Science.gov

Sample records for affect cell function

  1. MicroRNAs affect dendritic cell function and phenotype

    PubMed Central

    Smyth, Lesley A; Boardman, Dominic A; Tung, Sim L; Lechler, Robert; Lombardi, Giovanna

    2015-01-01

    MicroRNA (miRNA) are small, non-coding RNA molecules that have been linked with immunity through regulating/modulating gene expression. A role for these molecules in T-cell and B-cell development and function has been well established. An increasing body of literature now highlights the importance of specific miRNA in dendritic cell (DC) development as well as their maturation process, antigen presentation capacity and cytokine release. Given the unique role of DC within the immune system, linking the innate and adaptive immune responses, understanding how specific miRNA affect DC function is of importance for understanding disease. In this review we summarize recent developments in miRNA and DC research, highlighting the requirement of miRNA in DC lineage commitment from bone marrow progenitors and for the development of subsets such as plasmacytoid DC and conventional DC. In addition, we discuss how infections and tumours modulate miRNA expression and consequently DC function. PMID:25244106

  2. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  3. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function.

    PubMed

    Stelzer, I; Kröpfl, J M; Fuchs, R; Pekovits, K; Mangge, H; Raggam, R B; Gruber, H-J; Prüller, F; Hofmann, P; Truschnig-Wilders, M; Obermayer-Pietsch, B; Haushofer, A C; Kessler, H H; Mächler, P

    2015-10-01

    Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration.

  4. Cigarette smoke extract affects functional activity of MRP1 in bronchial epithelial cells.

    PubMed

    van der Deen, Margaretha; de Vries, Elisabeth G E; Visserman, Hylke; Zandbergen, Wouter; Postma, Dirkje S; Timens, Wim; Timmer-Bosscha, Hetty

    2007-01-01

    Cigarette smoke is the principal risk factor for development of chronic obstructive pulmonary disease (COPD). Multidrug resistance-associated protein 1 (MRP1) is a member of the ATP-binding cassette (ABC) superfamily of transporters, which transport physiologic and toxic substrates across cell membranes. MRP1 is highly expressed in lung epithelium. This study aims to analyze the effect of cigarette smoke extract (CSE) on MRP1 activity. In the human bronchial epithelial cell line 16HBE14o-, MRP1 function was studied flow cytometrically by cellular retention of carboxyfluorescein (CF) after CSE incubation and MRP1 downregulation by RNA interference (siRNA). Cell survival was measured by the MTT assay. Immunocytochemically, it was shown that 16HBE14o(-) expressed MRP1 and breast cancer resistance protein. Coincubation of CSE IC50 (1.53% +/- 0.22%) with MK571 further decreased cell survival 31% (p, = 0.018). CSE increased cellular CF retention dose dependently from 1.7-fold at 5% CSE to 10.3-fold at 40% CSE (both p < 0.05). siRNA reduced MRP1 RNA expression with 49% and increased CF accumulation 67% versus control transfected cells. CSE exposure further increased CF retention 24% (p = 0.031). A linear positive relation between MRP1 function and CSE-modulating effects (r = 0.99, p =0.089) was shown in untransfected, control transfected, and MRP1 downregulated 16HBE14o- cells analogous to blocking effects with MRP1 inhibitor MK571 (r = 0.99, p = 0.034). In conclusion, cigarette smoke extract affects MRP1 activity probably competitively in bronchial epithelial cells. Inhibition of MRP1 in turn results in higher CSE toxicity. We propose that MRP1 may be a protective protein for COPD development.

  5. IL-10 conditioning of human skin affects the distribution of migratory dendritic cell subsets and functional T cell differentiation.

    PubMed

    Lindenberg, Jelle J; Oosterhoff, Dinja; Sombroek, Claudia C; Lougheed, Sinéad M; Hooijberg, Erik; Stam, Anita G M; Santegoets, Saskia J A M; Tijssen, Henk J; Buter, Jan; Pinedo, Herbert M; van den Eertwegh, Alfons J M; Scheper, Rik J; Koenen, Hans J P M; van de Ven, Rieneke; de Gruijl, Tanja D

    2013-01-01

    In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14(+)CD141(+)DC-SIGN(+) DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a(+) subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8(+) T cells, migration of immature CD14(+) DDC was accompanied by increased release of IL-10, poor expansion of CD4(+) and CD8(+) T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance.

  6. Fibroblast cell interactions with human melanoma cells affect tumor cell growth as a function of tumor progression.

    PubMed Central

    Cornil, I; Theodorescu, D; Man, S; Herlyn, M; Jambrosic, J; Kerbel, R S

    1991-01-01

    It is known from a variety of experimental systems that the ability of tumor cells to grow locally and metastasize can be affected by the presence of adjacent normal tissues and cells, particularly mesenchymally derived stromal cells such as fibroblasts. However, the comparative influence of such normal cell-tumor cell interactions on tumor behavior has not been thoroughly investigated from the perspective of different stages of tumor progression. To address this question we assessed the influence of normal dermal fibroblasts on the growth of human melanoma cells obtained from different stages of tumor progression. We found that the in vitro growth of most (4 out of 5) melanoma cell lines derived from early-stage radial growth phase or vertical growth phase metastatically incompetent primary lesions is repressed by coculture with normal dermal fibroblasts, suggesting that negative homeostatic growth controls are still operative on melanoma cells from early stages of disease. On the other hand, 9 out of 11 melanoma cell lines derived from advanced metastatically competent vertical growth phase primary lesions, or from distant metastases, were found to be consistently stimulated to grow in the presence of dermal fibroblasts. Evidence was obtained to show that this discriminatory fibroblastic influence is mediated by soluble inhibitory and stimulatory growth factor(s). Taken together, these results indicate that fibroblast-derived signals can have antithetical growth effects on metastatic versus metastatically incompetent tumor subpopulations. This resultant conversion in responsiveness to host tissue environmental factors may confer upon small numbers of metastatically competent cells a growth advantage, allowing them to escape local growth constraints both in the primary tumor site and at distant ectopic tissue sites. PMID:2068080

  7. In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells

    SciTech Connect

    Pinchuk, Lesya M.; Lee, Sang-Ryul; Filipov, Nikolay M.

    2007-09-15

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1 {mu}M concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion.

  8. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile.

    PubMed

    Xu, Ying-Ping; Qi, Rui-Qun; Chen, Wenbin; Shi, Yuling; Cui, Zhi-Zhong; Gao, Xing-Hua; Chen, Hong-Duo; Zhou, Li; Mi, Qing-Sheng

    2012-11-01

    Immunosenescence is a result of progressive decline in immune system function with advancing age. Epidermal Langerhans cells (LCs), belonging to the dendritic cell (DC) family, act as sentinels to play key roles in the skin immune responses. However, it has not been fully elucidated how aging affects development and function of LCs. Here, we systemically analyzed LC development and function during the aging process in C57BL/6J mice, and performed global microRNA (miRNA) gene expression profiles in aged and young LCs. We found that the frequency and maturation of epidermal LCs were significantly reduced in aged mice starting at 12 months of age, while the Langerin expression and ability to phagocytose Dextran in aged LCs were increased compared to LCs from < 6 month old mice. The migration of LCs to draining lymph nodes was comparable between aged and young mice. Functionally, aged LCs were impaired in their capacity to induce OVA-specific CD4+ and CD8+ T cell proliferation. Furthermore, the expression of miRNAs in aged epidermal LCs showed a distinct profile compared to young LCs. Most interestingly, aging-regulated miRNAs potentially target TGF-β-dependent and non- TGF-β-dependent signal pathways related to LCs. Overall, our data suggests that aging affects LCs development and function, and that age-regulated miRNAs may contribute to the LC developmental and functional changes in aging.

  9. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia.

    PubMed

    Le Grand, Fabienne; Soudant, Philippe; Marty, Yanic; Le Goïc, Nelly; Kraffe, Edouard

    2013-01-01

    Membrane lipid composition and morpho-functional parameters were investigated in circulating cells of the edible cockle (Cerastoderma edule) affected by disseminated neoplasia (neoplastic cells) and compared to those from healthy cockles (hemocytes). Membrane sterol levels, phospholipid (PL) class and subclass proportions and their respective fatty acid (FA) compositions were determined. Morpho-functional parameters were evaluated through total hemocyte count (THC), mortality rate, phagocytosis ability and reactive oxygen species (ROS) production. Both morpho-functional parameters and lipid composition were profoundly affected in neoplastic cells. These dedifferentiated cells displayed higher THC (5×), mortality rate (3×) and ROS production with addition of carbonyl cyanide m-chloro phenylhydrazone (1.7×) but lower phagocytosis ability (½×), than unaffected hemocytes. Total PL amounts were higher in neoplastic cells than in hemocytes (12.3 and 5.1 nmol×10(-6) cells, respectively). However, sterols and a particular subclass of PL (plasmalogens; 1-alkenyl-2-acyl PL) were present in similar amounts in both cell type membranes. This led to a two times lower proportion of these membrane lipid constituents in neoplastic cells when compared to hemocytes (20.5% vs. 42.1% of sterols in total membrane lipids and 21.7% vs. 44.2% of plasmalogens among total PL, respectively). Proportions of non-methylene interrupted FA- and 20:1n-11-plasmalogen molecular species were the most impacted in neoplastic cells when compared to hemocytes (⅓× and ¼×, respectively). These changes in response to this leukemia-like disease in bivalves highlight the specific imbalance of plasmalogens and sterols in neoplastic cells, in comparison to the greater stability of other membrane lipid components.

  10. The Fusarium toxin zearalenone and deoxynivalenol affect murine splenic antioxidant functions, interferon levels, and T-cell subsets.

    PubMed

    Ren, Z H; Deng, H D; Wang, Y C; Deng, J L; Zuo, Z C; Wang, Y; Peng, X; Cui, H M; Fang, J; Yu, S M; Shen, L H; Hu, Y C

    2016-01-01

    This study aimed to evaluate the effects of the Fusarium toxin zearalenone (ZEA) and deoxynivalenol (DON) on splenic antioxidant functions, IFN levels, and T-cell subsets in mice. Herein, 360 mice were assigned to nine groups for a 12-day study. Mice were administered an intraperitoneal injection for 4 consecutive days with different concentrations of ZEA alone, DON alone, or ZEA+DON. Spleen and blood samples were collected on days 0, 3, 5, 8, and 12. Mice in each of the experimental groups showed dysreglated splenic antioxidant functions, IFN levels, and T-cell subset frequencies, suggesting that the immune system had been affected. The ZEA+DON-treated groups, especially the group that received a higher concentration of ZEA+DON (Group D2Z2), showed more obvious effects on the dysregulation of splenic antioxidant functions, IFN levels, and T-cell subsets. This finding suggested that DON and ZEA exerted synergistic effects.

  11. Interaction of Berberine derivative with protein POT1 affect telomere function in cancer cells

    SciTech Connect

    Xiao, Nannan; Chen, Siqi; Ma, Yan; Qiu, Jun; Tan, Jia-Heng; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu; Li, Ding

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer The protein POT1 plays an important role in telomere protection. Black-Right-Pointing-Pointer Functional POT1 was overexpressed in Escherichia coli for the first time, and purified. Black-Right-Pointing-Pointer Compound Sysu-00692 was found to be the first POT1-binding ligand. Black-Right-Pointing-Pointer Sysu-00692 could interfere with the binding activity of POT1 in vivo. Black-Right-Pointing-Pointer Sysu-00692 had inhibition on telomerase and cell proliferation. -- Abstract: The protein POT1 plays an important role in telomere protection, which is related with telomere elongation and cell immortality. The protein has been recognized as a promising drug target for cancer treatment. In the present study, we cloned, overexpressed in Escherichia coli for the first time, and purified recombinant human POT1. The protein was proved to be active through filter binding assay, FRET and CD experiments. In the initial screening for protein binding ligands using SPR, compound Sysu-00692 was found to bind well with the POT1, which was confirmed with EMSA. Its in vivo activity study showed that compound Sysu-00692 could interfere with the binding between human POT1 and the telomeric DNA through chromatin immunoprecipitation. Besides, the compound showed mild inhibition on telomerase and cell proliferation. As we know, compound Sysu-00692 is the first reported POT1-binding ligand, which could serve as a lead compound for further improvement. This work offered a potentially new approach for drug design for the treatment of cancers.

  12. Ageing Adversely Affects the Migration and Function of Marginal Zone B Cells.

    PubMed

    Turner, Vivian M; Mabbott, Neil A

    2017-04-02

    Marginal zone (MZ) B cells are positioned within the spleen to capture blood-borne Ag and immune complexes and deliver them to follicular dendritic cells in the B cell follicles. We show that within the spleens of aged mice antigen (Ag) capture by MZ B cells, and their ability to shuttle between the follicle and MZ were impaired. The ability of aged MZ B cells to migrate towards the MZ chemoattractant sphingosine 1-phosphate was increased, suggesting that aged MZ B cells had a greater propensity to be retained within the MZ. An extrinsic impairment in aged B cell migration towards the MZ was demonstrated using bone marrow chimeras. The follicular shuttling of MZ B cells derived from either young or aged bone marrow was similarly reduced in aged recipient spleens, showing that ageing effects on splenic stromal cells were responsible for the impaired follicular shuttling of MZ B cells. MZ B cells rapidly mount T cell-independent (TI) antibody-responses to microbial polysaccharide Ag. In aged mice the ability to produce immunoglobulins in response to the TI-type 1 Ag, TNP-LPS, was impaired. These ageing related changes to the MZ and MZ B cells have implications for the clearance of blood-borne pathogens. Indeed elderly people have increased susceptibility to Streptococcus pneumoniae, a TI Ag, and decreased responses to vaccination. A thorough analysis of the mechanisms that underpin the ageing-related decline in the status of the MZ and MZ B cells will help the design of novel treatments to improve immunity in the elderly. This article is protected by copyright. All rights reserved.

  13. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    SciTech Connect

    Zhu, Changlian; Gao, Jianfeng; Li, Qian; Huang, Zhiheng; Zhang, Yu; Li, Hongfu; Kuhn, Hans-Georg; Blomgren, Klas

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI), could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.

  14. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    PubMed

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells.

  15. Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability.

    PubMed

    Godbey, W T; Wu, K K; Mikos, A G

    2001-03-01

    Poly(ethylenimine) (PEI) was used to transfect the endothelial cell line EA.hy 926, and the secreted levels of three gene products, tissue-type plasminogen activator (tPA), plasminogen activator inhibitor type 1 (PAI-1), and von Willebrand Factor (vWF), were assessed via ELISA. We found that the levels of these gene products in cell supernatants increased by factors up to 16.3 (tPA), 8.3 (PAI-1), or 6.7 (vWF) times the levels recorded for untreated cells, and roughly correlated with the percentage of cells that expressed the reporter plasmid. Transfections carried out using promotorless constructs of the same reporter plasmid also yielded increases in tPA, PAI-1, and vWF to similar extents. Additionally, data regarding cell viability were gathered and found to inversely relate to both the effectiveness of the PEI used for transfection and the secreted levels of the three mentioned products. There appeared to be two distinct types of cell death, resulting from the use of either free PEI (which acts within 2 h) or PEI/DNA complexes (which cause death 7-9 h after transfection). Cells were also transfected by poly(L-lysine) and liposomal carriers, and increases in secreted tPA similar to those seen with PEI-mediated transfection were observed for positively transfected cells. The results of these investigations indicate that non-viral gene delivery can induce a state of endothelial cell dysfunction, and that PEI-mediated transfection can lead to two distinct types of cell death.

  16. Amyloid β induces adhesion of erythrocytes to endothelial cells and affects endothelial viability and functionality.

    PubMed

    Nakagawa, Kiyotaka; Kiko, Takehiro; Kuriwada, Satoko; Miyazawa, Taiki; Kimura, Fumiko; Miyazawa, Teruo

    2011-01-01

    It has been suggested that amyloid β-peptide (Aβ) might mediate the adhesion of erythrocytes to the endothelium which could disrupt the properties of endothelial cells. We provide evidence here that Aβ actually induced the binding of erythrocytes to endothelial cells and decreased endothelial viability, perhaps by the generation of oxidative and inflammatory stress. These changes are likely to contribute to the pathogenesis of Alzheimer's disease.

  17. New Verapamil Analogs Inhibit Intracellular Mycobacteria without Affecting the Functions of Mycobacterium-Specific T Cells.

    PubMed

    Abate, Getahun; Ruminiski, Peter G; Kumar, Malkeet; Singh, Kawaljit; Hamzabegovic, Fahreta; Hoft, Daniel F; Eickhoff, Christopher S; Selimovic, Asmir; Campbell, Mary; Chibale, Kelly

    2015-12-07

    There is a growing interest in repurposing mycobacterial efflux pump inhibitors, such as verapamil, for tuberculosis (TB) treatment. To aid in the design of better analogs, we studied the effects of verapamil on macrophages and Mycobacterium tuberculosis-specific T cells. Macrophage activation was evaluated by measuring levels of nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and gamma interferon (IFN-γ). Since verapamil is a known autophagy inducer, the roles of autophagy induction in the antimycobacterial activities of verapamil and norverapamil were studied using bone marrow-derived macrophages from ATG5(flox/flox) (control) and ATG5(flox/flox) Lyz-Cre mice. Our results showed that despite the well-recognized effects of verapamil on calcium channels and autophagy, its action on intracellular M. tuberculosis does not involve macrophage activation or autophagy induction. Next, the effects of verapamil and norverapamil on M. tuberculosis-specific T cells were assessed using flow cytometry following the stimulation of peripheral blood mononuclear cells from TB-skin-test-positive donors with M. tuberculosis whole-cell lysate for 7 days in the presence or absence of drugs. We found that verapamil and norverapamil inhibit the expansion of M. tuberculosis-specific T cells. Additionally, three new verapamil analogs were found to inhibit intracellular Mycobacterium bovis BCG, and one of the three analogs (KSV21) inhibited intracellular M. tuberculosis replication at concentrations that did not inhibit M. tuberculosis-specific T cell expansion. KSV21 also inhibited mycobacterial efflux pumps to the same degree as verapamil. More interestingly, the new analog enhances the inhibitory activities of isoniazid and rifampin on intracellular M. tuberculosis. In conclusion, KSV21 is a promising verapamil analog on which to base structure-activity relationship studies aimed at identifying more effective analogs.

  18. New Verapamil Analogs Inhibit Intracellular Mycobacteria without Affecting the Functions of Mycobacterium-Specific T Cells

    PubMed Central

    Ruminiski, Peter G.; Kumar, Malkeet; Singh, Kawaljit; Hamzabegovic, Fahreta; Hoft, Daniel F.; Eickhoff, Christopher S.; Selimovic, Asmir; Campbell, Mary; Chibale, Kelly

    2015-01-01

    There is a growing interest in repurposing mycobacterial efflux pump inhibitors, such as verapamil, for tuberculosis (TB) treatment. To aid in the design of better analogs, we studied the effects of verapamil on macrophages and Mycobacterium tuberculosis-specific T cells. Macrophage activation was evaluated by measuring levels of nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and gamma interferon (IFN-γ). Since verapamil is a known autophagy inducer, the roles of autophagy induction in the antimycobacterial activities of verapamil and norverapamil were studied using bone marrow-derived macrophages from ATG5flox/flox (control) and ATG5flox/flox Lyz-Cre mice. Our results showed that despite the well-recognized effects of verapamil on calcium channels and autophagy, its action on intracellular M. tuberculosis does not involve macrophage activation or autophagy induction. Next, the effects of verapamil and norverapamil on M. tuberculosis-specific T cells were assessed using flow cytometry following the stimulation of peripheral blood mononuclear cells from TB-skin-test-positive donors with M. tuberculosis whole-cell lysate for 7 days in the presence or absence of drugs. We found that verapamil and norverapamil inhibit the expansion of M. tuberculosis-specific T cells. Additionally, three new verapamil analogs were found to inhibit intracellular Mycobacterium bovis BCG, and one of the three analogs (KSV21) inhibited intracellular M. tuberculosis replication at concentrations that did not inhibit M. tuberculosis-specific T cell expansion. KSV21 also inhibited mycobacterial efflux pumps to the same degree as verapamil. More interestingly, the new analog enhances the inhibitory activities of isoniazid and rifampin on intracellular M. tuberculosis. In conclusion, KSV21 is a promising verapamil analog on which to base structure-activity relationship studies aimed at identifying more effective analogs. PMID:26643325

  19. Dietary n-3 PUFA affect TcR-mediated activation of purified murine T cells and accessory cell function in co-cultures

    PubMed Central

    CHAPKIN, R S; ARRINGTON, J L; APANASOVICH, T V; CARROLL, R J; MCMURRAY, D N

    2002-01-01

    Diets enriched in n-3 polyunsaturated fatty acids (PUFA) suppress several functions of murine splenic T cells by acting directly on the T cells and/or indirectly on accessory cells. In this study, the relative contribution of highly purified populations of the two cell types to the dietary suppression of T cell function was examined. Mice were fed diets containing different levels of n-3 PUFA; safflower oil (SAF; control containing no n-3 PUFA), fish oil (FO) at 2% and 4%, or 1% purified docosahexaenoic acid (DHA) for 2 weeks. Purified (>90%) T cells were obtained from the spleen, and accessory cells (>95% adherent, esterase-positive) were obtained by peritoneal lavage. Purified T cells or accessory cells from each diet group were co-cultured with the alternative cell type from every other diet group, yielding a total of 16 different co-culture combinations. The T cells were stimulated with either concanavalin A (ConA) or antibodies to the T cell receptor (TcR)/CD3 complex and the costimulatory molecule CD28 (αCD3/αCD28), and proliferation was measured after four days. Suppression of T cell proliferation in the co-cultures was dependent upon the dose of dietary n-3 PUFA fed to mice from which the T cells were derived, irrespective of the dietary treatment of accessory cell donors. The greatest dietary effect was seen in mice consuming the DHA diet (P = 0·034 in the anova; P = 0·0053 in the Trend Test), and was observed with direct stimulation of the T cell receptor and CD28 costimulatory ligand, but not with ConA. A significant dietary effect was also contributed accessory cells (P = 0·033 in the Trend Test). We conclude that dietary n-3 PUFA affect TcR-mediated by T cell activation by both direct and indirect (accessory cell) mechanisms. PMID:12296847

  20. Human Peripheral Blood Mononuclear Cell Function and Dendritic Cell Differentiation Are Affected by Bisphenol-A Exposure

    PubMed Central

    Ariemma, Fabiana; Cimmino, Ilaria; Bruzzese, Dario; Scerbo, Roberta; Picascia, Stefania; D’Esposito, Vittoria; Beguinot, Francesco; Formisano, Pietro

    2016-01-01

    Environmental pollutants, including endocrine disruptor chemicals (EDCs), interfere on human health, leading to hormonal, immune and metabolic perturbations. Bisphenol-A (BPA), a main component of polycarbonate plastics, has been receiving increased attention due to its worldwide distribution with a large exposure. In humans, BPA, for its estrogenic activity, may have a role in autoimmunity, inflammatory and allergic diseases. To this aim, we assessed the effect of low BPA doses on functionality of human peripheral blood mononuclear cells (PBMCs), and on in vitro differentiation of dendritic cells from monocytes (mDCs). Fresh peripheral blood samples were obtained from 12 healthy adult volunteers. PBMCs were left unstimulated or were activated with the mitogen phytohemagglutinin (PHA) or the anti-CD3 and anti-CD28 antibodies and incubated in presence or absence of BPA at 0.1 and 1nM concentrations. The immune-modulatory effect of BPA was assessed by evaluating the cell proliferation and the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13) secreted by PBMCs. mDCs were differentiated with IL-4 and GC-CSF with or without BPA and the expression of differentiation/maturation markers (CD11c, CD1a, CD86, HLA-DR) was evaluated by flow cytometry; furthermore, a panel of 27 different cytokines, growth factors and chemokines were assayed in the mDC culture supernatants. PBMCs proliferation significantly increased upon BPA exposure compared to BPA untreated cells. In addition, a significant decrease in IL-10 secretion was observed in PBMCs incubated with BPA, either in unstimulated or mitogen-stimulated cells, and at both 0.1 and 1nM BPA concentrations. Similarly, IL-13 was reduced, mainly in cells activated by antiCD3/CD28. By contrast, no significant changes in IFN-γ and IL-4 production were found in any condition assayed. Finally, BPA at 1nM increased the density of dendritic cells expressing CD1a and concomitantly

  1. Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function

    PubMed Central

    Kleensang, Andre; Vantangoli, Marguerite M.; Odwin-DaCosta, Shelly; Andersen, Melvin E.; Boekelheide, Kim; Bouhifd, Mounir; Fornace, Albert J.; Li, Heng-Hong; Livi, Carolina B.; Madnick, Samantha; Maertens, Alexandra; Rosenberg, Michael; Yager, James D.; Zhaog, Liang; Hartung, Thomas

    2016-01-01

    Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines. PMID:27456714

  2. Functional and differential proteomic analyses to identify platelet derived factors affecting ex vivo expansion of mesenchymal stromal cells

    PubMed Central

    2013-01-01

    Background Multilineage differentiation, immunomodulation and secretion of trophic factors render mesenchymal stromal cells (MSC) highly attractive for clinical application. Human platelet derivatives such as pooled human platelet lysate (pHPL) and thrombin-activated platelet releasate in plasma (tPRP) have been introduced as alternatives to fetal bovine serum (FBS) to achieve GMP-compliance. However, whereas both pHPL and tPRP support similar proliferation kinetics of lipoaspirate-derived MSC (LA-MSC), only pHPL significantly accelerates bone marrow-derived MSC (BM-MSC) expansion. To identify functionally bioactive factors affecting ex vivo MSC expansion, a differential proteomic approach was performed and identified candidate proteins were evaluated within a bioassay. Results Two dimensional difference gel electrophoresis (2D-DIGE), MALDI-TOF analyses and complementary Western blotting revealed 20 differential protein species. 14 candidate proteins occured at higher concentrations in pHPL compared to tPRP and 6 at higher concentrations in tPRP. The candidate proteins fibrinogen and apolipoprotein A1 differentially affected LA- and BM-MSC proliferation. In a second set of experiments, reference cytokines known to foster proliferation in FBS were tested for their effects in the human supplements. Interestingly although these cytokines promoted proliferation in FBS, they failed to do so when added to the humanized system. Conclusions The differential proteomic approach identified novel platelet derived factors differentially acting on human MSC proliferation. Complementary testing of reference cytokines revealed a lack of stimulation in the human supplements compared to FBS. The data describe a new coherent approach to combine proteomic technologies with functional testing to develop novel, humanized, GMP-compliant conditions for MSC expansion. PMID:24168020

  3. Subclinical hypothyroidism affects mitochondrial function.

    PubMed

    Kvetny, J; Wilms, L; Pedersen, P L; Larsen, J

    2010-05-01

    The aim of the present study was to examine mitochondrial function in cells from persons with subclinical hypothyroidism and euthyroid controls. The participating persons were examined clinically and had basal oxygen consumption (VO(2)) determined. The concentrations of thyroid hormones and thyrotropine stimulating hormone were determined, and mitochondrial function in isolated mononuclear blood cells was examined by enzymatic methods [citrate synthase activity (CS)] and by flow cytometry (mitochondrial membrane potential by TMRM fluorescence and mitochondrial mass by MTG fluorescence). The ratio of T(4)/T(3) was lowered in subclinical hypothyroidism patients compared to controls (2.5+/-0.5 vs. 2.9+/-0.4, p=0.005). VO(2) was increased in persons with subclinical hypothyroidism compared to controls (adolescents: 134+/-27 ml O(2)/min*m(2) vs. 119+/-27 ml O(2)/min*m(2), p=0.006, adults: 139+/-14 ml O(2)/min*m(2) vs. 121+/-17 ml O(2)/min*m(2), p=0.001). The mitochondrial function, represented by citrate synthase activity, MTG, and TMRM fluorescence were all increased (CS in subclinical hypothyroidism vs. controls: 0.074+/-0.044 nmol/mg*min vs. 0.056+/-0.021 nmol/mg*min, p=0.005; MTG fluorescence in subclinical hypothyroidism vs. controls: 7,482+/-1,733 a.u. vs. 6,391+/-2,171 a.u., p=0.027; TMRM fluorescence in subclinical hypothyroidism vs. controls: 13,449+/-3,807 a.u. vs. 11,733+/-4,473 a.u, p=0.04). Our results indicate an increased mitochondrial stimulation, eventually caused by increased deiodination of T(4) to intracellular bioactive iodothyronines in adults and adolescents with subclinical hypothyroidism.

  4. Listeriolysin O affects barrier function and induces chloride secretion in HT-29/B6 colon epithelial cells.

    PubMed

    Richter, Jan F; Gitter, Alfred H; Günzel, Dorothee; Weiss, Siegfried; Mohamed, Walid; Chakraborty, Trinad; Fromm, Michael; Schulzke, Jörg D

    2009-06-01

    Listeria monocytogenes is a food-borne pathogen, which is able to induce diarrhea when residing in the intestine. We studied the effect of listeriolysin O (LLO), an extracellular virulence factor of L. monocytogenes, on intestinal transport and barrier function in monolayers of HT-29/B6 human colon cells using the Ussing technique to understand the pathomechanisms involved. Mucosal addition of LLO, but not a LLO mutant, induced a dose- and pH-dependent increase in short-circuit current (I(SC)). Sodium and chloride tracer flux and DIDS sensitivity studies revealed that I(SC) was mainly due to electrogenic chloride secretion. Barrier function was impaired by LLO, as assessed by transepithelial resistance (R(t)) and mannitol flux measurements. Intracellular signal transduction occurred through Ca(2+) release from intracellular stores and PKC activation. In conclusion, listeriolysin induces chloride secretion and perturbs epithelial barrier function, thus potentially contributing to Listeria-induced diarrhea.

  5. Methamphetamine Use in HIV-infected Individuals Affects T-cell Function and Viral Outcome during Suppressive Antiretroviral Therapy.

    PubMed

    Massanella, Marta; Gianella, Sara; Schrier, Rachel; Dan, Jennifer M; Pérez-Santiago, Josué; Oliveira, Michelli F; Richman, Douglas D; Little, Susan J; Benson, Constance A; Daar, Eric S; Dube, Michael P; Haubrich, Richard H; Smith, Davey M; Morris, Sheldon R

    2015-08-24

    We investigated the associations between methamphetamine (meth) use, immune function, and the dynamics of HIV and cytomegalovirus [CMV] in the blood and genital tract of HIV-infected ART-suppressed subjects. Self-reported meth use was associated with increased CD4(+) and CD8(+) T-cell proliferation (Ki67(+), p < 0.005), CD4(+) T-cell activation (CD45RA(-)CD38(+), p = 0.005) and exhaustion (PD-1(+), p = 0.0004) in blood, compared to non-meth users. Meth use was also associated with a trend towards higher blood HIV DNA levels (p = 0.09) and more frequent shedding of CMV in seminal plasma (p = 0.002). To explore possible mechanisms, we compared ex vivo spontaneous and antigen-specific proliferation in PBMC collected from subjects with and without positive meth detection in urine (Utox+ vs. Utox-). Despite higher levels of spontaneous proliferation, lymphocytes from Utox+ meth users had a significantly lower proliferative capacity after stimulation with a number of pathogens (CMV, candida, mycobacterium, toxoplasma, HIV, p < 0.04 in all cases), compared to Utox- participants. Our findings suggest that meth users have greater proliferation and exhaustion of the immune system. Meth use is also associated with a loss of control of CMV replication, which could be related to loss of immune response to pathogens. Future studies should consider meth use as a potential modulator of T-cell responses.

  6. PEGylation affects cytotoxicity and cell-compatibility of poly(ethylene imine) for lung application: Structure-function relationships

    SciTech Connect

    Beyerle, Andrea; Merkel, Olivia; Stoeger, Tobias; Kissel, Thomas

    2010-01-15

    Poly(ethylene imine) (PEI) has widely been used as non-viral gene carrier due to its capability to form stable complexes by electrostatic interactions with nucleic acids. To reduce cytotoxicity of PEI, several studies have addressed modified PEIs such as block or graft copolymers containing cationic and hydrophilic non-ionic components. Copolymers of PEI and hydrophilic poly(ethylene glycol) (PEG) with various molecular weights and graft densities were shown to exhibit decreased cytotoxicity and potential for DNA and siRNA delivery. In this study, we evaluated the cytotoxicity and cell-compatibility of different PEGylated PEI polymers in two murine lung cell lines. We found that the degree of PEGylation correlated with both cytotoxicity and oxidative stress, but not with proinflammatory effects. AB type copolymers with long PEG blocks caused high membrane damage and significantly decreased the metabolic activity of lung cells. In addition, they significantly increased the release of two lipid mediators such as 8-isoprostanes (8-IP) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. In contrast, the cytokine profiles which indicated high levels of acute-phase cytokines such as TNF-alpha, IL-6, and G-CSF did not follow any clear structure-function relationship. In conclusion, we found that modification of PEI 25kDa with high degree of PEGylation and low PEG chain length reduced cytotoxic and oxidative stress response in lung cells, while the proinflammatory potential remained unaffected. A degree of substitution in the range of 10 to 30 and PEG-chain lengths up to 2000 Da seem to be beneficial and merit further investigations.

