monoxide molecules. In fact, it is known that intermediate adsorption enthalpies may favor dissociation processes, which is an essential step for the reaction, as manifested in the so called volcano-shaped curve. Then, in addition to the material dependence of the adsorption, we would also encounter a direct size dependence in the case of methanation on gasborne Ni nanoparticles.

  8. Catalytically active single-atom niobium in graphitic layers

    NASA Astrophysics Data System (ADS)

    Zhang, Xuefeng; Guo, Junjie; Guan, Pengfei; Liu, Chunjing; Huang, Hao; Xue, Fanghong; Dong, Xinglong; Pennycook, Stephen J.; Chisholm, Matthew F.

    2013-05-01

    Carbides of groups IV through VI (Ti, V and Cr groups) have long been proposed as substitutes for noble metal-based electrocatalysts in polymer electrolyte fuel cells. However, their catalytic activity has been extremely limited because of the low density and stability of catalytically active sites. Here we report the excellent performance of a niobium-carbon structure for catalysing the cathodic oxygen reduction reaction. A large number of single niobium atoms and ultra small clusters trapped in graphitic layers are directly identified using state-of-the-art aberration-corrected scanning transmission electron microscopy. This structure not only enhances the overall conductivity for accelerating the exchange of ions and electrons, but it suppresses the chemical/thermal coarsening of the active particles. Experimental results coupled with theory calculations reveal that the single niobium atoms incorporated within the graphitic layers produce a redistribution of d-band electrons and become surprisingly active for O2 adsorption and dissociation, and also exhibit high stability.

  9. Catalytically and biologically active silver nanoparticles synthesized using essential oil

    NASA Astrophysics Data System (ADS)

    Vilas, Vidya; Philip, Daizy; Mathew, Joseph

    2014-11-01

    There are numerous reports on phytosynthesis of silver nanoparticles and various phytochemicals are involved in the reduction and stabilization. Pure explicit phytosynthetic protocol for catalytically and biologically active silver nanoparticles is of importance as it is an environmentally benign green method. This paper reports the use of essential oil of Myristica fragrans enriched in terpenes and phenyl propenes in the reduction and stabilization. FTIR spectra of the essential oil and the synthesized biogenic silver nanoparticles are in accordance with the GC-MS spectral analysis reports. Nanosilver is initially characterized by an intense SPR band around 420 nm, followed by XRD and TEM analysis revealing the formation of 12-26 nm sized, highly pure, crystalline silver nanoparticles. Excellent catalytic and bioactive potential of the silver nanoparticles is due to the surface modification. The chemocatalytic potential of nanosilver is exhibited by the rapid reduction of the organic pollutant, para nitro phenol and by the degradation of the thiazine dye, methylene blue. Significant antibacterial activity of the silver colloid against Gram positive, Staphylococcus aureus (inhibition zone - 12 mm) and Gram negative, Escherichia coli (inhibition zone - 14 mm) is demonstrated by Agar-well diffusion method. Strong antioxidant activity of the biogenic silver nanoparticles is depicted through NO scavenging, hydrogen peroxide scavenging, reducing power, DPPH and total antioxidant activity assays.

  10. Facile route to hierarchical silver microstructures with high catalytic activity for the reduction of p-nitrophenol

    SciTech Connect

    Gu, Sasa; Wang, Wei Tan, Fatang; Gu, Jian; Qiao, Xueliang; Chen, Jianguo

    2014-01-01

    Graphical abstract: - Highlights: • A facile route was developed to prepare hierarchical silver microstructures. • The shape and size of secondary units can be tailed by varying reaction conditions. • Hierarchical silver microstructures have excellent catalytic activity. • The morphology and crystallinity of silver particles affect the catalytic activity. - Abstract: A facile, cost-effective and environmentally friendly route was developed to synthesize hierarchical silver microstructures consisting of different shaped secondary units through reducing concentrated silver nitrate with ascorbic acid in the absence of any surfactant. The as-obtained samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The investigation on the morphology evolution revealed that the molar ratio of ascorbic acid to silver nitrate was critical to control the shape of secondary structures. The length of plate-like secondary structures which composed hierarchical silver particles could be controlled by changing the reactant concentrations, and it had a key relationship with the catalytic activity for the reduction of p-nitrophenol by NaBH{sub 4}. The catalytic activity of these surfactant-free silver microstructures was about ten times higher than that of silver nanoparticles, and even comparable to that of gold nanoplates, which indicates that the as-obtained silver microstructures are very promising candidates for the catalytic reduction of p-nitrophenol due to the simple synthesis route and high catalytic activity.

  11. Catalytic Intramolecular Ketone Alkylation with Olefins by Dual Activation.

    PubMed

    Lim, Hee Nam; Dong, Guangbin

    2015-12-07

    Two complementary methods for catalytic intramolecular ketone alkylation reactions with unactivated olefins, resulting in Conia-ene-type reactions, are reported. The transformations are enabled by dual activation of both the ketone and the olefin and are atom-economical as stoichiometric oxidants or reductants are not required. Assisted by Kool's aniline catalyst, the reaction conditions can be both pH- and redox-neutral. A broad range of functional groups are thus tolerated. Whereas the rhodium catalysts are effective for the formation of five-membered rings, a ruthenium-based system that affords the six-membered ring products was also developed.

  12. Ultra-high electrochemical catalytic activity of MXenes.

    PubMed

    Pan, Hui

    2016-09-08

    Cheap and abundant electrocatalysts for hydrogen evolution reactions (HER) have been widely pursued for their practical application in hydrogen-energy technologies. In this work, I present systematical study of the hydrogen evolution reactions on MXenes (Mo2X and W2X, X = C and N) based on density-functional-theory calculations. I find that their HER performances strongly depend on the composition, hydrogen adsorption configurations, and surface functionalization. I show that W2C monolayer has the best HER activity with near-zero overpotential at high hydrogen density among all of considered pure MXenes, and hydrogenation can efficiently enhance its catalytic performance in a wide range of hydrogen density further, while oxidization makes its activity reduced significantly. I further show that near-zero overpotential for HER on Mo2X monolayers can be achieved by oxygen functionalization. My calculations predict that surface treatment, such as hydrogenation and oxidization, is critical to enhance the catalytic performance of MXenes. I expect that MXenes with HER activity comparable to Pt in a wide range of hydrogen density can be realized by tuning composition and functionalizing, and promotes their applications into hydrogen-energy technologies.

  13. Ultra-high electrochemical catalytic activity of MXenes

    PubMed Central

    Pan, Hui

    2016-01-01

    Cheap and abundant electrocatalysts for hydrogen evolution reactions (HER) have been widely pursued for their practical application in hydrogen-energy technologies. In this work, I present systematical study of the hydrogen evolution reactions on MXenes (Mo2X and W2X, X = C and N) based on density-functional-theory calculations. I find that their HER performances strongly depend on the composition, hydrogen adsorption configurations, and surface functionalization. I show that W2C monolayer has the best HER activity with near-zero overpotential at high hydrogen density among all of considered pure MXenes, and hydrogenation can efficiently enhance its catalytic performance in a wide range of hydrogen density further, while oxidization makes its activity reduced significantly. I further show that near-zero overpotential for HER on Mo2X monolayers can be achieved by oxygen functionalization. My calculations predict that surface treatment, such as hydrogenation and oxidization, is critical to enhance the catalytic performance of MXenes. I expect that MXenes with HER activity comparable to Pt in a wide range of hydrogen density can be realized by tuning composition and functionalizing, and promotes their applications into hydrogen-energy technologies. PMID:27604848

  14. Resonant active sites in catalytic ammonia synthesis: A structural model

    NASA Astrophysics Data System (ADS)

    Cholach, Alexander R.; Bryliakova, Anna A.; Matveev, Andrey V.; Bulgakov, Nikolai N.

    2016-03-01

    Adsorption sites Mn consisted of n adjacent atoms M, each bound to the adsorbed species, are considered within a realistic model. The sum of bonds Σ lost by atoms in a site in comparison with the bulk atoms was used for evaluation of the local surface imperfection, while the reaction enthalpy at that site was used as a measure of activity. The comparative study of Mn sites (n = 1-5) at basal planes of Pt, Rh, Ir, Fe, Re and Ru with respect to heat of N2 dissociative adsorption QN and heat of Nad + Had → NHad reaction QNH was performed using semi-empirical calculations. Linear QN(Σ) increase and QNH(Σ) decrease allowed to specify the resonant Σ for each surface in catalytic ammonia synthesis at equilibrium Nad coverage. Optimal Σ are realizable for Ru2, Re2 and Ir4 only, whereas other centers meet steric inhibition or unreal crystal structure. Relative activity of the most active sites in proportion 5.0 × 10- 5: 4.5 × 10- 3: 1: 2.5: 3.0: 1080: 2270 for a sequence of Pt4, Rh4, Fe4(fcc), Ir4, Fe2-5(bcc), Ru2, Re2, respectively, is in agreement with relevant experimental data. Similar approach can be applied to other adsorption or catalytic processes exhibiting structure sensitivity.

  15. Catalytic activation of carbon-carbon bonds in cyclopentanones.

    PubMed

    Xia, Ying; Lu, Gang; Liu, Peng; Dong, Guangbin

    2016-11-24

    In the chemical industry, molecules of interest are based primarily on carbon skeletons. When synthesizing such molecules, the activation of carbon-carbon single bonds (C-C bonds) in simple substrates is strategically important: it offers a way of disconnecting such inert bonds, forming more active linkages (for example, between carbon and a transition metal) and eventually producing more versatile scaffolds. The challenge in achieving such activation is the kinetic inertness of C-C bonds and the relative weakness of newly formed carbon-metal bonds. The most common tactic starts with a three- or four-membered carbon-ring system, in which strain release provides a crucial thermodynamic driving force. However, broadly useful methods that are based on catalytic activation of unstrained C-C bonds have proven elusive, because the cleavage process is much less energetically favourable. Here we report a general approach to the catalytic activation of C-C bonds in simple cyclopentanones and some cyclohexanones. The key to our success is the combination of a rhodium pre-catalyst, an N-heterocyclic carbene ligand and an amino-pyridine co-catalyst. When an aryl group is present in the C3 position of cyclopentanone, the less strained C-C bond can be activated; this is followed by activation of a carbon-hydrogen bond in the aryl group, leading to efficient synthesis of functionalized α-tetralones-a common structural motif and versatile building block in organic synthesis. Furthermore, this method can substantially enhance the efficiency of the enantioselective synthesis of some natural products of terpenoids. Density functional theory calculations reveal a mechanism involving an intriguing rhodium-bridged bicyclic intermediate.

  16. Comprehensive Characterization of AMP-Activated Protein Kinase Catalytic Domain by Top-Down Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2016-02-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ). C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ had noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems.

  17. Comprehensive Characterization of AMP-activated Protein Kinase Catalytic Domain by Top-down Mass Spectrometry

    PubMed Central

    Yu, Deyang; Peng, Ying; Ayaz-Guner, Serife; Gregorich, Zachery R.; Ge, Ying

    2015-01-01

    AMP-activated protein kinase (AMPK) is a serine/threonine protein kinase that is essential in regulating energy metabolism in all eukaryotic cells. It is a heterotrimeric protein complex composed of a catalytic subunit (α) and two regulatory subunits (β and γ. C-terminal truncation of AMPKα at residue 312 yielded a protein that is active upon phosphorylation of Thr172 in the absence of β and γ subunits, which is refered to as the AMPK catalytic domain and commonly used to substitute for the AMPK heterotrimeric complex in in vitro kinase assays. However, a comprehensive characterization of the AMPK catalytic domain is lacking. Herein, we expressed a His-tagged human AMPK catalytic domin (denoted as AMPKΔ) in E. coli, comprehensively characterized AMPKΔ in its basal state and after in vitro phosphorylation using top-down mass spectrometry (MS), and assessed how phosphorylation of AMPKΔ affects its activity. Unexpectedly, we found that bacterially-expressed AMPKΔ was basally phosphorylated and localized the phosphorylation site to the His-tag. We found that AMPKΔ has noticeable basal activity and was capable of phosphorylating itself and its substrates without activating phosphorylation at Thr172. Moreover, our data suggested that Thr172 is the only site phosphorylated by its upstream kinase, liver kinase B1, and that this phosphorylation dramatically increases the kinase activity of AMPKΔ. Importantly, we demonstrated that top-down MS in conjunction with in vitro phosphorylation assay is a powerful approach for monitoring phosphorylation reaction and determining sequential order of phosphorylation events in kinase-substrate systems. PMID:26489410

  18. Chaperones are necessary for the expression of catalytically active potato apyrases in prokaryotic cells.

    PubMed

    Porowińska, Dorota; Czarnecka, Joanna; Komoszyński, Michał

    2014-07-01

    NTPDases (nucleoside triphosphate diphosphohydrolases) (also called in plants apyrases) hydrolyze nucleoside 5'-tri- and/or diphosphate bonds producing nucleosides di or monophosphate and inorganic phosphate. For years, studies have been carried out to use both plant and animal enzymes for medicine. Therefore, there is a need to develop an efficient method for the quick production of large amounts of homogeneous proteins with high catalytic activity. Expression of proteins in prokaryotic cells is the most common way for the protein production. The aim of our study was to develop a method of expression of potato apyrase (StAPY4, 5, and 6) genes in bacterial cells under conditions that allowed the production of catalytically active form of these enzymes. Apyrase 4 and 6 were overexpressed in BL21-CodonPlus (DE3) bacteria strain but they were accumulated in inclusion bodies, regardless of the culture conditions and induction method. Co-expression of potato apyrases with molecular chaperones allowed the expression of catalytically active apyrase 5. However, its high nucleotidase activity could be toxic for bacteria and is therefore synthesized in small amounts in cells. Our studies show that each protein requires other conditions for maturation and even small differences in amino acid sequence can essentially affect protein folding regardless of presence of chaperones.

  19. [Mechanism of catalytic ozonation for the degradation of paracetamol by activated carbon].

    PubMed

    Wang, Jia-Yu; Dai, Qi-Zhou; Yu, Jie; Yan, Yi-Zhou; Chen, Jian-Meng

    2013-04-01

    The degradation of paracetamol (APAP) in aqueous solution was studied with ozonation integrated with activated carbon (AC). The synergistic effect of ozonation/AC process was explored by comparing the degradation efficiency of APAP in three processes (ozonation alone, activated carbon alone and ozonation integrated with activated carbon). The operational parameters that affected the reaction rate were carefully optimized. Based on the intermediates detected, the possible pathway for catalytic degradation was discussed and the reaction mechanism was also investigated. The results showed that the TOC removal reached 55.11% at 60 min in the AC/O3 system, and was significantly better than the sum of ozonation alone (20.22%) and activated carbon alone (27.39%), showing the great synergistic effect. And the BOD5/COD ratio increased from 0.086 (before reaction) to 0.543 (after reaction), indicating that the biodegradability was also greatly improved. The effects of the initial concentration of APAP, pH value, ozone dosage and AC dosage on the variation of reaction rate were carefully discussed. The catalytic reaction mechanism was different at different pH values: the organic pollutions were removed by adsorption and direct ozone oxidation at acidic pH, and mainly by catalytic ozonation at alkaline pH.

  20. Vitamin K epoxide reductase: homology, active site and catalytic mechanism.

    PubMed

    Goodstadt, Leo; Ponting, Chris P

    2004-06-01

    Vitamin K epoxide reductase (VKOR) recycles reduced vitamin K, which is used subsequently as a co-factor in the gamma-carboxylation of glutamic acid residues in blood coagulation enzymes. VKORC1, a subunit of the VKOR complex, has recently been shown to possess this activity. Here, we show that VKORC1 is a member of a large family of predicted enzymes that are present in vertebrates, Drosophila, plants, bacteria and archaea. Four cysteine residues and one residue, which is either serine or threonine, are identified as likely active-site residues. In some plant and bacterial homologues the VKORC1 homologous domain is fused with domains of the thioredoxin family of oxidoreductases. These might reduce disulfide bonds of VKORC1-like enzymes as a prerequisite for their catalytic activities.

  1. Catalytic Mesoporous Janus Nanomotors for Active Cargo Delivery

    PubMed Central

    2015-01-01

    We report on the synergy between catalytic propulsion and mesoporous silica nanoparticles (MSNPs) for the design of Janus nanomotors as active cargo delivery systems with sizes <100 nm (40, 65, and 90 nm). The Janus asymmetry of the nanomotors is given by electron beam (e-beam) deposition of a very thin platinum (2 nm) layer on MSNPs. The chemically powered Janus nanomotors present active diffusion at low H2O2 fuel concentration (i.e., <3 wt %). Their apparent diffusion coefficient is enhanced up to 100% compared to their Brownian motion. Due to their mesoporous architecture and small dimensions, they can load cargo molecules in large quantity and serve as active nanocarriers for directed cargo delivery on a chip. PMID:25844893

  2. The photo-catalytic activities of MP (M = Ba, Ca, Cu, Sr, Ag; P = PO43-, HPO42-) microparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Shi, Yuanji; Zhao, Zongshan; Song, Weijie; Cheng, Yang

    2014-02-01

    For the good performance of apatite-based materials in the removal of dyes and their environment-friendly advantage, five kinds of apatite microparticles of MP (M = Ba, Ca, Cu, Sr, Ag; P = PO43-, HPO42-) were synthesized by a simple precipitation method and their photo-catalytic properties were invested. Better performance in the decolorization of methyl orange (MO) under the assistance of H2O2 than that of TiO2 were obtained for all the MPs. The photo-catalytic activity was mainly affected by surface area, energy band, impurity, crystallinity and crystal structure. The DFT calculation results demonstrated that the 2p of O and 3p of P in PO43- played the main role in the photo-catalytic process. This work would be helpful to design and synthesize low cost apatite materials with good photo-catalytic performance.

  3. Effect of the synthetic method on the catalytic activity of alumina: Epoxidation of cyclohexene

    SciTech Connect

    Valderruten, N.E.; Peña, W.F.; Ramírez, A.E.; Rodríguez-Páez, J.E.

    2015-02-15

    Graphical abstract: Temperature influence on percent conversion and selectivity in the epoxidation of cyclohexene using commercial alumina as a catalyst. - Highlights: • Aluminum oxide was synthesized using Pechini method. • The alumina obtained showed a mix of boehmite and γ-alumina phases. • We research an economically feasible method to obtain alumina for use as a catalyst. • Alumina obtained by Pechini showed high percent conversion and/or selectivity. • The best results were 78% conversion and 78% selectivity to epoxidation reactions. - Abstract: Al{sub 2}O{sub 3} was prepared from different inorganic precursors via the Pechini method and compared with Al{sub 2}O{sub 3} prepared by the sol–gel method. Structural characterization of these materials was carried out by FTIR, X-ray diffraction (XRD), N{sub 2} adsorption at −196 °C and transmission electron microscopy (TEM). The solids were tested in the epoxidation of cyclohexene and a difference in their catalytic activities was observed. The characterization results indicate that the samples prepared by Pechini have a mixture of γ-alumina and boehmite, a condition favoring catalytic activity, whereas the sol–gel sample is less crystalline due to higher boehmite content. These results indicate that both the nature of the precursor and the method of synthesis strongly affect the catalytic activity of Al{sub 2}O{sub 3}.

  4. Catalytic activity of nuclease P1: Experiment and theory

    SciTech Connect

    Miller, J.H.; Falcone, J.M.; Shibata, M.; Box, H.C.

    1994-10-01

    Nuclease P1 from Penicillium citrinum is a zinc dependent glyco-enzyme that recognizes single stranded DNA and RNA as substrates and hydrolyzes the phosphate ester bond. Nuclease Pl seems to recognize particular conformations of the phosphodiester backbone and shows significant variation in the rate of hydrolytic activity depending upon which nucleosides are coupled by the phosphodiester bond. The efficiency of nuclease Pl in hydrolyzing the phosphodiester bonds of a substrate can be altered by modifications to one of the substrate bases induced by ionizing radiation or oxidative stress. Measurements have been made of the effect of several radiation induced lesions on the catalytic rate of nuclease Pl. A model of the structure of the enzyme has been constructed in order to better understand the binding and activity of this enzyme on various ssDNA substrates.

  5. Face the Edges: Catalytic Active Sites of Nanomaterials

    PubMed Central

    Ni, Bing

    2015-01-01

    Edges are special sites in nanomaterials. The atoms residing on the edges have different environments compared to those in other parts of a nanomaterial and, therefore, they may have different properties. Here, recent progress in nanomaterial fields is summarized from the viewpoint of the edges. Typically, edge sites in MoS2 or metals, other than surface atoms, can perform as active centers for catalytic reactions, so the method to enhance performance lies in the optimization of the edge structures. The edges of multicomponent interfaces present even more possibilities to enhance the activities of nanomaterials. Nanoframes and ultrathin nanowires have similarities to conventional edges of nanoparticles, the application of which as catalysts can help to reduce the use of costly materials. Looking beyond this, the edge structures of graphene are also essential for their properties. In short, the edge structure can influence many properties of materials. PMID:27980960

  6. Guiding catalytically active particles with chemically patterned surfaces

    NASA Astrophysics Data System (ADS)

    Uspal, William; Popescu, Mihail; Dietrich, Siegfried; Tasinkevych, Mykola

    Catalytically active Janus particles in solution create gradients in the chemical composition of the solution along their surfaces, as well as along any nearby container walls. The former leads to self-phoresis, while the latter gives rise to chemi-osmosis, providing an additional contribution to self-motility. Chemi-osmosis strongly depends on the molecular interactions between the diffusing chemical species and the wall. We show analytically, using an approximate ``point-particle'' approach, that by chemically patterning a planar substrate (e.g., by adsorbing two different materials) one can direct the motion of Janus particles: the induced chemi-osmotic flows can cause particles to either ``dock'' at a chemical step between the two materials, or to follow a chemical stripe. These theoretical predictions are confirmed by full numerical calculations. Generically, docking occurs for particles which tend to move away from their catalytic caps, while stripe-following occurs in the opposite case. Our analysis reveals the physical mechanisms governing this behavior.

  7. Molecular dynamics simulation and conformational analysis of some catalytically active peptides.

    PubMed

    Honarparvar, Bahareh; Skelton, Adam A

    2015-04-01

    The design of stable and inexpensive artificial enzymes with potent catalytic activity is a growing field in peptide science. The first step in this design process is to understand the key factors that can affect the conformational preference of an enzyme and correlate them with its catalytic activity. In this work, molecular dynamics simulations in explicit water of two catalytically active peptides (peptide 1: Fmoc-Phe1-Phe2-His-CONH2; peptide 2: Fmoc-Phe1-Phe2-Arg-CONH2) were performed at temperatures of 300, 400, and 500 K. Conformational analysis of these peptides using Ramachandran plots identified the secondary structures of the amino acid residues involved (Phe1, Phe2, His, Arg) and confirmed their conformational flexibility in solution. Furthermore, Ramachandran maps revealed the intrinsic preference of the constituent residues of these compounds for a helical conformation. Long-range interaction distances and radius of gyration (R g) values obtained during 20 ns MD simulations confirmed their tendency to form folded conformations. Results showed a decrease in side-chain (Phe1, Phe2, His ring, and Arg) contacts as the temperature was raised from 300 to 400 K and then to 500 K. Finally, the radial distribution functions (RDF) of the water molecules around the nitrogen atoms in the catalytically active His and Arg residues of peptide 1 and peptide 2 revealed that the strongest water-peptide interaction occurred with the arginine nitrogen atoms in peptide 2. Our results highlight differences in the secondary structures of the two peptides that can be explained by the different arrangement of water molecules around the nitrogen atoms of Arg in peptide 2 as compared to the arrangement of water molecules around the nitrogen atoms of His in peptide 1. The results of this work thus provide detailed insight into peptide conformations which can be exploited in the future design of peptide analogs.

  8. Catalytic activity of catalase under strong magnetic fields of up to 8 T

    NASA Astrophysics Data System (ADS)

    Ueno, S.; Iwasaka, M.

    1996-04-01

    The question of whether or not magnetic fields affect enzymatic activity is of considerable interest in biomagnetics and biochemistry. This study focuses on whether magnetically related enzymatic activities can be affected by magnetic fields. We examined the effect of magnetic fields of up to 8 T on catalytic decomposition of hydrogen peroxide (H2O2). We observed changes in absorbance of reaction mixture of hydrogen peroxide and catalase at 240 nm, during and after magnetic field exposures. When the reaction mixture was not treated with nitrogen-gas bubbling, it was observed that the initial reaction rate of the reaction which was exposed to magnetic fields of up to 8 T was 50%-85% lower than the control data. This magnetic field effect was not observed, however, when the reaction mixture was bubbled with nitrogen gas to remove the dissolved oxygen molecules which were produced in the solution. We also measured concentration of dissolved oxygen which was produced by the decomposition of hydrogen peroxide. Dissolved oxygen concentration in the reaction mixture which was exposed to magnetic fields increased 20%-25% compared to the control solution. The results of the present study indicate that magnetic fields affect dynamic movement of oxygen bubbles which are produced in the reaction mixture by the decomposition of hydrogen peroxide, but not the catalytic activity of catalase itself.

  9. Biorecovery of gold as nanoparticles and its catalytic activities for p-nitrophenol degradation.

    PubMed

    Zhu, Nengwu; Cao, Yanlan; Shi, Chaohong; Wu, Pingxiao; Ma, Haiqin

    2016-04-01

    Recovery of gold from aqueous solution using simple and economical methodologies is highly desirable. In this work, recovery of gold as gold nanoparticles (AuNPs) by Shewanella haliotis with sodium lactate as electron donor was explored. The results showed that the process was affected by the concentration of biomass, sodium lactate, and initial gold ions as well as pH value. Specifically, the presence of sodium lactate determines the formation of nanoparticles, biomass, and AuCl4 (-) concentration mainly affected the size and dispersity of the products, reaction pH greatly affected the recovery efficiency, and morphology of the products in the recovery process. Under appropriate conditions (5.25 g/L biomass, 40 mM sodium lactate, 0.5 mM AuCl4 (-), and pH of 5), the recovery efficiency was almost 99 %, and the recovered AuNPs were mainly spherical with size range of 10-30 nm (~85 %). Meanwhile, Fourier transforms infrared spectroscopy and X-ray photoelectron spectroscopy demonstrated that carboxyl and amine groups might play an important role in the process. In addition, the catalytic activity of the AuNPs recovered under various conditions was testified by analyzing the reduction rate of p-nitrophenol by borohydride. The biorecovered AuNPs exhibited interesting size and shape-dependent catalytic activity, of which the spherical particle with smaller size showed the highest catalytic reduction activity with rate constant of 0.665 min(-1).

  10. Antibacterial and catalytic activities of green synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Bindhu, M. R.; Umadevi, M.

    2015-01-01

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  11. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles.

    PubMed

    Vayssilov, Georgi N; Lykhach, Yaroslava; Migani, Annapaola; Staudt, Thorsten; Petrova, Galina P; Tsud, Nataliya; Skála, Tomáš; Bruix, Albert; Illas, Francesc; Prince, Kevin C; Matolín, Vladimír; Neyman, Konstantin M; Libuda, Jörg

    2011-04-01

    Interactions of metal particles with oxide supports can radically enhance the performance of supported catalysts. At the microscopic level, the details of such metal-oxide interactions usually remain obscure. This study identifies two types of oxidative metal-oxide interaction on well-defined models of technologically important Pt-ceria catalysts: (1) electron transfer from the Pt nanoparticle to the support, and (2) oxygen transfer from ceria to Pt. The electron transfer is favourable on ceria supports, irrespective of their morphology. Remarkably, the oxygen transfer is shown to require the presence of nanostructured ceria in close contact with Pt and, thus, is inherently a nanoscale effect. Our findings enable us to detail the formation mechanism of the catalytically indispensable Pt-O species on ceria and to elucidate the extraordinary structure-activity dependence of ceria-based catalysts in general.

  12. Antibacterial and catalytic activities of green synthesized silver nanoparticles.

    PubMed

    Bindhu, M R; Umadevi, M

    2015-01-25

    The aqueous beetroot extract was used as reducing agent for silver nanoparticles synthesis. The synthesized nanoparticles were characterized using UV-visible spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface plasmon resonance peak of synthesized nanoparticles was observed at 438 nm. As the concentration of beetroot extract increases, absorption spectra shows blue shift with decreasing particle size. The prepared silver nanoparticles were well dispersed, spherical in shape with the average particle size of 15 nm. The prepared silver nanoparticles are effective in inhibiting the growth of both gram positive and gram negative bacteria. The prepared silver nanoparticles reveal faster catalytic activity. This natural method for synthesis of silver nanoparticles offers a valuable contribution in the area of green synthesis and nanotechnology avoiding the presence of hazardous and toxic solvents and waste.

  13. Orthogonal gene knock out and activation with a catalytically active Cas9 nuclease

    PubMed Central

    Dahlman, James E.; Abudayyeh, Omar O.; Joung, Julia; Gootenberg, Jonathan S.; Zhang, Feng; Konermann, Silvana

    2015-01-01

    We have developed a CRISPR-based method that uses catalytically active Cas9 and distinct sgRNA constructs to knock out and activate different genes in the same cell. These sgRNAs, with 14 15 bp target sequences and MS2 binding loops, can activate gene expression using an active Cas9 nuclease, without inducing DSBs. We use these ‘dead RNAs’ to perform orthogonal gene knockout and transcriptional activation in human cells. PMID:26436575

  14. Structural Basis for Catalytic Activation of a Serine Recombinase

    SciTech Connect

    Keenholtz, Ross A.; Rowland, Sally-J.; Boocock, Martin R.; Stark, W. Marshall; Rice, Phoebe A.

    2014-10-02

    Sin resolvase is a site-specific serine recombinase that is normally controlled by a complex regulatory mechanism. A single mutation, Q115R, allows the enzyme to bypass the entire regulatory apparatus, such that no accessory proteins or DNA sites are required. Here, we present a 1.86 {angstrom} crystal structure of the Sin Q115R catalytic domain, in a tetrameric arrangement stabilized by an interaction between Arg115 residues on neighboring subunits. The subunits have undergone significant conformational changes from the inactive dimeric state previously reported. The structure provides a new high-resolution view of a serine recombinase active site that is apparently fully assembled, suggesting roles for the conserved active site residues. The structure also suggests how the dimer-tetramer transition is coupled to assembly of the active site. The tetramer is captured in a different rotational substate than that seen in previous hyperactive serine recombinase structures, and unbroken crossover site DNA can be readily modeled into its active sites.

  15. Development of novel catalytically active polymer-metal-nanocomposites based on activated foams and textile fibers

    PubMed Central

    2013-01-01

    In this paper, we report the intermatrix synthesis of Ag nanoparticles in different polymeric matrices such as polyurethane foams and polyacrylonitrile or polyamide fibers. To apply this technique, the polymer must bear functional groups able to bind and retain the nanoparticle ion precursors while ions should diffuse through the matrix. Taking into account the nature of some of the chosen matrices, it was essential to try to activate the support material to obtain an acceptable value of ion exchange capacity. To evaluate the catalytic activity of the developed nanocomposites, a model catalytic reaction was carried out in batch experiments: the reduction of p-nitrophenol by sodium borohydride. PMID:23680063

  16. Human airway epithelia express catalytically active NEU3 sialidase.

    PubMed

    Lillehoj, Erik P; Hyun, Sang Won; Feng, Chiguang; Zhang, Lei; Liu, Anguo; Guang, Wei; Nguyen, Chinh; Sun, Wenji; Luzina, Irina G; Webb, Tonya J; Atamas, Sergei P; Passaniti, Antonino; Twaddell, William S; Puché, Adam C; Wang, Lai-Xi; Cross, Alan S; Goldblum, Simeon E

    2014-05-01

    Sialic acids on glycoconjugates play a pivotal role in many biological processes. In the airways, sialylated glycoproteins and glycolipids are strategically positioned on the plasma membranes of epithelia to regulate receptor-ligand, cell-cell, and host-pathogen interactions at the molecular level. We now demonstrate, for the first time, sialidase activity for ganglioside substrates in human airway epithelia. Of the four known mammalian sialidases, NEU3 has a substrate preference for gangliosides and is expressed at mRNA and protein levels at comparable abundance in epithelia derived from human trachea, bronchi, small airways, and alveoli. In small airway and alveolar epithelia, NEU3 protein was immunolocalized to the plasma membrane, cytosolic, and nuclear subcellular fractions. Small interfering RNA-induced silencing of NEU3 expression diminished sialidase activity for a ganglioside substrate by >70%. NEU3 immunostaining of intact human lung tissue could be localized to the superficial epithelia, including the ciliated brush border, as well as to nuclei. However, NEU3 was reduced in subepithelial tissues. These results indicate that human airway epithelia express catalytically active NEU3 sialidase.

  17. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    SciTech Connect

    Abdullah, N.; Muhammad, I. S.; Hamid, S. B. Abd.; Rinaldi, A.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300 deg. C for an hour in each step. The catalytic growth of nanocarbon in C{sub 2}H{sub 4}/H{sub 2} was carried out at temperature of 550 deg. C for 2 hrs with different rotating angle in the fluidization system. SEM and N{sub 2} isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  18. Bacillus pumilus Cyanide Dihydratase Mutants with Higher Catalytic Activity

    PubMed Central

    Crum, Mary A.; Sewell, B. Trevor; Benedik, Michael J.

    2016-01-01

    Cyanide degrading nitrilases are noted for their potential to detoxify industrial wastewater contaminated with cyanide. However, such application would benefit from an improvement to characteristics such as their catalytic activity and stability. Following error-prone PCR for random mutagenesis, several cyanide dihydratase mutants from Bacillus pumilus were isolated based on improved catalysis. Four point mutations, K93R, D172N, A202T, and E327K were characterized and their effects on kinetics, thermostability and pH tolerance were studied. K93R and D172N increased the enzyme’s thermostability whereas E327K mutation had a less pronounced effect on stability. The D172N mutation also increased the affinity of the enzyme for its substrate at pH 7.7 but lowered its kcat. However, the A202T mutation, located in the dimerization or the A surface, destabilized the protein and abolished its activity. No significant effect on activity at alkaline pH was observed for any of the purified mutants. These mutations help confirm the model of CynD and are discussed in the context of the protein–protein interfaces leading to the protein quaternary structure. PMID:27570524

  19. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    SciTech Connect

    Sherly, K. B.; Rakesh, K.

    2014-01-28

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl{sub 2}⋅8H{sub 2}O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  20. Synthesis and catalytic activity of polysaccharide templated nanocrystalline sulfated zirconia

    NASA Astrophysics Data System (ADS)

    Sherly, K. B.; Rakesh, K.

    2014-01-01

    Nanoscaled materials are of great interest due to their unique enhanced optical, electrical and magnetic properties. Sulfate-promoted zirconia has been shown to exhibit super acidic behavior and high activity for acid catalyzed reactions. Nanocrystalline zirconia was prepared in the presence of polysaccharide template by interaction between ZrOCl2ṡ8H2O and chitosan template. The interaction was carried out in aqueous phase, followed by the removal of templates by calcination at optimum temperature and sulfation. The structural and textural features were characterized by powder XRD, TG, SEM and TEM. XRD patterns showed the peaks of the diffractogram were in agreement with the theoretical data of zirconia with the catalytically active tetragonal phase and average crystalline size of the particles was found to be 9 nm, which was confirmed by TEM. TPD using ammonia as probe, FTIR and BET surface area analysis were used for analyzing surface features like acidity and porosity. The BET surface area analysis showed the sample had moderately high surface area. FTIR was used to find the type species attached to the surface of zirconia. UV-DRS found the band gap of the zirconia was found to be 2.8 eV. The benzylation of o-xylene was carried out batchwise in atmospheric pressure and 433K temperature using sulfated zirconia as catalyst.

  1. Activity, Expression and Function of a Second Drosophila Protein Kinase a Catalytic Subunit Gene

    PubMed Central

    Melendez, A.; Li, W.; Kalderon, D.

    1995-01-01

    The DC2 gene was isolated previously on the basis of sequence similarity to DCO, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 did not affect the viability or phenotype of imaginal disc cells lacking DC0 activity or embryonic hatching of animals with reduced DC0 activity. Furthermore, transgenes expressing DC2 from a DC0 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. PMID:8601490

  2. Temperature and the catalytic activity of enzymes: a fresh understanding.

    PubMed

    Daniel, Roy M; Danson, Michael J

    2013-09-02

    The discovery of an additional step in the progression of an enzyme from the active to inactive state under the influence of temperature has led to a better match with experimental data for all enzymes that follow Michaelis-Menten kinetics, and to an increased understanding of the process. The new model of the process, the Equilibrium Model, describes an additional mechanism by which temperature affects the activity of enzymes, with implications for ecological, metabolic, structural, and applied studies of enzymes.

  3. Synthesis, characterization, and catalytic activity of type 2 crystalline titanates prepared with supercritical drying

    NASA Astrophysics Data System (ADS)

    Al-Adwani, Hamad A. H.

    Supercritically dried silico-alumino-titanate (Si-Al-Ti) mixed oxides (T2CT) were successfully synthesized by a sol-gel method with hydrothermal synthesis temperatures less than 200°C and autogenic pressure. High-surface-area T2CT aerogels with meso- to macroporosity were obtained. All solid products, after calcination at 450°C, are semicrystalline. In addition, successful scale-up of T2CT synthesis in a one-gallon reactor yielding 500 g was achieved. Surface areas, pore volumes, and average pore diameters are greatly influenced by the drying method. Supercritical drying had no effect on the crystalline or molecular structure of the materials. The synthesized materials were characterized by means of nitrogen physisorption, X-ray diffraction (XRD), thermal analysis, and diffuse reflectance FTIR spectroscopy. The addition of different amounts of phosphorous and antimony affected neither the textural nor the structural aspects of T2CT. However, a decrease in surface area occurred. The catalytic activity of these materials was evaluated after being loaded with nickel and molybdenum by the incipient wetness method. Cyclohexene hydrogenation and thiophene hydrodesulfurization reactions are used in the catalytic activity study. The activities of some of the catalyst prepared in this study are in the same range as the commercial catalyst, Shell 324, but with lower metal loadings than the commercial catalysts. Thus, more efficient use of Mo and Ni was observed.

  4. Tailoring micro-mesoporosity in activated carbon fibers to enhance SO₂ catalytic oxidation.

    PubMed

    Diez, Noel; Alvarez, Patricia; Granda, Marcos; Blanco, Clara; Gryglewicz, Grażyna; Wróbel-Iwaniec, Iwona; Sliwak, Agata; Machnikowski, Jacek; Menendez, Rosa

    2014-08-15

    Enhanced SO2 adsorption of activated carbon fibers is obtained by tailoring a specific micro-mesoporous structure in the fibers. This architecture is obtained via metal catalytic activation of the fibers with a novel precursor, cobalt naphthenate, which contrary to other precursors, also enhances spinnability and carbon fiber yield. In the SO2 oxidation, it is demonstrated that the combination of micropores and large mesopores is the main factor for an enhanced catalytic activity which is superior to that observed in other similar microporous activated carbon fibers. This provides an alternative way for the development of a new generation of catalytic material.

  5. Nanoscale mapping of catalytic activity using tip-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Stephanidis, B.; Zenobi, R.; Wain, A. J.; Roy, D.

    2015-04-01

    Chemical mapping of a photocatalytic reaction with nanoscale spatial resolution is demonstrated for the first time using tip-enhanced Raman spectroscopy (TERS). An ultrathin alumina film applied to the Ag-coated TERS tip blocks catalytic interference whilst maintaining near-field electromagnetic enhancement, thus enabling spectroscopic imaging of catalytic activity on nanostructured Ag surfaces.

  6. Graphene incorporated, N doped activated carbon as catalytic electrode in redox active electrolyte mediated supercapacitor

    NASA Astrophysics Data System (ADS)

    Gao, Zhiyong; Liu, Xiao; Chang, Jiuli; Wu, Dapeng; Xu, Fang; Zhang, Lingcui; Du, Weimin; Jiang, Kai

    2017-01-01

    Graphene incorporated, N doped activated carbons (GNACs) are synthesized by alkali activation of graphene-polypyrrole composite (G-PPy) at different temperatures for application as electrode materials of supercapacitors. Under optimal activation temperature of 700 °C, the resultant samples, labeled as GNAC700, owns hierarchically porous texture with high specific surface area and efficient ions diffusion channels, N, O functionalized surface with apparent pseudocapacitance contribution and high wettability, thus can deliver a moderate capacitance, a high rate capability and a good cycleability when used as supercapacitor electrode. Additionally, the GNAC700 electrode demonstrates high catalytic activity for the redox reaction of pyrocatechol/o-quinone pair in H2SO4 electrolyte, thus enables a high pseudocapacitance from electrolyte. Under optimal pyrocatechol concentration in H2SO4 electrolyte, the electrode capacitance of GNAC700 increases by over 4 folds to 512 F g-1 at 1 A g-1, an excellent cycleability is also achieved simultaneously. Pyridinic- N is deemed to be responsible for the high catalytic activity. This work provides a promising strategy to ameliorate the capacitive performances of supercapacitors via the synergistic interaction between redox-active electrolyte and catalytic electrodes.

  7. Evidence that the catalytic activity of prokaryote leader peptidase depends upon the operation of a serine-lysine catalytic dyad.

    PubMed Central

    Black, M T

    1993-01-01

    Leader peptidase (LP) is the enzyme responsible for proteolytic cleavage of the amino acid leader sequence from bacterial preproteins. Recent data indicate that LP may be an unusual serine proteinase which operates without involvement of a histidine residue (M. T. Black, J. G. R. Munn, and A. E. Allsop, Biochem. J. 282:539-543, 1992; M. Sung and R. E. Dalbey, J. Biol. Chem. 267:13154-13159, 1992) and that, therefore, one or more alternative residues must perform the function of a catalytic base. With the aid of sequence alignments, site-specific mutagenesis of the gene encoding LP (lepB) from Escherichia coli has been employed to investigate the mechanism of action of the enzyme. Various mutant forms of plasmid-borne LP were tested for their abilities to complement the temperature-sensitive activity of LP in E. coli IT41. Data are presented which indicate that the only conserved amino acid residue possessing a side chain with the potential to ionize, and therefore with the potential to transfer protons, which cannot be substituted with a neutral side chain is lysine at position 145. The data suggest that the catalytic activity of LP is dependent on the operation of a serine-lysine catalytic dyad. Images PMID:8394311

  8. Non-cell autonomous and non-catalytic activities of ATX in the developing brain.

    PubMed

    Greenman, Raanan; Gorelik, Anna; Sapir, Tamar; Baumgart, Jan; Zamor, Vanessa; Segal-Salto, Michal; Levin-Zaidman, Smadar; Aidinis, Vassilis; Aoki, Junken; Nitsch, Robert; Vogt, Johannes; Reiner, Orly

    2015-01-01

    The intricate formation of the cerebral cortex requires a well-coordinated series of events, which are regulated at the level of cell-autonomous and non-cell autonomous mechanisms. Whereas cell-autonomous mechanisms that regulate cortical development are well-studied, the non-cell autonomous mechanisms remain poorly understood. A non-biased screen allowed us to identify Autotaxin (ATX) as a non-cell autonomous regulator of neural stem cells. ATX (also known as ENPP2) is best known to catalyze lysophosphatidic acid (LPA) production. Our results demonstrate that ATX affects the localization and adhesion of neuronal progenitors in a cell autonomous and non-cell autonomous manner, and strikingly, this activity is independent from its catalytic activity in producing LPA.

  9. Expression, purification, and characterization of a biologically active bovine enterokinase catalytic subunit in Escherichia coli.

    PubMed

    Yuan, Liu-Di; Hua, Zi-Chun

    2002-07-01

    Enterokinase (EC 3.4.21.9) is a serine proteinase in the duodenum that exhibits specificity for the sequence (Asp)(4)-Lys. It converts trypsinogen to trypsin. Its high specificity for the recognition site makes enterokinase (EK) a useful tool for in vitro cleavage of fusion proteins. cDNA encoding the catalytic chain of Chinese bovine enterokinase was cloned and its encoding amino acid sequence is identical to the previously reported sequence although there are two one-base mutations which do not change the encoded amino acid. The EK catalytic subunit cDNA was cloned into plasmid pET32a, and fused downstream to the fusion partner thioredoxin (Trx) and the following DDDDK enterokinase recognition sequence. The recombinant bovine enterokinase catalytic subunit was expressed in Escherichia coli BL21(DE3), and most products existed in soluble form. After an in vivo autocatalytic cleavage of the recombinant Trx-EK catalytic domain fusion protein, intact, biologically active EK catalytic subunit was released from the fusion protein. The recombinant intact EK catalytic subunit was purified to homogeneity with a specific activity of 720 AUs/mg protein through ammonium sulfate precipitation, DEAE chromatography, and gel filtration. The purified intact EK catalytic subunit has a K(m) of 0.17 mM, and K(cat) is 20.8s(-1). From 100 ml flask culture, 4.3 mg pure active EK catalytic subunits were obtained.

  10. Identification of amino acid residues essential for catalytic activity of gentisate 1,2-dioxygenase from Pseudomonas alcaligenes NCIB 9867.

    PubMed

    Chua, C H; Feng, Y; Yeo, C C; Khoo, H E; Poh, C L

    2001-10-16

    Gentisate 1,2-dioxygenase (GDO, EC 1.13.11.4) is a ring cleavage enzyme that utilizes gentisate as a substrate yielding maleylpyruvate as the ring fission product. Mutant GDOs were generated by both random mutagenesis and site-directed mutagenesis of the gene cloned from Pseudomonas alcaligenes NCIB 9867. Alignment of known GDO sequences indicated the presence of a conserved central core region. Mutations generated within this central core resulted in the complete loss of enzyme activity whereas mutations in the flanking regions yielded GDOs with enzyme activities that were reduced by up to 78%. Site-directed mutagenesis was also performed on a pair of highly conserved HRH and HXH motifs found within this core region. Conversion of these His residues to Asp resulted in the complete loss of catalytic activity. Mutagenesis within the core region could have affected quaternary structure formation as well as cofactor binding. A mutant enzyme with increased catalytic activities was also characterized.

  11. Fourier Transform Infrared (FTIR) Observation Of Catalytically Active Intermediates Produced By Laser Photolysis Of Iron Pentacarbonyl

    NASA Astrophysics Data System (ADS)

    Paquette, Michael S.

    1984-05-01

    The pulsed laser excitation of iron pentacarbonyl in solutions of 1-pentene photoinitiates a highly active catalytic process for isomerization of the olefin. This process is observed in situ by rapid scanning FTIR spectroscopy, allowing subsecond acquisition of spectra. These are deconvoluted into discrete spectral components which are assigned molecular formulas. Specific activities have been obtained for two catalytically significant complexes from a correlation of catalytic activity with compositional changes. A similar interpretation of multipulse and cw experiments allowed development of a comprehensive cycle of thermal and photochemical interconversions among components.

  12. Single-Molecule Nanocatalysis Reveals Catalytic Activation Energy of Single Nanocatalysts.

    PubMed

    Chen, Tao; Zhang, Yuwei; Xu, Weilin

    2016-09-28

    By monitoring the temperature-dependent catalytic activity of single Au nanocatalysts for a fluorogenic reaction, we derive the activation energies via multiple methods for two sequential catalytic steps (product formation and dissociation) on single nanocatalysts. The wide distributions of activation energies across multiple individual nanocatalysts indicate a huge static heterogeneity among the individual nanocatalysts. The compensation effect and isokinetic relationship of catalytic reactions are observed at the single particle level. This study exemplifies another function of single-molecule nanocatalysis and improves our understanding of heterogeneous catalysis.

  13. The AMP-activated protein kinase α2 catalytic subunit controls whole-body insulin sensitivity

    PubMed Central

    Viollet, Benoit; Andreelli, Fabrizio; Jørgensen, Sebastian B.; Perrin, Christophe; Geloen, Alain; Flamez, Daisy; Mu, James; Lenzner, Claudia; Baud, Olivier; Bennoun, Myriam; Gomas, Emmanuel; Nicolas, Gaël; Wojtaszewski, Jørgen F.P.; Kahn, Axel; Carling, David; Schuit, Frans C.; Birnbaum, Morris J.; Richter, Erik A.; Burcelin, Rémy; Vaulont, Sophie

    2003-01-01

    AMP-activated protein kinase (AMPK) is viewed as a fuel sensor for glucose and lipid metabolism. To better understand the physiological role of AMPK, we generated a knockout mouse model in which the AMPKα2 catalytic subunit gene was inactivated. AMPKα2–/– mice presented high glucose levels in the fed period and during an oral glucose challenge associated with low insulin plasma levels. However, in isolated AMPKα2–/– pancreatic islets, glucose- and L-arginine–stimulated insulin secretion were not affected. AMPKα2–/– mice have reduced insulin-stimulated whole-body glucose utilization and muscle glycogen synthesis rates assessed in vivo by the hyperinsulinemic euglycemic clamp technique. Surprisingly, both parameters were not altered in mice expressing a dominant-negative mutant of AMPK in skeletal muscle. Furthermore, glucose transport was normal in incubated isolated AMPKα2–/– muscles. These data indicate that AMPKα2 in tissues other than skeletal muscles regulates insulin action. Concordantly, we found an increased daily urinary catecholamine excretion in AMPKα2–/– mice, suggesting altered function of the autonomic nervous system that could explain both the impaired insulin secretion and insulin sensitivity observed in vivo. Therefore, extramuscular AMPKα2 catalytic subunit is important for whole-body insulin action in vivo, probably through modulation of sympathetic nervous activity. PMID:12511592

  14. The AMP-activated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity.

    PubMed

    Viollet, Benoit; Andreelli, Fabrizio; Jørgensen, Sebastian B; Perrin, Christophe; Geloen, Alain; Flamez, Daisy; Mu, James; Lenzner, Claudia; Baud, Olivier; Bennoun, Myriam; Gomas, Emmanuel; Nicolas, Gaël; Wojtaszewski, Jørgen F P; Kahn, Axel; Carling, David; Schuit, Frans C; Birnbaum, Morris J; Richter, Erik A; Burcelin, Rémy; Vaulont, Sophie

    2003-01-01

    AMP-activated protein kinase (AMPK) is viewed as a fuel sensor for glucose and lipid metabolism. To better understand the physiological role of AMPK, we generated a knockout mouse model in which the AMPKalpha2 catalytic subunit gene was inactivated. AMPKalpha2(-/-) mice presented high glucose levels in the fed period and during an oral glucose challenge associated with low insulin plasma levels. However, in isolated AMPKalpha2(-/-) pancreatic islets, glucose- and L-arginine-stimulated insulin secretion were not affected. AMPKalpha2(-/-) mice have reduced insulin-stimulated whole-body glucose utilization and muscle glycogen synthesis rates assessed in vivo by the hyperinsulinemic euglycemic clamp technique. Surprisingly, both parameters were not altered in mice expressing a dominant-negative mutant of AMPK in skeletal muscle. Furthermore, glucose transport was normal in incubated isolated AMPKalpha2(-/-) muscles. These data indicate that AMPKalpha2 in tissues other than skeletal muscles regulates insulin action. Concordantly, we found an increased daily urinary catecholamine excretion in AMPKalpha2(-/-) mice, suggesting altered function of the autonomic nervous system that could explain both the impaired insulin secretion and insulin sensitivity observed in vivo. Therefore, extramuscular AMPKalpha2 catalytic subunit is important for whole-body insulin action in vivo, probably through modulation of sympathetic nervous activity.

  15. Effects of FGFR2 kinase activation loop dynamics on catalytic activity.

    PubMed

    Karp, Jerome M; Sparks, Samuel; Cowburn, David

    2017-02-01

    The structural mechanisms by which receptor tyrosine kinases (RTKs) regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2) kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In this study, we use several enhanced sampling molecular dynamics (MD) methods to elucidate the structural changes to the kinase's activation loop that occur upon phosphorylation. We show that phosphorylation favors inward motion of Arg664, while simultaneously favoring outward motion of Leu665 and Pro666. The latter structural change enables the substrate to bind leading to its resultant phosphorylation. Inward motion of Arg664 allows it to interact with the γ-phosphate of ATP as well as the substrate tyrosine. We show that this stabilizes the tyrosine and primes it for the catalytic phosphotransfer, and it may lower the activation barrier of the phosphotransfer reaction. Our work demonstrates the value of including dynamic information gleaned from computer simulation in deciphering RTK regulatory function.

  16. Effects of FGFR2 kinase activation loop dynamics on catalytic activity

    PubMed Central

    2017-01-01

    The structural mechanisms by which receptor tyrosine kinases (RTKs) regulate catalytic activity are diverse and often based on subtle changes in conformational dynamics. The regulatory mechanism of one such RTK, fibroblast growth factor receptor 2 (FGFR2) kinase, is still unknown, as the numerous crystal structures of the unphosphorylated and phosphorylated forms of the kinase domains show no apparent structural change that could explain how phosphorylation could enable catalytic activity. In this study, we use several enhanced sampling molecular dynamics (MD) methods to elucidate the structural changes to the kinase’s activation loop that occur upon phosphorylation. We show that phosphorylation favors inward motion of Arg664, while simultaneously favoring outward motion of Leu665 and Pro666. The latter structural change enables the substrate to bind leading to its resultant phosphorylation. Inward motion of Arg664 allows it to interact with the γ-phosphate of ATP as well as the substrate tyrosine. We show that this stabilizes the tyrosine and primes it for the catalytic phosphotransfer, and it may lower the activation barrier of the phosphotransfer reaction. Our work demonstrates the value of including dynamic information gleaned from computer simulation in deciphering RTK regulatory function. PMID:28151998

  17. All the catalytic active sites of MoS2 for hydrogen evolution

    DOE PAGES

    Li, Guoqing; Zhang, Du; Qiao, Qiao; ...

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5more » s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.« less

  18. Oxalomalate affects the inducible nitric oxide synthase expression and activity.

    PubMed

    Irace, Carlo; Esposito, Giuseppe; Maffettone, Carmen; Rossi, Antonietta; Festa, Michela; Iuvone, Teresa; Santamaria, Rita; Sautebin, Lidia; Carnuccio, Rosa; Colonna, Alfredo

    2007-03-13

    Inducible nitric oxide synthase (iNOS) is an homodimeric enzyme which produces large amounts of nitric oxide (NO) in response to inflammatory stimuli. Several factors affect the synthesis and catalytic activity of iNOS. Particularly, dimerization of NOS monomers is promoted by heme, whereas an intracellular depletion of heme and/or L-arginine considerably decreases NOS resistance to proteolysis. In this study, we found that oxalomalate (OMA, oxalomalic acid, alpha-hydroxy-beta-oxalosuccinic acid), an inhibitor of both aconitase and NADP-dependent isocitrate dehydrogenase, inhibited nitrite production and iNOS protein expression in lipopolysaccharide (LPS)-activated J774 macrophages, without affecting iNOS mRNA content. Furthermore, injection of OMA precursors to LPS-stimulated rats also decreased nitrite production and iNOS expression in isolated peritoneal macrophages. Interestingly, alpha-ketoglutarate or succinyl-CoA administration reversed OMA effect on NO production, thus correlating NO biosynthesis with the anabolic capacity of Krebs cycle. When protein synthesis was blocked by cycloheximide in LPS-activated J774 cells treated with OMA, iNOS protein levels, evaluated by Western blot analysis and (35)S-metabolic labelling, were decreased, suggesting that OMA reduces iNOS biosynthesis and induces an increase in the degradation rate of iNOS protein. Moreover, we showed that OMA inhibits the activity of the iNOS from lung of LPS-treated rats by enzymatic assay. Our results, demonstrating that OMA acts regulating synthesis, catalytic activity and degradation of iNOS, suggest that this compound might have a potential role in reducing the NO overproduction occurring in some pathological conditions.

  19. HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation

    PubMed Central

    Siepi, Francesca; Gatti, Veronica; Camerini, Serena; Crescenzi, Marco; Soddu, Silvia

    2013-01-01

    HIPK2 (homeodomain-interacting protein kinase-2) binds to and phosphorylates, at Ser and Thr residues, a large number of targets involved in cell division and cell fate decision in response to different physiological or stress stimuli. Inactivation of HIPK2 has been observed in human and mouse cancers supporting its role as a tumor suppressor. Despite the biological relevance of this kinase, very little is known on how HIPK2 becomes catalytically active. Based on sequence homologies, HIPK2 has been taxonomically classified as a subfamily member of the dual-specificity tyrosine-regulated kinases (DYRKs) and the activation-loop Y354 of HIPK2 has been found phosphorylated in different cells; however, the relevance of this Y phosphorylation is presently unknown. Here, we show that HIPK2, which is extensively phosphorylated at S/T sites throughout its functional domains, becomes catalytically active by autophosphorylation at the activation-loop Y354. In particular, we found that, in analogy to DYRKs, HIPK2-Y354 phosphorylation is an autocatalytic event and its prevention, through Y354 substitution with non-phosphorylatable amino acids or by using the kinase inhibitor purvalanol A, induces a strong reduction of the HIPK2 S/T-kinase activity on different substrates. Interestingly, at variance from DYRKs, inhibition of HIPK2-Y354 phosphorylation induces a strong out-of-target Y-kinase activity in cis and a strong cytoplasmic relocalization of the kinase. Together, these results demonstrate that the catalytic activity, substrate specificity, and subcellular localization of HIPK2 are regulated by autophosphorylation of its activation-loop Y354. PMID:23485397

  20. Mutation in aspartic acid residues modifies catalytic and haemolytic activities of Bacillus cereus sphingomyelinase.

    PubMed Central

    Tamura, H; Tameishi, K; Yamada, A; Tomita, M; Matsuo, Y; Nishikawa, K; Ikezawa, H

    1995-01-01

    Four aspartic acid residues (Asp126, Asp156, Asp233 and Asp295) of Bacillus cereus sphingomyelinase (SMase) in the conservative regions were changed to glycine by in vitro mutagenesis, and the mutant SMases [D126G (Asp126-->Gly etc.), D156G, D233G and D295G] were produced in Bacillus brevis 47, a protein-producing strain. The sphingomyelin (SM)-hydrolysing activity of D295G was completely abolished and those of D126G and D156G were reduced by more than 80%, whereas that of D233G was not so profoundly affected. Two mutant enzymes (D126G and D156G) were purified and characterized further. The hydrolytic activities of D126G and D156G toward four phosphocholine-containing substrates with different hydrophobicities, SM, 2-hexadecanoylamino-4-nitrophenylphosphocholine(HNP), lysophosphatidylcholine (lysoPC) and p-nitro-phenylphosphocholine (p-NPPC), were compared with those of the wild-type. The activity of D126G toward water-soluble p-NPPC was comparable with that of the wild-type. On the other hand, D156G catalysed the hydrolysis of hydrophilic substrates such as HNP and p-NPPC more efficiently (> 4-fold) than the wild-type. These results suggested that Asp126 and Asp156, located in the highly conserved region, may well be involved in a substrate recognition process rather than catalytic action. Haemolytic activities of the mutant enzymes were found to be parallel with their SM-hydrolysing activities. Two regions, including the C-terminal region containing Asp295, were found to show considerable sequence identity with the corresponding regions of bovine pancreatic DNase I. Structural predictions indicated structural similarity between SMase and DNase I. An evolutionary relationship based on the catalytic function was suggested between the structures of these two phosphodiesterases. Images Figure 2 Figure 3 Figure 4 Figure 6 PMID:7639690

  1. Catalytic ozonation of pentachlorophenol in aqueous solutions using granular activated carbon

    NASA Astrophysics Data System (ADS)

    Asgari, Ghorban; Samiee, Fateme; Ahmadian, Mohammad; Poormohammadi, Ali; solimanzadeh, Bahman

    2014-11-01

    The efficiency of granular activated carbon (GAC) was investigated in this study as a catalyst for the elimination of pentachlorophenol (PCP) from contaminated streams in a laboratory-scale semi-batch reactor. The influence of important parameters including solution pH (2-10), radical scavenger (tert-butanol, 0.04 mol/L), catalyst dosage (0.416-8.33 g/L), initial PCP concentration (100-1000 mg/L) and ozone flow rate (2.3-12 mg/min) was examined on the efficiency of the catalytic ozonation process (COP) in degradation and mineralization of PCP in aqueous solution. The experimental results showed that catalytic ozonation with GAC was most effective at pH of 8 with ozone flow rate of 12 mg/min and a GAC dosage of 2 g. Compared to the sole ozonation process (SOP), the removal levels of PCP and COP were, 98, and 79 %, respectively. The degradation rate of kinetics was also investigated. The results showed that using a GAC catalyst in the ozonation of PCP produced an 8.33-fold increase in rate kinetic compared to the SOP under optimum conditions. Tert-butanol alcohol (TBA) was used as a radical scavenger. The results demonstrated that COP was affected less by TBA than by SOP. These findings suggested that GAC acts as a suitable catalyst in COP to remove refractory pollutants from aqueous solution.

  2. Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor.

    PubMed

    Zhang, Weidong; Qing, Weihua; Ren, Zhongqi; Li, Wei; Chen, Jiangrong

    2014-11-01

    A composite catalytically active membrane immobilized with Candida rugosa lipase has been prepared by immersion phase inversion technique for enzymatic synthesis of lauryl stearate in a pervaporation membrane reactor. SEM images showed that a "sandwich-like" membrane structure with a porous lipase-PVA catalytic layer uniformly coated on a polyvinyl alcohol (PVA)/polyethersulfone (PES) bilayer was obtained. Optimum conditions for lipase immobilization in the catalytic layer were determined. The membrane was proved to exhibit superior thermal stability, pH stability and reusability than free lipase under similar conditions. In the case of pervaporation coupled synthesis of lauryl stearate, benefited from in-situ water removal by the membrane, a conversion enhancement of approximately 40% was achieved in comparison to the equilibrium conversion obtained in batch reactors. In addition to conversion enhancement, it was also found that excess water removal by the catalytically active membrane appears to improve activity of the lipase immobilized.

  3. Degradation of paracetamol by catalytic wet air oxidation and sequential adsorption - Catalytic wet air oxidation on activated carbons.

    PubMed

    Quesada-Peñate, I; Julcour-Lebigue, C; Jáuregui-Haza, U J; Wilhelm, A M; Delmas, H

    2012-06-30

    The concern about the fate of pharmaceutical products has raised owing to the increasing contamination of rivers, lakes and groundwater. The aim of this paper is to evaluate two different processes for paracetamol removal. The catalytic wet air oxidation (CWAO) of paracetamol on activated carbon was investigated both as a water treatment technique using an autoclave reactor and as a regenerative treatment of the carbon after adsorption in a sequential fixed bed process. Three activated carbons (ACs) from different source materials were used as catalysts: two microporous basic ACs (S23 and C1) and a meso- and micro-porous acidic one (L27). During the first CWAO experiment the adsorption capacity and catalytic performance of fresh S23 and C1 were higher than those of fresh L27 despite its higher surface area. This situation changed after AC reuse, as finally L27 gave the best results after five CWAO cycles. Respirometry tests with activated sludge revealed that in the studied conditions the use of CWAO enhanced the aerobic biodegradability of the effluent. In the ADOX process L27 also showed better oxidation performances and regeneration efficiency. This different ageing was examined through AC physico-chemical properties.

  4. Enhancement of ribozyme catalytic activity by a contiguous oligodeoxynucleotide (facilitator) and by 2'-O-methylation.