  7. Loss of β-glucocerebrosidase activity does not affect alpha-synuclein levels or lysosomal function in neuronal cells.

    PubMed

    Dermentzaki, Georgia; Dimitriou, Evangelia; Xilouri, Maria; Michelakakis, Helen; Stefanis, Leonidas

    2013-01-01

    To date, a plethora of studies have provided evidence favoring an association between Gaucher disease (GD) and Parkinson's disease (PD). GD, the most common lysosomal storage disorder, results from the diminished activity of the lysosomal enzyme β-glucocerebrosidase (GCase), caused by mutations in the β-glucocerebrosidase gene (GBA). Alpha-synuclein (ASYN), a presynaptic protein, has been strongly implicated in PD pathogenesis. ASYN may in part be degraded by the lysosomes and may itself aberrantly impact lysosomal function. Therefore, a putative link between deficient GCase and ASYN, involving lysosomal dysfunction, has been proposed to be responsible for the risk for PD conferred by GBA mutations. In this current work, we aimed to investigate the effects of pharmacological inhibition of GCase on ASYN accumulation/aggregation, as well as on lysosomal function, in differentiated SH-SY5Y cells and in primary neuronal cultures. Following profound inhibition of the enzyme activity, we did not find significant alterations in ASYN levels, or any changes in the clearance or formation of its oligomeric species. We further observed no significant impairment of the lysosomal degradation machinery. These findings suggest that additional interaction pathways together with aberrant GCase and ASYN must govern this complex relation between GD and PD.

  8. Placebo Sleep Affects Cognitive Functioning

    ERIC Educational Resources Information Center

    Draganich, Christina; Erdal, Kristi

    2014-01-01

    The placebo effect is any outcome that is not attributed to a specific treatment but rather to an individual's mindset (Benson & Friedman, 1996). This phenomenon can extend beyond its typical use in pharmaceutical drugs to involve aspects of everyday life, such as the effect of sleep on cognitive functioning. In 2 studies examining whether…

  9. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype.

  10. Spinocerebellar ataxia-13 Kv3.3 potassium channels: arginine-to-histidine mutations affect both functional and protein expression on the cell surface.

    PubMed

    Zhao, Jian; Zhu, Jing; Thornhill, William B

    2013-09-01

    The voltage-gated potassium channel Kv3.3 is the causative gene of SCA13 (spinocerebellar ataxia type 13), an autosomal dominant neurological disorder. The four dominant mutations identified to date cause Kv3.3 channels to be non-functional or have altered gating properties in Xenopus oocytes. In the present paper, we report that SCA13 mutations affect functional as well as protein expression of Kv3.3 channels in a mammalian cell line. The reduced protein level of SCA13 mutants is caused by a shorter protein half-life, and blocking the ubiquitin-proteasome pathway increases the total protein of SCA13 mutants more than wild-type. SCA13 mutated amino acids are highly conserved, and the side chains of these residues play a critical role in the stable expression of Kv3.3 proteins. In addition, we show that mutant Kv3.3 protein levels could be partially rescued by treatment with the chemical chaperone TMAO (trimethylamine N-oxide) and to a lesser extent with co-expression of Kv3.1b. Thus our results suggest that amino acid side chains of SCA13 positions affect the protein half-life and/or function of Kv3.3, and the adverse effect on protein expression cannot be fully rescued.

  11. Enterovirus infection of human islets of Langerhans affects β-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure

    PubMed Central

    Hodik, M; Skog, O; Lukinius, A; Isaza-Correa, J M; Kuipers, J; Giepmans, B N G; Frisk, G

    2016-01-01

    Aims/hypothesis In type 1 diabetes (T1D), most insulin-producing β cells are destroyed, but the trigger is unknown. One of the possible triggers is a virus infection and the aim of this study was to test if enterovirus infection affects glucose stimulated insulin secretion and the effect of virus replication on cellular macromolecules and organelles involved in insulin secretion. Methods Isolated human islets were infected with different strains of coxsackievirus B (CVB) virus and the glucose-stimulated insulin release (GSIS) was measured in a dynamic perifusion system. Classical morphological electron microscopy, large-scale electron microscopy, so-called nanotomy, and immunohistochemistry were used to study to what extent virus-infected β cells contained insulin, and real-time PCR was used to analyze virus induced changes of islet specific genes. Results In islets infected with CVB, GSIS was reduced in correlation with the degree of virus-induced islet disintegration. The expression of the gene encoding insulin was decreased in infected islets, whereas the expression of glucagon was not affected. Also, in islets that were somewhat disintegrated, there were uninfected β cells. Ultrastructural analysis revealed that virus particles and virus replication complexes were only present in β cells. There was a significant number of insulin granules remaining in the virus-infected β cells, despite decreased expression of insulin mRNA. In addition, no typical Golgi apparatus was detected in these cells. Exposure of islets to synthetic dsRNA potentiated glucose-stimulated insulin secretion. Conclusions/interpretation Glucose-stimulated insulin secretion; organelles involved in insulin secretion and gene expression were all affected by CVB replication in β cells. PMID:27547409

  12. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells.

    PubMed

    Djuric, Ugljesa; Cheung, Aaron Y L; Zhang, Wenbo; Mok, Rebecca S; Lai, Wesley; Piekna, Alina; Hendry, Jason A; Ross, P Joel; Pasceri, Peter; Kim, Dae-Sung; Salter, Michael W; Ellis, James

    2015-04-01

    MECP2 mutations cause the X-linked neurodevelopmental disorder Rett Syndrome (RTT) by consistently altering the protein encoded by the MECP2e1 alternative transcript. While mutations that simultaneously affect both MECP2e1 and MECP2e2 isoforms have been widely studied, the consequence of MECP2e1 deficiency on human neurons remains unknown. Here we report the first isoform-specific patient induced pluripotent stem cell (iPSC) model of RTT. RTTe1 patient iPS cell-derived neurons retain an inactive X-chromosome and express only the mutant allele. Single-cell mRNA analysis demonstrated they have a molecular signature of cortical neurons. Mutant neurons exhibited a decrease in soma size, reduced dendritic complexity and decreased cell capacitance, consistent with impaired neuronal maturation. The soma size phenotype was rescued cell-autonomously by MECP2e1 transduction in a level-dependent manner but not by MECP2e2 gene transfer. Importantly, MECP2e1 mutant neurons showed a dysfunction in action potential generation, voltage-gated Na(+) currents, and miniature excitatory synaptic current frequency and amplitude. We conclude that MECP2e1 mutation affects soma size, information encoding properties and synaptic connectivity in human neurons that are defective in RTT.

  13. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment.

    PubMed

    Versari, Silvia; Longinotti, Giulia; Barenghi, Livia; Maier, Jeanette Anne Marie; Bradamante, Silvia

    2013-11-01

    Exposure to microgravity generates alterations that are similar to those involved in age-related diseases, such as cardiovascular deconditioning, bone loss, muscle atrophy, and immune response impairment. Endothelial dysfunction is the common denominator. To shed light on the underlying mechanism, we participated in the Progress 40P mission with Spaceflight of Human Umbilical Vein Endothelial Cells (HUVECs): an Integrated Experiment (SPHINX), which consisted of 12 in-flight and 12 ground-based control modules and lasted 10 d. Postflight microarray analysis revealed 1023 significantly modulated genes, the majority of which are involved in cell adhesion, oxidative phosphorylation, stress responses, cell cycle, and apoptosis. Thioredoxin-interacting protein was the most up-regulated (33-fold), heat-shock proteins 70 and 90 the most down-regulated (5.6-fold). Ion channels (TPCN1, KCNG2, KCNJ14, KCNG1, KCNT1, TRPM1, CLCN4, CLCA2), mitochondrial oxidative phosphorylation, and focal adhesion were widely affected. Cytokine detection in the culture media indicated significant increased secretion of interleukin-1α and interleukin-1β. Nitric oxide was found not modulated. Our data suggest that in cultured HUVECs, microgravity affects the same molecular machinery responsible for sensing alterations of flow and generates a prooxidative environment that activates inflammatory responses, alters endothelial behavior, and promotes senescence.

  14. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro

    SciTech Connect

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E.; Detmar, Michael; Halin, Cornelia

    2009-01-15

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.

  15. Sirtuin-2 inhibition affects hippocampal functions and sodium butyrate ameliorates the reduction in novel object memory, cell proliferation, and neuroblast differentiation

    PubMed Central

    Jung, Hyo Young; Yoo, Dae Young; Kim, Jong Whi; Kim, Dae Won; Choi, Jung Hoon; Chung, Jin Young; Won, Moo-Ho; Yoon, Yeo Sung

    2016-01-01

    We investigated the effects of the sirtuin-2 (SIRT2) inhibitor AK-7 on novel object memory, cell proliferation, and neuroblast differentiation in the dentate gyrus. In addition, we also observed the relationships with sodium butyrate, a histone deacetylase inhibitor, on the hippocampal functions. To investigate the effects of AK-7 on hippocampal functions, 10-week-old C57BL/6 mice were daily injected intraperitoneally with 20 mg/kg AK-7 alone or in combination with subcutaneous administration of 300 mg/kg sodium butyrate, a histone deacetylase inhibitor, for 21 days. A novel object recognition test was conducted on days 20 (training) and 21 (testing) of treatment. Thereafter, the animals were sacrificed for immunohistochemistry for Ki67 (cell proliferation) and doublecortin (DCX, neuroblast differentiation). AK-7 administration significantly reduced the time spent exploring new objects, while treatment in combination with sodium butyrate significantly alleviated this reduction. Additionally, AK-7 administration significantly reduced the number of Ki67-positive cells and DCX-immunoreactive neuroblasts in the dentate gyrus, while the treatment in combination with sodium butyrate ameliorated these changes. This result suggests that the reduction of SIRT2 may be closely related to age-related phenotypes including novel object memory, as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, sodium butyrate reverses SIRT2-related age phenotypes. PMID:28053616

  16. Mast Cell Function

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  17. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia

    SciTech Connect

    Chen, Shayan; Feng, Wenli; Yang, Xiao; Yang, Wanzhu; Ru, Yongxin; Liao, Jinfeng; Wang, Lina; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2014-04-18

    Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca{sup 2+} response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.

  18. Pregnancy persistently affects memory T cell populations.

    PubMed

    Kieffer, Tom E C; Faas, Marijke M; Scherjon, Sicco A; Prins, Jelmer R

    2017-02-01

    Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the constitution, size and activation status of peripheral human memory T-lymphocyte populations. Effector memory (EM) and central memory (CM) T-lymphocytes were analyzed using flow cytometry of peripheral blood from 14 nulligravid, 12 primigravid and 15 parous women that were on average 18 months postpartum. The short term effects were shown by the significantly higher CD4+ EM cell and activated CD4+ memory cell proportions in primigravid women compared to nulligravid women. The persistent effects found in this study were the significantly higher proportions of CD4+ EM, CD4+ CM and activated memory T cells in parous women compared to nulligravid women. In contrast to CD4+ cells, activation status of CD8+ memory cells did not differ between the groups. This study shows that pregnancy persistently affects the pre-pregnancy CD4+ memory cell pool in human peripheral blood. During pregnancy, CD4+ T-lymphocytes might differentiate into EM cells followed by persistent higher proportions of CD4+ CM and EM cells postpartum. The persistent effects of pregnancy on memory T cells found in this study support the hypothesis that memory T cells are generated during pregnancy and that these cells could be involved in the lower complication risks in multiparous pregnancies in humans.

  19. Does iron deficiency anemia affect olfactory function?

    PubMed

    Dinc, Mehmet Emre; Dalgic, Abdullah; Ulusoy, Seckin; Dizdar, Denizhan; Develioglu, Omer; Topak, Murat

    2016-07-01

    Conclusion This study found a negative effect of IDA on olfactory function. IDA leads to a reduction in olfactory function, and decreases in hemoglobin levels result in further reduction in olfactory function. Objective This study examined the effects of iron-deficiency anemia (IDA) on olfactory function. Method The study enrolled 50 IDA patients and 50 healthy subjects. Olfactory function was evaluated using the Sniffin' Sticks olfactory test. The diagnosis of IDA was made according to World Health Organization (WHO) criteria. Results Patients with IDA had a significantly lower threshold, discrimination, and identification (TDI) value, and a lower threshold compared with the control group. However, there were no significant differences between the groups in terms of smell selectivity values.

  20. Cryptococcal Cell Morphology Affects Host Cell Interactions and Pathogenicity

    PubMed Central

    Nielsen, Judith N.; Charlier, Caroline; Baltes, Nicholas J.; Chrétien, Fabrice; Heitman, Joseph; Dromer, Françoise; Nielsen, Kirsten

    2010-01-01

    Cryptococcus neoformans is a common life-threatening human fungal pathogen. The size of cryptococcal cells is typically 5 to 10 µm. Cell enlargement was observed in vivo, producing cells up to 100 µm. These morphological changes in cell size affected pathogenicity via reducing phagocytosis by host mononuclear cells, increasing resistance to oxidative and nitrosative stress, and correlated with reduced penetration of the central nervous system. Cell enlargement was stimulated by coinfection with strains of opposite mating type, and ste3aΔ pheromone receptor mutant strains had reduced cell enlargement. Finally, analysis of DNA content in this novel cell type revealed that these enlarged cells were polyploid, uninucleate, and produced daughter cells in vivo. These results describe a novel mechanism by which C. neoformans evades host phagocytosis to allow survival of a subset of the population at early stages of infection. Thus, morphological changes play unique and specialized roles during infection. PMID:20585559

  1. Evolutionary diversification in stickleback affects ecosystem functioning.

    PubMed

    Harmon, Luke J; Matthews, Blake; Des Roches, Simone; Chase, Jonathan M; Shurin, Jonathan B; Schluter, Dolph

    2009-04-30

    Explaining the ecological causes of evolutionary diversification is a major focus of biology, but surprisingly little has been said about the effects of evolutionary diversification on ecosystems. The number of species in an ecosystem and their traits are key predictors of many ecosystem-level processes, such as rates of productivity, biomass sequestration and decomposition. Here we demonstrate short-term ecosystem-level effects of adaptive radiation in the threespine stickleback (Gasterosteus aculeatus) over the past 10,000 years. These fish have undergone recent parallel diversification in several lakes in coastal British Columbia, resulting in the formation of two specialized species (benthic and limnetic) from a generalist ancestor. Using a mesocosm experiment, we demonstrate that this diversification has strong effects on ecosystems, affecting prey community structure, total primary production, and the nature of dissolved organic materials that regulate the spectral properties of light transmission in the system. However, these ecosystem effects do not simply increase in their relative strength with increasing specialization and species richness; instead, they reflect the complex and indirect consequences of ecosystem engineering by sticklebacks. It is well known that ecological factors influence adaptive radiation. We demonstrate that adaptive radiation, even over short timescales, can have profound effects on ecosystems.

  2. Scorpion venom components that affect ion-channels function

    PubMed Central

    Quintero-Hernández, V.; Jiménez-Vargas, J.M.; Gurrola, G.B.; Valdivia, H.H.F.; Possani, L.D.

    2014-01-01

    SUMMARY The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na+-, K+- and Ca++-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are now adays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na+-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K+-channels are normally pore blocking agents. The Ryanodine Ca++-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells. PMID:23891887

  3. Altered cell function in microgravity.

    PubMed

    Hughes-Fulford, M

    1991-01-01

    Physiological changes in humans during spaceflight upon return to earth have been attributed to systemic adaptation, response to stress, and lack of normal exercise. Studies from the Skylab, SL-3, and D-1 missions have demonstrated that significant physiological alterations are seen in single cell prokaryotes and eukaryotes, as well as in animal tissues. Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. Many of the physiological changes seen in humans, vertebrate and simple organisms in spaceflight may originate from dysfunction of basic biological mechanisms caused by microgravity. Aging humans share many of the symptoms seen in astronauts during spaceflight. These include reduced cardiac function, loss of bone and reduced immune response and orthostatic hypotension. It is possible that some of physiological adaptations seen in aging may share common physiological basis with those changes seen in spaceflight. Since microgravity affects prokaryotic and eukaryotic cell function at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological mechanisms which are essential to life.

  4. How does temperature affect the function of tissue macrophages?

    NASA Astrophysics Data System (ADS)

    Lee, Chen-Ting; Repasky, Elizabeth A.

    2011-03-01

    Macrophages create a major danger signal following injury or infection and upon activation release pro-inflammatory cytokines, which in turn help to generate febrile conditions. Thus, like other cells of the body, tissue macrophages are often exposed to naturally occurring elevations in tissue temperature during inflammation and fever. However, whether macrophages sense and respond to temperature changes in a specific manner which modulates their function is still not clear. In this brief review, we highlight recent studies which have analyzed the effects of temperatures on macrophage function, and summarize the possible underlying molecular mechanisms which have been identified. Mild, physiological range hyperthermia has been shown to have both pro- and anti-inflammatory roles in regulating macrophage inflammatory cytokine production and at the meeting presentation, we will show new data demonstrating that hyperthermia can indeed exert both positive and negative signals to macrophages. While some thermal effects are correlated with the induction of heat shock factors/heat shock proteins, overall it is not clear how mild hyperthermia can exert both pro- and anti-inflammatory functions. We also summarize data which shows that hyperthermia can affect other macrophage effector functions, including the anti-tumor cytotoxicity. Overall, these studies may help us to better understand the immunological role of tissue temperature and may provide important information needed to maximize the application of heat in the treatment of various diseases including cancer.

  5. Red blood cells affect the margination of microparticles in synthetic microcapillaries and intravital microcirculation as a function of their size and shape.

    PubMed

    D'Apolito, Rosa; Tomaiuolo, Giovanna; Taraballi, Francesca; Minardi, Silvia; Kirui, Dickson; Liu, Xuewu; Cevenini, Armando; Palomba, Roberto; Ferrari, Mauro; Salvatore, Francesco; Tasciotti, Ennio; Guido, Stefano

    2015-11-10

    A key step in particle-based drug delivery throughmicrocirculation is particlemigration from blood flow to vesselwalls, also known as “margination”,which promotes particle contact and adhesion to the vesselwall. Margination and adhesion should be independently addressed as two distinct phenomena, considering that the former is a fundamental prerequisite to achieve particle adhesion and subsequent extravasation. Although margination has beenmodeled by numerical simulations and investigated inmodel systems in vitro, experimental studies including red blood cells (RBCs) are lacking. Here, we evaluate the effect of RBCs on margination through microfluidic studies in vitro and by intravital microscopy in vivo.We showthatmargination,which is almost absent when particles are suspended in a cell-free medium, is drastically enhanced by RBCs. This effect is size- and shape-dependent, larger spherical/discoid particles being more effectively marginated both in vitro and in vivo. Our findings can be explained by the collision of particles with RBCs that induces the drifting of the particles towards the vessel walls where they become trapped in the cell-free layer. These results are relevant for the design of drug delivery strategies based on systemically administered carriers.

  6. Genetic Interactions at the Fla10 Locus: Suppressors and Synthetic Phenotypes That Affect the Cell Cycle and Flagellar Function in Chlamydomonas Reinhardtii

    PubMed Central

    Lux-III, F. G.; Dutcher, S. K.

    1991-01-01

    Through the isolation of suppressors of temperature-sensitive flagellar assembly mutations at the FLA10 locus of Chlamydomonas reinhardtii, we have identified six other genes involved in flagellar assembly. Mutations at these suppressor loci, termed SUF1-SUF6, display allele specificity with respect to which fla10(-) mutant alleles they suppress. An additional mutation, apm1-122, which confers resistance to the plant herbicides amiprophos-methyl and oryzalin, was also found to interact with mutations at the FLA10 locus. The apm1-122 mutation in combination with three fla10(-) mutant alleles results in synthetic cold-sensitive cell division defects, and in combination with an additional pseudo-wild-type fla10(-) allele yields a synthetic temperature-sensitive flagellar motility phenotype. Based upon the genetic interactions of these loci, we propose that the FLA10 gene product interacts with multiple components of the flagellar apparatus and plays a role both in flagellar assembly and in the cell cycle. PMID:1874415

  7. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.

  8. Biological, Functional and Genetic Characterization of Bone Marrow-Derived Mesenchymal Stromal Cells from Pediatric Patients Affected by Acute Lymphoblastic Leukemia

    PubMed Central

    Conforti, Antonella; Biagini, Simone; Del Bufalo, Francesca; Sirleto, Pietro; Angioni, Adriano; Starc, Nadia; Li Pira, Giuseppina; Moretta, Francesca; Proia, Alessandra; Contoli, Benedetta; Genovese, Silvia; Ciardi, Claudia; Avanzini, Maria Antonietta; Rosti, Vittorio; Lo-Coco, Francesco; Locatelli, Franco; Bernardo, Maria Ester

    2013-01-01

    Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment. PMID:24244271

  9. Interstitial cells: regulators of smooth muscle function.

    PubMed

    Sanders, Kenton M; Ward, Sean M; Koh, Sang Don

    2014-07-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.

  10. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  11. Dietary supplementation of yucca (Yucca schidigera) affects ovine ovarian functions.

    PubMed

    Vlčková, Radoslava; Sopková, Drahomíra; Andrejčáková, Zuzana; Valocký, Igor; Kádasi, Attila; Harrath, Abdel Halim; Petrilla, Vladimír; Sirotkin, Alexander V

    2017-01-15

    Yucca (Yucca schidigera) is a popular medicinal plant due to its many positive effects on animal and human physiology, including their reproductive systems. To examine the effect of supplemental yucca feeding on sheep reproduction, including ovarian functions and their hormonal regulators, ewes were fed (or not fed, control) yucca powder (1.5 g/head/day, 30 days). Macromorphometric indexes of the oviduct, ovary, and ovarian folliculogenesis were measured. Reproductive hormone levels in the blood were measured using a radioimmunoassay. Granulosa cells were aspirated from the ovary, and their proliferation and apoptosis were detected using immunocytochemistry. To assess secretory activity and its response to gonadotropin, ovarian fragments of treated and control ewes were cultured with and without follicle-stimulating hormone (FSH; 0, 0.1, 1, 10, or 100 IU/mL), and the release of reproductive hormones into the culture medium was evaluated. Finally, to examine the direct action of yucca on the ovary, ovarian fragments from control ewes were cultured with and without yucca extract (1, 10, or 100 μg/mL), and the release of reproductive hormones was measured. Yucca supplementation significantly decreased the size of small antral follicles (2 to <5 mm in diameter), increased accumulation of the apoptosis marker bax, and decreased serum progesterone (P4) and estradiol (E2) levels. It inhibited the release of P4 (but not other hormones), to prevent the stimulatory action of FSH on P4 output and promoted insulin-like growth factor I (IGF-I) release by fragments cultured with FSH. However, yucca supplementation did not affect the size of larger follicles and number of follicles, volume and weight of ovaries, length and weight of oviducts, caspase 3 accumulation, cell proliferation, testosterone (T) or IGF-I serum levels, or T or E2 release by cultured ovarian fragments and their response to FSH. Yucca addition to culture medium inhibited P4 and IGF-I, but not T or E2

  12. How Does Maternal Employment Affect Children's Socioemotional Functioning?

    ERIC Educational Resources Information Center

    Lam, Gigi

    2015-01-01

    The maternal employment becomes an irreversible trend across the globe. The effect of maternal employment on children's socioemotional functioning is so pervasive that it warrants special attention to investigate into the issue. A trajectory of analytical framework of how maternal employment affects children's socioemotional functioning originates…

  13. Regulation of Satellite Cell Function in Sarcopenia

    PubMed Central

    Alway, Stephen E.; Myers, Matthew J.; Mohamed, Junaith S.

    2014-01-01

    The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003

  14. Controlling Cell Function with Geometry

    NASA Astrophysics Data System (ADS)

    Mrksich, Milan

    2012-02-01

    This presentation will describe the use of patterned substrates to control cell shape with examples that illustrate the ways in which cell shape can regulate cell function. Most cells are adherent and must attach to and spread on a surface in order to survive, proliferate and function. In tissue, this surface is the extracellular matrix (ECM), an insoluble scaffold formed by the assembly of several large proteins---including fibronectin, the laminins and collagens and others---but in the laboratory, the surface is prepared by adsorbing protein to glass slides. To pattern cells, gold-coated slides are patterned with microcontact printing to create geometric features that promote cell attachment and that are surrounded by inert regions. Cells attach to these substrates and spread to adopt the shape defined by the underlying pattern and remain stable in culture for several days. Examples will be described that used a series of shapes to reveal the relationship between the shape of the cell and the structure of its cytoskeleton. These geometric cues were used to control cell polarity and the tension, or contractility, present in the cytoskeleton. These rules were further used to control the shapes of mesenchymal stem cells and in turn to control the differentiation of these cells into specialized cell types. For example, stem cells that were patterned into a ``star'' shape preferentially differentiated into bone cells whereas those that were patterned into a ``flower'' shape preferred a fat cell fate. These influences of shape on differentiation depend on the mechanical properties of the cytoskeleton. These examples, and others, reveal that shape is an important cue that informs cell function and that can be combined with the more common soluble cues to direct and study cell function.

  15. Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    PubMed Central

    Cools, Roshan; Nakamura, Kae; Daw, Nathaniel D

    2011-01-01

    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism. PMID:20736991

  16. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder

    PubMed Central

    Roecklein, Kathryn A.; Wong, Patricia M.; Miller, Megan A.; Donofry, Shannon D.; Kamarck, Marissa L.; Brainard, George C.

    2013-01-01

    ROECKLEIN, K.A., WONG, P.M., MILLER, M.A., DONOFRY, S.D., KAMARCK, M.L., BRAINARD, G.C. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder…NEUROSCI BIOBEHAV REV x(x) XXX-XXX, 2012. In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1–2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells. PMID:23286902

  17. Kupffer Cell Metabolism and Function

    PubMed Central

    Nguyen-Lefebvre, Anh Thu; Horuzsko, Anatolij

    2015-01-01

    Kupffer cells are resident liver macrophages and play a critical role in maintaining liver functions. Under physiological conditions, they are the first innate immune cells and protect the liver from bacterial infections. Under pathological conditions, they are activated by different components and can differentiate into M1-like (classical) or M2-like (alternative) macrophages. The metabolism of classical or alternative activated Kupffer cells will determine their functions in liver damage. Special functions and metabolism of Kupffer cells suggest that they are an attractive target for therapy of liver inflammation and related diseases, including cancer and infectious diseases. Here we review the different types of Kupffer cells and their metabolism and functions in physiological and pathological conditions. PMID:26937490

  18. Maternal metabolic stress may affect oviduct gatekeeper function.

    PubMed

    Jordaens, Lies; Van Hoeck, Veerle; Maillo, Veronica; Gutierrez-Adan, Alfonso; Marei, Waleed Fawzy A; Vlaeminck, Bruno; Thys, Sofie; Sturmey, Roger G S; Bols, Peter; Leroy, Jo

    2017-03-03

    We hypothesized that elevated non-esterified fatty acids (NEFA) modify in vitro bovine oviduct epithelial cell (BOEC) metabolism and barrier function. Hereto, BOECs were studied in a polarized system with 24h-treatments at day 9: 1) CONTROL (0µM NEFA + 0%EtOH), 2) SOLVENT CONTROL (0µM NEFA + 0.45%EtOH), 3) BASAL NEFA (720µM NEFA + 0.45%EtOH in the basal compartment), 4) APICAL NEFA (720µM NEFA + 0.45%EtOH in the apical compartment). FITC-albumin was used for monolayer permeability assessment, and related to Transepithelial Electric Resistance (TER). Fatty acid (FA), glucose, lactate and pyruvate concentrations were measured in spent medium. Intracellular lipid droplets (LD) and FA-uptake were studied using Bodipy 493/503 and immunolabelling of FA-transporters (FAT/CD36, FABP3 and caveolin1). BOEC-mRNA was retrieved for qRT-PCR. Results revealed that APICAL NEFA reduced relative TER-increase (46.85%) during treatment, and increased FITC-albumin flux (27.59%) compared to other treatments. In BASAL NEFA, FAs were transferred to the apical compartment as free FAs: mostly palmitic and oleic acid increased, respectively 56.0 % and 33.5% of initial FA-concentrations. APICAL NEFA allowed no FA-transfer, but induced LD-accumulation and upregulated FA-transporter expression (↑CD36, ↑FABP3, ↑CAV1-protein-expression). Gene expression in APICAL NEFA indicated increased anti-apoptotic (↑BCL2) and anti-oxidative (↑SOD1) capacity, upregulated lipid metabolism (↑CPT1, ↑ACSL1 and ↓ACACA), and FA-uptake (↑CAV1). All treatments had similar carbohydrate metabolism and oviduct function specific gene expression (=OVGP1, ESR1, FOXJ1). Overall, elevated NEFAs affected BOEC-metabolism and barrier function differently depending on NEFA-exposure side. Data substantiate the concept of the oviduct as a gatekeeper that may actively alter early embryonic developmental conditions.

  19. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder.

    PubMed

    Roecklein, Kathryn A; Wong, Patricia M; Miller, Megan A; Donofry, Shannon D; Kamarck, Marissa L; Brainard, George C

    2013-03-01

    In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1-2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells.

  20. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  1. Genome rearrangement affects RNA virus adaptability on prostate cancer cells.

    PubMed

    Pesko, Kendra; Voigt, Emily A; Swick, Adam; Morley, Valerie J; Timm, Collin; Yin, John; Turner, Paul E

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3' UTR - core protein genes - envelope protein genes - RNA-dependent RNA-polymerase gene - 5' UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5' end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a given gene

  2. Lexical and Affective Prosody in Children with High Functioning Autism

    PubMed Central

    Grossman, Ruth B.; Bemis, Rhyannon H.; Skwerer, Daniela Plesa; Tager-Flusberg, Helen

    2012-01-01

    Purpose We investigated perception and production of lexical stress and processing of affective prosody in adolescents with high functioning autism (HFA). We hypothesized preserved processing of lexical and affective prosody, but atypical lexical prosody production. Method 16 children with HFA and 15 typically developing (TD) peers participated in three experiments: 1. Perception of affective prosody, 2. Lexical stress perception, 3. Lexical stress production. In Experiment 1, participants labeled sad, happy, and neutral spoken sentences that were low-pass filtered, to eliminate verbal content. In Experiment 2 participants disambiguated word meanings based on lexical stress (HOTdog, vs. hotDOG). In Experiment 3 participants produced these words in a sentence completion task. Productions were analyzed using acoustic measures. Results Accuracy levels showed no group differences. Participants with HFA could determine affect from filtered sentences and disambiguate words based on lexical stress. They produced appropriately differentiated lexical stress patterns but demonstrated atypically long productions indicating reduced ability in natural prosody production. Conclusions Children with HFA were as capable as their TD peers in receptive tasks of lexical stress and affective prosody. Prosody productions were atypically long, despite accurate differentiation of lexical stress patterns. Future research should use larger samples and spontaneous vs. elicited productions. PMID:20530388

  3. Polyphosphate Affects Breast Cancer Cell Survival

    DTIC Science & Technology

    2006-04-01

    modifications to polyphosphate operons (3 articles) • Laboratory techniques utilizing polyphosphate (9 articles) • Functional roles for polyphosphate (10...transcription of over 20genes and operons , including genes producing DNA polymerases (Pol II, Pol IV and Pol V) (Walker, 1996). While majority of the...biosynthetic protein, is expressed from the ppk operon in the E. coli genome. Disruption of this operon to prevent synthesis of polyphosphates results

  4. Functional significance of preserved affect recognition in schizophrenia

    PubMed Central

    Fiszdon, Joanna M.; Johannesen, Jason K.

    2009-01-01

    Affect recognition (AR) is a core component of social information processing, thus may be critical to understanding social behavior and functioning in broader aspects of daily living. Deficits in AR are well documented in schizophrenia, however, there is also evidence that many individuals with schizophrenia perform AR tasks at near-normal levels. In the current study, we sought to evaluate the functional significance of AR deficits in schizophrenia by comparing subgroups with normal-range and impaired AR performance on proxy and interviewer-rated measures of real-world functioning. Schizophrenia outpatients were classified as normal-range (N=17) and impaired (N=31) based on a logistic cut point in the sample distribution of BLERT scores, referenced to a normative sample of healthy control subjects (N=56). The derived schizophrenia subgroups were then compared on proxy (UCSD, UPSA, SSPA, MMAA) and interviewer-rated (QLS, ILSS) measures of functioning, as well as battery of neurocognitive tests. Initial analyses indicated superior MMAA and QLS performance in the near-normal AR subgroup. Covariate analyses indicated that group differences in neurocognition fully mediated the observed associations between AR and MMAA and attenuated the observed relationships between AR classification and QLS. These results support three main conclusions. First, AR, like many other domains of psychopathology studied in schizophrenia, is preserved in select subgroups. Second, there is a positive relationship between AR performance and functional outcome measures. Third, neurocognition appears to mediate the relationship between AR and measures of functioning. PMID:20202689

  5. Transglutaminase Regulation of Cell Function

    PubMed Central

    Kaartinen, Mari T.; Nurminskaya, Maria; Belkin, Alexey M.; Colak, Gozde; Johnson, Gail V. W.; Mehta, Kapil

    2014-01-01

    Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states. PMID:24692352

  6. Abnormal GABAergic function and negative affect in schizophrenia.

    PubMed

    Taylor, Stephan F; Demeter, Elise; Phan, K Luan; Tso, Ivy F; Welsh, Robert C

    2014-03-01

    Deficits in the γ-aminobutyric acid (GABA) system have been reported in postmortem studies of schizophrenia, and therapeutic interventions in schizophrenia often involve potentiation of GABA receptors (GABAR) to augment antipsychotic therapy and treat negative affect such as anxiety. To map GABAergic mechanisms associated with processing affect, we used a benzodiazepine challenge while subjects viewed salient visual stimuli. Fourteen stable, medicated schizophrenia/schizoaffective patients and 13 healthy comparison subjects underwent functional magnetic resonance imaging using the blood oxygenation level-dependent (BOLD) technique while they viewed salient emotional images. Subjects received intravenous lorazepam (LRZ; 0.01 mg/kg) or saline in a single-blinded, cross-over design (two sessions separated by 1-3 weeks). A predicted group by drug interaction was noted in the dorsal medial prefrontal cortex (dmPFC) as well as right superior frontal gyrus and left and right occipital regions, such that psychosis patients showed an increased BOLD signal to LRZ challenge, rather than the decreased signal exhibited by the comparison group. A main effect of reduced BOLD signal in bilateral occipital areas was noted across groups. Consistent with the role of the dmPFC in processing emotion, state negative affect positively correlated with the response to the LRZ challenge in the dmPFC for the patients and comparison subjects. The altered response to LRZ challenge is consistent with altered inhibition predicted by postmortem findings of altered GABAR in schizophrenia. These results also suggest that negative affect in schizophrenia/schizoaffective disorder is associated-directly or indirectly-with GABAergic function on a continuum with normal behavior.