    PubMed Central

    Goodchild, J

    1992-01-01

    RNA catalysts (ribozymes) designed to cleave sequences unique to viral RNA's might be developed as therapeutics. For this purpose, they would require high catalytic efficiency and resistance to nucleases. Reported here are two approaches that can be used in combination to improve these properties. First, catalytic efficiency can be improved by oligonucleotides (facilitators) that bind to the substrate contiguously with the 3'-end of the ribozyme. Second, 2'-O-methylation of flanking sequences of the ribozyme increases catalytic activity as well as resistance to nucleases. In combination with a facilitator oligodeoxynucleotide, the cleavage rate was increased 20 fold over that of the unmodified ribozyme. Images PMID:1383929

  5. PiZ Mouse Liver Accumulates Polyubiquitin Conjugates That Associate with Catalytically Active 26S Proteasomes

    PubMed Central

    Haddock, Christopher J.; Blomenkamp, Keith; Gautam, Madhav; James, Jared; Mielcarska, Joanna; Gogol, Edward; Teckman, Jeffrey; Skowyra, Dorota

    2014-01-01

    Accumulation of aggregation-prone human alpha 1 antitrypsin mutant Z (AT-Z) protein in PiZ mouse liver stimulates features of liver injury typical of human alpha 1 antitrypsin type ZZ deficiency, an autosomal recessive genetic disorder. Ubiquitin-mediated proteolysis by the 26S proteasome counteracts AT-Z accumulation and plays other roles that, when inhibited, could exacerbate the injury. However, it is unknown how the conditions of AT-Z mediated liver injury affect the 26S proteasome. To address this question, we developed a rapid extraction strategy that preserves polyubiquitin conjugates in the presence of catalytically active 26S proteasomes and allows their separation from deposits of insoluble AT-Z. Compared to WT, PiZ extracts had about 4-fold more polyubiquitin conjugates with no apparent change in the levels of the 26S and 20S proteasomes, and unassembled subunits. The polyubiquitin conjugates had similar affinities to ubiquitin-binding domain of Psmd4 and co-purified with similar amounts of catalytically active 26S complexes. These data show that polyubiquitin conjugates were accumulating despite normal recruitment to catalytically active 26S proteasomes that were available in excess, and suggest that a defect at the 26S proteasome other than compromised binding to polyubiquitin chain or peptidase activity played a role in the accumulation. In support of this idea, PiZ extracts were characterized by high molecular weight, reduction-sensitive forms of selected subunits, including ATPase subunits that unfold substrates and regulate access to proteolytic core. Older WT mice acquired similar alterations, implying that they result from common aspects of oxidative stress. The changes were most pronounced on unassembled subunits, but some subunits were altered even in the 26S proteasomes co-purified with polyubiquitin conjugates. Thus, AT-Z protein aggregates indirectly impair degradation of polyubiquitinated proteins at the level of the 26S proteasome

  6. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity.

    PubMed

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K; Makino, Clint L

    2015-04-24

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca(2+)]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mM for ROS-GC1 and 39 mM for ROS-GC2. The effect required neither Ca(2+) nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca(2+)]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity.

  7. Bicarbonate Modulates Photoreceptor Guanylate Cyclase (ROS-GC) Catalytic Activity*

    PubMed Central

    Duda, Teresa; Wen, Xiao-Hong; Isayama, Tomoki; Sharma, Rameshwar K.; Makino, Clint L.

    2015-01-01

    By generating the second messenger cGMP in retinal rods and cones, ROS-GC plays a central role in visual transduction. Guanylate cyclase-activating proteins (GCAPs) link cGMP synthesis to the light-induced fall in [Ca2+]i to help set absolute sensitivity and assure prompt recovery of the response to light. The present report discloses a surprising feature of this system: ROS-GC is a sensor of bicarbonate. Recombinant ROS-GCs synthesized cGMP from GTP at faster rates in the presence of bicarbonate with an ED50 of 27 mm for ROS-GC1 and 39 mm for ROS-GC2. The effect required neither Ca2+ nor use of the GCAPs domains; however, stimulation of ROS-GC1 was more powerful in the presence of GCAP1 or GCAP2 at low [Ca2+]. When applied to retinal photoreceptors, bicarbonate enhanced the circulating current, decreased sensitivity to flashes, and accelerated flash response kinetics. Bicarbonate was effective when applied either to the outer or inner segment of red-sensitive cones. In contrast, bicarbonate exerted an effect when applied to the inner segment of rods but had little efficacy when applied to the outer segment. The findings define a new regulatory mechanism of the ROS-GC system that affects visual transduction and is likely to affect the course of retinal diseases caused by cGMP toxicity. PMID:25767116

  8. Asymmetric Intramolecular Alkylation of Chiral Aromatic Imines via Catalytic C-H Bond Activation

    SciTech Connect

    Watzke, Anja; Wilson, Rebecca; O'Malley, Steven; Bergman, Robert; Ellman, Jonathan

    2007-04-16

    The asymmetric intramolecular alkylation of chiral aromatic aldimines, in which differentially substituted alkenes are tethered meta to the imine, was investigated. High enantioselectivities were obtained for imines prepared from aminoindane derivatives, which function as directing groups for the rhodium-catalyzed C-H bond activation. Initial demonstration of catalytic asymmetric intramolecular alkylation also was achieved by employing a sterically hindered achiral imine substrate and catalytic amounts of a chiral amine.

  9. Reactivity and Catalytic Activity of Hydrogen Atom Chemisorbed Silver Clusters.

    PubMed

    Manzoor, Dar; Pal, Sourav

    2015-06-18

    Metal clusters of silver have attracted recent interest of researchers as a result of their potential in different catalytic applications and low cost. However, due to the completely filled d orbital and very high first ionization potential of the silver atom, the silver-based catalysts interact very weakly with the reacting molecules. In the current work, density functional theory calculations were carried out to investigate the effect of hydrogen atom chemisorption on the reactivity and catalytic properties of inert silver clusters. Our results affirm that the hydrogen atom chemisorption leads to enhancement in the binding energy of the adsorbed O2 molecule on the inert silver clusters. The increase in the binding energy is also characterized by the decrease in the Ag-O and increase in the O-O bond lengths in the case of the AgnH silver clusters. Pertinent to the increase in the O-O bond length, a significant red shift in the O-O stretching frequency is also noted in the case of the AgnH silver clusters. Moreover, the hydrogen atom chemisorbed silver clusters show low reaction barriers and high heat of formation of the final products for the environmentally important CO oxidation reaction as compared to the parent catalytically inactive clusters. The obtained results were compared with those of the corresponding gold and hydrogen atom chemisorbed gold clusters obtained at the same level of theory. It is expected the current computational study will provide key insights for future advances in the design of efficient nanosilver-based catalysts through the adsorption of a small atom or a ligand.

  10. Selection of active phase of MnO2 for catalytic ozonation of 4-nitrophenol.

    PubMed

    Nawaz, Faheem; Cao, Hongbin; Xie, Yongbing; Xiao, Jiadong; Chen, Yue; Ghazi, Zahid Ali

    2017-02-01

    Catalytic ozonation is a highly effective method in wastewater treatment, and MnO2 materials are widely recognized as active heterogeneous catalysts in this process. Many works reported the progress in active MnO2 synthesis, but the active phase is rarely systematically studied. In this paper, all six phases of MnO2 (α-, β-, δ-, γ-, λ- and ε-) were synthesized by facile methods. Their catalytic activities in ozonation of 4-nitrophenol (4-NP) were evaluated and correlated with the physicochemical properties obtained from X-ray Diffraction (XRD), transmission electron microscopy (TEM), physical adsorption and cyclic voltammetry (CV) analysis. α- MnO2 was found to be the most active catalyst in 4-NP degradation at neutral pH. MnO2 with low average oxidation state (AOS) showed stronger oxidation/reduction peaks in CV characterization, which benefited catalytic decomposition of ozone to generate active species. Superoxide radical was confirmed as the main oxidizing species, along with singlet oxygen and ozone molecule oxidation in bulk solution and little contribution of oxidation on the MnO2 surface. Mn(2+) leaching happened during catalytic ozonation, but its catalytic role is negligible. This result may give rise to the preparation of new active MnO2 catalysts.

  11. Cold catalytic recovery of loaded activated carbon using iron oxide-based nanoparticles.

    PubMed

    Bach, Altai; Zelmanov, Grigory; Semiat, Raphael

    2008-01-01

    A novel approach for the recovery of spent activated carbon by an advanced oxidation process using iron oxide-based nanocatalysts was proposed and investigated. Model organic contaminants, such as ethylene glycol and phenol, were chosen for this study as water pollutants. It was shown that there are several advantages in using catalytic oxidation recovery of activated carbon with iron oxide-based nanocatalysts: low temperature reactivity of catalytic recovery without heating; and a relatively large number of adsorption-recovery cycles, without a reduction in the adsorptive properties of the virgin activated carbon or without a performance decrease from the first adsorption-recovery cycle of the new modified adsorptive properties of the activated carbon. The catalytic recovery takes place without ultraviolet light or any visible radiation sources. Results show a high efficiency of catalytic recovery of spent activated carbon using iron oxide-based nanocatalysts. A 97-99% efficiency of spent activated carbon catalytic regeneration was achieved under chosen conditions after 15-20 min of reaction. The process may be also considered as cold in situ recovery of active carbon.

  12. The G-patch protein Spp2 couples the spliceosome-stimulated ATPase activity of the DEAH-box protein Prp2 to catalytic activation of the spliceosome

    PubMed Central

    Warkocki, Zbigniew; Schneider, Cornelius; Mozaffari-Jovin, Sina; Schmitzová, Jana; Höbartner, Claudia

    2015-01-01

    Structural rearrangement of the activated spliceosome (Bact) to yield a catalytically active complex (B*) is mediated by the DEAH-box NTPase Prp2 in cooperation with the G-patch protein Spp2. However, how the energy of ATP hydrolysis by Prp2 is coupled to mechanical work and what role Spp2 plays in this process are unclear. Using a purified splicing system, we demonstrate that Spp2 is not required to recruit Prp2 to its bona fide binding site in the Bact spliceosome. In the absence of Spp2, the Bact spliceosome efficiently triggers Prp2’s NTPase activity, but NTP hydrolysis is not coupled to ribonucleoprotein (RNP) rearrangements leading to catalytic activation of the spliceosome. Transformation of the Bact to the B* spliceosome occurs only when Spp2 is present and is accompanied by dissociation of Prp2 and a reduction in its NTPase activity. In the absence of spliceosomes, Spp2 enhances Prp2’s RNA-dependent ATPase activity without affecting its RNA affinity. Our data suggest that Spp2 plays a major role in coupling Prp2’s ATPase activity to remodeling of the spliceosome into a catalytically active machine. PMID:25561498

  13. Modulation of Tumorigenesis by Dietary Intervention Is Not Mediated by SIRT1 Catalytic Activity

    PubMed Central

    Clark-Knowles, Katherine V.; Dewar-Darch, Danielle; Jardine, Karen E.; McBurney, Michael W.

    2014-01-01

    The protein deacetylase SIRT1 is involved in the regulation of a large number of cellular processes that are thought to be required for cancer initiation and progression. Both SIRT1 activity and tumorigenesis can be influenced by dietary fat and polyphenolics. We set out to determine whether dietary modulations of tumorigenesis are mediated by SIRT1 catalytic functions. We introduced a mammary gland tumor-inducing transgene, MMTV-PyMT, into stocks of mice bearing a H355Y point mutation in the Sirt1 gene that abolishes SIRT1 catalytic activity. Tumor latency was reduced in animals fed a high fat diet but this effect was not dependent on SIRT1 activity. Resveratrol had little effect on tumor formation except in animals heterozygous for the mutant Sirt1 gene. We conclude that the effects of these dietary interventions on tumorigenesis are not mediated by modulation of SIRT1 catalytic activity. PMID:25380034

  14. Removal performance and mechanism of ibuprofen from water by catalytic ozonation using sludge-corncob activated carbon as catalyst.

    PubMed

    Wang, Hongjuan; Zhang, Liqiu; Qi, Fei; Wang, Xue; Li, Lu; Feng, Li

    2014-09-01

    To discover the catalytic activity of sludge-corncob activated carbon in catalytic ozonation of Ibuprofen, the performance of sludge-corncob activated carbon and three selected commercial activated carbons as catalysts in catalytic ozonation was investigated. The observation indicates the degradation rate of Ibuprofen increases significantly in the presence of sludge-corncob activated carbon and the catalytic activity of sludge-corncob activated carbon is much higher than that of the other three commercial activated carbons. Ibuprofen's removal rate follows pseudo-first order kinetics model well. It is also found that the adsorption removal of Ibuprofen by sludge-corncob activated carbon is less than 30% after 40 min. And the removal efficiency of Ibuprofen in the hybrid ozone/sludge-corncob activated carbon system is higher than the sum of sludge-corncob activated carbon adsorption and ozonation alone, which is a supportive evidence for catalytic reaction. In addition, the results of radical scavenger experiments demonstrate that catalytic ozonation of Ibuprofen by sludge-corncob activated carbon follows a hydroxyl radical reaction pathway. During ozonation of Ibuprofen in the presence of activated carbon, ozone could be catalytically decomposed to form hydrogen peroxide, which can promote the formation of hydroxyl radical. The maximum amount of hydrogen peroxide occurs in the presence of sludge-corncob activated carbon, which can explain why sludge-corncob activated carbon has the best catalytic activity among four different activated carbons.

  15. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  16. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  17. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  18. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  19. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively in voting-connected activities. Accordingly, the quoted language should be broadly construed to apply to...

  20. Catalytic activation of carbohydrates as formaldehyde equivalents for Stetter reaction with enones.

    PubMed

    Zhang, Junmin; Xing, Chong; Tiwari, Bhoopendra; Chi, Yonggui Robin

    2013-06-05

    We disclose the first catalytic activation of carbohydrates as formaldehyde equivalents to generate acyl anions as one-carbon nucleophilic units for a Stetter reaction. The activation involves N-heterocyclic carbene (NHC)-catalyzed C-C bond cleavage of carbohydrates via a retro-benzoin-type process to generate the acyl anion intermediates. This Stetter reaction constitutes the first success in generating formal formaldehyde-derived acyl anions as one-carbon nucleophiles for non-self-benzoin processes. The renewable nature of carbohydrates, accessible from biomass, further highlights the practical potential of this fundamentally interesting catalytic activation.

  1. Catalytic activity of titania zirconia mixed oxide catalyst for dimerization eugenol

    NASA Astrophysics Data System (ADS)

    Tursiloadi, S.; Kristiani, A.; Jenie, S. N. Aisyiyah; Laksmono, J. A.

    2017-01-01

    Clove oil has been found to possess antibacterial, antifungal, antiviral, antitumor, antioxidant and insecticidal properties. The major compound of clove oil is eugenol about 49-87%. Eugenol as phenolic compounds exhibits antioxidant and antimicrobial activities. The derivative compound of eugenol, dieugenol, show antioxidant potency better than parent eugenol. A series of TiO2-ZrO2 mixed oxides (TZ) with various titanium contents from 0 to 100wt%, prepared by using sol gel method were tested their catalytic activity for dimerization eugenol, Their catalytic activity show that these catalysts resulted a low yield of dimer eugenol, dieugenol, about 2-9 % and the purity is more than 50%.

  2. All the catalytic active sites of MoS2 for hydrogen evolution

    SciTech Connect

    Li, Guoqing; Zhang, Du; Qiao, Qiao; Yu, Yifei; Peterson, David; Zafar, Abdullah; Kumar, Raj; Curtarolo, Stefano; Hunte, Frank; Shannon, Steve; Zhu, Yimei; Yang, Weitao; Cao, Linyou

    2016-11-29

    MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge sites, sulfur vacancies provide another major active site for the HER, while the catalytic activity of grain boundaries is much weaker. Here, the intrinsic turnover frequencies (Tafel slopes) of the edge sites, sulfur vacancies, and grain boundaries are estimated to be 7.5 s–1 (65–75 mV/dec), 3.2 s–1 (65–85 mV/dec), and 0.1 s–1 (120–160 mV/dec), respectively. We also demonstrate that the catalytic activity of sulfur vacancies strongly depends on the density of the vacancies and the local crystalline structure in proximity to the vacancies. Unlike edge sites, whose catalytic activity linearly depends on the length, sulfur vacancies show optimal catalytic activities when the vacancy density is in the range of 7–10%, and the number of sulfur vacancies in high crystalline quality MoS2 is higher than that in low crystalline quality MoS2, which may be related with the proximity of different local crystalline structures to the vacancies.

  3. Catalase-like and peroxidase-like catalytic activities of silicon nanowire arrays.

    PubMed

    Wang, Hongwei; Jiang, Wenwen; Wang, Yanwei; Liu, Xiaoli; Yao, Jianlin; Yuan, Lin; Wu, Zhaoqiang; Li, Dan; Song, Bo; Chen, Hong

    2013-01-08

    Silicon nanowire arrays (SiNWAs) were found to have catalytic activities similar to those of biological enzymes catalase and peroxidase. Thus not only can these materials catalyze the decomposition reaction of H(2)O(2) into water and oxygen, but they can also catalyze the oxidation of o-phenylenediamine (OPD), a common substrate for peroxidases, by H(2)O(2). The presence of Si-H bonds and the morphology of the SiNWAs are found to be crucial to the occurrence of such catalytic activity. When the SiNWAs are reacted with H(2)O(2), the data from Raman spectroscopy suggests the formation of (Si-H)(2)···(O species) ((Si-H)(2)···Os), which is presumably responsible for the catalytic activity. These findings suggest the potential use of SiNWAs as enzyme mimics in medicine, biotechnology, and environmental chemistry.

  4. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase-5

    NASA Technical Reports Server (NTRS)

    Swingle, M. R.; Honkanen, R.; Ciszak, E. M.

    2004-01-01

    Serinehhreonine protein phosphatase-5 (PP5) affects many signaling networks that regulate cell growth and cellular responses to stress. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 A. From this structure we resolved the mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a con served Aspn-271-M(sub 1):M(sub 2)-W(sup 1)-His-427-His-304-Asp-274 catalytic motif. The structure of PPSc provides a structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  5. The Role of Organic Capping Layers of Platinum Nanoparticles in Catalytic Activity of CO Oxidation

    SciTech Connect

    Park, Jeong Y.; Aliaga, Cesar; Renzas, J. Russell; Lee, Hyunjoo; Somorjai, Gabor A.

    2008-12-17

    We report the catalytic activity of colloid platinum nanoparticles synthesized with different organic capping layers. On the molecular scale, the porous organic layers have open spaces that permit the reactant and product molecules to reach the metal surface. We carried out CO oxidation on several platinum nanoparticle systems capped with various organic molecules to investigate the role of the capping agent on catalytic activity. Platinum colloid nanoparticles with four types of capping layer have been used: TTAB (Tetradecyltrimethylammonium Bromide), HDA (hexadecylamine), HDT (hexadecylthiol), and PVP (poly(vinylpyrrolidone)). The reactivity of the Pt nanoparticles varied by 30%, with higher activity on TTAB coated nanoparticles and lower activity on HDT, while the activation energy remained between 27-28 kcal/mol. In separate experiments, the organic capping layers were partially removed using ultraviolet light-ozone generation techniques, which resulted in increased catalytic activity due to the removal of some of the organic layers. These results indicate that the nature of chemical bonding between organic capping layers and nanoparticle surfaces plays a role in determining the catalytic activity of platinum colloid nanoparticles for carbon monoxide oxidation.

  6. Catalytic activity of metallic nanoisland coatings. The influence of size effects on the recombination properties

    NASA Astrophysics Data System (ADS)

    Tomilina, O. A.; Berzhansky, V. N.; Tomilin, S. V.; Shaposhnikov, A. N.

    2016-08-01

    The results of investigations of the quantum-size effects influence on selective properties of heterogeneous nanocatalysts are presents. As etalon exothermic reaction was used the reaction of atomic hydrogen recombination. The nanostructured Pd and Pt films on Teflon substrate were used as a samples of heterogeneous nanocatalysts. It was shown that for nanoparticles with various sizes the catalytic activity has the periodic dependence. It has been found that for certain sizes of nanoparticles their catalytic activity is less than that of Teflon substrate.

  7. Ag-Fe2O3 nanocomposites with enhanced catalytic activity for reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Liu, Shiben; Chen, Yingjie; Dong, Lifeng

    2016-07-01

    Hybrid nanostructures can be multifunctional and even possess enhanced properties. Ag-Fe2O3 nanocomposites and Ag nanoparticles (NPs) were fabricated and applied to catalyze the reduction of 4-nitrophenol. Compared with Ag NPs, Ag-Fe2O3 nanocomposites demonstrated enhanced catalytic activities. Furthermore, due to their magnetic properties, Ag-Fe2O3 nanocomposites could be easily separated from the reaction mixture and recycled through an external magnetic field. These findings will help us design hybrid nanostructures with catalytic activity and explore other potential applications of magnetic nanocomposites.

  8. Do recreational activities affect coastal biodiversity?

    NASA Astrophysics Data System (ADS)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  9. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol.

    PubMed

    Liou, Rey-May; Chen, Shih-Hsiung

    2009-12-15

    This paper presents an original approach to the removal of phenol in synthetic wastewater by catalytic wet peroxide oxidation with copper binding activated carbon (CuAC) catalysts. The characteristics and oxidation performance of CuAC in the wet hydrogen peroxide catalytic oxidation of phenol were studied in a batch reactor at 80 degrees C. Complete conversion of the oxidant, hydrogen peroxide, was observed with CuAC catalyst in 20 min oxidation, and a highly efficient phenol removal and chemical oxygen demand (COD) abatement were achieved in the first 30 min. The good oxidation performance of CuAC catalyst was contributed to the activity enhancement of copper oxide, which was binding in the carbon matrix. It can be concluded that the efficiency of oxidation dominated by the residual H2O2 in this study. An over 90% COD removal was achieved by using the multiple-step addition in this catalytic oxidation.

  10. Activated carbon and tungsten oxide supported on activated carbon catalysts for toluene catalytic combustion.

    PubMed

    Alvarez-Merino, M A; Ribeiro, M F; Silva, J M; Carrasco-Marín, F; Maldonado-Hódar, F J

    2004-09-01

    We have used activated carbon (AC) prepared from almond shells as a support for tungsten oxide to develop a series of WOx/AC catalysts for the catalytic combustion of toluene. We conducted the reaction between 300 and 350 degrees C, using a flow of 500 ppm of toluene in air and space velocity (GHSV) in the range 4000-7000 h(-1). Results show that AC used as a support is an appropriate material for removing toluene from dilute streams. By decreasing the GHSV and increasing the reaction temperature AC becomes a specific catalyst for the total toluene oxidation (SCO2 = 100%), but in less favorable conditions CO appears as reaction product and toluene-derivative compounds are retained inside the pores. WOx/AC catalysts are more selective to CO2 than AC due to the strong acidity of this oxide; this behavior improves with increased metal loading and reaction temperature and contact time. The catalytic performance depends on the nonstoichiometric tungsten oxide obtained during the pretreatment. In comparison with other supports the WOx/AC catalysts present, at low reaction temperatures, higher activity and selectivity than WO, supported on SiO2, TiO2, Al2O3, or Y zeolite. This is due to the hydrophobic character of the AC surface which prevents the adsorption of water produced from toluene combustion thus avoiding the deactivation of the active centers. However, the use of WOx/AC system is always restricted by its gasification temperature (around 400 degrees C), which limits the ability to increase the conversion values by increasing reaction temperatures.

  11. New potential nonsteroidal anti-inflammatory drugs with antileukotrienic effects: influence on model proteins with catalytic activity.

    PubMed

    Netopilová, Miloslava; Drsata, Jaroslav; Beránek, Martin; Palicka, Vladimír

    2002-01-01

    Unspecific and side effects caused by interaction with proteins belong to common problems of many structures synthesized as potential medicaments. Possible in vitro interactions with proteins of a group of phenylsulfonyl benzoic acid derivatives (VUFB 19363, 19369, 19370, 19371, and 19760) as new potential anti-inflammatory compounds with anti-leukotrienic activities were studied in the present work. Three purified enzymes were used as model proteins with catalytic activities: Pig heart aspartate aminotransferase (AST, EC 2.6.1.1), alanine aminotransferase (ALT, EC 2.6.1.2), and glutamate decarboxylase (GAD, EC 4.1.1.15) from E. coli. Catalytic activities during incubation of individual compounds (6 x 10(-5) M solution to 5 x 10(-2) M suspension) at 37 degrees C with enzymes served as criteria of stability and function of the proteins. No immediate influence of any compound studied on enzyme activities was found. Aminotransferase activities were not affected even during incubation up to 20 d. In the case of GAD, the compounds VUFB 19369, 19370, 19371, and 19760 had stabilizing influence on GAD activity during incubation at enzyme concentrations of 11.25 and 5.62 mg prot/l. The lack of an immediate effect of compounds and the stability of enzymes during incubation them are favorable and support the prospective of the compounds as potential drugs.

  12. Heterologous expression and N-terminal His-tagging processes affect the catalytic properties of staphylococcal lipases: a monolayer study.

    PubMed

    Horchani, Habib; Sabrina, Lignon; Régine, Lebrun; Sayari, Adel; Gargouri, Youssef; Verger, Robert

    2010-10-15

    The interfacial and kinetic properties of wild type, untagged recombinant and tagged recombinant forms of three staphylococcal lipases (SSL, SXL and SAL3) were compared using the monomolecular film technique. A kinetic study on the dependence of the stereoselectivity of these nine lipase forms on the surface pressure was performed using the three dicaprin isomers spread in the form of monomolecular films at the air-water interface. New parameters, termed Recombinant expression Effects on Catalysis (REC), N-Tag Effects on Catalysis (TEC), and N-Tag and Recombinant expression Effects on Catalysis (TREC), were introduced. The findings obtained showed that with all the lipases tested, the recombinant expression process and the N-terminal His-tag slightly affect the sn-1 preference for dicaprin enantiomers as well as the penetration capacity into monomolecular films of phosphatidylcholine but significantly decrease the catalytic rate of hydrolysis of three dicaprin isomers. This rate reduction is more pronounced at high surface pressures, i.e. at low interfacial energies. In conclusion, the effects of the heterologous expression process on the catalytic properties of the staphylococcal lipases are three times more deleterious than the presence of an N-terminal tag extension. In the case of the situation most commonly encountered in the literature, i.e. the heterologous expression of a tagged lipase, the rate of catalysis can be decreased by these processes by 42-83% on average in comparison with the values measured with the corresponding wild type form.

  13. Study of flame quenching and near-wall combustion of lean burn fuel-air mixture in a catalytically activated spark-ignited lean burn engine

    SciTech Connect

    Nedunchezhian, N.; Dhandapani, S.

    2006-01-01

    A study of the catalytic activation of charge near the combustion chamber wall and of the flame quenching phenomenon was carried out to identify whether flame quenches due to catalytic activation or due to thermal quenching. It was found that (1) the diffusion rate of fuel into the boundary sublayer limits the catalytic surface reaction rate during combustion; (2) the results of the present flame quench model indicate that the flame quenches due to the heat loss to walls, and the depletion of fuel due to the catalyst coated on the combustion chamber walls does not affect flame quenching; (3) the catalysts coated on the combustion chamber surface do not contribute increased hydrocarbon emissions, but actually reduce them; (4) each catalyst has a specific surface temperature, at which the Damkoehler number for surface reaction is unity.

  14. HIGH-THROUGHPUT IDENTIFICATION OF CATALYTIC REDOX-ACTIVE CYSTEINE RESIDUES

    EPA Science Inventory

    Cysteine (Cys) residues often play critical roles in proteins; however, identification of their specific functions has been limited to case-by-case experimental approaches. We developed a procedure for high-throughput identification of catalytic redox-active Cys in proteins by se...

  15. Temperature-responsive enzyme-polymer nanoconjugates with enhanced catalytic activities in organic media.

    PubMed

    Zhu, Jingying; Zhang, Yifei; Lu, Diannan; Zare, Richard N; Ge, Jun; Liu, Zheng

    2013-07-11

    A general approach for preparing enzyme-polymer nanoconjugates that respond to temperature in organic media is presented. These nanoconjugates readily dissolve in organic solvents for homogenous catalysis at 40 °C and showed greatly enhanced apparent catalytic activities. The recovery of the soluble enzyme-polymer nanoconjugates is accomplished by temperature-induced precipitation.

  16. Enantioselective Synthesis of a PKC Inhibitor via Catalytic C-HBond Activation

    SciTech Connect

    Wilson, Rebecca M.; Thalji, Reema K.; Bergman, Robert G.; Ellman,Jonathan A.

    2006-02-26

    The syntheses of two biologically active molecules possessing dihydropyrroloindole cores (1 and 2) were completed using rhodium-catalyzed imine-directed C-H bond functionalization, with the second of these molecules containing a stereocenter that can be set with 90% ee during cyclization using chiral nonracemic phosphoramidite ligands. Catalytic decarbonylation and direct indole/maleimide coupling provide efficient access to 2.

  17. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  18. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution

    PubMed Central

    Bergmann, Arno; Martinez-Moreno, Elias; Teschner, Detre; Chernev, Petko; Gliech, Manuel; de Araújo, Jorge Ferreira; Reier, Tobias; Dau, Holger; Strasser, Peter

    2015-01-01

    Water splitting catalysed by earth-abundant materials is pivotal for global-scale production of non-fossil fuels, yet our understanding of the active catalyst structure and reactivity is still insufficient. Here we report on the structurally reversible evolution of crystalline Co3O4 electrocatalysts during oxygen evolution reaction identified using advanced in situ X-ray techniques. At electrode potentials facilitating oxygen evolution, a sub-nanometre shell of the Co3O4 is transformed into an X-ray amorphous CoOx(OH)y which comprises di-μ-oxo-bridged Co3+/4+ ions. Unlike irreversible amorphizations, here, the formation of the catalytically-active layer is reversed by re-crystallization upon return to non-catalytic electrode conditions. The Co3O4 material thus combines the stability advantages of a controlled, stable crystalline material with high catalytic activity, thanks to the structural flexibility of its active amorphous oxides. We propose that crystalline oxides may be tailored for generating reactive amorphous surface layers at catalytic potentials, just to return to their stable crystalline state under rest conditions. PMID:26456525

  19. Modeling the heterogeneous catalytic activity of a single nanoparticle using a first passage time distribution formalism

    NASA Astrophysics Data System (ADS)

    Das, Anusheela; Chaudhury, Srabanti

    2015-11-01

    Metal nanoparticles are heterogeneous catalysts and have a multitude of non-equivalent, catalytic sites on the nanoparticle surface. The product dissociation step in such reaction schemes can follow multiple pathways. Proposed here for the first time is a completely analytical theoretical framework, based on the first passage time distribution, that incorporates the effect of heterogeneity in nanoparticle catalysis explicitly by considering multiple, non-equivalent catalytic sites on the nanoparticle surface. Our results show that in nanoparticle catalysis, the effect of dynamic disorder is manifested even at limiting substrate concentrations in contrast to an enzyme that has only one well-defined active site.

  20. Preparation, characterization, and catalytic activity of zirconocene bridged on surface of silica gel

    NASA Astrophysics Data System (ADS)

    El Majdoub, Lotfia; Shi, Yasai; Yuan, Yuan; Zhou, Annan; Abutartour, Abubaker; Xu, Qinghong

    2015-10-01

    Zirconocene catalyst supported on silica gel was prepared for olefin polymerization by surface modification of calcined silica with SiCl4, and the reaction between the modified silica and cyclopentadienyl sodium and ZrCl4. The catalyst was characterized by using Fourier-transform infrared (FT-IR) spectrometer, thermogravimetric (TG), and differential scanning calorimetric (DSC) analytic spectrometer. It was found that the metallocene structure could be formed and connected on silica surface by chemical bond. Initial catalytic tests showed that the supported metallocene was catalytically active (methylaluminoxane as a cocatalyst), producing polymer with higher molecular weight than the metallocene just immobilized on the surface of silica gel.

  1. Self-propulsion and interactions of catalytic particles in a chemically active medium

    NASA Astrophysics Data System (ADS)

    Banigan, Edward J.; Marko, John F.

    2016-01-01

    Enzymatic "machines," such as catalytic rods or colloids, can self-propel and interact by generating gradients of their substrates. We theoretically investigate the behaviors of such machines in a chemically active environment where their catalytic substrates are continuously synthesized and destroyed, as occurs in living cells. We show how the kinetic properties of the medium modulate self-propulsion and pairwise interactions between machines, with the latter controlled by a tunable characteristic interaction range analogous to the Debye screening length in an electrolytic solution. Finally, we discuss the effective force arising between interacting machines and possible biological applications, such as partitioning of bacterial plasmids.

  2. Solar activity affects avian timing of reproduction

    PubMed Central

    Visser, Marcel E.; Sanz, Juan José

    2009-01-01

    Avian timing of reproduction is strongly affected by ambient temperature. Here we show that there is an additional effect of sunspots on laying date, from five long-term population studies of great and blue tits (Parus major and Cyanistes caeruleus), demonstrating for the first time that solar activity not only has an effect on population numbers but that it also affects the timing of animal behaviour. This effect is statistically independent of ambient temperature. In years with few sunspots, birds initiate laying late while they are often early in years with many sunspots. The sunspot effect may be owing to a crucial difference between the method of temperature measurements by meteorological stations (in the shade) and the temperatures experienced by the birds. A better understanding of the impact of all the thermal components of weather on the phenology of ecosystems is essential when predicting their responses to climate change. PMID:19574283

  3. Activity prediction of substrates in NADH-dependent carbonyl reductase by docking requires catalytic constraints and charge parameterization of catalytic zinc environment

    NASA Astrophysics Data System (ADS)

    Dhoke, Gaurao V.; Loderer, Christoph; Davari, Mehdi D.; Ansorge-Schumacher, Marion; Schwaneberg, Ulrich; Bocola, Marco

    2015-11-01

    Molecular docking of substrates is more challenging compared to inhibitors as the reaction mechanism has to be considered. This becomes more pronounced for zinc-dependent enzymes since the coordination state of the catalytic zinc ion is of greater importance. In order to develop a predictive substrate docking protocol, we have performed molecular docking studies of diketone substrates using the catalytic state of carbonyl reductase 2 from Candida parapsilosis (CPCR2). Different docking protocols using two docking methods (AutoDock Vina and AutoDock4.2) with two different sets of atomic charges (AM1-BCC and HF-RESP) for catalytic zinc environment and substrates as well as two sets of vdW parameters for zinc ion were examined. We have selected the catalytic binding pose of each substrate by applying mechanism based distance criteria. To compare the performance of the docking protocols, the correlation plots for the binding energies of these catalytic poses were obtained against experimental Vmax values of the 11 diketone substrates for CPCR2. The best correlation of 0.73 was achieved with AutoDock4.2 while treating catalytic zinc ion in optimized non-bonded (NBopt) state with +1.01 charge on the zinc ion, compared to 0.36 in non-bonded (+2.00 charge on the zinc ion) state. These results indicate the importance of catalytic constraints and charge parameterization of catalytic zinc environment for the prediction of substrate activity in zinc-dependent enzymes by molecular docking. The developed predictive docking protocol described here is in principle generally applicable for the efficient in silico substrate spectra characterization of zinc-dependent ADH.

  4. Impact of active phase chemical composition and dispersity on catalytic behavior in PROX reaction

    NASA Astrophysics Data System (ADS)

    Cherkezova-Zheleva, Z.; Paneva, D.; Todorova, S.; Kolev, H.; Shopska, M.; Yordanova, I.; Mitov, I.

    2014-04-01

    Iron and iron-platinum catalysts supported on activated carbon have been successfully synthesized by wet impregnation method and low-temperature treatment in inert atmosphere. The content of the supported phases corresponds to 10 wt % Fe and 0.5 wt % Pt. Four catalytic samples were synthesized: Sample A—activated carbon impregnated with Fe nitrate; Sample B—activated carbon impregnated with Pt salt; Sample C—activated carbon impregnated consequently with Fe and Pt salts; Sample D—activated carbon impregnated simultaneously with Fe and Pt salts. The as-prepared materials were characterized by Mössbauer spectroscopy, X-ray diffraction, infrared and X-ray photoelectron spectroscopy. The spectra show that the activated carbon support and the preparation procedure give rise to the synthesis of isolated metal Pt ions and ultradispersed Fe and Pt oxide species. Probably the presence of different functional groups of activated carbon gives rise to registered very high dispersion of loaded species on support. The catalytic tests were carried out in PROX reaction. A lower activity of bimetallic Pt-Fe samples was explained with the increase in surface oxygen species as a result of predomination of iron oxide on the support leading to the increase in selectivity to the H2 oxidation. Partial agglomeration of supported iron oxide phase was registered after catalytic tests.

  5. One-step preparation of magnetic recyclable quinary graphene hydrogels with high catalytic activity.

    PubMed

    Zhang, Junshuai; Yao, Tongjie; Guan, Chenchen; Zhang, Nanxi; Huang, Xin; Cui, Tieyu; Wu, Jie; Zhang, Xiao

    2017-04-01

    Metal nanoparticles (NPs) displayed overwhelming superiority in catalysis towards the corresponding bulk-phase materials; nevertheless, how to further improve catalytic activity was still an ongoing subject. Herein, we have combined one-step redox reaction and following freeze-dried technology to construct the quinary reduced graphene oxide nanosheets (rGS)/Fe2O3-PdPt/polypyrrole (PPy) hydrogels. Compared with traditional catalysts, their catalytic property was improved via two ways: construction of three-dimensional (3D) rGS hydrogels instead of two-dimensional rGS and synthesis of bimetallic alloys instead of monometallic NPs. The highly dispersed PdPt with diameter as small as 3.2nm uniformly loaded on hydrogel surface. Due to special interconnected and porous structure, the reactants were easily adsorbed in hydrogels and contacted with PdPt alloys. To explain the contributions of bimetallic alloys and 3D rGS structure on enhanced catalytic activity, the catalytic property of quinary hydrogels was compared with reference samples. Besides superior activity, they also displayed good reusability, since hydrogels could be magnetically recycled owing to the existence of Fe2O3 NPs.

  6. Enhancing the catalytic activity of hydronium ions through constrained environments

    NASA Astrophysics Data System (ADS)

    Liu, Yuanshuai; Vjunov, Aleksei; Shi, Hui; Eckstein, Sebastian; Camaioni, Donald M.; Mei, Donghai; Baráth, Eszter; Lercher, Johannes A.

    2017-03-01

    The dehydration of alcohols is involved in many organic conversions but has to overcome high free-energy barriers in water. Here we demonstrate that hydronium ions confined in the nanopores of zeolite HBEA catalyse aqueous phase dehydration of cyclohexanol at a rate significantly higher than hydronium ions in water. This rate enhancement is not related to a shift in mechanism; for both cases, the dehydration of cyclohexanol occurs via an E1 mechanism with the cleavage of Cβ-H bond being rate determining. The higher activity of hydronium ions in zeolites is caused by the enhanced association between the hydronium ion and the alcohol, as well as a higher intrinsic rate constant in the constrained environments compared with water. The higher rate constant is caused by a greater entropy of activation rather than a lower enthalpy of activation. These insights should allow us to understand and predict similar processes in confined spaces.

  7. Enhancing the catalytic activity of hydronium ions through constrained environments

    PubMed Central

    Liu, Yuanshuai; Vjunov, Aleksei; Shi, Hui; Eckstein, Sebastian; Camaioni, Donald M.; Mei, Donghai; Baráth, Eszter; Lercher, Johannes A.

    2017-01-01

    The dehydration of alcohols is involved in many organic conversions but has to overcome high free-energy barriers in water. Here we demonstrate that hydronium ions confined in the nanopores of zeolite HBEA catalyse aqueous phase dehydration of cyclohexanol at a rate significantly higher than hydronium ions in water. This rate enhancement is not related to a shift in mechanism; for both cases, the dehydration of cyclohexanol occurs via an E1 mechanism with the cleavage of Cβ–H bond being rate determining. The higher activity of hydronium ions in zeolites is caused by the enhanced association between the hydronium ion and the alcohol, as well as a higher intrinsic rate constant in the constrained environments compared with water. The higher rate constant is caused by a greater entropy of activation rather than a lower enthalpy of activation. These insights should allow us to understand and predict similar processes in confined spaces. PMID:28252021

  8. Engineering a hyper-catalytic enzyme by photo-activated conformation modulation

    SciTech Connect

    Agarwal, Pratul K

    2012-01-01

    Enzyme engineering for improved catalysis has wide implications. We describe a novel chemical modification of Candida antarctica lipase B that allows modulation of the enzyme conformation to promote catalysis. Computational modeling was used to identify dynamical enzyme regions that impact the catalytic mechanism. Surface loop regions located distal to active site but showing dynamical coupling to the reaction were connected by a chemical bridge between Lys136 and Pro192, containing a derivative of azobenzene. The conformational modulation of the enzyme was achieved using two sources of light that alternated the azobenzene moiety in cis and trans conformations. Computational model predicted that mechanical energy from the conformational fluctuations facilitate the reaction in the active-site. The results were consistent with predictions as the activity of the engineered enzyme was found to be enhanced with photoactivation. Preliminary estimations indicate that the engineered enzyme achieved 8-52 fold better catalytic activity than the unmodulated enzyme.

  9. Is Dimerization Required for the Catalytic Activity of Bacterial Biotin Carboxylase?

    SciTech Connect

    Shen,Y.; Chou, C.; Chang, G.; Tong, L.

    2006-01-01

    Acetyl-coenzyme A carboxylases (ACCs) have crucial roles in fatty acid metabolism. The biotin carboxylase (BC) subunit of Escherichia coli ACC is believed to be active only as a dimer, although the crystal structure shows that the active site of each monomer is 25 Angstroms from the dimer interface. We report here biochemical, biophysical, and structural characterizations of BC carrying single-site mutations in the dimer interface. Our studies demonstrate that two of the mutants, R19E and E23R, are monomeric in solution but have only a 3-fold loss in catalytic activity. The crystal structures of the E23R and F363A mutants show that they can still form the correct dimer at high concentrations. Our data suggest that dimerization is not an absolute requirement for the catalytic activity of the E. coli BC subunit, and we propose a new model for the molecular mechanism of action for BC in multisubunit and multidomain ACCs.

  10. A strong support-effect on the catalytic activity of gold nanoparticles for hydrogen peroxide decomposition.

    PubMed

    Naya, Shin-ichi; Teranishi, Miwako; Kimura, Keisuke; Tada, Hiroaki

    2011-03-21

    Catalytic activity of gold nanoparticle (NP)-loaded metal oxide semiconductors (Au/MOs) for H(2)O(2) decomposition and chemoselective oxidation of cinnamyl alcohol to cinnamaldehyde strongly depends on both the kind of the MO-supports and the Au particle size, and Au/SrTiO(3) exhibits an extraordinary high level of activity for the H(2)O(2) decomposition exceeding that of Pt/TiO(2).

  11. Role of hydroxyl groups on the stability and catalytic activity of Au clusters on rutile surface

    SciTech Connect

    Kent, Paul R

    2011-01-01

    Hydroxyls are present as surface terminations of transition metal oxides under ambient conditions and may modify the properties of supported catalysts. We perform first-principles density functional theory calculations to investigate the role of hydroxyls on the catalytic activity of supported gold clusters on TiO{sub 2} (rutile). We find that they have a long-range effect increasing the adhesion of gold clusters on rutile. While hydroxyls make one gold atom more electronegative, a more complex charge-transfer scenario is observed on larger clusters which are important for catalytic applications. This enhances the molecular adsorption and coadsorption energies of CO and O{sub 2}, thereby increasing the catalytic activity of gold clusters for CO oxidation, consistent with reported experiments. Hydroxyls at the interface between gold and rutile surface are most important to this process, even when not directly bound to gold. As such, accurate models of catalytic processes on gold and other catalysts should include the effect of surface hydroxyls.

  12. Spectroscopic properties and the catalytic activity of new organo-lead supramolecular coordination polymer containing quinoxaline

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-din H.; Abdou, Safaa N.

    2015-01-01

    The 3D-supramolecular coordination polymer (SCP) 3∞[ Cu2(CN)3(Me3Pb)(qox)], 1, as the first example of the CuCN SCP containing the (Me3Pb) fragment, was explored to investigate its catalytic and photo-catalytic activities. The structure of 1 contains two chemically identical but crystallographically different [Cu2(CN)3ṡMe3Pbṡqox]2 units with four Cu(I) sites assuming distorted TP-3 geometry. Two non-linear chains of equal abundance are formed producing corrugated parallel chains which are connected laterally by quinoxaline creating 2D-layers which are arranged parallel in an (AB⋯AB⋯AB)n fashion forming 3D-network. IR, mass, electronic absorption and fluorescence spectra are also investigated. The SCP 1 is diamagnetic and exhibits good catalytic and photo-catalytic activities for the degradation of methylene blue (MB). The reaction is first order with respect to MB dye. The irradiation of the reaction with UV-light enhanced the rate of MB mineralization. The efficiency of recycled the 1 and the mechanism of degradation of MB dye were investigated.

  13. An ultra-low Pd loading nanocatalyst with efficient catalytic activity

    NASA Astrophysics Data System (ADS)

    Jin, Yunxia; Xi, Jiangbo; Zhang, Zheye; Xiao, Junwu; Xiao, Fei; Qian, Lihua; Wang, Shuai

    2015-03-01

    An ultra-low Pd loading nanocatalyst is synthesized by a convenient solution route of photochemical reduction and aqueous chemical growth. The modification of nanocatalyst structures is investigated through changing morphologies of Pd nanoclusters on the surface of ZnO nanorods. A significant enhancement in photocatalytic properties has been achieved by decorating a trace amount of Pd clusters (0.05 at%) on the surface of ZnO nanorods. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is applied to demonstrate multiple catalytic activities in the Pd-ZnO hybrid nanocatalyst, which also provides a better understanding of the relationship between the unique nanoconfigured structure and catalytic performance.An ultra-low Pd loading nanocatalyst is synthesized by a convenient solution route of photochemical reduction and aqueous chemical growth. The modification of nanocatalyst structures is investigated through changing morphologies of Pd nanoclusters on the surface of ZnO nanorods. A significant enhancement in photocatalytic properties has been achieved by decorating a trace amount of Pd clusters (0.05 at%) on the surface of ZnO nanorods. The reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) is applied to demonstrate multiple catalytic activities in the Pd-ZnO hybrid nanocatalyst, which also provides a better understanding of the relationship between the unique nanoconfigured structure and catalytic performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00599j

  14. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    SciTech Connect

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  15. Comparative catalytic activity of PET track-etched membranes with embedded silver and gold nanotubes

    NASA Astrophysics Data System (ADS)

    Mashentseva, Anastassiya; Borgekov, Daryn; Kislitsin, Sergey; Zdorovets, Maxim; Migunova, Anastassiya

    2015-12-01

    Irradiated by heavy ions nanoporous polyethylene terephthalate track-etched membranes (PET TeMs) after +15Kr84 ions bombardment (1.75 MeV/nucl with the ion fluency of 1 × 109 cm-2) and sequential etching was applied in this research as a template for development of composites with catalytically enriched properties. A highly ordered silver and gold nanotubes arrays were embedded in 100 nm pores of PET TeMs via electroless deposition technique at 4 °C during 1 h. All "as-prepared" composites were examined for catalytic activity using reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) by sodium borohydride as a common reaction to test metallic nanostructures catalysts. The effect of temperature on the catalytic activity was investigated in range of 292-313 K and activation energy were calculated. Kapp of Ag/PET composites linearly increase with an increase of the temperature thus normal Arrhenius behavior have been seen and the activation energy was calculated to be 42.13 kJ/mol. Au/PET composites exhibit not only more powerful catalytic activity but also non-linear dependence of rate constant from temperature. Kapp increased with increasing temperature throughout the 292-308 K temperature range; the reaction had an activation energy 65.32 kJ/mol. In range 311-313 K rate constant dramatically decreased and the apparent activation energy at this temperature rang was -91.44 kJ/mol due some structural changes, i.e. agglomeration of Au nanoparticles on the surface of composite.

  16. Stability and phase transfer of catalytically active platinum nanoparticle suspensions

    NASA Astrophysics Data System (ADS)

    Sriram, Indira; Curtin, Alexandra E.; Chiaramonti, Ann N.; Cuchiaro, J. Hunter; Weidner, Andrew R.; Tingley, Tegan M.; Greenlee, Lauren F.; Jeerage, Kavita M.

    2015-05-01

    In this work, we present a robust synthesis protocol for platinum nanoparticles that yields a monomodal dispersion of particles that are approximately 100 nm in diameter. We determine that these particles are actually agglomerates of much smaller particles, creating a "raspberry" morphology. We demonstrate that these agglomerates are stable at room temperature for at least 8 weeks by dynamic light scattering. Furthermore, we demonstrate consistent electrocatalytic activity for methanol oxidation. Finally, we quantitatively explore the relationship between dispersion solvent and particle agglomeration; specifically, particles are found to agglomerate abruptly as solvent polarity decreases.

  17. Mechanism of activation of elongation factor Tu by ribosome: catalytic histidine activates GTP by protonation.

    PubMed

    Aleksandrov, Alexey; Field, Martin

    2013-09-01

    Elongation factor Tu (EF-Tu) is central to prokaryotic protein synthesis as it has the role of delivering amino-acylated tRNAs to the ribosome. Release of EF-Tu, after correct binding of the EF-Tu:aa-tRNA complex to the ribosome, is initiated by GTP hydrolysis. This reaction, whose mechanism is uncertain, is catalyzed by EF-Tu, but requires activation by the ribosome. There have been a number of mechanistic proposals, including those spurred by a recent X-ray crystallographic analysis of a ribosome:EF-Tu:aa-tRNA:GTP-analog complex. In this work, we have investigated these and alternative hypotheses, using high-level quantum chemical/molecular mechanical simulations for the wild-type protein and its His85Gln mutant. For both proteins, we find previously unsuggested mechanisms as being preferred, in which residue 85, either His or Gln, directly assists in the reaction. Analysis shows that the RNA has a minor catalytic effect in the wild-type reaction, but plays a significant role in the mutant by greatly stabilizing the reaction's transition state. Given the similarity between EF-Tu and other members of the translational G-protein family, it is likely that these mechanisms of ribosome-activated GTP hydrolysis are pertinent to all of these proteins.

  18. Quantitative and Temporal Requirements Revealed for Zap-70 Catalytic Activity During T Cell Development

    PubMed Central

    Au-Yeung, Byron B.; Melichar, Heather J.; Ross, Jenny O.; Cheng, Debra A.; Zikherman, Julie; Shokat, Kevan M.; Robey, Ellen A.; Weiss, Arthur

    2014-01-01

    The catalytic activity of Zap-70 is crucial for T cell receptor (TCR) signaling, but the quantitative and temporal requirements for its function in thymocyte development are not known. Using a chemical-genetic system to selectively and reversibly inhibit Zap-70 catalytic activity in a model of synchronized thymic selection, we showed that CD4+CD8+ thymocytes integrate multiple, transient, Zap-70-dependent signals over more than 36 h to reach a cumulative threshold for positive selection, whereas one hour of signaling was sufficient for negative selection. Titration of Zap-70 activity resulted in graded reductions in positive and negative selection but did not decrease the cumulative TCR signals integrated by positively selected OT-I cells, revealing heterogeneity, even among CD4+CD8+ thymocytes expressing identical TCRs undergoing positive selection. PMID:24908390

  19. Human platelet heparanase: purification, characterization and catalytic activity.

    PubMed Central

    Freeman, C; Parish, C R

    1998-01-01

    Heparan sulphate (HS) is an important component of the extracellular matrix (ECM) and the vasculature basal lamina (BL) which functions as a barrier to the extravasation of metastatic and inflammatory cells. Platelet-tumour cell aggregation at the capillary endothelium results in activation and degranulation of platelets. Cleavage of HS by endoglycosidase or heparanase activity produced in relatively large amounts by the platelets and the invading cells may assist in the disassembly of the ECM and BL, and thereby facilitate cell migration. Using a recently published rapid, quantitative assay for heparanase activity towards HS [Freeman, C. and Parish, C.R. (1997), Biochem. J., 325, 229-237], human platelet heparanase has now been purified 1700-fold to homogeneity in 19% yield by a five column procedure, which consists of concanavalin A-Sepharose, Zn2+-chelating-Sepharose, Blue A-agarose, octyl-agarose and gel filtration chromatography. The enzyme, which was shown to be an endoglucuronidase that degrades both heparin and HS, has a native molecular mass of 50 kDa when analysed by gel filtration chromatography and by SDS/PAGE. Platelet heparanase degraded porcine mucosal HS in a stepwise fashion from a number average molecular mass of 18.5 to 13, to 8 and finally to 4.5 kDa fragments as determined by gel filtration analysis. Bovine lung heparin was degraded from 8.9 to 4.8 kDa while porcine mucosal heparin was degraded from 8.1 kDa to 3.8 and finally to 2.9 kDa fragments. Studies of the enzyme's substrate specificity using modified heparin analogues showed that substrate cleavage required the presence of carboxyl groups, but O- and N-sulphation were not essential. Inhibition studies demonstrated an absolute requirement for the presence of O-sulphate groups. Platelet heparanase was inhibited by heparin analogues which also inhibited tumour heparanase, suggesting that sulphated polysaccharides which inhibit tumour metastasis may act to prevent both tumour cell and

  20. Isomorphous substitution and the generation of catalytic activity in VPI-5

    SciTech Connect

    Kraushaar-Czarnetzki, B.; Dogterom, R.J.; Stork, W.H.J.; Emeis, K.A.; Van Braam Houckgeest, J.P. ) )

    1993-05-01

    VPI-5 and substituted derivatives containing silicon or magnesium have been synthesized, analyzed, and tested for their catalytic activity. By means of [sup 29]Si solid-state NMR, it could be shown that SAPO-VPI-5 prepared with polyphosphoric acid as a phosphorus source exhibits both [open quotes]silica patches[close quotes] and isolated silicon atoms incorporated in the framework. Broensted acid sites in SAPO-and MAPO-VPI-5 could be detected by means of infrared spectroscopy in combination with pyridine adsorption. The isomorphously substituted VPI-5 samples were active in the hydroconversion of n-heptane, giving both cracking and isomerization products. The highest activity and the highest yield in iso-heptane, however, were observed with AlPO-VPI-5 as a catalyst. The catalytic activity could be ascribed to the presence of unreacted alumina. Upon treatment with an EDTA solution the Al/P atomic ratio decreased from 1.29 to 1.07, and the purified AlPO-VPI-5 showed considerably reduced catalytic activity. 28 refs., 6 figs., 2 tabs.

  1. Polymeric enzyme mimics: catalytic activity of ribose-containing polymers for a phosphate substrate.

    PubMed

    Han, Man Jung; Yoo, Kyung Soo; Kim, Young Heui; Chang, Ji Young

    2003-07-07

    The polymers containing ribose rings: poly(5'-acrylamido-5'-deoxy-1',2'-O-isopropylidene-alpha-D-ribose) (11), poly(5'-acrylamido-5'-deoxy-alpha-D-ribose) (12) and poly(5'-acrylamido-5'-deoxy-1'-O-methyl-D-ribose) (13) were prepared as enzyme mimics. Polymers 12 and 13 with free vic-cis-diol groups catalyzed the hydrolysis of phosphodiester (ethyl p-nitrophenyl phosphate and N-methylpyridinium 4-tert-butylcatechol cyclic phosphate) and phosphomonoester substrates with a rate acceleration of 10 approximately equal to 10(3) compared with the uncatalyzed reaction. They also catalyzed the reverse reactions, i.e., the esterification of phosphomonoester to phosphodiester and the phosphorylation of alcohols with phosphate ions. The catalytic activity was attributable to the vic-cis-diols of riboses on polymer chains, which formed hydrogen bonds with two phosphoryl oxygen atoms of phosphates so as to activate the phosphorus atoms to be attacked by nucleophiles. The catalytic activity was negligible for polymer 11 where vic-cis-diol groups were blocked with isopropylidene groups. The catalytic activity was attributable to the vic-cis-diols of riboses on polymer chains, which formed hydrogen bonds with two phosphoryl oxygen atoms of phosphates so as to activate the phosphorus atoms to be attacked by nucleophiles.

  2. Catalytic oxidation ofS(IV) on activated carbon in aqueous suspension: kinetics and mechanism

    SciTech Connect

    Brodzinsky, R.

    1981-02-01

    Activated carbon and combustion produced soot particles have been studied for their catalytic effect on the oxidation of aqueous sulfur(IV) species. Detailed kinetic studies of the reaction were performed on three different activated carbons and on a soot collected in a highway tunnel. Combustion produced soots were tested for their catalytic behavior and found to be similar to the activated carbons. The reaction rate was found to be linearly dependent on the concentration of carbon particles in the solution. The rate was found to follow a Langmuir adsorption isotherm for its dependence on oxygen and the product of two adsorption isotherms for S(IV). The reaction is independent of the pH of the solution when the pH is below 7.6. The reaction does not occur when the pH is above 7.6. The three aqueous S(IV) species are catalyzed in their oxidation by the carbon particles in a similar manner. Activation energies for the reactions on the different carbons are all about 8.5 kcal/mole. A possible four-step reaction mechanism is proposed. It consists of the adsorption of a dissolved oxygen molecule onto the carbon surface, followed by the adsorption of two S(IV) molecules or ions. These are oxidized on the surface to sulfate, which desorbs from the surface, regenerating the catalytically active site.

  3. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    DOE PAGES

    Graciani, J.; Stacchiola, D.; Yang, F.; ...

    2015-09-09

    Nanostructured RuOx/TiO2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO2(110) to 0.66 eV in RuOx/TiO2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed CO and O species to give CO2more » (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO2(110) to 0.55 eV in RuOx/TiO2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.« less

  4. When ruthenia met titania: Achieving extraordinary catalytic activity at low temperature by nanostructuring of oxides

    SciTech Connect

    Graciani, J.; Stacchiola, D.; Yang, F.; Evans, J.; Vidal, A. B.; Rodriguez, J. A.; Sanz, J. F.

    2015-09-09

    Nanostructured RuOx/TiO2(110) catalysts have a remarkable catalytic activity for CO oxidation at temperatures in the range of 350–375 K. Furthermore, the RuO2(110) surface has no activity. The state-of-the-art DFT calculations indicate that the main reasons for such an impressive improvement in the catalytic activity are: (i) a decrease of the diffusion barrier of adsorbed O atoms by around 40%, from 1.07 eV in RuO2(110) to 0.66 eV in RuOx/TiO2(110), which explains the shift of the activity to lower temperatures and (ii) a lowering of the barrier by 20% for the association of adsorbed CO and O species to give CO2 (the main barrier for the CO oxidation reaction) passing from around 0.7 eV in RuO2(110) to 0.55 eV in RuOx/TiO2(110). We show that the catalytic properties of ruthenia are strongly modified when supported as nanostructures on titania, attaining higher activity at temperatures 100 K lower than that needed for pure ruthenia. As in other systems consisting of ceria nanostructures supported on titania, nanostructured ruthenia shows strongly modified properties compared to the pure oxide, consolidating the fact that the nanostructuring of oxides is a main way to attain higher catalytic activity at lower temperatures.

  5. Rational design of ornithine decarboxylase with high catalytic activity for the production of putrescine.

    PubMed

    Choi, Hyang; Kyeong, Hyun-Ho; Choi, Jung Min; Kim, Hak-Sung

    2014-09-01

    Putrescine finds wide industrial applications in the synthesis of polymers, pharmaceuticals, agrochemicals, and surfactants. Owing to economic and environmental concerns, the microbial production of putrescine has attracted a great deal of attention, and ornithine decarboxylase (ODC) is known to be a key enzyme in the biosynthetic pathway. Herein, we present the design of ODC from Escherichia coli with high catalytic efficiency using a structure-based rational approach. Through a substrate docking into the model structure of the enzyme, we first selected residues that might lead to an increase in catalytic activity. Of the selected residues that are located in the α-helix and the loops constituting the substrate entry site, a mutational analysis of the single mutants identified two key residues, I163 and E165. A combination of two single mutations resulted in a 62.5-fold increase in the catalytic efficiency when compared with the wild-type enzyme. Molecular dynamics simulations of the best mutant revealed that the substrate entry site becomes more flexible through mutations, while stabilizing the formation of the dimeric interface of the enzyme. Our approach can be applied to the design of other decarboxylases with high catalytic efficiency for the production of various chemicals through bio-based processes.

  6. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    SciTech Connect

    Islam, A. E.; Zakharov, D.; Stach, E. A.; Nikoleav, P.; Amama, P. B.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Maruyama, B.

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  7. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    DOE PAGES

    Islam, A. E.; Zakharov, D.; Stach, E. A.; ...

    2015-09-16

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only inmore » the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. As a result, with the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.« less

  8. Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Krajczewski, Jan; Kołątaj, Karol; Kudelski, Andrzej

    2016-12-01

    Previous investigations of hollow platinum nanoparticles have shown that such nanostructures are more active catalysts than their solid counterparts towards the following electrochemical reactions: reduction of oxygen, evolution of hydrogen, and oxidation of borohydride, methanol and formic acid. In this work we show that synthesised using standard galvanic replacement reaction (with Co templates) hollow platinum nanoparticles exhibit enhanced catalytic activity also towards reduction of 4-nitrophenol by sodium borohydride in water. Unlike in the case of procedures involving hollow platinum catalysts employed so far to carry out this reaction it is not necessary to couple analysed platinum nanoparticles to the surface of an electrode. Simplification of the analyzed reaction may eliminate same experimental errors. We found that the enhanced catalytic activity of hollow Pt nanoparticles is not only connected with generally observed larger surface area of hollow nanostructures, but is also due to the contamination of formed hollow nanostructures with cobalt, from which sacrificial templates used in the synthesis of hollow Pt nanostrustures have been formed. Because using sacrificial templates is a typical method of synthesis of hollow metal nanostructures, formed hollow nanoparticles are probably often contaminated, which may significantly influence their catalytic activity.

  9. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  10. Crystal structure of the catalytic domain of human bile salt activated lipase.

    PubMed Central

    Terzyan, S.; Wang, C. S.; Downs, D.; Hunter, B.; Zhang, X. C.

    2000-01-01

    Bile-salt activated lipase (BAL) is a pancreatic enzyme that digests a variety of lipids in the small intestine. A distinct property of BAL is its dependency on bile salts in hydrolyzing substrates of long acyl chains or bulky alcoholic motifs. A crystal structure of the catalytic domain of human BAL (residues 1-538) with two surface mutations (N186D and A298D), which were introduced in attempting to facilitate crystallization, has been determined at 2.3 A resolution. The crystal form belongs to space group P2(1)2(1)2(1) with one monomer per asymmetric unit, and the protein shows an alpha/beta hydrolase fold. In the absence of bound bile salt molecules, the protein possesses a preformed catalytic triad and a functional oxyanion hole. Several surface loops around the active site are mobile, including two loops potentially involved in substrate binding (residues 115-125 and 270-285). PMID:11045623

  11. An improved d-band model of the catalytic activity of magnetic transition metal surfaces

    PubMed Central

    Bhattacharjee, Satadeep; Waghmare, Umesh V.; Lee, Seung-Cheol

    2016-01-01

    The d-band center model of Hammer and Nørskov is widely used in understanding and predicting catalytic activity on transition metal (TM) surfaces. Here, we demonstrate that this model is inadequate for capturing the complete catalytic activity of the magnetically polarized TM surfaces and propose its generalization. We validate the generalized model through comparison of adsorption energies of the NH3 molecule on the surfaces of 3d TMs (V, Cr, Mn, Fe, Co, Ni, Cu and Zn) determined with spin-polarized density functional theory (DFT)-based methods with the predictions of our model. Compared to the conventional d-band model, where the nature of the metal-adsorbate interaction is entirely determined through the energy and the occupation of the d-band center, we emphasize that for the surfaces with high spin polarization, the metal-adsorbate system can be stabilized through a competition of the spin-dependent metal-adsorbate interactions. PMID:27808100

  12. An improved d-band model of the catalytic activity of magnetic transition metal surfaces

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Satadeep; Waghmare, Umesh V.; Lee, Seung-Cheol

    2016-11-01

    The d-band center model of Hammer and Nørskov is widely used in understanding and predicting catalytic activity on transition metal (TM) surfaces. Here, we demonstrate that this model is inadequate for capturing the complete catalytic activity of the magnetically polarized TM surfaces and propose its generalization. We validate the generalized model through comparison of adsorption energies of the NH3 molecule on the surfaces of 3d TMs (V, Cr, Mn, Fe, Co, Ni, Cu and Zn) determined with spin-polarized density functional theory (DFT)-based methods with the predictions of our model. Compared to the conventional d-band model, where the nature of the metal-adsorbate interaction is entirely determined through the energy and the occupation of the d-band center, we emphasize that for the surfaces with high spin polarization, the metal-adsorbate system can be stabilized through a competition of the spin-dependent metal-adsorbate interactions.

  13. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold

    NASA Astrophysics Data System (ADS)

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-01

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  14. Twinning in fcc lattice creates low-coordinated catalytically active sites in porous gold.

    PubMed

    Krajčí, Marian; Kameoka, Satoshi; Tsai, An-Pang

    2016-08-28

    We describe a new mechanism for creation of catalytically active sites in porous gold. Samples of porous gold prepared by de-alloying Al2Au exhibit a clear correlation between the catalytic reactivity towards CO oxidation and structural defects in the fcc lattice of Au. We have found that on the stepped {211} surfaces quite common twin boundary defects in the bulk structure of porous gold can form long close-packed rows of atoms with the coordination number CN = 6. DFT calculations confirm that on these low-coordinated Au sites dioxygen chemisorbs and CO oxidation can proceed via the Langmuir-Hinshelwood mechanism with the activation energy of 37 kJ/mol or via the CO-OO intermediate with the energy barrier of 19 kJ/mol. The existence of the twins in porous gold is stabilized by the surface energy.

  15. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging.

    PubMed

    He, Weiwei; Zhou, Yu-Ting; Wamer, Wayne G; Hu, Xiaona; Wu, Xiaochun; Zheng, Zhi; Boudreau, Mary D; Yin, Jun-Jie

    2013-01-01

    Gold nanoparticles have received a great deal of interest due to their unique optical and catalytic properties and biomedical applications. Developing applications as well as assessing associated risks requires an understanding of the interactions between Au nanoparticles (NPs) and biologically active substances. In this paper, electron spin resonance spectroscopy (ESR) was used to investigate the catalytic activity of Au NPs in biologically relevant reactions. We report here that Au NPs can catalyze the rapid decomposition of hydrogen peroxide. Decomposition of hydrogen peroxide is accompanied by the formation of hydroxyl radicals at lower pH and oxygen at higher pH. In addition, we found that, mimicking SOD, Au NPs efficiently catalyze the decomposition of superoxide. These results demonstrate that Au NPs can act as SOD and catalase mimetics. Since reactive oxygen species are biologically relevant products being continuously generated in cells, these results obtained under conditions resembling different biological microenvironments may provide insights for evaluating risks associated with Au NPs.

  16. High catalytic activity of anatase titanium dioxide for decomposition of electrolyte solution in lithium ion battery

    NASA Astrophysics Data System (ADS)

    Liu, Ming; He, Yan-Bing; Lv, Wei; Zhang, Chen; Du, Hongda; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2014-12-01

    It has been indicated that anatase TiO2 is a promising anode material for lithium ion power battery from many previous researches. Whereas, in this work, we find that the anatase TiO2, when used as an anode for lithium ion battery, has high catalytic activity to initiate the decarboxylation reaction of electrolyte solution, resulting in the large generation of sole gaseous component, CO2. The ROLi species and the new phase of flake-like Li2TiF6 material are the main reaction products between anatase TiO2 and LiPF6 based electrolyte solution. This work provides important and urgent information that the surface chemistry of anatase TiO2 used as the anode material of lithium ion battery must be modified to suppress its catalytic activity for the decomposition of solvents.

  17. Catalytically Active and Spectator Ce(3+) in Ceria-Supported Metal Catalysts.

    PubMed

    Kopelent, René; van Bokhoven, Jeroen A; Szlachetko, Jakub; Edebeli, Jacinta; Paun, Cristina; Nachtegaal, Maarten; Safonova, Olga V

    2015-07-20

    Identification of active species and the rate-determining reaction steps are crucial for optimizing the performance of oxygen-storage materials, which play an important role in catalysts lowering automotive emissions, as electrode materials for fuel cells, and as antioxidants in biomedicine. We demonstrated that active Ce(3+) species in a ceria-supported platinum catalyst during CO oxidation are short-lived and therefore cannot be observed under steady-state conditions. Using time-resolved resonant X-ray emission spectroscopy, we quantitatively correlated the initial rate of Ce(3+) formation under transient conditions to the overall rate of CO oxidation under steady-state conditions and showed that ceria reduction is a kinetically relevant step in CO oxidation, whereas a fraction of Ce(3+) was present as spectators. This approach can be applied to various catalytic processes involving oxygen-storage materials and reducible oxides to distinguish between redox and nonredox catalytic mechanisms.

  18. A Disintegrin and Metalloproteinase with Thrombospondin Motifs-5 (ADAMTS-5) Forms Catalytically Active Oligomers*

    PubMed Central

    Kosasih, Hansen J.; Last, Karena; Rogerson, Fraser M.; Golub, Suzanne B.; Gauci, Stephanie J.; Russo, Vincenzo C.; Stanton, Heather; Wilson, Richard; Lamande, Shireen R.; Holden, Paul; Fosang, Amanda J.

    2016-01-01

    The metalloproteinase ADAMTS-5 (A disintegrin and metalloproteinase with thrombospondin motifs) degrades aggrecan, a proteoglycan essential for cartilage structure and function. ADAMTS-5 is the major aggrecanase in mouse cartilage, and is also likely to be the major aggrecanase in humans. ADAMTS-5 is a multidomain enzyme, but the function of the C-terminal ancillary domains is poorly understood. We show that mutant ADAMTS-5 lacking the catalytic domain, but with a full suite of ancillary domains inhibits wild type ADAMTS activity, in vitro and in vivo, in a dominant-negative manner. The data suggest that mutant ADAMTS-5 binds to wild type ADAMTS-5; thus we tested the hypothesis that ADAMTS-5 associates to form oligomers. Co-elution, competition, and in situ PLA experiments using full-length and truncated recombinant ADAMTS-5 confirmed that ADAMTS-5 molecules interact, and showed that the catalytic and disintegrin-like domains support these intermolecular interactions. Cross-linking experiments revealed that recombinant ADAMTS-5 formed large, reduction-sensitive oligomers with a nominal molecular mass of ∼400 kDa. The oligomers were unimolecular and proteolytically active. ADAMTS-5 truncates comprising the disintegrin and/or catalytic domains were able to competitively block full-length ADAMTS-5-mediated aggrecan cleavage, measured by production of the G1-EGE373 neoepitope. These results show that ADAMTS-5 oligomerization is required for full aggrecanase activity, and they provide evidence that blocking oligomerization inhibits ADAMTS-5 activity. The data identify the surface provided by the catalytic and disintegrin-like domains of ADAMTS-5 as a legitimate target for the design of aggrecanase inhibitors. PMID:26668318

  19. New water-soluble Mn-porphyrin with catalytic activity for superoxide dismutation and peroxynitrite decomposition.

    PubMed

    Asayama, Shoichiro; Nakajima, Takumi; Kawakami, Hiroyoshi

    2011-07-01

    We have synthesized a new water-soluble cationic Mn-porphyrin with catalytic activity for both superoxide dismutation and peroxynitrite decomposition. The resulting Mn-porphyrin also showed higher stability for reactive oxygen species such as hydrogen peroxide and lower cytotoxicity, when compared with a control normal Mn-porphyrin. Furthermore, the new porphyrin recovered the viability of lipopolysaccharide-stimulated macrophage RAW 264.7 cells but the control Mn-porphyrin did not.

  20. Methods and apparatuses for preparing a surface to have catalytic activity

    DOEpatents

    Cooks, Robert G.; Peng, Wen-Ping; Ouyang, Zheng; Goodwin, Michael P.

    2011-03-22

    The invention provides methods and apparatuses that utilize mass spectrometry for preparation of a surface to have catalytic activity through molecular soft-landing of mass selected ions. Mass spectrometry is used to generate combinations of atoms in a particular geometrical arrangement, and ion soft-landing selects this molecular entity or combination of entities and gently deposits the entity or combination intact onto a surface.

  1. Synthesis of Pt-Mo-N Thin Film and Catalytic Activity for Fuel Cells

    SciTech Connect

    Miura, Akira; Tague, Michele E.; Gregoire, John M.; Wen, Xiao-Dong; van Dover, R. Bruce; Abruña, Héctor D.; DiSalvo, Francis J.

    2010-05-13

    Pt-Mo-N composition gradient film was synthesized by combining thin-film deposition techniques and subsequent thermal nitridation. A ternary platinum-based nitride, Pt2Mo3N, showed catalytic activities for fuel cell applications and higher electrochemical stability when it was compared with a PtMo alloy with the same Pt:Mo ratio.

  2. Hierarchically nanoporous ceria nanoparticles with a high-surface area: synthesis, characterization, and their catalytic activity.

    PubMed

    Ge, Jiechao; Zhong, Liangshu; Zhuo, Linhai; Tang, Bo; Song, Weiguo

    2011-01-01

    A redox route based on ethylene glycol mediated process was developed to synthesize hierarchically nanoporpous ceria nanoparticles (ceria HNPNPs). The synthesized ceria HNPNPs are composed of building blocks fabricated with cubic ceria nanocrystals of several nanometers in diameter. Scanning electron microscopy was performed to investigate the evolution process of ceria precursor, and a two-step growth process was suggested for the morphology evolution. The synthesized ceria HNPNPs exhibit high surface area, which lead to high catalytic activity for CO oxidation.

  3. A microreactor array for spatially resolved measurement of catalytic activity for high-throughput catalysis science

    SciTech Connect

    Kondratyuk, Petro; Gumuslu, Gamze; Shukla, Shantanu; Miller, James B; Morreale, Bryan D; Gellman, Andrew J

    2013-04-01

    We describe a 100 channel microreactor array capable of spatially resolved measurement of catalytic activity across the surface of a flat substrate. When used in conjunction with a composition spread alloy film (CSAF, e.g. Pd{sub x}Cu{sub y}Au{sub 1-x-y}) across which component concentrations vary smoothly, such measurements permit high-throughput analysis of catalytic activity and selectivity as a function of catalyst composition. In the reported implementation, the system achieves spatial resolution of 1 mm{sup 2} over a 10×10 mm{sup 2} area. During operation, the reactant gases are delivered at constant flow rate to 100 points of differing composition on the CSAF surface by means of a 100-channel microfluidic device. After coming into contact with the CSAF catalyst surface, the product gas mixture from each of the 100 points is withdrawn separately through a set of 100 isolated channels for analysis using a mass spectrometer. We demonstrate the operation of the device on a Pd{sub x}Cu{sub y}Au{sub 1-x-y} CSAF catalyzing the H{sub 2}-D{sub 2} exchange reaction at 333 K. In essentially a single experiment, we measured the catalytic activity over a broad swathe of concentrations from the ternary composition space of the Pd{sub x}Cu{sub y}Au{sub 1-x-y} alloy.

  4. Insight into the Mechanism of Intramolecular Inhibition of the Catalytic Activity of Sirtuin 2 (SIRT2).

    PubMed

    Li, Jinyu; Flick, Franziska; Verheugd, Patricia; Carloni, Paolo; Lüscher, Bernhard; Rossetti, Giulia

    2015-01-01

    Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase that has been associated with neurodegeneration and cancer. SIRT2 is composed of a central catalytic domain, the structure of which has been solved, and N- and C-terminal extensions that are thought to control SIRT2 function. However structural information of these N- and C-terminal regions is missing. Here, we provide the first full-length molecular models of SIRT2 in the absence and presence of NAD+. We also predict the structural alterations associated with phosphorylation of SIRT2 at S331, a modification that inhibits catalytic activity. Bioinformatics tools and molecular dynamics simulations, complemented by in vitro deacetylation assays, provide a consistent picture based on which the C-terminal region of SIRT2 is suggested to function as an autoinhibitory region. This has the capacity to partially occlude the NAD+ binding pocket or stabilize the NAD+ in a non-productive state. Furthermore, our simulations suggest that the phosphorylation at S331 causes large conformational changes in the C-terminal region that enhance the autoinhibitory activity, consistent with our previous findings that phosphorylation of S331 by cyclin-dependent kinases inhibits SIRT2 catalytic activity. The molecular insight into the role of the C-terminal region in controlling SIRT2 function described in this study may be useful for future design of selective inhibitors targeting SIRT2 for therapeutic applications.

  5. Supercritical CO{sub 2} mediated synthesis and catalytic activity of graphene/Pd nanocomposites

    SciTech Connect

    Tang, Lulu; Nguyen, Van Hoa; Shim, Jae-Jin

    2015-11-15

    Highlights: • RGO/Pd composite was efficiently prepared via a facile method in supercritical CO{sub 2}. • Graphene sheets were coated uniformly with Pd nanoparticles with a size of ∼8 nm. • Composites exhibited excellent catalytic activity in the Suzuki reaction even after 10 cycles. - Abstract: Graphene sheets were decorated with palladium nanoparticles using a facile and efficient method in supercritical CO{sub 2}. The nanoparticles were formed on the graphene sheets by the simple hydrogen reduction of palladium(II) hexafluoroacetylacetonate precursor in supercritical CO{sub 2}. The product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Highly dispersed nanoparticles with various sizes and shapes adhered well to the graphene sheets. The composites showed high catalytic activities for the Suzuki reaction under aqueous and aerobic conditions within 5 min. The effects of the different Pd precursor loadings on the catalytic activities of the composites were also examined.

  6. Catalytic activity of human carbonic anhydrase isoform IX is displayed both extra- and intracellularly.

    PubMed

    Klier, Michael; Jamali, Somayeh; Ames, Samantha; Schneider, Hans-Peter; Becker, Holger M; Deitmer, Joachim W

    2016-01-01

    Most carbonic anhydrases catalyse the reversible conversion of carbon dioxide to protons and bicarbonate, either as soluble cytosolic enzymes, in or at intracellular organelles, or at the extracellular face of the cell membrane as membrane-anchored proteins. Carbonic anhydrase isoform IX (CA IX), a membrane-bound enzyme with catalytic activity at the extracellular membrane surface, has come to prominence in recent years because of its association with hypoxic tissue, particularly tumours, often indicating poor prognosis. We have evaluated the catalytic activity of CA IX heterologously expressed in Xenopus laevis oocytes by measuring the amplitude and rate of cytosolic pH changes as well as pH changes at the outer membrane surface (pHs ) during addition and removal of 5% CO2 /25 mm HCO3-, and by mass spectrometry. Our results indicate both extracellular and intracellular catalytic activity of CA IX. Reduced rates of CO2 -dependent intracellular pH changes after knockdown of CA IX confirmed these findings in two breast cancer cell lines: MCF-7 and MDA-MB-231. Our results demonstrate a new function of CA IX that may be important in the search for therapeutic cancer drugs targeting CA IX.

  7. Silver residues as a possible key to a remarkable oxidative catalytic activity of nanoporous gold.

    PubMed

    Moskaleva, Lyudmila V; Röhe, Sarah; Wittstock, Arne; Zielasek, Volkmar; Klüner, Thorsten; Neyman, Konstantin M; Bäumer, Marcus

    2011-03-14

    Recently, several forms of unsupported gold were shown to display a remarkable activity to catalyze oxidation reactions. Experimental evidence points to the crucial role of residual silver present in very small concentrations in these novel catalysts. We focus on the catalytic properties of nanoporous gold (np-Au) foams probed via CO and oxygen adsorption/co-adsorption. Experimental results are analyzed using theoretical models represented by the flat Au(111) and the kinked Au(321) slabs with Ag impurities. We show that Ag atoms incorporated into gold surfaces can facilitate the adsorption and dissociation of molecular oxygen on them. CO adsorbed on top of 6-fold coordinated Au atoms can in turn be stabilized by co-adsorbed atomic oxygen by up to 0.2 eV with respect to the clean unsubstituted gold surface. Our experiments suggest a linking of that most strongly bound CO adsorption state to the catalytic activity of np-Au. Thus, our results shed light on the role of silver admixtures in the striking catalytic activity of unsupported gold nanostructures.

  8. Catalytic activity of rhodium complex immobilized on AN-31 ion exchanger

    SciTech Connect

    Parshikova, G.N.; Korneva, L.I.; Kononov, Yu.S.

    1995-08-10

    Immobilized platinum-metal complexes are of interest as heterogeneous catalysts. Ion-exchange resins may be used as supports for catalytically active complexes. However, immobilized metal complexes are often unstable, are washed out from supports, and are lost with reaction products. Secure immobilization of metal complexes on supports is possible, for example, via coordination of the central metal by electron-donor groups of the support. This is the case when platinum metals are sorbed from solutions by nitrogen-containing ion exchangers. Complexes thus immobilized have high catalytic activity. Previously the authors demonstrated that rhodium(III) is sorbed from solutions containing rhodium aqua-chloro complexes as stable complexes with AN-31. These complexes were not desorbed with 10 M hydrochloric acid. Stable amino complexes of transition metals sorbed on ion exchangers are known to be active in decomposition of hydrogen peroxide. In this work, the authors have studied catalytic properties of rhodium complex with the ion exchanger under atmospheric pressure at 25-80{degrees}C.

  9. Direct Visualization of Catalytically Active Sites at the FeO-Pt(111) Interface

    SciTech Connect

    Kudernatsch, Wilhelmine; Peng, Guowen; Zeuthen, Helene; Bai, Yunhai; Merte, L. R.; Lammich, Lutz; Besenbacher, Fleming; Mavrikakis, Manos; Wendt, Stefen

    2015-08-25

    Within the area of surface science, one of the “holy grails” is to directly visualize a chemical reaction at the atomic scale. Whereas this goal has been reached by high-resolution scanning tunneling microscopy (STM) in a number of cases for reactions occurring at flat surfaces, such a direct view is often inhibited for reaction occurring at steps and interfaces. Here we have studied the CO oxidation reaction at the interface between ultrathin FeO islands and a Pt(111) support by in situ STM and density functional theory (DFT) calculations. Time-lapsed STM imaging on this inverse model catalyst in O2 and CO environments revealed catalytic activity occurring at the FeO-Pt(111) interface and directly showed that the Fe-edges host the catalytically most active sites for the CO oxidation reaction. This is an important result since previous evidence for the catalytic activity of the FeO-Pt(111) interface is essentially based on averaging techniques in conjunction with DFT calculations. The presented STM results are in accord with DFTþU calculations, in which we compare possible CO oxidation pathways on oxidized Fe-edges and O-edges. We found that the CO oxidation reaction is more favorable on the oxidized Fe-edges, both thermodynamically and kinetically.

  10. Direct Single-Enzyme Biomineralization of Catalytically Active Ceria and Ceria-Zirconia Nanocrystals.

    PubMed

    Curran, Christopher D; Lu, Li; Jia, Yue; Kiely, Christopher J; Berger, Bryan W; McIntosh, Steven

    2017-02-21

    Biomineralization is an intriguing approach to the synthesis of functional inorganic materials for energy applications whereby biological systems are engineered to mineralize inorganic materials and control their structure over multiple length scales under mild reaction conditions. Herein we demonstrate a single-enzyme-mediated biomineralization route to synthesize crystalline, catalytically active, quantum-confined ceria (CeO2-x) and ceria-zirconia (Ce1-yZryO2-x) nanocrystals for application as environmental catalysts. In contrast to typical anthropogenic synthesis routes, the crystalline oxide nanoparticles are formed at room temperature from an otherwise inert aqueous solution without the addition of a precipitant or additional reactant. An engineered form of silicatein, rCeSi, as a single enzyme not only catalyzes the direct biomineralization of the nanocrystalline oxides but also serves as a templating agent to control their morphological structure. The biomineralized nanocrystals of less than 3 nm in diameter are catalytically active toward carbon monoxide oxidation following an oxidative annealing step to remove carbonaceous residue. The introduction of zirconia into the nanocrystals leads to an increase in Ce(III) concentration, associated catalytic activity, and the thermal stability of the nanocrystals.

  11. [Role of antioxidants in electro catalytic activity of cytochrome P450 3A4].

    PubMed

    Shumiantseva, V V; Makhova, A A; Bulko, T V; Shikh, E V; Kukes, V G; Usanov, S A; Archakov, A I

    2014-01-01

    The electrochemical analysis of cytochrome Р450 3А4 catalytic activity has shown that vitamins C, A and Е influence on electron transfer and Fe3+/Fe2+ reduction process of cytochrome Р450 3А4. These data allow to assume possibility of cross effects and interference of vitamins-antioxidants with drugs metabolised by cytochrome Р450 3А4, at carrying out of complex therapy. This class of vitamins shows antioxidant properties that lead to increase of the cathodic current corresponding to heme reduction of this functionally significant haemoprotein. Ascorbic acid of 0.028-0.56 mM concentration stimulates cathodic peak (an electrochemical signal) of cytochrome Р450 3А4. At the presence of diclofenac (Voltaren) - a typical substrate of cytochrome Р450 3А4 - the increase growth of a catalytic current testifying to an electrocatalysis and stimulating action of ascorbic acid is observed. In the presence of vitamins A and Е also is registered dose-dependent (in a range of 10-100 M) increase in a catalytic current of cytochrome Р450 3А4: the maximum increase corresponds to 229 ± 20% for 100 M of vitamin A, and 162±10% for 100 M of vitamin E. Vitamin E in the presence of P450's inhibitor itraconazole doesn't give essential increase in a reductive current, unlike retinol (vitamin A). This effect can manifest substrate properties of tocopherol (vitamin E). The electrochemical approach for the analysis of catalytic activity of cytochrome Р450 3А4 and studies of influence of biologically active compounds on an electrocatalysis is the sensitive and effective sensor approach, allowing to use low concentration of protein on an electrode (till 10-15 mol/electrode), to carry out the analysis without participation of protein redox partners, and to reveal drug-drug or drug-vitamins interaction in pre-clinical experiments.

  12. Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89

    SciTech Connect

    Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip

    2013-02-15

    Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements of CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.

  13. Structural and Biochemical Characterization of an Active Arylamine N-Acetyltransferase Possessing a Non-canonical Cys-His-Glu Catalytic Triad*

    PubMed Central

    Kubiak, Xavier; Li de la Sierra-Gallay, Inès; Chaffotte, Alain F.; Pluvinage, Benjamin; Weber, Patrick; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2013-01-01

    Arylamine N-acetyltransferases (NATs), a class of xenobiotic-metabolizing enzymes, catalyze the acetylation of aromatic amine compounds through a strictly conserved Cys-His-Asp catalytic triad. Each residue is essential for catalysis in both prokaryotic and eukaryotic NATs. Indeed, in (HUMAN)NAT2 variants, mutation of the Asp residue to Asn, Gln, or Glu dramatically impairs enzyme activity. However, a putative atypical NAT harboring a catalytic triad Glu residue was recently identified in Bacillus cereus ((BACCR)NAT3) but has not yet been characterized. We report here the crystal structure and functional characterization of this atypical NAT. The overall fold of (BACCR)NAT3 and the geometry of its Cys-His-Glu catalytic triad are similar to those present in functional NATs. Importantly, the enzyme was found to be active and to acetylate prototypic arylamine NAT substrates. In contrast to (HUMAN) NAT2, the presence of a Glu or Asp in the triad of (BACCR)NAT3 did not significantly affect enzyme structure or function. Computational analysis identified differences in residue packing and steric constraints in the active site of (BACCR)NAT3 that allow it to accommodate a Cys-His-Glu triad. These findings overturn the conventional view, demonstrating that the catalytic triad of this family of acetyltransferases is plastic. Moreover, they highlight the need for further study of the evolutionary history of NATs and the functional significance of the predominant Cys-His-Asp triad in both prokaryotic and eukaryotic forms. PMID:23770703

  14. Observation of different catalytic activity of various 1-olefins during ethylene/1-olefin copolymerization with homogeneous metallocene catalysts.

    PubMed

    Wannaborworn, Mingkwan; Praserthdam, Piyasan; Jongsomjit, Bunjerd

    2011-01-07

    This research aimed to investigate the copolymerization of ethylene and various 1-olefins. The comonomer lengths were varied from 1-hexene (1-C₆) up to 1-octadecene (1-C₁₈) in order to study the effect of comonomer chain length on the activity and properties of the polymer in the metallocene/MAO catalyst system. The results indicated that two distinct cases can be described for the effect of 1-olefin chain length on the activity. Considering the short chain length comonomers, such as 1-hexene, 1-octene and 1-decene, it is obvious that the polymerization activity decreased when the length of comonomer was higher, which is probably due to increased steric hindrance at the catalytic center hindering the insertion of ethylene monomer to the active sites, hence, the polymerization rate decreased. On the contrary, for the longer chain 1-olefins, namely 1-dodecene, 1-tetradecene and 1-octadecene, an increase in the comonomer chain length resulted in better activity due to the opening of the gap aperture between C(p)(centroid)-M-C(p)-(centroid), which forced the coordination site to open more. This effect facilitated the polymerization of the ethylene monomer at the catalytic sites, and thus, the activity increased. The copolymers obtained were further characterized using thermal analysis, X-ray diffraction spectroscopy and ¹³C-NMR techniques. It could be seen that the melting temperature and comonomer distribution were not affected by the 1-olefin chain length. The polymer crystallinity decreased slightly with increasing comonomer chain length. Moreover, all the synthesized polymers were typical LLDPE having random comonomer distribution.

  15. Activity and hydrothermal stability of CeO₂-ZrO₂-WO₃ for the selective catalytic reduction of NOx with NH₃.

    PubMed

    Song, Zhongxian; Ning, Ping; Zhang, Qiulin; Li, Hao; Zhang, Jinhui; Wang, Yancai; Liu, Xin; Huang, Zhenzhen

    2016-04-01

    A series of CeO2-ZrO2-WO3 (CZW) catalysts prepared by a hydrothermal synthesis method showed excellent catalytic activity for selective catalytic reduction (SCR) of NO with NH3 over a wide temperature of 150-550°C. The effect of hydrothermal treatment of CZW catalysts on SCR activity was investigated in the presence of 10% H2O. The fresh catalyst showed above 90% NOx conversion at 201-459°C, which is applicable to diesel exhaust NOx purification (200-440°C). The SCR activity results indicated that hydrothermal aging decreased the SCR activity of CZW at low temperatures (below 300°C), while the activity was notably enhanced at high temperature (above 450°C). The aged CZW catalyst (hydrothermal aging at 700°C for 8 hr) showed almost 80% NOx conversion at 229-550°C, while the V2O5-WO3/TiO2 catalyst presented above 80% NOx conversion at 308-370°C. The effect of structural changes, acidity, and redox properties of CZW on the SCR activity was investigated. The results indicated that the excellent hydrothermal stability of CZW was mainly due to the CeO2-ZrO2 solid solution, amorphous WO3 phase and optimal acidity. In addition, the formation of WO3 clusters increased in size as the hydrothermal aging temperature increased, resulting in the collapse of structure, which could further affect the acidity and redox properties.

  16. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films

    SciTech Connect

    Al-Ghamdi, Attieh A.; Abdel-wahab, M. Sh.; Farghali, A.A.; Hasan, P.M.Z.

    2016-03-15

    Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and optical characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.

  17. Tough and catalytically active hybrid biofibers wet-spun from nanochitin hydrogels.

    PubMed

    Das, Paramita; Heuser, Thomas; Wolf, Andrea; Zhu, Baolei; Demco, Dan Eugen; Ifuku, Shinsuke; Walther, Andreas

    2012-12-10

    Sustainable alternatives for high-performance and functional materials based on renewable resources are intensely needed as future alternatives for present-day, fossil-based materials. Nanochitin represents an emerging class of highly crystalline bionanoparticles with high intrinsic mechanical properties and the ability for conjugation into functional materials owing to reactive amine and hydroxyl groups. Herein we demonstrate that hydrogels containing surface-deacetylated chitin nanofibrils of micrometer length and average diameters of 9 nm, as imaged by cryogenic transmission electron microscopy, can be wet-spun into macrofibers via extrusion in a coagulation bath, a simple low energy and large-scale processing route. The resulting biofibers display attractive mechanical properties with a large plastic region of about 12% in strain, in which frictional sliding of nanofibrils allows dissipation of fracture energy and enables a high work-of-fracture of near 10 MJ/m3. We further show how to add functionality to these macrofibers by exploiting the amine functions of the surface chitosan groups to host catalytically active noble metal nanoparticles, furnishing biobased, renewable catalytic hybrids. These inorganic/organic macrofibers can be used repeatedly for fast catalytic reductions of model compounds without loss of activity, rendering the concept of hybridized chitin materials interesting as novel bioderived supports for nanoparticle catalysts.

  18. Preparation of aluminum-containing mesoporous silica with hierarchical macroporous architecture and its enhanced catalytic activities.

    PubMed

    Kamegawa, Takashi; Tanaka, Shota; Seto, Hiroki; Zhou, Dayang; Yamashita, Hiromi

    2013-08-28

    Aluminum-containing mesoporous silica with hierarchical macroporous architecture (Al-MMS) was successfully prepared using a solvent evaporation method through the combination of precursor solution for synthesis of Al-containing mesoporous silica (Al-MS) and poly(methyl methacrylate) (PMMA) colloidal crystals as a hard template. The porous structure and the state of aluminum were investigated using various characterization techniques. The construction of combined structure of Al-MMS, i.e., hierarchical macroporous architecture consisting of thin mesoporous silica frameworks, led to the formation of many mesopore entrances and the shortening of the mesoporous channels. In the tetrahydropyranylation of linear alcohols with dihydropyran (DHP), Al-MMS exhibited higher catalytic activities for the formation of corresponding tetrahydropyranyl ethers as compared to Al-MS. The advantageous structure of Al-MMS enables the efficient transport of reactants to the catalytically active sites, which realizes the significant enhancement of catalytic performances in the reaction of DHP with alcohols having longer alkyl chains.

  19. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity.

    PubMed

    Yan, Wei; Chen, Chang; Wang, Ling; Zhang, Dan; Li, Ai-Jun; Yao, Zheng; Shi, Li-Yi

    2016-04-20

    The emphasis of science and technology shifts toward environmentally friendly and sustainable resources and processes. Herein, we report a facile, one-pot and green synthesis of biomaterial-supported gold nanoparticles (AuNPs) with superior catalytic activity. Cellulose nanocrystal (CNC)-supported AuNPs were prepared by heating the aqueous mixture of HAuCl4, CNCs and polyethylene glycol, avoiding toxic chemicals, extreme condition and complicated procedure. The resultant CNC-supported AuNPs exhibited catalytic activities for the reduction of 4-nitrophenol by sodium borohydride. The maximum apparent rate constant reached 1.47×10(-2)s(-1), and the turnover frequency reached 641h(-1). The superior catalytic performance can be ascribed to the large amount of highly dispersed AuNPs with few nanometers in size which are loaded on CNCs. About 90% of the AuNPs are smaller than 10nm, and nearly 60% of the AuNPs are smaller than 5nm. The synthesis is eco-friendly, facile and low-cost, thus has great potential for industrial and medical applications.

  20. Importance of the lid and cap domains for the catalytic activity of gastric lipases.

    PubMed

    Miled, N; Bussetta, C; De caro, A; Rivière, M; Berti, L; Canaan, S

    2003-09-01

    Human gastric lipase (HGL) is an enzyme secreted by the stomach, which is stable and active despite the highly acidic environment. It has been clearly established that this enzyme is responsible for 30% of the fat digestion processes occurring in human. This globular protein belongs to the alpha/beta hydrolase fold family and its catalytic serine is deeply buried under a domain called the extrusion domain, which is composed of a 'cap' domain and a segment consisting of 58 residues, which can be defined as a lid. The exact roles played by the cap and the lid domains during the catalytic step have not yet been elucidated. We have recently solved the crystal structure of the open form of the dog gastric lipase in complex with a covalent inhibitor. The detergent molecule and the inhibitor were mimicking a triglyceride substrate that would interact with residues belonging to both the cap and the lid domains. In this study, we have investigated the role of the cap and the lid domains, using site-directed mutagenesis procedures. We have produced truncated mutants lacking the lid and the cap. After expressing these mutants and purifying them, their activity was found to have decreased drastically in comparison with the wild type HGL. The lid and the cap domains play an important role in the catalytic reaction mechanism. Based on these results and the structural data (open form of DGL), we have pointed out the cap and the lid residues involved in the binding with the lipidic substrate.

  1. Co-Cu Nanoparticles: Synthesis by Galvanic Replacement and Phase Rearrangement during Catalytic Activation.

    PubMed

    Nafria, Raquel; Genç, Aziz; Ibáñez, Maria; Arbiol, Jordi; de la Piscina, Pilar Ramírez; Homs, Narcís; Cabot, Andreu

    2016-03-08

    The control of the phase distribution in multicomponent nanomaterials is critical to optimize their catalytic performance. In this direction, while impressive advances have been achieved in the past decade in the synthesis of multicomponent nanoparticles and nanocomposites, element rearrangement during catalyst activation has been frequently overseen. Here, we present a facile galvanic replacement-based procedure to synthesize Co@Cu nanoparticles with narrow size and composition distributions. We further characterize their phase arrangement before and after catalytic activation. When oxidized at 350 °C in air to remove organics, Co@Cu core-shell nanostructures oxidize to polycrystalline CuO-Co3O4 nanoparticles with randomly distributed CuO and Co3O4 crystallites. During a posterior reduction treatment in H2 atmosphere, Cu precipitates in a metallic core and Co migrates to the nanoparticle surface to form Cu@Co core-shell nanostructures. The catalytic behavior of such Cu@Co nanoparticles supported on mesoporous silica was further analyzed toward CO2 hydrogenation in real working conditions.

  2. Block copolymer hollow fiber membranes with catalytic activity and pH-response.

    PubMed

    Hilke, Roland; Pradeep, Neelakanda; Madhavan, Poornima; Vainio, Ulla; Behzad, Ali Reza; Sougrat, Rachid; Nunes, Suzana P; Peinemann, Klaus-Viktor

    2013-08-14

    We fabricated block copolymer hollow fiber membranes with self-assembled, shell-side, uniform pore structures. The fibers in these membranes combined pores able to respond to pH and acting as chemical gates that opened above pH 4, and catalytic activity, achieved by the incorporation of gold nanoparticles. We used a dry/wet spinning process to produce the asymmetric hollow fibers and determined the conditions under which the hollow fibers were optimized to create the desired pore morphology and the necessary mechanical stability. To induce ordered micelle assembly in the doped solution, we identified an ideal solvent mixture as confirmed by small-angle X-ray scattering. We then reduced p-nitrophenol with a gold-loaded fiber to confirm the catalytic performance of the membranes.

  3. Layered Double Hydroxide Nanoclusters: Aqueous, Concentrated, Stable, and Catalytically Active Colloids toward Green Chemistry.

    PubMed

    Tokudome, Yasuaki; Morimoto, Tsuyoshi; Tarutani, Naoki; Vaz, Pedro D; Nunes, Carla D; Prevot, Vanessa; Stenning, Gavin B G; Takahashi, Masahide

    2016-05-24

    Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.

  4. A very active cu-catalytic system for the synthesis of aryl, heteroaryl, and vinyl sulfides.

    PubMed

    Kabir, M Shahjahan; Lorenz, Michael; Van Linn, Michael L; Namjoshi, Ojas A; Ara, Shamim; Cook, James M

    2010-06-04

    cis-1,2-Cyclohexanediol (L3) has been shown to be an efficient and versatile bidentate O-donor ligand that provides a highly active Cu-catalytic system. It was more effective than diols such as trans-1,2-cyclohexanediol or ethylene glycol. This commercially available cis-1,2-cyclohexanediol ligand facilitated the Cu-catalyzed cross-coupling reactions of alkyl, aryl, or heterocyclic thiols with either alkyl, aryl, heterocyclic, or substituted vinyl halides. This new catalytic system promoted the mild and efficient stereo- and regiospecific synthesis of biologically important vinyl sulfides. The yields obtained using electron-rich substituted vinyl sulfides with this catalyst system are generally 75-98%. Most importantly, this singular catalyst system is extremely versatile and provides entry into a wide range of sulfides. This method is particularly noteworthy given its mild reaction conditions, simplicity, generality, and exceptional level of functional group tolerance.

  5. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity.

    PubMed

    Qi, Hetong; Yu, Ping; Wang, Yuexiang; Han, Guangchao; Liu, Huibiao; Yi, Yuanping; Li, Yuliang; Mao, Lanqun

    2015-04-29

    Graphdiyne (GDY), a novel kind of two-dimensional carbon allotrope consisting of sp- and sp(2)-hybridized carbon atoms, is found to be able to serve as the reducing agent and stabilizer for electroless deposition of highly dispersed Pd nanoparticles owing to its low reduction potential and highly conjugated electronic structure. Furthermore, we observe that graphdiyne oxide (GDYO), the oxidation form of GDY, can be used as an even excellent substrate for electroless deposition of ultrafine Pd clusters to form Pd/GDYO nanocomposite that exhibits a high catalytic performance toward the reduction of 4-nitrophenol. The high catalytic performance is considered to benefit from the rational design and electroless deposition of active metal catalysts with GDYO as the support.

  6. Saccharomyces cerevisiae DNA ligase IV supports imprecise end joining independently of its catalytic activity.

    PubMed

    Chiruvella, Kishore K; Liang, Zhuobin; Birkeland, Shanda R; Basrur, Venkatesha; Wilson, Thomas E

    2013-06-01

    DNA ligase IV (Dnl4 in budding yeast) is a specialized ligase used in non-homologous end joining (NHEJ) of DNA double-strand breaks (DSBs). Although point and truncation mutations arise in the human ligase IV syndrome, the roles of Dnl4 in DSB repair have mainly been examined using gene deletions. Here, Dnl4 catalytic point mutants were generated that were severely defective in auto-adenylation in vitro and NHEJ activity in vivo, despite being hyper-recruited to DSBs and supporting wild-type levels of Lif1 interaction and assembly of a Ku- and Lif1-containing complex at DSBs. Interestingly, residual levels of especially imprecise NHEJ were markedly higher in a deletion-based assay with Dnl4 catalytic mutants than with a gene deletion strain, suggesting a role of DSB-bound Dnl4 in supporting a mode of NHEJ catalyzed by a different ligase. Similarly, next generation sequencing of repair joints in a distinct single-DSB assay showed that dnl4-K466A mutation conferred a significantly different imprecise joining profile than wild-type Dnl4 and that such repair was rarely observed in the absence of Dnl4. Enrichment of DNA ligase I (Cdc9 in yeast) at DSBs was observed in wild-type as well as dnl4 point mutant strains, with both Dnl4 and Cdc9 disappearing from DSBs upon 5' resection that was unimpeded by the presence of catalytically inactive Dnl4. These findings indicate that Dnl4 can promote mutagenic end joining independently of its catalytic activity, likely by a mechanism that involves Cdc9.

  7. Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin.

    PubMed

    Chiou, Yi-Ling; Lin, Shinne-Ren; Hu, Wan-Ping; Chang, Long-Sen

    2014-12-15

    Phosphatidylserine (PS) externalization is a hallmark for apoptotic death of cells. Previous studies showed that Naja naja atra phospholipase A2 (NnaPLA2) and Notechis scutatus scutatus notexin induced apoptosis of human cancer cells. However, NnaPLA2 and notexin did not markedly disrupt the integrity of cellular membrane as evidenced by membrane permeability of propidium iodide. These findings reflected that the ability of NnaPLA2 and notexin to hydrolyze membrane phospholipids may be affected by PS externalization. To address that question, this study investigated the membrane-interacted mode and catalytic activity of NnaPLA2 and notexin toward outer leaflet (phosphatidylcholine/sphingomyelin/cholesterol, PC/SM/Chol) and inner leaflet (phosphatidylserine/phosphatidylethanolamine/cholesterol, PS/PE/Chol) of plasma membrane-mimicking vesicles. PS incorporation promoted enzymatic activity of NnaPLA2 and notexin on PC and PC/SM vesicles, but suppressed NnaPLA2 and notexin activity on PC/SM/Chol and PE/Chol vesicles. PS incorporation increased the membrane fluidity of PC vesicles but reduced membrane fluidity of PC/SM, PC/SM/Chol and PE/Chol vesicles. PS increased the phospholipid order of all the tested vesicles. Moreover, PS incorporation did not greatly alter the binding affinity of notexin and NnaPLA2 with phospholipid vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that membrane-bound mode of notexin and NnaPLA2 varied with the targeted membrane compositions. The fine structure of catalytic site in NnaPLA2 and notexin in all the tested vesicles showed different changes. Collectively, the present data suggest that membrane-inserted PS modulates PLA2 interfacial activity via its effects on membrane structure and membrane-bound mode of NnaPLA2 and notexin, and membrane compositions determine the effect of PS on PLA2 activity.

  8. Catalytically active lead(ii)-imidazolium coordination assemblies with diversified lead(ii) coordination geometries.

    PubMed

    Naga Babu, Chatla; Suresh, Paladugu; Srinivas, Katam; Sathyanarayana, Arruri; Sampath, Natarajan; Prabusankar, Ganesan

    2016-05-10

    Five Pb(ii)-imidazolium carboxylate coordination assemblies with novel structural motifs were derived from the reaction between the corresponding flexible, semi flexible or rigid imidazolium carboxylic acid ligands and lead nitrate. The imidazolium linker present in these molecules likely plays a triple role such as the counter ion to balance the metal charge, the ligand being an integral part of the final product and the catalyst facilitating carbon-carbon bond formation reaction. These lead-imidazolium coordination assemblies exhibit, variable chemical and thermal stabilities, as well as catalytic activity. These newly prepared catalysts are highly active towards benzoin condensation reactions with good functional group tolerance.

  9. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities.

    PubMed

    Tadokoro, Takashi; Kulikowicz, Tomasz; Dawut, Lale; Croteau, Deborah L; Bohr, Vilhelm A

    2012-06-01

    Werner protein (WRN), member of the RecQ helicase family, is a helicase and exonuclease, and participates in multiple DNA metabolic processes including DNA replication, recombination and DNA repair. Mutations in the WRN gene cause Werner syndrome, associated with premature aging, genome instability and cancer predisposition. The RecQ C-terminal (RQC) domain of WRN, containing α2-α3 loop and β-wing motifs, is important for DNA binding and for many protein interactions. To better understand the critical functions of this domain, we generated recombinant WRN proteins (using a novel purification scheme) with mutations in Arg-993 within the α2-α3 loop of the RQC domain and in Phe-1037 of the -wing motif. We then studied the catalytic activities and DNA binding of these mutant proteins as well as some important functional protein interactions. The mutant proteins were defective in DNA binding and helicase activity, and interestingly, they had deficient exonuclease activity and strand annealing function. The RQC domain of WRN has not previously been implicated in exonuclease or annealing activities. The mutant proteins could not stimulate NEIL1 incision activity as did the wild type. Thus, the Arg-993 and Phe-1037 in the RQC domain play essential roles in catalytic activity, and in functional interactions mediated by WRN.

  10. Effects of detergents on catalytic activity of human endometase/matrilysin 2, a putative cancer biomarker.

    PubMed

    Park, Hyun I; Lee, Seakwoo; Ullah, Asad; Cao, Qiang; Sang, Qing-Xiang Amy

    2010-01-15

    Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration dependent, exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matrilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 ( approximately 90muM). Their IC(50) values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was a mixed type as determined by Dixon's plot; however, the inhibition mechanism of endometase was noncompetitive with a K(i) value of 240muM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block the substrate binding site to impede catalysis. Under physiological conditions, a lipid or membrane microenvironment may regulate enzymatic activity.

  11. Characterization of ferromagnetic sludge-based activated carbon and its application in catalytic ozonation of p-chlorobenzoic acid.

    PubMed

    Lu, Siying; Liu, Yongze; Feng, Li; Sun, Zhongen; Zhang, Liqiu

    2017-03-09

    In order to solve the separation problem of powdered sludge-based activated carbon (SAC), a series of novel ferromagnetic sludge-based activated carbons (FMSACs, with different iron content 2.3, 4.3, and 9.5 wt%) with a good magnetic separation ability were prepared through co-precipitation method in this study. The structure and physicochemical properties of FMSACs and their catalytic ozonation performance on the removal of p-chlorobenzoic acid (p-CBA) were investigated. The saturation magnetization (Ms) of FMSACs was determined in the range of 0.3674-5.7992 emu g(-1), and experiments confirmed that these FMSACs could be easily separated by magnetic fields. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis indicated that magnetite and maghemite were the main magnetic phases in FMSACs. Comparing with ozonation alone and SAC catalytic ozonation, the presence of 2.3 wt% - FMSAC improved the degradation of p-CBA during catalytic ozonation from 44 and 70 to 80%. The tertiary butanol inhibition experiment indicated that FMSACs catalytic ozonation process followed hydroxyl radical reaction mechanism. Furthermore, after six repetitive catalytic ozonation runs, 2.3 wt% - FMSAC still showed relatively high catalytic activity for the removal of p-CBA. Consequently, the novel FMSACs with magnetic separation ability and catalytic performance provide a practical pathway for the sludge utilization.

  12. The Contribution of Non-catalytic Carbohydrate Binding Modules to the Activity of Lytic Polysaccharide Monooxygenases*

    PubMed Central

    Crouch, Lucy I.; Labourel, Aurore; Walton, Paul H.; Davies, Gideon J.; Gilbert, Harry J.

    2016-01-01

    Lignocellulosic biomass is a sustainable industrial substrate. Copper-dependent lytic polysaccharide monooxygenases (LPMOs) contribute to the degradation of lignocellulose and increase the efficiency of biofuel production. LPMOs can contain non-catalytic carbohydrate binding modules (CBMs), but their role in the activity of these enzymes is poorly understood. Here we explored the importance of CBMs in LPMO function. The family 2a CBMs of two monooxygenases, CfLPMO10 and TbLPMO10 from Cellulomonas fimi and Thermobispora bispora, respectively, were deleted and/or replaced with CBMs from other proteins. The data showed that the CBMs could potentiate and, surprisingly, inhibit LPMO activity, and that these effects were both enzyme-specific and substrate-specific. Removing the natural CBM or introducing CtCBM3a, from the Clostridium thermocellum cellulosome scaffoldin CipA, almost abolished the catalytic activity of the LPMOs against the cellulosic substrates. The deleterious effect of CBM removal likely reflects the importance of prolonged presentation of the enzyme on the surface of the substrate for efficient catalytic activity, as only LPMOs appended to CBMs bound tightly to cellulose. The negative impact of CtCBM3a is in sharp contrast with the capacity of this binding module to potentiate the activity of a range of glycoside hydrolases including cellulases. The deletion of the endogenous CBM from CfLPMO10 or the introduction of a family 10 CBM from Cellvibrio japonicus LPMO10B into TbLPMO10 influenced the quantity of non-oxidized products generated, demonstrating that CBMs can modulate the mode of action of LPMOs. This study demonstrates that engineered LPMO-CBM hybrids can display enhanced industrially relevant oxygenations. PMID:26801613

  13. Stable and catalytically active iron porphyrin-based porous organic polymer: Activity as both a redox and Lewis acid catalyst

    PubMed Central

    Oveisi, Ali R.; Zhang, Kainan; Khorramabadi-zad, Ahmad; Farha, Omar K.; Hupp, Joseph T.

    2015-01-01

    A new porphyrin-based porous organic polymer (POP) with BET surface area ranging from 780 to 880 m2/g was synthesized in free-base form via the reaction of meso-tetrakis(pentafluorophenyl) porphyrin and a rigid trigonal building block, hexahydroxytriphenylene. The material was then metallated with Fe(III) imparting activity for Lewis acid catalysis (regioselective methanolysis ring-opening of styrene oxide), oxidative cyclization catalysis (conversion of bis(2-hydroxy-1-naphthyl)methanes to the corresponding spirodienone), and a tandem catalytic processes: an in situ oxidation-cyclic aminal formation-oxidation sequence, which selectively converts benzyl alcohol to 2-phenyl-quinazolin-4(3H)-one. Notably, the catalyst is readily recoverable and reusable, with little loss in catalytic activity. PMID:26177563

  14. Catalytic oxidation of pulping effluent by activated carbon-supported heterogeneous catalysts.

    PubMed

    Yadav, Bholu Ram; Garg, Anurag

    2016-01-01

    The present study deals with the non-catalytic and catalytic wet oxidation (CWO) for the removal of persistent organic compounds from the pulping effluent. Two activated carbon-supported heterogeneous catalysts (Cu/Ce/AC and Cu/Mn/AC) were used for CWO after characterization by the following techniques: temperature-programmed reduction, Fourier transform infrared spectroscopy and thermo-gravimetric analysis. The oxidation reaction was performed in a batch high-pressure reactor (capacity = 0.7  L) at moderate oxidation conditions (temperature = 190°C and oxygen pressure = 0.9 MPa). With Cu/Ce/AC catalyst, the maximum chemical oxygen demand (COD), total organic carbon (TOC) and lignin removals of 79%, 77% and 88% were achieved compared to only 50% removal during the non-catalytic process. The 5-day biochemical oxygen demand (BOD5) to COD ratio (a measure for biodegradability) of the pulping effluent was improved to 0.52 from an initial value of 0.16. The mass balance calculations for solid recovered after CWO reaction showed 8% and 10% deduction in catalyst mass primarily attributed to the loss of carbon and metal leaching. After the CWO process, carbon deposition was also observed on the recovered catalyst which was responsible for around 3-4% TOC reduction.

  15. Catalytic activity of silicon nanowires decorated with silver and copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Amdouni, Sonia; Coffinier, Yannick; Szunerits, Sabine; Zaïbi, Mohammed Ali; Oueslati, Meherzi; Boukherroub, Rabah

    2016-01-01

    The paper reports on the elaboration of silicon nanowires decorated with silver (SiNWs-Ag NPs) or copper (SiNWs-Cu NPs) nanoparticles and the investigation of their catalytic properties for the reduction of 4-nitrophenol to 4-aminophenol. The SiNW arrays were produced through chemical etching of crystalline silicon in HF/AgNO3 aqueous solution. The metal nanoparticles were deposited on the SiNW substrates through chemical bath immersion in a metal salt/hydrofluoric acid aqueous solution. The SiNWs decorated with Ag NPs and Cu NPs were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) and x-ray photoelectron spectroscopy (XPS). The catalytic activity of the SiNWs loaded with metal nanoparticles was evaluated for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride (NaBH4). The substrates exhibited good catalytic performance toward nitrophenol with a full reduction in less than 30 s for the SiNWs-Cu NPs.

  16. Probing Substrate Interactions in the Active Tunnel of a Catalytically Deficient Cellobiohydrolase (Cel7)*

    PubMed Central

    Colussi, Francieli; Sørensen, Trine H.; Alasepp, Kadri; Kari, Jeppe; Cruys-Bagger, Nicolaj; Windahl, Michael S.; Olsen, Johan P.; Borch, Kim; Westh, Peter

    2015-01-01

    Cellobiohydrolases break down cellulose sequentially by sliding along the crystal surface with a single cellulose strand threaded through the catalytic tunnel of the enzyme. This so-called processive mechanism relies on a complex pattern of enzyme-substrate interactions, which need to be addressed in molecular descriptions of processivity and its driving forces. Here, we have used titration calorimetry to study interactions of cellooligosaccharides (COS) and a catalytically deficient variant (E212Q) of the enzyme Cel7A from Trichoderma reesei. This enzyme has ∼10 glucopyranose subsites in the catalytic tunnel, and using COS ligands with a degree of polymerization (DP) from 2 to 8, different regions of the tunnel could be probed. For COS ligands with a DP of 2–3 the binding constants were around 105 m−1, and for longer ligands (DP 5–8) this value was ∼107 m−1. Within each of these groups we did not find increased affinity as the ligands got longer and potentially filled more subsites. On the contrary, we found a small but consistent affinity loss as DP rose from 6 to 8, particularly at the higher investigated temperatures. Other thermodynamic functions (ΔH, ΔS, and ΔCp) decreased monotonously with both temperature and DP. Combined interpretation of these thermodynamic results and previously published structural data allowed assessment of an affinity profile along the length axis of the active tunnel. PMID:25477511

  17. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    DOE PAGES

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; ...

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with themore » metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.« less

  18. Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles

    SciTech Connect

    Wang, Yanggang; Mei, Donghai; Glezakou, Vassiliki Alexandra; Li, Jun; Rousseau, Roger J.

    2015-03-04

    Ab initio Molecular Dynamics simulations and static Density Functional Theory calculations have been performed to investigate the reaction mechanism of CO oxidation on Au/CeO2 catalyst. It is found that under reaction condition CO adsorption significantly labializes the surface atoms of the Au cluster and leads to the formation of isolated Au+-CO species that resides on the support in the vicinity of the Au particle. In this context, we identified a dynamic single-atom catalytic mechanism at the interfacial area for CO oxidation on Au/CeO2 catalyst, which is a lower energy pathway than that of CO oxidation at the interface with the metal particle. This results from the ability of the single atom site to strongly couple with the redox properties of the support in a synergistic manner thereby lowering the barrier for redox reactions. We find that the single Au+ ion, which only exists under reaction conditions, breaks away from the Au cluster to catalyze CO oxidation and returns to the Au cluster after the catalytic cycle is completed. Generally, our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in a catalytic process.

  19. Biosynthesised palladium nanoparticles using Eucommia ulmoides bark aqueous extract and their catalytic activity.

    PubMed

    Duan, Liansheng; Li, Ming; Liu, Huihong

    2015-12-01

    Palladium nanoparticles (PdNPs) are of great importance as catalytic materials. Their synthesis has been widely studied and interest in their properties is growing. Bio-based methods might be a greener option for designing the PdNPs with reduced environmental impacts. This study reports the synthesis of PdNPs by utilising the aqueous extract of medicinally important Eucommia ulmoides (E. Ulmoides) bark which functions as both reducing and capping agent in moderate reaction conditions. Reduction potential of E. Ulmoides bark aqueous extract was about -0.08 V vs. saturated calomel electrode by open-circuit voltage method and the rich polyphenolics was confirmed by cyclic voltammetry, which helps to reduce palladium ions to PdNPs. The characterisation through high-resolution transmission electron microscopic, energy dispersive X-ray spectroscopy and X-ray diffraction infer that the as-synthesised PdNPs were spherical in shape with a face cubic crystal structure. The results from dynamic light scattering suggest the PdNPs have the narrow size distribution with an average size of 12.6 nm. The lower zeta potential (-25.3 mV) and the Fourier transform infrared spectra indicate that the as-synthesised PdNPs keep remarkably stable for a long period due to the capped biomolecules on the nanoparticle surface. This method for synthesis of PdNPs is simple, economic, non-toxic and efficient. The PdNPs show excellent catalytic activity for the electro-catalytic oxidation of hydrazine and the catalytic reducing degradation of p-aminoazobenzene, a model compound of azo-dyes.

  20. Balancing the stability and the catalytic specificities of OP hydrolases with enhanced V-agent activities.

    PubMed

    Reeves, T E; Wales, M E; Grimsley, J K; Li, P; Cerasoli, D M; Wild, J R

    2008-06-01

    Rational site-directed mutagenesis and biophysical analyses have been used to explore the thermodynamic stability and catalytic capabilities of organophosphorus hydrolase (OPH) and its genetically modified variants. There are clear trade-offs in the stability of modifications that enhance catalytic activities. For example, the H254R/H257L variant has higher turnover numbers for the chemical warfare agents VX (144 versus 14 s(-1) for the native enzyme (wild type) and VR (Russian VX, 465 versus 12 s(-1) for wild type). These increases are accompanied by a loss in stability in which the total Gibb's free energy for unfolding is 19.6 kcal/mol, which is 5.7 kcal/mol less than that of the wild-type enzyme. X-ray crystallographic studies support biophysical data that suggest amino acid residues near the active site contribute to the chemical and thermal stability through hydrophobic and cation-pi interactions. The cation-pi interactions appear to contribute an additional 7 kcal/mol to the overall global stability of the enzyme. Using rational design, it has been possible to make amino acid changes in this region that restored the stability, yet maintained effective V-agent activities, with turnover numbers of 68 and 36 s(-1) for VX and VR, respectively. This study describes the first rationally designed, stability/activity balance for an OPH enzyme with a legitimate V-agent activity, and its crystal structure.

  1. [The state of phospholipase D in solution and its catalytic activity].

    PubMed

    Rakhimov, M M; Mad'iarov, Sh R

    1977-04-01

    Functioning of water-soluble phospholipase D from cotton seeds is studied on two phases contact area (liquid-liquid, liquid-solid substance) and on the surface of mixed lecitine and sodium dodecylsulphate micelles. It is found that water-soluble phospholipase D, which normally has no catalytic activity, is capable to hydrolyse its substrates in the presence of organic solvents, solid adsorbents and sodium dodecylsulphate. The data obtained show that in all the cases studied the activation observed is due to adsorption immobilization of the enzyme. K lambda and K alpha constants are introduced, which are characteristics of immobilyzing ability of agents-matrices for immobilization. Phase transitions, which take place in heterogenous system (enzyme-activator-substrate-water solution), are found to be a necessary condition for the enzyme activation. A hypothesis, that catalytical activity of water-soluble phospholipase D is inherent of the adsorbed enzyme, is discussed on the basis of the data on comparative study of adsorbed and water-soluble enzymes.

  2. Origin of the catalytic activity of bovine seminal ribonuclease against double-stranded RNA

    NASA Technical Reports Server (NTRS)

    Opitz, J. G.; Ciglic, M. I.; Haugg, M.; Trautwein-Fritz, K.; Raillard, S. A.; Jermann, T. M.; Benner, S. A.

    1998-01-01

    Bovine seminal ribonuclease (RNase) binds, melts, and (in the case of RNA) catalyzes the hydrolysis of double-stranded nucleic acid 30-fold better under physiological conditions than its pancreatic homologue, the well-known RNase A. Reported here are site-directed mutagenesis experiments that identify the sequence determinants of this enhanced catalytic activity. These experiments have been guided in part by experimental reconstructions of ancestral RNases from extinct organisms that were intermediates in the evolution of the RNase superfamily. It is shown that the enhanced interactions between bovine seminal RNase and double-stranded nucleic acid do not arise from the increased number of basic residues carried by the seminal enzyme. Rather, a combination of a dimeric structure and the introduction of two glycine residues at positions 38 and 111 on the periphery of the active site confers the full catalytic activity of bovine seminal RNase against duplex RNA. A structural model is presented to explain these data, the use of evolutionary reconstructions to guide protein engineering experiments is discussed, and a new variant of RNase A, A(Q28L K31C S32C D38G E111G), which contains all of the elements identified in these experiments as being important for duplex activity, is prepared. This is the most powerful catalyst within this subfamily yet observed, some 46-fold more active against duplex RNA than RNase A.

  3. Screening for catalytically active Type II restriction endonucleases using segregation-induced methylation deficiency

    PubMed Central

    Ukanis, Mindaugas; Sapranauskas, Rimantas; Lubys, Arvydas

    2012-01-01

    Type II restriction endonucleases (REases) are one of the basic tools of recombinant DNA technology. They also serve as models for elucidation of mechanisms for both site-specific DNA recognition and cleavage by proteins. However, isolation of catalytically active mutants from their libraries is challenging due to the toxicity of REases in the absence of protecting methylation, and techniques explored so far had limited success. Here, we present an improved SOS induction-based approach for in vivo screening of active REases, which we used to isolate a set of active variants of the catalytic mutant, Cfr10IE204Q. Detailed characterization of plasmids from 64 colonies screened from the library of ∼200 000 transformants revealed 29 variants of cfr10IR gene at the level of nucleotide sequence and 15 variants at the level of amino acid sequence, all of which were able to induce SOS response. Specific activity measurements of affinity-purified mutants revealed >200-fold variance among them, ranging from 100% (wild-type isolates) to 0.5% (S188C mutant), suggesting that the technique is equally suited for screening of mutants possessing high or low activity and confirming that it may be applied for identification of residues playing a role in catalysis. PMID:22753027

  4. Physics-based enzyme design: predicting binding affinity and catalytic activity.

    PubMed

    Sirin, Sarah; Pearlman, David A; Sherman, Woody

    2014-12-01

    Computational enzyme design is an emerging field that has yielded promising success stories, but where numerous challenges remain. Accurate methods to rapidly evaluate possible enzyme design variants could provide significant value when combined with experimental efforts by reducing the number of variants needed to be synthesized and speeding the time to reach the desired endpoint of the design. To that end, extending our computational methods to model the fundamental physical-chemical principles that regulate activity in a protocol that is automated and accessible to a broad population of enzyme design researchers is essential. Here, we apply a physics-based implicit solvent MM-GBSA scoring approach to enzyme design and benchmark the computational predictions against experimentally determined activities. Specifically, we evaluate the ability of MM-GBSA to predict changes in affinity for a steroid binder protein, catalytic turnover for a Kemp eliminase, and catalytic activity for α-Gliadin peptidase variants. Using the enzyme design framework developed here, we accurately rank the most experimentally active enzyme variants, suggesting that this approach could provide enrichment of active variants in real-world enzyme design applications.

  5. An extra peptide within the catalytic module of a β-agarase affects the agarose degradation pattern.

    PubMed

    Han, Wen-Jun; Gu, Jing-Yan; Liu, Hui-Hui; Li, Fu-Chuan; Wu, Zhi-Hong; Li, Yue-Zhong

    2013-03-29

    Agarase hydrolyzes agarose into a series of oligosaccharides with repeating disaccharide units. The glycoside hydrolase (GH) module of agarase is known to be responsible for its catalytic activity. However, variations in the composition of the GH module and its effects on enzymatic functions have been minimally elucidated. The agaG4 gene, cloned from the genome of the agarolytic Flammeovirga strain MY04, encodes a 503-amino acid protein, AgaG4. Compared with elucidated agarases, AgaG4 contains an extra peptide (Asn(246)-Gly(302)) within its GH module. Heterologously expressed AgaG4 (recombinant AgaG4; rAgaG4) was determined to be an endo-type β-agarase. The protein degraded agarose into neoagarotetraose and neoagarohexaose at a final molar ratio of 1.5:1. Neoagarooctaose was the smallest substrate for rAgaG4, whereas neoagarotetraose was the minimal degradation product. Removing the extra fragment from the GH module led to the inability of the mutant (rAgaG4-T57) to degrade neoagarooctaose, and the final degradation products of agarose by the truncated protein were neoagarotetraose, neoagarohexaose, and neoagarooctaose at a final molar ratio of 2.7:2.8:1. The optimal temperature for agarose degradation also decreased to 40 °C for this mutant. Bioinformatic analysis suggested that tyrosine 276 within the extra fragment was a candidate active site residue for the enzymatic activity. Site-swapping experiments of Tyr(276) to 19 various other amino acids demonstrated that the characteristics of this residue were crucial for the AgaG4 degradation of agarose and the cleavage pattern of substrate.

  6. How does the exchange of one oxygen atom with sulfur affect the catalytic cycle of carbonic anhydrase?

    PubMed

    Schenk, Stephan; Kesselmeier, Jürgen; Anders, Ernst

    2004-06-21

    We have extended our investigations of the carbonic anhydrase (CA) cycle with the model system [(H(3)N)(3)ZnOH](+) and CO(2) by studying further heterocumulenes and catalysts. We investigated the hydration of COS, an atmospheric trace gas. This reaction plays an important role in the global COS cycle since biological consumption, that is, uptake by higher plants, algae, lichens, and soil, represents the dominant terrestrial sink for this gas. In this context, CA has been identified by a member of our group as the key enzyme for the consumption of COS by conversion into CO(2) and H(2)S. We investigated the hydration mechanism of COS by using density functional theory to elucidate the details of the catalytic cycle. Calculations were first performed for the uncatalyzed gas phase reaction. The rate-determining step for direct reaction of COS with H(2)O has an energy barrier of deltaG=53.2 kcal mol(-1). We then employed the CA model system [(H(3)N)(3)ZnOH](+) (1) and studied the effect on the catalytic hydration mechanism of replacing an oxygen atom with sulfur. When COS enters the carbonic anhydrase cycle, the sulfur atom is incorporated into the catalyst to yield [(H(3)N)(3)ZnSH](+) (27) and CO(2). The activation energy of the nucleophilic attack on COS, which is the rate-determining step, is somewhat higher (20.1 kcal mol(-1) in the gas phase) than that previously reported for CO(2). The sulfur-containing model 27 is also capable of catalyzing the reaction of CO(2) to produce thiocarbonic acid. A larger barrier has to be overcome for the reaction of 27 with CO(2) compared to that for the reaction of 1 with CO(2). At a well-defined stage of this cycle, a different reaction path can emerge: a water molecule helps to regenerate the original catalyst 1 from 27, a process accompanied by the formation of thiocarbonic acid. We finally demonstrate that nature selected a surprisingly elegant and efficient group of reactants, the [L(3)ZnOH](+)/CO(2)/H(2)O system, that helps

  7. Development of a novel catalytic amyloid displaying a metal-dependent ATPase-like activity.

    PubMed

    Monasterio, Octavio; Nova, Esteban; Diaz-Espinoza, Rodrigo

    2017-01-22

    Amyloids are protein aggregates of highly regular structure that are involved in diverse pathologies such as Alzheimer's and Parkinson's disease. Recent evidence has shown that under certain conditions, small peptides can self-assemble into amyloids that exhibit catalytic reactivity towards certain compounds. Here we report a novel peptide with a sequence derived from the active site of RNA polymerase that displays hydrolytic activity towards ATP. The catalytic reaction proceeds in the presence of the divalent metal manganese and the products are ADP and AMP. The kinetic data shows a substrate-dependent saturation of the activity with a maximum rate achieved at around 1 mM ATP. At higher ATP concentrations, we also observed substrate inhibition of the activity. The self-assembly of the peptide into amyloids is strictly metal-dependent and required for the catalysis. Our results show that aspartate-containing amyloids can also be catalysts under conditions that include interactions with metals. Moreover, we show for the first time an amyloid that exerts reactivity towards a biologically essential molecule.