  7. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior?

    PubMed

    Cartocci, Veronica; Servadio, Michela; Trezza, Viviana; Pallottini, Valentina

    2017-02-01

    Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281-286, 2017. © 2016 Wiley Periodicals, Inc.

  8. Factors Affecting Polymer Electrolyte Fuel Cells Performance and Reproducibility

    SciTech Connect

    Moller-Holst S.

    1998-11-01

    Development of fuel cells is often based on small-scale laboratory studies. Due to limited time and budgets, a minimum number of cells are usually prepared and tested, thus, conclusions about improved performance are often drawn from studies of a few cells. Generally, statistics showing the significance of an effect are seldom reported. In this work a simple PEM fuel cell electrode optimization experiment is used as an example to illustrate the importance of statistical evaluation of factors affecting cell performance. The use of fractional factorial design of experiments to reduce the number of cells that have to be studied is also addressed.

  9. Can the hydrophilicity of functional monomers affect chemical interaction?

    PubMed

    Feitosa, V P; Ogliari, F A; Van Meerbeek, B; Watson, T F; Yoshihara, K; Ogliari, A O; Sinhoreti, M A; Correr, A B; Cama, G; Sauro, S

    2014-02-01

    The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts.

  10. GPCRs in Stem Cell Function

    PubMed Central

    DOZE, VAN A.; PEREZ, DIANNE M.

    2013-01-01

    Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G-protein coupled receptors in the regulation of stem cells and their potential in future clinical applications. PMID:23415095

  11. Diabetes and Stem Cell Function

    PubMed Central

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247

  12. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease.

    PubMed

    Siciliano, Angela; Turrini, Franco; Bertoldi, Mariarita; Matte, Alessandro; Pantaleo, Antonella; Olivieri, Oliviero; De Franceschi, Lucia

    2010-04-15

    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder related to the production of a defective form of hemoglobin, hemoglobin S (HbS). One of the hallmarks of SCD is the presence of dense, dehydrate highly adhesive sickle red blood cells (RBCs) that result from persistent membrane damage associated with HbS polymerization, abnormal activation of membrane cation transports and generation of distorted and rigid red cells with membrane perturbation and cytoskeleton dysfunction. Although modulation of phosphorylation state of the proteins from membrane and cytoskeleton networks has been proposed to participate in red cell homeostasis, much still remains to be investigated in normal and diseased red cells. Here, we report that tyrosine (Tyr-) phosphoproteome of sickle red cells was different from normal controls and was affected by deoxygenation. We found proteins, p55 and band 4.1, from the junctional complex, differently Tyr-phosphorylated in SCD RBCs compared to normal RBCs under normoxia and modulated by deoxygenation, while band 4.2 was similarly Tyr-phosphorylated in both conditions. In SCD RBCs we identified the phosphopeptides for protein 4.1R located in the protein FERM domain (Tyr-13) and for alpha-spectrin located near or in a linker region (Tyr-422 and Tyr-1498) involving protein areas crucial for their functions in the context of red cell membrane properties, suggesting that Tyr-phosphorylation may be part of the events involved in maintaining membrane mechanical stability in SCD red cells.

  13. Modeled Microgravity Affects Fibroblast Functions Related to Wound Healing

    NASA Astrophysics Data System (ADS)

    Cialdai, Francesca; Vignali, Leonardo; Morbidelli, Lucia; Colciago, Alessandra; Celotti, Fabio; Santi, Alice; Caselli, Anna; Cirri, Paolo; Monici, Monica

    2017-02-01

    Wound healing is crucial for the survival of an organism. Therefore, in the perspective of space exploration missions, it is important to understand if and how microgravity conditions affect the behavior of the cell populations involved in wound healing and the evolution of the process. Since fibroblasts are the major players in tissue repair, this study was focused on the behavior of fibroblasts in microgravity conditions, modeled by a RCCS. Cell cytoskeleton was studied by immunofluorescence microscopy, the ability to migrate was assessed by microchemotaxis and scratch assay, and the expression of markers of fibroblast activation, angiogenesis, and inflammation was assessed by western blot. Results revealed that after cell exposure to modeled microgravity conditions, a thorough rearrangement of microtubules occurred and α-SMA bundles were replaced by a tight network of faulty and disorganized filaments. Exposure to modeled microgravity induced a decrease in α-SMA and E-CAD expressions. Also, the expression of the pro-angiogenic protein VEGF decreased, while that of the inflammatory signal COX-2 increased. Fibroblast ability to adhere, migrate, and respond to chemoattractants (PRP), closely related to cytoskeleton integrity and membrane junctions, was significantly impaired. Nevertheless, PRP was able to partially restore fibroblast migration.

  14. Modeled Microgravity Affects Fibroblast Functions Related to Wound Healing

    NASA Astrophysics Data System (ADS)

    Cialdai, Francesca; Vignali, Leonardo; Morbidelli, Lucia; Colciago, Alessandra; Celotti, Fabio; Santi, Alice; Caselli, Anna; Cirri, Paolo; Monici, Monica

    2017-01-01

    Wound healing is crucial for the survival of an organism. Therefore, in the perspective of space exploration missions, it is important to understand if and how microgravity conditions affect the behavior of the cell populations involved in wound healing and the evolution of the process. Since fibroblasts are the major players in tissue repair, this study was focused on the behavior of fibroblasts in microgravity conditions, modeled by a RCCS. Cell cytoskeleton was studied by immunofluorescence microscopy, the ability to migrate was assessed by microchemotaxis and scratch assay, and the expression of markers of fibroblast activation, angiogenesis, and inflammation was assessed by western blot. Results revealed that after cell exposure to modeled microgravity conditions, a thorough rearrangement of microtubules occurred and α-SMA bundles were replaced by a tight network of faulty and disorganized filaments. Exposure to modeled microgravity induced a decrease in α-SMA and E-CAD expressions. Also, the expression of the pro-angiogenic protein VEGF decreased, while that of the inflammatory signal COX-2 increased. Fibroblast ability to adhere, migrate, and respond to chemoattractants (PRP), closely related to cytoskeleton integrity and membrane junctions, was significantly impaired. Nevertheless, PRP was able to partially restore fibroblast migration.

  15. Altered cell function in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1991-01-01

    The paper overviews published results from investigations of changes in basic biological parameters taking place as a result of spaceflight exposure. These include changes in the rates of the DNA, mRNA, and protein biosyntheses; changes in the growth rate of an organism; and alterations in the cytoskeleton structure, differentiation, hormone accumulation, and collagen matrix secretion. These results, obtained both in complex biological organisms and on cultured cells, suggest that a basic cellular function is influenced and changed by microgravity. Many of the above mentioned changes are also found to take place in aging cells.

  16. Can lifestyle modification affect men’s erectile function?

    PubMed Central

    Hehemann, Marah C.

    2016-01-01

    Erectile dysfunction (ED) is a common condition affecting millions of men worldwide. The pathophysiology and epidemiologic links between ED and risk factors for cardiovascular disease (CVD) are well-established. Lifestyle modifications such as smoking cessation, weight reduction, dietary modification, physical activity, and psychological stress reduction have been increasingly recognized as foundational to the prevention and treatment of ED. The aim of this review is to outline behavioral choices which may increase ones risk of developing ED, to present relevant studies addressing lifestyle factors correlated with ED, and to highlight proposed mechanisms for intervention aimed at improving erectile function in men with ED. These recommendations can provide a framework for counseling patients with ED about lifestyle modification. PMID:27141445

  17. Functional roles affect diversity-succession relationships for boreal beetles.

    PubMed

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  18. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  19. Strategies for cell membrane functionalization

    PubMed Central

    Armstrong, James PK

    2016-01-01

    The ability to rationally manipulate and augment the cytoplasmic membrane can be used to overcome many of the challenges faced by conventional cellular therapies and provide innovative opportunities when combined with new biotechnologies. The focus of this review is on emerging strategies used in cell functionalization, highlighting both pioneering approaches and recent developments. These will be discussed within the context of future directions in this rapidly evolving field. PMID:27229904

  20. Genistein affects proliferation and migration of bovine oviductal epithelial cells.

    PubMed

    García, Daniela C; Valdecantos, Pablo A; Miceli, Dora C; Roldán-Olarte, Mariela

    2017-03-08

    Genistein is one of the most abundant isoflavones in soybean. This molecule induces cell cycle arrest and apoptosis in different normal and cancer cells. Genistein has been of considerable interest due to its adverse effects on bovine reproduction, altering estrous cycle, implantation and fetal development and producing subfertility or infertility. The objective of this work was to study the effects of genistein on the expression of selected genes involved in the regulation of cell cycle and apoptosis. Primary cultures of bovine oviductal epithelial cells (BOEC) were treated with different genistein concentrations (0.2, 2 and 10μM) to analyze CYCLIN B1, BCL-2 and BAX gene expression by Real-time RT-PCR. Results showed that genistein down-regulated CYCLIN B1 expression, affecting cell cycle progression, and caused a decrease in the BCL-2/BAX ratio starting at 2μM of genistein. In addition, in order to determine if genistein affects BOEC migration, in vitro wound healing assays were performed. A significant reduction in cell migration after 12h of culture was observed at both 0.2 and 10μM genistein concentrations. Also, in the presence of genistein the percentage of mitotic cells decreased, although apoptotic cells percentages were not affected. These findings indicate that genistein has an inhibitory effect on BOEC proliferation and migration, suggesting that it could influence the normal physiology of the oviductal epithelium.

  1. Lysosome biogenesis mediated by vps-18 affects apoptotic cell degradation in Caenorhabditis elegans.

    PubMed

    Xiao, Hui; Chen, Didi; Fang, Zhou; Xu, Jing; Sun, Xiaojuan; Song, Song; Liu, Jiajia; Yang, Chonglin

    2009-01-01

    Appropriate clearance of apoptotic cells (cell corpses) is an important step of programmed cell death. Although genetic and biochemical studies have identified several genes that regulate the engulfment of cell corpses, how these are degraded after being internalized in engulfing cell remains elusive. Here, we show that VPS-18, the Caenorhabditis elegans homologue of yeast Vps18p, is critical to cell corpse degradation. VPS-18 is expressed and functions in engulfing cells. Deletion of vps-18 leads to significant accumulation of cell corpses that are not degraded properly. Furthermore, vps-18 mutation causes strong defects in the biogenesis of endosomes and lysosomes, thus affecting endosomal/lysosomal protein degradation. Importantly, we demonstrate that phagosomes containing internalized cell corpses are unable to fuse with lysosomes in vps-18 mutants. Our findings thus provide direct evidence for the important role of endosomal/lysosomal degradation in proper clearance of apoptotic cells during programmed cell death.

  2. To what extent does urbanisation affect fragmented grassland functioning?

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban

  3. Does Ramadan Fasting Adversely Affect Cognitive Function in Young Females?

    PubMed Central

    Ghayour Najafabadi, Mahboubeh; Rahbar Nikoukar, Laya; Memari, Amir; Ekhtiari, Hamed; Beygi, Sara

    2015-01-01

    We examined the effects of Ramadan fasting on cognitive function in 17 female athletes. Data were obtained from participants of two fasting (n = 9) and nonfasting (n = 8) groups at three periods of the study (before Ramadan, at the third week in Ramadan, and after Ramadan). Digit span test (DST) and Stroop color test were employed to assess short-term memory and inhibition/cognitive flexibility at each time point. There were no significant changes for DST and Stroop task 1 in both groups, whereas Stroop task 2 and task 3 showed significant improvements in Ramadan condition (p < 0.05). Interference indices did not change significantly across the study except in post-Ramadan period of fasting group (p < 0.05). Group × week interaction was significant only for error numbers (p < 0.05). Athletes in nonfasting showed a significant decrease in number of errors in Ramadan compared to baseline (p < 0.05). The results suggest that Ramadan fasting may not adversely affect cognitive function in female athletes. PMID:26697263

  4. Regulatory Functions of Natural Killer Cells in Multiple Sclerosis

    PubMed Central

    Gross, Catharina C.; Schulte-Mecklenbeck, Andreas; Wiendl, Heinz; Marcenaro, Emanuela; Kerlero de Rosbo, Nicole; Uccelli, Antonio; Laroni, Alice

    2016-01-01

    There is increasing evidence that natural killer (NK) cells exhibit regulatory features. Among them, CD56bright NK cells have been suggested to play a major role in controlling T cell responses and maintaining homeostasis. Dysfunction in NK cell-mediated regulatory features has been recently described in untreated multiple sclerosis (MS), suggesting a contribution to MS pathogenesis. Moreover, biological disease-modifying treatments effective in MS apparently enhance the frequencies and/or regulatory function of NK cells, further pointing toward an immunoprotective role of NK cells in MS. Here, we summarize the current knowledge on the regulatory functions of NK cells, based on their interactions with other cells belonging to the innate compartment, as well as with adaptive effector cells. We review the more recent data reporting disruption of NK cell/T cell interactions in MS and discuss how disease-modifying treatments for MS affect NK cells. PMID:28066417

  5. Cell flexibility affects the alignment of model myxobacteria.

    PubMed

    Janulevicius, Albertas; van Loosdrecht, Mark C M; Simone, Angelo; Picioreanu, Cristian

    2010-11-17

    Myxobacteria are social bacteria that exhibit a complex life cycle culminating in the development of multicellular fruiting bodies. The alignment of rod-shaped myxobacteria cells within populations is crucial for development to proceed. It has been suggested that myxobacteria align due to mechanical interactions between gliding cells and that cell flexibility facilitates reorientation of cells upon mechanical contact. However, these suggestions have not been based on experimental or theoretical evidence. Here we created a computational mass-spring model of a flexible rod-shaped cell that glides on a substratum periodically reversing direction. The model was formulated in terms of experimentally measurable mechanical parameters, such as engine force, bending stiffness, and drag coefficient. We investigated how cell flexibility and motility engine type affected the pattern of cell gliding and the alignment of a population of 500 mechanically interacting cells. It was found that a flexible cell powered by engine force at the rear of the cell, as suggested by the slime extrusion hypothesis for myxobacteria motility engine, would not be able to glide in the direction of its long axis. A population of rigid reversing cells could indeed align due to mechanical interactions between cells, but cell flexibility impaired the alignment.

  6. Functional Roles Affect Diversity-Succession Relationships for Boreal Beetles

    PubMed Central

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of “functional” groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience. PMID:23977350

  7. Does Bowel Preparation for Colonoscopy Affect Cognitive Function?

    PubMed Central

    Wadsworth, P.; Blackburne, H.; Dixon, L.; Dobbs, B.; Eglinton, T.; Ing, A.; Mulder, R.; Porter, R.J.; Wakeman, C.; Frizelle, F.A.

    2015-01-01

    Abstract Colonoscopy is a common procedure used in the diagnosis and treatment of a range of bowel disorders. Prior preparation involving potent laxatives is a necessary stage to ensure adequate visualization of the bowel wall. It is known that the sedatives given to most patients during the colonoscopy cause a temporary impairment in cognitive function; however, the potential for bowel preparation to affect cognitive function has not previously been investigated. To assess the effect of bowel preparation for colonoscopy on cognitive function. This was a prospective, nonrandomized controlled study of cognitive function in patients who had bowel preparation for colonoscopy compared with those having gastroscopy and therefore no bowel preparation. Cognitive function was assessed using the Modified Mini Mental State Examination (MMMSE) and selected tests from the Cambridge Neuropsychological Test Automated Battery. Individual test scores and changes between initial and subsequent tests were compared between the groups. Age, gender, and weight were also compared. Forty-three colonoscopy and 25 gastroscopy patients were recruited. The 2 groups were similar for age and gender; however, patients having gastroscopy were heavier. MMMSE scores for colonoscopy and gastroscopy groups, respectively, were 28.6 and 29.5 (P = 0.24) at baseline, 28.7 and 29.8 (P = 0.32) at test 2, 28.1 and 28.5 (P = 0.76) at test 3. Motor screening scores for colonoscopy and gastroscopy groups, respectively, were 349.3 and 354.1 (P = 0.97) at baseline, 307.5 and 199.7 (P = 0.06) at test 2, 212.0 and 183.2 (P = 0.33) at test 3. Spatial working memory scores for colonoscopy and gastroscopy groups, respectively, were 14.4 and 6.7 (P = 0.29) at baseline, 9.7 and 4.3 (P = 0.27) at test 2, 10 and 4.5 (P = 0.33) at test 3. Digit Symbol Substitution Test scores for colonoscopy and gastroscopy groups, respectively, were 36.3 and 37.8 (P = 0.84) at baseline, 36.4 and

  8. Glyphosate-based pesticides affect cell cycle regulation.

    PubMed

    Marc, Julie; Mulner-Lorillon, Odile; Bellé, Robert

    2004-04-01

    Cell-cycle dysregulation is a hallmark of tumor cells and human cancers. Failure in the cell-cycle checkpoints leads to genomic instability and subsequent development of cancers from the initial affected cell. A worldwide used product Roundup 3plus, based on glyphosate as the active herbicide, was suggested to be of human health concern since it induced cell cycle dysfunction as judged from analysis of the first cell division of sea urchin embryos, a recognized model for cell cycle studies. Several glyphosate-based pesticides from different manufacturers were assayed in comparison with Roundup 3plus for their ability to interfere with the cell cycle regulation. All the tested products, Amega, Cargly, Cosmic, and Roundup Biovert induced cell cycle dysfunction. The threshold concentration for induction of cell cycle dysfunction was evaluated for each product and suggests high risk by inhalation for people in the vicinity of the pesticide handling sprayed at 500 to 4000 times higher dose than the cell-cycle adverse concentration.

  9. Modulation of GLO1 Expression Affects Malignant Properties of Cells.

    PubMed

    Hutschenreuther, Antje; Bigl, Marina; Hemdan, Nasr Y A; Debebe, Tewodros; Gaunitz, Frank; Birkenmeier, Gerd

    2016-12-18

    The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.

  10. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    PubMed Central

    Hutschenreuther, Antje; Bigl, Marina; Hemdan, Nasr Y. A.; Debebe, Tewodros; Gaunitz, Frank; Birkenmeier, Gerd

    2016-01-01

    The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect) characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO). Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1) that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed. PMID:27999356

  11. RNA INTERFERENCE AGAINST CFTR AFFECTS HL60-DERIVED NEUTROPHIL MICROBICIDAL FUNCTION

    PubMed Central

    Bonvillain, Ryan W.; Painter, Richard G.; Adams, Daniel E.; Viswanathan, Anand; Lanson, Nicholas A.; Wang, Guoshun

    2010-01-01

    Biosynthesis of hypochlorous acid (HOCl), a potent anti-microbial oxidant, in phagosomes is one of the chief mechanisms employed by polymorphonuclear neutrophils (PMNs) to combat infections. This reaction, catalyzed by myeloperoxidase, requires chloride anion (Cl−) as a substrate. Thus, Cl− availability is a rate-limiting factor that affects neutrophil microbicidal function. Our previous research demonstrated that defective CFTR, a cAMP-activated chloride channel, present in cystic fibrosis (CF) patients leads to deficient chloride transport to neutrophil phagosomes and impaired bacterial killing (Painter et al., 2008 & 2010). To confirm this finding, here we used RNA interference against this chloride channel to abate CFTR expression in the neutrophil-like cells derived from HL60 cells, a promyelocytic leukemia cell line, with DMSO. The resultant CFTR deficiency in the phagocytes compromised their bactericidal capability, thereby recapitulating the phenotype seen in CF patient cells. The results provide further evidence suggesting that CFTR plays an important role in phagocytic host defense. PMID:20870018

  12. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming.

    PubMed

    Li, Heng-Hong; Wang, Yi-Wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D; Fornace, Albert J

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures.

  13. The structure and function of fungal cells

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    The structure and function of fungal cell walls were studied with particular emphasis on dermatophytes. Extraction, isolation, analysis, and observation of the cell wall structure and function were performed. The structure is described microscopically and chemically.

  14. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  15. Functional neuroimaging of human vocalizations and affective speech.

    PubMed

    Frühholz, Sascha; Sander, David; Grandjean, Didier

    2014-12-01

    Neuroimaging studies have verified the important integrative role of the basal ganglia during affective vocalizations. They, however, also point to additional regions supporting vocal monitoring, auditory-motor feedback processing, and online adjustments of vocal motor responses. For the case of affective vocalizations, we suggest partly extending the model to fully consider the link between primate-general and human-specific neural components.

  16. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells.

    PubMed

    Ramanauskiene, Kristina; Raudonis, Raimondas; Majiene, Daiva

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80-130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM-200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  17. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies. PMID:27688825

  18. Frozen Soil Characteristics That Affect Land Mine Functioning.

    DTIC Science & Technology

    1983-04-01

    ii Introduction .............................................. 1 Backgroun ...Table 3 also presents the results of the mine functioning perform- ance . The M12 mine requires between 1739 and 3287 N to function, as indicated by the

  19. Catheterization of Intestinal Loops in Ruminants Does Not Adversely Affect Loop Function

    PubMed Central

    Inglis, G Douglas; Kastelic, John P; Uwiera, Richard R E

    2010-01-01

    Catheterized intestinal loops may be a valuable model to elucidate key components of the host response to various treatments within the small intestine of ruminants. We examined whether catheterizing ileal loops in sheep affected the overall health of animals and intestinal function, whether a bacterial treatment could be introduced into the loops through the catheters, and whether broad-spectrum antibiotics could sterilize the loops. Escherichia coli cells transformed to express the GFP gene were introduced readily into the loops through the catheters, and GFP E. coli cells were localized within the injected loops. Catheterized loops, interspaces, and intact ileum exhibited no abnormalities in tissue appearance or electrical resistance. Expression of the IFNγ, IL1α, IL4, IL6, IL12p40, IL18, TGFβ1, and TNFα cytokine genes did not differ significantly among the intact ileum, catheterized loops, and interspaces, nor did the expression of the gene for inducible nitric oxide synthase. Broad-spectrum antibiotics administered during surgery did not sterilize the loops or interspaces and did not substantively change the composition of the microbiota. However, antibiotics reduced the overall number of bacterial cells within the loop and the relative abundance of community constituents. We concluded that catheterization of intestinal loops did not adversely affect health or loop function in sheep. Furthermore, allowing animals to recover fully from surgery and to clear pharmaceuticals will remove any confounding effects due to these factors, making catheterized intestinal loops a feasible model for studying host responses in ruminants. PMID:21262134

  20. Do mast cells affect villous architecture? Facts and conjectures.

    PubMed

    Crivellato, E; Finato, N; Ribatti, D; Beltrami, C A

    2005-10-01

    In adult life, the architecture of the intestinal villus is maintained by a complex series of epithelial-stromal interactions that involve different types of fixed and mobile cells located in the intestinal mucosa. Mast cells (MC) are normal constituents of the small bowel mucosa where they reside in the villous and pericryptal lamina propria as well as within the columnar epithelial cell layer. Besides being involved in numerous immune and inflammatory reactions in the context of both innate and acquired host defence, MC are known to exert important non-immunological functions like wound repair, extracellular matrix remodelling, angiogenesis and neurotrophism as well as modulation of fibroblast, epithelial cell and smooth muscle cell activity. These pleiotropic functions put MC in a central, strategic position to organize tissue defence, restore tissue damage and maintain tissue homeostasis. This review summarizes the most recent advances concerning the functional anatomy of the crypt-villus unit and discusses the way intestinal MC might become part of the instructive circuits that ultimately lead to the maintenance of a proper villous shape.

  1. Suppression of DNA-dependent protein kinase sensitize cells to radiation without affecting DSB repair.

    PubMed

    Gustafsson, Ann-Sofie; Abramenkovs, Andris; Stenerlöw, Bo

    2014-11-01

    Efficient and correct repair of DNA double-strand break (DSB) is critical for cell survival. Defects in the DNA repair may lead to cell death, genomic instability and development of cancer. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is an essential component of the non-homologous end joining (NHEJ) which is the major DSB repair pathway in mammalian cells. In the present study, by using siRNA against DNA-PKcs in four human cell lines, we examined how low levels of DNA-PKcs affected cellular response to ionizing radiation. Decrease of DNA-PKcs levels by 80-95%, induced by siRNA treatment, lead to extreme radiosensitivity, similar to that seen in cells completely lacking DNA-PKcs and low levels of DNA-PKcs promoted cell accumulation in G2/M phase after irradiation and blocked progression of mitosis. Surprisingly, low levels of DNA-PKcs did not affect the repair capacity and the removal of 53BP1 or γ-H2AX foci and rejoining of DSB appeared normal. This was in strong contrast to cells completely lacking DNA-PKcs and cells treated with the DNA-PKcs inhibitor NU7441, in which DSB repair were severely compromised. This suggests that there are different mechanisms by which loss of DNA-PKcs functions can sensitize cells to ionizing radiation. Further, foci of phosphorylated DNA-PKcs (T2609 and S2056) co-localized with DSB and this was independent of the amount of DNA-PKcs but foci of DNA-PKcs was only seen in siRNA-treated cells. Our study emphasizes on the critical role of DNA-PKcs for maintaining survival after radiation exposure which is uncoupled from its essential function in DSB repair. This could have implications for the development of therapeutic strategies aiming to radiosensitize tumors by affecting the DNA-PKcs function.

  2. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    PubMed

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-05

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  3. Concomitant gastroparesis negatively affects children with functional gallbladder disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to determine whether concomitant gastroparesis and biliary dyskinesia (BD) occur in children, and if so, to determine whether concomitant gastroparesis affects clinical outcome in children with BD. We conducted a retrospective chart review of children with BD (ejecti...

  4. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  5. Laminins affect T cell trafficking and allograft fate.

    PubMed

    Warren, Kristi J; Iwami, Daiki; Harris, Donald G; Bromberg, Jonathan S; Burrell, Bryna E

    2014-05-01

    Lymph nodes (LNs) are integral sites for the generation of immune tolerance, migration of CD4⁺ T cells, and induction of Tregs. Despite the importance of LNs in regulation of inflammatory responses, the LN-specific factors that regulate T cell migration and the precise LN structural domains in which differentiation occurs remain undefined. Using intravital and fluorescent microscopy, we found that alloreactive T cells traffic distinctly into the tolerant LN and colocalize in exclusive regions with alloantigen-presenting cells, a process required for Treg induction. Extracellular matrix proteins, including those of the laminin family, formed regions within the LN that were permissive for colocalization of alloantigen-presenting cells, alloreactive T cells, and Tregs. We identified unique expression patterns of laminin proteins in high endothelial venule basement membranes and the cortical ridge that correlated with alloantigen-specific immunity or immune tolerance. The ratio of laminin α4 to laminin α5 was greater in domains within tolerant LNs, compared with immune LNs, and blocking laminin α4 function or inducing laminin α5 overexpression disrupted T cell and DC localization and transmigration through tolerant LNs. Furthermore, reducing α4 laminin circumvented tolerance induction and induced cardiac allograft inflammation and rejection in murine models. This work identifies laminins as potential targets for immune modulation.

  6. Heterogeneity assessment of functional T cell avidity

    PubMed Central

    Ioannidou, Kalliopi; Baumgaertner, Petra; Gannon, Philippe O.; Speiser, Michel F.; Allard, Mathilde; Hebeisen, Michael; Rufer, Nathalie; Speiser, Daniel E.

    2017-01-01

    The potency of cellular immune responses strongly depends on T cell avidity to antigen. Yet, functional avidity measurements are rarely performed in patients, mainly due to the technical challenges of characterizing heterogeneous T cells. The mean functional T cell avidity can be determined by the IFN-γ Elispot assay, with titrated amounts of peptide. Using this assay, we developed a method revealing the heterogeneity of functional avidity, represented by the steepness/hillslope of the peptide titration curve, documented by proof of principle experiments and mathematical modeling. Our data show that not only natural polyclonal CD8 T cell populations from cancer patients, but also monoclonal T cells differ strongly in their heterogeneity of functional avidity. Interestingly, clones and polyclonal cells displayed comparable ranges of heterogeneity. We conclude that besides the mean functional avidity, it is feasible and useful to determine its heterogeneity (hillslope) for characterizing T cell responses in basic research and patient investigation. PMID:28287160

  7. Continuous theta burst transcranial magnetic stimulation affects brain functional connectivity.

    PubMed

    Dan Cao; Yingjie Li; Ling Wei; Yingying Tang

    2016-08-01

    Prefrontal cortex (PFC) plays an important role in the emotional processing as well as in the functional brain network. Hyperactivity in the right dorsolateral prefrontal cortex (DLPFC) would be found in anxious participants. However, it is still unclear what the role of PFC played in a resting functional network. Continuous theta burst transcranial magnetic stimulation (cTBS) is an effective tool to create virtual lesions on brain regions. In this paper, we applied cTBS over right prefrontal area, and investigated the effects of cTBS on the brain activity for functional connectivity by the method of graph theory. We recorded 64-channels EEG on thirteen healthy participants in the resting condition and emotional tasks before and after 40 s of cTBS. This work focused on the effect of cTBS on cortical activities in the resting condition by calculating the coherence between EEG channels and building functional networks before and after cTBS in the delta, theta, alpha and beta bands. Results revealed that 1) The functional connectivity after cTBS was significantly increased compared with that before cTBS in delta, theta, alpha and beta bands in the resting condition; 2) The efficiency-cost reached the maximum before and after cTBS both with the cost about 0.3 in the bands above, which meant that the information transmission of functional brain network with this cost was highly efficient; 3) the clustering coefficient and path length after cTBS was significantly increased in delta, theta and beta bands. In conclusion, cTBS over PFC indeed enhanced the functional connectivity in the resting condition. In addition, the information transmission in the resting brain network was highly efficient with the cost about 0.3.

  8. Factors affecting the development of lung function in Tunisian children.

    PubMed

    Trabelsi, Y; Pariès, J; Harrabi, I; Zbidi, A; Tabka, Z; Richalet, J P; Buvry, A

    2008-01-01

    We undertook to evaluate the impacts of morphology at birth, physical activity, anthropometric, socioeconomic and environmental factors on lung function in healthy Tunisian children. Pulmonary function parameters were measured with a Minato portable spirometer in a randomized population of 756 healthy children (388 males and 368 females) aged between 6 and 16. The morphology at birth, the gestational age, the physical activity, the socioeconomic status, the type of habitation, and the environmental factors were all assessed by a standard questionnaire. Using univariate analysis, we found that: (1) morphometric parameters (height, weight, maximal inspiratory, and expiratory perimeter), as well as sex were highly associated with pulmonary function parameters; (2) Height at birth showed strong significant relations with FVC, FEV(1), and FEV(1)/FVC; (3) lung function parameters were influenced by physical training of our children, socioeconomic status, indoor pollution, and passive smoking; and (4) we did not observe any association between the gestational age and the weight at their birth and lung function parameters. Using a general linear model analysis, morphometric parameters, age, sex, type of heating, and maximal inspiratory and expiratory perimeters had significant relation with respiratory parameters. In our population of healthy Tunisian children, the main predictive factors of the pulmonary development were the morphological factors such as height, weight, maximal inspiratory, and expiratory thoracic perimeter, sex and age, and the environmental conditions such as type of heating but not morphology at birth, physical activity, or socioeconomic status.

  9. Physiological indicators of cell function.

    PubMed

    Ignatius, Michael J; Hung, Jeffrey T

    2007-01-01

    Successful high content screening (HCS) assays place large demands on the cell-based reagents used in their development and deployment. Fortunately, there is a wide range of fluorescent physiological indicators from which to choose that are continually increasing in size and variety. Ideal fluorescent reagents for cell-based assays exhibit optimal selectivity, signal intensity, and cell solubility, yet will be easily incorporated into assays across multiple detection platforms. The repertoire of existing fluorogenic and color changing dyes that indicate physiological changes in cells for live cell kinetic and fixed end-point assays are surveyed as well as newly developed reagents for the next generation of HCS assays.

  10. Clearance kinetics of biomaterials affects stem cell retention and therapeutic efficacy.

    PubMed

    Lai, Chia Y; Wu, Pei J; Roffler, Steve R; Lee, Sho T; Hwang, Shiaw M; Wang, Shoei S; Wang, Kuan; Hsieh, Patrick C H

    2014-02-10

    The use of biomaterial carriers to improve the therapeutic efficacy of stem cells is known to augment cell delivery, retention, and viability. However, the way that carrier clearance kinetics boosts stem cell delivery and impacts stem cell function remains poorly characterized. In this study, we designed a platform to simultaneously quantify carrier clearance and stem cell retention to evaluate the impact of carrier clearance kinetics on stem cell retention. Additionally, a murine model of hindlimb ischemia was employed to investigate the effects of various cell retention profiles on mitigating peripheral arterial disease. To image the in vivo behaviors of material and cells, we used biotinylated hyaluronan with fluorescently labeled streptavidin and Discosoma sp. Red (Ds-Red)-expressing human mesenchymal stem cells. We found that the retention of transplanted stem cells was closely related to the remaining biomaterial. Furthermore, therapeutic effectiveness was also affected by stem cell retention. These results demonstrate that low-molecular-weight hyaluronan had a slow clearance and high cell retention profile, improving the therapeutic efficacy of human stem cells.

  11. Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function

    SciTech Connect

    Cochrane, Alan; Murley, Laura Lea; Gao Mian; Wong, Raymond; Clayton, Kiera; Brufatto, Nicole; Canadien, Veronica; Mamelak, Daniel; Chen, Tricia; Richards, Dawn; Zeghouf, Mahel; Greenblatt, Jack; Burks, Christian; Frappier, Lori

    2009-05-25

    The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.

  12. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria.

  13. Can Particulate Pollution Affect Lung Function in Healthy Adults?

    EPA Science Inventory

    Accompanying editorial to paper from Harvard by Rice et al. entitled "Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart StudyBy almost any measure the Clean Air Act and its amendments has to be considered as one...

  14. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  15. Tumor-specific mutations in low-frequency genes affect their functional properties.

    PubMed

    Erdem-Eraslan, Lale; Heijsman, Daphne; de Wit, Maurice; Kremer, Andreas; Sacchetti, Andrea; van der Spek, Peter J; Sillevis Smitt, Peter A E; French, Pim J

    2015-05-01

    Causal genetic changes in oligodendrogliomas (OD) with 1p/19q co-deletion include mutations in IDH1, IDH2, CIC, FUBP1, TERT promoter and NOTCH1. However, it is generally assumed that more somatic mutations are required for tumorigenesis. This study aimed to establish whether genes mutated at low frequency can be involved in OD initiation and/or progression. We performed whole-genome sequencing on three anaplastic ODs with 1p/19q co-deletion. To estimate mutation frequency, we performed targeted resequencing on an additional 39 ODs. Whole-genome sequencing identified a total of 55 coding mutations (range 8-32 mutations per tumor), including known abnormalities in IDH1, IDH2, CIC and FUBP1. We also identified mutations in genes, most of which were previously not implicated in ODs. Targeted resequencing on 39 additional ODs confirmed that these genes are mutated at low frequency. Most of the mutations identified were predicted to have a deleterious functional effect. Functional analysis on a subset of these genes (e.g. NTN4 and MAGEH1) showed that the mutation affects the subcellular localization of the protein (n = 2/12). In addition, HOG cells stably expressing mutant GDI1 or XPO7 showed altered cell proliferation compared to those expressing wildtype constructs. Similarly, HOG cells expressing mutant SASH3 or GDI1 showed altered migration. The significantly higher rate of predicted deleterious mutations, the changes in subcellular localization and the effects on proliferation and/or migration indicate that many of these genes functionally may contribute to gliomagenesis and/or progression. These low-frequency genes and their affected pathways may provide new treatment targets for this tumor type.

  16. Peritubular myoid cells in the testis: their structure and function.

    PubMed

    Maekawa, M; Kamimura, K; Nagano, T

    1996-03-01

    Peritubular myoid cells, surrounding the seminiferous tubules in the testis, have been found in all mammalian species, but their organization in the peritubular interstitial tissue varies by species. In laboratory rodents, including rats, hamsters and mice, only one layer of myoid cells is seen in the testis. The cells in these animals are joined by junctional complexes as are epithelial cells. On the other hand, several cellular layers exist in the lamina propria of the seminiferous tubule in the human and some other animals. Myoid cells contain abundant actin filaments which are distributed in the cells in a species-specific manner. In the rat, the filaments within one myoid cell run both longitudinally and circularly to the long axis of the seminiferous tubule, exhibiting a lattice-work pattern. The arrangement of the actin filaments in the cells changes during postnatal development, and the disruption of spermatogenesis, such as cryptorchidism, seems to affect further the arrangement of the filaments. Other cytoskeletal proteins, including myosin, desmin/vimentin and alpha-actinin, are also found in the cells. Myoid cells have been shown to be contractile, involved in the transport of spermatozoa and testicular fluid in the tubule. Several substances (prostaglandins, oxytocin, TGF beta, NO/cGMP) have been suggested to affect the contraction of the cell, though the mechanisms of the contraction are still unknown. Recent in vitro studies have demonstrated that the cells secrete a number of substances including extracellular matrix components (fibronectin, type I and IV collagens, proteoglycans) and growth factors (PModS, TGF beta, IGF-I, activin-A). Some of these substances are known to affect the Sertoli cell function. Furthermore, it has been reported that myoid cells contain androgen receptors and are involved in retinol processing. Considering all this, it is evident that peritubular myoid cells not only provide structural integrity to the tubule but also

  17. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells*

    PubMed Central

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-01-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host–pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick–Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These

  18. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  19. Mesenchymal stem cells derived from adipose tissue are not affected by renal disease.

    PubMed

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E J; de Klein, Annelies; Douben, Hannie; Korevaar, Sander S; Mensah, Fane K F; Dor, Frank J M F; IJzermans, Jan N M; Betjes, Michiel G H; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J

    2012-10-01

    Mesenchymal stem cells are a potential therapeutic agent in renal disease and kidney transplantation. Autologous cell use in kidney transplantation is preferred to avoid anti-HLA reactivity; however, the influence of renal disease on mesenchymal stem cells is unknown. To investigate the feasibility of autologous cell therapy in patients with renal disease, we isolated these cells from subcutaneous adipose tissue of healthy controls and patients with renal disease and compared them phenotypically and functionally. The mesenchymal stem cells from both groups showed similar morphology and differentiation capacity, and were both over 90% positive for CD73, CD105, and CD166, and negative for CD31 and CD45. They demonstrated comparable population doubling times, rates of apoptosis, and were both capable of inhibiting allo-antigen- and anti-CD3/CD28-activated peripheral blood mononuclear cell proliferation. In response to immune activation they both increased the expression of pro-inflammatory and anti-inflammatory factors. These mesenchymal stem cells were genetically stable after extensive expansion and, importantly, were not affected by uremic serum. Thus, mesenchymal stem cells of patients with renal disease have similar characteristics and functionality as those from healthy controls. Hence, our results indicate the feasibility of their use in autologous cell therapy in patients with renal disease.

  20. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions.

    PubMed

    Levade, Marie; David, Elodie; Garcia, Cédric; Laurent, Pierre-Alexandre; Cadot, Sarah; Michallet, Anne-Sophie; Bordet, Jean-Claude; Tam, Constantine; Sié, Pierre; Ysebaert, Loïc; Payrastre, Bernard

    2014-12-18

    The oral Bruton's tyrosine kinase inhibitor, ibrutinib, has recently demonstrated high efficiency in patients with relapsed B-cell malignancies. Occurrence of bleeding events has been reported in a subgroup of ibrutinib-treated patients. We demonstrate that ibrutinib selectively inhibits platelet signaling and functions downstream of the collagen receptor glycoprotein VI and strongly affects firm platelet adhesion on von Willebrand factor (VWF) under arterial flow. A longitudinal study of 14 patients indicated a correlation between occurrence of bleeding events and decreased platelet aggregation in response to collagen in platelet-rich plasma and firm adhesion on VWF under arterial flow. The addition of 50% untreated platelets was sufficient to efficiently reverse the effects of ibrutinib, and platelet functions recovered after treatment interruption as physiological platelet renewal occurred. These data have important clinical implications and provide a basis for hemostasis management during ibrutinib treatment.

  1. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    PubMed

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes.

  2. Development of affective theory of mind across adolescence: disentangling the role of executive functions.

    PubMed

    Vetter, Nora C; Altgassen, Mareike; Phillips, Louise; Mahy, Caitlin E V; Kliegel, Matthias

    2013-01-01

    Theory of mind, the ability to understand mental states, involves inferences about others' cognitive (cognitive theory of mind) and emotional (affective theory of mind) mental states. The current study explored the role of executive functions in developing affective theory of mind across adolescence. Affective theory of mind and three subcomponents of executive functions (inhibition, updating, and shifting) were measured. Affective theory of mind was positively related to age, and all three executive functions. Specifically, inhibition explained the largest amount of variance in age-related differences in affective theory of mind.

  3. Alginate Overproduction Affects Pseudomonas aeruginosa Biofilm Structure and Function

    PubMed Central

    Hentzer, Morten; Teitzel, Gail M.; Balzer, Grant J.; Heydorn, Arne; Molin, Søren; Givskov, Michael; Parsek, Matthew R.

    2001-01-01

    During the course of chronic cystic fibrosis (CF) infections, Pseudomonas aeruginosa undergoes a conversion to a mucoid phenotype, which is characterized by overproduction of the exopolysaccharide alginate. Chronic P. aeruginosa infections involve surface-attached, highly antibiotic-resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development on an abiotic surface. Biofilms formed by an alginate-overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments. PMID:11514525

  4. Nuclear cyclophilins affect spliceosome assembly and function in vitro.

    PubMed

    Adams, B M; Coates, Miranda N; Jackson, S RaElle; Jurica, Melissa S; Davis, Tara L

    2015-07-15

    Cyclophilins are ubiquitously expressed proteins that bind to prolines and can catalyse cis/trans isomerization of proline residues. There are 17 annotated members of the cyclophilin family in humans, ubiquitously expressed and localized variously to the cytoplasm, nucleus or mitochondria. Surprisingly, all eight of the nuclear localized cyclophilins are found associated with spliceosomal complexes. However, their particular functions within this context are unknown. We have therefore adapted three established assays for in vitro pre-mRNA splicing to probe the functional roles of nuclear cyclophilins in the context of the human spliceosome. We find that four of the eight spliceosom-associated cyclophilins exert strong effects on splicing in vitro. These effects are dose-dependent and, remarkably, uniquely characteristic of each cyclophilin. Using both qualitative and quantitative means, we show that at least half of the nuclear cyclophilins can act as regulatory factors of spliceosome function in vitro. The present work provides the first quantifiable evidence that nuclear cyclophilins are splicing factors and provides a novel approach for future work into small molecule-based modulation of pre-mRNA splicing.

  5. Prenatal Drug Exposure Affects Neonatal Brain Functional Connectivity

    PubMed Central

    Salzwedel, Andrew P.; Vachet, Clement; Gerig, Guido; Lin, Weili

    2015-01-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala–frontal, insula–frontal, and insula–sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala–frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  6. How optimization of potential functions affects protein folding.

    PubMed Central

    Hao, M H; Scheraga, H A

    1996-01-01

    The relationship between the optimization of the potential function and the foldability of theoretical protein models is studied based on investigations of a 27-mer cubic-lattice protein model and a more realistic lattice model for the protein crambin. In both the simple and the more complicated systems, optimization of the energy parameters achieves significant improvements in the statistical-mechanical characteristics of the systems and leads to foldable protein models in simulation experiments. The foldability of the protein models is characterized by their statistical-mechanical properties--e.g., by the density of states and by Monte Carlo folding simulations of the models. With optimized energy parameters, a high level of consistency exists among different interactions in the native structures of the protein models, as revealed by a correlation function between the optimized energy parameters and the native structure of the model proteins. The results of this work are relevant to the design of a general potential function for folding proteins by theoretical simulations. PMID:8643516

  7. Does caregiving stress affect cognitive function in older women?

    PubMed

    Lee, Sunmin; Kawachi, Ichiro; Grodstein, Francine

    2004-01-01

    Increasing numbers of women provide care to their ill spouses; however, no studies have examined possible effects of caregiving stress on cognitive function. We administered 6 tests of cognitive function to 13740 Nurses' Health Study participants aged 70-79 years. We collected information on caregiving and numerous potential confounding variables via biennial mailed questionnaires. After adjustment for potential confounders (age, education, mental health index, vitality index, use of antidepressants, and history of high blood pressure, diabetes, and heart disease), we found modest but significantly increased risks of low cognitive function on three of the cognitive tests among women who provided care to a disabled or ill spouse compared with women who did not provide any care. For example, on the TICS, a test of general cognition, the risk of a low score was 31% higher in women who provided care compared with women who did not (RR = 1.31, 95% CI 1.10, 1.56). We found a moderately increased risk of poor performance on several cognitive tests among women who provided care to their disabled or ill husbands.

  8. Microplastics Affect the Ecological Functioning of an Important Biogenic Habitat.

    PubMed

    Green, Dannielle Senga; Boots, Bas; O'Connor, Nessa E; Thompson, Richard

    2017-01-03

    Biological effects of microplastics on the health of bivalves have been demonstrated elsewhere, but ecological impacts on the biodiversity and ecosystem functioning of bivalve-dominated habitats are unknown. Thus, we exposed intact sediment cores containing European flat oysters (Ostrea edulis) or blue mussels (Mytilus edulis) in seawater to two different densities (2.5 or 25 μg L(-1)) of biodegradable or conventional microplastics in outdoor mesocosms. We hypothesized that filtration rates of the bivalves, inorganic nitrogen cycling, primary productivity of sediment dwelling microphytobenthos, and the structure of invertebrate benthic assemblages would be influenced by microplastics. After 50 days, filtration by M. edulis was significantly less when exposed to 25 μg L(-1) of either type of microplastics, but there were no effects on ecosystem functioning or the associated invertebrate assemblages. Contrastingly, filtration by O. edulis significantly increased when exposed to 2.5 or 25 μg L(-1) of microplastics, and porewater ammonium and biomass of benthic cyanobacteria decreased. Additionally the associated infaunal invertebrate assemblages differed, with significantly less polychaetes and more oligochaetes in treatments exposed to microplastics. These findings highlight the potential of microplastics to impact the functioning and structure of sedimentary habitats and show that such effects may depend on the dominant bivalve present.

  9. Nuclear cyclophilins affect spliceosome assembly and function in vitro

    PubMed Central

    Adams, B.M.; Coates, Miranda N.; Jackson, S. RaElle; Jurica, Melissa S.; Davis, Tara L.

    2015-01-01

    Cyclophilins are ubiquitously expressed proteins that bind to prolines and can catalyse cis/trans isomerization of proline residues. There are 17 annotated members of the cyclophilin family in humans, ubiquitously expressed and localized variously to the cytoplasm, nucleus or mitochondria. Surprisingly, all eight of the nuclear localized cyclophilins are found associated with spliceosomal complexes. However, their particular functions within this context are unknown. We have therefore adapted three established assays for in vitro pre-mRNA splicing to probe the functional roles of nuclear cyclophilins in the context of the human spliceosome. We find that four of the eight spliceosom-associated cyclophilins exert strong effects on splicing in vitro. These effects are dose-dependent and, remarkably, uniquely characteristic of each cyclophilin. Using both qualitative and quantitative means, we show that at least half of the nuclear cyclophilins can act as regulatory factors of spliceosome function in vitro. The present work provides the first quantifiable evidence that nuclear cyclophilins are splicing factors and provides a novel approach for future work into small molecule-based modulation of pre-mRNA splicing. PMID:25967372

  10. Visual function affects prosocial behaviors in older adults.

    PubMed

    Teoli, Dac A; Smith, Merideth D; Leys, Monique J; Jain, Priyanka; Odom, J Vernon

    2016-02-01

    Eye-related pathological conditions such as glaucoma, diabetic retinopathy, and age-related macular degeneration commonly lead to decreased peripheral/central field, decreased visual acuity, and increased functional disability. We sought to answer if relationships exist between measures of visual function and reported prosocial behaviors in an older adult population with eye-related diagnoses. The sample consisted of adults, aged ≥ 60 years old, at an academic hospital's eye institute. Vision ranged from normal to severe impairment. Medical charts determined the visual acuities, ocular disease, duration of disease (DD), and visual fields (VF). Measures of giving help were via validated questionnaires on giving formal support (GFS) and giving informal support; measures of help received were perceived support (PS) and informal support received (ISR). ISR had subscales: tangible support (ISR-T), emotional support (ISR-E), and composite (ISR-C). Visual acuities of the better and worse seeing eyes were converted to LogMAR values. VF information converted to a 4-point rating scale of binocular field loss severity. DD was in years. Among 96 participants (mean age 73.28; range 60-94), stepwise regression indicated a relationship of visual variables to GFS (p < 0.05; Multiple R (2) = 0.1679 with acuity-better eye, VF rating, and DD), PS (p < 0.05; Multiple R (2) = 0.2254 with acuity-better eye), ISR-C (p < 0.05; Multiple R (2) = 0.041 with acuity-better eye), and ISR-T (p < 0.05; Multiple R (2) = 0.1421 with acuity-better eye). The findings suggest eye-related conditions can impact levels and perceptions of support exchanges. Our data reinforces the importance of visual function as an influence on prosocial behavior in older adults.

  11. A 3D Monte Carlo model of radiation affecting cells, and its application to neuronal cells and GCR irradiation

    NASA Astrophysics Data System (ADS)

    Ponomarev, Artem; Sundaresan, Alamelu; Kim, Angela; Vazquez, Marcelo E.; Guida, Peter; Kim, Myung-Hee; Cucinotta, Francis A.

    A 3D Monte Carlo model of radiation transport in matter is applied to study the effect of heavy ion radiation on human neuronal cells. Central nervous system effects, including cognitive impairment, are suspected from the heavy ion component of galactic cosmic radiation (GCR) during space missions. The model can count, for instance, the number of direct hits from ions, which will have the most affect on the cells. For comparison, the remote hits, which are received through δ-rays from the projectile traversing space outside the volume of the cell, are also simulated and their contribution is estimated. To simulate tissue effects from irradiation, cellular matrices of neuronal cells, which were derived from confocal microscopy, were simulated in our model. To produce this realistic model of the brain tissue, image segmentation was used to identify cells in the images of cells cultures. The segmented cells were inserted pixel by pixel into the modeled physical space, which represents a volume of interacting cells with periodic boundary conditions (PBCs). PBCs were used to extrapolate the model results to the macroscopic tissue structures. Specific spatial patterns for cell apoptosis are expected from GCR, as heavy ions produce concentrated damage along their trajectories. The apoptotic cell patterns were modeled based on the action cross sections for apoptosis, which were estimated from the available experimental data. The cell patterns were characterized with an autocorrelation function, which values are higher for non-random cell patterns, and the values of the autocorrelation function were compared for X rays and Fe ion irradiations. The autocorrelation function indicates the directionality effects present in apoptotic neuronal cells from GCR.

  12. Affected functional networks associated with sentence production in classic galactosemia.

    PubMed

    Timmers, Inge; van den Hurk, Job; Hofman, Paul Am; Zimmermann, Luc Ji; Uludağ, Kâmil; Jansma, Bernadette M; Rubio-Gozalbo, M Estela

    2015-08-07

    Patients with the inherited metabolic disorder classic galactosemia have language production impairments in several planning stages. Here, we assessed potential deviations in recruitment and connectivity across brain areas responsible for language production that may explain these deficits. We used functional magnetic resonance imaging (fMRI) to study neural activity and connectivity while participants carried out a language production task. This study included 13 adolescent patients and 13 age- and gender-matched healthy controls. Participants passively watched or actively described an animated visual scene using two conditions, varying in syntactic complexity (single words versus a sentence). Results showed that patients recruited additional and more extensive brain regions during sentence production. Both groups showed modulations with syntactic complexity in left inferior frontal gyrus (IFG), a region associated with syntactic planning, and in right insula. In addition, patients showed a modulation with syntax in left superior temporal gyrus (STG), whereas the controls did not. Further, patients showed increased activity in right STG and right supplementary motor area (SMA). The functional connectivity data showed similar patterns, with more extensive connectivity with frontal and motor regions, and restricted and weaker connectivity with superior temporal regions. Patients also showed higher baseline cerebral blood flow (CBF) in right IFG and trends towards higher CBF in bilateral STG, SMA and the insula. Taken together, the data demonstrate that language abnormalities in classic galactosemia are associated with specific changes within the language network. These changes point towards impairments related to both syntactic planning and speech motor planning in these patients.

  13. B cell-helping functions of gut microbial metabolites.

    PubMed

    Kim, Chang H

    2016-09-23

    Commensal microflora profoundly affects the host immune system. It has long been observed that commensal bacteria enhance antibody production in the host by producing antigens for B cell receptors (BCR) and ligands for Toll-like receptors (TLR). We recently reported that the microbial metabolites short-chain fatty acids (SCFAs) regulate the metabolism and gene expression in B cells to promote antibody production (Kim et al. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host & Microbe. 2016; 20(2):202-14). The B-cell helping function of SCFAs and its implication in the host immune system are discussed in this article.

  14. B cell-helping functions of gut microbial metabolites

    PubMed Central

    Kim, Chang H.

    2016-01-01

    Commensal microflora profoundly affects the host immune system. It has long been observed that commensal bacteria enhance antibody production in the host by producing antigens for B cell receptors (BCR) and ligands for Toll-like receptors (TLR). We recently reported that the microbial metabolites short-chain fatty acids (SCFAs) regulate the metabolism and gene expression in B cells to promote antibody production (Kim et al. Gut Microbial Metabolites Fuel Host Antibody Responses. Cell Host & Microbe. 2016; 20(2):202-14). The B-cell helping function of SCFAs and its implication in the host immune system are discussed in this article. PMID:28357321

  15. Spaceflight alters immune cell function and distribution

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  16. Basket cell dichotomy in microcircuit function

    PubMed Central

    Armstrong, Caren; Soltesz, Ivan

    2012-01-01

    A diversity of GABAergic cell types exist within each brain area, and each cell type is thought to play a unique role in the modulation of principal cell output. Basket cells, whose axon terminals surround principal cell somata and proximal dendrites, have a privileged and influential position for regulating the firing of principal cells. This review explores the dichotomy of the two basket cell classes, cholecystokinin- (CCK) and parvalbumin (PV)-containing basket cells, beginning with differences at the level of the individual cell and subsequently focusing on two ways in which this intrinsic dichotomy is enhanced by extrinsic factors. Neuromodulatory influences, exemplified by the effects of the peptide CCK, dynamically enhance the differential functions of the two cell types. Specifications at the level of the postsynaptic principal cell, including input-specific differences in chloride handling and differences in long-range projection patterns of the principal cell targets, also enhance the distinct network function of basket cells. In this review, new findings will be highlighted concerning the roles of neuromodulatory control and postsynaptic long-range projection pattern in the definition of basket cell function. PMID:22199164

  17. Low level methylmercury exposure affects neuropsychological function in adults

    PubMed Central

    Yokoo, Edna M; Valente, Joaquim G; Grattan, Lynn; Schmidt, Sérgio Luís; Platt, Illeane; Silbergeld, Ellen K

    2003-01-01

    -dependent effect. Conclusions This study suggests that adults exposed to MeHg may be at risk for deficits in neurocognitive function. The functions disrupted in adults, namely attention, fine-motor function and verbal memory, are similar to some of those previously reported in children with prenatal exposures. PMID:12844364

  18. Does vitamin C deficiency affect cognitive development and function?

    PubMed

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-09-19

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(-/-) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies.

  19. Enhanced serotonin transporter function during depression in seasonal affective disorder.

    PubMed

    Willeit, Matthäus; Sitte, Harald H; Thierry, Nikolaus; Michalek, Klaus; Praschak-Rieder, Nicole; Zill, Peter; Winkler, Dietmar; Brannath, Werner; Fischer, Michael B; Bondy, Brigitta; Kasper, Siegfried; Singer, Ernst A

    2008-06-01

    Decreased synaptic serotonin during depressive episodes is a central element of the monoamine hypothesis of depression. The serotonin transporter (5-HTT, SERT) is a key molecule for the control of synaptic serotonin levels. Here we aimed to detect state-related alterations in the efficiency of 5-HTT-mediated inward and outward transport in platelets of drug-free depressed patients suffering from seasonal affective disorder (SAD). 5-HTT turnover rate, a measure for the number of inward transport events per minute, and tyramine-induced, 5-HTT-mediated outward transport were assessed at baseline, after 4 weeks of bright light therapy, and in summer using a case-control design in a consecutive sample of 73 drug-free depressed patients with SAD and 70 nonseasonal healthy controls. Patients were drug-naive or medication-free for at least 6 months prior to study inclusion, females patients were studied in the follicular phase of the menstrual cycle. All participants were genotyped for a 5-HTT-promoter polymorphism (5-HTTLPR) to assess the influence of this polymorphism on 5-HTT parameters. Efficiency of 5-HTT-mediated inward (p=0.014) and outward (p=0.003) transport was enhanced in depressed patients. Both measures normalized toward control levels after therapy and in natural summer remission. Changes in outward transport showed a clear correlation with treatment response (rho=0.421, p=0.001). Changes in inward transport were mediated by changes in 5-HTT transport efficiency rather than affinity or density. 5-HTTLPR was not associated with any of the 5-HTT parameters. In sum, we conclude that the 5-HTT is in a hyperfunctional state during depression in SAD and normalizes after light therapy and in natural summer remission.

  20. Cell proliferation in type C gastritis affecting the intact stomach

    PubMed Central

    Mac, D; Willis, P; Prescott, R; Lamonby, S; Lynch, D

    2000-01-01

    Aims—Type C gastritis caused by bile reflux has a characteristic appearance, similar to that seen in other forms of chemical gastritis, such as those associated with NSAIDs or alcohol. An increase in mucosal cell proliferation increases the likelihood of a neoplastic clone of epithelial cells emerging, particularly where there is chronic epithelial injury associated with bile reflux. It has been shown previously that type C gastritis is associated with increased cell proliferation in the postsurgical stomach. The aim of this study was to determine cell proliferation in type C gastritis caused by bile reflux affecting the intact stomach. Methods—Specimens from 15 patients with a histological diagnosis of type C gastritis on antral biopsy were obtained from the pathology archives between 1994 and 1997. A control group of nine normal antral biopsies was also selected and all underwent MIB-1 immunostaining. The gastric glands were divided into three zones (zone 1, gastric pit; zone 2, isthmus; and zone 3, gland base) and the numbers of positively staining nuclei for 500 epithelial cell nuclei were counted in each zone to determine the percentage labelling index (LI%). Results—Cell proliferation was significantly higher in all three zones of the gastric glands with type C gastritis compared with controls as follows: zone 1, median LI% in type C gastritis 64.7 (range, 7.8–99.2), controls 4.7 (range, 2.0–11.3); zone 2, median LI% in type C gastritis 94.7 (range, 28.8–98.7), controls 40.2 (range, 23.1–70.3); and zone 3, median LI% in type C gastritis 20.0 (range, 1.3–96.0), controls 2.6 (range, 0.9–8.7). Conclusions—Bile reflux is thought to act as a promoter of gastric carcinogenesis in the postsurgical stomach. The same may be true in the intact stomach. Key Words: cell proliferation • epithelial kinetics • chemical gastritis PMID:11064674

  1. Impairment of B-cell functions during HIV-1 infection.

    PubMed

    Amu, Sylvie; Ruffin, Nicolas; Rethi, Bence; Chiodi, Francesca

    2013-09-24

    A variety of B-cell dysfunctions are manifested during HIV-1 infection, as reported early during the HIV-1 epidemic. It is not unusual that the pathogenic mechanisms presented to elucidate impairment of B-cell responses during HIV-1 infection focus on the impact of reduced T-cell numbers and functions, and lack of germinal center formation in lymphoid tissues. To our understanding, however, perturbation of B-cell phenotype and function during HIV-1 infection may begin at several different B-cell developmental stages. These impairments can be mediated by intrinsic B-cell defects as well as by the lack of proper T-cell help. In this review, we will highlight some of the pathways and molecular interactions leading to B-cell impairment prior to germinal center formation and B-cell activation mediated through the B-cell receptor in response to HIV-1 antigens. Recent studies indicate a regulatory role for B cells on T-cell biology and immune responses. We will discuss some of these novel findings and how these regulatory mechanisms could potentially be affected by the intrinsic defects of B cells taking place during HIV-1 infection.

  2. Naloxonazine, an Amastigote-Specific Compound, Affects Leishmania Parasites through Modulation of Host-Encoded Functions

    PubMed Central

    Vanhollebeke, Benoit; Caljon, Guy; Wolfe, Alan R.; McKerrow, James; Dujardin, Jean-Claude

    2016-01-01

    Host-directed therapies (HDTs) constitute promising alternatives to traditional therapy that directly targets the pathogen but is often hampered by pathogen resistance. HDT could represent a new treatment strategy for leishmaniasis, a neglected tropical disease caused by the obligate intracellular parasite Leishmania. This protozoan develops exclusively within phagocytic cells, where infection relies on a complex molecular interplay potentially exploitable for drug targets. We previously identified naloxonazine, a compound specifically active against intracellular but not axenic Leishmania donovani. We evaluated here whether this compound could present a host cell-dependent mechanism of action. Microarray profiling of THP-1 macrophages treated with naloxonazine showed upregulation of vATPases, which was further linked to an increased volume of intracellular acidic vacuoles. Treatment of Leishmania-infected macrophages with the vATPase inhibitor concanamycin A abolished naloxonazine effects, functionally demonstrating that naloxonazine affects Leishmania amastigotes indirectly, through host cell vacuolar remodeling. These results validate amastigote-specific screening approaches as a powerful way to identify alternative host-encoded targets. Although the therapeutic value of naloxonazine itself is unproven, our results further demonstrate the importance of intracellular acidic compartments for host defense against Leishmania, highlighting the possibility of targeting this host cell compartment for anti-leishmanial therapy. PMID:28036391

  3. Loss of Cellulose Synthase-Like F6 Function Affects Mixed-Linkage Glucan Deposition, Cell Wall Mechanical Properties, and Defense Responses in Vegetative Tissues of Rice1[C][W][OA

    PubMed Central

    Vega-Sánchez, Miguel E.; Verhertbruggen, Yves; Christensen, Ulla; Chen, Xuewei; Sharma, Vaishali; Varanasi, Patanjali; Jobling, Stephen A.; Talbot, Mark; White, Rosemary G.; Joo, Michael; Singh, Seema; Auer, Manfred; Scheller, Henrik V.; Ronald, Pamela C.

    2012-01-01

    Mixed-linkage glucan (MLG) is a cell wall polysaccharide containing a backbone of unbranched (1,3)- and (1,4)-linked β-glucosyl residues. Based on its occurrence in plants and chemical characteristics, MLG has primarily been associated with the regulation of cell wall expansion due to its high and transient accumulation in young, expanding tissues. The Cellulose synthase-like F (CslF) subfamily of glycosyltransferases has previously been implicated in mediating the biosynthesis of this polymer. We confirmed that the rice (Oryza sativa) CslF6 gene mediates the biosynthesis of MLG by overexpressing it in Nicotiana benthamiana. Rice cslf6 knockout mutants show a slight decrease in height and stem diameter but otherwise grew normally during vegetative development. However, cslf6 mutants display a drastic decrease in MLG content (97% reduction in coleoptiles and virtually undetectable in other tissues). Immunodetection with an anti-MLG monoclonal antibody revealed that the coleoptiles and leaves retain trace amounts of MLG only in specific cell types such as sclerenchyma fibers. These results correlate with the absence of endogenous MLG synthase activity in mutant seedlings and 4-week-old sheaths. Mutant cell walls are weaker in mature stems but not seedlings, and more brittle in both stems and seedlings, compared to wild type. Mutants also display lesion mimic phenotypes in leaves, which correlates with enhanced defense-related gene expression and enhanced disease resistance. Taken together, our results underline a weaker role of MLG in cell expansion than previously thought, and highlight a structural role for MLG in nonexpanding, mature stem tissues in rice. PMID:22388489

  4. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    ERIC Educational Resources Information Center

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  5. Low-dose irradiation affects the functional behavior of oral microbiota in the context of mucositis.

    PubMed

    Vanhoecke, Barbara W A; De Ryck, Tine R G; De boel, Kevin; Wiles, Siouxsie; Boterberg, Tom; Van de Wiele, Tom; Swift, Simon

    2016-01-01

    The role of host-microbe interactions in the pathobiology of oral mucositis is still unclear; therefore, this study aimed to unravel the effect of irradiation on behavioral characteristics of oral microbial species in the context of mucositis. Using various experimental in vitro setups, the effects of irradiation on growth and biofilm formation of two Candida spp., Streptococcus salivarius and Klebsiella oxytoca in different culture conditions were evaluated. Irradiation did not affect growth of planktonic cells, but reduced the number of K. oxytoca cells in newly formed biofilms cultured in static conditions. Biofilm formation of K. oxytoca and Candida glabrata was affected by irradiation and depended on the culturing conditions. In the presence of mucins, these effects were lost, indicating the protective nature of mucins. Furthermore, the Galleria melonella model was used to study effects on microbial virulence. Irradiated K. oxytoca microbes were more virulent in G. melonella larvae compared to the nonirradiated ones. Our data indicate that low-dose irradiation can have an impact on functional characteristics of microbial species. Screening for pathogens like K. oxytoca in the context of mucosits could be useful to allow early detection and immediate intervention.

  6. Differentiation state affects morphine induced cell regulation in neuroblastoma cultured cells.

    PubMed

    Fiore, Giovina; Ghelardini, Carla; Bruni, Giancarlo; Guarna, Massimo; Bianchi, Enrica

    2013-10-25

    Neuroblastoma (NB) is the most common extracranial solid cancer in childhood and the most common cancer in infancy. Our purpose was to investigate in vitro how cancer cell survival occurs in presence of morphine in undifferentiated and differentiated SHSY-5Y human neuroblastoma cultured cell line. Exposure of differentiated cells to morphine dose-dependently induced apoptosis in these cells through c-Jun N-terminal kinase (JNK)/caspase pathway. Otherwise, morphine induced activation for mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, caused positive regulation of cell survival in undifferentiated cells. Therefore, cell differentiation state bimodally affects the cellular regulation activity triggered by morphine in isolated cultured neuroblastoma cells raising concerns about the application of morphine to this type of cancer patients.

  7. Multifunctional ferromagnetic disks for modulating cell function

    PubMed Central

    Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.

    2013-01-01

    In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging. PMID:23766544

  8. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    PubMed

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  9. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…

  10. Gallium arsenide exposure impairs splenic B cell accessory function.

    PubMed

    Gondre-Lewis, Timothy A; Hartmann, Constance B; Caffrey, Rebecca E; McCoy, Kathleen L

    2003-03-01

    Gallium arsenide (GaAs) is utilized in industries for its semiconductor and optical properties. Chemical exposure of animals systemically suppresses several immune functions. The ability of splenic B cells to activate antigen-specific helper CD4(+) T cell hybridomas was assessed, and various aspects of antigen-presenting cell function were examined. GaAs-exposed murine B cells were impaired in processing intact soluble protein antigens, and the defect was antigen dependent. In contrast, B cells after exposure competently presented peptides to the T cells, which do not require processing. Cell surface expression of major histocompatibility complex (MHC) class II molecules and several costimulatory molecules on splenic B cells, which are critical for helper T cell activation, was not affected by chemical exposure. GaAs exposure also did not influence the stability of MHC class II heterodimers, suggesting that the defect may precede peptide exchange. GaAs-exposed B cells contained a normal level of aspartyl cathepsin activity; however, proteolytic activities of thiol cathepsins B and L were approximately half the control levels. Furthermore, two cleavage fragments of invariant chain, a molecular chaperone of MHC class II molecules, were increased in GaAs-exposed B cells, indicative of defective degradation. Thus, diminished thiol proteolytic activity in B cells may be responsible for their impaired antigen processing and invariant chain degradation, which may contribute to systemic immunosuppression caused by GaAs exposure.