  8. Creation of catalytically active particles from enzymes crosslinked with a natural bifunctional agent--homocysteine thiolactone.

    PubMed

    Stroylova, Yulia Y; Semenyuk, Pavel I; Asriyantz, Regina A; Gaillard, Cedric; Haertlé, Thomas; Muronetz, Vladimir I

    2014-09-01

    The current study describes an approach to creation of catalytically active particles with increased stability from enzymes by N-homocysteinylation, a naturally presented protein modification. Enzymatic activities and properties of two globular tetrameric enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) were studied before and after N-homocysteinylation. Modification of these proteins concerns the accessible lysine residues and introduces an average of 2-2,5 homocysteine residues per protein monomer. Formation of a range of aggregates was observed for both enzymes, which assemble via formation of intermolecular noncovalent bonds and by disulfide bonds. It was demonstrated that both studied enzymes retain their catalytic activities on modification and the subsequent formation of oligomeric forms. At low concentrations of homocysteine thiolactone, modification of GAPDH leads not only to prevention of spontaneous inactivation but also increases thermal stability of this enzyme on heating to 80°C. A moderate reduction of the activity of GAPDH observed in case of its crosslinking with 50-fold excess of homocysteine thiolactone per lysine is probably caused by hindered substrate diffusion. Spherical particles of 100 nm and larger diameters were observed by transmission electron microscopy and atomic force microscope techniques after modification of GAPDH with different homocysteine thiolactone concentrations. In case of LDH, branched fibril-like aggregates were observed under the same conditions. Interestingly, crosslinked samples of both proteins were found to have reversible thermal denaturation profiles, indicating that modification with homocysteine thiolactone stabilizes the spatial structure of these enzymes.

  9. Design of activated serine-containing catalytic triads with atomic level accuracy

    PubMed Central

    Rajagopalan, Sridharan; Wang, Chu; Yu, Kai; Kuzin, Alexandre P.; Richter, Florian; Lew, Scott; Miklos, Aleksandr E.; Matthews, Megan L.; Seetharaman, Jayaraman; Su, Min; Hunt, John. F.; Cravatt, Benjamin F.; Baker, David

    2014-01-01

    A challenge in the computational design of enzymes is that multiple properties must be simultaneously optimized -- substrate-binding, transition state stabilization, and product release -- and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads, and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate-reactivity. Following optimization by yeast-display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest the designs could provide the basis for a new class of organophosphate captures agents. PMID:24705591

  10. Functional role of TRIM E3 ligase oligomerization and regulation of catalytic activity.

    PubMed

    Koliopoulos, Marios G; Esposito, Diego; Christodoulou, Evangelos; Taylor, Ian A; Rittinger, Katrin

    2016-06-01

    TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N-terminal portion which comprises a canonical RING domain, one or two B-box domains and a coiled-coil region that mediates ligase dimerization. Self-association via the coiled-coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin-loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full-length protein. Our data reveal an unexpected diversity in the self-association mechanism of TRIMs that might be crucial for their biological function.

  11. Facile synthesis of pristine graphene-palladium nanocomposites with extraordinary catalytic activities using swollen liquid crystals

    NASA Astrophysics Data System (ADS)

    Vats, T.; Dutt, S.; Kumar, R.; Siril, P. F.

    2016-09-01

    Amazing conductivity, perfect honeycomb sp2 arrangement and the high theoretical surface area make pristine graphene as one of the best materials suited for application as catalyst supports. Unfortunately, the low reactivity of the material makes the formation of nanocomposite with inorganic materials difficult. Here we report an easy approach to synthesize nanocomposites of pristine graphene with palladium (Pd-G) using swollen liquid crystals (SLCs) as a soft template. The SLC template gives the control to deposit very small Pd particles of uniform size on G as well as RGO. The synthesized nanocomposite (Pd-G) exhibited exceptionally better catalytic activity compared with Pd-RGO nanocomposite in the hydrogenation of nitrophenols and microwave assisted C-C coupling reactions. The catalytic activity of Pd-G nanocomposite during nitrophenol reduction reaction was sixteen times higher than Pd nanoparticles and more than double than Pd-RGO nanocomposite. The exceptionally high activity of pristine graphene supported catalysts in the organic reactions is explained on the basis of its better pi interacting property compared to partially reduced RGO. The Pd-G nanocomposite showed exceptional stability under the reaction conditions as it could be recycled upto a minimum of 15 cycles for the C-C coupling reactions without any loss in activity.

  12. A Redox 2-Cys Mechanism Regulates the Catalytic Activity of Divergent Cyclophilins1[W

    PubMed Central

    Campos, Bruna Medéia; Sforça, Mauricio Luis; Ambrosio, Andre Luis Berteli; Domingues, Mariane Noronha; Brasil de Souza, Tatiana de Arruda Campos; Barbosa, João Alexandre Ribeiro Gonçalvez; Leme, Adriana Franco Paes; Perez, Carlos Alberto; Whittaker, Sara Britt-Marie; Murakami, Mario Tyago; Zeri, Ana Carolina de Matos; Benedetti, Celso Eduardo

    2013-01-01

    The citrus (Citrus sinensis) cyclophilin CsCyp is a target of the Xanthomonas citri transcription activator-like effector PthA, required to elicit cankers on citrus. CsCyp binds the citrus thioredoxin CsTdx and the carboxyl-terminal domain of RNA polymerase II and is a divergent cyclophilin that carries the additional loop KSGKPLH, invariable cysteine (Cys) residues Cys-40 and Cys-168, and the conserved glutamate (Glu) Glu-83. Despite the suggested roles in ATP and metal binding, the functions of these unique structural elements remain unknown. Here, we show that the conserved Cys residues form a disulfide bond that inactivates the enzyme, whereas Glu-83, which belongs to the catalytic loop and is also critical for enzyme activity, is anchored to the divergent loop to maintain the active site open. In addition, we demonstrate that Cys-40 and Cys-168 are required for the interaction with CsTdx and that CsCyp binds the citrus carboxyl-terminal domain of RNA polymerase II YSPSAP repeat. Our data support a model where formation of the Cys-40-Cys-168 disulfide bond induces a conformational change that disrupts the interaction of the divergent and catalytic loops, via Glu-83, causing the active site to close. This suggests a new type of allosteric regulation in divergent cyclophilins, involving disulfide bond formation and a loop-displacement mechanism. PMID:23709667

  13. Almond shell activated carbon: adsorbent and catalytic support in the phenol degradation.

    PubMed

    Omri, Abdessalem; Benzina, Mourad

    2014-06-01

    In this work, two technologies are studied for the removal of phenol from aqueous solution: dynamic adsorption onto activated carbon and photocatalysis. Almond shell activated carbon (ASAC) was used as adsorbent and catalytic support in the phenol degradation process. The prepared catalyst by deposition of anatase TiO2 on the surface of activated carbon was characterized by scanning electron microscopy, sorption of nitrogen, X-ray diffraction, Fourier transform infrared (FT-IR) spectroscopy, and pHZPC point of zero charge. In the continuous adsorption experiments, the effects of flow rate, bed height, and solution temperature on the breakthrough curves have been studied. The breakthrough curves were favorably described by the Yoon-Nelson model. The photocatalytic degradation of phenol has been investigated at room temperature using TiO2-coated activated carbon as photocatalyst (TiO2/ASAC). The degradation reaction was optimized with respect to the phenol concentration and catalyst amount. The kinetics of disappearance of the organic pollutant followed an apparent first-order rate. The findings demonstrated the applicability of ASAC for the adsorptive and catalytic treatment of phenol.

  14. A comparison of different activated carbon performances on catalytic ozonation of a model azo reactive dye.

    PubMed

    Gül, S; Eren, O; Kır, S; Onal, Y

    2012-01-01

    The objective of this study is to compare the performances of catalytic ozonation processes of two activated carbons prepared from olive stone (ACOS) and apricot stone (ACAS) with commercial ones (granular activated carbon-GAC and powder activated carbon-PAC) in degradation of reactive azo dye (Reactive Red 195). The optimum conditions (solution pH and amount of catalyst) were investigated by using absorbencies at 532, 220 and 280 nm wavelengths. Pore properties of the activated carbon (AC) such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by N(2) adsorption. The highest BET surface area carbon (1,275 m(2)/g) was obtained from ACOS with a particle size of 2.29 nm. After 2 min of catalytic ozonation, decolorization performances of ACOS and ACAS (90.4 and 91.3%, respectively) were better than that of GAC and PAC (84.6 and 81.2%, respectively). Experimental results showed that production of porous ACs with high surface area from olive and apricot stones is feasible in Turkey.

  15. Facile synthesis of pristine graphene-palladium nanocomposites with extraordinary catalytic activities using swollen liquid crystals

    PubMed Central

    Vats, T.; Dutt, S.; Kumar, R.; Siril, P. F.

    2016-01-01

    Amazing conductivity, perfect honeycomb sp2 arrangement and the high theoretical surface area make pristine graphene as one of the best materials suited for application as catalyst supports. Unfortunately, the low reactivity of the material makes the formation of nanocomposite with inorganic materials difficult. Here we report an easy approach to synthesize nanocomposites of pristine graphene with palladium (Pd-G) using swollen liquid crystals (SLCs) as a soft template. The SLC template gives the control to deposit very small Pd particles of uniform size on G as well as RGO. The synthesized nanocomposite (Pd-G) exhibited exceptionally better catalytic activity compared with Pd-RGO nanocomposite in the hydrogenation of nitrophenols and microwave assisted C-C coupling reactions. The catalytic activity of Pd-G nanocomposite during nitrophenol reduction reaction was sixteen times higher than Pd nanoparticles and more than double than Pd-RGO nanocomposite. The exceptionally high activity of pristine graphene supported catalysts in the organic reactions is explained on the basis of its better pi interacting property compared to partially reduced RGO. The Pd-G nanocomposite showed exceptional stability under the reaction conditions as it could be recycled upto a minimum of 15 cycles for the C-C coupling reactions without any loss in activity. PMID:27619321

  16. Prediction of hammerhead ribozyme intracellular activity with the catalytic core fingerprint.

    PubMed

    Gabryelska, Marta Magdalena; Wyszko, Eliza; Szymański, Maciej; Popenda, Mariusz; Barciszewski, Jan

    2013-05-01

    Hammerhead ribozyme is a versatile tool for down-regulation of gene expression in vivo. Owing to its small size and high activity, it is used as a model for RNA structure-function relationship studies. In the present paper we describe a new extended hammerhead ribozyme HH-2 with a tertiary stabilizing motif constructed on the basis of the tetraloop receptor sequence. This ribozyme is very active in living cells, but shows low activity in vitro. To understand it, we analysed tertiary structure models of substrate-ribozyme complexes. We calculated six unique catalytic core geometry parameters as distances and angles between particular atoms that we call the ribozyme fingerprint. A flanking sequence and tertiary motif change the geometry of the general base, general acid, nucleophile and leaving group. We found almost complete correlation between these parameters and the decrease of target gene expression in the cells. The tertiary structure model calculations allow us to predict ribozyme intracellular activity. Our approach could be widely adapted to characterize catalytic properties of other RNAs.

  17. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract.

    PubMed

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-12-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534~543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47~29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  18. Electro-catalytic activity of Ni–Co-based catalysts for oxygen evolution reaction

    SciTech Connect

    Ju, Hua; Li, Zhihu; Xu, Yanhui

    2015-04-15

    Graphical abstract: The electro-catalytic activity of different electro-catalysts with a porous electrode structure was compared considering the real electrode area that was evaluated by cyclic measurement. - Highlights: • Ni–Co-based electro-catalysts for OER have been studied and compared. • The real electrode area is calculated and used for assessing the electro-catalysts. • Exchange current and reaction rate constant are estimated. • Ni is more useful for OER reaction than Co. - Abstract: In the present work, Ni–Co-based electrocatalysts (Ni/Co = 0:6, 1:5, 2:4, 3:3, 4:2, 5:1 and 6:0) have been studied for oxygen evolution reaction. The phase structure has been analyzed by X-ray diffraction technique. Based on the XRD and SEM results, it is believed that the synthesized products are poorly crystallized. To exclude the disturbance of electrode preparation technology on the evaluation of electro-catalytic activity, the real electrode surface area is calculated based on the cyclic voltammetry data, assumed that the specific surface capacitance is 60 μF cm{sup −2} for metal oxide electrode. The real electrode area data are used to calculate the current density. The reaction rate constant of OER at different electrodes is also estimated based on basic reaction kinetic equations. It is found that the exchange current is 0.05–0.47 mA cm{sup −2} (the real surface area), and the reaction rate constant has an order of magnitude of 10{sup −7}–10{sup −6} cm s{sup −1}. The influence of the electrode potential on OER rate has been also studied by electrochemical impedance spectroscopy (EIS) technique. Our investigation has shown that the nickel element has more contribution than the cobalt; the nickel oxide has the best electro-catalytic activity toward OER.

  19. Green Synthesis and Catalytic Activity of Gold Nanoparticles Synthesized by Artemisia capillaris Water Extract

    NASA Astrophysics Data System (ADS)

    Lim, Soo Hyeon; Ahn, Eun-Young; Park, Youmie

    2016-10-01

    Gold nanoparticles were synthesized using a water extract of Artemisia capillaris (AC-AuNPs) under different extract concentrations, and their catalytic activity was evaluated in a 4-nitrophenol reduction reaction in the presence of sodium borohydride. The AC-AuNPs showed violet or wine colors with characteristic surface plasmon resonance bands at 534 543 nm that were dependent on the extract concentration. Spherical nanoparticles with an average size of 16.88 ± 5.47 29.93 ± 9.80 nm were observed by transmission electron microscopy. A blue shift in the maximum surface plasmon resonance was observed with increasing extract concentration. The face-centered cubic structure of AC-AuNPs was confirmed by high-resolution X-ray diffraction analysis. Based on phytochemical screening and Fourier transform infrared spectra, flavonoids, phenolic compounds, and amino acids present in the extract contributed to the reduction of Au ions to AC-AuNPs. The average size of the AC-AuNPs decreased as the extract concentration during the synthesis was increased. Higher 4-nitrophenol reduction reaction rate constants were observed for smaller sizes. The extract in the AC-AuNPs was removed by centrifugation to investigate the effect of the extract in the reduction reaction. Interestingly, the removal of extracts greatly enhanced their catalytic activity by up to 50.4 %. The proposed experimental method, which uses simple centrifugation, can be applied to other metallic nanoparticles that are green synthesized with plant extracts to enhance their catalytic activity.

  20. The roles of active site residues in the catalytic mechanism of methylaspartate ammonia-lyase.

    PubMed

    Raj, Hans; Poelarends, Gerrit J

    2013-01-01

    Methylaspartate ammonia-lyase (MAL; EC 4.3.1.2) catalyzes the reversible addition of ammonia to mesaconate to yield l-threo-(2S,3S)-3-methylaspartate and l-erythro-(2S,3R)-3-methylaspartate as products. In the proposed minimal mechanism for MAL of Clostridium tetanomorphum, Lys-331 acts as the (S)-specific base catalyst and abstracts the 3S-proton from l-threo-3-methylaspartate, resulting in an enolate anion intermediate. This enolic intermediate is stabilized by coordination to the essential active site Mg(2+) ion and hydrogen bonding to the Gln-329 residue. Collapse of this intermediate results in the release of ammonia and the formation of mesaconate. His-194 likely acts as the (R)-specific base catalyst and abstracts the 3R-proton from the l-erythro isomer of 3-methylaspartate, yielding the enolic intermediate. In the present study, we have investigated the importance of the residues Gln-73, Phe-170, Gln-172, Tyr-356, Thr-360, Cys-361 and Leu-384 for the catalytic activity of C. tetanomorphum MAL. These residues, which are part of the enzyme surface lining the substrate binding pocket, were subjected to site-directed mutagenesis and the mutant enzymes were characterized for their structural integrity, ability to catalyze the amination of mesaconate, and regio- and diastereoselectivity. Based on the observed properties of the mutant enzymes, combined with previous structural studies and protein engineering work, we propose a detailed catalytic mechanism for the MAL-catalyzed reaction, in which the side chains of Gln-73, Gln-172, Tyr-356, Thr-360, and Leu-384 provide favorable interactions with the substrate, which are important for substrate binding and activation. This detailed knowledge of the catalytic mechanism of MAL can serve as a guide for future protein engineering experiments.

  1. Possible role of inter-domain salt bridges in oligopeptidase B from Trypanosoma brucei: critical role of Glu172 of non-catalytic β-propeller domain in catalytic activity and Glu490 of catalytic domain in stability of OPB.

    PubMed

    Fukumoto, Junki; Ismail, Nor Ismaliza Mohd; Kubo, Masaki; Kinoshita, Keita; Inoue, Masahiro; Yuasa, Keizo; Nishimoto, Makoto; Matsuki, Hitoshi; Tsuji, Akihiko

    2013-11-01

    Oligopeptidase B (OPB) is a member of the prolyl oligopeptidase (POP) family of serine proteases. OPB in trypanosomes is an important virulence factor and potential pharmaceutical target. Characteristic structural features of POP family members include lack of a propeptide and presence of a β-propeller domain (PD), although the role of the β-PD has yet to be fully understood. In this work, residues Glu(172), Glu(490), Glu(524) and Arg(689) in Trypanosoma brucei OPB (Tb OPB), which are predicted to form inter-domain salt bridges, were substituted for Gln and Ala, respectively. These mutants were evaluated in terms of catalytic properties and stability. A negative effect on kcat/Km was obtained following mutation of Glu(172) or Arg(689). In contrast, the E490Q mutant exhibited markedly decreased thermal stability, although this mutation had less effect on catalytic properties compared to the E172Q and R689A mutants. Trypsin digestion showed that the boundary regions between the β-PD and catalytic domains (CDs) of the E490Q mutant are unfolded with heat treatment. These results indicated that Glu(490) in the CD plays a role in stabilization of Tb OPB, whereas Glu(172) in the β-PD is critical for the catalytic activity of Tb OPB.

  2. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    PubMed

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  3. Enhanced catalytic activity over MIL-100(Fe) loaded ceria catalysts for the selective catalytic reduction of NOx with NH₃ at low temperature.

    PubMed

    Wang, Peng; Sun, Hong; Quan, Xie; Chen, Shuo

    2016-01-15

    The development of catalysts for selective catalytic reduction (SCR) reactions that are highly active at low temperatures and show good resistance to SO2 and H2O is still a challenge. In this study, we have designed and developed a high-performance SCR catalyst based on nano-sized ceria encapsulated inside the pores of MIL-100(Fe) that combines excellent catalytic power with a metal organic framework architecture synthesized by the impregnation method (IM). Transmission electron microscopy (TEM) revealed the encapsulation of ceria in the cavities of MIL-100(Fe). The prepared IM-CeO2/MIL-100(Fe) catalyst shows improved catalytic activity both at low temperatures and throughout a wide temperature window. The temperature window for 90% NOx conversion ranges from 196 to 300°C. X-ray photoelectron spectroscopy (XPS) and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) analysis indicated that the nano-sized ceria encapsulated inside MIL-100(Fe) promotes the production of chemisorbed oxygen on the catalyst surface, which greatly enhances the formation of the NO2 species responsible for fast SCR reactions.

  4. Characterization and catalytic activity of Cu Co spinel thin films catalysts

    NASA Astrophysics Data System (ADS)

    Stefanov, P.; Avramova, I.; Stoichev, D.; Radic, N.; Grbic, B.; Marinova, Ts.

    2005-05-01

    The Cu-Co mixed oxide catalysts were prepared on a La 2O 3/ZrO 2/SS support by thermal decomposition of nitrate precursors. The catalyst samples were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectrum (XPS) and Brunauer-Emmet-Teller (BET) surface area. The XPS data indicated the formation of some amount of CuO together with the Cu-Co spinel after annealing at 550 °C. The Cu-Co/ZrO 2/SS thin film catalysts were tested for three-way catalytic performance and showed moderate activity.

  5. Polyvinylpyrrolidone adsorption effects on the morphologies of synthesized platinum particles and its catalytic activity

    SciTech Connect

    Ooi, Mahayatun Dayana Johan; Aziz, Azlan Abdul

    2015-04-24

    Flower-like Platinum micro-structures were synthesized from different concentration of the PVP using solvothermal method. At 5.0×10{sup −3} mmol of PVP, well-defined flower-like pattern consists of triangular petals radiating from the centre were produced whereas larger flower network developed at higher PVP concentration. High degree of crystallinity was obtained upon each increment of PVP. The well defined flower like pattern synthesized using 5.0×10{sup −3} mmol PVP exhibit the highest catalytic activity and stability towards electro-oxidation of formic acid.

  6. Synthesis, characterization and catalytic activity of novel large network polystyrene-immobilized organic bases

    DOE PAGES

    Tassi, Marco; Bartollini, Elena; Adriaensens, Peter; ...

    2015-12-07

    In view of searching for efficient polymeric supports for organic bases to be used in environmentally friendly reaction conditions, novel gel-type cross-linked polystyrenes functionalized with diethylamine and 1,5,7-triazabicyclo[4.4.0]dec-5-ene, have been prepared. Moreover, the structural properties and morphology of these catalysts have been determined by extensive solid state NMR experiments, FTIR spectroscopy and SEM/TEM microscopy. SPACeR-supported bases were found to exhibit high catalytic activity in the epoxide ring opening by phenols. Finally, a range of β-substituted alcohols have been readily and regioselectively synthesized.

  7. Metal-Organic Frameworks derivatives for improving the catalytic activity of CO oxidation reaction.

    PubMed

    Ji, Wenlan; Xu, Zhiling; Liu, Pengfei; Zhang, Suoying; Zhou, Weiqiang; Li, Hongfeng; Zhang, Tao; Li, Linjie; Lu, Xiaohua; Wu, Jiansheng; Zhang, Weina; Huo, Fengwei

    2017-03-15

    Metal-Organic Frameworks (MOFs) based derivatives have attracted an increasing interest in various research fields. However, most of reported papers mainly focused on the pristine MOFs-based derivatives, and researches on the functional MOFs-based derivatives composites are rare. Here, a simple strategy was reported to design the functional MOFs based derivatives composites by the encapsulation of the metal nanoparticles (MNPs) in MOFs matrixes (MNPs@MOFs) and the high-temperature calcination of MNPs@MOFs composites. The as-prepared MNPs@metal oxide composites with the hierarchical pore structure exhibited excellent catalytic activity and high stability for CO oxidation reaction.

  8. Polyvinylpyrrolidone adsorption effects on the morphologies of synthesized platinum particles and its catalytic activity

    NASA Astrophysics Data System (ADS)

    Ooi, Mahayatun Dayana Johan; Aziz, Azlan Abdul

    2015-04-01

    Flower-like Platinum micro-structures were synthesized from different concentration of the PVP using solvothermal method. At 5.0×10-3 mmol of PVP, well-defined flower-like pattern consists of triangular petals radiating from the centre were produced whereas larger flower network developed at higher PVP concentration. High degree of crystallinity was obtained upon each increment of PVP. The well defined flower like pattern synthesized using 5.0×10-3 mmol PVP exhibit the highest catalytic activity and stability towards electro-oxidation of formic acid.

  9. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion.

    PubMed

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W; Liu, Yan; Walter, Nils G; Yan, Hao

    2016-02-10

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  10. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    PubMed Central

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-01-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology. PMID:26861509

  11. Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao; Fu, Jinglin; Dhakal, Soma; Johnson-Buck, Alexander; Liu, Minghui; Zhang, Ting; Woodbury, Neal W.; Liu, Yan; Walter, Nils G.; Yan, Hao

    2016-02-01

    Cells routinely compartmentalize enzymes for enhanced efficiency of their metabolic pathways. Here we report a general approach to construct DNA nanocaged enzymes for enhancing catalytic activity and stability. Nanocaged enzymes are realized by self-assembly into DNA nanocages with well-controlled stoichiometry and architecture that enabled a systematic study of the impact of both encapsulation and proximal polyanionic surfaces on a set of common metabolic enzymes. Activity assays at both bulk and single-molecule levels demonstrate increased substrate turnover numbers for DNA nanocage-encapsulated enzymes. Unexpectedly, we observe a significant inverse correlation between the size of a protein and its activity enhancement. This effect is consistent with a model wherein distal polyanionic surfaces of the nanocage enhance the stability of active enzyme conformations through the action of a strongly bound hydration layer. We further show that DNA nanocages protect encapsulated enzymes against proteases, demonstrating their practical utility in functional biomaterials and biotechnology.

  12. Catalytic destruction of chloramine to nitrogen using chlorination and activated carbon--case study.

    PubMed

    Kochany, J; Lipczynska-Kochany, E

    2008-04-01

    The paper presents the results of laboratory and pilot studies on the removal of chloramine from potable water using chlorination with a less-than-breakpoint dosage of chlorine, followed by treatment with catalytic activated carbon. The effect of the chlorine-to-nitrogen ratio, temperature, and carbon contact time were investigated to optimize conditions for chloramines removal and minimize the production of ammonia. Results demonstrated that prechlorination of water, followed by treatment with catalytic activated carbon, can degrade monochloramine to nitrogen gas as a main product. For all chlorine-to-ammonia ratios studied, the observed rates of monochloramine removal were higher at a temperature of 20 degrees C than they were at 5 degrees C. Generation of ammonia was slightly higher at the lower temperature. However, at both temperatures, practically all monochloramine was destroyed, and only insignificant amounts of ammonia were formed when a chlorine-to-ammonia ratio of 7:1 was applied. The described method is simple and cost-effective, because it eliminates the requirement of removal of ammonia, typically formed during the treatment of chloramines with activated carbon.

  13. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    PubMed Central

    Volkov, Oleg A; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R; Chen, Zhe; Phillips, Margaret A

    2016-01-01

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures of Trypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomeric TbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving a cis-to-trans proline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved. DOI: http://dx.doi.org/10.7554/eLife.20198.001 PMID:27977001

  14. Role of enzyme-substrate flexibility in catalytic activity: an evolutionary perspective.

    PubMed

    Demetrius, L

    1998-09-21

    Site-directed mutagenesis has proved an effective experimental technique to investigate catalytic mechanisms and to determine relations between enzyme structure and function. This article invokes an analytical model based on evolution by mutation and natural selection-Nature's analogue of site-directed mutagenesis-to derive a set of general rules relating enzyme structure and activity. The catalysts are described in terms of the structural parameters, rigidity and flexibility, and the functional variables, reaction rate and substrate specificity. The evolutionary model predicts the following structure-activity relations: (a) rigid enzyme-flexible substrate: large variation in reaction rates, broad substrate specificity; (b) rigid enzyme-rigid substrate: diffusion controlled rates, absolute specificity; (c) flexible enzyme-rigid substrate: intermediate reaction rates, group specificity; (d) flexible enzyme-flexible substrate: slow rates, absolute specificity. Spectroscopic methods and X-ray crystallography now yield important characteristics of enzyme-substrate complexes such as molecular flexibility. The evolutionary analysis we have exploited provides general principles for inferring catalytic activity from structural studies of enzyme-substrate complexes.

  15. Active site structure and catalytic mechanism of phosphodiesterase for degradation of intracellular second messengers

    NASA Astrophysics Data System (ADS)

    Zhan, Chang-Guo

    2002-03-01

    Phosphodiesterases are clinical targets for a variety of biological disorders, because this superfamily of enzymes regulate intracellular concentration of cyclic nucleotides that serve as the second messengers playing a critical role in a variety of physiological processes. Understanding structure and mechanism of a phosphodiesterase will provide a solid basis for rational design of the more efficient therapeutics. Although a three-dimensional X-ray crystal structure of the catalytic domain of human phosphodiesterase 4B2B was recently reported, it was uncertain whether a critical bridging ligand in the active site is a water molecule or a hydroxide ion. The identity of this bridging ligand has been determined by performing first-principles quantum chemical calculations on models of the active site. All the results obtained indicate that this critical bridging ligand in the active site of the reported X-ray crystal structure is a hydroxide ion, rather than a water molecule, expected to serve as the nucleophile to initialize the catalytic degradation of the intracellular second messengers.

  16. Relief of autoinhibition by conformational switch explains enzyme activation by a catalytically dead paralog

    SciTech Connect

    Volkov, Oleg A.; Kinch, Lisa; Ariagno, Carson; Deng, Xiaoyi; Zhong, Shihua; Grishin, Nick; Tomchick, Diana R.; Chen, Zhe; Phillips, Margaret A.

    2016-12-15

    Catalytically inactive enzyme paralogs occur in many genomes. Some regulate their active counterparts but the structural principles of this regulation remain largely unknown. We report X-ray structures ofTrypanosoma brucei S-adenosylmethionine decarboxylase alone and in functional complex with its catalytically dead paralogous partner, prozyme. We show monomericTbAdoMetDC is inactive because of autoinhibition by its N-terminal sequence. Heterodimerization with prozyme displaces this sequence from the active site through a complex mechanism involving acis-to-transproline isomerization, reorganization of a β-sheet, and insertion of the N-terminal α-helix into the heterodimer interface, leading to enzyme activation. We propose that the evolution of this intricate regulatory mechanism was facilitated by the acquisition of the dimerization domain, a single step that can in principle account for the divergence of regulatory schemes in the AdoMetDC enzyme family. These studies elucidate an allosteric mechanism in an enzyme and a plausible scheme by which such complex cooperativity evolved.

  17. Chemistry, phase formation, and catalytic activity of thin palladium-containing oxide films synthesized by plasma-assisted physical vapor deposition

    SciTech Connect

    Anders, Andre

    2010-11-26

    The chemistry, microstructure, and catalytic activity of thin films incorporating palladium were studied using scanning and transmission electron microscopies, X-ray diffraction, spectrophotometry, 4-point probe and catalytic tests. The films were synthesized using pulsed filtered cathodic arc and magnetron sputter deposition, i.e. techniques far from thermodynamic equilibrium. Catalytic particles were formed by thermally cycling thin films of the Pd-Pt-O system. The evolution and phase formation in such films as a function of temperature were discussed in terms of the stability of PdO and PtO2 in air. The catalytic efficiency was found to be strongly affected by the chemical composition, with oxidized palladium definitely playing a major role in the combustion of methane. Reactive sputter deposition of thin films in the Pd-Zr-Y-O system allowed us forming microstructures ranging from nanocrystalline zirconia to palladium nanoparticles embedded in a (Zr,Y)4Pd2O matrix. The sequence of phase formation is put in relation to simple thermodynamic considerations.

  18. Catalytic decomposition of hydrogen peroxide and 4-chlorophenol in the presence of modified activated carbons.

    PubMed

    Huang, Hsu-Hui; Lu, Ming-Chun; Chen, Jong-Nan; Lee, Cheng-Te

    2003-06-01

    The objective of this research was to examine the heterogeneous catalytic decomposition of H(2)O(2) and 4-chlorophenol (4-CP) in the presence of activated carbons modified with chemical pretreatments. The decomposition of H(2)O(2) was suppressed significantly by the change of surface properties including the decreased pH(pzc) modified with oxidizing agent and the reduced active sites occupied by the adsorption of 4-CP. The apparent reaction rate of H(2)O(2) decomposition was dominated by the intrinsic reaction rates on the surface of activated carbon rather than the mass transfer rate of H(2)O(2) to the solid surface. By the detection of chloride ion in suspension, the reduction of 4-CP was not only attributed to the advanced adsorption but also the degradation of 4-CP. The catalytic activity toward 4-CP for the activated carbon followed the inverse sequence of the activity toward H(2)O(2), suggesting that acidic surface functional group could retard the H(2)O(2) loss and reduce the effect of surface scavenging resulting in the increase of the 4-CP degradation efficiency. Few effective radicals were expected to react with 4-CP for the strong effect of surface scavenging, which could explain why the degradation rate of 4-CP observed in this study was so slow and the dechlorination efficiency was independent of the 4-CP concentration in aqueous phase. Results show that the combination of H(2)O(2) and granular activated carbon (GAC) did increase the total removal of 4-CP than that by single GAC adsorption.

  19. Effect of Manganese Additive on the Improvement of Low-Temperature Catalytic Activity of VO(x)-WO(x)/TiO2 Nanoparticles for Chlorobenzene Combustion.

    PubMed

    He, Fei; Chen, Chunxiao; Liu, Shantang

    2016-06-01

    In this study, V-W/TiO2, Mn-V-W/TiO2 and Mn-W/TiO2 nanoparticles were prepared by homogeneous precipitation method and investigated for the catalytic combustion of chlorobenzene (CB), which was used as a model compound of chlorinated volatile organic compounds (CVOCs). The samples were characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption, transmission electron microscope (TEM) and hydrogen temperature-programed reduction (H2-TPR). The average size of the nanoparticles was -20 nm. Manganese species were evenly distributed on the surface of the V-W/TiO2 catalyst, and a small amount of manganese addition did not affect the crystal form, crystallinity and morphology of the V-W/TiO2 catalyst. In addition, low-temperature catalytic activity of V-W/TiO2 catalysts could be effectively improved. When the molar ratio of Mn/(Mn + V) was 0.25 or 0.4, the catalyst displayed the highest low-temperature activity. This was possibly due to Mn (VO3)x formed by the reaction of manganese and vanadium species. Meanwhile, we also found that the addition of oxalic acid was benefit to the improvement of the catalytic activities. When manganese content was high, such as Mn (0.75) VW/Ti, the catalyst activity declined seriously, and the reason was also discussed.

  20. Preparation and catalytic activity of poly(N-vinyl-2-pyrrolidone)-protected Au nanoparticles for the aerobic oxidation of glucose.

    PubMed

    Zhang, Haijun; Li, Wenqi; Gu, Yajun; Zhang, Shaowei

    2014-08-01

    PVP-protected Au nanoparticles (NPs) for the aerobic oxidation of glucose were prepared by using NaBH4 reduction method. The effects of processing parameters such as Au3+ ion concentration, reaction temperature, ratio of NaBH4 or PVP to Au3+, and solvent composition on their particle sizes and catalytic activities were studied in detail and the synthesis conditions optimized. As-prepared Au NPs possessed a FCC structure, with an average size varying from about 100 to 2.6 nm depending on their preparation conditions. The size changes affected their catalytic activities in the aerobic oxidation of glucose. The Au NPs with the average size of 2.6 nm prepared under the optimal conditions showed a high instantaneous catalytic activity as well as a high long-time stability. Based on the kinetic study on the glucose oxidation over the PVP-protected Au NPs, the corresponding apparent activation energy was determined as 82 kJ mol(-1).

  1. Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution.

    PubMed

    Voiry, Damien; Yamaguchi, Hisato; Li, Junwen; Silva, Rafael; Alves, Diego C B; Fujita, Takeshi; Chen, Mingwei; Asefa, Tewodros; Shenoy, Vivek B; Eda, Goki; Chhowalla, Manish

    2013-09-01

    Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution can be easily achieved by electrolysis at large potentials that can be lowered with expensive platinum-based catalysts. Replacement of Pt with inexpensive, earth-abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen evolution. To this end, promising results have been reported using 2H (trigonal prismatic) XS₂ (where X  =  Mo or W) nanoparticles with a high concentration of metallic edges. The key challenges for XS₂ are increasing the number and catalytic activity of active sites. Here we report monolayered nanosheets of chemically exfoliated WS₂ as efficient catalysts for hydrogen evolution with very low overpotentials. Analyses indicate that the enhanced electrocatalytic activity of WS₂ is associated with the high concentration of the strained metallic 1T (octahedral) phase in the as-exfoliated nanosheets. Our results suggest that chemically exfoliated WS₂ nanosheets are interesting catalysts for hydrogen evolution.

  2. Effect of citrate on Aspergillus niger phytase adsorption and catalytic activity in soil

    NASA Astrophysics Data System (ADS)

    Mezeli, Malika; Menezes-Blackburn, Daniel; Zhang, Hao; Giles, Courtney; George, Timothy; Shand, Charlie; Lumsdon, David; Cooper, Patricia; Wendler, Renate; Brown, Lawrie; Stutter, Marc; Blackwell, Martin; Darch, Tegan; Wearing, Catherine; Haygarth, Philip

    2015-04-01

    Current developments in cropping systems that promote mobilisation of phytate in agricultural soils, by exploiting plant-root exudation of phytase and organic acids, offer potential for developments in sustainable phosphorus use. However, phytase adsorption to soil particles and phytate complexion has been shown to inhibit phytate dephosphorylation, thereby inhibiting plant P uptake, increasing the risk of this pool contributing to diffuse pollution and reducing the potential benefits of biotechnologies and management strategies aimed to utilise this abundant reserve of 'legacy' phosphorus. Citrate has been seen to increase phytase catalytic efficiency towards complexed forms of phytate, but the mechanisms by which citrate promotes phytase remains poorly understood. In this study, we evaluated phytase (from Aspergillus niger) inactivation, and change in catalytic properties upon addition to soil and the effect citrate had on adsorption of phytase and hydrolysis towards free, precipitated and adsorbed phytate. A Langmuir model was fitted to phytase adsorption isotherms showing a maximum adsorption of 0.23 nKat g-1 (19 mg protein g-1) and affinity constant of 435 nKat gˉ1 (8.5 mg protein g-1 ), demonstrating that phytase from A.niger showed a relatively low affinity for our test soil (Tayport). Phytases were partially inhibited upon adsorption and the specific activity was of 40.44 nKat mgˉ1 protein for the free enzyme and 25.35 nKat mgˉ1 protein when immobilised. The kinetics of adsorption detailed that most of the adsorption occurred within the first 20 min upon addition to soil. Citrate had no effect on the rate or total amount of phytase adsorption or loss of activity, within the studied citrate concentrations (0-4mM). Free phytases in soil solution and phytase immobilised on soil particles showed optimum activity (>80%) at pH 4.5-5.5. Immobilised phytase showed greater loss of activity at pH levels over 5.5 and lower activities at the secondary peak at pH 2

  3. DGKθ Catalytic Activity is Required for Efficient Recycling of Presynaptic Vesicles at Excitatory Synapses

    PubMed Central

    Goldschmidt, Hana L.; Tu-Sekine, Becky; Volk, Lenora; Anggono, Victor; Huganir, Richard L.; Raben, Daniel M.

    2015-01-01

    Summary Synaptic transmission relies on coordinated coupling of synaptic vesicle (SV) exocytosis and endocytosis. While much attention has focused on characterizing proteins involved in SV recycling, the roles of membrane lipids and their metabolism remain poorly understood. Diacylglycerol, a major signaling lipid produced at synapses during synaptic transmission, is regulated by diacylglycerol kinase (DGK). Here we report a role for DGKθ in the mammalian central nervous system in facilitating recycling of presynaptic vesicles at excitatory synapses. Using synaptophysin- and vGlut1-pHluorin optical reporters, we found that acute and chronic deletion of DGKθ attenuated the recovery of SVs following neuronal stimulation. Rescue of recycling kinetics required DGKθ kinase activity. Our data establish a role for DGK catalytic activity and its byproduct, phosphatidic acid, at the presynaptic nerve terminal in SV recycling. Together these data suggest DGKθ supports synaptic transmission during periods of elevated neuronal activity. PMID:26748701

  4. Tuning laccase catalytic activity with phosphate functionalized carbon dots by visible light.

    PubMed

    Li, Hao; Guo, Sijie; Li, Chuanxi; Huang, Hui; Liu, Yang; Kang, Zhenhui

    2015-05-13

    The phosphate functionalized carbon dots (PCDs) with high biocompatibility and low toxicity can be used as efficient additives for the construction of laccase/PCDs hybrids catalyst. A series of experiments indicated that the activity of laccase/PCDs was higher than that of free laccase (increased by 47.7%). When laccase/PCDs hybrids catalyst was irradiated with visible light (laccase/PCDs-Light), its activity was higher than that of laccase/PCDs hybrids without light irradiation (increased by 92.1%). In the present system, the T1 Cu in laccase was combined with the phosphate group on PCDs, which can increase binding capacity of laccase/PCDs hybrids and substrate. Further, the visible light irradiation increased the donating and accepting electronic capability of the laccase/PCDs hybrids, improving their catalytic activity.

  5. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan

    2014-09-01

    The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual.

  6. Facile, template-free synthesis of silver nanodendrites with high catalytic activity for the reduction of p-nitrophenol.

    PubMed

    Zhang, Wei; Tan, Fatang; Wang, Wei; Qiu, Xiaolin; Qiao, Xueliang; Chen, Jianguo

    2012-05-30

    Here we report a facile, surfactant-free and template-free synthesis process of highly uniform dendritic silver nanostructures with high catalytic activity for the reduction of p-nitrophenol. By controlling the concentration of AgNO(3) aqueous solution and the reaction time, various shapes of silver nanodendrites (SNDs) could be obtained easily. The effects of different parameters such as concentrations of the reagents and reaction time on the morphology and structure of as-prepared tree-like nanostructures have also been investigated by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Also, the X-ray photoelectron spectroscopy (XPS) has been used to identify the oxidation state of SNDs. In addition, the catalytic activity of the as-prepared SNDs samples at 200 mM AgNO(3) aqueous solution was evaluated by a redox reaction of p-nitrophenol in the presence of an excess amount of NaBH(4). It was found that the highly symmetrical SNDs with roughly 60-120 nm in stem and branch diameter and 3-12 μm in length obtained after 120 s reaction time do have higher catalytic activity than other SNDs prepared at different reaction time, several times stronger catalytic activity in the sodium borohydride reduction of p-nitrophenol to p-aminophenol, compared to some other silver nanoparticles reported in literature. The crystallinity provided by X-ray diffraction (XRD) analysis indicates that the improvement of the crystallinity is also very crucial for SNDs' catalytic activities. The SNDs are very promising catalytic candidates for the reduction of p-nitrophenol because of easily simple preparation route and high catalytic activity.

  7. Activities of human RRP6 and structure of the human RRP6 catalytic domain

    SciTech Connect

    Januszyk, Kurt; Liu, Quansheng; Lima, Christopher D.

    2011-08-29

    The eukaryotic RNA exosome is a highly conserved multi-subunit complex that catalyzes degradation and processing of coding and noncoding RNA. A noncatalytic nine-subunit exosome core interacts with Rrp44 and Rrp6, two subunits that possess processive and distributive 3'-to-5' exoribonuclease activity, respectively. While both Rrp6 and Rrp44 are responsible for RNA processing in budding yeast, Rrp6 may play a more prominent role in processing, as it has been demonstrated to be inhibited by stable RNA secondary structure in vitro and because the null allele in budding yeast leads to the buildup of specific structured RNA substrates. Human RRP6, otherwise known as PM/SCL-100 or EXOSC10, shares sequence similarity to budding yeast Rrp6 and is proposed to catalyze 3'-to-5' exoribonuclease activity on a variety of nuclear transcripts including ribosomal RNA subunits, RNA that has been poly-adenylated by TRAMP, as well as other nuclear RNA transcripts destined for processing and/or destruction. To characterize human RRP6, we expressed the full-length enzyme as well as truncation mutants that retain catalytic activity, compared their activities to analogous constructs for Saccharomyces cerevisiae Rrp6, and determined the X-ray structure of a human construct containing the exoribonuclease and HRDC domains that retains catalytic activity. Structural data show that the human active site is more exposed when compared to the yeast structure, and biochemical data suggest that this feature may play a role in the ability of human RRP6 to productively engage and degrade structured RNA substrates more effectively than the analogous budding yeast enzyme.

  8. Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity.

    PubMed

    Wang, Xinyu; Zhang, Yincong; Li, Tianfu; Tian, Wende; Zhang, Qiang; Cheng, Yiyun

    2013-04-30

    Poly(amidoamine) (PAMAM) encapsulated platinum nanoparticles were synthesized and used as catalase mimics. Acetylated generation 9 (Ac-G9) PAMAM dendrimer with a molecular size around 10 nm was used as a template to synthesize platinum nanoparticles. The feeding molar ratio of Pt(4+) and Ac-G9 is 2048, and the synthesized platinum nanoparticle (Ac-G9/Pt NP) has an average size of 3.3 nm. Ac-G9/Pt NP has a similar molecular size and globular shape with catalase (~11 nm). The catalytic activity of Ac-G9/Pt NP on the decomposition of H2O2 is approaching that of catalase at 37 °C. Ac-G9/Pt NP shows differential response to the changes of pH and temperature compared with catalase, which can be explained by different catalytic mechanisms of Ac-G9/Pt NP and catalase. Ac-G9/Pt NP also shows horseradish peroxidase activity and is able to scavenge free radicals such as di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH). Furthermore, Ac-G9/Pt NP shows excellent biocompatibility on different cell lines and can down-regulate H2O2-induced intracellular reactive oxygen species (ROS) in these cells. These results suggest that dendrimers are promising mimics of proteins with different sizes and Ac-G9/Pt NP can be used as an alternative candidate of catalase to decrease oxidation stress in cells.

  9. [Effects and mechanism of catalytic decomposition of ozone by activated carbon].

    PubMed

    Liu, Hai-Long; Zhang, Zhi-Ye; Zhang, Zhong-Ming; Jiao, Ru-Yuan; Wang, Rui-Jun

    2012-10-01

    Effects and mechanism of catalytic decomposition of ozone by activated carbon (AC) were studied by detection of residual components in released gas and temperature of reactor pole, and heat analysis through the ozone decomposition pole (ODP). Results showed that ozone could be thoroughly decomposed (removal rate was maintaining 100% all along the process studied) for 5 h under the condition of O3 12.89 mg x min(-1), 18 mm diameter glass tube was stuffed by activated carbon (made from coal, 2.0-2.5 mm diameter). The temperature of ODP was found rise during the treatment. The temperature became stable after quickly rise to 65-69 degrees C; and the CO2 output reduced with the stable temperature. The mechanisms of ozone decomposition were found including three parts. The first is catalytic decomposition by AC. AC enriches O3 and enhances O3 decomposition to form O2. The second is AC reaction with O3, which leads to destruction of the surface structure or group and output of CO2 and NOx are released with offgas. The third is temperature rising caused by heat production of CO2 and NOx formation according to the above two mechanisms, which enhances O3 thermal decomposition. Meanwhile, some basic design principles of ozone decomposition device were discussed.

  10. Electrochemical, catalytic and antimicrobial activity of N-functionalized tetraazamacrocyclic binuclear nickel(II) complexes

    NASA Astrophysics Data System (ADS)

    Prabu, R.; Vijayaraj, A.; Suresh, R.; Shenbhagaraman, R.; Kaviyarasan, V.; Narayanan, V.

    2011-02-01

    The five binuclear nickel(II) complexes have been synthesized by the Schiff base condensation of 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclo-tetradecane (PC) with appropriate aliphatic diamines and nickel(II) perchlorate. All the five complexes were characterized by elemental and spectral analysis. The electronic spectra of the complexes show three d-d transition in the range of 550-1055 nm due to 3A 2g → 3T 2g(F), 3A 2g → 3T 1g(F) and 3A 2g → 3T 1g(P). These spin allowed electronic transitions are characteristic of an octahedral Ni 2+ center. Electrochemical studies of the complexes show two irreversible one electron reduction waves at cathodic region. The reduction potential of the complexes shifts towards anodically upon increasing the chain length of the macrocyclic ring. All the nickel(II) complexes show two irreversible one electron oxidation waves at anodic region. The oxidation potential of the complexes shift towards anodically upon increasing the chain length of the macrocyclic ring. The catalytic activities of the complexes were observed to be increase with increase the macrocyclic ring size. The observed rate constant values for the catalytic hydrolysis of 4-nitrophenyl phosphate are in the range of 5.85 × 10 -3 to 9.14 × 10 -3 min -1. All the complexes were screened for antimicrobial activity.

  11. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase

    NASA Astrophysics Data System (ADS)

    Obexer, Richard; Godina, Alexei; Garrabou, Xavier; Mittl, Peer R. E.; Baker, David; Griffiths, Andrew D.; Hilvert, Donald

    2017-01-01

    Designing catalysts that achieve the rates and selectivities of natural enzymes is a long-standing goal in protein chemistry. Here, we show that an ultrahigh-throughput droplet-based microfluidic screening platform can be used to improve a previously optimized artificial aldolase by an additional factor of 30 to give a >109 rate enhancement that rivals the efficiency of class I aldolases. The resulting enzyme catalyses a reversible aldol reaction with high stereoselectivity and tolerates a broad range of substrates. Biochemical and structural studies show that catalysis depends on a Lys-Tyr-Asn-Tyr tetrad that emerged adjacent to a computationally designed hydrophobic pocket during directed evolution. This constellation of residues is poised to activate the substrate by Schiff base formation, promote mechanistically important proton transfers and stabilize multiple transition states along a complex reaction coordinate. The emergence of such a sophisticated catalytic centre shows that there is nothing magical about the catalytic activities or mechanisms of naturally occurring enzymes, or the evolutionary process that gave rise to them.

  12. Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Yang, Xiaojun; Cao, Shuo; Zhou, Jie; Wu, Yuanxin; Han, Jinyu; Yan, Zhiguo; Zheng, Mingming

    2017-04-01

    A series of supported palladium catalysts has been prepared through the precipitation method and the reduction method, using polyvinyl alcohol (PVA) and polyvinylpyrrolidone (PVP) as dispersants. The effects of the dispersants on the properties of catalysts were evaluated and the catalytic performance of the new materials was investigated for the oxidative carbonylation of phenol to diphenyl carbonate (DPC). The catalysts as prepared were also characterized by the X-ray diffraction (XRD), transmission electron microscope (TEM), Brunner-Emmet-Teller (BET) measurements and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the addition of the dispersants had no effect on the crystal phase of the catalysts. However, the dispersion of Pd particles was improved when the dispersants were used. Moreover, the particle sizes of Pd nanoparticles modified by PVA were smaller than those modified by PVP. The catalysts prepared using the dispersants gave better yields of DPC than the catalysts prepared without the dispersants. The highest yield of DPC was 17.9% with the PVA-Red catalyst. The characterization results for the used catalysts showed that the Pd species in the PVA-Red catalyst remained mostly divalent and the lattice oxygen species were consumed during the reaction, which could lead to the higher catalytic activity of the PVA-Red catalyst. The experimental results confirm that PVA effectively inhibited the sintering and reduction of active Pd species in the oxidative carbonylation of phenol.

  13. Activity, expression and function of a second Drosophila protein kinase a catalytic subunit gene

    SciTech Connect

    Melendez, A.; Li, W.; Kalderon, D.

    1995-12-01

    The DC2 was isolated previously on the basis of sequence similarity to DC0, the major Drosophila protein kinase A (PKA) catalytic subunit gene. We show here that the 67-kD Drosophila DC2 protein behaves as a PKA catalytic subunit in vitro. DC2 is transcribed in mesodermal anlagen of early embryos. This expression depends on dorsal but on neither twist nor snail activity. DC2 transcriptional fusions mimic this embryonic expression and are also expressed in subsets of cells in the optic lamina, wing disc and leg discs of third instar larvae. A saturation screen of a small deficiency interval containing DC2 for recessive lethal mutations yielded no DC2 alleles. We therefore isolated new deficiencies to generate deficiency trans-heterozygotes that lacked DC2 activity. These animals were viable and fertile. The absence of DC2 promoter did not efficiently rescue a variety of DC0 mutant phenotypes. These observations indicate that DC2 is not an essential gene and is unlikely to be functionally redundant with DC0, which has multiple unique functions during development. 62 refs., 10 figs., 2 tabs.

  14. Imparting Catalytic Activity to a Covalent Organic Framework Material by Nanoparticle Encapsulation.

    PubMed

    Shi, Xiaofei; Yao, Youjin; Xu, Yulong; Liu, Kun; Zhu, Guangshan; Chi, Lifeng; Lu, Guang

    2017-03-01

    Integrating covalent organic frameworks (COFs) with other functional materials is a useful route to enhancing their performances and extending their applications. We report herein a simple encapsulation method for incorporating catalytically active Au nanoparticles with different sizes, shapes, and contents in a two-dimensional (2D) COF material constructed by condensing 1,3,5-tris(4-aminophenyl)benzene (TAPB) with 2,5-dimethoxyterephthaldehyde (DMTP). The encapsulation is assisted by the surface functionalization of Au nanoparticles with polyvinylpyrrolidone (PVP) and follows a mechanism based on the adsorption of nanoparticles onto surfaces of the initially formed polymeric precursor of COF. The incorporation of nanoparticles does not alter obviously the crystallinity, thermal stability, and pore structures of the framework matrices. The obtained COF composites with embedded but accessible Au nanoparticles possess large surface areas and highly open mesopores and display recyclable catalytic performance for reduction of 4-nitrophenol, which cannot be catalyzed by the pure COF material, with activities relevant to contents and geometric structures of the incorporated nanoparticles.

  15. Promoting immobilization and catalytic activity of horseradish peroxidase on mesoporous silica through template micelles.

    PubMed

    Wan, Mi Mi; Lin, Wei Gang; Gao, Ling; Gu, Hui Cheng; Zhu, Jian Hua

    2012-07-01

    New concept on the promotion of immobilization and catalytic activity of enzyme on mesoporous silica through template micelles is proposed and realized in this paper. Proper P123 templates are controllable retained in the as-synthesized SBA-15, not only to anchor the horseradish peroxidase (HRP) guest, but also to establish the crowding-like microenvironment around the enzyme. The influence of retaining templates on the pore structure of SBA-15, immobilization, and catalytic activity of HRP is studied, and the possible process of template removal is proposed. Ethanol refluxing of 6 h is conformable to prepare the optimal mesoporous support characterized with the retained templates of about 8%. With the assistance of retained templates in SBA-15, up to 49 mg g(-1) of HRP can be immobilized, 100% more than that on calcined SBA-15. Furthermore, the thermal stability, the resistance of pH variation and denaturing agent urea, and the recycle usage of HRP immobilized are obviously elevated, paving a novel and low-cost route to develop enzyme catalysts.

  16. Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated Electron Tunneling and Emitting

    PubMed Central

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-01-01

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated. PMID:25749635

  17. Photo-catalytic activities of plant hormones on semiconductor nanoparticles by laser-activated electron tunneling and emitting.

    PubMed

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-03-09

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO₂), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi₂O₃)₀.₀₇(CoO)₀.₀₃(ZnO)₀.₉ semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated.

  18. Photo-catalytic Activities of Plant Hormones on Semiconductor Nanoparticles by Laser-Activated Electron Tunneling and Emitting

    NASA Astrophysics Data System (ADS)

    Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Jiang, Ruowei; Zhong, Hongying

    2015-03-01

    Understanding of the dynamic process of laser-induced ultrafast electron tunneling is still very limited. It has been thought that the photo-catalytic reaction of adsorbents on the surface is either dependent on the number of resultant electron-hole pairs where excess energy is lost to the lattice through coupling with phonon modes, or dependent on irradiation photon wavelength. We used UV (355 nm) laser pulses to excite electrons from the valence band to the conduction band of titanium dioxide (TiO2), zinc oxide (ZnO) and bismuth cobalt zinc oxide (Bi2O3)0.07(CoO)0.03(ZnO)0.9 semiconductor nanoparticles with different photo catalytic properties. Photoelectrons are extracted, accelerated in a static electric field and eventually captured by charge deficient atoms of adsorbed organic molecules. A time-of-flight mass spectrometer was used to detect negative molecules and fragment ions generated by un-paired electron directed bond cleavages. We show that the probability of electron tunneling is determined by the strength of the static electric field and intrinsic electron mobility of semiconductors. Photo-catalytic dissociation or polymerization reactions of adsorbents are highly dependent on the kinetic energy of tunneling electrons as well as the strength of laser influx. By using this approach, photo-activities of phytohormones have been investigated.

  19. An antigenic domain within a catalytically active Leishmania infantum nucleoside triphosphate diphosphohydrolase (NTPDase 1) is a target of inhibitory antibodies.

    PubMed

    Maia, Ana Carolina Ribeiro Gomes; Porcino, Gabriane Nascimento; Detoni, Michelle de Lima; Emídio, Nayara Braga; Marconato, Danielle Gomes; Faria-Pinto, Priscila; Fessel, Melissa Regina; Reis, Alexandre Barbosa; Juliano, Luiz; Juliano, Maria Aparecida; Marques, Marcos José; Vasconcelos, Eveline Gomes

    2013-02-01

    We identified a shared B domain within nucleoside triphosphate diphosphohydrolases (NTPDases) of plants and parasites. Now, an NTPDase activity not affected by inhibitors of adenylate kinase and ATPases was detected in Leishmania infantum promastigotes. By non-denaturing gel electrophoresis of detergent-homogenized promastigote preparation, an active band hydrolyzing nucleosides di- and triphosphate was visualized and, following SDS-PAGE and silver staining was identified as a single polypeptide of 50kDa. By Western blots, it was recognized by immune sera raised against potato apyrase (SA), r-pot B domain (SB), a recombinant polypeptide derived from the potato apyrase, and LbB1LJ (SC) or LbB2LJ (SD), synthetic peptides derived from the Leishmania NTPDase 1, and by serum samples from dogs with visceral leishmaniasis, identifying the antigenic L. infantum NTPDase 1 and, also, its conserved B domain (r83-122). By immunoprecipitation assays and Western blots, immune sera SA and SB identified the catalytically active NTPDase 1 in promastigote preparation. In addition, the immune sera SB (44%) and SC or SD (87-99%) inhibited its activity, suggesting a direct effect on the B domain. By ELISA, 37%, 45% or 50% of 38 infected dogs were seropositive for r-pot B domain, LbB1LJ and LbB2LJ, respectively, confirming the B domain antigenicity.

  20. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  1. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms.

    PubMed

    Matagne, André; Bolle, Laetitia; El Mahyaoui, Rachida; Baeyens-Volant, Danielle; Azarkan, Mohamed

    2017-02-23

    (like Boc-Gln-Ala-Arg-AMC, Z-Arg-Arg-AMC and Z-Phe-Arg-AMC), and proteins (azocasein and azoalbumin), suggesting a specific organization of their catalytic residues. All forms are completely inhibited by specific cysteine and cysteine/serine protease inhibitors, but not by specific serine and aspartic protease inhibitors, with the sole exception of pepstatin A that significantly affects acidic bromelain forms 1 and 2. For all eight protease forms, inhibition is also observed with 1,10-phenanthrolin, a metalloprotease inhibitor. Metal ions (i.e. Mn(2+), Mg(2+) and Ca(2+)) showed various effects depending on the protease under consideration, but all of them are totally inhibited in the presence of Zn(2+). Mass spectrometry analyses revealed that all forms have a molecular mass of ca. 24 kDa, which is characteristic of enzymes belonging to the papain-like proteases family. Far-UV CD spectra analysis further supported this analysis. Interestingly, secondary structure calculation proves to be highly reproducible for all cysteine proteases of the papain family tested so far (this work; see also Azarkan et al., 2011; Baeyens-Volant et al., 2015) and thus can be used as a test for rapid identification of the classical papain fold.

  2. The CDC2-related kinase PITALRE is the catalytic subunit of active multimeric protein complexes.

    PubMed Central

    Garriga, J; Mayol, X; Graña, X

    1996-01-01

    PITALRE is a human protein kinase identified by means of its partial sequence identity to the cell division cycle regulatory kinase CDC2. Immunopurified PITALRE protein complexes exhibit an in vitro kinase activity that phosphorylates the retinoblastoma protein, suggesting that PITALRE catalyses this phosphorylation reaction. However, the presence of other kinases in the immunopurified complex could not be ruled out. In the present work, an inactive mutant of the PITALRE kinase has been used to demonstrate that PITALRE is the catalytic subunit responsible for the PITALRE-complex-associated kinase activity, Ectopic overexpression of PITALRE did not increase the total PITALRE kinase activity in the cell, suggesting that PITALRE is regulated by limiting cellular factor(s). Characterization of the PITALRE-containing protein complexes indicated that most of the cellular PITALRE protein exists as a subunit in at least two different active multimeric complexes. Although monomeric PITALRE is also active in vitro, PITALRE present in multimeric complexes exhibits several-fold higher activity than monomeric PITALRE. In addition, overexpression of PITALRE demonstrated the existence of two new associated proteins of approx. 48 and 98 kDa. Altogether these results suggest that, in contrast to the situation with cyclin-dependent kinases, monomeric PITALRE is active, and that association with other proteins modulates its activity and/or its ability to recognize substrates in vivo. PMID:8870681

  3. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots

    PubMed Central

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N.; Misas-Villamil, Johana C.; Xin, Bo T.; Kaiser, Markus; Overkleeft, Herman S.; Tari, Irma; van der Hoorn, Renier A. L.

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress. PMID:28217134

  4. Proteasome Activity Profiling Uncovers Alteration of Catalytic β2 and β5 Subunits of the Stress-Induced Proteasome during Salinity Stress in Tomato Roots.

    PubMed

    Kovács, Judit; Poór, Péter; Kaschani, Farnusch; Chandrasekar, Balakumaran; Hong, Tram N; Misas-Villamil, Johana C; Xin, Bo T; Kaiser, Markus; Overkleeft, Herman S; Tari, Irma; van der Hoorn, Renier A L

    2017-01-01

    The stress proteasome in the animal kingdom facilitates faster conversion of oxidized proteins during stress conditions by incorporating different catalytic β subunits. Plants deal with similar kind of stresses and also carry multiple paralogous genes encoding for each of the three catalytic β subunits. Here, we investigated the existence of stress proteasomes upon abiotic stress (salt stress) in tomato roots. In contrast to Arabidopsis thaliana, tomato has a simplified proteasome gene set with single genes encoding each β subunit except for two genes encoding β2. Using proteasome activity profiling on tomato roots during salt stress, we discovered a transient modification of the catalytic subunits of the proteasome coinciding with a loss of cell viability. This stress-induced active proteasome disappears at later time points and coincides with the need to degrade oxidized proteins during salt stress. Subunit-selective proteasome probes and MS analysis of fluorescent 2D gels demonstrated that the detected stress-induced proteasome is not caused by an altered composition of subunits in active proteasomes, but involves an increased molecular weight of both labeled β2 and β5 subunits, and an additional acidic pI shift for labeled β5, whilst labeled β1 remains mostly unchanged. Treatment with phosphatase or glycosidases did not affect the migration pattern. This stress-induced proteasome may play an important role in PCD during abiotic stress.

  5. E2 superfamily of ubiquitin-conjugating enzymes: constitutively active or activated through phosphorylation in the catalytic cleft

    PubMed Central

    Valimberti, Ilaria; Tiberti, Matteo; Lambrughi, Matteo; Sarcevic, Boris; Papaleo, Elena

    2015-01-01

    Protein phosphorylation is a modification that offers a dynamic and reversible mechanism to regulate the majority of cellular processes. Numerous diseases are associated with aberrant regulation of phosphorylation-induced switches. Phosphorylation is emerging as a mechanism to modulate ubiquitination by regulating key enzymes in this pathway. The molecular mechanisms underpinning how phosphorylation regulates ubiquitinating enzymes, however, are elusive. Here, we show the high conservation of a functional site in E2 ubiquitin-conjugating enzymes. In catalytically active E2s, this site contains aspartate or a phosphorylatable serine and we refer to it as the conserved E2 serine/aspartate (CES/D) site. Molecular simulations of substrate-bound and -unbound forms of wild type, mutant and phosphorylated E2s, provide atomistic insight into the role of the CES/D residue for optimal E2 activity. Both the size and charge of the side group at the site play a central role in aligning the substrate lysine toward E2 catalytic cysteine to control ubiquitination efficiency. The CES/D site contributes to the fingerprint of the E2 superfamily. We propose that E2 enzymes can be divided into constitutively active or regulated families. E2s characterized by an aspartate at the CES/D site signify constitutively active E2s, whereas those containing a serine can be regulated by phosphorylation. PMID:26463729

  6. Synthesis of zinc oxide nanostructures catalytically active in the optical range without irradiation

    NASA Astrophysics Data System (ADS)

    Kasumov, M. M.

    2012-09-01

    A technique for synthesizing catalytically active zinc oxide-based nanostructures is described. The synthesis product represents a blue-gray powder. When it is introduced into a water solution of methyl orange the latter bleaches out both under daylight and in the dark. The activity of the material is measured by the Kubelka-Munk formula in the wavelength range 0.3-1.8 μm. As follows from X-ray phase analysis data, the synthesized material is a composite consisting of hexagonal structures with the parameters ZnO [ a: 3.2491, c: 5.2046] and Zn [ a: 2.6639, c: 4.9397]. A mechanism underlying the formation of a ZnO-Zn nanocomposite is suggested.

  7. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning

    PubMed Central

    Liu, Hui; Ye, Feng; Yao, Qiaofeng; Cao, Hongbin; Xie, Jianping; Lee, Jim Yang; Yang, Jun

    2014-01-01

    The usefulness of Pt-based nanomaterials for catalysis can be greatly enhanced by coupling morphology engineering to the strategic presence of a second or even third metal. Here we demonstrate the design and preparation of stellated Ag-Pt bimetallic nanoparticles where significant activity difference between the methanol oxidation reaction (MOR) and the oxygen reduction reaction (ORR) may be realized by relegating Ag to the core or by hollowing out the core. In particular the stellated Pt surface, with an abundance of steps, edges, corner atoms, and {111} facets, is highly effective for the ORR but is ineffective for MOR. MOR activity is only observed in the presence of a Ag core through electronic coupling to the stellated Pt shell. The bimetallic Ag-Pt stellates therefore demonstrate the feasibility of tuning a Pt surface for two very different structure sensitive catalytic reactions. Stellated bimetallics may therefore be an effective platform for highly tunable catalyst designs. PMID:24495979

  8. Synergy among manganese, nitrogen and carbon to improve the catalytic activity for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Wang, Hui; Ji, Shan; Key, Julian; Wang, Rongfang

    2014-04-01

    A highly active electrocatalyst for oxygen reduction reaction, manganese modified glycine derivative-carbon (Mn-CNx), is synthesized by a two-step carbonizing process. X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy are used to characterize structure and morphology of the catalysts. Electrochemical tests show that Mn-CNx has higher catalytic activity for oxygen reduction reaction than CNx derived glycine and Mn modified Vulcan carbon. Moreover, the half-wave potential of Mn-CNx is only 12 mV lower than that of commercial Pt/C. Mn-CNx also has excellent durability to methanol crossover in alkaline solution, and thus provides a promising low cost, non-precious metal cathode catalyst for fuel cells.

  9. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining.

    PubMed

    Buurmans, Inge L C; Ruiz-Martínez, Javier; Knowles, William V; van der Beek, David; Bergwerff, Jaap A; Vogt, Eelco T C; Weckhuysen, Bert M

    2011-09-18

    Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brønsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brønsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brønsted acidity distributions for industrial FCC materials.

  10. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining

    NASA Astrophysics Data System (ADS)

    Buurmans, Inge L. C.; Ruiz-Martínez, Javier; Knowles, William V.; van der Beek, David; Bergwerff, Jaap A.; Vogt, Eelco T. C.; Weckhuysen, Bert M.

    2011-11-01

    Fluid catalytic cracking (FCC) is the major conversion process used in oil refineries to produce valuable hydrocarbons from crude oil fractions. Because the demand for oil-based products is ever increasing, research has been ongoing to improve the performance of FCC catalyst particles, which are complex mixtures of zeolite and binder materials. Unfortunately, there is limited insight into the distribution and activity of individual zeolitic domains at different life stages. Here we introduce a staining method to visualize the structure of zeolite particulates and other FCC components. Brønsted acidity maps have been constructed at the single particle level from fluorescence microscopy images. By applying a statistical methodology to a series of catalysts deactivated via industrial protocols, a correlation is established between Brønsted acidity and cracking activity. The generally applicable method has clear potential for catalyst diagnostics, as it determines intra- and interparticle Brønsted acidity distributions for industrial FCC materials.

  11. Strong and coverage-independent promotion of catalytic activity of a noble metal by subsurface vanadium

    NASA Astrophysics Data System (ADS)

    Reichl, Wolfgang; Hayek, Konrad

    2003-07-01

    While common bimetallic surfaces have a variable composition, the stable subsurface alloys of V/Rh and V/Pd are characterised by a purely noble metal-terminated surface and the second metal positioned in near-surface layers. The uniform composition of the topmost surface layer excludes conventional ensemble effects in catalysis, and the activity of the surface can be controlled by the metal loading and by the temperature of annealing. For example, the activity of a polycrystalline Rh surface in CO hydrogenation is significantly increased by promotion with subsurface vanadium. The modification of the subsurface layer with a different metal must be considered a promising approach to improve the catalytic properties of a metal surface.

  12. [Role of hydrophobic interactions in manifestation of catalytic activity of lipolytic enzymes].

    PubMed

    Rakhimov, M M; Dzhanbaeva, N R

    1977-06-01

    Kinetics is studied of enzymatic hydrolysis of different substrates of soluble and immobilized cotton lipase. At least two stages of enzymatic lipolysis are found to take place, which precede the formation of Mikhaelis complex: 1) the enzyme adsorption on substrate phase surface and 2) lipase activation. The latter is accompanied by the formation of local chamber on phase contact area in which the hydrolysis occurs. It is suggested on the basis of data on the inhibition by a number of phenylcarbonic acids and fluoride ions, on the hydrolysis rate of soluble and insoluble substrates, catalysed by different immobilized lipases, that there are three regions in the active center of lipolytic enzymes: 1) a region responsible for the "recognition" of substrate phase surface; 2) a binding region, participating in hydrophobic interaction with a single substrate molecule, located in the insoluble phase; 3) catalytical region. A hypothetic scheme of lipid enzymatic hydrolysis at phase contact area is given.

  13. Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.

    PubMed

    Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge

    2015-11-01

    Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO.

  14. Metabolic conditions determining the composition and catalytic activity of cytochrome P-450 monooxygenases in Candida tropicalis.

    PubMed Central

    Sanglard, D; Käppeli, O; Fiechter, A

    1984-01-01

    In the microsomal fraction of Candida tropicalis cells, two distinct monooxygenases were detected, depending on the growth conditions. The distinction of the two monooxygenases was evident from: (i) the absorption maxima in the reduced CO difference spectra of the terminal oxidases (cytochromes P-450 and P-448); (ii) the contents of the monooxygenase components (cytochromes P-450/P-448, NADPH-cytochrome c (P-450) reductase, and cytochrome b5) and (iii) the catalytic activity of the complete system (aliphatic hydroxylation and N-demethylation activity). The occurrence of the respective monooxygenases could be related to the carbon source (n-alkanes or glucose). Oxygen limitation led to a significant increase of cytochrome P-450/P-448 content, independent of the carbon source utilized by the cells. An improved method for the isolation of microsomes enabled us to demonstrate the presence of cytochrome P-448 in glucose-grown cells. PMID:6690424

  15. Assessing the Catalytic Activity of Transglutaminases in the Context of Autophagic Responses.

    PubMed

    D'Eletto, M; Farrace, M G; Piacentini, M; Rossin, F

    2017-01-01

    The human transglutaminases (TGases) are a widely distributed and peculiar group of enzymes that catalyze the posttranslational modification of proteins by the formation of isopeptide bonds. Tissue or type 2 transglutaminase (TG2) represents the most ubiquitous isoform belonging to TGases family. The vast array of biochemical functions catalyzed by TG2 distinguishes it from the other members of the TGase family. In the presence of high calcium levels TG2 catalyzes a vast array of protein posttranslational modifications, including protein-protein cross-linking, incorporation of primary amines into proteins, as well as glutamine deamination. In the last few years, it has become evident that TG2 is involved in the final maturation of autolysosomes. The TG2 regulation of autophagy occurs by its transamidating activity and its inhibition results in the intracellular increase of ubiquitinated protein aggregates. In this chapter, we describe the methods used in our laboratories to assess the catalytic activity of TG2 in the autophagic process.

  16. Catalytic catechol oxidation by copper complexes: development of a structure-activity relationship.

    PubMed

    Ording-Wenker, Erica C M; Siegler, Maxime A; Lutz, Martin; Bouwman, Elisabeth

    2015-07-21

    A large library of Cu(II) complexes with mononucleating and dinucleating ligands was synthesized to investigate their potential as catalysts for the catalytic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC). X-ray structure determination for a number of these complexes revealed relatively large Cu···Cu distances and the formation of polymeric species. Comparison of the 3,5-DTBC oxidation rates showed that ligands that stabilize the biomimetic dinuclear Cu(II) μ-thiolate complex also result in copper compounds that are much more active in the oxidation of 3,5-DTBC. This oxidation activity is however inhibited by the presence of chloride ions. The highest kcat that was observed was 6900 h(-1), which is one of the highest turnover frequencies reported so far for catechol oxidation in CH3CN.

  17. Synthesis of 1-dodecanethiol-capped Ag nanoparticles and their high catalytic activity

    NASA Astrophysics Data System (ADS)

    Zhang, Danhui; Yang, Youbo

    2017-01-01

    Silver nanoparticles, which were produced by the borohydride reduction of silver nitrate, were stabilized by means of 1-dodecanethiol providing sulfur atom in two-phase system involving water and organic solvent (such as toluene, chloroform and hexane). Different organic solvent played a major role in the particle size of silver nanoparticles. These silver nanoparticles synthesized in the three different organic solvent were characterized by X-ray Diffraction, transmission electron microscopy and ultraviolet-visible absorption spectroscopy. The results indicate that the particles size of silver nanoparticles formed in three organic solvents was different. Furthermore, 1-dodecanethiol-capped silver nanoparticles were found to serve as effective catalysts to activate the reduction of 4-nitrophenol (4NP) in the presence of NaBH4, where the size of silver nanoparticles played the determining role in catalytic activity.

  18. The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction.

    PubMed

    Kato, Shunsuke; Matam, Santhosh Kumar; Kerger, Philipp; Bernard, Laetitia; Battaglia, Corsin; Vogel, Dirk; Rohwerder, Michael; Züttel, Andreas

    2016-05-10

    Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites.

  19. Evaluation of the Catalytic Activity and Cytotoxicity of Palladium Nanocubes. The Role of Oxygen

    PubMed Central

    Dahal, Eshan; Curtiss, Jessica; Subedi, Deepak; Chen, Gen; Houston, Jessica P.; Smirnov, Sergei

    2015-01-01

    Recently it has been reported that palladium nanocubes (PdNC) are capable of generating singlet oxygen without photo-excitation simply via chemisorption of molecular oxygen on its surface. Such a trait would make PdNC a highly versatile catalyst suitable in organic synthesis and a Reactive Oxygen Species (ROS) inducing cancer treatment reagent. Here we thoroughly investigated the catalytic activity of PdNC with respect to their ability to produce singlet oxygen and to oxidize 3,5,3′,5′-tetramethyl-benzidine (TMB), as well as, analyzed the cytotoxic properties of PdNC on HeLa cells. Our findings showed no evidence of singlet oxygen production by PdNC. The nanocubes’ activity is not necessarily linked to activation of oxygen. The oxidation of substrate on PdNC can be a first step followed by PdNC regeneration with oxygen or other oxidant. The catalytic activity of PdNC towards oxidation of TMB is very high and shows direct two-electrons oxidation when the surface of PdNC is clean and the ratio of TMB/PdNC is not very high. Sequential one electron oxidation is observed when the pristine quality of PdNC surface is compromised by serum or uncontrolled impurities and/or the ratio of TMB/PdNC is high. Clean PdNC in serum-free media efficiently induce apoptosis of HeLa cells. It is the primary route of cell death and is associated with hyperpolarization of mitochondria, contrary to a common mitochondrial depolarization initiated by ROS. Again, the effects are very sensitive to how well the pristine surface of PdNC is preserved, suggesting that PdNC can be used as an apoptosis inducing agent but only with appropriate drug delivery system. PMID:25886644

  20. Effect of calcination temperature on the catalytic activity of nanosized TiO(2) for ozonation of trace 4-chloronitrobenzene.

    PubMed

    Ye, Miaomiao; Chen, Zhonglin; Zhang, Tuqiao; Shao, Weiyun

    2012-01-01

    Nanosized titanium dioxides were synthesized by hydrolysis of TiCl(4) followed by calcination at different temperatures ranging from 300 to 1,000 °C. The as-prepared samples were characterized by X-ray diffraction, N(2) adsorption-desorption, and zeta potential analysis. The catalytic activities of the TiO(2) nanoparticles were tested by catalytic ozonation of trace 4-chloronitrobenzene (4-CNB) in water. Moreover, the catalytic ozonation activity of a sample calcined at 400 °C (denoted as T400) was tested in aqueous solution using electron paramagnetic resonance (EPR) spin trapping technique with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trap. It was found that with increasing calcination temperatures, the average crystallite size and average pore size increased, in contrast the BET surface areas decreased. However, the isoelectric point (IEP) first increased, and then decreased. The ozone adsorption on the catalyst surface played an important role in determining their catalytic activity. Sample T400 with the IEP of 7.0, farthest away from the 4-CNB solution pH value (pH = 5.3), showed the best catalytic activity. The EPR experiments further confirmed that the hydroxyl radicals TiO(2)-catalyzed ozonation followed a radical-type mechanism.

  1. The stability and catalytic activity of W13@Pt42 core-shell structure

    PubMed Central

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-01-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application. PMID:27759038

  2. The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP+ -reductase.

    PubMed

    Peregrina, José Ramón; Lans, Isaías; Medina, Milagros

    2012-01-01

    Ferredoxin-NADP(+) reductase (FNR) catalyses the electron transfer from ferredoxin to NADP(+) via its flavin FAD cofactor. A molecular dynamics theoretical approach is applied here to visualise the transient catalytically competent interaction of Anabaena FNR with its coenzyme, NADP(+). The particular role of some of the residues identified as key in binding and accommodating the 2'P-AMP moiety of the coenzyme is confirmed in molecular terms. Simulations also indicate that the architecture of the active site precisely contributes to the orientation of the N5 of the FAD isoalloxazine ring and the C4 of the coenzyme nicotinamide ring in the conformation of the catalytically competent hydride transfer complex and, therefore, contributes to the efficiency of the process. In particular, the side chain of the C-terminal Y303 in Anabaena FNR appears key to providing the optimum geometry by reducing the stacking probability between the isoalloxazine and nicotinamide rings, thus providing the required co-linearity and distance among the N5 of the flavin cofactor, the C4 of the coenzyme nicotinamide and the hydride that has to be transferred between them. All these factors are highly related to the reaction efficiency, mechanism and reversibility of the process.

  3. The stability and catalytic activity of W13@Pt42 core-shell structure

    NASA Astrophysics Data System (ADS)

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-01

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  4. Synthesis, structural properties and catalytic activity of MgO-SnO2 nanocatalysts

    NASA Astrophysics Data System (ADS)

    Perveen, Hina; Farrukh, Muhammad Akhyar; Khaleeq-ur-Rahman, Muhammad; Munir, Badar; Tahir, Muhammad Ashraf

    2015-01-01

    Surfactant controlled synthesis of magnesium oxide-tin oxide (MgO-SnO2) nanocatalysts was carried out via the hydrothermal method. Concentration of sodium dodecyl sulfate (SDS) was varied while all other reaction conditions were kept constant same for this purpose. Furthermore, MgO-SnO2 nanocatalysts were also prepared by changing the precursor's concentration. These precursors are magnesium nitrate Mg(NO3)2 · 6H2O and tin chloride (SnCl4 · 5H2O). The influence of these reaction parameters on the sizes and morphology of the nanocatalysts were studied by using Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscopy-Energy dispersive X-ray (SEM-EDX), Powder X-ray diffraction (XRD), Transmission electron microscopy and Thermo gravimetric analysis (TGA). The catalytic efficiency of MgO-SnO2 was checked against 2,4-dinitrophenylhydrazine (DNPH), which is an explosive compound. The nanocatalysts were found as a good catalyst to degrade the DNPH. Catalytic activity of nanocatalysts was observed up to 19.13% for the degradation DNPH by using UV-spectrophotometer.

  5. The stability and catalytic activity of W13@Pt42 core-shell structure.

    PubMed

    Huo, Jin-Rong; Wang, Xiao-Xu; Li, Lu; Cheng, Hai-Xia; Su, Yan-Jing; Qian, Ping

    2016-10-19

    This paper reports a study of the electronic properties, structural stability and catalytic activity of the W13@Pt42 core-shell structure using the First-principles calculations. The degree of corrosion of W13@Pt42 core-shell structure is simulated in acid solutions and through molecular absorption. The absorption energy of OH for this structure is lower than that for Pt55, which inhibits the poison effect of O containing intermediate. Furthermore we present the optimal path of oxygen reduction reaction catalyzed by W13@Pt42. Corresponding to the process of O molecular decomposition, the rate-limiting step of oxygen reduction reaction catalyzed by W13@Pt42 is 0.386 eV, which is lower than that for Pt55 of 0.5 eV. In addition by alloying with W, the core-shell structure reduces the consumption of Pt and enhances the catalytic efficiency, so W13@Pt42 has a promising perspective of industrial application.

  6. Synthesis of Water Dispersible and Catalytically Active Gold-Decorated Cobalt Ferrite Nanoparticles.

    PubMed

    Silvestri, Alessandro; Mondini, Sara; Marelli, Marcello; Pifferi, Valentina; Falciola, Luigi; Ponti, Alessandro; Ferretti, Anna Maria; Polito, Laura

    2016-07-19

    Hetero-nanoparticles represent an important family of composite nanomaterials that in the past years are attracting ever-growing interest. Here, we report a new strategy for the synthesis of water dispersible cobalt ferrite nanoparticles (CoxFe3-xO4 NPs) decorated with ultrasmall (2-3 nm) gold nanoparticles (Au NPs). The synthetic procedure is based on the use of 2,3-meso-dimercaptosuccinic acid (DMSA), which plays a double role. First, it transfers cobalt ferrite NPs from the organic phase to aqueous media. Second, the DMSA reductive power promotes the in situ nucleation of gold NPs in proximity of the magnetic NP surface. Following this procedure, we achieved a water dispersible nanosystem (CoxFe3-xO4-DMSA-Au NPs) which combines the cobalt ferrite magnetic properties with the catalytic features of ultrasmall Au NPs. We showed that CoxFe3-xO4-DMSA-Au NPs act as an efficient nanocatalyst to reduce 4-nitrophenol to 4-aminophenol and that they can be magnetically recovered and recycled. It is noteworthy that such nanosystem is more catalytically active than Au NPs with equal size. Finally, a complete structural and chemical characterization of the hetero-NPs is provided.

  7. pH-susceptibility of HLA-DO tunes DO/DM ratios to regulate HLA-DM catalytic activity

    PubMed Central

    Jiang, Wei; Strohman, Michael J.; Somasundaram, Sriram; Ayyangar, Sashi; Hou, Tieying; Wang, Nan; Mellins, Elizabeth D.

    2015-01-01

    The peptide-exchange catalyst, HLA-DM, and its inhibitor, HLA-DO control endosomal generation of peptide/class II major histocompatibility protein (MHC-II) complexes; these complexes traffic to the cell surface for inspection by CD4+ T cells. Some evidence suggests that pH influences DO regulation of DM function, but pH also affects the stability of polymorphic MHC-II proteins, spontaneous peptide loading, DM/MHC-II interactions and DM catalytic activity, imposing challenges on approaches to determine pH effects on DM-DO function and their mechanistic basis. Using optimized biochemical methods, we dissected pH-dependence of spontaneous and DM-DO-mediated class II peptide exchange and identified an MHC-II allele-independent relationship between pH, DO/DM ratio and efficient peptide exchange. We demonstrate that active, free DM is generated from DM-DO complexes at late endosomal/lysosomal pH due to irreversible, acid-promoted DO destruction rather than DO/DM molecular dissociation. Any soluble DM that remains in complex with DO stays inert. pH-exposure of DM-DO in cell lysates corroborates such a pH-regulated mechanism, suggesting acid-activated generation of functional DM in DO-expressing cells. PMID:26610428

  8. Molecular cloning and catalytic activity of a membrane-bound prenyl diphosphate phosphatase from Croton stellatopilosus Ohba.

    PubMed

    Nualkaew, Natsajee; Guennewich, Nils; Springob, Karin; Klamrak, Anuwatchakit; De-Eknamkul, Wanchai; Kutchan, Toni M

    2013-07-01

    Geranylgeraniol (GGOH), a bioactive acyclic diterpene with apoptotic induction activity, is the immediate precursor of the commercial anti-peptic, plaunotol (18-hydroxy geranylgeraniol), which is found in Croton stellatopilosus (Ohba). From this plant, a cDNA encoding a prenyl diphosphate phosphatase (CsPDP), which catalyses the dephosphorylation of geranylgeranyl diphosphate (GGPP) to GGOH, was isolated using a PCR approach. The full-length cDNA contained 888bp and encoded a 33.6 kDa protein (295 amino acids) that was phylogenetically grouped into the phosphatidic acid phosphatase (PAP) enzyme family. The deduced amino acid sequence showed 6 hydrophobic transmembrane regions with 57-85% homology to the sequences of other plant PAPs. The recombinant CsPDP and its 4 truncated constructs exhibited decreasing dephosphorylation activities relative to the lengths of the N-terminal deletions. While the full-length CsPDP successfully performed the two sequential monodephosphorylation steps on GGPP to form GGOH, the larger N-terminal deletion in the truncated enzymes appeared to specifically decrease the catalytic efficiency of the second monodephosphorylation step. The information presented here on the CsPDP cDNA and factors affecting the dephosphorylation activity of its recombinant protein may eventually lead to the discovery of the specific GGPP phosphatase gene and enzyme that are involved in the formation of GGOH in the biosynthetic pathway of plaunotol in C. stellatopilosus.

  9. Biologically active extracts with kidney affections applications

    NASA Astrophysics Data System (ADS)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  10. Topological constraints of structural elements in regulation of catalytic activity in HDV-like self-cleaving ribozymes

    PubMed Central

    Webb, Chiu-Ho T.; Nguyen, Dang; Myszka, Marie; Lupták, Andrej

    2016-01-01

    Self-cleaving ribozymes fold into intricate structures, which orient active site groups into catalytically competent conformations. Most ribozyme families have distinct catalytic cores stabilized by tertiary interactions between domains peripheral to those cores. We show that large hepatitis delta virus (HDV)-like ribozymes are activated by peripheral domains that bring two helical segments, P1 and P2, into proximity – a “pinch” that results in rate acceleration by almost three orders of magnitude. Kinetic analysis of ribozymes with systematically altered length and stability of the peripheral domain revealed that about one third of its free energy of formation is used to lower an activation energy barrier, likely related to a rate-limiting conformational change leading to the pre-catalytic state. These findings provide a quantitative view of enzyme regulation by peripheral domains and may shed light on the energetics of allosteric regulation. PMID:27302490

  11. Extending Thymidine Kinase Activity to the Catalytic Repertoire of Human Deoxycytidine Kinase

    SciTech Connect

    Hazra, Saugata; Sabini, Eliszbetta; Ort, Stephan; Konrad, Manfred; Lavie, Arnon

    2009-03-04

    Salvage of nucleosides in the cytosol of human cells is carried out by deoxycytidine kinase (dCK) and thymidine kinase 1 (TK1). Whereas TK1 is only responsible for thymidine phosphorylation, dCK is capable of converting dC, dA, and dG into their monophosphate forms. Using structural data on dCK, we predicted that select mutations at the active site would, in addition to making the enzyme faster, expand the catalytic repertoire of dCK to include thymidine. Specifically, we hypothesized that steric repulsion between the methyl group of the thymine base and Arg104 is the main factor preventing the phosphorylation of thymidine by wild-type dCK. Here we present kinetic data on several dCK variants where Arg104 has been replaced by select residues, all performed in combination with the mutation of Asp133 to an alanine. We show that several hydrophobic residues at position 104 endow dCK with thymidine kinase activity. Depending on the exact nature of the mutations, the enzyme's substrate preference is modified. The R104M-D133A double mutant is a pyrimidine-specific enzyme due to large K{sub m} values with purines. The crystal structure of the double mutant R104M-D133A in complex with the L-form of thymidine supplies a structural explanation for the ability of this variant to phosphorylate thymidine and thymidine analogs. The replacement of Arg104 by a smaller residue allows L-dT to bind deeper into the active site, making space for the C5-methyl group of the thymine base. The unique catalytic properties of several of the mutants make them good candidates for suicide-gene/protein-therapy applications.

  12. Simultaneous pore enlargement and introduction of highly dispersed Fe active sites in MSNs for enhanced catalytic activity

    SciTech Connect

    Gu Jinlou; Dong Xu; Elangovan, S.P.; Li Yongsheng; Zhao Wenru; Iijima, Toshio; Yamazaki, Yasuo; Shi Jianlin

    2012-02-15

    An effective post-hydrothermal treatment strategy has been developed to dope highly dispersed iron catalytical centers into the framework of mesoporous silica, to keep the particle size in nanometric scale, and in the meanwhile, to expand the pore size of the synthesized mesoporous silica nanoparticles (MSNs). Characterization techniques such as XRD, BET, SEM and TEM support that the synthesized samples are long period ordered with particles size about 100 nm and a relatively large pore size of ca. 3.5 nm. UV-vis, XPS and EPR measurements demonstrate that the introduced iron active centers are highly dispersed in a coordinatively unsaturated status. NH{sub 3}-TPD verifies that the acid amount of iron-doped MSNs is quite high. The synthesized nanocatalysts show an excellent catalytic performance for benzylation of benzene by benzyl chloride, and they present relatively higher yield and selectivity to diphenylmethane with a lower iron content and much shorter reaction time. - Graphical abstract: Uniform MSNs with iron active centers and large pore size have been prepared by a newly developed strategy, which demonstrates enhanced catalytic performance for benzylation of benzene by benzyl chloride. Highlights: Black-Right-Pointing-Pointer Iron species were introduced into the framework of mesoporous silica nanoparticles with uniform dispersion. Black-Right-Pointing-Pointer The pore sizes of the synthesized nanocatalysts were expanded. Black-Right-Pointing-Pointer The acidic site quantities were quite high and the acidic centers were accessible. Black-Right-Pointing-Pointer The nanocatalysts presented higher yield and selectivity to diphenylmethane with significantly lower Fe content.

  13. Effect of nitrogen-containing impurities on the activity of perovskitic catalysts for the catalytic combustion of methane.

    PubMed

    Buchneva, Olga; Gallo, Alessandro; Rossetti, Ilenia

    2012-11-05

    LaMnO(3), either pure or doped with 10 mol % Sr, has been prepared by flame pyrolysis in nanostructured form. Such catalysts have been tested for the catalytic flameless combustion of methane, achieving very high catalytic activity. The resistance toward poisoning by some model N-containing impurities has been checked in order to assess the possibility of operating the flameless catalytic combustion with biogas, possibly contaminated by S- or N-based compounds. This would be a significant improvement from the environmental point of view because the application of catalytic combustion to gas turbines would couple improved energy conversion efficiency and negligible noxious emissions, while the use of biogas would open the way to energy production from a renewable source by means of very efficient technologies. A different behavior has been observed for the two catalysts; namely, the undoped sample was more or less heavily poisoned, whereas the Sr-doped sample showed slightly increasing activity upon dosage of N-containing compounds. A possible reaction mechanism has been suggested, based on the initial oxidation of the organic backbone, with the formation of NO. The latter may adsorb more or less strongly depending on the availability of surface oxygen vacancies (i.e., depending on doping). Decomposition of NO may leave additional activated oxygen species on the surface, available for low-temperature methane oxidation and so improving the catalytic performance.

  14. Pressure Regulations on the Surface Properties of CeO2 Nanorods and Their Catalytic Activity for CO Oxidation and Nitrile Hydrolysis Reactions.

    PubMed

    Li, Jing; Zhang, Zhiyun; Gao, Wei; Zhang, Sai; Ma, Yuanyuan; Qu, Yongquan

    2016-09-07

    Surface properties of nanoscale CeO2 catalysts in terms of the surface Ce(3+) fraction and concentration of oxygen vacancy can affect their catalytic performance significantly. Continual adjustment on surface properties of CeO2 with the morphological preservation has not been realized by synthetic methods. The revisited studies show that surface properties of CeO2 nanorods can be effectively regulated by synthetic pressures while the rodlike morphology is well-preserved. Such phenomena are ascribed to the contact possibility between Ce(3+) species and dissolved O2, which is balanced by the rapidly increased and gradually saturated dissolution/recrystallization rate of Ce(OH)3 and linearly increased concentration of dissolved O2 with the increase of total air pressure or partial pressure of O2. Surface-property-dependent catalytic activity of CeO2 nanorods synthesized under various pressures was also demonstrated in two benchmark reactions-catalytic oxidation of CO and hydrolysis of nitrile. Such a finding of the pressure regulation on the reducible metal oxides provides an effective approach to rationally design novel catalysts for specific reactions, where ceria are supports, promoters, or actives.

  15. Native Electrophoresis-Coupled Activity Assays Reveal Catalytically-Active Protein Aggregates of Escherichia coli β-Glucuronidase.

    PubMed

    Burchett, Gina G; Folsom, Charles G; Lane, Kimberly T

    2015-01-01

    β-glucuronidase is found as a functional homotetramer in a variety of organisms, including humans and other animals, as well as a number of bacteria. This enzyme is important in these organisms, catalyzing the hydrolytic removal of a glucuronide moiety from substrate molecules. This process serves to break down sugar conjugates in animals and provide sugars for metabolism in bacteria. While β-glucuronidase is primarily found as a homotetramer, previous studies have indicated that the human form of the protein is also catalytically active as a dimer. Here we present evidence for not only an active dimer of the E. coli form of the protein, but also for several larger active complexes, including an octomer and a 16-mer. Additionally, we propose a model for the structures of these large complexes, based on computationally-derived molecular modeling studies. These structures may have application in the study of human disease, as several diseases have been associated with the aggregation of proteins.

  16. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  17. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.

    PubMed

    Bu, Quan; Lei, Hanwu; Wang, Lu; Wei, Yi; Zhu, Lei; Zhang, Xuesong; Liu, Yupeng; Yadavalli, Gayatri; Tang, Juming

    2014-06-01

    The aim of this study is to explore catalytic microwave pyrolysis of lignin for renewable phenols and fuels using activated carbon (AC) as a catalyst. A central composite experimental design (CCD) was used to optimize the reaction condition. The effects of reaction temperature and weight hourly space velocity (WHSV, h(-1)) on product yields were investigated. GC/MS analysis showed that the main chemical compounds of bio-oils were phenols, guaiacols, hydrocarbons and esters, most of which were ranged from 71% to 87% of the bio-oils depending on different reaction conditions. Bio-oils with high concentrations of phenol (45% in the bio-oil) were obtained. The calorific value analysis revealed that the high heating values (HHV) of the lignin-derived biochars were from 20.4 to 24.5 MJ/kg in comparison with raw lignin (19 MJ/kg). The reaction mechanism of this process was analyzed.

  18. Green synthesis of gold nanoparticles using aspartame and their catalytic activity for p-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin

    2015-05-01

    We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.

  19. Carbon supported trimetallic nickel-palladium-gold hollow nanoparticles with superior catalytic activity for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Shang, Changshuai; Hong, Wei; Wang, Jin; Wang, Erkang

    2015-07-01

    In this paper, Ni nanoparticles (NPs) are prepared in an aqueous solution by using sodium borohydride as reducing agent. With Ni NPs as the sacrificial template, hollow NiPdAu NPs are successfully prepared via partly galvanic displacement reaction between suitable metal precursors and Ni NPs. The as-synthesized hollow NiPdAu NPs can well dispersed on the carbon substrate. Transmission electron microscopy, X-ray diffraction and inductively coupled plasma mass spectrometry are taken to analyze the morphology, structure and composition of the as-synthesized catalysts. The prepared catalysts show superior catalytic activity and stability for methanol electrooxidation in alkaline media compared with commercial Pd/C and Pt/C. Catalysts prepared in this work show great potential to be anode catalysts in direct methanol fuel cells.

  20. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity.

    PubMed

    Zayed, Mervat F; Eisa, Wael H

    2014-01-01

    A green synthesis route was reported to explore the reducing and capping potential of Phoenix dactylifera extract for the synthesis of gold nanoparticles. The processes of nucleation and growth of gold nanoparticles were followed by monitoring the absorption spectra during the reaction. The size and morphology of these nanoparticles was typically imaged using transmission electron microscopy (TEM). The particle size ranged between 32 and 45 nm and are spherical in shape. Fourier transform infrared (FTIR) analysis suggests that the synthesized gold nanoparticles might be stabilized through the interactions of hydroxyl and carbonyl groups in the carbohydrates, flavonoids, tannins and phenolic acids present in P. dactylifera. The as-synthesized Au colloids exhibited good catalytic activity for the degradation of 4-nitrophenol.

  1. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity

    NASA Astrophysics Data System (ADS)

    Zayed, Mervat F.; Eisa, Wael H.

    2014-03-01

    A green synthesis route was reported to explore the reducing and capping potential of Phoenix dactylifera extract for the synthesis of gold nanoparticles. The processes of nucleation and growth of gold nanoparticles were followed by monitoring the absorption spectra during the reaction. The size and morphology of these nanoparticles was typically imaged using transmission electron microscopy (TEM). The particle size ranged between 32 and 45 nm and are spherical in shape. Fourier transform infrared (FTIR) analysis suggests that the synthesized gold nanoparticles might be stabilized through the interactions of hydroxyl and carbonyl groups in the carbohydrates, flavonoids, tannins and phenolic acids present in P. dactylifera. The as-synthesized Au colloids exhibited good catalytic activity for the degradation of 4-nitrophenol.

  2. Tunable catalytic activity of solid solution metal-organic frameworks in one-pot multicomponent reactions.

    PubMed

    Aguirre-Díaz, Lina María; Gándara, Felipe; Iglesias, Marta; Snejko, Natalia; Gutiérrez-Puebla, Enrique; Monge, M Ángeles

    2015-05-20

    The aim of this research is to establish how metal-organic frameworks (MOFs) composed of more than one metal in equivalent crystallographic sites (solid solution MOFs) exhibit catalytic activity, which is tunable by virtue of the metal ions ratio. New MOFs with general formula [InxGa1-x(O2C2H4)0.5(hfipbb)] were prepared by the combination of Ga and In. They are isostructural with their monometal counterparts, synthesized with Al, Ga, and In. Differences in their behavior as heterogeneous catalysts in the three-component, one pot Strecker reaction illustrate the potential of solid solution MOFs to provide the ability to address the various stages involved in the reaction mechanism.

  3. Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity

    NASA Astrophysics Data System (ADS)

    Dash, Shib Shankar; Bag, Braja Gopal

    2014-01-01

    Punica granatum juice, a delicious multivitamin drink of great medicinal significance, is rich in different types of phytochemicals, such as terpenoids, alkaloids, sterols, polyphenols, sugars, fatty acids, aromatic compounds, amino acids, tocopherols, etc. We have demonstrated the use of the juice for the synthesis of gold nanoparticles (AuNPs) at room temperature under very mild conditions. The synthesis of the AuNPs was complete in few minutes and no extra stabilizing or capping agents were necessary. The size of the nanoparticles could be controlled by varying the concentration of the fruit extract. The AuNPs were characterized by surface plasmon resonance spectroscopy, high resolution transmission electron microscopy, fourier transform infrared spectroscopy and X-ray diffraction studies. Catalytic activity of the synthesized colloidal AuNPs has also been demonstrated.

  4. Molecular orbital studies of enzyme activity: catalytic mechanism of serine proteinases.

    PubMed Central

    Scheiner, S; Lipscomb, W N

    1976-01-01

    The catalytic activity of the serine proteinases is studied using molecular orbital methods on a model of the enzyme-substrate complex. A mechanism is employed in which Ser-195, upon donating a proton to the His-57-Asp-102 dyad, attacks the substrate to form the tetrahedral intermediate. As His-57 then donates a proton to the leaving group, the intermediate decomposes to the acyl enzyme. An analogous process takes place during deacylation, as a water molecule takes the place of Ser-195 as the nucleophile. The motility of the histidine is found to be an important factor in both steps. An attempt is made to include the effects of those atoms not explicitly included in the calculations and to compare the reaction rate of the proposed mechanism with that of the uncatalyzed hydrolysis. This mechanism is found to be in good agreement with structural and kinetic data. PMID:1061145

  5. Catalytic diesel particulate filters reduce the in vitro estrogenic activity of diesel exhaust.

    PubMed

    Wenger, Daniela; Gerecke, Andreas C; Heeb, Norbert V; Naegeli, Hanspeter; Zenobi, Renato

    2008-04-01

    An in vitro reporter gene assay based on human breast cancer T47D cells (ER-CALUX) was applied to examine the ability of diesel exhaust to induce or inhibit estrogen receptor (ER)-mediated gene expression. Exhaust from a heavy-duty diesel engine was either treated by iron- or copper/iron-catalyzed diesel particulate filters (DPFs) or studied as unfiltered exhaust. Collected samples included particle-bound and semivolatile constituents of diesel exhaust. Our findings show that all of the samples contained compounds that were able to induce ER-mediated gene expression as well as compounds that suppressed the activity of the endogenous hormone 17beta-estradiol (E2). Estrogenic activity prevailed over antiestrogenic activity. We found an overall ER-mediated activity of 1.63 +/- 0.31 ng E2 CALUX equivalents (E2-CEQs) per m(3) of unfiltered exhaust. In filtered exhaust, we measured 0.74 +/- 0.07 (iron-catalyzed DPF) and 0.55 +/- 0.09 ng E2-CEQ m(-3) (copper/iron-catalyzed DPF), corresponding to reductions in estrogenic activity of 55 and 66%, respectively. Our study demonstrates that both catalytic DPFs lowered the ER-mediated endocrine-disrupting potential of diesel exhaust.

  6. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox

    PubMed Central

    Hiblot, Julien; Gotthard, Guillaume; Chabriere, Eric; Elias, Mikael

    2012-01-01

    SsoPox is a lactonase endowed with promiscuous phosphotriesterase activity isolated from Sulfolobus solfataricus that belongs to the Phosphotriesterase-Like Lactonase family. Because of its intrinsic thermal stability, SsoPox is seen as an appealing candidate as a bioscavenger for organophosphorus compounds. A comprehensive kinetic characterisation of SsoPox has been performed with various phosphotriesters (insecticides) and phosphodiesters (nerve agent analogues) as substrates. We show that SsoPox is active for a broad range of OPs and remains active under denaturing conditions. In addition, its OP hydrolase activity is highly stimulated by anionic detergent at ambient temperature and exhibits catalytic efficiencies as high as kcat/KM of 105 M−1s−1 against a nerve agent analogue. The structure of SsoPox bound to the phosphotriester fensulfothion reveals an unexpected and non-productive binding mode. This feature suggests that SsoPox's active site is sub-optimal for phosphotriester binding, which depends not only upon shape but also on localised charge of the ligand. PMID:23139857

  7. Catalytic Activity and Impedance Behavior of Screen-Printed Nickel Oxide as Efficient Water Oxidation Catalysts.

    PubMed

    Singh, Archana; Fekete, Monika; Gengenbach, Thomas; Simonov, Alexandr N; Hocking, Rosalie K; Chang, Shery L Y; Rothmann, Mathias; Powar, Satvasheel; Fu, Dongchuan; Hu, Zheng; Wu, Qiang; Cheng, Yi-Bing; Bach, Udo; Spiccia, Leone

    2015-12-21

    We report that films screen printed from nickel oxide (NiO) nanoparticles and microballs are efficient electrocatalysts for water oxidation under near-neutral and alkaline conditions. Investigations of the composition and structure of the screen-printed films by X-ray diffraction, X-ray absorption spectroscopy, and scanning electron microscopy confirmed that the material was present as the cubic NiO phase. Comparison of the catalytic activity of the microball films to that of films fabricated by using NiO nanoparticles, under similar experimental conditions, revealed that the microball films outperform nanoparticle films of similar thickness owing to a more porous structure and higher surface area. A thinner, less-resistive NiO nanoparticle film, however, was found to have higher activity per Ni atom. Anodization in borate buffer significantly improved the activity of all three films. X-ray photoelectron spectroscopy showed that during anodization, a mixed nickel oxyhydroxide phase formed on the surface of all films, which could account for the improved activity. Impedance spectroscopy revealed that surface traps contribute significantly to the resistance of the NiO films. On anodization, the trap state resistance of all films was reduced, which led to significant improvements in activity. In 1.00 m NaOH, both the microball and nanoparticle films exhibit high long-term stability and produce a stable current density of approximately 30 mA cm(-2) at 600 mV overpotential.

  8. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3-16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  9. Correlation Between the Extent of Catalytic Activity and Charge Density of Montmorillonites

    PubMed Central

    Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-01-01

    Abstract The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH3-(CH2)n-NH3]+, where n = 3–16 and 18, and then measuring d(001), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed. Key Words: Mars—Origin of life—Montmorillonite—Mineral catalysis—Layer charge density—X–ray diffractometry. Astrobiology 10, 743–749. PMID:20854214

  10. Monoclonal Antibodies Targeting the Alpha-Exosite of Botulinum Neurotoxin Serotype/A Inhibit Catalytic Activity

    PubMed Central

    Fan, Yongfeng; Geren, Isin N.; Dong, Jianbo; Lou, Jianlong; Wen, Weihua; Conrad, Fraser; Smith, Theresa J.; Smith, Leonard A.; Ho, Mengfei; Pires-Alves, Melissa; Wilson, Brenda A.; Marks, James D.

    2015-01-01

    The paralytic disease botulism is caused by botulinum neurotoxins (BoNT), multi-domain proteins containing a zinc endopeptidase that cleaves the cognate SNARE protein, thereby blocking acetylcholine neurotransmitter release. Antitoxins currently used to treat botulism neutralize circulating BoNT but cannot enter, bind to or neutralize BoNT that has already entered the neuron. The light chain endopeptidase domain (LC) of BoNT serotype A (BoNT/A) was targeted for generation of monoclonal antibodies (mAbs) that could reverse paralysis resulting from intoxication by BoNT/A. Single-chain variable fragment (scFv) libraries from immunized humans and mice were displayed on the surface of yeast, and 19 BoNT/A LC-specific mAbs were isolated by using fluorescence-activated cell sorting (FACS). Affinities of the mAbs for BoNT/A LC ranged from a KD value of 9.0×10−11 M to 3.53×10−8 M (mean KD 5.38×10−9 M and median KD 1.53×10−9 M), as determined by flow cytometry analysis. Eleven mAbs inhibited BoNT/A LC catalytic activity with IC50 values ranging from 8.3 ~73×10−9 M. The fine epitopes of selected mAbs were also mapped by alanine-scanning mutagenesis, revealing that the inhibitory mAbs bound the α-exosite region remote from the BoNT/A LC catalytic center. The results provide mAbs that could prove useful for intracellular reversal of paralysis post-intoxication and further define epitopes that could be targeted by small molecule inhibitors. PMID:26275214

  11. Correlation between the extent of catalytic activity and charge density of montmorillonites.

    PubMed

    Ertem, Gözen; Steudel, Annett; Emmerich, Katja; Lagaly, Gerhard; Schuhmann, Rainer

    2010-09-01

    The clay mineral montmorillonite is a member of the phyllosilicate group of minerals, which has been detected on martian soil. Montmorillonite catalyzes the condensation of activated monomers to form RNA-like oligomers. Extent of catalysis, that is, the yield of oligomers, and the length of the longest oligomer formed in these reactions widely varies with the source of montmorillonite (i.e., the locality where the mineral is mined). This study was undertaken to establish whether there exists a correlation between the extent of catalytic property and the charge density of montmorillonites. Charge density was determined by saturating the montmorillonites with alkyl ammonium cations that contained increasing lengths of alkyl chains, [CH₃-(CH₂)(n)-NH₃](+), where n = 3-16 and 18, and then measuring d(₀₀₁), interlayer spacing of the resulting montmorillonite-alkyl ammonium-montmorillonite complex by X-ray diffractometry (XRD). Results demonstrate that catalytic activity of montmorillonites with lower charge density is superior to that of higher charge density montmorillonite. They produce longer oligomers that contain 9 to 10 monomer units, while montmorillonite with high charge density catalyzes the formation of oligomers that contain only 4 monomer units. The charge density of montmorillonites can also be calculated from the chemical composition if elemental analysis data of the pure mineral are available. In the next mission to Mars, CheMin (Chemistry and Mineralogy), a combined X-ray diffraction/X-ray fluorescence instrument, will provide information on the mineralogical and elemental analysis of the samples. Possible significance of these results for planning the future missions to Mars for the search of organic compounds and extinct or extant life is discussed.

  12. Synthesis, characterization and catalytic activity of carbon-silica hybrid catalyst from rice straw

    NASA Astrophysics Data System (ADS)

    Janaun, J.; Safie, N. N.; Siambun, N. J.

    2016-07-01

    The hybrid-carbon catalyst has been studied because of its promising potential to have high porosity and surface area to be used in biodiesel production. Silica has been used as the support to produce hybrid carbon catalyst due to its mesoporous structure and high surface area properties. The chemical synthesis of silica-carbon hybrid is expensive and involves more complicated preparation steps. The presence of natural silica in rice plants especially rice husk has received much attention in research because of the potential as a source for solid acid catalyst synthesis. But study on rice straw, which is available abundantly as agricultural waste is limited. In this study, rice straw undergone pyrolysis and functionalized using fuming sulphuric acid to anchor -SO3H groups. The presence of silica and the physiochemical properties of the catalyst produced were studied before and after sulphonation. The catalytic activity of hybrid carbon silica acid catalyst, (H-CSAC) in esterification of oleic acid with methanol was also studied. The results showed the presence of silica-carbon which had amorphous structure and highly porous. The carbon surface consisted of higher silica composition, had lower S element detected as compared to the surface that had high carbon content but lower silica composition. This was likely due to the fact that Si element which was bonded to oxygen was highly stable and unlikely to break the bond and react with -SO3H ions. H-CSAC conversions were 23.04 %, 35.52 % and 34.2 7% at 333.15 K, 343.15 K and 353.15 K, respectively. From this research, rice straw can be used as carbon precursor to produce hybrid carbon-silica catalyst and has shown catalytic activity in biodiesel production. Rate equation obtained is also presented.

  13. Environmental Topology and Water Availability Modulates the Catalytic Activity of β-Galactosidase Entrapped in a Nanosporous Silicate Matrix

    PubMed Central

    Burgos, M. Ines; Velasco, Manuel I.; Acosta, Rodolfo H.; Perillo, María A.

    2016-01-01

    In the present work we studied the catalytic activity of E. coli β-Gal confined in a nanoporous silicate matrix (Eβ-Gal) at different times after the beginning of the sol-gel polymerization process. Enzyme kinetic experiments with two substrates (ONPG and PNPG) that differed in the rate-limiting steps of the reaction mechanism for their β-Gal-catalyzed hydrolysis, measurements of transverse relaxation times (T2) of water protons through 1H-NMR, and scanning electron microscopy analysis of the gel nanostructure, were performed. In conjunction, results provided evidence that water availability is crucial for the modulation observed in the catalytic activity of β-Gal as long as water participate in the rate limiting step of the reaction (only with ONPG). In this case, a biphasic rate vs. substrate concentration was obtained exhibiting one phase with catalytic rate constant (kcA), similar to that observed in solution, and another phase with a higher and aging-dependent catalytic rate constant (kcB). More structured water populations (lower T2) correlates with higher catalytic rate constants (kcB). The T2-kcB negative correlation observed along the aging of gels within the 15-days period assayed reinforces the coupling between water structure and the hydrolysis catalysis inside gels. PMID:27811995

  14. Environmental Topology and Water Availability Modulates the Catalytic Activity of β-Galactosidase Entrapped in a Nanosporous Silicate Matrix.

    PubMed

    Burgos, M Ines; Velasco, Manuel I; Acosta, Rodolfo H; Perillo, María A

    2016-11-04

    In the present work we studied the catalytic activity of E. coli β-Gal confined in a nanoporous silicate matrix (Eβ-Gal) at different times after the beginning of the sol-gel polymerization process. Enzyme kinetic experiments with two substrates (ONPG and PNPG) that differed in the rate-limiting steps of the reaction mechanism for their β-Gal-catalyzed hydrolysis, measurements of transverse relaxation times (T2) of water protons through (1)H-NMR, and scanning electron microscopy analysis of the gel nanostructure, were performed. In conjunction, results provided evidence that water availability is crucial for the modulation observed in the catalytic activity of β-Gal as long as water participate in the rate limiting step of the reaction (only with ONPG). In this case, a biphasic rate vs. substrate concentration was obtained exhibiting one phase with catalytic rate constant (kcA), similar to that observed in solution, and another phase with a higher and aging-dependent catalytic rate constant (kcB). More structured water populations (lower T2) correlates with higher catalytic rate constants (kcB). The T2-kcB negative correlation observed along the aging of gels within the 15-days period assayed reinforces the coupling between water structure and the hydrolysis catalysis inside gels.

  15. Modeling of catalytically active metal complex species and intermediates in reactions of organic halides electroreduction.

    PubMed

    Lytvynenko, Anton S; Kolotilov, Sergey V; Kiskin, Mikhail A; Eremenko, Igor L; Novotortsev, Vladimir M

    2015-02-28

    The results of quantum chemical modeling of organic and metal-containing intermediates that occur in electrocatalytic dehalogenation reactions of organic chlorides are presented. Modeling of processes that take place in successive steps of the electrochemical reduction of representative C1 and C2 chlorides - CHCl3 and Freon R113 (1,1,2-trifluoro-1,2,2-trichloroethane) - was carried out by density functional theory (DFT) and second-order Møller-Plesset perturbation theory (MP2). It was found that taking solvation into account using an implicit solvent model (conductor-like screening model, COSMO) or considering explicit solvent molecules gave similar results. In addition to modeling of simple non-catalytic dehalogenation, processes with a number of complexes and their reduced forms, some of which were catalytically active, were investigated by DFT. Complexes M(L1)2 (M = Fe, Co, Ni, Cu, Zn, L1H = Schiff base from 2-pyridinecarbaldehyde and the hydrazide of 4-pyridinecarboxylic acid), Ni(L2) (H2L2 is the Schiff base from salicylaldehyde and 1,2-ethylenediamine, known as salen) and Co(L3)2Cl2, representing a fragment of a redox-active coordination polymer [Co(L3)Cl2]n (L3 is the dithioamide of 1,3-benzenedicarboxylic acid), were considered. Gradual changes in electronic structure in a series of compounds M(L1)2 were observed, and correlations between [M(L1)2](0) spin-up and spin-down LUMO energies and the relative energies of the corresponding high-spin and low-spin reduced forms, as well as the shape of the orbitals, were proposed. These results can be helpful for determination of the nature of redox-processes in similar systems by DFT. No specific covalent interactions between [M(L1)2](-) and the R113 molecule (M = Fe, Co, Ni, Zn) were found, which indicates that M(L1)2 electrocatalysts act rather like electron transfer mediators via outer-shell electron transfer. A relaxed surface scan of the adducts {M(L1)2·R113}(-) (M = Ni or Co) versus the distance between the

  16. The Salmonella Effector SpvD Is a Cysteine Hydrolase with a Serovar-specific Polymorphism Influencing Catalytic Activity, Suppression of Immune Responses, and Bacterial Virulence*

    PubMed Central

    Grabe, Grzegorz J.; Zhang, Yue; Przydacz, Michal; Rolhion, Nathalie; Yang, Yi; Pruneda, Jonathan N.; Komander, David; Holden, David W.; Hare, Stephen A.

    2016-01-01

    Many bacterial pathogens secrete virulence (effector) proteins that interfere with immune signaling in their host. SpvD is a Salmonella enterica effector protein that we previously demonstrated to negatively regulate the NF-κB signaling pathway and promote virulence of S. enterica serovar Typhimurium in mice. To shed light on the mechanistic basis for these observations, we determined the crystal structure of SpvD and show that it adopts a papain-like fold with a characteristic cysteine-histidine-aspartate catalytic triad comprising Cys-73, His-162, and Asp-182. SpvD possessed an in vitro deconjugative activity on aminoluciferin-linked peptide and protein substrates in vitro. A C73A mutation abolished SpvD activity, demonstrating that an intact catalytic triad is required for its function. Taken together, these results strongly suggest that SpvD is a cysteine protease. The amino acid sequence of SpvD is highly conserved across different S. enterica serovars, but residue 161, located close to the catalytic triad, is variable, with serovar Typhimurium SpvD having an arginine and serovar Enteritidis a glycine at this position. This variation affected hydrolytic activity of the enzyme on artificial substrates and can be explained by substrate accessibility to the active site. Interestingly, the SpvDG161 variant more potently inhibited NF-κB-mediated immune responses in cells in vitro and increased virulence of serovar Typhimurium in mice. In summary, our results explain the biochemical basis for the effect of virulence protein SpvD and demonstrate that a single amino acid polymorphism can affect the overall virulence of a bacterial pathogen in its host. PMID:27789710

  17. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Bα.

    PubMed

    Trosiuk, Tetiana V; Shalak, Vyacheslav F; Szczepanowski, Roman H; Negrutskii, Boris S; El'skaya, Anna V

    2016-02-01

    Eukaryotic translation elongation factor 1Bα (eEF1Bα) is a functional homolog of the bacterial factor EF-Ts, and is a component of the macromolecular eEF1B complex. eEF1Bα functions as a catalyst of guanine nucleotide exchange on translation elongation factor 1A (eEF1A). The C-terminal domain of eEF1Bα is necessary and sufficient for its catalytic activity, whereas the N-terminal domain interacts with eukaryotic translation elongation factor 1Bγ (eEF1Bγ) to form a tight complex. However, eEF1Bγ has been shown to enhance the catalytic activity of eEF1Bα attributed to the C-terminal domain of eEF1Bα. This suggests that the N-terminal domain of eEF1Bα may in some way influence the guanine nucleotide exchange process. We have shown that full-length recombinant eEF1Bα and its truncated forms are non-globular proteins with elongated shapes. Truncation of the N-terminal domain of eEF1Bα, which is dispensable for catalytic activity, resulted in acceleration of the rate of guanine nucleotide exchange on eEF1A compared to full-length eEF1Bα. A similar effect on the catalytic activity of eEF1Bα was observed after its interaction with eEF1Bγ. We suggest that the non-catalytic N-terminal domain of eEF1Bα may interfere with eEF1A binding to the C-terminal catalytic domain, resulting in a decrease in the overall rate of the guanine nucleotide exchange reaction. Formation of a tight complex between the eEF1Bγ and eEF1Bα N-terminal domains abolishes this inhibitory effect.

  18. Catalytic activation of pre-substrates via dynamic fragment assembly on protein templates.

    PubMed

    Burda, Edyta; Rademann, Jörg

    2014-11-18

    Sensitive detection of small molecule fragments binding to defined sites of biomacromolecules is still a considerable challenge. Here we demonstrate that protein-binding fragments are able to induce enzymatic reactions on the protein surface via dynamic fragment ligation. Fragments binding to the S1 pocket of serine proteases containing a nitrogen, oxygen or sulphur nucleophile are found to activate electrophilic pre-substrates through a reversible, covalent ligation reaction. The dynamic ligation reaction positions the pre-substrate molecule at the active site of the protein thereby inducing its enzymatic cleavage. Catalytic activation of pre-substrates is confirmed by fluorescence spectroscopy and by high-performance liquid chromatography. The approach is investigated with 3 pre-substrates and 14 protein-binding fragments and the specific activation and the templating effect exerted by the enzyme is quantified for each protease-fragment-pre-substrate combination. The described approach enables the site-specific identification of protein-binding fragments, the functional characterization of enzymatic sites and the quantitative analysis of protein template-assisted ligation reactions.

  19. Cytochrome c oxidase loses catalytic activity and structural integrity during the aging process in Drosophila melanogaster

    SciTech Connect

    Ren, Jian-Ching; Rebrin, Igor; Klichko, Vladimir; Orr, William C.; Sohal, Rajindar S.

    2010-10-08

    Research highlights: {yields} Cytochrome c oxidase loses catalytic activity during the aging process. {yields} Abundance of seven nuclear-encoded subunits of cytochrome c oxidase decreased with age in Drosophila. {yields} Cytochrome c oxidase is specific intra-mitochondrial site of age-related deterioration. -- Abstract: The hypothesis, that structural deterioration of cytochrome c oxidase (CcO) is a causal factor in the age-related decline in mitochondrial respiratory activity and an increase in H{sub 2}O{sub 2} generation, was tested in Drosophila melanogaster. CcO activity and the levels of seven different nuclear DNA-encoded CcO subunits were determined at three different stages of adult life, namely, young-, middle-, and old-age. CcO activity declined progressively with age by 33%. Western blot analysis, using antibodies specific to Drosophila CcO subunits IV, Va, Vb, VIb, VIc, VIIc, and VIII, indicated that the abundance these polypeptides decreased, ranging from 11% to 40%, during aging. These and previous results suggest that CcO is a specific intra-mitochondrial site of age-related deterioration, which may have a broad impact on mitochondrial physiology.

  20. Enhanced catalytic activity and inhibited biofouling of cathode in microbial fuel cells through controlling hydrophilic property

    NASA Astrophysics Data System (ADS)

    Li, Da; Liu, Jia; Wang, Haiman; Qu, Youpeng; Zhang, Jie; Feng, Yujie

    2016-11-01

    The hydrophilicity of activated carbon cathode directly determines the distribution of three-phase interfaces where oxygen reduction occurs. In this study, activated carbon cathodes are fabricated by using hydrophobic polytetrafluoroethylene (PTFE) and amphiphilic LA132 at various weight ratio to investigate the effect of hydrophilic property on cathode performance. Contact angle tests confirm the positive impact of LA132 content on hydrophilicity. Cathode with 67 wt% LA132 content shows the highest electrochemical activity as exchange current density increases by 71% and charge transfer resistance declines by 44.6% compared to that of PTFE cathode, probably due to the extended reaction interfaces by optimal hydrophilicity of cathode so that oxygen reduction is facilitated. As a result, the highest power density of 1171 ± 71 mW m-2 is obtained which is 14% higher than PTFE cathode. In addition to the hydrophilicity, this cathode had more negative charged surface of catalyst layer, therefore the protein content of cathodic biofilm decreased by 47.5%, indicating the effective bacterial inhibition when 67 wt% LA132 is used. This study shows that the catalytic activity of cathode is improved by controlling proper hydrophilicity of cathode, and that biofilm can be reduced by increasing hydrophilicity and lowering the surface potential.

  1. Catalytic activity of various pepsin reduced Au nanostructures towards reduction of nitroarenes and resazurin

    NASA Astrophysics Data System (ADS)

    Sharma, Bhagwati; Mandani, Sonam; Sarma, Tridib K.

    2015-01-01

    Pepsin, a digestive protease enzyme, could function as a reducing as well as stabilizing agent for the synthesis of Au nanostructures of various size and shape under different reaction conditions. The simple tuning of the pH of the reaction medium led to the formation of spherical Au nanoparticles, anisotropic Au nanostructures such as triangles, hexagons, etc., as well as ultra small fluorescent Au nanoclusters. The activity of the enzyme was significantly inhibited after its participation in the formation of Au nanoparticles due to conformational changes in the native structure of the enzyme which was studied by fluorescence, circular dichroism (CD), and infra red spectroscopy. However, the Au nanoparticle-enzyme composites served as excellent catalyst for the reduction of p-nitrophenol and resazurin, with the catalytic activity varying with size and shape of the nanoparticles. The presence of pepsin as the surface stabilizer played a crucial role in the activity of the Au nanoparticles as reduction catalysts, as the approach of the reacting molecules to the nanoparticle surface was actively controlled by the stabilizing enzyme.

  2. Development of catalytically active and highly stable catalyst supports for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Taekeun; Xie, Tianyuan; Jung, Wonsuk; Gadala-Maria, Francis; Ganesan, Prabhu; Popov, Branko N.

    2015-01-01

    Novel procedures are developed for the synthesis of highly stable carbon composite catalyst supports (CCCS-800 °C and CCCS-1100 °C) and an activated carbon composite catalyst support (A-CCCS). These supports are synthesized through: (i) surface modification with acids and inclusion of oxygen groups, (ii) metal-catalyzed pyrolysis, and (iii) chemical leaching to remove excess metal used to dope the support. The procedure results in increasing carbon graphitization and inclusion of non-metallic active sites on the support surface. Catalytic activity of CCCS indicates an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass-transfer regions and ∼2.5% H2O2 production in rotating ring disk electrode (RRDE) studies. Support stability studies at 1.2 V constant potential holding for 400 h indicate high stability for the 30% Pt/A-CCCS catalyst with a cell potential loss of 27 mV at 800 mA cm-2 under H2-air, 32% mass activity loss, and 30% ECSA loss. Performance evaluation in polymer electrolyte membrane (PEM) fuel cell shows power densities (rated) of 0.18 and 0.23 gPt kW-1 for the 30% Pt/A-CCCS and 30% Pt/CCCS-800 °C catalysts, respectively. The stabilities of various supports developed in this study are compared with those of a commercial Pt/C catalyst.

  3. Silica-supported Au@hollow-SiO2 particles with outstanding catalytic activity prepared via block copolymer template approach.

    PubMed

    Shajkumar, Aruni; Nandan, Bhanu; Sanwaria, Sunita; Albrecht, Victoria; Libera, Marcin; Lee, Myong-Hoon; Auffermann, Gudrun; Stamm, Manfred; Horechyy, Andriy

    2017-04-01

    Catalytically active Au@hollow-SiO2 particles embedded in porous silica support (Au@hollow-SiO2@PSS) were prepared by using spherical micelles from poly(styrene)-block-poly(4-vinyl pyridine) block copolymer as a sacrificial template. Drastic increase of the shell porosity was observed after pyrolytic removal of polymeric template because the stretched poly(4-vinyl pyridine) chains interpenetrating with silica shell acted as an effective porogen. The embedding of Au@hollow-SiO2 particles in porous silica support prevented their fusion during pyrolysis. The catalytic activity of Au@hollow-SiO2@PSS was investigated using a model reaction of catalytic reduction of 4-nitrophenol and reductive degradation of Congo red azo-dye. Significantly, to the best of our knowledge, Au@hollow-SiO2@PSS catalyst shows the highest activity among analogous systems reported till now in literature. Such high activity was attributed to the presence of multiple pores within silica shell of Au@hollow-SiO2 particles and easy accessibility of reagents to the catalytically active sites of the ligand-free gold surface through the porous silica support.

  4. Characterization of three abnormal factor IX variants (Bm Lake Elsinore, Long Beach, and Los Angeles) of hemophilia-B. Evidence for defects affecting the latent catalytic site.

    PubMed Central

    Usharani, P; Warn-Cramer, B J; Kasper, C K; Bajaj, S P

    1985-01-01

    Abnormal factor IX variant proteins were isolated from the plasmas of three unrelated severe hemophilia-B families that had been previously shown to contain functionally impaired molecules immunologically similar to normal factor IX. The families studied were: (1) a patient with markedly prolonged ox brain prothrombin time, designated factor IX Bm Lake Elsinore (IXBmLE); (b) three patients (brothers) with moderately prolonged ox brain prothrombin time, designated factor IX Long Beach (IXLB); and (c) a patient with normal ox brain prothrombin time designated factor IX Los Angeles (IXLA). Each variant molecule comigrates with normal factor IX (IXN) both in the sodium dodecyl sulfate and in the nondenaturing alkaline gel electrophoresis. All three variant proteins are indistinguishable from IXN in their amino acid compositions, isoelectric points, carbohydrate distributions and number of gamma-carboxyglutamic acid residues. Each variant protein undergoes a similar pattern of cleavage by factor XIa/Ca2+ and by factor VIIa/Ca2+/tissue factor, and is activated at a rate similar to that observed for IXN. All of the three variant proteins also react with an anti-IXN monoclonal antibody that interferes with the binding of activated IXN(IXaN) to thrombin-treated factor VIIIC. However, in contrast to IXaN, the cleaved IXBmLE has negligible activity (approximately 0.2%), and cleaved forms of IXLA and IXLB have significantly reduced activity (approximately 5-6%) in binding to antithrombin-III/heparin, and in activating factor VII (plus Ca2+ and phospholipid) or factor X (plus Ca2+ and phospholipid) +/- factor VIII. These data, taken together, strongly indicate that the defect in these three variant proteins resides near or within the latent catalytic site. This results in virtually a complete loss of catalytic activity of the cleaved IXBmLE molecule and approximately 95% loss of catalytic activity of the cleaved IXLA and IXLB molecules. Images PMID:3965513

  5. Characterization of three abnormal factor IX variants (Bm Lake Elsinore, Long Beach, and Los Angeles) of hemophilia-B. Evidence for defects affecting the latent catalytic site.