  11. Membrane elastic properties and cell function.

    PubMed

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C; Romão, Luciana F; Amaral, Racκele F; Salgado, Leonardo T; Lima, Flavia R; Farina, Marcos; Viana, Nathan B; Moura-Neto, Vivaldo; Nussenzveig, H Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  12. Membrane Elastic Properties and Cell Function

    PubMed Central

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C.; Romão, Luciana F.; Amaral, Racκele F.; Salgado, Leonardo T.; Lima, Flavia R.; Farina, Marcos; Viana, Nathan B.; Moura-Neto, Vivaldo; Nussenzveig, H. Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function. PMID:23844071

  13. Does bioelectrochemical cell configuration and anode potential affect biofilm response?

    PubMed

    Kumar, Amit; Katuri, Krishna; Lens, Piet; Leech, Dónal

    2012-12-01

    Electrochemical gradients are the backbone of basic cellular functions, including chemo-osmotic transport and ATP synthesis. Microbial growth, terminal respiratory proteins and external electron transfer are major pathways competing for electrons. In BESs (bioelectrochemical systems), such as MFCs (microbial fuel cells), the electron flow can be via soluble inorganic/organic molecules or to a solid surface. The flow of electrons towards a solid surface can be via outer-membrane cytochromes or electron-shuttle molecules, mediated by conductive protein nanowires or extracellular matrices. In MECs (microbial electrolysis cells), the anode potential can vary over a wide range, which alters the thermodynamic energy available for bacteria capable of donating electrons to the electrode [termed EAB (electroactive bacteria)]. Thus the anode potential is an important electrochemical parameter determining the growth, electron distribution/transfer and electrical activity of films of these bacteria on electrodes. Different optimal applied potentials to anodes have been suggested in the literature, for selection for microbial growth, diversity and performance in biofilms on electrodes. In the present paper, we review the effects of anode potentials on electron-transfer properties of such biofilms, and report on the effect that electrochemical cell configuration may have on performance.

  14. Factors affecting recovery of postoperative bowel function after pediatric laparoscopic surgery

    PubMed Central

    Michelet, Daphnée; Andreu-Gallien, Juliette; Skhiri, Alia; Bonnard, Arnaud; Nivoche, Yves; Dahmani, Souhayl

    2016-01-01

    Background and Aims: Laparoscopic pediatric surgery allows a rapid postoperative rehabilitation and hospital discharge. However, the optimal postoperative pain management preserving advantages of this surgical technique remains to be determined. This study aimed to identify factors affecting the postoperative recovery of bowel function after laparoscopic surgery in children. Material and Methods: A retrospective analysis of factors affecting recovery of bowel function in children and infants undergoing laparoscopic surgery between January 1, 2009 and September 30, 2009, was performed. Factors included were: Age, weight, extent of surgery (extensive, regional or local), chronic pain (sickle cell disease or chronic intestinal inflammatory disease), American Society of Anaesthesiologists status, postoperative analgesia (ketamine, morphine, nalbuphine, paracetamol, nonsteroidal anti-inflammatory drugs [NSAIDs], nefopam, regional analgesia) both in the Postanesthesia Care Unit and in the surgical ward; and surgical complications. Data analysis used classification and regression tree analysis (CART) with a 10-fold cross validation. Results: One hundred and sixty six patients were included in the analysis. Recovery of bowel function depended upon: The extent of surgery, the occurrence of postoperative surgical complications, the administration of postoperative morphine in the surgical ward, the coadministration of paracetamol and NSAIDs and/or nefopam in the surgical ward and the emergency character of the surgery. The CART method generated a decision tree with eight terminal nodes. The percentage of explained variability of the model and the cross validation were 58% and 49%, respectively. Conclusion: Multimodal analgesia using nonopioid analgesia that allows decreasing postoperative morphine consumption should be considered for the speed of bowel function recovery after laparoscopic pediatric surgery. PMID:27625488

  15. Scrapie Affects the Maturation Cycle and Immune Complex Trapping by Follicular Dendritic Cells in Mice

    PubMed Central

    McGovern, Gillian; Mabbott, Neil; Jeffrey, Martin

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrPd) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrPd accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrPd plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrPd accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrPd. Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrPd accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function. PMID:19997557

  16. Functional interactions between p53 and the TFIIH complex are affected by tumour-associated mutations.

    PubMed Central

    Léveillard, T; Andera, L; Bissonnette, N; Schaeffer, L; Bracco, L; Egly, J M; Wasylyk, B

    1996-01-01

    The p53 tumour suppressor is mutated in the majority of human tumours. p53's proposed role as the guardian of the genome is reflected in its multiple effects on transcription genome stability, cell growth and survival. We show that p53 interacts both physically and functionally with the TFIIH complex. There are multiple protein-protein contacts, involving two regions of p53 and three subunits of TFIIH, ERCC2 (XPD), ERCC3 (XPB) and p62. p53 and its C-terminus (amino acids 320-393) inhibit both of the TFIIH helicases and in vitro transcription in the absence of TFIIH. Transcription inhibition is overcome by TFIIH. The N-terminal region of p53 (1-320), lacking the C-terminus, is inactive on its own, yet apparently affects the activity of the C-terminus in the native protein. Interestingly, mutant p53s that are frequently found in tumours are less efficient inhibitors of the helicases and transcription. We hypothesize that the interactions provide an immediate and direct link for p53 to the multiple functions of TFIIH in transcription, DNA repair and possibly the cell cycle. Images PMID:8612585

  17. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-08

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues.

  18. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  19. Anabolic androgens affect the competitive interactions in cell migration and adhesion between normal mouse urothelial cells and urothelial carcinoma cells.

    PubMed

    Huang, Chi-Ping; Hsieh, Teng-Fu; Chen, Chi-Cheng; Hung, Xiao-Fan; Yu, Ai-Lin; Chang, Chawnshang; Shyr, Chih-Rong

    2014-09-26

    The urothelium is constantly rebuilt by normal urothelial cells to regenerate damaged tissues caused by stimuli in urine. However, the urothelial carcinoma cells expand the territory by aberrant growth of tumor cells, which migrate and occupy the damaged tissues to spread outside and disrupt the normal cells and organized tissues and form a tumor. Therefore, the interaction between normal urothelial cells and urothelial carcinoma cells affect the initiation and progression of urothelial tumors if normal urothelial cells fail to migrate and adhere to the damages sites to regenerate the tissues. Here, comparing normal murine urothelial cells with murine urothelial carcinoma cells (MBT-2), we found that normal cells had less migration ability than carcinoma cells. And in our co-culture system we found that carcinoma cells had propensity migrating toward normal urothelial cells and carcinoma cells had more advantages to adhere than normal cells. To reverse this condition, we used anabolic androgen, dihyrotestosterone (DHT) to treat normal cells and found that DHT treatment increased the migration ability of normal urothelial cells toward carcinoma cells and the adhesion capacity in competition with carcinoma cells. This study provides the base of a novel therapeutic approach by using anabolic hormone-enforced normal urothelial cells to regenerate the damage urothelium and defend against the occupancy of carcinoma cells to thwart cancer development and recurrence.

  20. Keratin-containing inclusions affect cell morphology and distribution of cytosolic cellular components.

    PubMed

    Hanada, Shinichiro; Harada, Masaru; Kumemura, Hiroto; Omary, M Bishr; Kawaguchi, Takumi; Taniguchi, Eitaro; Koga, Hironori; Yoshida, Takafumi; Maeyama, Michiko; Baba, Shinji; Ueno, Takato; Sata, Michio

    2005-04-01

    Many neurodegenerative diseases are characterized by the presence of protein aggregates bundled with intermediate filaments (IFs) and similar structures, known as Mallory bodies (MBs), are observed in various liver diseases. IFs are anchored at desmosomes and hemidesmosomes, however, interactions with other intercellular junctions have not been determined. We investigated the effect of IF inclusions on junction-associated and cytosolic proteins in various cultured cells. We performed gene transfection of the green fluorescent protein (GFP)-tagged cytokeratin (CK) 18 mutant arg89cys (GFP-CK18 R89C) in cultured cells and observed CK aggregations as well as loss of IF networks. Among various junction-associated proteins, zonula occludens-1 and beta-catenin were colocalized with CK aggregates on immunofluorescent analyses. Similar results were obtained on immunostaining for cytosolic proteins, 14-3-3 zeta protein, glucose-6-phosphate dehydrogenase and DsRed. E-cadherin, a basolateral membrane protein in polarized epithelia, was present on both the apical and basolateral domains in GFP-CK18 R89C-transfected cells. Furthermore, cells containing CK aggregates were significantly larger than GFP-tagged wild type CK18 (GFP-WT CK18)-transfected or non-transfected cells (P < 0.01) and sometimes their morphology was significantly altered. Our data indicate that CK aggregates affect not only cell morphology but also the localization of various cytosolic components, which may affect the cellular function.

  1. SCYL1-BP1 affects cell cycle arrest in human hepatocellular carcinoma cells via Cyclin F and RRM2.

    PubMed

    Wang, Yang; Zhi, Qiaoming; Ye, Qin; Zhou, Chengyuan; Zhang, Lei; Yan, Wei; Wu, Qun; Zhang, Di; Li, Pu; Huo, Keke

    2016-01-01

    The cell cycle is regulated via important biological mechanisms. Controlled expression of cell cycle regulatory proteins is crucial to maintain cell cycle progression. However, unbalanced protein expression leads to many diseases, such as cancer. Previous research suggests that SCYL1-BP1 function might be related to cell cycle progression and SCYL1-BP1 dysfunction to diseases through undefined mechanisms. In this research, an unbiased yeast two-hybrid screen was used to find protein(s) with potential biological relevance to SCYL1-BP1 function, and a novel interaction was recognized between SCYL1-BP1 and Cyclin F. This interaction was chosen as a paradigm to study SCYL1-BP1 function in cell cycle progression and its possible role in tumorigenesis. We found that SCYL1-BP1 binds to Cyclin F both in vivo and in vitro. SCYL1-BP1 overexpression promoted expression of the CCNF gene and simultaneously delayed Cyclin F protein degradation. SCYL1-BP1 knockdown reduced the expression of endogenous Cyclin F. It was also demonstrated in functional assays that SCYL1-BP1 overexpression induces G2/M arrest in cultured liver cells. Furthermore, SCYL1-BP1 sustained RRM2 protein expression by reducing its ubiquitination. Thus, we propose that SCYL1- BP1 affects the cell cycle through increasing steady state levels of Cyclin F and RRM2 proteins, thus constituting a dual regulatory circuit. This study provides a possible mechanism for SCYL1-BP1-mediated cell cycle regulation and related diseases.

  2. Mast Cell: A Multi-Functional Master Cell

    PubMed Central

    Krystel-Whittemore, Melissa; Dileepan, Kottarappat N.; Wood, John G.

    2016-01-01

    Mast cells are immune cells of the myeloid lineage and are present in connective tissues throughout the body. The activation and degranulation of mast cells significantly modulates many aspects of physiological and pathological conditions in various settings. With respect to normal physiological functions, mast cells are known to regulate vasodilation, vascular homeostasis, innate and adaptive immune responses, angiogenesis, and venom detoxification. On the other hand, mast cells have also been implicated in the pathophysiology of many diseases, including allergy, asthma, anaphylaxis, gastrointestinal disorders, many types of malignancies, and cardiovascular diseases. This review summarizes the current understanding of the role of mast cells in many pathophysiological conditions. PMID:26779180

  3. Factors affecting the cryosurvival of mouse two-cell embryos.

    PubMed

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Functional ion channels in stem cells

    PubMed Central

    Li, Gui-Rong; Deng, Xiu-Ling

    2011-01-01

    Bioelectrical signals generated by ion channels play crucial roles in excitation genesis and impulse conduction in excitable cells as well as in cell proliferation, migration and apoptosis in proliferative cells. Recent studies have demonstrated that multiple ion channels are heterogeneously present in different stem cells; however, patterns and phenotypes of ion channels are species- and/or origin-dependent. This editorial review focuses on the recent findings related to the expression of functional ion channels and the roles of these channels in regulation of cell proliferation in stem cells. Additional effort is required in the future to clarify the ion channel expression in different types of stem cells; special attention should be paid to the relationship between ion channels and stem cell proliferation, migration and differentiation. PMID:21607133

  5. Melatonin signaling in T cells: Functions and applications.

    PubMed

    Ren, Wenkai; Liu, Gang; Chen, Shuai; Yin, Jie; Wang, Jing; Tan, Bie; Wu, Guoyao; Bazer, Fuller W; Peng, Yuanyi; Li, Tiejun; Reiter, Russel J; Yin, Yulong

    2017-04-01

    Melatonin affects a variety of physiological processes including circadian rhythms, cellular redox status, and immune function. Importantly, melatonin significantly influences T-cell-mediated immune responses, which are crucial to protect mammals against cancers and infections, but are associated with pathogenesis of many autoimmune diseases. This review focuses on our current understanding of the significance of melatonin in T-cell biology and the beneficial effects of melatonin in T-cell response-based diseases. In addition to expressing both membrane and nuclear receptors for melatonin, T cells have the four enzymes required for the synthesis of melatonin and produce high levels of melatonin. Meanwhile, melatonin is highly effective in modulating T-cell activation and differentiation, especially for Th17 and Treg cells, and also memory T cells. Mechanistically, the influence of melatonin in T-cell biology is associated with membrane and nuclear receptors as well as receptor-independent pathways, for example, via calcineurin. Several cell signaling pathways, including ERK1/2-C/EBPα, are involved in the regulatory roles of melatonin in T-cell biology. Through modulation in T-cell responses, melatonin exerts beneficial effects in various inflammatory diseases, such as type 1 diabetes, systemic lupus erythematosus, and multiple sclerosis. These findings highlight the importance of melatonin signaling in T-cell fate determination, and T cell-based immune pathologies.

  6. Proliferation status defines functional properties of endothelial cells.

    PubMed

    Lipps, Christoph; Badar, Muhammad; Butueva, Milada; Dubich, Tatyana; Singh, Vivek Vikram; Rau, Sophie; Weber, Axel; Kracht, Michael; Köster, Mario; May, Tobias; Schulz, Thomas F; Hauser, Hansjörg; Wirth, Dagmar

    2017-04-01

    Homeostasis of solid tissue is characterized by a low proliferative activity of differentiated cells while special conditions like tissue damage induce regeneration and proliferation. For some cell types it has been shown that various tissue-specific functions are missing in the proliferating state, raising the possibility that their proliferation is not compatible with a fully differentiated state. While endothelial cells are important players in regenerating tissue as well as in the vascularization of tumors, the impact of proliferation on their features remains elusive. To examine cell features in dependence of proliferation, we established human endothelial cell lines in which proliferation is tightly controlled by a doxycycline-dependent, synthetic regulatory unit. We observed that uptake of macromolecules and establishment of cell-cell contacts was more pronounced in the growth-arrested state. Tube-like structures were formed in vitro in both proliferating and non-proliferating conditions. However, functional vessel formation upon transplantation into immune-compromised mice was restricted to the proliferative state. Kaposi's sarcoma-associated herpes virus (KSHV) infection resulted in reduced expression of endothelial markers. Upon transplantation of infected cells, drastic differences were observed: proliferation arrested cells acquired a high migratory activity while the proliferating counterparts established a tumor-like phenotype, similar to Kaposi Sarcoma lesions. The study gives evidence that proliferation governs endothelial functions. This suggests that several endothelial functions are differentially expressed during angiogenesis. Moreover, since proliferation defines the functional properties of cells upon infection with KSHV, this process crucially affects the fate of virus-infected cells.

  7. Aptamer technology for tracking cells' status & function.

    PubMed

    Wiraja, Christian; Yeo, David; Lio, Daniel; Labanieh, Louai; Lu, Mengrou; Zhao, Weian; Xu, Chenjie

    2014-01-01

    In fields such as cancer biology and regenerative medicine, obtaining information regarding cell bio-distribution, tropism, status, and other cellular functions are highly desired. Understanding cancer behaviors including metastasis is important for developing effective cancer treatments, while assessing the fate of therapeutic cells following implantation is critical to validate the efficacy and efficiency of the therapy. For visualization purposes with medical imaging modalities (e.g. magnetic resonance imaging), cells can be labeled with contrast agents (e.g. iron-oxide nanoparticles), which allows their identification from the surrounding environment. Despite the success of revealing cell biodistribution in vivo, most of the existing agents do not provide information about the status and functions of cells following transplantation. The emergence of aptamers, single-stranded RNA or DNA oligonucleotides of 15 to 60 bases in length, is a promising solution to address this need. When aptamers bind specifically to their cognate molecules, they undergo conformational changes which can be transduced into a change of imaging contrast (e.g. optical, magnetic resonance). Thus by monitoring this signal change, researchers can obtain information about the expression of the target molecules (e.g. mRNA, surface markers, cell metabolites), which offer clues regarding cell status/function in a non-invasive manner. In this review, we summarize recent efforts to utilize aptamers as biosensors for monitoring the status and function of transplanted cells. We focus on cancer cell tracking for cancer study, stem cell tracking for regenerative medicine, and immune cell (e.g. dendritic cells) tracking for immune therapy.

  8. γδ T cells affect IL-4 production and B-cell tolerance

    PubMed Central

    Huang, Yafei; Heiser, Ryan A.; Detanico, Thiago O.; Getahun, Andrew; Kirchenbaum, Greg A.; Casper, Tamara L.; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Cambier, John C.; Wysocki, Lawrence J.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    γδ T cells can influence specific antibody responses. Here, we report that mice deficient in individual γδ T-cell subsets have altered levels of serum antibodies, including all major subclasses, sometimes regardless of the presence of αβ T cells. One strain with a partial γδ deficiency that increases IgE antibodies also displayed increases in IL-4–producing T cells (both residual γδ T cells and αβ T cells) and in systemic IL-4 levels. Its B cells expressed IL-4–regulated inhibitory receptors (CD5, CD22, and CD32) at diminished levels, whereas IL-4–inducible IL-4 receptor α and MHCII were increased. They also showed signs of activation and spontaneously formed germinal centers. These mice displayed IgE-dependent features found in hyper-IgE syndrome and developed antichromatin, antinuclear, and anticytoplasmic autoantibodies. In contrast, mice deficient in all γδ T cells had nearly unchanged Ig levels and did not develop autoantibodies. Removing IL-4 abrogated the increases in IgE, antichromatin antibodies, and autoantibodies in the partially γδ-deficient mice. Our data suggest that γδ T cells, controlled by their own cross-talk, affect IL-4 production, B-cell activation, and B-cell tolerance. PMID:25535377

  9. Colored dual-functional photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Lee, Jae Yong; Xu, Ting; Park, Hui Joon; Guo, L. Jay

    2016-06-01

    In this article, we review our recent efforts on multi-functional photovoltaic (PV) cells that can produce desired reflective, transmissive, or neutral colors, by controlling light interaction with semiconductors and electrode structures in a desired manner. The PV cells integrated with plasmonic color filtering schemes using subwavelength gratings, and other approaches exploiting photonic resonances in an optical nanocavity consisting of highly absorbing semiconductor media are described. For further enhancement of optical and electrical performance characteristics of the multi-functional PV cells, possible difficulties and the outlook for future work are discussed.

  10. Pancreatic stellate cells--multi-functional cells in the pancreas.

    PubMed

    Masamune, Atsushi; Shimosegawa, Tooru

    2013-01-01

    There is accumulating evidence that activated pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis in chronic pancreatitis and pancreatic cancer. In addition, we have seen great progress in our understanding of the cell biology of PSCs and the interactions between PSCs and other cell types in the pancreas. In response to pancreatic injury or inflammation, quiescent PSCs are activated to myofibroblast-like cells. Recent studies have shown that the activation of intracellular signaling pathways such as mitogen-activated protein kinases plays a role in the activation of PSCs. microRNAs might also play a role, because the microRNA expression profiles are dramatically altered in the process of activation. In addition to producing extracellular matrix components such as type I collagen, PSCs have a wide variety of cell functions related to local immunity, inflammation, angiogenesis, and exocrine and endocrine functions in the pancreas. From this point of view, the interactions between PSCs and other cell types such as pancreatic exocrine cells, endocrine cells, and cancer cells have attracted increasing attention of researchers. PSCs might regulate exocrine functions in the pancreas through the cholecystokinin-induced release of acetylcholine. PSCs induce apoptosis and decrease insulin expression in β-cells, suggesting a novel mechanism of diabetes in diseased pancreas. PSCs promote the progression of pancreatic cancer by multiple mechanisms. Recent studies have shown that PSCs induce epithelial-mesenchymal transition and enhance the stem-cell like features of pancreatic cancer cells. In conclusion, PSCs should now be recognized as not only profibrogenic cells but as multi-functional cells in the pancreas.

  11. Aggregate formation affects ultrasonic disruption of microalgal cells.

    PubMed

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency.

  12. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    PubMed

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  13. Predicting the accuracy of facial affect recognition: the interaction of child maltreatment and intellectual functioning.

    PubMed

    Shenk, Chad E; Putnam, Frank W; Noll, Jennie G

    2013-02-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying levels of intellectual functioning. A sample of maltreated (n=50) and nonmaltreated (n=56) adolescent females, 14 to 19 years of age, was recruited to participate in this study. Participants completed demographic and study-related questionnaires and interviews to control for potential psychological and psychiatric confounds such as symptoms of posttraumatic stress disorder, negative affect, and difficulties in emotion regulation. Participants also completed an experimental paradigm that recorded responses to facial affect displays starting in a neutral expression and changing into a full expression of one of six emotions: happiness, sadness, anger, disgust, fear, or surprise. Hierarchical multiple regression assessed the incremental advantage of evaluating the interaction between child maltreatment and intellectual functioning. Results indicated that the interaction term accounted for a significant amount of additional variance in the accurate identification of facial affect after controlling for relevant covariates and main effects. Specifically, maltreated females with lower levels of intellectual functioning were least accurate in identifying facial affect displays, whereas those with higher levels of intellectual functioning performed as well as nonmaltreated females. These results suggest that maltreatment and intellectual functioning interact to predict the recognition of facial affect, with potential long-term consequences for the interpersonal functioning of maltreated females.

  14. Microfluidics as a functional tool for cell mechanics.

    PubMed

    Vanapalli, Siva A; Duits, Michel H G; Mugele, Frieder

    2009-01-05

    Living cells are a fascinating demonstration of nature's most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax-thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical

  15. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases.

  16. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  17. Nanotopographical Modulation of Cell Function through Nuclear Deformation

    PubMed Central

    Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong

    2016-01-01

    Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365

  18. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    PubMed

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation.

  19. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity

    SciTech Connect

    Macovei, Alina; Zitzmann, Nicole; Lazar, Catalin; Dwek, Raymond A.; Branza-Nichita, Norica . E-mail: nichita@biochim.ro

    2006-08-04

    The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity.

  20. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    PubMed Central

    Liu, Quanwen; Shen, Yi; Chen, Jiarong; Ding, Jie; Tang, Zihua; Zhang, Cui; Chen, Jianling; Li, Liang; Chen, Ping; Wang, Jinfu

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment. PMID:27057177

  1. Lexical and Affective Prosody in Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Grossman, Ruth B.; Bemis, Rhyannon H.; Skwerer, Daniela Plesa; Tager-Flusberg, Helen

    2010-01-01

    Purpose: To investigate the perception and production of lexical stress and processing of affective prosody in adolescents with high-functioning autism (HFA). We hypothesized preserved processing of lexical and affective prosody but atypical lexical prosody production. Method: Sixteen children with HFA and 15 typically developing (TD) peers…

  2. Neuralized functions cell autonomously to regulate Drosophila sense organ development.

    PubMed

    Yeh, E; Zhou, L; Rudzik, N; Boulianne, G L

    2000-09-01

    Neurogenic genes, including Notch and Delta, are thought to play important roles in regulating cell-cell interactions required for Drosophila sense organ development. To define the requirement of the neurogenic gene neuralized (neu) in this process, two independent neu alleles were used to generate mutant clones. We find that neu is required for determination of cell fates within the proneural cluster and that cells mutant for neu autonomously adopt neural fates when adjacent to wild-type cells. Furthermore, neu is required within the sense organ lineage to determine the fates of daughter cells and accessory cells. To gain insight into the mechanism by which neu functions, we used the GAL4/UAS system to express wild-type and epitope-tagged neu constructs. We show that Neu protein is localized primarily at the plasma membrane. We propose that the function of neu in sense organ development is to affect the ability of cells to receive Notch-Delta signals and thus modulate neurogenic activity that allows for the specification of non-neuronal cell fates in the sense organ.

  3. Disruption of the melanin-concentrating hormone receptor 1 (MCH1R) affects thyroid function.

    PubMed

    Chung, Shinjae; Liao, Xiao-Hui; Di Cosmo, Caterina; Van Sande, Jacqueline; Wang, Zhiwei; Refetoff, Samuel; Civelli, Olivier

    2012-12-01

    Melanin-concentrating hormone (MCH) is a peptide produced in the hypothalamus and the zona incerta that acts on one receptor, MCH receptor 1 (MCH1R), in rodents. The MCH system has been implicated in the regulation of several centrally directed physiological responses, including the hypothalamus-pituitary-thyroid axis. Yet a possible direct effect of the MCH system on thyroid function has not been explored in detail. We now show that MCH1R mRNA is expressed in thyroid follicular cells and that mice lacking MCH1R [MCH1R-knockout (KO)] exhibit reduced circulating iodothyronine (T(4), free T(4), T(3), and rT(3)) levels and high TRH and TSH when compared with wild-type (WT) mice. Because the TSH of MCH1R-KO mice displays a normal bioactivity, we hypothesize that their hypothyroidism may be caused by defective thyroid function. Yet expression levels of the genes important for thyroid hormones synthesis or secretion are not different between the MCH1R-KO and WT mice. However, the average thyroid follicle size of the MCH1R-KO mice is larger than that of WT mice and contained more free and total T(4) and T(3) than the WT glands, suggesting that they are sequestered in the glands. Indeed, when challenged with TSH, the thyroids of MCH1R-KO mice secrete lower amounts of T(4). Similarly, secretion of iodothyronines in the plasma upon (125)I administration is significantly reduced in MCH1R-KO mice. Therefore, the absence of MCH1R affects thyroid function by disrupting thyroid hormone secretion. To our knowledge, this study is the first to link the activity of the MCH system to the thyroid function.

  4. Blood cells and endothelial barrier function

    PubMed Central

    Rodrigues, Stephen F; Granger, D Neil

    2015-01-01

    Abstract The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction. PMID:25838983

  5. Mutations affecting a putative MutLα endonuclease motif impact multiple mismatch repair functions

    PubMed Central

    Erdeniz, Naz; Nguyen, Megan; Deschênes, Suzanne M.; Liskay, R. Michael

    2008-01-01

    Mutations in DNA mismatch repair (MMR) lead to increased mutation rates and higher recombination between similar, but not identical sequences, as well as resistance to certain DNA methylating agents. Recently, a component of human MMR machinery, MutLα, has been shown to display a latent endonuclease activity. The endonuclease active site appears to include a conserved motif, DQHA(X)2E(X)4E, within the COOH-terminus of human PMS2. Substitution of the glutamic acid residue (E705) abolished the endonuclease activity and mismatch-dependent excision in vitro. Previously, we showed that the PMS2-E705K mutation and the corresponding mutation in Saccharomyces cerevisiae were both recessive loss of function alleles for mutation avoidance in vivo. Here, we show that mutations impacting this endonuclease motif also significantly affect MMR-dependent suppression of homeologous recombination in yeast and responses to Sn1-type methylating agents in both yeast and mammalian cells. Thus, our in vivo results suggest that the endonuclease activity of MutLα is important not only in MMR-dependent mutation avoidance but also for recombination and damage response functions. PMID:17567544

  6. [Leydig cell function in experimental cryptorchism and varicocele in rats].

    PubMed

    Hernández-Yánez, L; Marín-López, G; Vílchez-Martínez, J; Bishop, W

    1999-06-01

    Leydig cells were isolated from testes of normal, cryptorchid and induced- varicocele rats. These cells were counted and coincubated with and without human Chorionic Gonadotropin (hCG) during 3 hours; thereafter, steroids were measured in the incubation media. Cryptorchid animals showed the lowest number of Leydig cells, the highest Progesterone response to hCG, a slight increment of testosterone and a decrease of estradiol. On the contrary, both left and right testes from varicocele induced rats showed a higher cell number (per g of tissue), lower progesterone response, slightly higher response testosterone and lower testosterone response. These results demonstrate that these conditions of testicular hyperthermia do not affect the number and function of Leydig cells to the same degree. This may be due to differences in the testicular temperature reached with each procedure.

  7. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome

    PubMed Central

    Palumbo, Rosanna; Gogliettino, Marta; Cocca, Ennio; Iannitti, Roberta; Sandomenico, Annamaria; Ruvo, Menotti; Balestrieri, Marco; Rossi, Mosè; Palmieri, Gianna

    2016-01-01

    The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH–proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21Waf1, and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. PMID:27669226

  8. Abrogated Cell Contact Guidance on Amino-Functionalized Microgrooves.

    PubMed

    Mörke, Caroline; Rebl, Henrike; Finke, Birgit; Dubs, Manuela; Nestler, Peter; Airoudj, Aissam; Roucoules, Vincent; Schnabelrauch, Matthias; Körtge, Andreas; Anselme, Karine; Helm, Christiane A; Nebe, J Barbara

    2017-03-29

    Topographical and chemical features of biomaterial surfaces affect the cell physiology at the interface and are promising tools for the improvement of implants. The dominance of the surface topography on cell behavior is often accentuated. Striated surfaces induce an alignment of cells and their intracellular adhesion-mediated components. Recently, it could be demonstrated that a chemical modification via plasma polymerized allylamine was not only able to boost osteoblast cell adhesion and spreading but also override the cell alignment on stochastically machined titanium. In order to discern what kind of chemical surface modifications let the cell forget the underlying surface structure, we used an approach on geometric microgrooves produced by deep reactive ion etching (DRIE). In this study, we systematically investigated the surface modification by (i) methyl-, carboxyl-, and amino functionalization created via plasma polymerization processes, (ii) coating with the extracellular matrix protein collagen-I or immobilization of the integrin adhesion peptide sequence Arg-Gly-Asp (RGD), and (iii) treatment with an atmospheric pressure plasma jet operating with argon/oxygen gas (Ar/O2). Interestingly, only the amino functionalization, which presented positive charges at the surface, was able to chemically disguise the microgrooves and therefore to interrupt the microtopography induced contact guidance of the osteoblastic cells MG-63. However, the RGD peptide coating revealed enhanced cell spreading as well, with fine, actin-containing protrusions. The Ar/O2-functionalization demonstrated the best topography handling, e.g. cells closely attached even to features such as the sidewalls of the groove steps. In the end, the amino functionalization is unique in abrogating the cell contact guidance.

  9. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    SciTech Connect

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  10. Collecting Duct Intercalated Cell Function and Regulation

    PubMed Central

    Roy, Ankita; Al-bataineh, Mohammad M.

    2015-01-01

    Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105

  11. Primary cilia mechanics affects cell mechanosensation: A computational study.

    PubMed

    Khayyeri, Hanifeh; Barreto, Sara; Lacroix, Damien

    2015-08-21

    Primary cilia (PC) are mechanical cell structures linked to the cytoskeleton and are central to how cells sense biomechanical signals from their environment. However, it is unclear exactly how PC mechanics influences cell mechanosensation. In this study we investigate how the PC mechanical characteristics are involved in the mechanotransduction process whereby cilium deflection under fluid flow induces strains on the internal cell components that regulate the cell׳s mechanosensitive response. Our investigation employs a computational approach in which a finite element model of a cell consisting of a nucleus, cytoplasm, cortex, microtubules, actin bundles and a primary cilium was used together with a finite element representation of a flow chamber. Fluid-structure interaction analysis was performed by simulating perfusion flow of 1mm/s on the cell model. Simulations of cells with different PC mechanical characteristics, showed that the length and the stiffness of PC are responsible for the transmission of mechanical stimuli to the cytoskeleton. Fluid flow deflects the cilium, with the highest strains found at the base of the PC and in the cytoplasm. The PC deflection created further strains on the cell nucleus but did not influence microtubules and actin bundles significantly. Our results indicate that PC deflection under fluid flow stimulation transmits mechanical strain primarily to other essential organelles in the cytoplasm, such as the Golgi complex, that regulate cells' mechanoresponse. The simulations further suggest that cell mechanosensitivity can be altered by targeting PC length and rigidity.

  12. Critical factors affecting cell encapsulation in superporous hydrogels.

    PubMed

    Desai, Esha S; Tang, Mary Y; Ross, Amy E; Gemeinhart, Richard A

    2012-04-01

    We recently showed that superporous hydrogel (SPH) scaffolds promote long-term stem cell viability and cell driven mineralization when cells were seeded within the pores of pre-fabricated SPH scaffolds. The possibility of cell encapsulation within the SPH matrix during its fabrication was further explored in this study. The impact of each chemical component used in SPH fabrication and each step of the fabrication process on cell viability was systematically examined. Ammonium persulfate, an initiator, and sodium bicarbonate, the gas-generating compound, were the two components having significant toxicity toward encapsulated cells at the concentrations necessary for SPH fabrication. Cell survival rates were 55.7% ± 19.3% and 88.8% ± 9.4% after 10 min exposure to ammonium persulfate and sodium bicarbonate solutions, respectively. In addition, solution pH change via the addition of sodium bicarbonate had significant toxicity toward encapsulated cells with cell survival of only 50.3% ± 2.5%. Despite toxicity of chemical components and the SPH fabrication method, cells still exhibited significant overall survival rates within SPHs of 81.2% ± 6.8% and 67.0% ± 0.9%, respectively, 48 and 72 h after encapsulation. This method of cell encapsulation holds promise for use in vitro and in vivo as a scaffold material for both hydrogel matrix encapsulation and cell seeding within the pores.