    PubMed

    Usharani, P; Warn-Cramer, B J; Kasper, C K; Bajaj, S P

    1985-01-01

    Abnormal factor IX variant proteins were isolated from the plasmas of three unrelated severe hemophilia-B families that had been previously shown to contain functionally impaired molecules immunologically similar to normal factor IX. The families studied were: (1) a patient with markedly prolonged ox brain prothrombin time, designated factor IX Bm Lake Elsinore (IXBmLE); (b) three patients (brothers) with moderately prolonged ox brain prothrombin time, designated factor IX Long Beach (IXLB); and (c) a patient with normal ox brain prothrombin time designated factor IX Los Angeles (IXLA). Each variant molecule comigrates with normal factor IX (IXN) both in the sodium dodecyl sulfate and in the nondenaturing alkaline gel electrophoresis. All three variant proteins are indistinguishable from IXN in their amino acid compositions, isoelectric points, carbohydrate distributions and number of gamma-carboxyglutamic acid residues. Each variant protein undergoes a similar pattern of cleavage by factor XIa/Ca2+ and by factor VIIa/Ca2+/tissue factor, and is activated at a rate similar to that observed for IXN. All of the three variant proteins also react with an anti-IXN monoclonal antibody that interferes with the binding of activated IXN(IXaN) to thrombin-treated factor VIIIC. However, in contrast to IXaN, the cleaved IXBmLE has negligible activity (approximately 0.2%), and cleaved forms of IXLA and IXLB have significantly reduced activity (approximately 5-6%) in binding to antithrombin-III/heparin, and in activating factor VII (plus Ca2+ and phospholipid) or factor X (plus Ca2+ and phospholipid) +/- factor VIII. These data, taken together, strongly indicate that the defect in these three variant proteins resides near or within the latent catalytic site. This results in virtually a complete loss of catalytic activity of the cleaved IXBmLE molecule and approximately 95% loss of catalytic activity of the cleaved IXLA and IXLB molecules.

  6. Effect of oxidation and catalytic reduction of trace organic contaminants on their activated carbon adsorption.

    PubMed

    Schoutteten, Klaas V K M; Hennebel, Tom; Dheere, Ellen; Bertelkamp, Cheryl; De Ridder, David J; Maes, Synthia; Chys, Michael; Van Hulle, Stijn W H; Vanden Bussche, Julie; Vanhaecke, Lynn; Verliefde, Arne R D

    2016-12-01

    The combination of ozonation and activated carbon (AC) adsorption is an established technology for removal of trace organic contaminants (TrOCs). In contrast to oxidation, reduction of TrOCs has recently gained attention as well, however less attention has gone to the combination of reduction with AC adsorption. In addition, no literature has compared the removal behavior of reduction vs. ozonation by-products by AC. In this study, the effect of pre-ozonation vs pre-catalytic reduction on the AC adsorption efficiency of five TrOCs and their by-products was compared. All compounds were susceptible to oxidation and reduction, however the catalytic reductive treatment proved to be a slower reaction than ozonation. New oxidation products were identified for dinoseb and new reduction products were identified for carbamazepine, bromoxynil and dinoseb. In terms of compatibility with AC adsorption, the influence of the oxidative and reductive pretreatments proved to be compound dependent. Oxidation products of bromoxynil and diatrizoic acid adsorbed better than their parent TrOCs, but oxidation products of atrazine, carbamazepine and dinoseb showed a decreased adsorption. The reductive pre-treatment showed an enhanced AC adsorption for dinoseb and a major enhancement for diatrizoic acid. For atrazine and bromoxynil, no clear influence on adsorption was noted, while for carbamazepine, the reductive pretreatment resulted in a decreased AC affinity. It may thus be concluded that when targeting mixtures of TrOCs, a trade-off will undoubtedly have to be made towards overall reactivity and removal of the different constituents, since no single treatment proves to be superior to the other.

  7. Relationship between the properties of iron sulfides and their catalytic activity

    SciTech Connect

    Stohl, F. V.; Granoff, B.

    1981-01-01

    Iron sulfides, such as pyrite, are known catalysts in coal liquefaction and produce significant increases in both conversion and distillate (850 F/sup -/) yield. The main objective of this work is to increase the catalytic activity of iron sulfides by systematically changing the following properties: composition, source, particle size, surface area, morphology and defect level. Several iron sulfides have been synthesized including pyrite (FeS/sub 2/) with 46.6 wt % Fe, pyrrhotite (Fe/sub 1-x/S) with about 60 wt % Fe and mackinawite (Fe/sub 9/S/sub 8/) with 66.2 wt % Fe. The source variations have included commercial material and minerals. The pyrite particle sizes ranged from -350 to -5..mu..m, the pyrite surface areas varied from 2 to >10 m/sup 2//g, the mackinawite surface areas ranged from 40 to 80 m/sup 2//g, and pyrite morphologies included massive material and a concentrate of framboids from Iowa coal. Moessbauer studies of the pyrrhotites in coal liquefaction residues have shown that there is a direct correlation between conversion and the number of vacancies in the pyrrhotite. Pyrites with enhanced defect levels were prepared by explosively shock loading Robena pyrite at 15 GPa. All these materials have been tested in either tubing reactor or autoclave runs with West Virginia Blacksville No. 2 coal and SRC-II heavy distillate (550/sup 0/F/sup +/). The runs were carried out at 425/sup 0/C, 500 psi H/sub 2/ (cold charge) for 30 minutes with a 7.5 wt % catalyst loading. All these materials have shown catalytic effects as compared to uncatalyzed thermal runs.

  8. Catalytic activation of OKO zeolite with intersecting pores of 10- and 12-membered rings using atomic layer deposition of aluminium.

    PubMed

    Verheyen, E; Pulinthanathu Sree, S; Thomas, K; Dendooven, J; De Prins, M; Vanbutsele, G; Breynaert, E; Gilson, J-P; Kirschhock, C E A; Detavernier, C; Martens, J A

    2014-05-07

    Tetrahedral framework aluminium was introduced in all-silica zeolite -COK-14 using Atomic Layer Deposition (ALD) involving alternating exposure to trimethylaluminium and water vapour. The modification causes permanent conversion of the originally interrupted framework of -COK-14 to a fully connected OKO type framework, and generates catalytic activity in the acid catalysed hydrocarbon conversion reaction.

  9. Strong counteranion effects on the catalytic activity of cationic silicon Lewis acids in Mukaiyama aldol and Diels-Alder reactions.

    PubMed

    Hara, Kenji; Akiyama, Ryuto; Sawamura, Masaya

    2005-12-08

    [chemical reaction: see text]. A toluene-coordinated silyl borate, [Et3Si(toluene)]B(C6F5)4, demonstrated catalytic activities significantly higher than those of Me3SiOTf and Me3SiNTf2 in Mukaiyama aldol and Diels-Alder reactions.

  10. Fabrication of catalytically active Au/Pt/Pd trimetallic nanoparticles by rapid injection of NaBH{sub 4}

    SciTech Connect

    Zhang, Haijun; Lu, Lilin; Cao, Yingnan; Du, Shuang; Cheng, Zhong; Zhang, Shaowei

    2014-01-01

    Graphical abstract: The synthesis and characterization of 2.0 nm-diameter Au/Pt/Pd nanoparticles are reported. The catalytic activity for glucose oxidation of the nanoparticles is several times higher than that of Au nanoparticles with nearly same size. - Highlights: • PVP-protected Au/Pt/Pd trimetallic nanoparticles (TNPs) of 2.0 nm in diameter were prepared. • The catalytic activity of TNPs is several times higher than that of Au nanoparticles. • Negatively charged Au atoms in the TNPs were confirmed by DFT calculation. - Abstract: Au/Pt/Pd trimetallic nanoparticles (TNPs) with an alloyed structure and an average diameter of about 2.0 nm were prepared via reducing the corresponding ions with rapidly injected NaBH{sub 4}, and characterized by UV–vis, TEM and HR-TEM. The catalytic activity of as-prepared TNPs for the aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with about the same average size, which could be attributed to the catalytically active sites provided by the negatively charged Au atoms as a result of the electron donation from the neighboring Pd atoms. This was well supported by the electron density calculations based on the density functional theory.

  11. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    NASA Astrophysics Data System (ADS)

    Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian

    2015-07-01

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  12. Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling.

    PubMed

    Smith, Geoffrey A; Uchida, Kenji; Weiss, Arthur; Taunton, Jack

    2016-05-01

    To drive lymphocyte proliferation and differentiation, common γ-chain (γc) cytokine receptors require hours to days of sustained stimulation. JAK1 and JAK3 kinases are found together in all γc-receptor complexes, but how their respective catalytic activities contribute to signaling over time is not known. Here we dissect the temporal requirements for JAK3 kinase activity with a selective covalent inhibitor (JAK3i). By monitoring phosphorylation of the transcription factor STAT5 over 20 h in CD4(+) T cells stimulated with interleukin 2 (IL-2), we document a second wave of signaling that is much more sensitive to JAK3i than the first wave. Selective inhibition of this second wave is sufficient to block cyclin expression and entry to S phase. An inhibitor-resistant JAK3 mutant (C905S) rescued all effects of JAK3i in isolated T cells and in mice. Our chemical genetic toolkit elucidates a biphasic requirement for JAK3 kinase activity in IL-2-driven T cell proliferation and will find broad utility in studies of γc-receptor signaling.

  13. An improved procedure for the purification of catalytically active alkane hydroxylase from Pseudomonas putida GPo1.

    PubMed

    Xie, Meng; Alonso, Hernan; Roujeinikova, Anna

    2011-10-01

    Bacterial alkane hydroxylases are of high interest for bioremediation applications as they allow some bacteria to grow in oil-contaminated environments. Furthermore, they have tremendous biotechnological potential as they catalyse the stereo- and regio-specific hydroxylation of chemically inert alkanes, which can then be used in the synthesis of pharmaceuticals and other high-cost chemicals. Despite their potential, progress on the detailed characterization of these systems has so far been slow mainly due to the lack of a robust procedure to purify its membrane protein component, monooxygenase AlkB, in a stable and active form. This study reports a new method for isolating milligramme amounts of recombinant Pseudomonas putida GPo1 AlkB in a folded, catalytically active form to purity levels above 90%. AlkB solubilised and purified in the detergent lauryldimethylamine oxide was demonstrated to be active in catalysing the epoxidation reaction of 1-octene with an estimated K (m) value of 0.2 mM.

  14. Differential Assembly of Catalytic Interactions within the Conserved Active Sites of Two Ribozymes

    PubMed Central

    Herschlag, Daniel

    2016-01-01

    Molecular recognition is central to biology and a critical aspect of RNA function. Yet structured RNAs typically lack the preorganization needed for strong binding and precise positioning. A striking example is the group I ribozyme from Tetrahymena, which binds its guanosine substrate (G) orders of magnitude slower than diffusion. Binding of G is also thermodynamically coupled to binding of the oligonucleotide substrate (S) and further work has shown that the transition from E•G to E•S•G accompanies a conformational change that allows G to make the active site interactions required for catalysis. The group I ribozyme from Azoarcus has a similarly slow association rate but lacks the coupled binding observed for the Tetrahymena ribozyme. Here we test, using G analogs and metal ion rescue experiments, whether this absence of coupling arises from a higher degree of preorganization within the Azoarcus active site. Our results suggest that the Azoarcus ribozyme forms cognate catalytic metal ion interactions with G in the E•G complex, interactions that are absent in the Tetrahymena E•G complex. Thus, RNAs that share highly similar active site architectures and catalyze the same reactions can differ in the assembly of transition state interactions. More generally, an ability to readily access distinct local conformational states may have facilitated the evolutionary exploration needed to attain RNA machines that carry out complex, multi-step processes. PMID:27501145

  15. Shell-anchor-core structures for enhanced stability and catalytic oxygen reduction activity

    NASA Astrophysics Data System (ADS)

    Ramirez-Caballero, Gustavo E.; Hirunsit, Pussana; Balbuena, Perla B.

    2010-10-01

    Density functional theory is used to evaluate activity and stability properties of shell-anchor-core structures. The structures consist of a Pt surface monolayer and a composite core having an anchor bilayer where C atoms in the interstitial sites lock 3d metals in their locations, thus avoiding their surface segregation and posterior dissolution. The modified subsurface geometry induces less strain on the top surface, thus exerting a favorable effect on the surface catalytic activity where the adsorption strength of the oxygenated species becomes more moderate: weaker than on pure Pt(111) but stronger than on a Pt monolayer having a 3d metal subsurface. Here we analyze the effect of changing the nature of the 3d metal in the subsurface anchor bilayer, and we also test the use of a Pd monolayer instead of Pt on the surface. It is found that a subsurface constituted by two layers with an approximate composition of M2C (M=Fe, Ni, and Co) provides a barrier for the migration of subsurface core metal atoms to the surface. Consequently, an enhanced resistance against dissolution in parallel to improved oxygen reduction activity is expected, as given by the values of adsorption energies of reaction intermediates, delayed onset of water oxidation, and/or low coverage of oxygenated species at surface oxidation potentials.

  16. Heterogeneous copper-silica catalyst from agricultural biomass and its catalytic activity

    NASA Astrophysics Data System (ADS)

    Andas, Jeyashelly; Adam, Farook; Rahman, Ismail Ab.

    2013-11-01

    A series of highly mesoporous copper catalysts (5-20 wt.%) supported on silica rice husk were synthesized via sol-gel route at room temperature. The FT-IR and 29Si MAS NMR spectroscopic studies revealed the successful substitution of copper into the silica matrix. Copper in the +2 oxidation state was evidenced from the DR/UV-vis and XPS analyses. Introduction of copper up to 10 wt.% (RH-10Cu) results in a progressive enhancement in the BET surface area. The activity of the copper catalysts was studied in the liquid-phase oxidation of phenol with H2O2 yielding catechol (CAT) and hydroquinone (HQ). Phenol conversion was influenced by various experimental conditions such as temperature, catalyst dosage, molar ratio of reactants, nature of solvent and percentage metal loading. Excellent activity was achieved when 10 wt.% copper was used and decreased with further increase in the copper loading. RH-10Cu could be regenerated several times without significant loss in the catalytic activity.

  17. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  18. Urokinase has direct catalytic activity against fibrinogen and renders it less clottable by thrombin.

    PubMed Central

    Weitz, J I; Leslie, B

    1990-01-01

    Recently, we demonstrated that tissue plasminogen activator directly releases fibrinopeptides A and B (FPA and FPB) from fibrinogen. The purpose of this study was to determine whether urokinase has similar activity. Incubation of urokinase with fibrinogen or heparinized plasma results in concentration-dependent FPB release unaccompanied by FPA cleavage. For equivalent amidolytic activity, high molecular weight urokinase releases twofold more FPB than the low molecular weight species. In contrast, prourokinase does not release FPB until activated to urokinase. Contaminating thrombin or plasma is not responsible for urokinase-mediated FPB release because this activity is unaccompanied by FPA or B beta 1-42 cleavage, and is unaffected by heparin, hirudin, a monospecific antibody against thrombin, aprotinin, or alpha 2-antiplasmin. FPB release reflects a direct action of urokinase on fibrinogen because release is completely inhibited by a monospecific antibody against the enzyme. Further, urokinase releases FPB from the FPB-containing substrate B beta 1-42, thus confirming its specificity for the B beta 14 (Arg)-B beta 15 (Gly) bond. In addition to FPB release, SDS-PAGE analysis of the time course of urokinase-mediated fibrinogenolysis indicates progressive proteolysis of both the A alpha- and B beta-chains of fibrinogen that occurs after FPB release is completed. As a consequence of urokinase-mediated fibrinogenolysis, there is progressive prolongation of the thrombin clotting time. These studies indicate that urokinase has direct catalytic activity against fibrinogen. By releasing FPB, a potent chemoattractant, and by rendering fibrinogen less clottable by thrombin, urokinase may participate in processes extending beyond fibrinolysis. Images PMID:2365816

  19. Secretion and N-linked glycosylation are required for prostatic acid phosphatase catalytic and antinociceptive activity.

    PubMed

    Hurt, Julie K; Fitzpatrick, Brendan J; Norris-Drouin, Jacqueline; Zylka, Mark J

    2012-01-01

    Secretory human prostatic acid phosphatase (hPAP) is glycosylated at three asparagine residues (N62, N188, N301) and has potent antinociceptive effects when administered to mice. Currently, it is unknown if these N-linked residues are required for hPAP protein stability and activity in vitro or in animal models of chronic pain. Here, we expressed wild-type hPAP and a series of Asn to Gln point mutations in the yeast Pichia pastoris X33 then analyzed protein levels and enzyme activity in cell lysates and in conditioned media. Pichia secreted wild-type recombinant (r)-hPAP into the media (6-7 mg protein/L). This protein was as active as native hPAP in biochemical assays and in mouse models of inflammatory pain and neuropathic pain. In contrast, the N62Q and N188Q single mutants and the N62Q, N188Q double mutant were expressed at lower levels and were less active than wild-type r-hPAP. The purified N62Q, N188Q double mutant protein was also 1.9 fold less active in vivo. The N301Q mutant was not expressed, suggesting a critical role for this residue in protein stability. To explicitly test the importance of secretion, a construct lacking the signal peptide of hPAP was expressed in Pichia and assayed. This "cellular" construct was not expressed at levels detectable by western blotting. Taken together, these data indicate that secretion and post-translational carbohydrate modifications are required for PAP protein stability and catalytic activity. Moreover, our findings indicate that recombinant hPAP can be produced in Pichia--a yeast strain that is used to generate biologics for therapeutic purposes.

  20. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.

  1. Nature of Catalytic Active Sites Present on the Surface of Advanced Bulk Tantalum Mixed Oxide Photocatalysts

    SciTech Connect

    Phivilay, Somphonh; Puretzky, Alexander A; Domen, Kazunari Domen; Wachs, Israel

    2013-01-01

    The most active photocatalyst system for water splitting under UV irradiation (270 nm) is the promoted 0.2%NiO/NaTaO3:2%La photocatalyst with optimized photonic efficiency (P.E.) of 56%, but fundamental issues about the nature of the surface catalytic active sites and their involvement in the photocatalytic process still need to be clarified. This is the first study to apply cutting edge surface spectroscopic analyses to determine the surface nature of tantalum mixed oxide photocatalysts. Surface analysis with HR-XPS (1-3nm) and HS-LEIS (0.3nm) spectroscopy indicates that the NiO and La2O3 promoters are concentrated in the surface region of the bulk NaTaO3 phase. The La2O3 is concentrated on the NaTaO3 outermost surface layers while NiO is distributed throughout the NaTaO3 surface region (1-3nm). Raman and UV-vis spectroscopy revealed that the bulk molecular and electronic structures, respectively, of NaTaO3 were not modified by the addition of the La2O3 and NiO promoters, with La2O3 resulting in a slightly more ordered structure. Photoluminescence (PL) spectroscopy reveals that the addition of La2O3 and NiO produces a greater number of electron traps resulting in the suppression of the recombination of excited electrons/holes. In contrast to earlier reports, the La2O3 is only a textural promoter (increasing the BET surface area ~7x by stabilizing smaller NaTaO3 particles), but causes a ~3x decrease in the specific photocatalytic TORs ( mol H2/m2/h) rate because surface La2O3 blocks exposed catalytic active NaTaO3 sites. The NiO promoter was found to be a potent electronic promoter that enhances the NaTaO3 surface normalized TORs by a factor of ~10-50 and TOF by a factor of ~10. The level of NiO promotion is the same in the absence and presence of La2O3 demonstrating that there is no promotional synergistic interaction between the NiO and La2O3 promoters. This study demonstrates the important contributions of the photocatalyst surface properties to the fundamental

  2. Bifunctional Molecular Photoswitches Based on Overcrowded Alkenes for Dynamic Control of Catalytic Activity in Michael Addition Reactions.

    PubMed

    Pizzolato, Stefano F; Collins, Beatrice S L; van Leeuwen, Thomas; Feringa, Ben L

    2016-11-23

    The emerging field of artificial photoswitchable catalysis has recently shown striking examples of functional light-responsive systems allowing for dynamic control of activity and selectivity in organocatalysis and metal-catalysed transformations. While our group has already disclosed systems featuring first generation molecular motors as the switchable central core, a design based on second generation molecular motors is lacking. Here, the syntheses of two bifunctionalised molecular switches based on a photoresponsive tetrasubstituted alkene core are reported. They feature a thiourea substituent as hydrogen-donor moiety in the upper half and a basic dimethylamine group in the lower half. This combination of functional groups offers the possibility for application of these molecules in photoswitchable catalytic processes. The light-responsive central cores were synthesized by a Barton-Kellogg coupling of the prefunctionalized upper and lower halves. Derivatization using Buchwald-Hartwig amination and subsequent introduction of the thiourea substituent afforded the target compounds. Control of catalytic activity in the Michael addition reaction between (E)-3-bromo-β-nitrostyrene and 2,4-pentanedione is achieved upon irradiation of stable-(E) and stable-(Z) isomers of the bifunctional catalyst 1. Both isomers display a decrease in catalytic activity upon irradiation to the metastable state, providing systems with the potential to be applied as ON/OFF catalytic photoswitches.

  3. Remote site-selective C–H activation directed by a catalytic bifunctional template

    NASA Astrophysics Data System (ADS)

    Zhang, Zhipeng; Tanaka, Keita; Yu, Jin-Quan

    2017-03-01

    In chemical syntheses, the activation of carbon–hydrogen (C–H) bonds converts them directly into carbon–carbon or carbon–heteroatom bonds without requiring any prior functionalization. C–H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C–H bond in a substrate can be activated by using a ‘directing’ (usually a functional) group to obtain the desired product selectively. The applicability of such a C–H activation reaction can be severely curtailed by the distance of the C–H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C–H bonds of a substrate has been exploited to achieve meta-selective C–H activation by using a covalently attached, U-shaped template. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C–H bonds. Using this strategy, we demonstrate remote, site-selective C–H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

  4. Expression of catalytically active recombinant Helicobacter pylori urease at wild-type levels in Escherichia coli.

    PubMed Central

    Hu, L T; Mobley, H L

    1993-01-01

    The genes encoding Helicobacter pylori urease, a nickel metalloenzyme, have been cloned and expressed in Escherichia coli. Enzymatic activity, however, has been very weak compared with that in clinical isolates of H. pylori. Conditions under which near wild-type urease activity was achieved were developed. E. coli. SE5000 containing recombinant H. pylori urease genes was grown in minimal medium containing no amino acids, NiCl2 was added to 0.75 microM, and structural genes ureA and ureB (pHP902) were overexpressed in trans to the complete urease gene cluster (pHP808). Under these conditions, E. coli SE5000 pHP808/pHP902) expressed a urease activity up to 87 mumol of urea per min per mg of protein (87 U/mg of protein), a level approaching that of wild-type H. pylori UMAB41 (100 U/mg of protein), from which the genes were cloned. Poor catalytic activity of recombinant clones grown in Luria broth or M9 medium containing 0.5% Casamino Acids was due to chelation of nickel ions by medium components, particularly histidine and cysteine. In cultures containing these amino acids, 63Ni2+ was prevented from being transported into cells and was not incorporated into urease protein. As a consequence, M9 minimal medium cultures containing histidine or cysteine produced only 0.05 and 0.9%, respectively, of active urease produced by control cultures containing no amino acids. We conclude that recombinant H. pylori urease is optimally expressed when Ni2+ transport is not inhibited and when sufficient synthesis of urease subunits UreA and UreB is provided. Images PMID:8500893

  5. Ankyrin domain of myosin 16 influences motor function and decreases protein phosphatase catalytic activity.

    PubMed

    Kengyel, András; Bécsi, Bálint; Kónya, Zoltán; Sellers, James R; Erdődi, Ferenc; Nyitrai, Miklós

    2015-05-01

    The unconventional myosin 16 (Myo16), which may have a role in regulation of cell cycle and cell proliferation, can be found in both the nucleus and the cytoplasm. It has a unique, eight ankyrin repeat containing pre-motor domain, the so-called ankyrin domain (My16Ank). Ankyrin repeats are present in several other proteins, e.g., in the regulatory subunit (MYPT1) of the myosin phosphatase holoenzyme, which binds to the protein phosphatase-1 catalytic subunit (PP1c). My16Ank shows sequence similarity to MYPT1. In this work, the interactions of recombinant and isolated My16Ank were examined in vitro. To test the effects of My16Ank on myosin motor function, we used skeletal muscle myosin or nonmuscle myosin 2B. The results showed that My16Ank bound to skeletal muscle myosin (K D ≈ 2.4 µM) and the actin-activated ATPase activity of heavy meromyosin (HMM) was increased in the presence of My16Ank, suggesting that the ankyrin domain can modulate myosin motor activity. My16Ank showed no direct interaction with either globular or filamentous actin. We found, using a surface plasmon resonance-based binding technique, that My16Ank bound to PP1cα (K D ≈ 540 nM) and also to PP1cδ (K D ≈ 600 nM) and decreased its phosphatase activity towards the phosphorylated myosin regulatory light chain. Our results suggest that one function of the ankyrin domain is probably to regulate the function of Myo16. It may influence the motor activity, and in complex with the PP1c isoforms, it can play an important role in the targeted dephosphorylation of certain, as yet unidentified, intracellular proteins.

  6. Methodology to assay CYP2E1 mixed function oxidase catalytic activity and its induction

    PubMed Central

    Cederbaum, Arthur I.

    2014-01-01

    The cytochrome P450 mixed function oxidase enzymes are the major catalysts involved in drug metabolism. There are many forms of P450. CYP2E1 metabolizes many toxicologically important compounds including ethanol and is active in generating reactive oxygen species. Since several of the contributions in the common theme series “Role of CYP2E1 and Oxidative/Nitrosative Stress in the Hepatotoxic Actions of Alcohol” discuss CYP2E1, this methodology review describes assays on how CYP2E1 catalytic activity and its induction by ethanol and other inducers can be measured using substrate probes such as the oxidation of para-nitrophenol to para-nitrocatechol and the oxidation of ethanol to acetaldehyde. Approaches to validate that a particular reaction e.g. oxidation of a drug or toxin is catalyzed by CYP2E1 or that induction of that reaction is due to induction of CYP2E1 are important and specific examples using inhibitors of CYP2E1, anti-CYP2E1 IgG or CYP2E1 knockout and knockin mice will be discussed. PMID:25454746

  7. Efficient Catalytic Activity BiFeO3 Nanoparticles Prepared by Novel Microwave-Assisted Synthesis.

    PubMed

    Zou, Jing; Gong, Wanyun; Ma, Jinai; Li, Lu; Jiang, Jizhou

    2015-02-01

    A novel microwave-assisted sol-gel method was applied to the synthesis of the single-phase perovskite bismuth ferrite nanoparticles (BFO NPs) with the mean diameter ca. 73.7 nm. The morphology was characterized by scanning electron microscope (SEM). The X-ray diffraction (XRD) revealed the rhombohedral phase with R3c space group. The weak ferromagnetic behavior at room temperature was affirmed by the vibrating sample magnetometer (VSM). According to the UV-vis diffuse reflectance spectrum (UV-DSR), the band gap energy of BFO NPs was determined to be 2.18 eV. The electrochemical activity was evaluated by BFO NPs-chitosan-glassy carbon electrode (BFO-CS-GCE) sensor for detection of p-nitrophenol contaminants. The material showed an efficient oxidation catalytic activity by degrading methylene blue (MB). It was found that the degradation efficiency of 10 mg L-1 MB at pH 6.0 was above 90.9% after ultrasound- and microwave-combined-assisted (US-MW) irradiation for 15 min with BFO NPs as catalyst and H202 as oxidant. A possible reaction mechanism of degradation of MB was also proposed.

  8. Hydrogen production by thermo-catalytic decomposition of methane: Regeneration of active carbons using CO 2

    NASA Astrophysics Data System (ADS)

    Pinilla, J. L.; Suelves, I.; Utrilla, R.; Gálvez, M. E.; Lázaro, M. J.; Moliner, R.

    Thermo-catalytic decomposition of methane using carbons as catalyst is a very attractive process for free CO 2-hydrogen production. One of the main drawbacks for the sustainability of the process is catalyst deactivation. In this work, regeneration of a deactivated active-carbon catalyst has been studied using CO 2 as activating agent under different regeneration conditions. It has been stated that during the regeneration stage, a compromise between the regeneration of the initial properties of the catalyst and the burn-off is needed in order to keep the sustainability of the process. Three deactivation-regeneration cycles have been performed for two sets of regeneration conditions. A progressive decreasing in the burn-off, surface area and surface oxygenated groups after each decomposition/regeneration cycle is observed. It can be explained considering that the carbon removed during the regeneration steps is not the carbon deposited from methane but the remaining initial catalyst, which is less resistant to gasification. The implication is that after three cycles of decomposition/regeneration, most of the carbon sample consists of carbon formed during the process since the initial catalyst has been gasified.

  9. Catalytic Activity of Human Indoleamine 2,3-Dioxygenase (hIDO1) at Low Oxygen

    PubMed Central

    Kolawole, Ayodele O.; Hixon, Brian P.; Dameron, Laura S.; Chrisman, Ian M.; Smirnov, Valeriy V.

    2015-01-01

    A cytokine-inducible extrahepatic human indoleamine 2,3-dioxygenase (hIDO1) catalyzes the first step of the kynurenine pathway. Immunosuppressive activity of hIDO1 in tumor cells weakens host T-cell immunity, contributing to the progression of cancer. Here we report on enzyme kinetics and catalytic mechanism of hIDO1, studied at varied levels of dioxygen (O2) and L-tryptophan (L-Trp). Using a cytochrome b5-based activating system, we measured the initial rates of O2 decay with a Clark-type oxygen electrode at physiologically-relevant levels of both substrates. Kinetics was also studied in the presence of two substrate analogs: 1-methyl-L-tryptophan and norharmane. Quantitative analysis supports a steady-state rather than a rapid equilibrium kinetic mechanism, where the rates of individual pathways, leading to a ternary complex, are significantly different, and the overall rate of catalysis depends on contributions of both routes. One path, where O2 binds to ferrous hIDO1 first, is faster than the second route, which starts with the binding of L-Trp. However, L-Trp complexation with free ferrous hIDO1 is more rapid than that of O2. As the level of L-Trp increases, the slower route becomes a significant contributor to the overall rate, resulting in observed substrate inhibition. PMID:25712221

  10. Structure of the Photo-catalytically Active Surface of SrTiO 3

    SciTech Connect

    Plaza, Manuel; Huang, Xin; Ko, J. Y. Peter; Shen, Mei; Simpson, Burton H.; Rodríguez-López, Joaquín; Ritzert, Nicole L.; Letchworth-Weaver, Kendra; Gunceler, Deniz; Schlom, Darrell G.; Arias, Tomás A.; Brock, Joel D.; Abruña, Héctor D.

    2016-06-29

    A major goal of energy research is to use visible light to cleave water directly, without an applied voltage, into hydrogen and oxygen. Although SrTiO3 requires ultraviolet light, after four decades, it is still the "gold standard" for the photo-catalytic splitting of water. It is chemically robust and can carry out both hydrogen and oxygen evolution reactions without an applied bias. While ultrahigh vacuum surface science techniques have provided useful insights, we still know relatively little about the structure of these electrodes in contact with electrolytes under operating conditions. Here, we report the surface structure evolution of a n-SrTiO3 electrode during water splitting, before and after "training" with an applied positive bias. Operando high-energy X-ray reflectivity measurements demonstrate that training the electrode irreversibly reorders the surface. Scanning electrochemical microscopy at open circuit correlates this training with a 3-fold increase of the activity toward the photo-induced water splitting. A novel first-principles joint density functional theory simulation, constrained to the X-ray data via a generalized penalty function, identifies an anatase-like structure as the more active, trained surface.

  11. Highly basic CaO nanoparticles in mesoporous carbon materials and their excellent catalytic activity.

    PubMed

    Raja, Pradeep Kumar; Chokkalingam, Anand; Priya, Subramaniam V; Balasubramanian, Veerappan V; Benziger, Mercy R; Aldeyab, Salem S; Jayavell, Ramasamy; Ariga, Katsukiho; Vinu, Ajayan

    2012-06-01

    Highly basic CaO nanoparticles immobilized mesoporous carbon materials (CaO-CMK-3) with different pore diameters have been successfully prepared by using wet-impregnation method. The prepared materials were subjected to extensive characterization studies using sophisticated techniques such as XRD, nitrogen adsorption, HRSEM-EDX, HRTEM and temperature programmed desorption of CO2 (TPD of CO2). The physico-chemical characterization results revealed that these materials possess highly dispersed CaO nanoparticles, excellent nanopores with well-ordered structure, high specific surface area, large specific pore volume, pore diameter and very high basicity. We have also demonstrated that the basicity of the CaO-CMK-3 samples can be controlled by simply varying the amount of CaO loading and pore diameter of the carbon support. The basic catalytic performance of the samples was investigated in the base-catalyzed transesterification of ethylacetoacetate by aryl, aliphatic and cyclic primary alcohols. CMK-3 catalyst with higher CaO loading and larger pore diameter was found to be highly active with higher conversion within a very short reaction time. The activity of 30% CaO-CMK3-150 catalyst for transesterification of ethylacetoacetate using different alcohols increases in the following order: octanol > butanol > cyclohexanol > benzyl alcohol > furfuryl alcohol.

  12. Increasing thermal stability and catalytic activity of glutamate decarboxylase in E. coli: An in silico study.

    PubMed

    Tavakoli, Yasaman; Esmaeili, Abolghasem; Saber, Hossein

    2016-10-01

    Glutamate decarboxylase (GAD) is an enzyme that converts l-glutamate to gamma amino butyric acid (GABA) that is a widely used drug to treat mental disorders like Alzheimer's disease. In this study for the first time point mutation was performed virtually in the active site of the E. coli GAD in order to increase thermal stability and catalytic activity of the enzyme. Energy minimization and addition of water box were performed using GROMACS 5.4.6 package. PoPMuSiC 2.1 web server was used to predict potential spots for point mutation and Modeller software was used to perform point mutation on three dimensional model. Molegro virtual docker software was used for cavity detection and stimulated docking study. Results indicate that performing mutation separately at positions 164, 302, 304, 393, 396, 398 and 410 increase binding affinity to substrate. The enzyme is predicted to be more thermo- stable in all 7 mutants based on ΔΔG value.

  13. Catalytic activity in lithium-treated core–shell MoOx/MoS2 nanowires

    DOE PAGES

    Cummins, Dustin R.; Martinez, Ulises; Kappera, Rajesh; ...

    2015-09-22

    Significant interest has grown in the development of earth-abundant and efficient catalytic materials for hydrogen generation. Layered transition metal dichalcogenides present opportunities for efficient electrocatalytic systems. Here, we report the modification of 1D MoOx/MoS2 core–shell nanostructures by lithium intercalation and the corresponding changes in morphology, structure, and mechanism of H2 evolution. The 1D nanowires exhibit significant improvement in H2 evolution properties after lithiation, reducing the hydrogen evolution reaction (HER) onset potential by ~50 mV and increasing the generated current density by ~600%. The high electrochemical activity in the nanowires results from disruption of MoS2 layers in the outer shell, leadingmore » to increased activity and concentration of defect sites. This is in contrast to the typical mechanism of improved catalysis following lithium exfoliation, i.e., crystal phase transformation. As a result, these structural changes are verified by a combination of Raman and X-ray photoelectron spectroscopy (XPS).« less

  14. Single-step process to prepare CeO2 nanotubes with improved catalytic activity.

    PubMed

    González-Rovira, Leandro; Sánchez-Amaya, José M; López-Haro, Miguel; del Rio, Eloy; Hungría, Ana B; Midgley, Paul; Calvino, José J; Bernal, Serafín; Botana, F Javier

    2009-04-01

    CeO(2) nanotubes have been grown electrochemically using a porous alumina membrane as a template. The resulting material has been characterized by means of scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy, high-angle annular dark-field scanning transmission electron microscopy tomography, high-resolution electron microscopy (HREM), and electron energy loss spectroscopy. According to SEM, the outer diameter of the nanotubes corresponds to the pore size (200 nm) of the alumina membrane, and their length ranges between 30 and 40 microm. HREM images have revealed that the width of the nanotube walls is about 6 nm. The catalytic activity of these novel materials for the CO oxidation reaction is compared to that of a polycrystalline powder CeO(2) sample prepared by a conventional route. The activity of the CeO(2) nanotubes is shown to be in the order of 400 times higher per gram of oxide at 200 degrees C (77.2 x 10(-2) cm(3) CO(2) (STP)/(gxs) for the nanotube-shaped CeO(2) and 0.16 x 10(-2) cm(3) CO(2) (STP)/(gxs) for the powder CeO(2)).

  15. Metal nanoparticle/ionic liquid/cellulose: new catalytically active membrane materials for hydrogenation reactions.

    PubMed

    Gelesky, Marcos A; Scheeren, Carla W; Foppa, Lucas; Pavan, Flavio A; Dias, Silvio L P; Dupont, Jairton

    2009-07-13

    Transition metal-containing membrane films of 10, 20, and 40 μm thickness were obtained by the combination of irregularly shaped nanoparticles with monomodal size distributions of 4.8 ± 1.1 nm (Rh(0)) and 3.0 ± 0.4 nm (Pt(0)) dispersed in the ionic liquid (IL) 1-n-butyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide (BMI·(NTf)(2)) with a syrup of cellulose acetate (CA) in acetone. The Rh(0) and Pt(0) metal concentration increased proportionally with increases in film thickness up to 20 μm, and then the material became metal saturated. The presence of small and stable Rh(0) or Pt(0) nanoparticles induced an augmentation in the CA/IL film surface areas. The augmentation of the IL content resulted in an increase of elasticity and decrease in tenacity and toughness, whereas the stress at break was not influenced. The introduction of IL probably causes an increase in the separation between the cellulose macromolecules that results in a higher flexibility, lower viscosity, and better formability of the cellulose material. The nanoparticle/IL/CA combinations exhibit an excellent synergistic effect that enhances the activity and durability of the catalyst for the hydrogenation of cyclohexene. The nanoparticle/IL/cellulose acetate film membranes display higher catalytic activity (up to 7353 h(-1) for the 20 μm film of CA/IL/Pt(0)) and stability than the nanoparticles dispersed only in the IL.

  16. Rapid biological synthesis of silver nanoparticles using Leucas martinicensis leaf extract for catalytic and antibacterial activity.

    PubMed

    Ashokkumar, S; Ravi, S; Kathiravan, V; Velmurugan, S

    2014-10-01

    A novel green approach for the synthesis and stabilization of silver nanoparticles (AgNPs) using water extract of Leucas martinicensis leaf has been developed. As obtained, the nanoparticles are characterized by UV-visible (UV-Vis), transmission electron microscope (TEM), and X-ray diffraction (XRD). The crystalline nature of the AgNPs is confirmed by the prominent peaks in the XRD pattern. FTIR spectra suggest that the possible biomolecules are responsible for the efficient stabilization of the sample. The effects of leaf quantity on the biosynthesis of AgNPs are investigated by UV-Vis spectrophotometer. The synthesized AgNPs are observed to have a good catalytic activity on the reduction of methylene blue by L. martinicensis leaf. This is confirmed by the decrease in absorbance maximum values of methylene blue with respect to time through UV-Vis spectrophotometer. Moreover, the antibacterial activity of synthesized AgNPs against Staphylococcus aureus, Bacillus subtilis, Salmonella typhi, and Escherichia coli are screened.

  17. Facile and green synthesis of palladium nanoparticles-graphene-carbon nanotube material with high catalytic activity.

    PubMed

    Sun, Tai; Zhang, Zheye; Xiao, Junwu; Chen, Chen; Xiao, Fei; Wang, Shuai; Liu, Yunqi

    2013-01-01

    We report a facile and green method to synthesize a new type of catalyst by coating Pd nanoparticles (NPs) on reduced graphene oxide (rGO)-carbon nanotube (CNT) nanocomposite. An rGO-CNT nanocomposite with three-dimensional microstructures was obtained by hydrothermal treatment of an aqueous dispersion of graphene oxide (GO) and CNTs. After the rGO-CNT composites have been dipped in K₂PdCl₄ solution, the spontaneous redox reaction between the GO-CNT and PdCl₄(2-) led to the formation of nanohybrid materials consisting rGO-CNT decorated with 4 nm Pd NPs, which exhibited excellent and stable catalytic activity: the reduction of 4-nitrophenol to 4-aminophenol using NaBH4 as a catalyst was completed in only 20 s at room temperature, even when the Pd content of the catalyst was 1.12 wt%. This method does not require rigorous conditions or toxic agents and thus is a rapid, efficient, and green approach to the fabrication of highly active catalysts.

  18. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid.

    PubMed

    Fierobe, H P; Mirgorodskaya, E; McGuire, K A; Roepstorff, P; Svensson, B; Clarke, A J

    1998-03-17

    Glucoamylase catalyzes the hydrolysis of glucosidic bonds with inversion of the anomeric configuration. Site-directed mutagenesis and three-dimensional structure determination of the glucoamylase from Aspergillus awamori previously identified Glu179 and Glu400 as the general acid and base catalyst, respectively. The average distance between the two carboxyl groups was measured to be 9.2 A, which is typical for inverting glycosyl hydrolases. In the present study, this distance was increased by replacing the catalytic base Glu400 with cysteine which was then oxidized to cysteinesulfinic acid. Initially, this oxidation occurred during attempts to carboxyalkylate the Cys400 residue with iodoacetic acid, 3-iodopropionic acid, or 4-bromobutyric acid. However, endoproteinase Lys-C digestion of modified glucoamylase followed by high-pressure liquid chromatography in combination with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry on purified peptide fragments demonstrated that all enzyme derivatives contained the cysteinesulfinic acid oxidation product of Cys400. Subsequently, it was demonstrated that treatment of Glu400-->Cys glucoamylase with potassium iodide in the presence of bromine resulted in complete conversion to the cysteinesulfinic acid product. As expected, the catalytic base mutant Glu400-->Cys glucoamylase had very low activity, i.e., 0.2% compared to wild-type. The oxidation of Cys400 to cysteinesulfinic acid, however, restored activity (kcat) on alpha-1,4-linked substrates to levels up to 160% of the wild-type glucoamylase which corresponded to approximately a 700-fold increase in the kcat of the Glu400-->Cys mutant glucoamylase. Whereas Glu400-->Cys glucoamylase was much less thermostable and more sensitive to guanidinium chloride than the wild-type enzyme, the oxidation to cysteinesulfinic acid was accompanied by partial recovery of the stability.

  19. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale.

    PubMed

    Shan, Shiyao; Petkov, Valeri; Prasai, Binay; Wu, Jinfang; Joseph, Pharrah; Skeete, Zakiya; Kim, Eunjoo; Mott, Derrick; Malis, Oana; Luo, Jin; Zhong, Chuan-Jian

    2015-12-07

    The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo

  20. Ru(0) and Ru(II) nitrosyl pincer complexes: structure, reactivity, and catalytic activity.

    PubMed

    Fogler, Eran; Iron, Mark A; Zhang, Jing; Ben-David, Yehoshoa; Diskin-Posner, Yael; Leitus, Gregory; Shimon, Linda J W; Milstein, David

    2013-10-07

    Despite considerable interest in ruthenium carbonyl pincer complexes and their substantial catalytic activity, there has been relatively little study of the isoelectronic ruthenium nitrosyl complexes. Here we describe the synthesis and reactivity of several complexes of this type as well as the catalytic activity of complex 6. Reaction of the PNP ligand (PNP = 2,6-bis((t)Bu2PCH2)pyridine) with RuCl3(NO)(PPh3)2 yielded the Ru(II) complex 3. Chloride displacement by BAr(F-) (BAr(F-) = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) gave the crystallographicaly characterized, linear NO Ru(II) complex 4, which upon treatment with NaBEt3H yielded the Ru(0) complexes 5. The crystallographically characterized Ru(0) square planar complex 5·BF4 bears a linear NO ligand located trans to the pyridilic nitrogen. Further treatment of 5·BF4 with excess LiOH gave the crystallographicaly characterized Ru(0) square planar, linear NO complex 6. Complex 6 catalyzes the dehydrogenative coupling of alcohols to esters, reaching full conversion under air or under argon. Reaction of the PNN ligand (PNN = 2-((t)Bu2PCH2)-6-(Et2NCH2)pyridine) with RuCl3(NO)(H2O)2 in ethanol gave an equilibrium mixture of isomers 7a and 7b. Further treatment of 7a + 7b with 2 equivalent of sodium isopropoxide gave the crystallographicaly characterized, bent-nitrosyl, square pyramidal Ru(II) complex 8. Complex 8 was also synthesized by reaction of PNN with RuCl3(NO)(H2O)2 and Et3N in ethanol. Reaction of the "long arm" PN(2)N ligand (PN(2)N = 2-((t)Bu2PCH2-)-6-(Et2NCH2CH2)pyridine) with RuCl3(NO)(H2O)2 in ethanol gave complex 9, which upon treatment with 2 equiv of sodium isopropoxide gave complex 10. Complex 10 was also synthesized directly by reaction of PN(2)N with RuCl3(NO)(H2O)2 and a base in ethanol. A noteworthy aspect of these nitrosyl complexes is their preference for the Ru(0) oxidization state over Ru(II). This preference is observed with both aromatized and dearomatized pincer ligands, in

  1. Opposite transitions of chick brain catalytically active cytosolic creatine kinase isoenzymes during development.

    PubMed

    Ramírez, O; Jiménez, E

    2000-12-01

    Postnatally the rat brain synthesizes catalytic forms of muscle type (MM) and heart type (MB) creatine kinase (CK), besides the supposedly sole type vertebrate brain-specific (BB) CK. We intended to demonstrate that in Rhode Island chicken brain, cytosolic (c) CK isoenzymatic transitions. (for example BB-CK is followed by the appearance of MB-CK and MM-CK during muscle differentiation), can also occur during development and aging. Cytosolic post 125000 x g, mitochondrial CK-free, brain samples were obtained for zone electrophoresis separation and identification of catalytically active cCK isoforms. BB-CK was never found during chicken brain ontogeny. Against the accepted view, an opposite isoenzyme transition pattern from MM through BB-CK was found in the chicken embryonic brain from the very early stages of development up to day 2 post-hatching. At very early stages of chicken brain ontogeny constitutive MM- and MB-CK isoenzymes were present before the advent of creatine. It seems to be that typical and atypical brain MM- and MB-CK could be working as ATPases in the absence of creatine before embryonic stage 28 (day 5.5) and/or such CK isoforms may begin to form part of the slow component b in developing early neurons and later in the nuclei of glial cells to be used by the CK/phosphocreatine (PC) system as the neural tissues mature. The post-hatching transition pattern showed simultaneous expression of more than one CK isoenzyme within the same neural sample as in post-natal rat brain, presumably due to regional differential transphosphorylation requirements. Strain-dependent enzymatic specific activities have been reported in several species. Since equivalent values of brain CK specific activity were obtained previously from the embryonic plateau phase of CK activity during White Leghorn development, and those from Rhode Island brain neurons cultured 11 days, we compared if, in vivo, a similar brain CK specific activity pattern was physiologically equivalent

  2. An isozyme of acid alpha-glucosidase with reduced catalytic activity for glycogen.

    PubMed Central

    Beratis, N G; LaBadie, G U; Hirschhorn, K

    1980-01-01

    Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen. Images Fig. 2 Fig. 4 Fig. 6 PMID:6770674

  3. Expression, purification and characterization of recombinant human choline acetyltransferase: phosphorylation of the enzyme regulates catalytic activity.

    PubMed Central

    Dobransky, T; Davis, W L; Xiao, G H; Rylett, R J

    2000-01-01

    Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons and, in humans, may be produced in 82- and 69-kDa forms. In this study, recombinant choline acetyltransferase from baculovirus and bacterial expression systems was used to identify protein isoforms by two-dimensional SDS/PAGE and as substrate for protein kinases. Whereas hexa-histidine-tagged 82- and 69-kDa enzymes did not resolve as individual isoforms on two-dimensional gels, separation of wild-type choline acetyltransferase expressed in insect cells revealed at least nine isoforms for the 69-kDa enzyme and at least six isoforms for the 82-kDa enzyme. Non-phosphorylated wild-type choline acetyltransferase expressed in Escherichia coli yielded six (69 kDa) and four isoforms (82 kDa) respectively. Immunofluorescent labelling of insect cells expressing enzyme showed differential subcellular localization with the 69-kDa enzyme localized adjacent to plasma membrane and the 82-kDa enzyme being cytoplasmic at 24 h. By 64 h, the 69-kDa form was in cytoplasm and the 82-kDa form was only present in nucleus. Studies in vitro showed that recombinant 69-kDa enzyme was a substrate for protein kinase C (PKC), casein kinase II (CK2) and alpha-calcium/calmodulin-dependent protein kinase II (alpha-CaM kinase), but not for cAMP-dependent protein kinase (PKA); phosphorylation by PKC and CK2 enhanced enzyme activity. The 82-kDa enzyme was a substrate for PKC and CK2 but not for PKA or alpha-CaM kinase, with only PKC yielding increased enzyme activity. Dephosphorylation of both forms of enzyme by alkaline phosphatase decreased enzymic activity. These studies are of functional significance as they report for the first time that phosphorylation enhances choline acetyltransferase catalytic activity. PMID:10861222

  4. Investigation of the mechanisms underlying the differential effects of the K262R mutation of P450 2B6 on catalytic activity

    PubMed Central

    Bumpus, Namandjé N.; Hollenberg, Paul F.

    2008-01-01

    Human P450 2B6 is a polymorphic enzyme involved in the oxidative metabolism of a number of clinically relevant substrates. The lysine 262 to arginine mutant of P450 2B6 (P450 2B6.4) has been shown to have differential effects on P450 2B6 catalytic activity. We previously reported that the mutant enzyme was not able to metabolize 17-α-ethynylestradiol (17EE) or become inactivated by 17EE or efavirenz, which are inactivators of the wild-type enzyme. Studies were performed to elucidate the mechanism by which this mutation affects P450 2B6 catalytic activity. Studies using phenyldiazene to investigate differences between the active site topologies of the wild-type and mutant enzymes revealed only minor differences. Similarly, Ks values for the binding of both benzphetamine and efavirenz were comparable between the two enzymes. Using the alternate oxidant tert-butyl hydroperoxide, the mutant enzyme was inactivated by both 17EE and efavirenz. The stoichiometry of 17EE and efavirenz metabolism by P450s 2B6 and 2B6.4 revealed the mutant enzyme was more uncoupled, producing hydrogen peroxide as the primary product. Interestingly, the addition of cytochrome b5 improved the coupling of the mutant, resulting in increased catalytic activity. In the presence of cytochrome b5 the variant readily metabolized 17EE and was inactivated by both 17EE and efavirenz. It is therefore proposed that the oxyferrous or iron-peroxo intermediate formed by the mutant enzyme in the presence of 17EE and efavirenz may be less stable than the same intermediates formed by the wild-type enzyme. PMID:18621926

  5. Reduced graphene oxide: firm support for catalytically active palladium nanoparticles and game changer in selective hydrogenation reactions.

    PubMed

    Cano, Manuela; Benito, Ana M; Urriolabeitia, Esteban P; Arenal, Raul; Maser, Wolfgang K

    2013-11-07

    Simultaneous decomposition and reduction of a Pd(2+) complex in the presence of graphene oxide (GO) lead to the formation of Pd(0)-nanoparticles (Pd-NPs) with average sizes of 4 nm firmly anchored on reduced graphene oxide (RGO) sheets. The Pd-NP/RGO hybrids exhibited remarkable catalytic activity and selectivity in mild hydrogenation reactions where the acidic properties of RGO play an active role and may act as an important game-changer.

  6. Mesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition

    NASA Astrophysics Data System (ADS)

    Jin, Min-Ho; Oh, Duckkyu; Park, Ju-Hyoung; Lee, Chun-Boo; Lee, Sung-Wook; Park, Jong-Soo; Lee, Kwan-Young; Lee, Dong-Wook

    2016-09-01

    For the application of formic acid as a liquid organic hydrogen carrier, development of efficient catalysts for dehydrogenation of formic acid is a challenging topic, and most studies have so far focused on the composition of metals and supports, the size effect of metal nanoparticles, and surface chemistry of supports. Another influential factor is highly desired to overcome the current limitation of heterogeneous catalysis for formic acid decomposition. Here, we first investigated the effect of support pore structure on formic acid decomposition performance at room temperature by using mesoporous silica materials with different pore structures such as KIE-6, MCM-41, and SBA-15, and achieved the excellent catalytic activity (TOF: 593 h‑1) by only controlling the pore structure of mesoporous silica supports. In addition, we demonstrated that 3D interconnected pore structure of mesoporous silica supports is more favorable to the mass transfer than 2D cylindrical mesopore structure, and the better mass transfer provides higher catalytic activity in formic acid decomposition. If the pore morphology of catalytic supports such as 3D wormhole or 2D cylinder is identical, large pore size combined with high pore volume is a crucial factor to achieve high catalytic performance.

  7. Mesoporous Silica Supported Pd-MnOx Catalysts with Excellent Catalytic Activity in Room-Temperature Formic Acid Decomposition

    PubMed Central

    Jin, Min-Ho; Oh, Duckkyu; Park, Ju-Hyoung; Lee, Chun-Boo; Lee, Sung-Wook; Park, Jong-Soo; Lee, Kwan-Young; Lee, Dong-Wook

    2016-01-01

    For the application of formic acid as a liquid organic hydrogen carrier, development of efficient catalysts for dehydrogenation of formic acid is a challenging topic, and most studies have so far focused on the composition of metals and supports, the size effect of metal nanoparticles, and surface chemistry of supports. Another influential factor is highly desired to overcome the current limitation of heterogeneous catalysis for formic acid decomposition. Here, we first investigated the effect of support pore structure on formic acid decomposition performance at room temperature by using mesoporous silica materials with different pore structures such as KIE-6, MCM-41, and SBA-15, and achieved the excellent catalytic activity (TOF: 593 h−1) by only controlling the pore structure of mesoporous silica supports. In addition, we demonstrated that 3D interconnected pore structure of mesoporous silica supports is more favorable to the mass transfer than 2D cylindrical mesopore structure, and the better mass transfer provides higher catalytic activity in formic acid decomposition. If the pore morphology of catalytic supports such as 3D wormhole or 2D cylinder is identical, large pore size combined with high pore volume is a crucial factor to achieve high catalytic performance. PMID:27666280

  8. Synthesis of Rh/Macro-Porous Alumina Over Micro-Channel Plate and Its Catalytic Activity Tests for Diesel Reforming.

    PubMed

    Seong, Yeon Baek; Kim, Yong Sul; Park, No-Kuk; Lee, Tae Jin

    2015-11-01

    Macro-porous Al2O3 as the catalytic support material was synthesized using colloidal polystyrene spheres over a micro-channel plate. The colloidal polystyrene spheres were used as a template for the production of an ordered macro porous material using an alumina nitrate solution as the precursor for Al2O3. The close-packed colloidal crystal array template method was applied to the formulation of ordered macro-porous Al2O3 used as a catalytic support material over a micro-channel plate. The solvent in the mixture solution, which also contained the colloidal polystyrene solution, aluminum nitrate solution and the precursor of the catalytic active materials (Rh), was evaporated in a vacuum oven at 50 degrees C. The ordered polystyrene spheres and aluminum salt of the solid state were deposited over a micro channel plate, and macro-porous Al2O3 was formed after calcination at 600 degrees C to remove the polystyrene spheres. The catalytic activity of the Rh/macro-porous alumina supported over the micro-channel plate was tested for diesel reforming.

  9. Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon.

    PubMed

    Huang, Yuanxing; Cui, Chenchen; Zhang, Daofang; Li, Liang; Pan, Ding

    2015-01-01

    Iron-loaded activated carbon was prepared and used as catalyst in heterogeneous catalytic ozonation of dibutyl phthalate (DBP). The catalytic activity of iron-loaded activated carbon was investigated under various conditions and the mechanisms of DBP removal were deduced. Characterization of catalyst indicated that the iron loaded on activated carbon was mainly in the form of goethite, which reduced its surface area, pore volume and pore diameter. The presence of metals on activated carbon positively contributed to its catalytic activity in ozonation of DBP. Iron loading content of 15% and initial water pH of 8 achieved highest DBP removal among all the tried conditions. Catalyst dosage of 10 mg L(-1) led to approximately 25% of increase in DBP (initial concentration 2 mg L(-1)) removal in 60 min as compared with ozone alone, and when catalyst dosage increased to 100 mg L(-1), the DBP removal was further improved by 46%. Based on a comparison of reaction rates for direct and indirect transformation of DBP, the increased removal of DBP in this study likely occurred via transformation of ozone into hydroxyl radicals on the catalyst surface.

  10. Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation

    NASA Astrophysics Data System (ADS)

    Vasilyeva, M. S.; Rudnev, V. S.; Ustinov, A. Yu.; Korotenko, I. A.; Modin, E. B.; Voitenko, O. V.

    2010-12-01

    In this study possibility to form the layered compositions CoO x + SiO 2/TiO 2/Ti by plasma electrolytic oxidation (PEO) method was shown. Compositions have been obtained by both one-stage PEO method (Method I) with addition of Co(CH 3COO) 2 into silicate electrolyte and impregnation of preliminary obtained by the PEO method SiO 2/TiO 2/Ti systems in aqueous solutions containing cobalt salts with their following annealing (Method II). XRD, XPS and SEM/EDX were used to investigate the phase and element composition, microstructure of the coatings prepared by the two various methods. Catalytic activity of the cobalt-containing composites was investigated in the CO oxidation reaction. Under experimental conditions, the structures obtained by impregnation and annealing method were more active, than those obtained by one-stage PEO method. The surface structures of cobalt-containing coatings obtained by the PEO method and by impregnation and annealing differ in both quantitative and qualitative relation. The cobalt content on the surface of impregnating coatings is three times as much as that for those formed by one-stage PEO method. It is found that coatings obtained by the Method II have a more developed surface. The surface of CoO x + SiO 2/TiO 2/Ti compositions obtained by the PEO method contains, presumably Co(OH) 2 and Co 3O 4. The surface of the similar compositions obtained by the Method II, possibly contains CoO, either Co 2O 3, or CoOOH. The combination of these factors, perhaps, also provides a higher activity of the compositions formed by the Method II.

  11. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters

    PubMed Central

    Martínez-Martínez, Mónica; Lores, Iván; Peña-García, Carlina; Bargiela, Rafael; Reyes-Duarte, Dolores; Guazzaroni, María-Eugenia; Peláez, Ana Isabel; Sánchez, Jesús; Ferrer, Manuel

    2014-01-01

    Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25–30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other α/β-hydrolases because it is catalytically most active for hydrolysing polyaromatic hydrocarbon (phenanthrene, anthracene, naphthalene, benzoyl, protocatechuate and phthalate) esters (7200–21 000 units g−1 protein at 40°C and pH 8.0). The enzyme also accepts 44 structurally different common esters with different levels of enantio-selectivity (1.0–55 000 units g−1 protein), including (±)-menthyl-acetate, (±)-neomenthyl acetate, (±)-pantolactone, (±)-methyl-mandelate, (±)-methyl-lactate and (±)-glycidyl 4-nitrobenzoate (in that order). The results provide the first biochemical evidence suggesting that such broad-spectrum esterases may be an ecological advantage for bacteria that mineralize recalcitrant pollutants (including oil refinery products, plasticizers and pesticides) as carbon sources under pollution pressure. They also offer a new tool for the stereo-assembly (i.e. through ester bonds) of multi-aromatic molecules with benzene rings that are useful for biology, chemistry and materials sciences for cases in which enzyme methods are not yet available. PMID:24418210

  12. Predicted group II intron lineages E and F comprise catalytically active ribozymes.

    PubMed

    Nagy, Vivien; Pirakitikulr, Nathan; Zhou, Katherine Ismei; Chillón, Isabel; Luo, Jerome; Pyle, Anna Marie

    2013-09-01

    Group II introns are self-splicing, retrotransposable ribozymes that contribute to gene expression and evolution in most organisms. The ongoing identification of new group II introns and recent bioinformatic analyses have suggested that there are novel lineages, which include the group IIE and IIF introns. Because the function and biochemical activity of group IIE and IIF introns have never been experimentally tested and because these introns appear to have features that distinguish them from other introns, we set out to determine if they were indeed self-splicing, catalytically active RNA molecules. To this end, we transcribed and studied a set of diverse group IIE and IIF introns, quantitatively characterizing their in vitro self-splicing reactivity, ionic requirements, and reaction products. In addition, we used mutational analysis to determine the relative role of the EBS-IBS 1 and 2 recognition elements during splicing by these introns. We show that group IIE and IIF introns are indeed distinct active intron families, with different reactivities and structures. We show that the group IIE introns self-splice exclusively through the hydrolytic pathway, while group IIF introns can also catalyze transesterifications. Intriguingly, we observe one group IIF intron that forms circular intron. Finally, despite an apparent EBS2-IBS2 duplex in the sequences of these introns, we find that this interaction plays no role during self-splicing in vitro. It is now clear that the group IIE and IIF introns are functional ribozymes, with distinctive properties that may be useful for biotechnological applications, and which may contribute to the biology of host organisms.

  13. Characterization of reduced natural garnierite and its catalytic activity for carbon monoxide hydrogenation

    SciTech Connect

    Jacobs, P.A.; Nijs, H.H.; Poncelet, G.

    1980-08-01

    Natural garnierite, a nickel-containing mineral from New Caledonia, was reduced in hydrogen. The mineral and its reduced forms were characterized by x-ray diffraction electron microscopy, and microprobe analysis. The reduction was followed volumetrically and the Ni/sup 0/ phase characterized by H/sub 2/ chemisorption. The catalytic activity of this mineral was determined in the hydrogenation reaction of carbon monoxide. Experiments were done in typical methanation and so-called Fischer-Tropsch conditions. The mineral consists of a mixture of a 10-A phase (talc-like fluffy particles) and a 7-A serpentine-like phase (fibers). The major amount of nickel is associated with the talc phase. Minor amounts are in the serpentine fibers and possibly substituted in the lattice of the minerals. Qualitative evidence for a redispersion of Ni in the serpentine fibers is advanced. At the moment this occurs, the turnover numbers of CO disappearance are optimum. Compared to other supports, they are considerably lower. The product distribution is within C/sub 1/-C/sub 4/ and follows closely a Schulz-Flory distribution.

  14. pH control of the structure, composition, and catalytic activity of sulfated zirconia

    SciTech Connect

    Ivanov, Vladimir K.; Baranchikov, Alexander Ye.; Kopitsa, Gennady P.; Lermontov, Sergey A.; Yurkova, Lyudmila L.; Gubanova, Nadezhda N.; Ivanova, Olga S.; Lermontov, Anatoly S.; Rumyantseva, Marina N.; Vasilyeva, Larisa P.; Sharp, Melissa; Pranzas, P. Klaus; Tretyakov, Yuri D.

    2013-02-15

    We report a detailed study of structural and chemical transformations of amorphous hydrous zirconia into sulfated zirconia-based superacid catalysts. Precipitation pH is shown to be the key factor governing structure, composition and properties of amorphous sulfated zirconia gels and nanocrystalline sulfated zirconia. Increase in precipitation pH leads to substantial increase of surface fractal dimension (up to {approx}2.7) of amorphous sulfated zirconia gels, and consequently to increase in specific surface area (up to {approx}80 m{sup 2}/g) and simultaneously to decrease in sulfate content and total acidity of zirconia catalysts. Complete conversion of hexene-1 over as synthesized sulfated zirconia catalysts was observed even under ambient conditions. - Graphical abstract: Surface fractal dimension of amorphous sulfated zirconia and specific surface area and catalytic activity of crystalline sulfated zirconia as a function of precipitation pH. Highlights: Black-Right-Pointing-Pointer Structural transformation of amorphous hydrous zirconia into sulfated zirconia is studied. Black-Right-Pointing-Pointer Precipitation pH controls surface fractal dimension of amorphous zirconia gels. Black-Right-Pointing-Pointer Precipitation pH is the key factor governing properties of sulfated zirconia.

  15. Synthesis of Nanoflower-Shaped MXene Derivative with Unexpected Catalytic Activity for Dehydrogenation of Sodium Alanates.

    PubMed

    Zou, Guodong; Liu, Baozhong; Guo, Jianxin; Zhang, Qingrui; Fernandez, Carlos; Peng, Qiuming

    2017-03-01

    Surface group modification and functionalization of two-dimensional materials in many cases are deemed as effective approaches to achieve some distinctive properties. Herein, we present a new nanoflower-shaped TiO2/C composite which was synthesized by in situ alcoholysis of two-dimensional layered MXene (Ti3C2(OHxF1-x)2) in a dilute HF solution (0.5 wt %) for the first time. Furthermore, it is demonstrated that it bestows a strong catalytic activity for the dehydrogenation of NaAlH4. The results show that the NaAlH4 containing 10 wt % A0.9R0.1-TiO2/C (containing 90% anatase TiO2 and 10% rutile TiO2) composite merely took ∼85 min to reach a stable and maximum dehydrogenation capacity of ∼3.08 wt % at 100 °C, and it maintains stable after ten cycles, which is the best Ti-based catalyst for the dehydrogenation of NaAlH4 reported so far. Theoretical calculation confirms that this C-doping TiO2 crystals remarkably decreases desorption energy barrier of Al-H bonding in NaAlH4, accelerating the breakdown of Al-H bonding. This finding raises the potential for development and application of new fuel cells.

  16. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction

    PubMed Central

    Li, Man; Ma, Qiang; Zi, Wei; Liu, Xiaojing; Zhu, Xuejie; Liu, Shengzhong (Frank)

    2015-01-01

    A deposition process has been developed to fabricate a complete-monolayer Pt coating on a large-surface-area three-dimensional (3D) Ni foam substrate using a buffer layer (Ag or Au) strategy. The quartz crystal microbalance, current density analysis, cyclic voltammetry integration, and X-ray photoelectron spectroscopy results show that the monolayer deposition process accomplishes full coverage on the substrate and the deposition can be controlled to a single atomic layer thickness. To our knowledge, this is the first report on a complete-monolayer Pt coating on a 3D bulk substrate with complex fine structures; all prior literature reported on submonolayer or incomplete-monolayer coating. A thin underlayer of Ag or Au is found to be necessary to cover a very reactive Ni substrate to ensure complete-monolayer Pt coverage; otherwise, only an incomplete monolayer is formed. Moreover, the Pt monolayer is found to work as well as a thick Pt film for catalytic reactions. This development may pave a way to fabricating a high-activity Pt catalyst with minimal Pt usage. PMID:26601247

  17. Heterogeneous Au-Pt nanostructures with enhanced catalytic activity toward oxygen reduction.

    PubMed

    Ye, Feng; Liu, Hui; Hu, Weiwei; Zhong, Junyu; Chen, Yingying; Cao, Hongbin; Yang, Jun

    2012-03-14

    Heterogeneous Au-Pt nanostructures have been synthesized using a sacrificial template-based approach. Typically, monodispersed Au nanoparticles are prepared first, followed by Ag coating to form core-shell Au-Ag nanoparticles. Next, the galvanic replacement reaction between Ag shells and an aqueous H(2)PtCl(6) solution, whose chemical reaction can be described as 4Ag + PtCl(6)(2-)→ Pt + 4AgCl + 2Cl(-), is carried out at room temperature. Pure Ag shell is transformed into a shell made of Ag/Pt alloy by galvanic replacement. The AgCl formed simultaneously roughens the surface of alloy Ag-Pt shells, which can be manipulated to create a porous Pt surface for oxygen reduction reaction. Finally, Ag and AgCl are removed from core-shell Au-Ag/Pt nanoparticles using bis(p-sulfonatophenyl)phenylphosphane dihydrate dipotassium salt to produce heterogeneous Au-Pt nanostructures. The heterogeneous Au-Pt nanostructures have displayed superior catalytic activity towards oxygen reduction in direct methanol fuel cells because of the electronic coupling effect between the inner-placed Au core and the Pt shell.

  18. Catechin-capped gold nanoparticles: green synthesis, characterization, and catalytic activity toward 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Choi, Yoonho; Choi, Myung-Jin; Cha, Song-Hyun; Kim, Yeong Shik; Cho, Seonho; Park, Youmie

    2014-03-01

    An eco-friendly approach is described for the green synthesis of gold nanoparticles using catechin as a reducing and capping agent. The reaction occurred at room temperature within 1 h without the use of any external energy and an excellent yield (99%) was obtained, as determined by inductively coupled plasma mass spectrometry. Various shapes of gold nanoparticles with an estimated diameter of 16.6 nm were green-synthesized. Notably, the capping of freshly synthesized gold nanoparticles by catechin was clearly visualized with the aid of microscopic techniques, including high-resolution transmission electron microscopy, atomic force microscopy, and field emission scanning electron microscopy. Strong peaks in the X-ray diffraction pattern of the as-prepared gold nanoparticles confirmed their crystalline nature. The catalytic activity of the as-prepared gold nanoparticles was observed in the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. The results suggest that the newly prepared gold nanoparticles have potential uses in catalysis.

  19. A supramolecular ruthenium macrocycle with high catalytic activity for water oxidation that mechanistically mimics photosystem II

    NASA Astrophysics Data System (ADS)

    Schulze, Marcus; Kunz, Valentin; Frischmann, Peter D.; Würthner, Frank

    2016-06-01

    Mimicking the ingenuity of nature and exploiting the billions of years over which natural selection has developed numerous effective biochemical conversions is one of the most successful strategies in a chemist's toolbox. However, an inability to replicate the elegance and efficiency of the oxygen-evolving complex of photosystem II (OEC-PSII) in its oxidation of water into O2 is a significant bottleneck in the development of a closed-loop sustainable energy cycle. Here, we present an artificial metallosupramolecular macrocycle that gathers three Ru(bda) centres (bda = 2,2‧-bipyridine-6,6‧-dicarboxylic acid) that catalyses water oxidation. The macrocyclic architecture accelerates the rate of water oxidation via a water nucleophilic attack mechanism, similar to the mechanism exhibited by OEC-PSII, and reaches remarkable catalytic turnover frequencies >100 s-1. Photo-driven water oxidation yields outstanding activity, even in the nM concentration regime, with a turnover number of >1,255 and turnover frequency of >13.1 s-1.

  20. Preparation of Aun quantum clusters with catalytic activity in β-cyclodextrin polyurethane nanosponges.

    PubMed

    Vasconcelos, Diego Andrade; Kubota, Tatiana; Santos, Douglas C; Araujo, Marcia V G; Teixeira, Zaine; Gimenez, Iara F

    2016-01-20

    Here we report the use of β-cyclodextrin polyurethane nanosponges cross-linked with 1,6-hexamethylene diisocyanate as a template for the preparation of Aun quantum clusters, by the core-etching of glutathione-capped Au nanoparticles. The study of temporal evolution of the core-etching process using different Au concentrations indicated that formation of Aun clusters embedded in the nanosponge is favored by the use of lower Au concentrations, since it began at shorter times and lead to higher cluster loading. An estimation of the number of Au atoms based on the maximum photoluminescence wavelength suggested that, depending on the Au concentration and the core etching time, clusters with 11-15 atoms were formed. After excluding the possibility of an inclusion complex formation, evaluation of the catalytic activity of nanosponge-loaded Aun clusters toward the reduction of 4-nitrophenol has shown that the reaction is catalyzed by the Aun clusters with no induction time, following the Langmuir-Hinshelwood kinetic model.

  1. A Catalytic DNA Activated by a Specific Strain of Bacterial Pathogen

    PubMed Central

    Shen, Zhifa; Wu, Zaisheng; Chang, Dingran; Zhang, Wenqing; Tram, Kha; Lee, Christine; Kim, Peter; Salena, Bruno J.

    2015-01-01

    Abstract Pathogenic strains of bacteria are known to cause various infectious diseases and there is a growing demand for molecular probes that can selectively recognize them. Here we report a special DNAzyme (catalytic DNA), RFD‐CD1, that shows exquisite specificity for a pathogenic strain of Clostridium difficile (C. difficile). RFD‐CD1 was derived by an in vitro selection approach where a random‐sequence DNA library was allowed to react with an unpurified molecular mixture derived from this strain of C. difficle, coupled with a subtractive selection strategy to eliminate cross‐reactivities to unintended C. difficile strains and other bacteria species. RFD‐CD1 is activated by a truncated version of TcdC, a transcription factor, that is unique to the targeted strain of C. difficle. Our study demonstrates for the first time that in vitro selection offers an effective approach for deriving functional nucleic acid probes that are capable of achieving strain‐specific recognition of bacterial pathogens. PMID:26676768

  2. Biosynthesis of gold nanoparticles using Capsicum annuum var. grossum pulp extract and its catalytic activity

    NASA Astrophysics Data System (ADS)

    Yuan, Chun-Gang; Huo, Can; Yu, Shuixin; Gui, Bing

    2017-01-01

    Biological synthesis approach has been regarded as a green, eco-friendly and cost effective method for nanoparticles preparation without any toxic solvents and hazardous bi-products during the process. This present study reported a facile and rapid biosynthesis method for gold nanoparticles (GNPs) from Capsicum annuum var. grossum pulp extract in a single-pot process. The aqueous pulp extract was used as biotic reducing agent for gold nanoparticle growing. Various shapes (triangle, hexagonal, and quasi-spherical shapes) were observed within range of 6-37 nm. The UV-Vis spectra showed surface plasmon resonance (SPR) peak for the formed GNPs at 560 nm after 10 min incubation at room temperature. The possible influences of extract amount, gold ion concentration, incubation time, reaction temperature and solution pH were evaluated to obtain the optimized synthesis conditions. The effects of the experimental factors on NPs synthesis process were also discussed. The produced gold nanoparticles were characterized by transform electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDS) and Fourier Transform infrared spectroscopy (FTIR). The results demonstrated that the as-obtained GNPs were well dispersed and stable with good catalytic activity. Biomolecules in the aqueous extract were responsible for the capping and stabilization of GNPs.

  3. Effects of a TiC substrate on the catalytic activity of Pt for NO reduction.

    PubMed

    Chu, Xingli; Fu, Zhaoming; Li, Shasha; Zhang, Xilin; Yang, Zongxian

    2016-05-11

    Density functional theory calculations are used to elucidate the catalytic properties of a Pt monolayer supported on a TiC(001) substrate (Pt/TiC) toward NO reduction. It is found that the compound system of Pt/TiC has a good stability due to the strong Pt-TiC interaction. The diverse dissociation paths (namely the direct dissociation mechanism and the dimeric mechanism) are investigated. The transition state searching calculations suggest that NO has strong diffusion ability and small activation energy for dissociation on the Pt/TiC. For NO reduction on the Pt/TiC surface, we have found that the direct dissociation mechanisms (NO + N + O → NO2 + N and NO + N + O → N2 + O + O) are easier with a smaller dissociation barrier than those on the Pt(111) surface; and the dimeric process (NO + NO → (NO)2 → N2O + O → N2 + O + O) is considered to be dominant or significant with even a lower energy barrier than that of the direct dissociation. The results show that Pt/TiC can serve as an efficient catalyst for NO reduction.

  4. Maternal High Fat Diet Alters Skeletal Muscle Mitochondrial Catalytic Activity in Adult Male Rat Offspring

    PubMed Central

    Pileggi, Chantal A.; Hedges, Christopher P.; Segovia, Stephanie A.; Markworth, James F.; Durainayagam, Brenan R.; Gray, Clint; Zhang, Xiaoyuan D.; Barnett, Matthew P. G.; Vickers, Mark H.; Hickey, Anthony J. R.; Reynolds, Clare M.; Cameron-Smith, David

    2016-01-01

    A maternal high-fat (HF) diet during pregnancy can lead to metabolic compromise, such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat) or a high fat diet (HFD; 45% kcal from fat) for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1) and mitochondrial transcription factor A (mtTFA) were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS) respiratory complex subunits were suppressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%), which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%). Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle. PMID:27917127

  5. Coke induced stabilization of catalytic activity of silylated ZSM-5 zeolite

    SciTech Connect

    Bhat, Y.S.; Das, J.; Halgeri, A.B.

    1995-08-01

    One of the ways to synthesize dialkylbenzenes is to alkylate monoalkylbenzene with an alkylating agent such as alcohol or olefin over a Friedel-Crafts or zeolite catalyst. The latter is gaining importance as it is an environmentally friendly system. Dialkylbenzenes like paraxylene, para-ethyltoluene, and para-diethylbenzene are sources for various monomers. Several techniques have been reported in the literature to modify the zeolite characteristics in such a way that the dialkylbenzenes formed during monoalkylbenzene alkylation contain more para isomer. Among these techniques, the chemical vapor deposition of silica (CVD) is drawing the attention of researchers. The silylation results in fine control of pore opening size with the silica deposited on the external surface. The internal structure remains unaffected; only the pore entrance is narrowed. It was observed that the silylated zeolite used for synthesizing para-dialkylbenzene by monoalkylbenzene alkylation deactivates with increased time on stream. This paper deals with the coke-induced stabilization of catalytic activity of ZSM-5 zeolite during alkylation of ethylbenzene with ethanol.

  6. Distinct Substrate Specificity and Catalytic Activity of the Pseudoglycosyltransferase VldE

    PubMed Central

    Abuelizz, Hatem A.; Mahmud, Taifo

    2015-01-01

    SUMMARY The pseudoglycosyltransferase (PsGT) VldE is a glycosyltransferase-like protein that is similar to trehalose 6-phosphate synthase (OtsA). However, in contrast to OtsA, which catalyzes condensation between UDP-glucose and glucose 6-phosphate, VldE couples two pseudosugars to give a product with an α,α-N-pseudoglycosidic linkage. Despite their unique catalytic activity and important role in natural products biosynthesis, little is known about the molecular basis governing their substrate specificity and catalysis. Here, we report comparative biochemical and kinetic studies using recombinant OtsA, VldE, and their chimeric proteins with a variety of sugar and pseudosugar substrates. We found that the chimeric enzymes can produce hybrid pseudo-(amino)disaccharides and an amino group in the acceptor is necessary to facilitate a coupling reaction with a pseudosugar donor. Furthermore, we found that the N-terminal domains of the enzymes not only play a major role in selecting the acceptors, but also control the type of nucleotidyl diphosphate moiety of the donors. PMID:26051218

  7. Size effect of silver nanoclusters on their catalytic activity for oxygen electro-reduction

    NASA Astrophysics Data System (ADS)

    Lu, Yizhong; Chen, Wei

    2012-01-01

    Two different sized silver nanoclusters are prepared by two different synthetic routs. First, a small nanocluster (NC) which is 0.7 nm in diameter was synthesized by using meso-2, 3-dimercapto-succinic acid (DMSA) as a capping ligand, and second a larger nanoparticle (NP) which is 3.3 nm in diameter was prepared by chemical reduction and coated with DMSA. The as-prepared silver nanoclusters or nanoparticles are then loaded onto a glassy carbon electrode and the size effect on their electrocatalytic activity toward oxygen reduction reaction (ORR) is investigated with electrochemical techniques in alkaline electrolyte. The cyclic voltammetric (CV) studies show that the onset potential of ORR on 0.7 nm silver nanoclusters is 150 mV more positive than that from 3.3 nm silver nanoparticles. And compared to the larger nanoparticles, five times higher current density of ORR at -0.80 V is obtained from the 0.7 nm silver nanoclusters. These CV results indicate that the smaller Ag nanoclusters exhibit higher catalytic performance for ORR. Rotating disk voltammetric studies show ORR on both DMSA monolayer-protected silver clusters is dominated first by a two-electron transfer pathway to produce H2O2 and then peroxide is reduced by 2 more electrons to produce water.

  8. Structural Basis for the Catalytic Activity of Human Serine/Threonine Protein Phosphatase type 5 (PP5)

    NASA Technical Reports Server (NTRS)

    Swingle, Mark R.; Ciszak, Ewa M.; Honkanen, Richard E.

    2004-01-01

    Serine/threonine protein phosphatase-5 (PP5) is a member of the PPP-gene family of protein phosphatases that is widely expressed in mammalian tissues and is highly conserved among eukaryotes. PP5 associates with several proteins that affect signal transduction networks, including the glucocorticoid receptor (GR)-heat shock protein-90 (Hsp90)-heterocomplex, the CDC16 and CDC27 subunits of the anaphase-promoting complex, elF2alpha kinase, the A subunit of PP2A, the G12-alpha / G13-alpha subunits of heterotrimeric G proteins and DNA-PK. The catalytic domain of PP5 (PP5c) shares 35-45% sequence identity with the catalytic domains of other PPP-phosphatases, including protein phosphatase-1 (PP1), -2A (PP2A), -2B / calcineurin (PP2B), -4 (PP4), -6 (PP6), and -7 (PP7). Like PP1, PP2A and PP4, PP5 is also sensitive to inhibition by okadaic acid, microcystin, cantharidin, tautomycin, and calyculin A. Here we report the crystal structure of the PP5 catalytic domain (PP5c) at a resolution of 1.6 angstroms. From this structure we propose a mechanism for PP5-mediated hydrolysis of phosphoprotein substrates, which requires the precise positioning of two metal ions within a conserved Asp(sup 271)-M(sub 1):M(sub 2)-W(sup 1)-His(sup 304)-Asp(sup 274) catalytic motif. The structure of PP5c provides a possible structural basis for explaining the exceptional catalytic proficiency of protein phosphatases, which are among the most powerful known catalysts. Resolution of the entire C-terminus revealed a novel subdomain, and the structure of the PP5c should also aid development of type-specific inhibitors.

  9. Influence of surface modification on catalytic activity of activated carbon toward decomposition of hydrogen peroxide and 2-chlorophenol.

    PubMed

    Huang, Hsu-Hui; Lu, Ming-Chun; Chen, Jong-Nan; Lee, Cheng-Te

    2003-07-01

    The objective of this research was to investigate the influence of the activated carbons modified by chemical treatment on the surface catalyzed loss of H2O2 and 2-CP. The characteristics of the modified activated carbons were examined by several techniques including nitrogen adsorption, SEM, and EDS. The H2O2 decomposition rate would be suppressed significantly either by the change of surface properties modified with chemical treatment or the reduction of active sites occupied with the adsorption of 2-CP. In addition, the H2O2 decomposition rate with activated carbons within a specific time can be described by a second-order kinetic expression with respect to the concentration of GAC and H2O2 in the absence or presence of 2-CP. The catalytic activities of the three activated carbons toward 2-CP reduction followed the inverse sequence of those toward H2O2 loss, implying that acidic surface functional group could retard the H2O2 loss and reduce the effect of surface scavenging resulting in increasing the reduction efficiency of 2-CP. By the detection of chloride ions in reaction mixture, it can be demonstrated that the reduction of 2-CP was not only attributed to the advanced adsorption but also the oxidation of the 2-CP with effective radicals. The real oxidation efficiency of 2-CP for the activated carbon modified with hot nitric acid was observed between 0.04 and 0.01 (mol/mol), offering a comparable efficiency to that of the other oxidation system using metal oxide as catalyst.

  10. Mutagenesis of putative catalytic and regulatory residues of Streptomyces chromofuscus phospholipase D differentially modifies phosphatase and phosphodiesterase activities.

    PubMed

    Zambonelli, Carlo; Casali, Monica; Roberts, Mary F

    2003-12-26

    Phospholipase D from Streptomyces chromofuscus (sc-PLD) is a member of the diverse family of metallo-phosphodiesterase/phosphatase enzymes that also includes purple acid phosphatases, protein phosphatases, and nucleotide phosphodiesterases. Whereas iron is an essential cofactor for scPLD activity, Mn2+ is also found in the enzyme. A third metal ion, Ca2+, has been shown to enhance scPLD catalytic activity although it is not an essential cofactor. Sequence alignment of scPLD with known phosphodiesterases and phosphatases requiring metal ions suggested that His-212, Glu-213, and Asp-389 could be involved in Mn2+ binding. H212A, E213A, and D389A were prepared to test this hypothesis. These three mutant enzymes and wild type scPLD show similar metal content but considerably different catalytic properties, suggesting different roles for each residue. His-212 appears involved in binding the phosphate group of substrates, whereas Glu-213 acts as a ligand for Ca2+. D389A showed a greatly reduced phosphodiesterase activity but almost unaltered ability to hydrolyze the phosphate group in p-nitrophenyl phosphate suggesting it had a critical role in aligning groups at the active site to control phosphodiesterase versus phosphatase activities. We propose a model for substrate and cofactor binding to the catalytic site of scPLD based on these results and on sequence alignment to purple acid phosphatases of known structure.

  11. Redox control of GPx catalytic activity through mediating self-assembly of Fmoc-phenylalanine selenide into switchable supramolecular architectures.

    PubMed

    Huang, Zupeng; Luo, Quan; Guan, Shuwen; Gao, Jianxiong; Wang, Yongguo; Zhang, Bo; Wang, Liang; Xu, Jiayun; Dong, Zeyuan; Liu, Junqiu

    2014-12-28

    Artificial enzymes capable of achieving tunable catalytic activity through stimuli control of enzymatic structure transition are of significance in biosensor and biomedicine research. Herein we report a novel smart glutathione peroxidise (GPx) mimic with modulatory catalytic activity based on redox-induced supramolecular self-assembly. First, an amphiphilic Fmoc-phenylalanine-based selenide was designed and synthesized, which can self-assemble into nanospheres (NSs) in aqueous solution. The NSs demonstrate extremely low GPx activity. Upon the oxidation of hydroperoxides (ROOH), the selenide can be quickly transformed into the selenoxide form. The change of the molecular structure induces complete morphology transition of the self-assemblies from NSs to nanotubes (NTs), resulting in great enhancement in the GPx catalytic activity. Under the reduction of GSH, the selenoxide can be further reversibly reduced back into the selenide; therefore the reversible switch between the NSs and NTs can be successfully accomplished. The relationship between the catalytic activity and enzymatic structure was also investigated. The dual response nature makes this mimic play roles of both a sensor and a GPx enzyme at the same time, which can auto-detect the signal of ROOH and then auto-change its activity to achieve quick or slow/no scavenging of ROOH. The dynamic balance of ROOH is vital in organisms, in which an appropriate amount of ROOH does benefit to the metabolism, whereas surplus ROOH can cause oxidative damage of the cell instead and this smart mimic is of remarkable significance. We expect that such a mimic can be developed into an effective antioxidant drug and provide a new platform for the construction of intelligent artificial enzymes with multiple desirable properties.

  12. Corrugator activity confirms immediate negative affect in surprise

    PubMed Central

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  13. Catalytic activity of bimetallic catalysts highly sensitive to the atomic composition and phase structure at the nanoscale

    NASA Astrophysics Data System (ADS)

    Shan, Shiyao; Petkov, Valeri; Prasai, Binay; Wu, Jinfang; Joseph, Pharrah; Skeete, Zakiya; Kim, Eunjoo; Mott, Derrick; Malis, Oana; Luo, Jin; Zhong, Chuan-Jian

    2015-11-01

    The ability to determine the atomic arrangement in nanoalloy catalysts and reveal the detailed structural features responsible for the catalytically active sites is essential for understanding the correlation between the atomic structure and catalytic properties, enabling the preparation of efficient nanoalloy catalysts by design. Herein we describe a study of CO oxidation over PdCu nanoalloy catalysts focusing on gaining insights into the correlation between the atomic structures and catalytic activity of nanoalloys. PdCu nanoalloys of different bimetallic compositions are synthesized as a model system and are activated by a controlled thermochemical treatment for assessing their catalytic activity. The results show that the catalytic synergy of Pd and Cu species evolves with both the bimetallic nanoalloy composition and temperature of the thermochemical treatment reaching a maximum at a Pd : Cu ratio close to 50 : 50. The nanoalloys are characterized structurally by ex situ and in situ synchrotron X-ray diffraction, including atomic pair distribution function analysis. The structural data show that, depending on the bimetallic composition and treatment temperature, PdCu nanoalloys adopt two different structure types. One features a chemically ordered, body centered cubic (B2) type alloy consisting of two interpenetrating simple cubic lattices, each occupied with Pd or Cu species alone, and the other structure type features a chemically disordered, face-centered cubic (fcc) type of alloy wherein Pd and Cu species are intermixed at random. The catalytic activity for CO oxidation is strongly influenced by the structural features. In particular, it is revealed that the prevalence of chemical disorder in nanoalloys with a Pd : Cu ratio close to 50 : 50 makes them superior catalysts for CO oxidation in comparison with the same nanoalloys of other bimetallic compositions. However, the catalytic synergy can be diminished if the Pd50Cu50 nanoalloys undergo phase

  14. Reconstitution of active catalytic trimer of aspartate transcarbamoylase from proteolytically cleaved polypeptide chains.

    PubMed Central

    Powers, V. M.; Yang, Y. R.; Fogli, M. J.; Schachman, H. K.

    1993-01-01

    Treatment of the catalytic (C) trimer of Escherichia coli aspartate transcarbamoylase (ATCase) with alpha-chymotrypsin by a procedure similar to that used by Chan and Enns (1978, Can. J. Biochem. 56, 654-658) has been shown to yield an intact, active, proteolytically cleaved trimer containing polypeptide fragments of 26,000 and 8,000 MW. Vmax of the proteolytically cleaved trimer (CPC) is 75% that of the wild-type C trimer, whereas Km for aspartate and Kd for the bisubstrate analog, N-(phosphonacetyl)-L-aspartate, are increased about 7- and 15-fold, respectively. CPC trimer is very stable to heat denaturation as shown by differential scanning microcalorimetry. Amino-terminal sequence analyses as well as results from electrospray ionization mass spectrometry indicate that the limited chymotryptic digestion involves the rupture of only a single peptide bond leading to the production of two fragments corresponding to residues 1-240 and 241-310. This cleavage site involving the bond between Tyr 240 and Ala 241 is in a surface loop known to be involved in intersubunit contacts between the upper and lower C trimers in ATCase when it is in the T conformation. Reconstituted holoenzyme comprising two CPC trimers and three wild-type regulatory (R) dimers was shown by enzyme assays to be devoid of the homotropic and heterotropic allosteric properties characteristic of wild-type ATCase. Moreover, sedimentation velocity experiments demonstrate that the holoenzyme reconstituted from CPC trimers is in the R conformation. These results indicate that the intact flexible loop containing Tyr 240 is essential for stabilizing the T conformation of ATCase. Following denaturation of the CPC trimer in 4.7 M urea and dilution of the solution, the separate proteolytic fragments re-associate to form active trimers in about 60% yield. How this refolding of the fragments, docking, and association to form trimers are achieved is not known. PMID:8318885

  15. Understanding the role of gold nanoparticles in enhancing the catalytic activity of manganese oxides in water oxidation reactions.

    PubMed

    Kuo, Chung-Hao; Li, Weikun; Pahalagedara, Lakshitha; El-Sawy, Abdelhamid M; Kriz, David; Genz, Nina; Guild, Curtis; Ressler, Thorsten; Suib, Steven L; He, Jie

    2015-02-16

    The Earth-abundant and inexpensive manganese oxides (MnOx) have emerged as an intriguing type of catalysts for the water oxidation reaction. However, the overall turnover frequencies of MnOx catalysts are still much lower than that of nanostructured IrO2 and RuO2 catalysts. Herein, we demonstrate that doping MnOx polymorphs with gold nanoparticles (AuNPs) can result in a strong enhancement of catalytic activity for the water oxidation reaction. It is observed that, for the first time, the catalytic activity of MnOx/AuNPs catalysts correlates strongly with the initial valence of the Mn centers. By promoting the formation of Mn(3+) species, a small amount of AuNPs (<5%) in α-MnO2/AuNP catalysts significantly improved the catalytic activity up to 8.2 times in the photochemical and 6 times in the electrochemical system, compared with the activity of pure α-MnO2.

  16. Synthesis and characterization of magnetically recyclable Ag nanoparticles immobilized on Fe3O4@C nanospheres with catalytic activity

    NASA Astrophysics Data System (ADS)

    Li, Wei-hong; Yue, Xiu-ping; Guo, Chang-sheng; Lv, Jia-pei; Liu, Si-si; Zhang, Yuan; Xu, Jian

    2015-04-01

    A novel approach for the synthesis of Ag-loaded Fe3O4@C nanospheres (Ag-Fe3O4@C) was successfully developed. The catalysts possessed a carbon-coated magnetic core and grew active silver nanoparticles on the outer shell using hydrazine monohydrate as the AgNO3 reductant in ethanol. The morphology, inner structure, and magnetic properties of the as-prepared composites were studied with transmission electron microscopy (TEM), X-ray powder diffraction (XRD), fourier translation infrared spectroscopy (FT-IR), and vibrating sample magnetometer (VSM) techniques. Catalytic activity was investigated by degrading rhodamine B (RhB) in the designed experiment. The obtained products were monodispersed and bifunctional with high magnetization, as well as exhibited excellent catalytic activity toward organic dye with 98% of RhB conversion within 20 min in the presence of NaBH4. The product also exhibited convenient magnetic separability and maintained high catalytic activity after six cycle runs.

  17. Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in Saccharomyces cerevisiae.

    PubMed

    Brian, W R; Sari, M A; Iwasaki, M; Shimada, T; Kaminsky, L S; Guengerich, F P

    1990-12-25

    A human liver cytochrome P-450 (P-450) IIIA4 cDNA clone was inserted behind an alcohol dehydrogenase promoter in the plasmid vector pAAH5 and expressed in Saccharomyces cerevisiae (D12 and AH22 strains). A cytochrome P-450 with typical spectral properties was expressed at a level of approximately 8 x 10(5) molecules/cell in either strain of yeast. The expressed P-450 IIIA4 had the same apparent monomeric Mr as the corresponding protein in human liver microsomes (P-450NF) and could be isolated from yeast microsomes. Catalytic activity of the yeast microsomes toward putative P-450 IIIA4 substrates was seen in the reactions supported by cumene hydroperoxide but was often lower and variable when supported by the physiological donor NADPH. The catalytic activity of purified P-450 IIIA4 was also poor in some systems reconstituted with rabbit liver NADPH-P-450 reductase and best when both the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate and a lipid extract (from liver or yeast microsomes) or L-alpha-1,2-dilauroyl-sn-glycero-3-phosphocholine were present. Under these conditions the expressed P-450 IIIA4 was an efficient catalyst for nifedipine oxidation, 6 beta-hydroxylation of testosterone and cortisol, 2-hydroxylation of 17 beta-estradiol and 17 alpha-ethynylestradiol, N-oxygenation and 3-hydroxylation of quinidine, 16 alpha-hydroxylation of dehydroepiandrosterone 3-sulfate, erythromycin N-demethylation, the 10-hydroxylation of (R)-warfarin, the formation of 9,10-dehydrowarfarin from (S)-warfarin, and the activation of aflatoxins B1 and G1, sterigmatocystin, 7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (both + and - diastereomers), 3,4-dihydroxy-3,4-dihydrobenz[a]anthracene, 3,4-dihydroxy-3,4-dihydro-7, 12-dimethylbenz[a]anthracene, 9,10-dihydroxy-9,10-dihydrobenzo[b]fluoranthene, 6-aminochrysene, and tris(2,3-dibromopropyl) phosphate to products genotoxic in a Salmonella typhimurium TA1535/pSK1002 system where a chimeric umuC' 'lacZ plasmid is

  18. Partial deficit of pantothenate kinase 2 catalytic activity in a case of tremor-predominant neurodegeneration with brain iron accumulation.

    PubMed

    Liang, Tsao-Wei; Truax, Adam C; Trojanowski, John Q; Lee, Virginia M-Y; Stern, Matthew B; Kotzbauer, Paul T

    2006-05-01

    We describe an atypical case of pantothenate kinase-associated neurodegeneration (PKAN) in which slowly progressive arm tremor was the predominant symptom beginning at the age of 25, with late-onset dystonia and dysarthria developing at the age of 50. Compound heterozygous mutations resulting in missense amino acid substitutions G521R and I529V were identified in the pantothenate kinase (PANK2) gene. We demonstrate that while the G521R mutation results in an unstable and inactive protein, the previously unreported I529V substitution has no apparent effect on the stability or catalytic activity of PanK2. The phenotype that results from this combination of mutations suggests that atypical presentations of PKAN may arise from partial deficits in PanK2 catalytic activity.

  19. Preparation of magnetic Co/graphene sheets composites and investigation on its catalytic activity for H2 generation

    NASA Astrophysics Data System (ADS)

    Zhao, Dongcui; Nan, Zhaodong

    2016-12-01

    A cobalt (Co)/graphene sheets (GRs) composite was synthesized via a one-pot chemical method. The composite shows high saturation magnetizations (Ms), which leads it to be conveniently separated from aqueous solution by an external magnetic field. Compared to the pure Co and some references, the catalytic activity of the as-obtained composite was significantly enhanced for the generation of H2 gas by hydrolysis of NaBH4 solution. Effects of NaBH4 initial concentration, the composite and reaction temperature on the H2 generation rate were investigated. The H2 generation rate is independent with the initial NaBH4 concentration, increased with the reaction temperature increasing. The composite can be continuously used several times with about the same catalytic activity.

  20. Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells

    PubMed Central

    Zhang, Bo; Wang, Dong; Hou, Yu; Yang, Shuang; Yang, Xiao Hua; Zhong, Ju Hua; Liu, Jian; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui

    2013-01-01

    Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully. PMID:23670438

  1. Photo-catalytic activity of Zn1-xMnxS nanocrystals synthesized by wet chemical technique

    PubMed Central

    2011-01-01

    Polyvinyl pyrrolidone capped Zn1-xMnxS (0 ≤ x ≤ 0.1) nanocrystals have been synthesized using wet chemical co-precipitation method. Crystallographic and morphological characterization of the synthesized materials have been done using X-ray diffraction and transmission electron microscope. Crystallographic studies show the zinc blende crystals having average crystallite size approx. 3 nm, which is almost similar to the average particle size calculated from electron micrographs. Atomic absorption spectrometer has been used for qualitative and quantitative analysis of synthesized nanomaterials. Photo-catalytic activity has been studied using methylene blue dye as a test contaminant. Energy resolved luminescence spectra have been recorded for the detailed description of radiative and non-radiative recombination mechanisms. Photo-catalytic activity dependence on dopant concentration and luminescence quantum yield has been studied in detail. PMID:21711502

  2. Metal carbonyl complexes with Schiff bases derived from 2-pyridinecarboxaldehyde: Syntheses, spectral, catalytic activity and antimicrobial activity studies

    NASA Astrophysics Data System (ADS)

    Ali, Omyma A. M.; El-Medani, Samir M.; Ahmed, Doaa A.; Nassar, Doaa A.

    2014-09-01

    Thermal reactions of [M(CO)6], M = Cr, Mo and W with the two Schiff bases: 2-[(pyridin-2-ylmethylidene)amino]-6-aminopyridine (L1) and 2-[(pyridin-2-ylmethylidene)amino]phenol (HL2) were investigated. Three complexes with molecular formulas [Cr(L1)3], 1, [MoO2(L1)2], 2 and [WO2(L1)2], 3 were isolated from the reactions with L1. The corresponding reactions with HL2 produced the complexes [Cr(HL2)2], 4, [Mo2(CO)4O2(HL2)2], 5 and [W(CO)4(HL2)], 6. All complexes were characterized by elemental analysis, infrared, mass and 1H NMR spectroscopy. The molar conductivities of the complexes in DMF indicated nonelectrolytic behavior. The prepared ligands and their complexes exhibited intraligand (π-π*) fluorescence and can potentially serve as photoactive materials. The catalytic activity of the complexes towards to hydrogen peroxide decomposition reaction was investigated. Both the ligands and their complexes have been screened for antibacterial activities.

  3. Cu-free cycloaddition for identifying catalytic active adenylation domains of nonribosomal peptide synthetases by phage display.

    PubMed

    Zou, Yekui; Yin, Jun

    2008-10-15

    To engineer the substrate specificities of nonribosomal peptide synthetases (NRPS), we developed a method to display NRPS modules on M13 phages and select catalytically active adenylation (A) domains that would load azide functionalized substrate analogs to the neighboring peptidyl carrier protein (PCP) domains. Biotin conjugated difluorinated cyclooctyne was used for copper free cycloaddition with an azide substituted substrate attached to PCP. Biotin-labeled phages were selected by binding to streptavidin.

  4. The NS4A Cofactor Dependent Enhancement of HCV NS3 Protease Activity Correlates with a 4D Geometrical Measure of the Catalytic Triad Region

    PubMed Central

    Hamad, Hamzah A.; Thurston, Jeremy; Teague, Thomas; Ackad, Edward; Yousef, Mohammad S.

    2016-01-01

    We are developing a 4D computational methodology, based on 3D structure modeling and molecular dynamics simulation, to analyze the active site of HCV NS3 proteases, in relation to their catalytic activity. In our previous work, the 4D analyses of the interactions between the catalytic triad residues (His57, Asp81, and Ser139) yielded divergent, gradual and genotype-dependent, 4D conformational instability measures, which strongly correlate with the known disparate catalytic activities among genotypes. Here, the correlation of our 4D geometrical measure is extended to intra-genotypic alterations in NS3 protease activity, due to sequence variations in the NS4A activating cofactor. The correlation between the 4D measure and the enzymatic activity is qualitatively evident, which further validates our methodology, leading to the development of an accurate quantitative metric to predict protease activity in silico. The results suggest plausible “communication” pathways for conformational propagation from the activation subunit (the NS4A cofactor binding site) to the catalytic subunit (the catalytic triad). The results also strongly suggest that the well-sampled (via convergence quantification) structural dynamics are more connected to the divergent catalytic activity observed in HCV NS3 proteases than to rigid structures. The method could also be applicable to predict patients’ responses to interferon therapy and better understand the innate interferon activation pathway. PMID:27936126

  5. Preparation and catalytic activities for H{sub 2}O{sub 2} decomposition of Rh/Au bimetallic nanoparticles

    SciTech Connect

    Zhang, Haijun; Deng, Xiangong; Jiao, Chengpeng; Lu, Lilin; Zhang, Shaowei

    2016-07-15

    Graphical abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method, the activity of Rh80Au20 BNPs were about 3.6 times higher than that of Rh NPs. - Highlights: • Rh/Au bimetallic nanoparticles (BNPs) of 3∼5 nm in diameter were prepared. • Activity for H{sub 2}O{sub 2} decomposition of BNPs is 3.6 times higher than that of Rh NPs. • The high activity of BNPs was caused by the existence of charged Rh atoms. • The apparent activation energy for H{sub 2}O{sub 2} decomposition over the BNPs was calculated. - Abstract: PVP-protected Rh/Au bimetallic nanoparticles (BNPs) were prepared by using hydrogen sacrificial reduction method and characterized by UV–vis, XRD, FT-IR, XPS, TEM, HR-TEM and DF-STEM, the effects of composition on their particle sizes and catalytic activities for H{sub 2}O{sub 2} decomposition were also studied. The as-prepared Rh/Au BNPs possessed a high catalytic activity for the H{sub 2}O{sub 2} decomposition, and the activity of the Rh{sub 80}Au{sub 20} BNPs with average size of 2.7 nm were about 3.6 times higher than that of Rh monometallic nanoparticles (MNPs) even the Rh MNPs possess a smaller particle size of 1.7 nm. In contrast, Au MNPs with size of 2.7 nm show no any activity. Density functional theory (DFT) calculation as well as XPS results showed that charged Rh and Au atoms formed via electronic charge transfer effects could be responsible for the high catalytic activity of the BNPs.

  6. Effect of chromium oxide as active site over TiO2-PILC for selective catalytic oxidation of NO.

    PubMed

    Zhang, Jingxin; Zhang, Shule; Cai, Wei; Zhong, Qin

    2013-12-01

    This study introduced TiO2-pillared clays (TiO2-PILC) as a support for the catalytic oxidation of NO and analyzed the performance of chromium oxides as the active site of the oxidation process. Cr-based catalysts were prepared by a wet impregnation method. It was found that the 10 wt.% chromium doping on the support achieved the best catalytic activity. At 350 degrees C, the NO conversion was 61% under conditions of GHSV = 23600 hr(-1). The BET data showed that the support particles had a mesoporous structure. H2-TPR showed that Cr(10)TiP (10 wt.% Cr doping on TiO2-PILC) clearly exhibited a smooth single peak. EPR and XPS were used to elucidate the oxidation process. During the NO + O2 adsorption, the intensity of evolution of superoxide ions (O2(-)) increased. The content of Cr3+ on the surface of the used catalyst was 40.37%, but when the used catalyst continued adsorbing NO, the Cr3+ increased to 50.28%. Additionally, O(alpha)/O(beta) increased markedly through the oxidation process. The NO conversion decreased when SO2 was added into the system, but when the SO2 was removed, the catalytic activity recovered almost up to the initial level. FT-IR spectra did not show a distinct characteristic peak of SO4(2-).

  7. DNMT3B isoforms without catalytic activity stimulate gene body methylation as accessory proteins in somatic cells.

    PubMed

    Duymich, Christopher E; Charlet, Jessica; Yang, Xiaojing; Jones, Peter A; Liang, Gangning

    2016-04-28

    Promoter DNA methylation is a key epigenetic mechanism for stable gene silencing, but is correlated with expression when located in gene bodies. Maintenance and de novo DNA methylation by catalytically active DNA methyltransferases (DNMT1 and DNMT3A/B) require accessory proteins such as UHRF1 and DNMT3L. DNMT3B isoforms are widely expressed, although some do not have active catalytic domains and their expression can be altered during cell development and tumourigenesis, questioning their biological roles. Here, we show that DNMT3B isoforms stimulate gene body methylation and re-methylation after methylation-inhibitor treatment. This occurs independently of the isoforms' catalytic activity, demonstrating a similar functional role to the accessory protein DNMT3L, which is only expressed in undifferentiated cells and recruits DNMT3A to initiate DNA methylation. This unexpected role for DNMT3B suggests that it might substitute for the absent accessory protein DNMT3L to recruit DNMT3A in somatic cells.

  8. Ultrafine Au and Ag Nanoparticles Synthesized from Self-Assembled Peptide Fibers and Their Excellent Catalytic Activity.

    PubMed

    Xu, Wenlong; Hong, Yue; Hu, Yuanyuan; Hao, Jingcheng; Song, Aixin

    2016-07-18

    The self-assembly of an amphiphilic peptide molecule to form nanofibers facilitated by Ag(+) ions was investigated. Ultrafine AgNPs (NPs=nanoparticles) with an average size of 1.67 nm were synthesized in situ along the fibers due to the weak reducibility of the -SH group on the peptide molecule. By adding NaBH4 to the peptide solution, ultrafine AgNPs and AuNPs were synthesized with an average size of 1.35 and 1.18 nm, respectively. The AuNPs, AgNPs, and AgNPs/nanofibers all exhibited excellent catalytic activity toward the reduction of 4-nitrophenol, with turnover frequency (TOF) values of 720, 188, and 96 h(-1) , respectively. Three dyes were selected for catalytic degradation by the prepared nanoparticles and the nanoparticles showed selective catalysis activity toward the different dyes. It was a surprising discovery that the ultrafine AuNPs in this work had an extremely high catalytic activity toward methylene blue, with a reaction rate constant of 0.21 s(-1) and a TOF value of 1899 h(-1) .

  9. Preparation of Ru Nanocatalysts Supported on SBA-15 and Their Excellent Catalytic Activity Towards Decolorization of Various Dyes.

    PubMed

    Ghosh, Barun; Hazra, Subhenjit; Naik, Bhanudas; Ghosh, Narendra Nath

    2015-09-01

    In this paper, we report a simple aqueous solution based chemical method for preparation Ru nanocatalysts supported on mesoporous silica SBA-15 (Ru@SBA-15) catalysts. Synthesized catalysts were characterized by powder X-ray diffraction (XRD), Optical emission spectroscopy (ICP-OES), Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscope (HRTEM) and N2 adsorption-desorption surface area and pore size analyzer, and particle size analyzer. Catalytic activity of the synthesized catalysts towards decolorization of various dyes, such as 4-nitrophenol, Methyl Orange, Congo Red, Rhodamine B, Methylene Blue and mixture of dyes was investigated in presence of excess NaBH4. Catalysis reactions were monitored by employing UV-vis spectroscopy. Catalysis reactions followed pseudo-first order rate equation. The catalyst with 2.5 wt% Ru nanoparticle exhibited excellent catalytic activity and convenient recycling. The high catalytic activity and simple preparation methodology make 2.5Ru@SBA-15 an attractive catalyst for decolorization of organic dyes.

  10. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  11. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  12. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  13. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  14. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Activities in or affecting commerce. 801.3 Section 801.3 Commercial Practices FEDERAL TRADE COMMISSION RULES, REGULATIONS, STATEMENTS AND INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3...

  15. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  16. Catalytic activity and thermal stability of horseradish peroxidase encapsulated in self-assembled organic nanotubes.

    PubMed

    Lu, Qin; Kim, Youngchan; Bassim, Nabil; Raman, Nisha; Collins, Greg E

    2016-04-07

    Horseradish peroxidase (HRP) was encapsulated in self-assembled lithocholic acid (LCA) based organic nanotubes and its catalytic activity before and after thermal treatment was measured for comparison with free HRP. The apparent kcat (kcat/Km) for nanotube encapsulated HRP remained almost the same before and after thermal treatment, reporting an average value of 3.7 ± 0.4 μM(-1) s(-1). The apparent kcat value for free HRP decreased from 14.8 ± 1.3 μM(-1) s(-1) for samples stored at 4 °C to 2.4 ± 0.1 μM(-1) s(-1) after thermal treatment for 8 h at 55 °C. The Michaelis-Menten constants, Km, determined for encapsulated HRP and free HRP were relatively unperturbed by storage conditions at 4 °C or thermally treated at 55 °C for varying time periods from 2-8 h, with encapsulated HRP having a slightly higher Km than free HRP (13.4 ± 0.9 μM versus 11.7 ± 0.4 μM). The amount of HRP encapsulated in LCA nanotubes increased dramatically when the mixture of HRP and LCA nanotubes was brought to an elevated temperature. Within 4 h of thermal treatment at 55 °C, the amount of HRP encapsulated by the LCA nanotubes was more than 4 times the amount of HRP encapsulated when equilibrated at 4 °C for 7 days. Molecular dynamics (MD) simulations show that the higher degree of exposure of hydrophobic residues in HRP at elevated temperatures enhances the hydrophobic interaction between HRP and the nanotube wall, resulting in the increased amount of HRP surface adsorption and, hence, the overall amount of encapsulation inside the nanotubes.

  17. Catalytically-etched hexagonal boron nitride flakes and their surface activity

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun; Lee, Minwoo; Ye, Bora; Jang, Ho-Kyun; Kim, Gyu Tae; Lee, Dong-Jin; Kim, Eok-Soo; Kim, Hong Dae

    2017-04-01

    Hexagonal boron nitride (h-BN) is a ceramic compound which is thermally stable up to 1000 °C in air. Due to this, it is a very challenging task to etch h-BN under air atmosphere at low temperature. In this study, we report that h-BN flakes can be easily etched by oxidation at 350 °C under air atmosphere in the presence of transition metal (TM) oxide. After selecting Co, Cu, and Zn elements as TM precursors, we simply oxidized h-BN sheets impregnated with the TM precursors at 350 °C in air. As a result, microscopic analysis revealed that an etched structure was created on the surface of h-BN flakes regardless of catalyst type. And, X-ray diffraction patterns indicated that the air oxidation led to the formation of Co3O4, CuO, and ZnO from each precursor. Thermogravimetric analysis showed a gradual weight loss in the temperature range where the weight of h-BN flakes increased by air oxidation. As a result of etching, pore volume and pore area of h-BN flakes were increased after catalytic oxidation in all cases. In addition, the surface of h-BN flakes became highly active when the h-BN samples were etched by Co3O4 and CuO catalysts. Based on these results, we report that h-BN flakes can be easily oxidized in the presence of a catalyst, resulting in an etched structure in the layered structure.

  18. Wet hydrogen peroxide catalytic oxidation of phenol with FeAC (iron-embedded activated carbon) catalysts.

    PubMed

    Liou, Rey-May; Chen, Shih-Hsiung; Huang, Cheng-Hsien; Hung, Mu-Ya; Chang, Jing-Song; Lai, Cheng-Lee

    2010-01-01

    This investigation aims at exploring the catalytic oxidation activity of iron-embedded activated carbon (FeAC) and the application for the degradation of phenol in the wet hydrogen peroxide catalytic oxidation (WHPCO). FeAC catalysts were prepared by pre-impregnating iron in coconut shell with various iron loadings in the range of 27.5 to 46.5% before they were activated. The FeAC catalysts were characterised by measuring their surface area, pore distribution, functional groups on the surface, and X-ray diffraction patterns. The effects of iron loading strongly inhibited the pore development of the catalyst but benefited the oxidation activity in WHPCO. It was found that the complete conversion of phenol was observed with all FeAC catalysts in oxidation. High level of chemical oxygen demand (COD) abatement can be achieved within the first 30 minutes of oxidation. The iron embedded in the activated carbon showed good performance in the degradation and mineralisation of phenol during the oxidation due to the active sites as iron oxides formed on the surface of the activated carbon. It was found that the embedding irons were presented in gamma-Fe(2)O(3), alpha-Fe(2)O(3), and alpha-FeCOOH forms on the activated carbon. The aging tests on FeAC catalysts showed less activity loss, and less iron leaching was found after four oxidation runs.

  19. Determination of the catalytic activity of binuclear metallohydrolases using isothermal titration calorimetry.

    PubMed

    Pedroso, Marcelo M; Ely, Fernanda; Lonhienne, Thierry; Gahan, Lawrence R; Ollis, David L; Guddat, Luke W; Schenk, Gerhard

    2014-03-01

    Binuclear metallohydrolases are a large and diverse family of enzymes that are involved in numerous metabolic functions. An increasing number of members find applications as drug targets or in processes such as bioremediation. It is thus essential to have an assay available that allows the rapid and reliable determination of relevant catalytic parameters (k cat, K m, and k cat/K m). Continuous spectroscopic assays are frequently only possible by using synthetic (i.e., nonbiological) substrates that possess a suitable chromophoric marker (e.g., nitrophenol). Isothermal titration calorimetry, in contrast, affords a rapid assay independent of the chromophoric properties of the substrate-the heat associated with the hydrolytic reaction can be directly related to catalytic properties. Here, we demonstrate the efficiency of the method on several selected examples of this family of enzymes and show that, in general, the catalytic parameters obtained by isothermal titration calorimetry are in good agreement with those obtained from spectroscopic assays.

  20. Facile preparation and dual catalytic activity of copper(I)-metallosalen coordination polymers.

    PubMed

    Hou, Yun-Long; Li, Sheng-Xia; Sun, Raymond Wai-Yin; Liu, Xin-Yuan; Weng Ng, Seik; Li, Dan

    2015-10-21

    Three copper(i)-metallosalen coordination polymers (CPs), {[Ni(II)(SalImCy)]2(Cu(I)CN)9}n (1), {[Cu(II)(SalImCy)]2(Cu(I)CN)9}n (2) and {[Ni(II)(SalImCy)](Cu(I)I)2·DMF}n (3) were prepared by direct combination of Ni(II)/Cu(II)(salen) motifs with [Cu(I)CN]n chains and Cu2I2 clusters via the metalloligand strategy. The mixed-valence and mixed-metal CPs could effectively catalyze both the oxidation of aromatic alcohols to ketones and aldehydes under mild conditions and photocatalytic degradation of organic dye methylene blue (MB). This work demonstrates the effective integration of transition metal catalytic Ni(II)/Cu(II)(salen) units and photoactive copper(i) species in a single solid polymer to meet the demand for catalytic materials with the dual catalytic properties.

  1. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas

    NASA Astrophysics Data System (ADS)

    Boder, M.; Dittmeyer, R.

    When using natural gas as fuel for the solid oxide fuel cell (SOFC), direct internal reforming lowers the requirement for cell cooling and, theoretically, offers advantages with respect to capital cost and efficiency. The high metal content of a nickel/zirconia anode and the high temperature, however, cause the endothermic reforming reaction to take place very fast. The resulting drop of temperature at the inlet produces thermal stresses, which may lower the system efficiency and limit the stack lifetime. To reduce the reforming rate without lowering the electrochemical activity of the cell, a wet impregnation procedure for modifying conventional cermets by coverage with a less active metal was developed. As the coating material copper was chosen. Copper is affordable, catalytically inert for the reforming reaction and exhibits excellent electronic conductivity. The current density-voltage characteristics of the modified units showed that it is possible to maintain a good electrochemical performance of the cells despite the catalytic modification. A copper to nickel ratio of 1:3 resulted in a strong diminution of the catalytic reaction rate. This indicates that the modification could be a promising method to improve the performance of solid oxide fuel cells with direct internal reforming of hydrocarbons.

  2. Fluorescence decrease of conjugated polymers by the catalytic activity of horseradish peroxidase and its application in phenolic compounds detection.

    PubMed

    González-Sánchez, M I; Laurenti, M; Rubio-Retama, J; Valero, E; Lopez-Cabarcos, E

    2011-04-11

    We report the fluorescence decrease of the water-soluble π-π-conjugated polymer poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene, MPS-PPV) by the catalytic activity of horseradish peroxidase in the presence of H(2)O(2). MPS-PPV acts as a donor substrate in the catalytic cycle of horseradish peroxidase where the electron-deficient enzymatic intermediates compounds I and II can subtract electrons from the polymer leading to its fluorescence decrease. The addition of phenolic drug acetaminophen to the former solution favors the decrease of the polymer fluorescence, which indicates the peroxidase-catalyzed co-oxidation of MPS-PPV and acetaminophen. The encapsulation of horseradish peroxidase within polyacrylamide microgels allows the isolation of intermediates compound I and compound II from the polymer, leading to a fluorescence decrease that is only due to the product of biocatalytic acetaminophen oxidation. This system could be used to develop a new device for phenolic compounds detection.

  3. Activation of Al–Cu–Fe quasicrystalline surface: fabrication of a fine nanocomposite layer with high catalytic performance

    PubMed Central

    Kameoka, Satoshi; Tanabe, Toyokazu; Satoh, Futami; Terauchi, Masami; Tsai, An Pang

    2014-01-01

    A fine layered nanocomposite with a total thickness of about 200 nm was formed on the surface of an Al63Cu25Fe12 quasicrystal (QC). The nanocomposite was found to exhibit high catalytic performance for steam reforming of methanol. The nanocomposite was formed by a self-assembly process, by leaching the Al–Cu–Fe QC using a 5 wt% Na2CO3 aqueous solution followed by calcination in air at 873 K. The quasiperiodic nature of theQC played an important role in the formation of such a structure. Its high catalytic activity originated from the presence of highly dispersed copper and iron species, which also suppressed the sintering of nanoparticles. PMID:27877642

  4. Adaptive organic nanoparticles of a teflon-coated iron (III) porphyrin catalytically activate dioxygen for cyclohexene oxidation.

    PubMed

    Aggarwal, Amit; Singh, Sunaina; Samson, Jacopo; Drain, Charles Michael

    2012-07-26

    Self-organized organic nanoparticles (ONP) are adaptive to the environmental reaction conditions. ONP of fluorous alkyl iron(III) porphyrin catalytically oxidize cyclohexene to the allylic oxidation products. In contrast, the solvated metalloporphyrin yields both allylic oxidation and epoxidation products. The ONP system facilitates a greener reaction because about 89% reaction medium is water, molecular oxygen is used in place of synthetic oxidants, and the ambient reaction conditions used require less energy. The enhanced catalytic activity of these ONP is unexpected because the metalloporphyrins in the nanoaggregates are in the close proximity and the TON should diminish by self-oxidative degradation. The fluorous alkyl chain stabilizes the ONP toward self-oxidative degradation.

  5. Immobilizing Highly Catalytically Active Pt Nanoparticles inside the Pores of Metal-Organic Framework: A Double Solvents Approach

    SciTech Connect

    Aijaz, Arshad; Karkamkar, Abhijeet J.; Choi, Young Joon; Tsumori, Nobuko; Ronnebro, Ewa; Autrey, Thomas; Shioyama, Hiroshi; Xu, Qiang

    2012-08-29

    Ultrafine Pt nanoparticles were successfully immobilized inside the pores of a metal-organic framework MIL-101 without deposition of Pt nanoparticles on the external surfaces of framework by using a 'double solvents' method. The resulting Pt@MIL-101 composites with different Pt loadings represent the first highly active MOF-immobilized metal nanocatalysts for catalytic reactions in all three phases: liquid-phase ammonia borane hydrolysis; solid-phase ammonia borane thermal dehy-drogenation and gas-phase CO oxidation. The observed excellent catalytic performances are at-tributed to the small Pt nanoparticles within the pores of MIL-101. 'We are thankful to AIST and METI for financial support. TA & AK are thankful for support from the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. PNNL is operated by Battelle.'

  6. 3D hierarchical walnut-like CuO nanostructures: Preparation, characterization and their efficient catalytic activity for CO oxidation

    NASA Astrophysics Data System (ADS)

    Yao, Weitang; Zhang, Yujuan; Duan, Tao; Zhu, Wenkun; Yi, Zao; Cui, Xudong

    2016-07-01

    In this work, 3D hierarchical walnut-shaped, 2D nanosheet and 3D microspheres single phase CuO nanostructures are functioning as catalysts and supporting materials, differing from the conventional ways. The novel nanostructures were synthesized via hydrothermal method under a stainless steel autoclave. The as-prepared materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and H2 temperature-programmed reduction (H2-TPR). The walnut-shaped structures with high O/Cu atomic ratio (1.22) exhibit high oxygen adsorption capacity and greatly enhanced catalytic activity. These results will be enrich the techniques for tuning the morphologies of metal oxide micro/nanostructures and open a new field in catalytic applications.

  7. Noninvasive Nanoscopy Uncovers the Impact of the Hierarchical Porous Structure on the Catalytic Activity of Single Dealuminated Mordenite Crystals

    PubMed Central

    Kubarev, Alexey V; Janssen, Kris P F; Roeffaers, Maarten B J

    2015-01-01

    Spatial restrictions around catalytic sites, provided by molecular-sized micropores, are beneficial to reaction selectivity but also inherently limit diffusion. The molecular transport can be enhanced by introducing meso- and macropores. However, the impact of this extraframework porosity on the local nanoscale reactivity is relatively unexplored. Herein we show that the area of enhanced reactivity in hierarchical zeolite, examined with super-resolution fluorescence microscopy, is spatially restricted to narrow zones around meso- and macropores, as observed with focused ion-beam-assisted scanning electron microscopy. This comparison indicates that reagent molecules efficiently reach catalytic active sites only in the micropores surrounding extraframework porosity and that extensive macroporosity does not warrant optimal reactivity distribution throughout a hierarchical porous zeolite. PMID:26697122

  8. Energy Efficient Catalytic Activation of Hydrogen peroxide for Green Chemical Processes: Final Report

    SciTech Connect

    Collins, Terrence J.; Horwitz, Colin

    2004-11-12

    A new, highly energy efficient approach for using catalytic oxidation chemistry in multiple fields of technology has been pursued. The new catalysts, called TAML® activators, catalyze the reactions of hydrogen peroxide and other oxidants for the exceptionally rapid decontamination of noninfectious simulants (B. atrophaeus) of anthrax spores, for the energy efficient decontamination of thiophosphate pesticides, for the facile, low temperature removal of color and organochlorines from pulp and paper mill effluent, for the bleaching of dyes from textile mill effluents, and for the removal of recalcitrant dibenzothiophene compounds from diesel and gasoline fuels. Highlights include the following: 1) A 7-log kill of Bacillus atrophaeus spores has been achieved unambiguously in water under ambient conditions within 15 minutes. 2) The rapid total degradation under ambient conditions of four thiophosphate pesticides and phosphonate degradation intermediates has been achieved on treatment with TAML/peroxide, opening up potential applications of the decontamination system for phosphonate structured chemical warfare agents, for inexpensive, easy to perform degradation of stored and aged pesticide stocks (especially in Africa and Asia), for remediation of polluted sites and water bodies, and for the destruction of chemical warfare agent stockpiles. 3) A mill trial conducted in a Pennsylvanian bleached kraft pulp mill has established that TAML catalyst injected into an alkaline peroxide bleach tower can significantly lower color from the effluent stream promising a new, more cost effective, energy-saving approach for color remediation adding further evidence of the value and diverse engineering capacity of the approach to other field trials conducted on effluent streams as they exit the bleach plant. 4) Dibenzothiophenes (DBTs), including 4,6-dimethyldibenzothiophene, the most recalcitrant sulfur compounds in diesel and gasoline, can be completely removed from model gasoline

  9. Catalytic dioxygen activation by Co(II) complexes employing a coordinatively versatile ligand scaffold.

    PubMed

    Sharma, Savita K; May, Philip S; Jones, Matthew B; Lense, Sheri; Hardcastle, Kenneth I; MacBeth, Cora E

    2011-02-14

    The ligand bis(2-isobutyrylamidophenyl)amine has been prepared and used to stabilize both mononuclear and dinuclear cobalt(II) complexes. The nuclearity of the cobalt product is regulated by the deprotonation state of the ligand. Both complexes catalytically oxidize triphenylphosphine to triphenylphosphine oxide in the presence of O(2).

  10. Catalytic epoxidation activity of keplerate polyoxomolybdate nanoball toward aqueous suspension of olefins under mild aerobic conditions.

    PubMed

    Rezaeifard, Abdolreza; Haddad, Reza; Jafarpour, Maasoumeh; Hakimi, Mohammad

    2013-07-10

    Catalytic efficiency of a sphere-shaped nanosized polyoxomolybdate {Mo132} in the aerobic epoxidation of olefins in water at ambient temperature and pressure in the absence of reducing agent is exploited which resulted good-to-high yields and desired selectivity.

  11. A single active catalytic site is sufficient to promote transport in P-glycoprotein

    PubMed Central

    Bársony, Orsolya; Szalóki, Gábor; Türk, Dóra; Tarapcsák, Szabolcs; Gutay-Tóth, Zsuzsanna; Bacsó, Zsolt; Holb, Imre J.; Székvölgyi, Lóránt; Szabó, Gábor; Csanády, László; Szakács, Gergely; Goda, Katalin

    2016-01-01

    P-glycoprotein (Pgp) is an ABC transporter responsible for the ATP-dependent efflux of chemotherapeutic compounds from multidrug resistant cancer cells. Better understanding of the molecular mechanism of Pgp-mediated transport could promote rational drug design to circumvent multidrug resistance. By measuring drug binding affinity and reactivity to a conformation-sensitive antibody we show here that nucleotide binding drives Pgp from a high to a low substrate-affinity state and this switch coincides with the flip from the inward- to the outward-facing conformation. Furthermore, the outward-facing conformation survives ATP hydrolysis: the post-hydrolytic complex is stabilized by vanadate, and the slow recovery from this state requires two functional catalytic sites. The catalytically inactive double Walker A mutant is stabilized in a high substrate affinity inward-open conformation, but mutants with one intact catalytic center preserve their ability to hydrolyze ATP and to promote drug transport, suggesting that the two catalytic sites are randomly recruited for ATP hydrolysis. PMID:27117502

  12. The evolutionarily conserved EBR module of RALT/MIG6 mediates suppression of the EGFR catalytic activity.

    PubMed

    Anastasi, S; Baietti, M F; Frosi, Y; Alemà, S; Segatto, O

    2007-12-13

    Physiological signalling by the epidermal growth factor receptor (EGFR) controls developmental processes and tissue homeostasis, whereas aberrant EGFR activity drives oncogenic cell transformation. Under normal conditions, the EGFR must therefore generate outputs of defined strength and duration. To this aim, cells balance EGFR activity via different modalities of negative signalling. Increasing attention is being drawn on transcriptionally controlled feedback inhibitors of EGFR, namely RALT/MIG6, LRIG1, SOCS4 and SOCS5. Genetic studies in mice have revealed the essential role of Ralt/Mig6 in regulating Egfr-driven skin morphogenesis and tumour formation, yet the mechanisms through which RALT abrogates EGFR activity are still undefined. We report that RALT suppresses EGFR function by inhibiting its catalytic activity. The evolutionarily conserved ErbB-binding region (EBR) is necessary and sufficient to carry out RALT-dependent suppression of EGFR kinase activity in vitro and in intact cells. The mechanism involves binding of the EBR to the 953RYLVIQ958 sequence, which is located in the alphaI helix of the EGFR kinase and has been shown to participate in allosteric control of EGFR catalytic activity. Our results uncover a novel mechanism of temporal regulation of EGFR activity in vertebrate organisms.