  13. Thought waves remotely affect the performance (output voltage) of photoelectric cells

    NASA Astrophysics Data System (ADS)

    Cao, Dayong; Cao, Daqing

    2012-02-01

    In our experiments, thought waves have been shown to be capable of changing (affecting) the output voltage of photovoltaic cells located from as far away as 1-3 meters. There are no wires between brain and photoelectric cell and so it is presumed only the thought waves act on the photoelectric cell. In continual rotations, the experiments tested different solar cells, measuring devices and lamps, and the experiments were done in different labs. The first experiment was conducted on Oct 2002. Tests are ongoing. Conclusions and assumptions include: 1) the slow thought wave has the energy of space-time as defined by C1.00007: The mass, energy, space and time systemic theory- MEST. Every process releases a field effect electrical vibration which be transmitted and focussed in particular paths; 2) the thought wave has the information of the order of tester; 3) the brain (with the physical system of MEST) and consciousness (with the spirit system of the mind, consciousness, emotion and desire-MECD) can produce the information (a part of them as the Genetic code); 4) through some algorithms such as ACO Ant Colony Optimization and EA Evolutionary Algorithm (or genetic algorithm) working in RAM, human can optimize the information. This Optimizational function is the intelligence; 5) In our experiments, not only can thought waves affect the voltage of the output photoelectric signals by its energy, but they can also selectively increase or decrease those photoelectric currents through remote consciousness interface and a conscious-brain information technology.

  14. Negative affect predicts social functioning across schizophrenia and bipolar disorder: Findings from an integrated data analysis.

    PubMed

    Grove, Tyler B; Tso, Ivy F; Chun, Jinsoo; Mueller, Savanna A; Taylor, Stephan F; Ellingrod, Vicki L; McInnis, Melvin G; Deldin, Patricia J

    2016-09-30

    Most people with a serious mental illness experience significant functional impairment despite ongoing pharmacological treatment. Thus, in order to improve outcomes, a better understanding of functional predictors is needed. This study examined negative affect, a construct comprised of negative emotional experience, as a predictor of social functioning across serious mental illnesses. One hundred twenty-seven participants with schizophrenia, 113 with schizoaffective disorder, 22 with psychosis not otherwise specified, 58 with bipolar disorder, and 84 healthy controls (N=404) completed self-report negative affect measures. Elevated levels of negative affect were observed in clinical participants compared with healthy controls. For both clinical and healthy control participants, negative affect measures were significantly correlated with social functioning, and consistently explained significant amounts of variance in functioning. For clinical participants, this relationship persisted even after accounting for cognition and positive/negative symptoms. The findings suggest that negative affect is a strong predictor of outcome across these populations and treatment of serious mental illnesses should target elevated negative affect in addition to cognition and positive/negative symptoms.

  15. Positive Affect in the Midst of Distress: Implications for Role Functioning

    PubMed Central

    Moskowitz, Judith Tedlie; Shmueli-Blumberg, Dikla; Acree, Michael; Folkman, Susan

    2012-01-01

    Stress has been shown to deplete the self-regulation resources hypothesized to facilitate effective role functioning. However, recent research suggests that positive affect may help to replenish these vital self-regulation resources. Based on revised Stress and Coping theory and the Broaden-and-Build theory of positive emotion, three studies provide evidence of the potential adaptive function of positive affect in the performance of roles for participants experiencing stress. Participants were students (Study 1), caregivers of ill children (Study 2), and individuals recently diagnosed with HIV (Study 3). In cross sectional analyses, using role functioning as an indicator of self-regulation performance, we found that positive affect was significantly correlated with better self regulation performance, independent of the effects of negative affect. The effects were not as strong longitudinally, however, and there was little evidence of a reciprocal association between increases in positive affect and improvements in role functioning over time. The results provide some modest support for hypotheses stemming from the Broaden and Build model of positive emotion and revised Stress and Coping theory, both of which argue for unique adaptive functions of positive affect under stressful conditions. PMID:23175617

  16. Immunometabolism governs dendritic cell and macrophage function

    PubMed Central

    2016-01-01

    Recent studies on intracellular metabolism in dendritic cells (DCs) and macrophages provide new insights on the functioning of these critical controllers of innate and adaptive immunity. Both cell types undergo profound metabolic reprogramming in response to environmental cues, such as hypoxia or nutrient alterations, but importantly also in response to danger signals and cytokines. Metabolites such as succinate and citrate have a direct impact on the functioning of macrophages. Immunogenicity and tolerogenicity of DCs is also determined by anabolic and catabolic processes, respectively. These findings provide new prospects for therapeutic manipulation in inflammatory diseases and cancer. PMID:26694970

  17. Linking and Psychological Functioning in a Chinese Sample: The Multiple Mediation of Response to Positive Affect

    ERIC Educational Resources Information Center

    Yang, Hongfei; Li, Juan

    2016-01-01

    The present study examined the associations between linking, response to positive affect, and psychological functioning in Chinese college students. The results of conducting multiple mediation analyses indicated that emotion- and self-focused positive rumination mediated the relationship between linking and psychological functioning, whereas…

  18. Aging affects initiation and continuation of T cell proliferation.

    PubMed

    Jiang, Jiu; Gross, Diara; Elbaum, Philip; Murasko, Donna M

    2007-04-01

    Aging is associated with a decline in immune responses, particularly within the T cell compartment. While the expansion of specific T cells in response to virus infections is consistently decreased in aged mice, the differences in T cell activation between young and aged mice as demonstrated in each round of proliferation remain poorly defined. In the present study, we utilized the T cell mitogen, ConA, to explore if fewer T cells of aged mice initiate proliferation upon mitogen stimulation or if similar numbers of T cells of aged mice begin proliferation but undergo fewer rounds of division. We also examined whether these age-associated changes in proliferation are reflected by differences in T cell activation by comparing activation markers (CD25, CD69, CD44, and CD62L) on T cells of young and aged mice at each round of proliferation. Not only was the kinetics of the expression of these markers greatly different between young and aged mice on the entire CD8 T cell population, but also at each round of proliferation. Our results demonstrate that a larger percentage of CD8 T cells of aged mice do not proliferate at all upon stimulation. Of the CD8 T cells of aged mice that do proliferate, a larger percentage start later and stop sooner. These results suggest that multiple levels of alteration may need to be considered when trying to maximize the immune response of aged individuals.

  19. Notch signaling regulates gastric antral LGR5 stem cell function.

    PubMed

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Carulli, Alexis J; VanDussen, Kelli L; Thomas, Dafydd; Giordano, Thomas J; Liu, Zhenyi; Kopan, Raphael; Samuelson, Linda C

    2015-10-14

    The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5(+) antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5-GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5(+) stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi-colored reporter demonstrated that Notch-activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD-induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper-proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis.

  20. The Kupffer Cell Number Affects the Outcome of Living Donor Liver Transplantation from Elderly Donors

    PubMed Central

    Hidaka, Masaaki; Eguchi, Susumu; Takatsuki, Mitsuhisa; Soyama, Akihiko; Ono, Shinichiro; Adachi, Tomohiko; Natsuda, Koji; Kugiyama, Tota; Hara, Takanobu; Okada, Satomi; Imamura, Hajime; Miuma, Satoshi; Miyaaki, Hisamitsu

    2016-01-01

    Background There have been no previous reports how Kupffer cells affect the outcome of living donor liver transplantation (LDLT) with an elderly donor. The aim of this study was to elucidate the influence of Kupffer cells on LDLT. Methods A total of 161 adult recipients underwent LDLT. The graft survival, prognostic factors for survival, and graft failure after LDLT were examined between cases with a young donor (<50, n = 112) and an elderly donor (≥50, N = 49). The Kupffer cells, represented by CD68-positive cell in the graft, were examined in the young and elderly donors. Results In a multivariable analysis, a donor older than 50 years, sepsis, and diabetes mellitus were significant predictors of graft failure after LDLT. The CD68 in younger donors was significantly more expressed than that in elderly donors. The group with a less number of CD68-positive cells in the graft had a significantly poor survival in the elderly donor group and prognostic factor for graft failure. Conclusions The worse outcome of LDLT with elderly donors might be related to the lower number of Kupffer cells in the graft, which can lead to impaired recovery of the liver function and may predispose patients to infectious diseases after LDLT. PMID:27819035

  1. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  2. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    PubMed

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment.

  3. The Functional Significance of Affect Recognition, Neurocognition, and Clinical Symptoms in Schizophrenia

    PubMed Central

    Hsiao, Sigmund

    2017-01-01

    Objectives The complex relationship and exact extent of the contribution of plausible indictors to social functional outcome in schizophrenia remain unclear. The present study aimed to explore the functional significance of clinical symptoms, neurocognition, and affect recognition simultaneously in schizophrenia. Methods The clinical symptoms, basic neurocognition, facial emotion recognition, and social functioning of 154 subjects, including 74 with schizophrenia and 80 nonclinical comparisons, were assessed. Results We observed that various subdomains of social functioning were extensively related to general intelligence, basic neurocognition, facial emotion recognition, and clinical symptoms, with different association patterns. Multivariate regression analyses revealed that years of education, age, sustained attention, working memory, and facial emotion recognition were significantly associated with global social functioning in schizophrenia. Conclusion Our findings suggest that affect recognition combined with nonsocial neurocognition demonstrated a crucial role in predicting global social function in schizophrenia. PMID:28099444

  4. Regulation of germ cell function by SUMOylation

    PubMed Central

    Rodriguez, Amanda; Pangas, Stephanie A.

    2015-01-01

    Oogenesis and spermatogenesis are tightly regulated complex processes that are critical for fertility function. Germ cells undergo meiosis to generate haploid cells necessary for reproduction. Errors in meiosis, including the generation of chromosomal abnormalities, can result in reproductive defects and infertility. Meiotic proteins are regulated by post-translational modifications including SUMOylation, the covalent attachment of small ubiquitin-like modifier (SUMO) proteins. Here, we review the role of SUMO proteins in controlling germ cell development and maturation based on recent findings from mouse models. Several studies have characterized the localization of SUMO proteins in male and female germ cells. However, a deeper understanding of how SUMOylation regulates proteins with essential roles in oogenesis and spermatogenesis will provide useful insight into the underlying mechanisms of germ cell development and fertility. PMID:26374733

  5. Physiological Functions of Glial Cell Hemichannels.

    PubMed

    Orellana, Juan A

    2016-01-01

    The brain performs exceptionally complex and dynamic tasks that depend on the coordinated interaction of neurons, glial cells, endothelial cells, pericytes, smooth muscle cells, ependymal cells, and circulating blood cells. Among these cells, glial cells have emerged as crucial protagonists in the regulation of synaptic transmission and neural function. Indeed, these cells express a wide range of receptors that enable them to sense changes in neuronal activity and the microenvironment by responding locally via the release of bioactive molecules known as gliotransmitters. In the central nervous system (CNS), a novel mechanism that allows gliotransmission via the opening of hemichannels has been proposed. These channels are composed of six protein subunits consisting of connexins or pannexins, which are two highly conserved protein families that are encoded by 21 and 3 genes, respectively, in humans. Typically, glial cell hemichannels exhibit low levels of activity, but this activity is sufficient to ensure the release of a broad spectrum of gliotransmitters, including ATP, D-serine, glutamate, adenosine, and glutathione. Here, we briefly review the current findings regarding the effects of the hemichannel-dependent release of gliotransmitters on the physiology of the CNS.

  6. Immune cell phenotype and function in sepsis

    PubMed Central

    Rimmelé, Thomas; Payen, Didier; Cantaluppi, Vincenzo; Marshall, John; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.

    2015-01-01

    Cells of the innate and adaptive immune systems play a critical role in the host response to sepsis. Moreover, their accessibility for sampling and their capacity to respond dynamically to an acute threat increases the possibility that leukocytes might serve as a measure of a systemic state of altered responsiveness in sepsis. The working group of the 14th Acute Dialysis Quality Initiative (ADQI) conference sought to obtain consensus on the characteristic functional and phenotypic changes in cells of the innate and adaptive immune system in the setting of sepsis. Techniques for the study of circulating leukocytes were also reviewed and the impact on cellular phenotypes and leukocyte function of non extracorporeal treatments and extracorporeal blood purification therapies proposed for sepsis was analyzed. A large number of alterations in the expression of distinct neutrophil and monocyte surface markers have been reported in septic patients. The most consistent alteration seen in septic neutrophils is their activation of a survival program that resists apoptotic death. Reduced expression of HLA-DR is a characteristic finding on septic monocytes but monocyte antimicrobial function does not appear to be significantly altered in sepsis. Regarding adaptive immunity, sepsis-induced apoptosis leads to lymphopenia in patients with septic shock and it involves all types of T cells (CD4, CD8 and Natural Killer) except T regulatory cells, thus favoring immunosuppression. Finally, numerous promising therapies targeting the host immune response to sepsis are under investigation. These potential treatments can have an effect on the number of immune cells, the proportion of cell subtypes and the cell function. PMID:26529661

  7. Cell Viability and Functionality of Probiotic Bacteria in Dairy Products

    PubMed Central

    Vinderola, Gabriel; Binetti, Ana; Burns, Patricia; Reinheimer, Jorge

    2011-01-01

    Probiotic bacteria, according to the definition adopted by the World Health Organization in 2002, are live microorganisms, which when administered in adequate amounts confer a health benefit to the host. Recent studies show that the same probiotic strain produced and/or preserved under different storage conditions, may present different responses regarding their susceptibility to the adverse conditions of the gastrointestinal tract, its capacity to adhere to the intestinal epithelium, or its immunomodulating capacity, the functionality being affected without changes in cell viability. This could imply that the control of cell viability is not always enough to guarantee the functionality (probiotic capacity) of a strain. Therefore, a new challenge arises for food technologists and microbiologists when it comes to designing and monitoring probiotic food: to be able to monitor the functionality of a probiotic microorganism throughout all the stages the strain goes through from the moment it is produced and included in the food vehicle, until the moment of consumption. Conventional methodological tools or others still to be developed must be used. The application of cell membrane functionality markers, the use of tests of resistance to intestinal barriers, the study of surface properties and the application of in vivo models come together as complementary tools to assess the actual capacity of a probiotic organism in a specific food, to exert functional effects regardless of the number of viable cells present at the moment of consumption. PMID:21833320

  8. Cell viability and functionality of probiotic bacteria in dairy products.

    PubMed

    Vinderola, Gabriel; Binetti, Ana; Burns, Patricia; Reinheimer, Jorge

    2011-01-01

    Probiotic bacteria, according to the definition adopted by the World Health Organization in 2002, are live microorganisms, which when administered in adequate amounts confer a health benefit to the host. Recent studies show that the same probiotic strain produced and/or preserved under different storage conditions, may present different responses regarding their susceptibility to the adverse conditions of the gastrointestinal tract, its capacity to adhere to the intestinal epithelium, or its immunomodulating capacity, the functionality being affected without changes in cell viability. This could imply that the control of cell viability is not always enough to guarantee the functionality (probiotic capacity) of a strain. Therefore, a new challenge arises for food technologists and microbiologists when it comes to designing and monitoring probiotic food: to be able to monitor the functionality of a probiotic microorganism throughout all the stages the strain goes through from the moment it is produced and included in the food vehicle, until the moment of consumption. Conventional methodological tools or others still to be developed must be used. The application of cell membrane functionality markers, the use of tests of resistance to intestinal barriers, the study of surface properties and the application of in vivo models come together as complementary tools to assess the actual capacity of a probiotic organism in a specific food, to exert functional effects regardless of the number of viable cells present at the moment of consumption.

  9. Intestinal lamina propria dendritic cells maintain T cell homeostasis but do not affect commensalism.

    PubMed

    Welty, Nathan E; Staley, Christopher; Ghilardi, Nico; Sadowsky, Michael J; Igyártó, Botond Z; Kaplan, Daniel H

    2013-09-23

    Dendritic cells (DCs) in the intestinal lamina propria (LP) are composed of two CD103(+) subsets that differ in CD11b expression. We report here that Langerin is expressed by human LP DCs and that transgenic human langerin drives expression in CD103(+)CD11b(+) LP DCs in mice. This subset was ablated in huLangerin-DTA mice, resulting in reduced LP Th17 cells without affecting Th1 or T reg cells. Notably, cognate DC-T cell interactions were not required for Th17 development, as this response was intact in huLangerin-Cre I-Aβ(fl/fl) mice. In contrast, responses to intestinal infection or flagellin administration were unaffected by the absence of CD103(+)CD11b(+) DCs. huLangerin-DTA x BatF3(-/-) mice lacked both CD103(+) LP DC subsets, resulting in defective gut homing and fewer LP T reg cells. Despite these defects in LP DCs and resident T cells, we did not observe alterations of intestinal microbial communities. Thus, CD103(+) LP DC subsets control T cell homeostasis through both nonredundant and overlapping mechanisms.

  10. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    PubMed

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2014-12-30

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 µg/mL) or even protected cells from basal death (P. putumayoense) in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS). These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma.

  11. Maternal obesity drives functional alterations in uterine NK cells

    PubMed Central

    Perdu, Sofie; Castellana, Barbara; Kim, Yoona; Chan, Kathy; DeLuca, Lauren; Beristain, Alexander G.

    2016-01-01

    Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development. PMID:27699222

  12. B Cell Receptor Affinity for Insulin Dictates Autoantigen Acquisition and B Cell Functionality in Autoimmune Diabetes

    PubMed Central

    Packard, Thomas A.; Smith, Mia J.; Conrad, Francis J.; Johnson, Sara A.; Getahun, Andrew; Lindsay, Robin S.; Hinman, Rochelle M.; Friedman, Rachel S.; Thomas, James W.; Cambier, John C.

    2016-01-01

    B cells have been strongly implicated in the development of human type 1 diabetes and are required for disease in the NOD mouse model. These functions are dependent on B cell antigen receptor (BCR) specificity and expression of MHC, implicating linked autoantigen recognition and presentation to effector T cells. BCR-antigen affinity requirements for participation in disease are unclear. We hypothesized that BCR affinity for the autoantigen insulin differentially affects lymphocyte functionality, including tolerance modality and the ability to acquire and become activated in the diabetogenic environment. Using combined transgenic and retrogenic heavy and light chain to create multiple insulin-binding BCRs, we demonstrate that affinity for insulin is a critical determinant of the function of these autoreactive cells. We show that both BCR affinity for insulin and genetic background affect tolerance induction in immature B cells. We also find new evidence that may explain the enigmatic ability of B cells expressing 125 anti-insulin BCR to support development of TID in NOD mice despite a reported affinity beneath requirements for binding insulin at in vivo concentrations. We report that when expressed as an antigen receptor the affinity of 125 is much higher than determined by measurements of the soluble form. Finally, we show that in vivo acquisition of insulin requires both sufficient BCR affinity and permissive host/tissue environment. We propose that a confluence of BCR affinity, pancreas environment, and B cell tolerance-regulating genes in the NOD animal allows acquisition of insulin and autoimmunity. PMID:27834793

  13. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    PubMed

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  14. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells.

    PubMed

    Turner, Elizabeth C; Huang, Chien-Ling; Sawhney, Neha; Govindarajan, Kalaimathi; Clover, Anthony J P; Martin, Kenneth; Browne, Tara C; Whelan, Derek; Kumar, Arun H S; Mackrill, John J; Wang, Shaohua; Schmeckpeper, Jeffrey; Stocca, Alessia; Pierce, William G; Leblond, Anne-Laure; Cai, Liquan; O'Sullivan, Donnchadh M; Buneker, Chirlei K; Choi, Janet; MacSharry, John; Ikeda, Yasuhiro; Russell, Stephen J; Caplice, Noel M

    2016-05-01

    Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC.  In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement.  PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368.

  15. Truncated brush border myosin I affects membrane traffic in polarized epithelial cells.

    PubMed

    Durrbach, A; Raposo, G; Tenza, D; Louvard, D; Coudrier, E

    2000-05-01

    We investigate, in this study, the potential involvement of an acto-myosin-driven mechanism in endocytosis of polarized cells. We observed that depolymerization of actin filaments using latrunculin A decreases the rate of transferrin recycling to the basolateral plasma membrane of Caco-2 cells, and increases its delivery to the apical plasma membrane. To analyze whether a myosin was involved in endocytosis, we produced, in this polarized cell line, truncated, non-functional, brush border, myosin I proteins (BBMI) that we have previously demonstrated to have a dominant negative effect on endocytosis of unpolarized cells. These non-functional proteins affect the rate of transferrin recycling and the rate of transepithelial transport of dipeptidyl-peptidase IV from the basolateral plasma membrane to the apical plasma membrane. They modify the distribution of internalized endocytic tracers in apical multivesicular endosomes that are accessible to fluid phase tracers internalized from apical and basolateral plasma membrane domains. Altogether, these observations suggest that an acto-myosin-driven mechanism is involved in the trafficking of basolaterally internalized molecules to the apical plasma membrane.

  16. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  17. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    PubMed Central

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung-Jui

    2015-01-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  18. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    DOE PAGES

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; ...

    2015-08-05

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues duringmore » regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. In conclusion, taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.« less

  19. Aging of myelinating glial cells predominantly affects lipid metabolism and immune response pathways.

    PubMed

    Verdier, Valérie; Csárdi, Gábor; de Preux-Charles, Anne-Sophie; Médard, Jean-Jacques; Smit, August B; Verheijen, Mark H G; Bergmann, Sven; Chrast, Roman

    2012-05-01

    Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.

  20. Bax alpha perturbs T cell development and affects cell cycle entry of T cells.

    PubMed Central

    Brady, H J; Gil-Gómez, G; Kirberg, J; Berns, A J

    1996-01-01

    Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle. Images PMID:9003775

  1. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  2. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  3. Glial Cell Development and Function in Zebrafish

    PubMed Central

    Lyons, David A.; Talbot, William S.

    2015-01-01

    The zebrafish is a premier vertebrate model system that offers many experimental advantages for in vivo imaging and genetic studies. This review provides an overview of glial cell types in the central and peripheral nervous system of zebrafish. We highlight some recent work that exploited the strengths of the zebrafish system to increase the understanding of the role of Gpr126 in Schwann cell myelination and illuminate the mechanisms controlling oligodendrocyte development and myelination. We also summarize similarities and differences between zebrafish radial glia and mammalian astrocytes and consider the possibility that their distinct characteristics may represent extremes in a continuum of cell identity. Finally, we focus on the emergence of zebrafish as a model for elucidating the development and function of microglia. These recent studies have highlighted the power of the zebrafish system for analyzing important aspects of glial development and function. PMID:25395296

  4. Cell-free extract from porcine induced pluripotent stem cells can affect porcine somatic cell nuclear reprogramming.

    PubMed

    No, Jin-Gu; Choi, Mi-Kyung; Kwon, Dae-Jin; Yoo, Jae Gyu; Yang, Byoung-Chul; Park, Jin-Ki; Kim, Dong-Hoon

    2015-01-01

    Pretreatment of somatic cells with undifferentiated cell extracts, such as embryonic stem cells and mammalian oocytes, is an attractive alternative method for reprogramming control. The properties of induced pluripotent stem cells (iPSCs) are similar to those of embryonic stem cells; however, no studies have reported somatic cell nuclear reprogramming using iPSC extracts. Therefore, this study aimed to evaluate the effects of porcine iPSC extracts treatment on porcine ear fibroblasts and early development of porcine cloned embryos produced from porcine ear skin fibroblasts pretreated with the porcine iPSC extracts. The Chariot(TM) reagent system was used to deliver the iPSC extracts into cultured porcine ear skin fibroblasts. The iPSC extracts-treated cells (iPSC-treated cells) were cultured for 3 days and used for analyzing histone modification and somatic cell nuclear transfer. Compared to the results for nontreated cells, the trimethylation status of histone H3 lysine residue 9 (H3K9) in the iPSC-treated cells significantly decreased. The expression of Jmjd2b, the H3K9 trimethylation-specific demethylase gene, significantly increased in the iPSC-treated cells; conversely, the expression of the proapoptotic genes, Bax and p53, significantly decreased. When the iPSC-treated cells were transferred into enucleated porcine oocytes, no differences were observed in blastocyst development and total cell number in blastocysts compared with the results for control cells. However, H3K9 trimethylation of pronuclear-stage-cloned embryos significantly decreased in the iPSC-treated cells. Additionally, Bax and p53 gene expression in the blastocysts was significantly lower in iPSC-treated cells than in control cells. To our knowledge, this study is the first to show that an extracts of porcine iPSCs can affect histone modification and gene expression in porcine ear skin fibroblasts and cloned embryos.

  5. Glycosaminoglycans affect heparanase location in CHO cell lines.

    PubMed

    Piva, Maria B R; Suarez, Eloah R; Melo, Carina M; Cavalheiro, Renan P; Nader, Helena B; Pinhal, Maria A S

    2015-09-01

    Glycosaminoglycans (GAG) play a ubiquitous role in tissues and cells. In eukaryotic cells, heparan sulfate (HS) is initially degraded by an endo-β-glucuronidase called heparanase-1 (HPSE). HS oligosaccharides generated by the action of HPSE intensify the activity of signaling molecules, activating inflammatory response, tumor metastasis, and angiogenesis. The aim of the present study was to understand if sulfated GAG could modulate HPSE, since the mechanisms that regulate HPSE have not been completely defined. CHO-K1 cells were treated with 4-methylumbelliferone (4-MU) and sodium chlorate, to promote total inhibition of GAG synthesis, and reduce the sulfation pattern, respectively. The GAG profile of the wild CHO-K1 cells and CHO-745, deficient in xylosyltransferase, was determined after [(35)S]-sulfate labeling. HPSE expression was determined via real-time quantitative polymerase chain reaction. Total ablation of GAG with 4-MU in CHO-K1 inhibited HPSE expression, while the lack of sulfation had no effect. Interestingly, 4-MU had no effect in CHO-745 cells for these assays. In addition, a different enzyme location was observed in CHO-K1 wild-type cells, which presents HPSE mainly in the extracellular matrix, in comparison with the CHO-745 mutant cells, which is found in the cytoplasm. In view of our results, we can conclude that GAG are essential modulators of HPSE expression and location. Therefore, GAG profile could impact cell behavior mediated by the regulation of HPSE.

  6. Functional Characterization of HCN Channels in Rat Pancreatic β Cells

    PubMed Central

    Zhang, Yi; Liu, Yunfeng; Qu, Jihong; Hardy, Alexandre; Zhang, Nina; Diao, Jingyu; Strijbos, Paul J.; Tsushima, Robert; Robinson, Richard B.; Gaisano, Herbert Y.; Wang, Qinghua; Wheeler, Michael B.

    2010-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate pacemaker activity in some cardiac cells and neurons. In the present study, we have identified the presence of HCN channels in pancreatic β-cells. We then examined the functional characterization of these channels in β-cells via modulating HCN channel activity genetically and pharmacologically. Voltage-clamp experiments showed that over-expression of HCN2 in rat β-cells significantly increased HCN current (Ih), whereas expression of dominant-negative HCN2 (HCN2-AYA) completely suppressed endogenous Ih. Compared to control β-cells, over-expression of Ih increased insulin secretion at 2.8 mmol/l glucose. However, suppression of Ih did not affect insulin secretion at both 2.8 mmol/l and 11.1 mmol/l glucose. Current-clamp measurements revealed that HCN2 over-expression significantly reduced β-cell membrane input resistance (Rin), and resulted in a less hyperpolarizing membrane response to the currents injected into the cell. Conversely, dominant negative HCN2-AYA expression led to a substantial increase of Rin, which was associated with a more hyperpolarizing membrane response to the currents injected. Remarkably, under low extracellular potassium conditions (2.5mmol/l K+), suppression of Ih resulted in increased membrane hyperpolarization and decreased insulin secretion. We conclude that Ih in β-cells possess the potential to modulate β-cell membrane potential and insulin secretion under hypokalemic conditions. PMID:19654142

  7. Stem Cells in Functional Bladder Engineering

    PubMed Central

    Smolar, Jakub; Salemi, Souzan; Horst, Maya; Sulser, Tullio; Eberli, Daniel

    2016-01-01

    Conditions impairing bladder function in children and adults, such as myelomeningocele, posterior urethral valves, bladder exstrophy or spinal cord injury, often need urinary diversion or augmentation cystoplasty as when untreated they may cause severe bladder dysfunction and kidney failure. Currently, the gold standard therapy of end-stage bladder disease refractory to conservative management is enterocystoplasty, a surgical enlargement of the bladder with intestinal tissue. Despite providing functional improvement, enterocystoplasty is associated with significant long-term complications, such as recurrent urinary tract infections, metabolic abnormalities, stone formation, and malignancies. Therefore, there is a strong clinical need for alternative therapies for these reconstructive procedures, of which stem cell-based tissue engineering (TE) is considered to be the most promising future strategy. This review is focused on the recent progress in bladder stem cell research and therapy and the challenges that remain for the development of a functional bladder wall. PMID:27781020

  8. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing

    PubMed Central

    Schor, Ignacio E.; Rascovan, Nicolás; Pelisch, Federico; Alló, Mariano; Kornblihtt, Alberto R.

    2009-01-01

    In search for physiological pathways affecting alternative splicing through its kinetic coupling with transcription, we found that membrane depolarization of neuronal cells triggers the skipping of exon 18 from the neural cell adhesion molecule (NCAM) mRNA, independently of the calcium/calmodulin protein kinase IV pathway. We show that this exon responds to RNA polymerase II elongation, because its inclusion is increased by a slow polymerase II mutant. Depolarization affects the chromatin template in a specific way, by causing H3K9 hyper-acetylation restricted to an internal region of the NCAM gene surrounding the alternative exon. This intragenic histone hyper-acetylation is not paralleled by acetylation at the promoter, is associated with chromatin relaxation, and is linked to H3K36 tri-methylation. The effects on acetylation and splicing fully revert when the depolarizing conditions are withdrawn and can be both duplicated and potentiated by the histone deacetylase inhibitor trichostatin A. Our results are consistent with a mechanism involving the kinetic coupling of splicing and transcription in response to depolarization through intragenic epigenetic changes on a gene that is relevant for the differentiation and function of neuronal cells. PMID:19251664

  9. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  10. Identifying Molecular Regulators of Neuronal Functions Affected in the Movement Disorder Dystonia

    DTIC Science & Technology

    2015-08-01

    AD______________ AWARD NUMBER: W81XWH-14-1-0301 TITLE: Identifying Molecular Regulators of Neuronal Functions Affected in the Movement Disorder...Affected in the Movement Disorder Dystonia 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0301 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...SUPPLEMENTARY NOTES 14. ABSTRACT The movement disorder dystonia is characterized by involuntary muscle contractions in the limbs, hands, feet or neck. The aim

  11. 4-Methylthiobutyl isothiocyanate (Erucin) from rocket plant dichotomously affects the activity of human immunocompetent cells.

    PubMed

    Gründemann, Carsten; Garcia-Käufer, Manuel; Lamy, Evelyn; Hanschen, Franziska S; Huber, Roman

    2015-03-15

    Isothiocyanates (ITC) from the Brassicaceae plant family are regarded as promising for prevention and treatment of cancer. However, experimental settings consider their therapeutic action without taking into account the risk of unwanted effects on healthy tissues. In the present study we investigated the effects of Eruca sativa seed extract containing MTBITC (Erucin) and pure Erucin from rocket plant on healthy cells of the human immune system in vitro. Hereby, high doses of the plant extract as well as of Erucin inhibited cell viability of human lymphocytes via induction of apoptosis to comparable amounts. Non-toxic low concentrations of the plant extract and pure Erucin altered the expression of the interleukin (IL)-2 receptor but did not affect further T cell activation, proliferation and the release of the effector molecules interferon (IFN)-gamma and IL-2 of T-lymphocytes. However, the activity of NK-cells was significantly reduced by non-toxic concentrations of the plant extract and pure Erucin. These results indicate that the plant extract and pure Erucin interfere with the function of human T lymphocytes and decreases the activity of NK-cells in comparable concentrations. Long-term clinical studies with ITC-enriched plant extracts from Brassicaceae should take this into account.

  12. Role of affective self-regulatory efficacy in diverse spheres of psychosocial functioning.

    PubMed

    Bandura, Albert; Caprara, Gian Vittorio; Barbaranelli, Claudio; Gerbino, Maria; Pastorelli, Concetta

    2003-01-01

    This prospective study with 464 older adolescents (14 to 19 years at Time 1; 16 to 21 years at Time 2) tested the structural paths of influence through which perceived self-efficacy for affect regulation operates in concert with perceived behavioral efficacy in governing diverse spheres of psychosocial functioning. Self-efficacy to regulate positive and negative affect is accompanied by high efficacy to manage one's academic development, to resist social pressures for antisocial activities, and to engage oneself with empathy in others' emotional experiences. Perceived self-efficacy for affect regulation essentially operated mediationally through the latter behavioral forms of self-efficacy rather than directly on prosocial behavior, delinquent conduct, and depression. Perceived empathic self-efficacy functioned as a generalized contributor to psychosocial functioning. It was accompanied by prosocial behavior and low involvement in delinquency but increased vulnerability to depression in adolescent females.