  13. Catalytic activity of nuclear PLC-beta(1) is required for its signalling function during C2C12 differentiation.

    PubMed

    Ramazzotti, Giulia; Faenza, Irene; Gaboardi, Gian Carlo; Piazzi, Manuela; Bavelloni, Alberto; Fiume, Roberta; Manzoli, Lucia; Martelli, Alberto M; Cocco, Lucio

    2008-11-01

    Here we report that PLC-beta(1) catalytic activity plays a role in the increase of cyclin D3 levels and induces the differentiation of C2C12 skeletal muscle cells. PLC-beta(1) mutational analysis revealed the importance of His(331) and His(378) for the catalysis. The expression of PLC-beta(1) and cyclin D3 proteins is highly induced during the process of skeletal myoblast differentiation. We have previously shown that PLC-beta(1) activates cyclin D3 promoter during the differentiation of myoblasts to myotubes, indicating that PLC-beta(1) is a crucial regulator of the mouse cyclin D3 gene. We show that after insulin treatment cyclin D3 mRNA levels are lower in cells overexpressing the PLC-beta(1) catalytically inactive form in comparison to wild type cells. We describe a novel signalling pathway elicited by PLC-beta(1) that modulates AP-1 activity. Gel mobility shift assay and supershift performed with specific antibodies indicate that the c-jun binding site is located in a cyclin D3 promoter region specifically regulated by PLC-beta(1) and that c-Jun binding activity is significantly increased by insulin and PLC-beta(1) overexpression. Mutation of AP-1 site decreased the basal cyclin D3 promoter activity and eliminated its induction by insulin and PLC-beta(1). These results hint at the fact that PLC-beta(1) catalytic activity signals a c-jun/AP-1 target gene, i.e. cyclin D3, during myogenic differentiation.

  14. Asymmetric frontal cortical activity and negative affective responses to ostracism.

    PubMed

    Peterson, Carly K; Gravens, Laura C; Harmon-Jones, Eddie

    2011-06-01

    Ostracism arouses negative affect. However, little is known about variables that influence the intensity of these negative affective responses. Two studies fill this void by incorporating work on approach- and withdrawal-related emotional states and their associated cortical activations. Study 1 found that following ostracism anger related directly to relative left frontal cortical activation. Study 2 used unilateral hand contractions to manipulate frontal cortical activity prior to an ostracizing event. Right-hand contractions, compared to left-hand contractions, caused greater relative left frontal cortical activation during the hand contractions as well as ostracism. Also, right-hand contractions caused more self-reported anger in response to being ostracized. Within-condition correlations revealed patterns of associations between ostracism-induced frontal asymmetry and emotive responses to ostracism consistent with Study 1. Taken together, these results suggest that asymmetrical frontal cortical activity is related to angry responses to ostracism, with greater relative left frontal cortical activity being associated with increased anger.

  15. Desialylation of dying cells with catalytically active antibodies possessing sialidase activity facilitate their clearance by human macrophages.

    PubMed

    Tomin, A; Dumych, T; Tolstyak, Y; Kril, I; Mahorivska, I; Bila, E; Stoika, R; Herrmann, M; Kit, Y; Bilyy, R

    2015-01-01

    Recently we reported the first known incidence of antibodies possessing catalytic sialidase activity (sialidase abzymes) in the serum of patients with multiple myeloma and systemic lupus erythematosus (SLE). These antibodies desialylate biomolecules, such as glycoproteins, gangliosides and red blood cells. Desialylation of dying cells was demonstrated to facilitate apoptotic cell clearance. In this study we assessed the possibility to facilitate dying cell clearance with the use of F(ab)2 fragments of sialidase abzymes. Two sources of sialidase abzymes were used: (i) those isolated from sera of patients with SLE after preliminary screening of a cohort of patients for sialidase activity; and (ii) by creating an induced sialidase abzyme through immunization of a rabbit with synthetic hapten consisting of a non-hydrolysable analogue of sialidase reaction conjugated with bovine serum albumin (BSA) or keyhole limpet haemocyanin (KLH). Antibodies were purified by ammonium sulphate precipitation, protein-G affinity chromatography and size exclusion-high performance liquid chromatography (HPLC-SEC). Effect of desialylation on efferocytosis was studied using human polymorphonuclear leucocytes (PMN), both viable and aged, as prey, and human monocyte-derived macrophages (MoMa). Treatment of apoptotic and viable prey with both disease-associated (purified from blood serum of SLE patients) and immunization-induced (obtained by immunization of rabbits) sialidase abzymes, its F(ab)2 fragment and bacterial neuraminidase (as positive control) have significantly enhanced the clearance of prey by macrophages. We conclude that sialidase abzyme can serve as a protective agent in autoimmune patients and that artificial abzymes may be of potential therapeutic value.

  16. Catalytic Y-tailed amphiphilic homopolymers – aqueous nanoreactors for high activity, low loading SCS pincer catalysts

    PubMed Central

    Patterson, Joseph P.; Cotanda, Pepa; Kelley, Elizabeth G.; Moughton, Adam O.; Lu, Annhelen; Epps, Thomas H.; O’Reilly, Rachel K.

    2013-01-01

    A new amphiphilic homopolymer bearing an SCS pincer palladium complex has been synthesized by reversible addition fragmentation chain transfer polymerization. The amphiphile has been shown to form spherical and worm-like micelles in water by cryogenic transmission electron microscopy and small angle neutron scattering. Segregation of reactive components within the palladium containing core results in increased catalytic activity of the pincer compound compared to small molecule analogues. This allows carbon-carbon bond forming reactions to be performed in water with reduced catalyst loadings and enhanced activity. PMID:23539324

  17. Inhibition by N'-nitrosonornicotine of the catalytic activity of glutamate dehydrogenase in alpha-ketoglutarate amination.

    PubMed

    Mao, You-An; Zhong, Ke-Jun; Wei, Wan-Zhi; Wei, Xin-Liang; Lu, Hong-Bing

    2005-02-01

    The effect of N'-nitrosonornicotine (NNN), one of the tobacco-specific nitrosamines, on the catalytic activity of glutamate dehydrogenase (GLDH) in the alpha-ketoglutarate amination, using reduced nicotinamide adenine dinucleotide as coenzyme, was studied by a chronoamperometric method. The maximum reaction rate of the enzyme-catalyzed reaction and the Michaelis-Menten constant, or the apparent Michaelis-Menten constant, were determined in the absence and presence of NNN. NNN remarkably inhibited the bio-catalysis activity of GLDH, and was a reversible competitive inhibitior with K(i), estimated as 199 micromol l(-1) at 25 degrees C and pH 8.0.

  18. Active carbon-ceramic sphere as support of ruthenium catalysts for catalytic wet air oxidation (CWAO) of resin effluent.

    PubMed

    Liu, Wei-Min; Hu, Yi-Qiang; Tu, Shan-Tung

    2010-07-15

    Active carbon-ceramic sphere as support of ruthenium catalysts were evaluated through the catalytic wet air oxidation (CWAO) of resin effluent in a packed-bed reactor. Active carbon-ceramic sphere and ruthenium catalysts were characterized by N(2) adsorption and chemisorption measurements. BET surface area and total pore volume of active carbon (AC) in the active carbon-ceramic sphere increase with increasing KOH-to-carbon ratio, and AC in the sample KC-120 possesses values as high as 1100 m(2) g(-1) and 0.69 cm(3) g(-1) (carbon percentage: 4.73 wt.%), especially. Active carbon-ceramic sphere supported ruthenium catalysts were prepared using the RuCl(3) solution impregnation onto these supports, the ruthenium loading was fixed at 1-5 wt.% of AC in the support. The catalytic activity varies according to the following order: Ru/KC-120>Ru/KC-80>Ru/KC-60>KC-120>without catalysts. It is found that the 3 wt.% Ru/KC-120 catalyst displays highest stability in the CWAO of resin effluent during 30 days. Chemical oxygen demand (COD) and phenol removal were about 92% and 96%, respectively at the reaction temperature of 200 degrees C, oxygen pressure of 1.5 MPa, the water flow rate of 0.75 L h(-1) and the oxygen flow rate of 13.5 L h(-1).

  19. How does the anthropogenic activity affect the spring discharge?

    NASA Astrophysics Data System (ADS)

    Hao, Yonghong; Zhang, Juan; Wang, Jiaojiao; Li, Ruifang; Hao, Pengmei; Zhan, Hongbin

    2016-09-01

    Karst hydrological process has largely been altered by climate change and human activity. In many places throughout the world, human activity (e.g. groundwater pumping and dewatering from mining) has intensified and surpassed climate change, where human activity becomes the primary factor that affects groundwater system. But it is still largely unclear how the human activity affects spring discharge in magnitude and periodicity. This study investigates the effects of anthropogenic activity on spring discharge, using the Xin'an Springs of China as an example. The Xin'an Spring discharge were divided into two time periods: the pre-development period from 1956 to 1971 and the post-development period from 1972 to 2013. We confirm the dividing time (i.e. 1971) of these two periods using the Wilcoxon rank-sum test. Then the wavelet transform and wavelet coherence were used to analyze the karst hydrological processes for the two periods respectively. We analyze the correlations of precipitation and the Xin'an spring discharge with the monsoons including the Indian Summer Monsoon (ISM) and the West North Pacific Monsoon (WNPM) and the climate teleconnections including El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), respectively. The results indicated that the spring discharge was attenuated about 19.63% under the influence of human activity in the Xin'an Springs basin. However, human activity did not alter the size of the resonance frequencies between the spring discharge and the monsoons. In contrast, it reinforced the periodicities of the monsoons-driven spring discharge. It suggested that human has adapted to the major climate periodicities, and human activity had the same rhyme with the primary climate periodicity. In return, human activity enhances the correlation between the monsoons and the spring discharge.

  20. Mutational analysis of amino acid residues involved in catalytic activity of a family 18 chitinase from tulip bulbs.

    PubMed

    Suzukawa, Keisuke; Yamagami, Takeshi; Ohnuma, Takayuki; Hirakawa, Hideki; Kuhara, Satoru; Aso, Yoichi; Ishiguro, Masatsune

    2003-02-01

    We expressed chitinase-1 (TBC-1) from tulip bulbs (Tulipa bakeri) in E. coli cells and used site-directed mutagenesis to identify amino acid residues essential for catalytic activity. Mutations at Glu-125 and Trp-251 completely abolished enzyme activity, and activity decreased with mutations at Asp-123 and Trp-172 when glycolchitin was the substrate. Activity changed with the mutations of Trp-251 to one of several amino acids with side-chains of little hydrophobicity, suggesting that hydrophobic interaction of Trp-251 is important for the activity. Molecular dynamics (MD) simulation analysis with hevamine as the model compound showed that the distance between Asp-123 and Glu-125 was extended by mutation of Trp-251. Kinetic studies of Trp-251-mutated chitinases confirmed these various phenomena. The results suggested that Glu-125 and Trp-251 are essential for enzyme activity and that Trp-251 had a direct role in ligand binding.

  1. Theoretical investigation of the hetero-junction effect in PVP-stabilized Au 13 clusters. The role of PVP in their catalytic activities

    NASA Astrophysics Data System (ADS)

    Okumura, Mitsutaka; Kitagawa, Yasutaka; Kawakami, Takashi; Haruta, Masatake

    2008-06-01

    Hybrid density functional calculations have been carried out for Au 13-poly( N-vinyl-2-pyrrolidone), abbreviated as Au 13-PVP, and related model clusters, Au 13-PVP 4, Au 13-PVP-O 2 and Au 13-PVP 4-O 2, to discuss the variation in the electronic structure of Au 13 clusters by PVP adsorption. The calculations have shown that the charge transfer from the adsorbed PVP to Au 13 produces negatively charged O 2 on Au 13-PVP 4. These findings suggest that PVP acts not only as a stabilizer to prevent the aggregation of Au clusters but also as an electron donor to Au clusters. Thus we conclude that the catalytic activities of Au clusters are affected by the adsorbed PVPs.

  2. Synthesis, characterization and catalytic activity of indium substituted nanocrystalline Mobil Five (MFI) zeolite

    SciTech Connect

    Shah, Kishor Kr.; Nandi, Mithun; Talukdar, Anup K.

    2015-06-15

    Highlights: • In situ modification of the MFI zeolite by incorporation of indium. • The samples were characterized by XRD, FTIR, TGA, UV–vis (DRS), SAA, EDX and SEM. • The incorporation of indium was confirmed by XRD, FT-IR, UV–vis (DRS), EDX and TGA. • Hydroxylation of phenol reaction was studied on the synthesized catalysts. - Abstract: A series of indium doped Mobil Five (MFI) zeolite were synthesized hydrothermally with silicon to aluminium and indium molar ratio of 100 and with aluminium to indium molar ratios of 1:1, 2:1 and 3:1. The MFI zeolite phase was identified by XRD and FT-IR analysis. In XRD analysis the prominent peaks were observed at 2θ values of around 6.5° and 23° with a few additional shoulder peaks in case of all the indium incorporated samples suggesting formation of pure phase of the MFI zeolite. All the samples under the present investigation were found to exhibit high crystallinity (∼92%). The crystallite sizes of the samples were found to vary from about 49 to 55 nm. IR results confirmed the formation of MFI zeolite in all cases showing distinct absorbance bands near 1080, 790, 540, 450 and 990 cm{sup −1}. TG analysis of In-MFI zeolites showed mass losses in three different steps which are attributed to the loss due to adsorbed water molecules and the two types TPA{sup +} cations. Further, the UV–vis (DRS) studies reflected the position of the indium metal in the zeolite framework. Surface area analysis of the synthesized samples was carried out to characterize the synthesized samples The analysis showed that the specific surface area ranged from ∼357 to ∼361 m{sup 2} g{sup −1} and the pore volume of the synthesized samples ranged from 0.177 to 0.182 cm{sup 3} g{sup −1}. The scanning electron microscopy studies showed the structure of the samples to be rectangular and twinned rectangular shaped. The EDX analysis was carried out for confirmation of Si, Al and In in zeolite frame work. The catalytic activities of

  3. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells.

    PubMed

    McNutt, Markey C; Lagace, Thomas A; Horton, Jay D

    2007-07-20

    Proprotein convertase subtilisin/kexin type 9 (PCSK9), a member of the proteinase K subfamily of subtilases, promotes internalization and degradation of low density lipoprotein receptors (LDLRs) after binding the receptor on the surface of hepatocytes. PCSK9 has autocatalytic activity that releases the prodomain at the N terminus of the protein. The prodomain remains tightly associated with the catalytic domain as the complex transits the secretory pathway. It is not known whether enzymatic activity is required for the LDLR-reducing effects of PCSK9. Here we expressed the prodomain together with a catalytically inactive protease domain in cells and purified the protein from the medium. The ability of the catalytically inactive PCSK9 to bind and degrade LDLRs when added to culture medium of human hepatoma HepG2 cells at physiological concentrations was similar to that seen using wild-type protein. Similarly, a catalytic-dead version of a gain-of-function mutant, PCSK9(D374Y), showed no loss of activity compared with a catalytically active counterpart; both proteins displayed approximately 10-fold increased activity in degradation of cell surface LDLRs compared with wild-type PCSK9. We conclude that the ability of PCSK9 to degrade LDLRs is independent of catalytic activity and suggest that PCSK9 functions as a chaperone to prevent LDLR recycling and/or to target LDLRs for lysosomal degradation.

  4. Factors affecting farm noise during common agricultural activities.

    PubMed

    Franklin, R C; Depczynski, J; Challinor, K; Williams, W; Fragar, L J

    2006-05-01

    Hearing injury due to exposure to excessive noise during common farming activities is a significant problem for farmers. The aim of this study was to investigate factors that affect the level of risk to hearing caused by common farming activities. Noise levels on farms were measured across a range of activities and producer groups, and situational factors that effect noise levels were also investigated. Older tractors were found to be 6 dB louder than newer tractors. Cabs reduced noise to the operator by 16 dB, which was halved to 8 dB if a door was open. Radios added between 3 and 5 dB to the noise in the cab. These variables significantly affect the noise level at the ear of operators and others in the workplace, and affect the subsequent exposure limits that are considered safe. Situational factors need to be considered in assessing the level of risk to farmers' hearing and in choosing noise management strategies on the farm. This information has been incorporated into material about hearing and discussions with farmers who participated in field day hearing screening programs in Australia.

  5. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application.

  6. Ni-, Pd-, or Pt-catalyzed ethylene dimerization: a mechanistic description of the catalytic cycle and the active species.

    PubMed

    Roy, Dipankar; Sunoj, Raghavan B

    2010-03-07

    Two key mechanistic possibilities for group 10 transition metal [M(eta(3)-allyl)(PMe(3))](+) catalyzed (where M = Ni(II), Pd(II) and Pt(II)) ethylene dimerization are investigated using density functional theory methods. The nature of the potential active catalysts in these pathways is analyzed to gain improved insights into the mechanism of ethylene dimerization to butene. The catalytic cycle is identified as involving typical elementary steps in transition metal-catalyzed C-C bond formation reactions, such as oxidative insertion as well as beta-H elimination. The computed kinetic and thermodynamic features indicate that a commonly proposed metal hydride species (L(n)M-H) is less likely to act as the active species as compared to a metal-ethyl species (L(n)M-CH(2)CH(3)). Of the two key pathways considered, the active species is predicted to be a metal hydride in pathway-1, whereas a metal alkyl complex serves as the active catalyst in pathway-2. A metal-mediated hydride shift from a growing metal alkyl chain to the ethylene molecule, bound to the metal in an eta(2) fashion, is predicted to be the preferred route for the generation of the active species. Among the intermediates involved in the catalytic cycle, metal alkyls with a bound olefin are identified as thermodynamically stable for all three metal ions. In general, the Ni-catalyzed pathways are found to be energetically more favorable than those associated with Pd and Pt catalysts.

  7. Boosting catalytic activity of metal nanoparticles for 4-nitrophenol reduction: Modification of metal naoparticles with poly(diallyldimethylammonium chloride).

    PubMed

    You, Jyun-Guo; Shanmugam, Chandirasekar; Liu, Yao-Wen; Yu, Cheng-Ju; Tseng, Wei-Lung

    2017-02-15

    Most of the previously reported studies have focused on the change in the size, morphology, and composition of metal nanocatalysts for improving their catalytic activity. Herein, we report poly(diallyldimethylammonium chloride) [PDDA]-stabilized nanoparticles (NPs) of platinum (Pt) and palladium (Pd) as highly active and efficient catalysts for hydrogenation of 4-nitrophenol (4-NP) in the presence of NaBH4. PDDA-stabilized Pt and Pd NPs possessed similar particle size and same facet with citrate-capped Pt and Pd NPs, making this study to investigate the inter-relationship between catalytic activity and surface ligand without the consideration of the effects of particle size and facet. Compared to citrate-capped Pt and Pd NPs, PDDA-stabilized Pt and Pd NPs exhibited excellent pH and salt stability. PDDA could serve as an electron acceptor for metal NPs to produce the net positive charges on the metal surface, which provide strong electrostatic attraction with negatively charged nitrophenolate and borohydride ions. The activity parameter and rate constant of PDDA-stabilized metal NPs were higher than those of citrate-capped metal NPs. Compared to the previously reported Pd nanomaterials for the catalysis of NaBH4-mediated reduction of 4-NP, PDDA-stabilized Pd NPs exhibited the extremely high activity parameter (195s(-1)g(-1)) and provided excellent scalability and reusability.

  8. Catalytic Reforming

    SciTech Connect

    Little, D.M.

    1985-01-01

    Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

  9. Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS.

    PubMed

    Qadir, Kamran; Joo, Sang Hoon; Mun, Bongjin S; Butcher, Derek R; Renzas, J Russell; Aksoy, Funda; Liu, Zhi; Somorjai, Gabor A; Park, Jeong Young

    2012-11-14

    Recent progress in colloidal synthesis of nanoparticles with well-controlled size, shape, and composition, together with development of in situ surface science characterization tools, such as ambient pressure X-ray photoelectron spectroscopy (APXPS), has generated new opportunities to unravel the surface structure of working catalysts. We report an APXPS study of Ru nanoparticles to investigate catalytically active species on Ru nanoparticles under oxidizing, reducing, and CO oxidation reaction conditions. The 2.8 and 6 nm Ru nanoparticle model catalysts were synthesized in the presence of poly(vinyl pyrrolidone) polymer capping agent and deposited onto a flat Si support as two-dimensional arrays using the Langmuir-Blodgett deposition technique. Mild oxidative and reductive characteristics indicate the formation of surface oxide on the Ru nanoparticles, the thickness of which is found to be dependent on nanoparticle size. The larger 6 nm Ru nanoparticles were oxidized to a smaller extent than the smaller Ru 2.8 nm nanoparticles within the temperature range of 50-200 °C under reaction conditions, which appears to be correlated with the higher catalytic activity of the bigger nanoparticles. We found that the smaller Ru nanoparticles form bulk RuO(2) on their surfaces, causing the lower catalytic activity. As the size of the nanoparticle increases, the core-shell type RuO(2) becomes stable. Such in situ observations of Ru nanoparticles are useful in identifying the active state of the catalysts during use and, hence, may allow for rational catalyst designs for practical applications.

  10. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives.

    PubMed

    Furuya, Toshiki; Kino, Kuniki

    2014-02-01

    4-Hydroxyphenylacetate 3-hydroxylases (HPAHs) of the two-component flavin-dependent monooxygenase family are attractive enzymes that possess the catalytic potential to synthesize valuable ortho-diphenol compounds from simple monophenol compounds. In this study, we investigated the catalytic activity of HPAH from Pseudomonas aeruginosa strain PAO1 toward cinnamic acid derivatives. We prepared Escherichia coli cells expressing the hpaB gene encoding the monooxygenase component and the hpaC gene encoding the oxidoreductase component. E. coli cells expressing HpaBC exhibited no or very low oxidation activity toward cinnamic acid, o-coumaric acid, and m-coumaric acid, whereas they rapidly oxidized p-coumaric acid to caffeic acid. Interestingly, after p-coumaric acid was almost completely consumed, the resulting caffeic acid was further oxidized to 3,4,5-trihydroxycinnamic acid. In addition, HpaBC exhibited oxidation activity toward 3-(4-hydroxyphenyl)propanoic acid, ferulic acid, and coniferaldehyde to produce the corresponding ortho-diphenols. We also investigated a flask-scale production of caffeic acid from p-coumaric acid as the model reaction for HpaBC-catalyzed syntheses of hydroxycinnamic acids. Since the initial concentrations of the substrate p-coumaric acid higher than 40 mM markedly inhibited its HpaBC-catalyzed oxidation, the reaction was carried out by repeatedly adding 20 mM of this substrate to the reaction mixture. Furthermore, by using the HpaBC whole-cell catalyst in the presence of glycerol, our experimental setup achieved the high-yield production of caffeic acid, i.e., 56.6 mM (10.2 g/L) within 24 h. These catalytic activities of HpaBC will provide an easy and environment-friendly synthetic approach to hydroxycinnamic acids.

  11. Synthesis of chitosan supported palladium nanoparticles and its catalytic activity towards 2-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.

    2016-05-01

    Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.

  12. [State of Fungal Lipases of Rhizopus microsporus, Penicillium sp. and Oospora lactis in Border Layers Water-Solid Phase and Factors Affecting Catalytic Properties of Enzymes].

    PubMed

    Khasanov, Kh T; Davranov, K; Rakhimov, M M

    2015-01-01

    We demonstrated that a change in the catalytic activity of fungal lipases synthesized by Rhizopus microsporus, Penicillium sp. and Oospora lactis and their ability to absorb on different sorbents depended on the nature of groups on the solid phase surface in the model systems water: lipid and water: solid phase. Thus, the stability of Penicillium sp. lipases increased 85% in the presence ofsorsilen or DEAE-cellulose, and 55% of their initial activity respectively was preserved. In the presence of silica gel and CM-cellulose, a decreased rate of lipid hydrolysis by Pseudomonas sp. enzymes was observed in water medium, and the hydrolysis rate increased by 2.4 and 1.5 times respectively in the presence of aminoaerosil and polykefamid. In an aqueous-alcohol medium, aminoaerosil and polykefamid decreased the rate of substrate hydrolysis by more than 30 times. The addition of aerosil to aqueous and aqueous-alcohol media resulted in an increase in the hydrolysis rate by 1.2-1.3 times. Sorsilen stabilized Penicillium sp. lipase activity at 40, 45, 50 and 55 degrees C. Either stabilization or inactivation of lipases was observed depending on the pH of the medium and the nature of chemical groups localized on the surface of solid phase. The synthetizing activity of lipases also changed depending on the conditions.

  13. Heat Transfer to Surfaces of Finite Catalytic Activity in Frozen Dissociated Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Chung, Paul M.; Anderson, Aemer D.

    1961-01-01

    The heat transfer due to catalytic recombination of a partially dissociated diatomic gas along the surfaces of two-dimensional and axisymmetric bodies with finite catalytic efficiencies is studied analytically. An integral method is employed resulting in simple yet relatively complete solutions for the particular configurations considered. A closed form solution is derived which enables one to calculate atom mass-fraction distribution, therefore catalytic heat transfer distribution, along the surface of a flat plate in frozen compressible flow with and without transpiration. Numerical calculations are made to determine the atom mass-fraction distribution along an axisymmetric conical body with spherical nose in frozen hypersonic compressible flow. A simple solution based on a local similarity concept is found to be in good agreement with these numerical calculations. The conditions are given for which the local similarity solution is expected to be satisfactory. The limitations on the practical application of the analysis to the flight of the blunt bodies in the atmosphere are discussed. The use of boundary-layer theory and the assumption of frozen flow restrict application of the analysis to altitudes between about 150,000 and 250,000 feet.

  14. Destruction of problematic airborne contaminants by hydrogen reduction using a Catalytically Active, Regenerable Sorbent (CARS)

    NASA Technical Reports Server (NTRS)

    Thompson, John O.; Akse, James R.

    1993-01-01

    Thermally regenerable sorbent beds were demonstrated to be a highly efficient means for removal of toxic airborne trace organic contaminants aboard spacecraft. The utilization of the intrinsic weight savings available through this technology was not realized since many of the contaminants desorbed during thermal regeneration are poisons to the catalytic oxidizer or form highly toxic oxidation by-products in the Trace Contaminant Control System (TCCS). Included in this class of compounds are nitrogen, sulfur, silicon, and halogen containing organics. The catalytic reduction of these problematic contaminants using hydrogen at low temperatures (200-300 C) offers an attractive route for their destruction since the by-products of such reactions, hydrocarbons and inorganic gases, are easily removed by existing technology. In addition, the catalytic oxidizer can be operated more efficiently due to the absence of potential poisons, and any posttreatment beds can be reduced in size. The incorporation of the catalyst within the sorbent bed further improves the system's efficiency. The demonstration of this technology provides the basis for an efficient regenerable TCCS for future NASA missions and can be used in more conventional settings to efficiently remove environmental pollutants.

  15. Catalytic Activity of Platinum Monolayer on Iridium and Rhenium Alloy Nanoparticles for the Oxygen Reduction Reaction

    SciTech Connect

    Karan, Hiroko I.; Sasaki, Kotaro; Kuttiyiel, Kurian; Farberow, Carrie A.; Mavrikakis, Manos; Adzic, Radoslav R.

    2012-05-04

    A new type of electrocatalyst with a core–shell structure that consists of a platinum monolayer shell placed on an iridium–rhenium nanoparticle core or platinum and palladium bilayer shell deposited on that core has been prepared and tested for electrocatalytic activity for the oxygen reduction reaction. Carbon-supported iridium–rhenium alloy nanoparticles with several different molar ratios of Ir to Re were prepared by reducing metal chlorides dispersed on Vulcan carbon with hydrogen gas at 400 °C for 1 h. These catalysts showed specific electrocatalytic activity for oxygen reduction reaction comparable to that of platinum. The activities of PtML/PdML/Ir2Re1, PtML/Pd2layers/Ir2Re1, and PtML/Pd2layers/Ir7Re3 catalysts were, in fact, better than that of conventional platinum electrocatalysts, and their mass activities exceeded the 2015 DOE target. Our density functional theory calculations revealed that the molar ratio of Ir to Re affects the binding strength of adsorbed OH and, thereby, the O2 reduction activity of the catalysts. The maximum specific activity was found for an intermediate OH binding energy with the corresponding catalyst on the top of the volcano plot. The monolayer concept facilitates the use of much less platinum than in other approaches. Finally, the results with the PtML/PdML/Ir2Re electrocatalyst indicate that it is a promising alternative to conventional Pt electrocatalysts in low-temperature fuel cells.

  16. The catalytic activity of the kinase ZAP-70 mediates basal signaling and negative feedback of the T cell receptor pathway

    PubMed Central

    Cheng, Debra A; Kadlecek, Theresa A.; Cantor, Aaron J.; Kuriyan, John

    2015-01-01

    T cell activation must be properly regulated to ensure normal T cell development and effective immune responses to pathogens and transformed cells while avoiding autoimmunity. The mechanisms controlling the fine-tuning of T cell receptor (TCR) signaling and T cell activation are unclear. The Syk family kinase ζ chain–associated protein kinase of 70 kD (ZAP-70) is a critical component of the TCR signaling machinery that leads to T cell activation. To elucidate potential feedback targets that are dependent on the kinase activity of ZAP-70, we performed a mass spectrometry–based, phosphoproteomic study to quantify temporal changes in phosphorylation patterns after inhibition of ZAP-70 catalytic activity. Our results provide insights into the fine-tuning of the T cell signaling network before and after TCR engagement. The data indicate that the kinase activity of ZAP-70 stimulates negative feedback pathways that target the Src family kinase Lck and modulate the phosphorylation patterns of the immunoreceptor tyrosine-based activation motifs (ITAMs) of the CD3 and ζ-chain components of the TCR, and of downstream signaling molecules, including ZAP-70. We developed a computational model that provides a unified mechanistic explanation for the experimental findings on ITAM phosphorylation in wild-type cells, ZAP-70–deficient cells, and cells with inhibited ZAP-70 catalytic activity. This model incorporates negative feedback regulation of Lck activity by the kinase activity of ZAP-70 and makes unanticipated specific predictions for the order in which tyrosines in the ITAMs of TCR ζ-chains must be phosphorylated to be consistent with the experimental data. PMID:25990959

  17. Chemical Engineering of Enzymes: Altered Catalytic Activity, Predictable Selectivity and Exceptional Stability of the Semisynthetic Peroxidase Seleno-Subtilisin

    NASA Astrophysics Data System (ADS)

    Häring, Dietmar; Schreier, Peter

    The increasing demand for enzymes as highly selective, mild, and environmentally benign catalysts is often limited by the lack of an enzyme with the desired catalytic activity or substrate selectivity and by their instability in biotechnological processes. The previous answers to these problems comprised genetically engineered enzymes and several classes of enzyme mimics. Here we describe the potential of chemical enzyme engineering: native enzymes can be modified by merely chemical means and basic equipment yielding so-called semisynthetic enzymes. Thus, the high substrate selectivity of the enzymatic peptide framework is combined with the catalytic versatility of a synthetic active site. We illustrate the potential of chemically engineered enzymes with the conception of the semisynthetic peroxidase seleno-subtilisin. First, the serine endoprotease subtilisin was crystallized and cross-linked with glutaraldehyde to give cross-linked enzyme crystals which were found to be insoluble in water or organic solvents and highly stable. Second, serine 221 in the active site (Enz-OH) was chemically converted into an oxidized derivative of selenocystein (Enz-SeO2H). As a consequence, the former proteolytic enzyme gained peroxidase activity and catalyzed the selective reduction of hydroperoxides. Due to the identical binding sites of the semisynthetic peroxidase and the protease, the substrate selectivity of seleno-subtilisin was predictable in view of the well-known selectivity of subtilisin.

  18. A computational analysis of the structural determinants of APOBEC3's catalytic activity and vulnerability to HIV-1 Vif

    PubMed Central

    Shandilya, M.D. Shivender; Bohn, Markus-Frederik; Schiffer, Celia A.

    2016-01-01

    APOBEC3s (A3) are Zn2+ dependent cytidine deaminases with diverse biological functions and implications for cancer and immunity. Four of the seven human A3s restrict HIV by 'hypermutating' the reverse-transcribed viral genomic DNA. HIV Virion Infectivity Factor (Vif) counters this restriction by targeting A3s to proteasomal degradation. However, there is no apparent correlation between catalytic activity, Vif binding, and sequence similarity between A3 domains. Our comparative structural analysis reveals features required for binding Vif and features influencing polynucleotide deaminase activity in A3 proteins. All Vif-binding A3s share a negatively charged surface region that includes residues previously implicated in binding the highly-positively charged Vif. Additionally, catalytically active A3s share a positively charged groove near the Zn2+ coordinating active site, which may accommodate the negatively charged polynucleotide substrate. Our findings suggest surface electrostatics, as well as the spatial extent of substrate accommodating region, are critical determinants of substrate and Vif binding across A3 proteins with implications for anti-retroviral and anti-cancer therapeutic design. PMID:25461536

  19. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters.

    PubMed

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the "structure-activity" relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au(3+) ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  20. Tyrosine phosphorylation of protein kinase CK2 by Src-related tyrosine kinases correlates with increased catalytic activity.

    PubMed Central

    Donella-Deana, Arianna; Cesaro, Luca; Sarno, Stefania; Ruzzene, Maria; Brunati, Anna Maria; Marin, Oriano; Vilk, Greg; Doherty-Kirby, Amanda; Lajoie, Gilles; Litchfield, David W; Pinna, Lorenzo A

    2003-01-01

    Casein kinase-2 (CK2) is a pleiotropic and constitutively active serine/threonine protein kinase composed of two catalytic (alpha and/or alpha') and two regulatory beta-subunits, whose regulation is still not well understood. In the present study, we show that the catalytic subunits of human CK2, but not the regulatory beta-subunits, are readily phosphorylated by the Src family protein tyrosine kinases Lyn and c-Fgr to a stoichiometry approaching 2 mol phosphotyrosine/mol CK2alpha with a concomitant 3-fold increase in catalytic activity. We also show that endogenous CK2alpha becomes tyrosine-phosphorylated in pervanadate-treated Jurkat cells. Both tyrosine phosphorylation and stimulation of activity are suppressed by the specific Src inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4- d ]pyrimidine. By comparison, mutations giving rise to inactive forms of CK2alpha do not abrogate and, in some cases, stimulate Lyn and c-Fgr-dependent tyrosine phosphorylation of CK2. Several radiolabelled phosphopeptides could be resolved by HPLC, following tryptic digestion of CK2alpha that had been phosphoradiolabelled by incubation with [(32)P]ATP and c-Fgr. The most prominent phosphopeptide co-migrates with a synthetic peptide encompassing the 248-268 sequence, phosphorylated previously by c-Fgr at Tyr(255) in vitro. The identification of Tyr(255) as a phosphorylated residue was also supported by MS sequencing of both the phosphorylated and non-phosphorylated 248-268 tryptic fragments from CK2alpha and by on-target phosphatase treatment. A CK2alpha mutant in which Tyr(255) was replaced by phenylalanine proved less susceptible to phosphorylation and refractory to stimulation by c-Fgr. PMID:12628006

  1. Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    PubMed Central

    Cools, Roshan; Nakamura, Kae; Daw, Nathaniel D

    2011-01-01

    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism. PMID:20736991

  2. Effects of reduction temperature and metal-support interactions on the catalytic activity of Pt/gamma-Al2O3 and Pt/TiO2 for the oxidation of CO in the presence and absence of H2.

    PubMed

    Alexeev, Oleg S; Chin, Soo Yin; Engelhard, Mark H; Ortiz-Soto, Lorna; Amiridis, Michael D

    2005-12-15

    TiO2- and gamma-Al2O3-supported Pt catalysts were characterized by HRTEM, XPS, EXAFS, and in situ FTIR spectroscopy after activation at various conditions, and their catalytic properties were examined for the oxidation of CO in the absence and presence of H2 (PROX). When gamma-Al2O3 was used as the support, the catalytic, electronic, and structural properties of the Pt particles formed were not affected substantially by the pretreatment conditions. In contrast, the surface properties and catalytic activity of Pt/TiO2 were strongly influenced by the pretreatment conditions. In this case, an increase in the reduction temperature led to higher electron density on Pt, altering its chemisorptive properties, weakening the Pt-CO bonds, and increasing its activity for the oxidation of CO. The in situ FTIR data suggest that both the terminal and bridging CO species adsorbed on fully reduced Pt are active for this reaction. The high activity of Pt/TiO2 for the oxidation of CO can also be attributed to the ability of TiO2 to provide or stabilize highly reactive oxygen species at the metal-support interface. However, such species appear to be more reactive toward H2 than CO. Consequently, Pt/TiO2 shows substantially lower selectivities toward CO oxidation under PROX conditions than Pt/gamma-Al2O3.

  3. Physico-Chemical Property and Catalytic Activity of a CeO2-Doped MnO(x)-TiO2 Catalyst with SO2 Resistance for Low-Temperature NH3-SCR of NO(x).

    PubMed

    Shin, Byeongkil; Chun, Ho Hwan; Cha, Jin-Sun; Shin, Min-Chul; Lee, Heesoo

    2016-05-01

    The effects of CeO2 addition on the catalytic activity and the SO2 resistance of CeO2-doped MnO(x)-TiO2 catalysts were investigated for the low-temperature selective catalytic reduction (SCR) with NH3 of NO(x) emissions in marine applications. The most active catalyst was obtained from 30 wt% CeO2-MnO(x)-TiO2 catalyst in the whole temperature range of 100-300 degrees C at a low gas hourly space velocity (GHSV) of 10,000 h(-)1, and its de-NO(x) efficiency was higher than 90% over 250 degrees C. The enhanced catalytic activity may contribute to the dispersion state and catalytic acidity on the catalyst surface, and the highly dispersed Mn and Ce on the nano-scaled TiO2 catalyst affects the increase of Lewis and Brønsted acid sites. A CeO2-rich additive on MnO(x)-TiO2 could provide stronger catalytic acid sites, associated with NH3 adsorption and the SCR performance. As the results of sulfur resistance in flue gas that contains SO2, the de-NO(x) efficiency of MnO(x)-TiO2 decreased by 15% over 200 degrees C, whereas that of 30 wt% ceria-doped catalyst increased by 14-21% over 150 degrees C. The high SO2 resistance of CeO2-MnO(x)-TiO2 catalysts that resulted from the addition of ceria suppressed the formation of Mn sulfate species, which led to deactivation on the surface of nano-catalyst.

  4. Mutations in the Non-Catalytic Subunit Dpb2 of DNA Polymerase Epsilon Affect the Nrm1 Branch of the DNA Replication Checkpoint

    PubMed Central

    Rudzka, Justyna; Campbell, Judith L.; Jonczyk, Piotr; Fijałkowska, Iwona J.

    2017-01-01

    To preserve genome integrity, the S-phase checkpoint senses damaged DNA or nucleotide depletion and when necessary, arrests replication progression and delays cell division. Previous studies, based on two pol2 mutants have suggested the involvement of DNA polymerase epsilon (Pol ε) in sensing DNA replication accuracy in Saccharomyces cerevisiae. Here we have studied the involvement of Pol ε in sensing proper progression of DNA replication, using a mutant in DPB2, the gene coding for a non-catalytic subunit of Pol ε. Under genotoxic conditions, the dpb2-103 cells progress through S phase faster than wild-type cells. Moreover, the Nrm1-dependent branch of the checkpoint, which regulates the expression of many replication checkpoint genes, is impaired in dpb2-103 cells. Finally, deletion of DDC1 in the dpb2-103 mutant is lethal supporting a model of strand-specific activation of the replication checkpoint. This lethality is suppressed by NRM1 deletion. We postulate that improper activation of the Nrm1-branch may explain inefficient replication checkpoint activation in Pol ε mutants. PMID:28107343

  5. Comparison of Two Preparation Methods on Catalytic Activity and Selectivity of Ru-Mo/HZSM5 for Methane Dehydroaromatization

    DOE PAGES

    Petkovic, Lucia M.; Ginosar, Daniel M.

    2014-01-01

    Catalytic performance of Mo/HZSM5 and Ru-Mo/HZSM5 catalysts prepared by vaporization-deposition of molybdenum trioxide and impregnation with ammonium heptamolybdate was analyzed in terms of catalyst activity and selectivity, nitrogen physisorption analyses, temperature-programmed oxidation of carbonaceous residues, and temperature-programmed reduction. Vaporization-deposition rendered the catalyst more selective to ethylene and coke than the catalyst prepared by impregnation. This result was assigned to lower interaction of molybdenum carbide with the zeolite acidic sites.

  6. High catalytic activity of heteropolynuclear cyanide complexes containing cobalt and platinum ions: visible-light driven water oxidation.

    PubMed

    Yamada, Yusuke; Oyama, Kohei; Gates, Rachel; Fukuzumi, Shunichi

    2015-05-04

    A near-stoichiometric amount of O2 was evolved as observed in the visible-light irradiation of an aqueous buffer (pH 8) containing [Ru(II) (2,2'-bipyridine)3 ] as a photosensitizer, Na2 S2 O8 as a sacrificial electron acceptor, and a heteropolynuclear cyanide complex as a water-oxidation catalyst. The heteropolynuclear cyanide complexes exhibited higher catalytic activity than a polynuclear cyanide complex containing only Co(III) or Pt(IV) ions as C-bound metal ions. The origin of the synergistic effect between Co and Pt ions is discussed in relation to electronic and local atomic structures of the complexes.

  7. Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation

    SciTech Connect

    Zhang, Yawen; Huang, Wenyu; Habas, Susan E.; Kuhn, John N.; Grass, Michael E.; Yamada, Yusuke; Yang, Peidong; Somorjai, Gabor A.

    2008-07-22

    Near-monodisperse Ni{sub 1-x}Cu{sub x} (x = 0.2-0.8) bimetallic nanocrystals were synthesized by a one-pot thermolysis approach in oleylamine/1-octadecene, using metal acetylacetonates as precursors. The nanocrystals form large-area 2D superlattices, and display a catalytic synergistic effect in the hydrolysis of NaBH{sub 4} to generate H{sub 2} at x = 0.5 in a strongly basic medium. The Ni{sub 0.5}Cu{sub 0.5} nanocrystals show the lowest activation energy, and also exhibit the highest H{sub 2} generation rate at 298 K.

  8. Catalytic activity versus platinum-palladium nanoparticle size in low-temperature nitrogen monoxide reduction with hydrogen

    NASA Astrophysics Data System (ADS)

    Li, Hui

    A series of experimental gamma-alumina (a-Al2O3) supported monometallic platinum (Pt), monometallic palladium (Pd), and bimetallic Pt-Pd catalysts were synthesized. The activities of these catalysts for nitrogen monoxide (NO) reduction by hydrogen (H2) were tested. The uncalcined catalysts were more active than their corresponding calcined catalysts. The uncalcined Pd-rich bimetallic catalysts were found to be synergistic and more active than pure Pt catalysts. The average particle sizes of all these catalysts were smaller than 3.5 nm, except that of the calcined Pd-rich catalyst. Nanoparticles observed in calcined catalysts were smaller than those in uncalcined catalysts. Sizes of nanoparticles in pure Pt and Pt-rich catalysts displayed normal distribution, while sizes of nanoparticles in pure Pd and Pd-rich catalysts displayed bimodal distribution. The various catalytic activities of these catalysts are explained by the differences in the sizes and surface compositions of nanoparticles formed in these catalysts.

  9. Copper sulfide nanoparticle-decorated graphene as a catalytic amplification platform for electrochemical detection of alkaline phosphatase activity.

    PubMed

    Peng, Juan; Han, Xiao-Xia; Zhang, Qing-Chun; Yao, Hui-Qin; Gao, Zuo-Ning

    2015-06-09

    Copper sulfide nanoparticle-decorated graphene sheet (CuS/GR) was successfully synthesized and used as a signal amplification platform for electrochemical detection of alkaline phosphatase activity. First, CuS/GR was prepared through a microwave-assisted hydrothermal approach. The CuS/GR nanocomposites exhibited excellent electrocatalytic activity toward the oxidation of ALP hydrolyzed products such as 1-naphthol, which produced a current response. Thus, a catalytic amplification platform based on CuS/GR nanocomposite for electrochemical detection of ALP activity was designed using 1-naphthyl phosphate as a model substrate. The current response increased linearly with ALP concentration from 0.1 to 100 U L(-1) with a detection limit of 0.02 U L(-1). The assay was applied to estimate ALP activity in human serum samples with satisfactory results. This strategy may find widespread and promising applications in other sensing systems that involves ALP.

  10. High catalytic activity of palladium(II)-exchanged mesoporous sodalite and NaA zeolite for bulky aryl coupling reactions: reusability under aerobic conditions.

    PubMed

    Choi, Minkee; Lee, Dong-Hwan; Na, Kyungsu; Yu, Byung-Woo; Ryoo, Ryong

    2009-01-01

    Exchange for the better: Mesoporous sodalite and NaA zeolite exchanged with Pd(2+) exhibit remarkably high activity and reusability in C-C coupling reactions under aerobic atmosphere. It is proposed that the catalytic reactions are mediated by a molecular Pd(0) species generated in situ within the pores (see picture), which is oxidized back to Pd(2+) by O(2), preventing the formation of catalytically inactive Pd(0) agglomerates.

  11. Catalytic activity for nitrate electroreduction of nano-structured polypyrrole films electrochemically synthesized onto a copper electrode

    NASA Astrophysics Data System (ADS)

    Phuong Thoa Nguyen, Thi; Thinh Nguyen, Viet; Hai Le, Viet

    2010-03-01

    Polypyrrole film was synthesized electrochemically onto a copper electrode in oxalate, oxalic acid and salicylic acid solutions. The electrochemical oxidation of pyrrole to form polypyrrole film and the electroreduction of nitrate and nitrite ions at synthesized Ppy modified copper electrodes (Ppy/Cu) in potassium chloride aqueous solutions were studied by cyclic voltammetry. Polypyrrole nano-porous film formation and the activity of the modified Ppy/Cu electrode for nitrate reduction were found to be dependent on the synthesis medium and conditions: pH; content and concentrations of the electrolytes; pyrrole concentration; electrode potential; electrolysis duration; drying time and temperature for finishing the Ppy/Cu electrode and immersion time in water for storing the Ppy/Cu electrode before use. High catalytic activity for nitrate reduction was found for composite electrodes with nano-porous structured Ppy films. The Ppy/Cu electrodes prepared in oxalate buffer and salicylic acid solutions perform more stable catalytic activity for nitrate reduction; their service life is about ten times longer than for an electrode prepared in oxalic acid solution.

  12. Triosephosphate isomerase of Taenia solium (TTPI): phage display and antibodies as tools for finding target regions to inhibit catalytic activity.

    PubMed

    Sanabria-Ayala, Víctor; Belmont, Iaraset; Abraham, Landa

    2015-01-01

    Previous studies demonstrated that antibodies against triosephosphate isomerase of Taenia solium (TTPI) can alter its enzymatic catalysis. In the present study, we used antibodies produced against the NH2-terminal region of TTPI (1/3NH2TTPI) and the phage display technology to find target regions to inhibit TTPI activity. As a first step, we obtained polyclonal antibodies against non-conserved regions from the 1/3NH2TTPI, which had an inhibitory effect of about 74 % on catalytic activity. Afterward, they were used to screen a library of phage-displayed dodecapeptides; as a result, 41 phage mimotope clones were isolated and grouped according to their amino acid sequence, finding the consensus A1 (VPTXPI), A2 (VPTXXI), B (LTPGQ), and D (DPLPR). Antibodies against selected phage mimotope clones were obtained by rabbit's immunization; these ones clearly recognized TTPI by both Western blot and ELISA. However, only the mimotope PDTS16 (DSVTPTSVMAVA) clone, which belongs to the VPTXXI consensus, raised antibodies capable of inhibiting the TTPI catalytic activity in 45 %. Anti-PDTS16 antibodies were confronted to several synthetic peptides that encompass the 1/3NH2TTPI, and they only recognized three, which share the motif FDTLQK belonging to the helix-α1 in TTPI. This suggests that this motif is the main part of the epitope recognized by anti-PDTS16 antibodies and revealed its importance for TTPI catalysis.

  13. New Ulvan-Degrading Polysaccharide Lyase Family: Structure and Catalytic Mechanism Suggests Convergent Evolution of Active Site Architecture.

    PubMed

    Ulaganathan, ThirumalaiSelvi; Boniecki, Michal T; Foran, Elizabeth; Buravenkov, Vitaliy; Mizrachi, Naama; Banin, Ehud; Helbert, William; Cygler, Miroslaw

    2017-03-23

    Ulvan is a complex sulfated polysaccharide biosynthesized by green seaweed and contains predominantly rhamnose, xylose, and uronic acid sugars. Ulvan-degrading enzymes have only recently been identified and added to the CAZy ( www.cazy.org ) database as family PL24, but neither their structure nor catalytic mechanism(s) are yet known. Several homologous, new ulvan lyases, have been discovered in Pseudoalteromonas sp. strain PLSV, Alteromonas LOR, and Nonlabens ulvanivorans, defining a new family PL25, with the lyase encoded by the gene PLSV_3936 being one of them. This enzyme cleaves the glycosidic bond between 3-sulfated rhamnose (R3S) and glucuronic acid (GlcA) or iduronic acid (IdoA) via a β-elimination mechanism. We report the crystal structure of PLSV_3936 and its complex with a tetrasaccharide substrate. PLSV_3936 folds into a seven-bladed β-propeller, with each blade consisting of four antiparallel β-strands. Sequence conservation analysis identified a highly conserved region lining at one end of a deep crevice on the protein surface. The putative active site was identified by mutagenesis and activity measurements. Crystal structure of the enzyme with a bound tetrasaccharide substrate confirmed the identity of base and acid residues and allowed determination of the catalytic mechanism and also the identification of residues neutralizing the uronic acid carboxylic group. The PLSV_3936 structure provides an example of a convergent evolution among polysaccharide lyases toward a common active site architecture embedded in distinct folds.

  14. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    PubMed Central

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-01-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size. PMID:27476577

  15. Multi-shelled ceria hollow spheres with a tunable shell number and thickness and their superior catalytic activity.

    PubMed

    Liao, Yuanyuan; Li, Yuan; Wang, Lei; Zhao, Yongxia; Ma, Danyang; Wang, Biqing; Wan, Yongxia; Zhong, Shengliang

    2017-01-31

    In this work, ceria multi-shelled nanospheres with a tunable shell number and thickness were prepared by a facile coordination polymer (CP) precursor method without the use of any template and surfactant. Interestingly, the number, thickness and structure of the shell can be tuned by varying the reaction time, reaction temperature, ratio of reagent and calcination temperature. The formation process of the multi-shelled hollow spheres was also investigated, which experienced a core contraction and shell separation process. Moreover, the multi-shelled CeO2 hollow nanospheres displayed excellent photocatalytic activity in the degradation of RhB. Au and AuPd nanoparticle loaded multi-shelled CeO2 nanocomposites were also prepared. Results show that Au/CeO2 multi-shelled hollow nanospheres showed eximious catalytic activity for the reduction of p-nitrophenol with a reaction rate constant k of 0.416 min. In addition, AuPd/CeO2 exhibited a remarkable catalytic activity for the conversion of CO. Employing this method, heavy rare earth oxide multi-shelled structures and light rare earth oxide solid spheres were obtained. This method may be employed for the preparation of other materials with complex structures.

  16. Green synthesis of Au-rGO nanocomposite and its catalytic activity in nitro-reduction and degradation of dyes

    NASA Astrophysics Data System (ADS)

    Saikia, Indranirekha; Hazarika, Moushumi; Tamuly, Chandan

    2016-10-01

    An eco-friendly, very simple method for synthesis of gold-reduced graphene oxide nanocomposite was developed using leaf extract of Piper pedicellatum C.DC. Its characterization was done by UV-visible, FT-IR, XRD, XPS, Raman, TGA, EDX, TEM analysis. The nanocomposite was very efficiently utilized as catalyst for reduction reaction of 3-nitroaniline and 4-nitrophenol. The kinetic and rate constant of nitro-reduction also reported in this study. The nanocomposite showed excellent catalytic activity for reduction of nitro aromatic compound within very short period of time. The dye which are used in industries such as rhodamine B, methyl red, methyl orange, methylene blue and bromocresol green were degraded rapidly and efficiently in a photocatalytic pathway by the as-synthesized Au-rGO nanocomposite with only 6% activity loss in degradation after the 10th cycle. So, Au-rGO composite has significant catalytic activity in nitroreduction and photocatalytic degradation of dye molecules under sunlight.

  17. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity

    NASA Astrophysics Data System (ADS)

    Aswathy Aromal, S.; Philip, Daizy

    2012-11-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. Most of the current methods involve known protocols which may be potentially harmful to either environment or human health. Recent research has been focused on green synthesis methods to produce new nanomaterials, ecofriendly and safer with sustainable commercial viability. The present work reports the green synthesis of gold nanoparticles using the aqueous extract of fenugreek (Trigonella foenum-graecum) as reducing and protecting agent. The pathway is based on the reduction of AuCl4- by the extract of fenugreek. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 25 nm could be obtained by controlling the synthesis parameters. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from clear lattice fringes in the HRTEM images, bright circular spots in the SAED pattern and peaks in the XRD pattern. FTIR spectrum indicates the presence of different functional groups present in the biomolecule capping the nanoparticles. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4. The catalytic activity is found to be size-dependent, the smaller nanoparticles showing faster activity.

  18. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity.

    PubMed

    Aswathy Aromal, S; Philip, Daizy

    2012-11-01

    The development of new synthesis methods for monodispersed nanocrystals using cheap and nontoxic chemicals, environmentally benign solvents and renewable materials remains a challenge to the scientific community. Most of the current methods involve known protocols which may be potentially harmful to either environment or human health. Recent research has been focused on green synthesis methods to produce new nanomaterials, ecofriendly and safer with sustainable commercial viability. The present work reports the green synthesis of gold nanoparticles using the aqueous extract of fenugreek (Trigonella foenum-graecum) as reducing and protecting agent. The pathway is based on the reduction of AuCl(4)(-) by the extract of fenugreek. This method is simple, efficient, economic and nontoxic. Gold nanoparticles having different sizes in the range from 15 to 25 nm could be obtained by controlling the synthesis parameters. The nanoparticles have been characterized by UV-Visible spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. The high crystallinity of nanoparticles is evident from clear lattice fringes in the HRTEM images, bright circular spots in the SAED pattern and peaks in the XRD pattern. FTIR spectrum indicates the presence of different functional groups present in the biomolecule capping the nanoparticles. The synthesized gold nanoparticles show good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH(4). The catalytic activity is found to be size-dependent, the smaller nanoparticles showing faster activity.

  19. Preparation and Catalytic Activity for Aerobic Glucose Oxidation of Crown Jewel Structured Pt/Au Bimetallic Nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Wang, Liqiong; Lu, Lilin; Toshima, Naoki

    2016-08-01

    Understanding of the “structure-activity” relations for catalysts at an atomic level has been regarded as one of the most important objectives in catalysis studies. Bimetallic nanoclusters (NCs) in its many types, such as core/shell, random alloy, cluster-in-cluster, bi-hemisphere, and crown jewel (one kind of atom locating at the top position of another kind of NC), attract significant attention owing to their excellent optical, electronic, and catalytic properties. PVP-protected crown jewel-structured Pt/Au (CJ-Pt/Au) bimetallic nanoclusters (BNCs) with Au atoms located at active top sites were synthesized via a replacement reaction using 1.4-nm Pt NCs as mother clusters even considering the fact that the replacement reaction between Pt and Au3+ ions is difficult to be occurred. The prepared CJ-Pt/Au colloidal catalysts characterized by UV-Vis, TEM, HR-TEM and HAADF-STEM-EELS showed a high catalytic activity for aerobic glucose oxidation, and the top Au atoms decorating the Pt NCs were about 15 times more active than the Au atoms of Au NCs with similar particle size.

  20. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity.

    PubMed

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Liu, Kun; Li, Mu; Yin, Daqiang

    2014-12-02

    Over the past few decades, human activities have accelerated the rates and extents of water eutrophication and global warming through increasing delivery of biologically available nitrogen such as nitrate and large emissions of anthropogenic greenhouse gases. In particular, nitrous oxide (N2O) is one of the most important greenhouse gases, because it has a 300-fold higher global warming potential than carbon dioxide. Microbial denitrification is a major pathway responsible for nitrate removal, and also a dominant source of N2O emissions from terrestrial or aquatic environments. However, whether the release of zinc oxide nanoparticles (ZnO NPs) into the environment affects microbial denitrification is largely unknown. Here we show that the presence of ZnO NPs lead to great increases in nitrate delivery (9.8-fold higher) and N2O emissions (350- and 174-fold higher in the gas and liquid phases, respectively). Our data further reveal that ZnO NPs significantly change the transcriptional regulations of glycolysis and polyhydroxybutyrate synthesis, which causes the decrease in reducing powers available for the reduction of nitrate and N2O. Moreover, ZnO NPs substantially inhibit the gene expressions and catalytic activities of key denitrifying enzymes. These negative effects of ZnO NPs on microbial denitrification finally cause lower nitrate removal and higher N2O emissions, which is likely to exacerbate water eutrophication and global warming.

  1. The catalytic subunit of Dictyostelium cAMP-dependent protein kinase -- role of the N-terminal domain and of the C-terminal residues in catalytic activity and stability.

    PubMed

    Etchebehere, L C; Van Bemmelen, M X; Anjard, C; Traincard, F; Assemat, K; Reymond, C; Véron, M

    1997-09-15

    The C subunit of Dictyostelium cAMP-dependent protein kinase (PKA) is unusually large (73 kDa) due to the presence of 330 amino acids N-terminal to the conserved catalytic core. The sequence following the core, including a C-terminal -Phe-Xaa-Xaa-Phe-COOH motif, is highly conserved. We have characterized the catalytic activity and stability of C subunits mutated in sequences outside the catalytic core and we have analyzed their ability to interact with the R subunit and with the heat-stable protein-kinase inhibitor PKI. Mutants carrying deletions in the N-terminal domain displayed little difference in their kinetic properties and retained their capacity to be inhibited by R subunit and by PKI. In contrast, the mutation of one or both of the phenylalanine residues in the C-terminal motif resulted in a decrease of catalytic activity and stability of the proteins. Inhibition by the R subunit or by PKI were however unaffected. Sequence-comparison analysis of other protein kinases revealed that a -Phe-Xaa-Xaa-Phe- motif is present in many Ser/Thr protein kinases, although its location at the very end of the polypeptide is a particular feature of the PKA family. We propose that the presence of this motif may serve to identify isoforms of protein kinases.

  2. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    PubMed

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  3. Enhanced Intrinsic Catalytic Activity of λ-MnO2 by Electrochemical Tuning and Oxygen Vacancy Generation.

    PubMed

    Lee, Sanghan; Nam, Gyutae; Sun, Jie; Lee, Jang-Soo; Lee, Hyun-Wook; Chen, Wei; Cho, Jaephil; Cui, Yi

    2016-07-18

    Chemically prepared λ-MnO2 has not been intensively studied as a material for metal-air batteries, fuel cells, or supercapacitors because of their relatively poor electrochemical properties compared to α- and δ-MnO2 . Herein, through the electrochemical removal of lithium from LiMn2 O4 , highly crystalline λ-MnO2 was prepared as an efficient electrocatalyst for the oxygen reduction reaction (ORR). The ORR activity of the material was further improved by introducing oxygen vacancies (OVs) that could be achieved by increasing the calcination temperature during LiMn2 O4 synthesis; a concentration of oxygen vacancies in LiMn2 O4 could be characterized by its voltage profile as the cathode in a lithiun-metal half-cell. λ-MnO2-z prepared with the highest OV exhibited the highest diffusion-limited ORR current (5.5 mA cm(-2) ) among a series of λ-MnO2-z electrocatalysts. Furthermore, the number of transferred electrons (n) involved in the ORR was >3.8, indicating a dominant quasi-4-electron pathway. Interestingly, the catalytic performances of the samples were not a function of their surface areas, and instead depended on the concentration of OVs, indicating enhancement in the intrinsic catalytic activity of λ-MnO2 by the generation of OVs. This study demonstrates that differences in the electrochemical behavior of λ-MnO2 depend on the preparation method and provides a mechanism for a unique catalytic behavior of cubic λ-MnO2 .

  4. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  5. Intolerance of uncertainty correlates with insula activation during affective ambiguity

    PubMed Central

    Simmons, Alan; Matthews, Scott C.; Paulus, Martin P.; Stein, Murray B.

    2009-01-01

    Intolerance of uncertainty (IU), or the increased affective response to situations with uncertain outcomes, is an important component process of anxiety disorders. Increased IU is observed in panic disorder (PD), obsessive compulsive disorder (OCD) and generalized anxiety disorder (GAD), and is thought to relate to dysfunctional behaviors and thought patterns in these disorders. Identifying what brain systems are associated with IU would contribute to a comprehensive model of anxiety processing, and increase our understanding of the neurobiology of anxiety disorders. Here, we used a behavioral task, Wall of Faces (WOF), during functional magnetic resonance imaging (fMRI), which probes both affect and ambiguity, to examine the neural circuitry of IU in fourteen (10 females) college age (18.8 yrs) subjects. All subjects completed the Intolerance of Uncertainty Scale (IUS), Anxiety Sensitivity Index (ASI), and a measure of neuroticism (i.e. the NEO-N). IUS scores but neither ASI nor NEO-N scores, correlated positively with activation in bilateral insula during affective ambiguity. Thus, the experience of IU during certain types of emotion processing may relate to the degree to which bilateral insula processes uncertainty. Previously observed insula hyperactivity in anxiety disorder individuals may therefore be directly linked to altered processes of uncertainty. PMID:18079060

  6. Intolerance of uncertainty correlates with insula activation during affective ambiguity.

    PubMed

    Simmons, Alan; Matthews, Scott C; Paulus, Martin P; Stein, Murray B

    2008-01-10

    Intolerance of uncertainty (IU), or the increased affective response to situations with uncertain outcomes, is an important component process of anxiety disorders. Increased IU is observed in panic disorder (PD), obsessive compulsive disorder (OCD) and generalized anxiety disorder (GAD), and is thought to relate to dysfunctional behaviors and thought patterns in these disorders. Identifying what brain systems are associated with IU would contribute to a comprehensive model of anxiety processing, and increase our understanding of the neurobiology of anxiety disorders. Here, we used a behavioral task, Wall of Faces (WOFs), during functional magnetic resonance imaging (fMRI), which probes both affect and ambiguity, to examine the neural circuitry of IU in 14 (10 females) college age (18.8 years) subjects. All subjects completed the Intolerance of Uncertainty Scale (IUS), Anxiety Sensitivity Index (ASI), and a measure of neuroticism (i.e. the NEO-N). IUS scores but neither ASI nor NEO-N scores, correlated positively with activation in bilateral insula during affective ambiguity. Thus, the experience of IU during certain types of emotion processing may relate to the degree to which bilateral insula processes uncertainty. Previously observed insula hyperactivity in anxiety disorder individuals may therefore be directly linked to altered processes of uncertainty.