  13. Functions of red cell surface proteins.

    PubMed

    Daniels, G

    2007-11-01

    The external membrane of the red cell contains numerous proteins that either cross the lipid bilayer one or more times or are anchored to it through a lipid tail. Many of these proteins express blood group activity. The functions of some of these proteins are known; in others their function can only be surmised from the protein structure or from limited experimental evidence. They are loosely divided into four categories based on their functions: membrane transporters; adhesion molecules and receptors; enzymes; and structural proteins that link the membrane with the membrane skeleton. Some of the proteins carry out more than one of these functions. Some proteins may complete their major functions during erythropoiesis or may only be important under adverse physiological conditions. Furthermore, some might be evolutionary relics and may no longer have significant functions. Polymorphisms or rare changes in red cell surface proteins are often responsible for blood groups. The biological significance of these polymorphisms or the selective pressures responsible for their stability within populations are mostly not known, although exploitation of the proteins by pathogenic micro-organisms has probably played a major role.

  14. Titanium surface topography affects collagen biosynthesis of adherent cells.

    PubMed

    Mendonça, Daniela B S; Miguez, Patrícia A; Mendonça, Gustavo; Yamauchi, Mitsuo; Aragão, Francisco J L; Cooper, Lyndon F

    2011-09-01

    Collagen-dependent microstructure and physicochemical properties of newly formed bone around implant surfaces represent key determinants of implant biomechanics. This study investigated the effects of implant surface topography on collagen biosynthesis of adherent human mesenchymal stem cells (hMSCs). hMSCs were grown for 0 to 42 days on titanium disks (20.0 × 1.0 mm) with smooth or rough surfaces. Cell attachment and spreading were evaluated by incubating cells with Texas-Red-conjugated phalloidin antibody. Quantitative real-time PCR was used to measure the mRNA levels of Col1α1 and collagen modifying genes including prolyl hydroxylases (PHs), lysyl oxidases (LOXs) and lysyl hydroxylases (LHs). Osteogenesis was assessed at the level of osteoblast specific gene expression and alizarin red staining for mineralization. Cell layer-associated matrix and collagen content were determined by amino acid analysis. At 4h, 100% cells were flattened on both surfaces, however the cells on smooth surface had a fibroblast-like shape, while cells on rough surface lacked any defined long axis. PH, LH, and most LOX mRNA levels were greater in hMSCs grown on rough surfaces for 3 days. The mineralized area was greater for rough surface at 28 and 42 days. The collagen content (percent total protein) was also greater at rough surface compared to smooth surface at 28 (36% versus 26%) and 42 days (46% versus 29%), respectively (p<.05). In a cell culture model, rough surface topography positively modulates collagen biosynthesis and accumulation and the expression of genes associated with collagen cross-linking in adherent hMSC. The altered biosynthesis of the collagen-rich ECM adjacent to endosseous implants may influence the biomechanical properties of osseointegrated endosseous implants.

  15. Observing functional actions affects semantic processing of tools: evidence of a motor-to-semantic priming.

    PubMed

    De Bellis, Francesco; Ferrara, Antonia; Errico, Domenico; Panico, Francesco; Sagliano, Laura; Conson, Massimiliano; Trojano, Luigi

    2016-01-01

    Recent evidence shows that activation of motor information can favor identification of related tools, thus suggesting a strict link between motor and conceptual knowledge in cognitive representation of tools. However, the involvement of motor information in further semantic processing has not been elucidated. In three experiments, we aimed to ascertain whether motor information provided by observation of actions could affect processing of conceptual knowledge about tools. In Experiment 1, healthy participants judged whether pairs of tools evoking different functional handgrips had the same function. In Experiment 2 participants judged whether tools were paired with appropriate recipients. Finally, in Experiment 3 we again required functional judgments as in Experiment 1, but also included in the set of stimuli pairs of objects having different function and similar functional handgrips. In all experiments, pictures displaying either functional grasping (aimed to use tools) or structural grasping (just aimed to move tools independently from their use) were presented before each stimulus pair. The results demonstrated that, in comparison with structural grasping, observing functional grasping facilitates judgments about tools' function when objects did not imply the same functional manipulation (Experiment 1), whereas worsened such judgments when objects shared functional grasp (Experiment 3). Instead, action observation did not affect judgments concerning tool-recipient associations (Experiment 2). Our findings support a task-dependent influence of motor information on high-order conceptual tasks and provide further insights into how motor and conceptual processing about tools can interact.

  16. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  17. A decorin-deficient matrix affects skin chondroitin/dermatan sulfate levels and keratinocyte function

    PubMed Central

    Nikolovska, Katerina; Renke, Jana K.; Jungmann, Oliver; Grobe, Kay; Iozzo, Renato V.; Zamfir, Alina D.; Seidler, Daniela G.

    2016-01-01

    Decorin is a small leucine-rich proteoglycan harboring a single glycosaminoglycan chain, which, in skin, is mainly composed of dermatan sulfate (DS). Mutant mice with targeted disruption of the decorin gene (Dcn−/−) exhibit an abnormal collagen architecture in the dermis and reduced tensile strength, collectively leading to a skin fragility phenotype. Notably, Ehlers-Danlos patients with mutations in enzymes involved in the biosynthesis of DS display a similar phenotype, and recent studies indicate that DS is involved in growth factor binding and signaling. To determine the impact of the loss of DS-decorin in the dermis, we analyzed the glycosaminoglycan content of Dcn−/− and wild-type mouse skin. The total amount of chondroitin/dermatan sulfate (CS/DS) was increased in the Dcn−/− skin, but was overall less sulfated with a significant reduction in bisulfated ΔDiS2,X (X=4 or 6) disaccharide units, due to the reduced expression of uronyl 2-O sulfotransferase (Ust). With increasing age, sulfation declined; however, Dcn−/− CS/DS was constantly undersulfated vis-à-vis wild-type. Functionally, we found altered fibroblast growth factor (Fgf)-7 and -2 binding due to changes in the micro-heterogeneity of skin Dcn−/− CS/DS. To better delineate the role of decorin, we used a 3D Dcn−/− fibroblast cell culture model. We found that the CS/DS extracts of wild-type and Dcn−/− fibroblasts were similar to the skin sugars, and this correlated with the lack of uronyl 2-O sulfotransferase in the Dcn−/− fibroblasts. Moreover, Ffg7 binding to total CS/DS was attenuated in the Dcn−/− samples. Surprisingly, wild-type CS/DS significantly reduced the binding of Fgf7 to keratinocytes in concentration dependent manner unlike the Dcn−/− CS/DS that only affected the binding at higher concentrations. Although binding to cell-surfaces was quite similar at higher concentrations, keratinocyte proliferation was differentially affected. Higher concentration of

  18. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  19. Quantitating Cell-Cell Interaction Functions, with Applications to Glioblastoma Multiforme Cancer Cells

    PubMed Central

    Wang, Jun; Tham, Douglas; Wei, Wei; Shin, Young Shik; Ma, Chao; Ahmad, Habib; Shi, Qihui; Yu, Jenkan; Levine, Raphael D.; Heath, James R.

    2013-01-01

    We report on a method for quantitating the distance dependence of cell-cell interactions. We employ a microchip design that permits a multiplex, quantitative protein assay from statistical numbers of cell pairs, as a function of cell separation, with a 0.15 nanoliter volume microchamber. We interrogate interactions between pairs of model brain cancer cells by assaying for 6 functional proteins associated with PI3k signaling. At short incubation times, cells do not appear to influence each other, regardless of cell separation. For 6 hour incubation times, the cells exert an inhibiting influence on each other at short separations, and a predominately activating influence at large separation. Protein-specific cell-cell interaction functions are extracted, and by assuming pairwise additivity of those interactions, the functions are shown to correctly predict the results from 3-cell experiments carried out under the identical conditions. PMID:23130660

  20. Cell surface sialylation affects binding of enterovirus 71 to rhabdomyosarcoma and neuroblastoma cells

    PubMed Central

    2012-01-01

    Background Enterovirus 71 (EV71) is a major causative agent of hand-foot-and-mouth disease (HFMD), and infection of EV71 to central nerve system (CNS) may result in a high mortality in children less than 2 years old. Although there are two highly glycosylated membrane proteins, SCARB2 and PSGL-1, which have been identified as the cellular and functional receptors of EV71, the role of glycosylation in EV71 infection is still unclear. Results We demonstrated that the attachment of EV71 to RD and SK-N-SH cells was diminished after the removal of cell surface sialic acids by neuraminidase. Sialic acid specific lectins, Maackia amurensis (MAA) and Sambucus Nigra (SNA), could compete with EV71 and restrained the binding of EV71 significantly. Preincubation of RD cells with fetuin also reduced the binding of EV71. In addition, we found that SCARB2 was a sialylated glycoprotein and interaction between SCARB2 and EV71 was retarded after desialylation. Conclusions In this study, we demonstrated that cell surface sialic acids assist in the attachment of EV71 to host cells. Cell surface sialylation should be a key regulator that facilitates the binding and infection of EV71 to RD and SK-N-SH cells. PMID:22853823

  1. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings

    PubMed Central

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I.; Bonnema, Guusje; Angenent, Gerco C.; Immink, Richard G. H.; Groot, Steven P. C.

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  2. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings.

    PubMed

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I; Bonnema, Guusje; Angenent, Gerco C; Immink, Richard G H; Groot, Steven P C

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes.

  3. Associative memory cells: Formation, function and perspective

    PubMed Central

    Wang, Jin-Hui; Cui, Shan

    2017-01-01

    Associative learning and memory are common activities in life, and their cellular infrastructures constitute the basis of cognitive processes. Although neuronal plasticity emerges after memory formation, basic units and their working principles for the storage and retrieval of associated signals remain to be revealed. Current reports indicate that associative memory cells, through their mutual synapse innervations among the co-activated sensory cortices, are recruited to fulfill the integration, storage and retrieval of multiple associated signals, and serve associative thinking and logical reasoning. In this review, we aim to summarize associative memory cells in their formation, features and functional impacts.

  4. Cell growth and function on calcium phosphate reinforced chitosan scaffolds.

    PubMed

    Zhang, Yong; Zhang, Miqin

    2004-03-01

    Macroporous chitosan scaffolds reinforced by calcium phosphate powders such as hydroxyapatite (HA) or calcium phosphate invert glass were fabricated using a thermally induced phase separation technique. Human osteoblast-like MG63 cells were cultured on the composite scaffolds for up to 11 days, and the cell growth and function were analyzed. The cell growth is much faster on the chitosan/HA scaffolds incorporated with the glass (CHG) than on the chitosan/HA scaffold without the glass (CH). The total protein content of cells were quantified and increased over time on both composites (CH, CHG) but was significantly higher on CHG after 7 days of culture. The cells on CHG also expressed significantly higher amount of alkaline phosphatase at days 7 and 11 and osteocalcin at day 7 than those on CH. The results suggested that the addition of glass in chitosan/hydroxyapatite composite scaffolds might enhance the proliferation and osteoblastic phenotype expression of MG63 cells. However, the chitosan-matrix scaffolds did not show higher phenotype expression of MG63 cells, in comparison with the TCPS plate, probably due to the degradation of chitosan and release of acidic byproducts. Larger amount of soluble calcium phosphate invert glasses should be added into the scaffolds to prevent chitosan from fast degradation that may affect the differentiation of osteoblast cells.

  5. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  6. Impaired Function of Bone Marrow Stromal Cells in Systemic Mastocytosis

    PubMed Central

    Nemeth, K.; Wilson, T.M.; Ren, J.J.; Sabatino, M.; Stroncek, D.F.; Krepuska, M.; Bai, Y.; Robey, P.G.; Metcalfe, D.D.; Mezey, E.

    2015-01-01

    Patients with systemic mastocytosis (SM) have a wide variety of problems, including skeletal abnormalities. The disease results from a mutation of the stem cell receptor (c-kit) in mast cells and we wondered if the function of bone marrow stromal cells (BMSCs; also known as MSCs or mesenchymal stem cells) might be affected by the invasion of bone marrow by mutant mast cells. As expected, BMSCs from SM patients do not have a mutation in c-kit, but they proliferate poorly. In addition, while osteogenic differentiation of the BMSCs seems to be deficient, their adipogenic potential appears to be increased. Since the hematopoietic supportive abilities of BMSCs are also important, we also studied the engraftment in NSG mice of human CD34+ hematopoietic progenitors, after being co-cultured with BMSCs of healthy volunteers vs. BMSCs derived from patients with SM. BMSCs derived from the bone marrow of patients with SM could not support hematopoiesis to the extent that healthy BMSCs do. Finally, we performed an expression analysis and found significant differences between healthy and SM derived BMSCs in the expression of genes with a variety of functions, including the WNT signaling, ossification, and bone remodeling. We suggest that some of the symptoms associated with SM might be driven by epigenetic changes in BMSCs caused by dysfunctional mast cells in the bone marrow of the patients. PMID:26001169

  7. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  8. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  9. Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning.

    PubMed

    Ventre, Maurizio; Netti, Paolo A

    2016-06-22

    Mastering the interaction between cells and extracellular environment is a fundamental prerequisite in order to engineer functional biomaterial interfaces able to instruct cells with specific commands. Such advanced biomaterials might find relevant application in prosthesis design, tissue engineering, diagnostics and stem cell biology. Because of the highly complex, dynamic, and multifaceted context, a thorough understanding of the cell-material crosstalk has not been achieved yet; however, a variety of material features including biological cues, topography, and mechanical properties have been proved to impact the strength and the nature of the cell-material interaction, eventually affecting cell fate and functions. Although the nature of these three signals may appear very different, they are equated by their participation in the same material-cytoskeleton crosstalk pathway as they regulate cell adhesion events. In this work we present recent and relevant findings on the material-induced cell responses, with a particular emphasis on how the presentation of biochemical/biophysical signals modulates cell behavior. Finally, we summarize and discuss the literature data to draw out unifying elements concerning cell recognition of and reaction to signals displayed by material surfaces.

  10. Reovirus Cell Entry Requires Functional Microtubules

    PubMed Central

    Mainou, Bernardo A.; Zamora, Paula F.; Ashbrook, Alison W.; Dorset, Daniel C.; Kim, Kwang S.; Dermody, Terence S.

    2013-01-01

    ABSTRACT Mammalian reovirus binds to cell-surface glycans and junctional adhesion molecule A and enters cells by receptor-mediated endocytosis in a process dependent on β1 integrin. Within the endocytic compartment, reovirus undergoes stepwise disassembly, allowing release of the transcriptionally active viral core into the cytoplasm. To identify cellular mediators of reovirus infectivity, we screened a library of small-molecule inhibitors for the capacity to block virus-induced cytotoxicity. In this screen, reovirus-induced cell killing was dampened by several compounds known to impair microtubule dynamics. Microtubule inhibitors were assessed for blockade of various stages of the reovirus life cycle. While these drugs did not alter reovirus cell attachment or internalization, microtubule inhibitors diminished viral disassembly kinetics with a concomitant decrease in infectivity. Reovirus virions colocalize with microtubules and microtubule motor dynein 1 during cell entry, and depolymerization of microtubules results in intracellular aggregation of viral particles. These data indicate that functional microtubules are required for proper sorting of reovirus virions following internalization and point to a new drug target for pathogens that use the endocytic pathway to invade host cells. PMID:23820395

  11. Chemosensory Functions for Pulmonary Neuroendocrine Cells

    PubMed Central

    Gu, Xiaoling; Karp, Philip H.; Brody, Steven L.; Pierce, Richard A.; Welsh, Michael J.; Holtzman, Michael J.

    2014-01-01

    The mammalian airways are sensitive to inhaled stimuli, and airway diseases are characterized by hypersensitivity to volatile stimuli, such as perfumes, industrial solvents, and others. However, the identity and function of the cells in the airway that can sense volatile chemicals remain uncertain, particularly in humans. Here, we show that solitary pulmonary neuroendocrine cells (PNECs), which are morphologically distinct and physiologically undefined, might serve as chemosensory cells in human airways. This conclusion is based on our finding that some human PNECs expressed members of the olfactory receptor (OR) family in vivo and in primary cell culture, and are anatomically positioned in the airway epithelium to respond to inhaled volatile chemicals. Furthermore, apical exposure of primary-culture human airway epithelial cells to volatile chemicals decreased levels of serotonin in PNECs, and the led to the release of the neuropeptide calcitonin gene-related peptide (CGRP) to the basal medium. These data suggest that volatile stimulation of PNECs can lead to the secretion of factors that are capable of stimulating the corresponding receptors in the lung epithelium. We also found that the distribution of serotonin and neuropeptide receptors may change in chronic obstructive pulmonary disease, suggesting that increased PNEC-dependent chemoresponsiveness might contribute to the altered sensitivity to volatile stimuli in this disease. Together, these data indicate that human airway epithelia harbor specialized cells that respond to volatile chemical stimuli, and may help to explain clinical observations of odorant-induced airway reactions. PMID:24134460

  12. Rapid assessment of the toxicity of oil sands process-affected waters using fish cell lines.

    PubMed

    Sansom, Bryan; Vo, Nguyen T K; Kavanagh, Richard; Hanner, Robert; Mackinnon, Michael; Dixon, D George; Lee, Lucy E J

    2013-01-01

    Rapid and reliable toxicity assessment of oil sands process-affected waters (OSPW) is needed to support oil sands reclamation projects. Conventional toxicity tests using whole animals are relatively slow, costly, and often subjective, while at the same time requiring the sacrifice of test organisms as is the case with lethal dosage/concentration assays. A nonlethal alternative, using fish cell lines, has been developed for its potential use in supporting oil sands reclamation planning and to help predict the viability of aquatic reclamation models such as end-pit lakes. This study employed six fish cell lines (WF-2, GFSk-S1, RTL-W1, RTgill-W1, FHML, FHMT) in 24 h viability assays for rapid fluorometric assessment of cellular integrity and functionality. Forty-nine test water samples collected from the surface of oil sands developments in the Athabasca Oil Sands deposit, north of Fort McMurray, Alberta, Canada, were evaluated in blind. Small subsample volumes (8 ml) were mixed with 2 ml of 5× concentrated exposure media and used for direct cell exposures. All cell line responses in terms of viability as measured by Alamar blue assay, correlated well with the naphthenic acids (NA) content in the samples (R (2) between 0.4519 and 0.6171; p<0.0001) when data comparisons were performed after the bioassays. NA or total acid-extractable organics group has been shown to be responsible for most of the acute toxicity of OSPW and our results further corroborate this. The multifish cell line bioassay provides a strong degree of reproducibility among tested cell lines and good relative sensitivity of the cell line bioassay as compared to available in vivo data that could lead to cost effective, high-throughput screening assays.

  13. Age-related impairment of T cell-induced skeletal muscle precursor cell function

    PubMed Central

    Dumke, Breanna R.

    2011-01-01

    Sarcopenia is the age-associated loss of skeletal muscle mass and strength. Recent evidence suggests that an age-associated loss of muscle precursor cell (MPC) functionality contributes to sarcopenia. The objectives of the present study were to examine the influence of activated T cells on MPCs and determine whether an age-related defect in this signaling occurs. MPCs were collected from the gastrocnemius and plantaris of 3-mo-old (young) and 32-mo-old (old) animals. Splenic T cells were harvested using anti-CD3 Dynabead isolation. T cells were activated for 48 h with costimulation of 100 IU/ml interleukin-2 (IL-2) and 5 μg/ml of anti-CD28. Costimulation increased 5-bromo-2′-deoxyuridine incorporation of T cells from 13.4 ± 4.6% in control to 64.8 ± 6.0% in costimulated cells. Additionally, T cell cytokines increased proliferation on MPCs isolated from young muscle by 24.0 ± 5.7%, whereas there was no effect on MPCs isolated from aged muscle. T cell cytokines were also found to be a chemoattractant. T cells were able to promote migration of MPCs isolated from young muscle; however, MPCs isolated from aged muscle did not respond to the T cell-released chemokines. Conversely, whereas T cell-released cytokines did not affect myogenesis of MPCs isolated from young animals, there was a decrease in MPCs isolated from old animals. These data suggest that T cells may play a critical role in mediating MPC function. Furthermore, aging may alter T cell-induced MPC function. These findings have implications for developing strategies aimed at increasing MPC migration and proliferation leading to an improved regenerative capacity of aged skeletal muscle. PMID:21325640

  14. Self-conscious affects: their adaptive Functions and relationship to depressive mood.

    PubMed

    Uji, Masayo; Kitamura, Toshinori; Nagata, Toshiaki

    2011-01-01

    This study used a structural equation model to examine the influence of resilience on the four self-conscious affects (guilt-proneness, shame-proneness, externalization, and detachment) assessed in the Test of Self-Conscious Affect-3 (TOSCA-3) and their impact on depressive mood. Our subject population consisted of 447 Japanese university students. The first analysis explored which TOSCA-3 affects help an individual adapt to stressful situations. The concept of "resilience" was used as an indicator to evaluate the adaptive functions. We based this on the assumption that an individual with higher resilience is able to use more adaptive affects. In the second analysis, taking the above relationship between resilience and the self-conscious affects into consideration, we examined how those variables as well as a negative life event are related to depressive mood. To assess the resilience level and depressive mood, we adopted the Resilience Scale (RS) and Self-rating Depressive Scale (SDS), respectively. The first analysis showed that the more resilient an individual was, the more prone they were to "detachment" and the less "shame" they experienced. The level of resilience did not have a significant effect on "guilt" or "externalization." In the second analysis we found that "resilience" had a direct inverse effect on depressive mood that was also mediated by "shame" and "detachment." We discuss how the particular self-conscious affects comprising each adaptive function are related to depressive mood.

  15. Rodlet cells in Murray cod, Maccullochella peelii peelii (Mitchell), affected with chronic ulcerative dermatopathy.

    PubMed

    Schultz, A G; Jones, P L; Toop, T

    2014-03-01

    We have previously identified an unknown cell type in the gills of Murray cod affected with chronic ulcerative dermatopathy (CUD), a condition that causes severe erosion of epidermis surrounding cephalic and lateral line sensory canals. The condition arises in aquaculture facilities that utilize groundwater, with the cause of the condition suggested to be an unknown contaminant(s). Light and transmission electron microscopy were used to characterize and quantify the unknown cells in CUD-affected Murray cod. The cells were identified as rodlet cells and were characterized by their oval or round shape, basally located nucleus, thick fibrillar capsule surrounding the cell, and multiple rodlet sacs containing a central electron-dense core within the cell. Rodlet cells were present in the gills, kidney and intestine of non-CUD-affected and CUD-affected Murray cod; however, differences in the numbers were observed between the groups of fish. A significantly greater number of rodlet cells were observed in the gills and collecting ducts of CUD-affected fish. This is the first report of rodlet cells in Murray cod, and we suggest that the increased rodlet cell numbers in CUD-affected Murray cod may be in response to unknown water contaminant(s) present in the groundwater that give rise to CUD.

  16. Aflatoxins of type B and G affect porcine dendritic cell maturation in vitro.

    PubMed

    Mehrzad, Jalil; Devriendt, Bert; Baert, Kim; Cox, Eric

    2015-01-01

    The toxic effects of highly carcinogenic mycotoxins, especially aflatoxins (AF), on key antigen-presenting cells, such as dendritic cells (DC), are largely unknown. To elucidate the effect of AF on DC function, porcine monocyte-derived DC (MoDC) were treated with a mixture of several AF (i.e., AFB1, AFB2, AFG1, and AFG2) and the phagocytic capacity, the membrane expression level of several DC activation markers, the T-cell proliferation-inducing capacity, and the cytokine secretion pattern were assessed. As compared to untreated MoDC, AF significantly up-regulated the expression of the co-stimulatory molecules CD25 and CD80/86. However, the phagocytic activity of MoDC was not affected by AF treatment. While the cytokine secretion pattern of AF-treated MoDC was similar to control MoDC, the T-cell proliferation-inducing capacity of MoDC was increased upon aflatoxin treatment. The results indicate that a mixture of naturally occurring AF enhances the antigen-presenting capacity of DC, which could explain the observed immunotoxicity of AF by breaking down tolerance and further emphasizes the need to reduce the admissible level of AF in agricultural commodities.

  17. Handgrip Strength, Positive Affect, and Perceived Health Are Prospectively Associated with Fewer Functional Limitations among Centenarians

    ERIC Educational Resources Information Center

    Franke, Warren D.; Margrett, Jennifer A.; Heinz, Melinda; Martin, Peter

    2012-01-01

    This study assessed the association between perceived health, fatigue, positive and negative affect, handgrip strength, objectively measured physical activity, body mass index, and self-reported functional limitations, assessed 6 months later, among 11 centenarians (age = 102 plus or minus 1). Activities of daily living, assessed 6 months prior to…

  18. Weight Reduction in Athletes May Adversely Affect the Phagocytic Function of Monocytes.

    ERIC Educational Resources Information Center

    Kono, Ichiro; And Others

    1988-01-01

    Study of the monocyte phagocytic function in nine competitive athletes before and after a two-week weight reduction (through calorie restriction) program revealed that their pre-program phagocytic activity was higher than in sedentary controls but decreased significantly after the program. This suggests calorie restriction may affect the human…

  19. Metacognitive Awareness of Facial Affect in Higher-Functioning Children and Adolescents with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    McMahon, Camilla M.; Henderson, Heather A.; Newell, Lisa; Jaime, Mark; Mundy, Peter

    2016-01-01

    Higher-functioning participants with and without autism spectrum disorder (ASD) viewed a series of face stimuli, made decisions regarding the affect of each face, and indicated their confidence in each decision. Confidence significantly predicted accuracy across all participants, but this relation was stronger for participants with typical…

  20. The effect of affective bibliotherapy on clients' functioning in group therapy.

    PubMed

    Shechtman, Zipora; Nir-Shfrir, Rivka

    2008-01-01

    Abstract The effect of affective group bibliotherapy (GB) was compared to affective group therapy (GT) on patients' functioning in therapy and their session impression. Three small groups totaling twenty-five in-patients in a hospital in Israel participated in the study. Clients concurrently participated in both group types, undergoing three sessions in each condition. In-therapy behaviors were assessed through the Client Behavior System (CBS; Hill & O'Brien, 1999). Results indicated that in the GB condition compared to the GT condition, clients showed less resistance, used simple responses less frequently, and expressed greater affective exploration. The Session Evaluation Questionnaire (SEQ; Stiles et al., 1994) was used to measure clients' impressions of the sessions. Results indicated that patients evaluated the two treatment conditions equally. Overall, the results support earlier findings, suggesting that affective bibliotherapy can be an effective method of treatment.

  1. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  2. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  3. CELL STATE AS AFFECTING SUSCEPTIBILITY TO A VIRUS

    PubMed Central

    Friedewald, William F.

    1942-01-01

    Rabbit skin can be rendered abnormally susceptible to papilloma virus infection by preliminary treatments with a variety of agents. The most effective agents thus far found are 0.3 per cent methylcholanthrene in benzene and a mixture in equal parts of turpentine and acetone, applied four or five times at 2 day intervals. When virus is inoculated into skin altered by these agents, either intradermally or by inunction after scarification, papillomas appear earlier and in greater number than on normal skin, and much higher dilutions give rise to growths. The method provides a means of detecting amounts of virus which cause no papillomas upon inoculation into normal skin. Papilloma virus material which is rubbed into scarified normal or hyperplastic skin is largely lost in the scabbing which ensues, and nearly all of it fails to reach susceptible cells. The preparatory agents which increase the effectiveness of the virus bring about marked epidermal hyperplasia, and the hyperplastic tissue regenerates with greater rapidity when scarified. The agents evidently act in large part by providing young epidermal cells in quantity to the virus, as also by inducing a richer vascularization than ordinary in support of the papillomatous proliferation. It is possible that they also act by providing especially susceptible cells. The implications of the findings are discussed. PMID:19871177

  4. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae.

    PubMed

    Narayanan, Aswathy; Pullepu, Dileep; Reddy, Praveen Kumar; Uddin, Wasim; Kabir, M Anaul

    2016-07-01

    The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell's defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors.

  5. Effect of Hypergravity on Endothelial Cell Function and Gene Expression

    NASA Astrophysics Data System (ADS)

    Morbidelli, Lucia; Marziliano, Nicola; Basile, Venere; Pezzatini, Silvia; Romano, Giovanni; Conti, Antonio; Monici, Monica

    2009-01-01

    It is well known that endothelial cells (ECs), which play a major role in cardiovascular system functioning, are very sensitive to mechanical stimuli. It has been demonstrated that changes in inertial conditions (i.e. microgravity and hypergravity) can affect both phenotypic and genotypic expression in ECs. In this report we describe the effects of hypergravity on ECs isolated from bovine aorta (BAECs). ECs were repeatedly exposed to discontinuous hypergravity conditions (5 × 10 min at 10× g with 10 min at 1× g between sets), simulated in a hyperfuge. Then, cell morphology and metabolism were analyzed by autofluorescence techniques. The phenotypic expression of cytoskeleton constituents ( β-actin, vimentin, tubulin), adhesion and survival signals (integrins), mediators of inflammation and angiogenesis was evaluated by immunocytofluorescence. Quantitative PCR (Q-PCR) with Low Density Arrays (LDAs) was used to evaluate modifications in gene expression. After hypergravity exposure, no significant changes were observed in cell morphology and energy metabolism. Cells remained adherent to the substratum, but integrin distribution was modified. Accordingly, the cytoskeletal network reorganized, documenting cell activation. There was a reduction in expression of genes controlling vasoconstriction and inflammation. Proapoptotic signals were downregulated. On the whole, the results documented that hypergravity exposure maintained EC survival and function by activation of adaptive mechanisms.

  6. The Caenorhabditis Elegans Unc-31 Gene Affects Multiple Nervous System-Controlled Functions

    PubMed Central

    Avery, L.; Bargmann, C. I.; Horvitz, H. R.

    1993-01-01

    We have devised a method for selecting Caenorhabditis elegans mutants that execute feeding motions in the absence of food. One mutation isolated in this way is an allele of the gene unc-31, first discovered by S. Brenner in 1974, because of its effects on locomotion. We find that strong unc-31 mutations cause defects in four functions controlled by the nervous system. Mutant worms are lethargic, feed constitutively, are defective in egg-laying and produce dauer larvae that fail to recover. We discuss two extreme models to explain this pleiotropy: either unc-31 affects one or a few neurons that coordinately control several different functions, or it affects many neurons that independently control different functions. PMID:8325482

  7. Impact of Aging on Dendritic Cell Functions in humans

    PubMed Central

    Agrawal, Anshu; Gupta, Sudhir

    2010-01-01

    Aging is a paradox of reduced immunity and chronic inflammation. Dendritic cells are central orchestrators of the immune response with a key role in the generation of immunity and maintenance of tolerance. The functions of DCs are compromised with age. There is no major effect on the numbers and phenotype of DC subsets in aged subjects; nevertheless, their capacity to phagocytose antigens and migrate is impaired with age. There is aberrant cytokine secretion by various DC subsets with CDCs secreting increased basal level of pro-inflammatory cytokines but the response on stimulation to foreign antigens is decreased. In contrast, the response to self antigens is increased suggesting erosion of peripheral self tolerance. PDC subset also secretes reduced IFN-alpha in response to viruses. The capacity of DCs to prime T cell responses is also affected. Aging thus has a profound affect on DC functions. Present review summarizes the effect of advancing age on DC functions in humans in the context of both immunity and tolerance. PMID:20619360

  8. Factors affecting longitudinal functional decline and survival in amyotrophic lateral sclerosis patients.

    PubMed

    Watanabe, Hazuki; Atsuta, Naoki; Nakamura, Ryoichi; Hirakawa, Akihiro; Watanabe, Hirohisa; Ito, Mizuki; Senda, Jo; Katsuno, Masahisa; Izumi, Yuishin; Morita, Mitsuya; Tomiyama, Hiroyuki; Taniguchi, Akira; Aiba, Ikuko; Abe, Koji; Mizoguchi, Kouichi; Oda, Masaya; Kano, Osamu; Okamoto, Koichi; Kuwabara, Satoshi; Hasegawa, Kazuko; Imai, Takashi; Aoki, Masashi; Tsuji, Shoji; Nakano, Imaharu; Kaji, Ryuji; Sobue, Gen

    2015-06-01

    Our objective was to elucidate the clinical factors affecting functional decline and survival in Japanese amyotrophic lateral sclerosis (ALS) patients. We constructed a multicenter prospective ALS cohort that included 451 sporadic ALS patients in the analysis. We longitudinally utilized the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) as the functional scale, and determined the timing of introduction of a tracheostomy for positive-pressure ventilation and death. A joint modelling approach was employed to identify prognostic factors for functional decline and survival. Age at onset was a common prognostic factor for both functional decline and survival (p < 0.001, p < 0.001, respectively). Female gender (p = 0.019) and initial symptoms, including upper limb weakness (p = 0.010), lower limb weakness (p = 0.008) or bulbar symptoms (p = 0.005), were related to early functional decline, whereas neck weakness as an initial symptom (p = 0.018), non-use of riluzole (p = 0.030) and proximal dominant muscle weakness in the upper extremities (p = 0.01) were related to a shorter survival time. A decline in the ALSFRS-R score was correlated with a shortened survival time (p < 0.001). In conclusion, the factors affecting functional decline and survival in ALS were common in part but different to some extent. This difference has not been previously well recognized but is informative in clinical practice and for conducting trials.

  9. Age affects gene expression in mouse spermatogonial stem/progenitor cells.

    PubMed

    Kokkinaki, Maria; Lee, Tin-Lap; He, Zuping; Jiang, Jiji; Golestaneh, Nady; Hofmann, Marie-Claude; Chan, Wai-Yee; Dym, Martin

    2010-06-01

    Spermatogenesis in man starts with spermatogonial stem cells (SSCs), and leads to the production of sperm in approximately 64 days, common to old and young men. Sperm from elderly men are functional and able to fertilize eggs and produce offspring, even though daily sperm production is more than 50% lower and damage to sperm DNA is significantly higher in older men than in those who are younger. Our hypothesis is that the SSC/spermatogonial progenitors themselves age. To test this hypothesis, we studied the gene expression profile of mouse SSC/progenitor cells at several ages using microarrays. After sequential enzyme dispersion, we purified the SSC/progenitors with immunomagnetic cell sorting using an antibody to GFRA1, a known SSC/progenitor cell marker. RNA was isolated and used for the in vitro synthesis of amplified and labeled cRNAs that were hybridized to the Affymetrix mouse genome microarrays. The experiments were repeated twice with different cell preparations, and statistically significant results are presented. Quantitative RT-PCR analysis was used to confirm the microarray results. Comparison of four age groups (6 days, 21 days, 60 days, and 8 months old) showed a number of genes that were expressed specifically in the older mice. Two of them (i.e. Icam1 and Selp) have also been shown to mark aging hematopoietic stem cells. On the other hand, the expression levels of the genes encoding the SSC markers Gfra1 and Plzf did not seem to be significantly altered by age, indicating that age affects only certain SSC/progenitor properties.

  10. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  11. Fusion and metabolism of plant cells as affected by microgravity.

    PubMed

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  12. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  13. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  14. Cell phone usage and erectile function

    PubMed Central

    Patzak, Johanna; Fischereder, Katja; Pummer, Karl; Shamloul, Rany

    2013-01-01

    Introduction The objective of this pilot study was to report our experience concerning the effects of cell phone usage on erectile function (EF) in men. Material and Methods We recruited 20 consecutive men complaining of erectile dysfunction (ED) for at least six months (Group A), and another group of 10 healthy men with no complaints of ED (Group B). Anamnesis, basic laboratory investigations, and clinical examinations were performed. All men completed the German version of the Sexual Health Inventory for Men (SHIM) for evaluation of the International Index of Erectile Function (IIEF), as well as another questionnaire designed by our clinicians that assessed cell phone usage habits. Results There was no significant difference between both groups regarding age, weight, height, and total testosterone (Table 1). The SHIM scores of Group A were significantly lower than that of Group B, 11.2 ±5 and 24.2 ±2.3, respectively. Total time spent talking on the cell phone per week was not significantly higher in Group A over B, 17.6 ±11.1 vs. 12.5 ±7 hours. Men with ED were found to carry their ‘switched on’ cell phones for a significantly longer time than those without ED, 4.4 ±3.6 vs. 1.8 ±1 hours per day. Conclusions We found a potential correlation with cell phone usage and a negative impact on EF. Further large–scale studies confirming our initial data and exploring the mechanisms involved in this phenomenon are recommended. PMID:24578997

  15. Hypothyroidism affects differentially the cell size of epithelial cells among oviductal regions of rabbits.

    PubMed

    Anaya-Hernández, A; Rodríguez-Castelán, J; Nicolás, L; Martínez-Gómez, M; Jiménez-Estrada, I; Castelán, F; Cuevas, E

    2015-02-01

    Oviductal regions show particular histological characteristics and functions. Tubal pathologies and hypothyroidism are related to primary and secondary infertility. The impact of hypothyroidism on the histological characteristics of oviductal regions has been scarcely studied. Our aim was to analyse the histological characteristics of oviductal regions in control and hypothyroid rabbits. Hypothyroidism was induced by oral administration of methimazole (MMI) for 30 days. For both groups, serum concentrations of thyroid and gonadal hormones were determined. Sections of oviductal regions were stained with the Masson's trichrome technique to analyse both epithelial and smooth muscle layers. The percentage of proliferative epithelial cells (anti-Ki67) in diverse oviductal regions was also quantified. Data were compared with Student t-test, Mann-Whitney U-test, or Fischer's test. In comparison with the control group, the hypothyroid group showed: (i) a low concentration of T3 and T4, but a high level of TSH; (ii) similar values of serum estradiol, progesterone and testosterone; (iii) a large size of ciliated cells in the ampulla (AMP), isthmus (IST) and utero-tubal junction (UTJ); (iv) a large size of secretory cells in the IST region; (v) a low percentage of proliferative secretory cells in the fimbria-infundibulum (FIM-INF) region; and (vi) a similar thickness of the smooth muscle layer and the cross-sectional area in the AMP and IST regions. Modifications in the size of the oviductal epithelium in hypothyroid rabbits could be related to changes in the cell metabolism that may impact on the reproductive functions achieved by oviduct.

  16. Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition1[W

    PubMed Central

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  17. The novel herbicide oxaziclomefone inhibits cell expansion in maize cell cultures without affecting turgor pressure or wall acidification.

    PubMed

    O'Looney, Nichola; Fry, Stephen C

    2005-11-01

    Oxaziclomefone [OAC; IUPAC name 3-(1-(3,5-dichlorophenyl)-1-methylethyl)-3,4-dihydro-6-methyl-5-phenyl-2H-1,3-oxazin-4-one] is a new herbicide that inhibits cell expansion in grass roots. Its effects on cell cultures and mode of action were unknown. In principle, cell expansion could be inhibited by a decrease in either turgor pressure or wall extensibility. Cell expansion was estimated as settled cell volume; cell division was estimated by cell counting. Membrane permeability to water was measured by a novel method involving simultaneous assay of the efflux of (3)H(2)O and [(14)C]mannitol from a 'bed' of cultured cells. Osmotic potential was measured by depression of freezing point. OAC inhibited cell expansion in cultures of maize (Zea mays), spinach (Spinacia oleracea) and rose (Rosa sp.), with an ID(50) of 5, 30 and 250 nm, respectively. In maize cultures, OAC did not affect cell division for the first 40 h. It did not affect the osmotic potential of cell sap or culture medium, nor did it impede water transport across cell membranes. It did not affect cells' ability to acidify the apoplast (medium), which may be necessary for 'acid growth'. As OAC did not diminish turgor pressure, its ability to inhibit cell expansion must depend on changes in wall extensibility. It could be a valuable tool for studies on cell expansion.

  18. Affective and physiological sexual response patterns: the effects of instructions on sexually functional and dysfunctional men.

    PubMed

    Heiman, J R; Rowland, D L

    1983-01-01

    To more clearly characterize the patterns of cognitive-affective and physiological responses concomitant with male sexual dysfunction, the present study compared 14 sexually dysfunctional and 16 sexually functional men. All individuals listened to two sexually explicit tapes and engaged in a self-generated fantasy, while genital, heart rate and scaled cognitive affective responses were recorded. Two types of instructions, a performance demand set and a non-demand sensate focus set, preceded the erotic tapes in counterbalanced order. As predicted, dysfunctional men showed less genital tumescence to tapes preceded by the demand than the non-demand instructions. Contrary to expectation, functional men showed greater penile tumescence to the tapes preceded by demand instructions. Self-reported sexual arousal did not follow the penile tumescence pattern but instead indicated that the dysfunctional sample was significantly less subjectively aroused to the tapes and fantasy. There were other significant differences between the groups. Dysfunctional men showed greater general psychological distress, as measured by the SCL-90, including elevated somaticism, anxiety and depression scores. During the experimental session, dysfunctional men also evidenced greater awareness of a variety of physiological responses, as well as more negative and fewer positive cognitive-affective states. These data are discussed in terms of the interaction of affective and physiological responses, differences in contextual meanings of instructional sets given the presence of a dysfunction, and theoretical and clinical conceptualizations of male sexual functioning.

  19. Electrophysiological assessment of retinal ganglion cell function

    PubMed Central

    Porciatti, Vittorio

    2015-01-01

    The function of retinal ganglion cells (RGCs) can be non-invasively assessed in experimental and genetic models of glaucoma by means of variants of the ERG technique that emphasize the activity of inner retina neurons. The best understood technique is the Pattern Electroretinogram (PERG) in response to contrast-reversing gratings or checkerboards, which selectively depends on the presence of functional RGCs. In glaucoma models, the PERG can be altered before histological loss of RGCs; PERG alterations may be either reversed with moderate IOP lowering or exacerbated with moderate IOP elevation. Under particular luminance-stimulus conditions, the Flash-ERG displays components that may reflect electrical activity originating in the proximal retina and be altered in some experimental glaucoma models (positive Scotopic Threshold response, pSTR; negative Scotopic Threshold Response, nSTR; Photopic Negative Response, PhNR; Oscillatory Potentials, OPs; multifocal ERG, mfERG). It is not yet known which of these components is most sensitive to glaucomatous damage. Electrophysiological assessment of RGC function appears to be a necessary outcome measure in experimental glaucoma models, which complements structural assessment and may even predict it. Neuroprotective strategies could be tested based on enhancement of baseline electrophysiological function that results in improved RGC survival. The use of electrophysiology in glaucoma models may be facilitated by specifically designed instruments that allow high throughput, robust assessment of electrophysiological function. PMID:25998495

  20. Longer term improvement in neurocognitive functioning and affective distress among methamphetamine users who achieve stable abstinence.

    PubMed

    Iudicello, Jennifer E; Woods, Steven P; Vigil, Ofilio; Scott, J Cobb; Cherner, Mariana; Heaton, Robert K; Atkinson, J Hampton; Grant, Igor

    2010-08-01

    Chronic use of methamphetamine (MA) is associated with neuropsychological dysfunction and affective distress. Some normalization of function has been reported after abstinence, but little in the way of data is available on the possible added benefits of long-term sobriety. To address this, we performed detailed neuropsychological and affective evaluations in 83 MA-dependent individuals at a baseline visit and following an average one-year interval period. Among the 83 MA-dependent participants, 25 remained abstinent, and 58 used MA at least once during the interval period. A total of 38 non-MA-addicted, demographically matched healthy comparison (i.e., HC) participants were also examined. At baseline, both MA-dependent participants who were able to maintain abstinence and those who were not performed significantly worse than the healthy comparison subjects on global neuropsychological functioning and were significantly more distressed. At the one-year follow-up, both the long-term abstainers and healthy comparison groups showed comparable global neuropsychological performance and affective distress levels, whereas the MA-dependent group who continued to use MA were worse than the comparison participants in terms of global neuropsychological functioning and affective distress. An interaction was observed between neuropsychological impairment at baseline, MA abstinence, and cognitive improvement, with abstinent MA-dependent participants who were neuropsychologically impaired at baseline demonstrating significantly and disproportionately greater improvement in processing speed and slightly greater improvement in motor abilities than the other participants. These results suggest partial recovery of neuropsychological functioning and improvement in affective distress upon sustained abstinence from MA that may extend beyond a year or more.

  1. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  2. Functional inactivation of Rb sensitizes cancer cells to TSC2 inactivation induced cell death.

    PubMed

    Danos, Arpad M; Liao, Yang; Li, Xuan; Du, Wei

    2013-01-01

    We showed previously that inactivation of TSC2 induces death in cancer cells lacking the Retinoblastoma (Rb) tumor suppressor under stress conditions, suggesting that inactivation of TSC2 can potentially be used as an approach to specifically kill cancers that have lost WT Rb. As Rb is often inactivated in cancers by overexpression of cyclin D1, loss of p16(ink4a) cdk inhibitor, or expression of viral oncoproteins, it will be interesting to determine if such functional inactivation of Rb would similarly sensitize cancer cells to TSC2 inactivation induced cell death. In addition, many cancers lack functional Pten, resulting in increased PI3K/Akt signaling that has been shown to modulate E2F-induced cell death. Therefore it will be interesting to test whether loss of Pten will affect TSC2 inactivation induced killing of Rb mutant cancer cells. Here, we show that overexpression of Cyclin D1 or the viral oncogene E1a sensitizes cancer cells to TSC2 knockdown induced cell death and growth inhibition. On the other hand, knockdown of p16(ink4a) sensitizes cancer cells to TSC2 knockdown induced cell death in a manner that is likely dependant on serum induction of Cyclin D1 to inactivate the Rb function. Additionally, we demonstrate that loss of Pten does not interfere with TSC2 knockdown induced cell death in Rb mutant cancer cells. Together, these results suggest that TSC2 is potentially a useful target for a large spectrum of cancer types with an inactivated Rb pathway.

  3. An investigation on pharmacy functions and services affecting satisfaction of patients with prescriptions in community pharmacies.

    PubMed

    Sakurai, Hidehiko; Nakajima, Fumio; Tada, Yuichirou; Yoshikawa, Emi; Iwahashi, Yoshiki; Fujita, Kenji; Hayase, Yukitoshi

    2009-05-01

    Various functions expected by patient expects are needed with progress in the system for separation of dispensing and prescribing functions. In this investigation, the relationship between patient satisfaction and pharmacy function were analyzed quantitatively. A questionnaire survey was conducted in 178 community pharmacies. Questions on pharmacy functions and services totaled 87 items concerning information service, amenities, safety, personnel training, etc. The questionnaires for patients had five-grade scales and composed 11 items (observed variables). Based on the results, "the percentage of satisfied patients" was determined. Multivariate analysis was performed to investigate the relationship between patient satisfaction and pharmacy functions or services provided, to confirm patient's evaluation of the pharmacy, and how factors affected comprehensive satisfaction. In correlation analysis, "the number of pharmacists" and "comprehensive satisfaction" had a negative correlation. Other interesting results were obtained. As a results of factor analysis, three latent factors were obtained: the "human factor," "patients' convenience," and "environmental factor," Multiple regression analysis showed that the "human factor" affected "comprehensive satisfaction" the most. Various pharmacy functions and services influence patient satisfaction, and improvement in their quality increases patient satisfaction. This will result in the practice of patient-centered medicine.

  4. Functions and sources of perceived social support among children affected by HIV/AIDS in China.

    PubMed

    Zhao, Guoxiang; Li, Xiaoming; Fang, Xiaoyi; Zhao, Junfeng; Hong, Yan; Lin, Xiuyun; Stanton, Bonita

    2011-06-01

    While the relationship between perceived social support (PSS) and psychosocial well-being has been well documented in the global literature, existing studies also suggest the existence of multiple domains in definition and measurement of PSS. The current study, utilizing data from 1299 rural children affected by HIV/AIDS in central China, examines the relative importance of PSS functional measures (informational/emotional, material/tangible, affectionate, and social interaction) and PSS structural measures (family/relatives, teachers, friends, and significant others) in predicting psychosocial outcomes including internalizing problems, externalizing problems, and educational resilience. Both functional and structural measures of PSS provided reliable measures of related but unique aspects of PSS. The findings of the current study confirmed the previous results that PSS is highly correlated with children's psychosocial well-being and such correlations vary by functions and sources of the PSS as well as different psychosocial outcomes. The findings in the current study suggested the roles of specific social support functions or resources may need to be assessed in relation to specific psychosocial outcome and the context of children's lives. The strong association between PSS and psychosocial outcomes underscores the importance of adequate social support to alleviate stressful life events and improve psychosocial well-being of children affected by HIV/AIDS. Meanwhile, the study findings call for gender and developmentally appropriate and situation-specific social support for children and families affected by HIV/AIDS.

  5. Functional connectivity in the resting brain as biological correlate of the Affective Neuroscience Personality Scales.

    PubMed

    Deris, Nadja; Montag, Christian; Reuter, Martin; Weber, Bernd; Markett, Sebastian

    2017-02-15

    According to Jaak Panksepp's Affective Neuroscience Theory and the derived self-report measure, the Affective Neuroscience Personality Scales (ANPS), differences in the responsiveness of primary emotional systems form the basis of human personality. In order to investigate neuronal correlates of personality, the underlying neuronal circuits of the primary emotional systems were analyzed in the present fMRI-study by associating the ANPS to functional connectivity in the resting brain. N=120 healthy participants were invited for the present study. The results were reinvestigated in an independent, smaller sample of N=52 participants. A seed-based whole brain approach was conducted with seed-regions bilaterally in the basolateral and superficial amygdalae. The selection of seed-regions was based on meta-analytic data on affective processing and the Juelich histological atlas. Multiple regression analyses on the functional connectivity maps revealed associations with the SADNESS-scale in both samples. Functional resting-state connectivity between the left basolateral amygdala and a cluster in the postcentral gyrus, and between the right basolateral amygdala and clusters in the superior parietal lobe and subgyral in the parietal lobe was associated with SADNESS. No other ANPS-scale revealed replicable results. The present findings give first insights into the neuronal basis of the SADNESS-scale of the ANPS and support the idea of underlying neuronal circuits. In combination with previous research on genetic associations of the ANPS functional resting-state connectivity is discussed as a possible endophenotype of personality.

  6. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development.

    PubMed

    Tateya, Tomoko; Imayoshi, Itaru; Tateya, Ichiro; Ito, Juichi; Kageyama, Ryoichiro

    2011-04-15

    Notch-mediated lateral inhibition has been reported to regulate auditory hair cell and supporting cell development from common precursors. While the Notch effector genes Hes1, Hes5 and Hey1 are expressed in the developing cochlea, inactivation of either of them causes only mild abnormality, suggesting their functional redundancy. To explore the roles of Hes/Hey genes in cochlear development, we examined compound heterozygous or homozygous mutant mice that lacked Hes1, Hes5 and Hey1 alleles. We found that a reduction in Hes/Hey gene dosage led to graded increase of hair cell formation. However, if at least one allele of Hes1, Hes5 or Hey1 was intact, excessive hair cells were accompanied by overproduction of supporting cells, suggesting that the hair cell increase does not occur at the expense of supporting cells, and that each Hes/Hey gene functions to induce supporting cells. By contrast, when all alleles of Hes1, Hes5 and Hey1 were inactivated, the number of hair cells increased more drastically, whereas that of supporting cells was unchanged compared with control, suggesting that supporting cell formation was balanced by their overproduction and fate conversion into hair cells. The increase of the cell numbers seemed to occur after the prosensory domain formation in the mutants because the proliferation state and the size of the prosensory domain were not affected. Thus, Hes1, Hes5 and Hey1 cooperatively inhibit hair cell formation, and one allele of Hes1, Hes5 or Hey1 is sufficient for supporting cell production probably by lateral inhibition in the sensory epithelium. Strikingly, Hes/Hey mutations lead to disorganized cell alignment and polarity and to hearing loss despite hair cell overproduction. These results suggest that Hes/Hey gene dosage is essential not only for generation of appropriate numbers of hair cells and supporting cells by controlling cell proliferation and lateral inhibition but also for the hearing ability by regulating the cell alignment

  7. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    SciTech Connect

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  8. Social-adaptive and psychological functioning of patients affected by Fabry disease.

    PubMed

    Laney, Dawn Alyssia; Gruskin, Daniel J; Fernhoff, Paul M; Cubells, Joseph F; Ousley, Opal Y; Hipp, Heather; Mehta, Ami J

    2010-12-01

    Fabry disease (FD) is an X-linked lysosomal storage disorder caused by the deficiency of alpha-galactosidase A. In addition to the debilitating physical symptoms of FD, there are also under-recognized and poorly characterized psychiatric features. As a first step toward characterizing psychiatric features of FD, we administered the Achenbach adult self report questionnaire to 30 FD patients and the Achenbach adult behavior checklist questionnaire to 28 partners/parents/friends of FD patients. Data from at least one of the questionnaires were available on 33 subjects. Analysis focused on social-adaptive functioning in various aspects of daily life and on criteria related to the Diagnostic and statistical manual of mental disorders IV (DSM-IV). Adaptive functioning scale values, which primarily measure social and relationship functioning and occupational success, showed that eight FD patients (six female and two male) had mean adaptive functioning deficits as compared to population norms. Greater rates of depression (P < 0.01), anxiety (P = 0.05), depression and anxiety (P = 0.03), antisocial personality (P < 0.001), attention-deficit/hyperactivity (AD/H; P < 0.01), hyperactivity-impulsivity (P < 0.01), and aggressive behavior (P = 0.03) were associated with poorer adaptive functioning. Decreased social-adaptive functioning in this study was not statistically significantly associated to disease severity, pain, or level of vitality. This study shows for the first time that FD patients, particularly women, are affected by decreased social-adaptive functioning. Comprehensive treatment plans for FD should consider assessments and interventions to evaluate and improve social, occupational, and psychological functioning. Attention to the behavioral aspects of FD could lead to improved treatment outcome and improved quality of life. Individuals affected by Fabry disease exhibited social-adaptive functioning deficits that were significantly correlated with anxiety

  9. Clinical and cognitive factors affecting psychosocial functioning in remitted patients with bipolar disorder.

    PubMed

    Konstantakopoulos, G; Ioannidi, N; Typaldou, M; Sakkas, D; Oulis, P

    2016-01-01

    Impaired interpersonal, social, and occupational functioning is very often observed in patients with bipolar disorder, not only at the acute stages of the illness but in remission as well. This finding raises the question of multiple factors that might affect psychosocial functioning in bipolar patients, such as residual subsyndromal symptoms and neuropsychological deficits. Social cognition impairment, especially impaired Theory of Mind (ToM), might also play an important role in bipolar patients' every-day functioning, similarly to what was found in patients with schizophrenia. The present study aimed to investigate the potential effect of clinical and cognitive factors on the psychosocial functioning of patients with bipolar disorder during remission, assessing ToM along with a broad range of basic cognitive functions. Forty-nine patients with bipolar disorder type I in remission and 53 healthy participants were assessed in general intelligence, working memory, attention, speed processing, verbal learning and memory, and executive functions using a comprehensive battery of neuropsychological tests. The Faux Pas Recognition Test was used to assess ToM. The two groups were matched for gender, age and education level. The Hamilton Rating Scale for Depression (HDRS), the Young Mania Rating Scale (YMRS), and the Brief Psychiatric Rating Scale (BPRS) were also administered to the patients. Every-day functioning was assessed with the Global Assessment of Functioning (GAF). In order to examine the contribution of many factors in psychosocial functioning, we used hierarchical multiple regression analysis. Bipolar patients presented significant impairment compared to healthy participants in all the basic cognitive functions tested with the exception of verbal memory. Moreover, patients had significant poorer performance than healthy controls in overall psyand cognitive ToM but not in affective ToM as measured by Faux Pas. Psychosocial functioning in patient group was

  10. Ionizing radiation affects human MART-1 melanoma antigen processing and presentation by dendritic cells.

    PubMed

    Liao, Yu-Pei; Wang, Chun-Chieh; Butterfield, Lisa H; Economou, James S; Ribas, Antoni; Meng, Wilson S; Iwamoto, Keisuke S; McBride, William H

    2004-08-15

    Radiation is generally considered to be an immunosuppressive agent that acts by killing radiosensitive lymphocytes. In this study, we demonstrate the noncytotoxic effects of ionizing radiation on MHC class I Ag presentation by bone marrow-derived dendritic cells (DCs) that have divergent consequences depending upon whether peptides are endogenously processed and loaded onto MHC class I molecules or are added exogenously. The endogenous pathway was examined using C57BL/6 murine DCs transduced with adenovirus to express the human melanoma/melanocyte Ag recognized by T cells (AdVMART1). Prior irradiation abrogated the ability of AdVMART1-transduced DCs to induce MART-1-specific T cell responses following their injection into mice. The ability of these same DCs to generate protective immunity against B16 melanoma, which expresses murine MART-1, was also abrogated by radiation. Failure of AdVMART1-transduced DCs to generate antitumor immunity following irradiation was not due to cytotoxicity or to radiation-induced block in DC maturation or loss in expression of MHC class I or costimulatory molecules. Expression of some of these molecules was affected, but because irradiation actually enhanced the ability of DCs to generate lymphocyte responses to the peptide MART-1(27-35) that is immunodominant in the context of HLA-A2.1, they were unlikely to be critical. The increase in lymphocyte reactivity generated by irradiated DCs pulsed with MART-1(27-35) also protected mice against growth of B16-A2/K(b) tumors in HLA-A2.1/K(b) transgenic mice. Taken together, these results suggest that radiation modulates MHC class I-mediated antitumor immunity by functionally affecting DC Ag presentation pathways.

  11. Epigenetic Alterations Affecting Transcription Factors and Signaling Pathways in Stromal Cells of Endometriosis

    PubMed Central

    Yotova, Iveta; Hsu, Emily; Do, Catherine; Gaba, Aulona; Sczabolcs, Matthias; Dekan, Sabine; Kenner, Lukas; Wenzl, Rene; Tycko, Benjamin

    2017-01-01

    Endometriosis is characterized by growth of endometrial-like tissue outside the uterine cavity. Since its pathogenesis may involve epigenetic changes, we used Illumina 450K Methylation Beadchips to profile CpG methylation in endometriosis stromal cells compared to stromal cells from normal endometrium. We validated and extended the Beadchip data using bisulfite sequencing (bis-seq), and analyzed differential methylation (DM) at the CpG-level and by an element-level classification for groups of CpGs in chromatin domains. Genes found to have DM included examples encoding transporters (SLC22A23), signaling components (BDNF, DAPK1, ROR1, and WNT5A) and transcription factors (GATA family, HAND2, HOXA cluster, NR5A1, OSR2, TBX3). Intriguingly, among the TF genes with DM we also found JAZF1, a proto-oncogene affected by chromosomal translocations in endometrial stromal tumors. Using RNA-Seq we identified a subset of the DM genes showing differential expression (DE), with the likelihood of DE increasing with the extent of the DM and its location in enhancer elements. Supporting functional relevance, treatment of stromal cells with the hypomethylating drug 5aza-dC led to activation of DAPK1 and SLC22A23 and repression of HAND2, JAZF1, OSR2, and ROR1 mRNA expression. We found that global 5hmC is decreased in endometriotic versus normal epithelial but not stroma cells, and for JAZF1 and BDNF examined by oxidative bis-seq, found that when 5hmC is detected, patterns of 5hmC paralleled those of 5mC. Together with prior studies, these results define a consistent epigenetic signature in endometriosis stromal cells and nominate specific transcriptional and signaling pathways as therapeutic targets. PMID:28125717

  12. Differentiation mechanism and function of the cereal aleurone cells and hormone effects on them.

    PubMed

    Zheng, Yankun; Wang, Zhong

    2014-11-01

    The cereal aleurone cells differentiate from the endosperm epidermis with the exception of endosperm transfer cells. Aleurone cells contain proteins, lipids, and minerals, and are important for digesting the endosperm storage products to nurse the embryo under effects of several hormones during the seed germination. The differentiation of aleurone cells is related to location effect and special gene expression. Moreover, the differentiation of aleurone cells is probably affected by the cues from maternal tissues. In the paper, differentiation mechanism and function of aleurone cells and hormone effects on them are reviewed. Some speculations about the differentiation mechanism of aleurone cells are given here.

  13. SAP modulates B cell functions in a genetic background-dependent manner.

    PubMed

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients.

  14. Missense mutations in Otopetrin 1 affect subcellular localization and inhibition of purinergic signaling in vestibular supporting cells.

    PubMed

    Kim, Euysoo; Hyrc, Krzysztof L; Speck, Judith; Salles, Felipe T; Lundberg, Yunxia W; Goldberg, Mark P; Kachar, Bechara; Warchol, Mark E; Ornitz, David M

    2011-03-01

    Otopetrin 1 (Otop1) encodes a protein that is essential for the development of otoconia. Otoconia are the extracellular calcium carbonate containing crystals that are important for vestibular mechanosensory transduction of linear motion and gravity. There are two mutant alleles of Otop1 in mice, titled (tlt) and mergulhador (mlh), which result in non-syndromic otoconia agenesis and a consequent balance defect. Biochemically, Otop1 has been shown to modulate purinergic control of intracellular calcium in vestibular supporting cells, which could be one of the mechanisms by which Otop1 participates in the mineralization of otoconia. To understand how tlt and mlh mutations affect the biochemical function of Otop1, we examined the purinergic response of COS7 cells expressing mutant Otop1 proteins, and dissociated sensory epithelial cells from tlt and mlh mice. We also examined the subcellular localization of Otop1 in whole sensory epithelia from tlt and mlh mice. Here we show that tlt and mlh mutations uncouple Otop1 from inhibition of P2Y receptor function. Although the in vitro biochemical function of the Otop1 mutant proteins is normal, in vivo they behave as null alleles. We show that in supporting cells the apical membrane localization of the mutant Otop1 proteins is lost. These data suggest that the tlt and mlh mutations primarily affect the localization of Otop1, which interferes with its ability to interact with other proteins that are important for its cellular and biochemical function.

  15. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Lee, Rico S C; Hermens, Daniel F; Naismith, Sharon L; White, Django; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in

  16. Testing two mechanisms by which rational and irrational beliefs may affect the functionality of inferences.

    PubMed

    Bond, F W; Dryden, W; Briscoe, R

    1999-12-01

    This article describes a role playing experiment that examined the sufficiency hypothesis of Rational Emotive Behaviour Therapy (REBT). This proposition states that it is sufficient for rational and irrational beliefs to refer to preferences and musts, respectively, if those beliefs are to affect the functionality of inferences (FI). Consistent with the REBT literature (e.g. Dryden, 1994; Dryden & Ellis, 1988; Palmer, Dryden, Ellis & Yapp, 1995) results from this experiment showed that rational and irrational beliefs, as defined by REBT, do affect FI. Specifically, results showed that people who hold a rational belief form inferences that are significantly more functional than those that are formed by people who hold an irrational belief. Contrary to REBT theory, the sufficiency hypothesis was not supported. Thus, results indicated that it is not sufficient for rational and irrational beliefs to refer to preferences and musts, respectively, if those beliefs are to affect the FI. It appears, then, that preferences and musts are not sufficient mechanisms by which rational and irrational beliefs, respectively, affect the FI. Psychotherapeutic implications of these findings are considered.

  17. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  18. Red cell antigens: Structure and function

    PubMed Central

    Pourazar, Abbasali

    2007-01-01

    Landsteiner and his colleagues demonstrated that human beings could be classified into four groups depending on the presence of one (A) or another (B) or both (AB) or none (O) of the antigens on their red cells. The number of the blood group antigens up to 1984 was 410. In the next 20 years, there were 16 systems with 144 antigens and quite a collection of antigens waiting to be assigned to systems, pending the discovery of new information about their relationship to the established systems. The importance of most blood group antigens had been recognized by immunological complications of blood transfusion or pregnancies; their molecular structure and function however remained undefined for many decades. Recent advances in molecular genetics and cellular biochemistry resulted in an abundance of new information in this field of research. In this review, we try to give some examples of advances made in the field of ‘structure and function of the red cell surface molecules.’ PMID:21938229

  19. Associations between early adrenarche, affective brain function and mental health in children.

    PubMed

    Whittle, Sarah; Simmons, Julian G; Byrne, Michelle L; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L; Olsson, Craig A; Dudgeon, Paul; Mundy, Lisa K; Patton, George C; Allen, Nicholas B

    2015-09-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology.

  20. Associations between early adrenarche, affective brain function and mental health in children

    PubMed Central

    Whittle, Sarah; Simmons, Julian G.; Byrne, Michelle L.; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L.; Olsson, Craig A.; Dudgeon, Paul; Mundy, Lisa K.; Patton, George C.

    2015-01-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology. PMID:25678548

  1. Leukemia-derived immature dendritic cells differentiate into functionally competent mature dendritic cells that efficiently stimulate T cell responses.

    PubMed

    Cignetti, Alessandro; Vallario, Antonella; Roato, Ilaria; Circosta, Paola; Allione, Bernardino; Casorzo, Laura; Ghia, Paolo; Caligaris-Cappio, Federico

    2004-08-15

    Primary acute myeloid leukemia cells can be induced to differentiate into dendritic cells (DC). In the presence of GM-CSF, TNF-alpha, and/or IL-4, leukemia-derived DC are obtained that display features of immature DC (i-DC). The aim of this study was to determine whether i-DC of leukemic origin could be further differentiated into mature DC (m-DC) and to evaluate the possibility that leukemic m-DC could be effective in vivo as a tumor vaccine. Using CD40L as maturating agent, we show that leukemic i-DC can differentiate into cells that fulfill the phenotypic criteria of m-DC and, compared with normal counterparts, are functionally competent in vitro in terms of: 1) production of cytokines that support T cell activation and proliferation and drive Th1 polarization; 2) generation of autologous CD8(+) CTLs and CD4(+) T cells that are MHC-restricted and leukemia-specific; 3) migration from tissues to lymph nodes; 4) amplification of Ag presentation by monocyte attraction; 5) attraction of naive/resting and activated T cells. Irradiation of leukemic i-DC after CD40L stimulation did not affect their differentiating and functional capacity. Our data indicate that acute myeloid leukemia cells can fully differentiate into functionally competent m-DC and lay the ground for testing their efficacy as a tumor vaccine.

  2. Regulation of Gastrointestinal Smooth Muscle Function by Interstitial Cells.

    PubMed

    Sanders, Kenton M; Kito, Yoshihiko; Hwang, Sung Jin; Ward, Sean M

    2016-09-01

    Interstitial cells of mesenchymal origin form gap junctions with smooth muscle cells in visceral smooth muscles and provide important regulatory functions. In gastrointestinal (GI) muscles, there are two distinct classes of interstitial cells, c-Kit(+) interstitial cells of Cajal and PDGFRα(+) cells, that regulate motility patterns. Loss of these cells may contribute to symptoms in GI motility disorders.

  3. Origins of Protein Functions in Cells

    NASA Technical Reports Server (NTRS)

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  4. Verbal marking of affect by children with Asperger Syndrome and high functioning autism during spontaneous interactions with family members.

    PubMed

    Müller, Eve; Schuler, Adriana

    2006-11-01

    Verbal marking of affect by older children with Asperger Syndrome (AS) and high functioning autism (HFA) during spontaneous interactions is described. Discourse analysis of AS and HFA and typically developing children included frequency of affective utterances, affective initiations, affective labels and affective explanations, attribution of affective responses to self and others, and positive and negative markers of affect. Findings indicate that children with AS and HFA engaged in a higher proportion of affect marking and provided a higher proportion of affective explanations than typically developing children, yet were less likely to initiate affect marking sequences or talk about the affective responses of others. No significant differences were found between groups in terms of the marking of positive and negative affect.

  5. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    PubMed

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  6. Pejvakin, a Candidate Stereociliary Rootlet Protein, Regulates Hair Cell Function in a Cell-Autonomous Manner.

    PubMed

    Kazmierczak, Marcin; Kazmierczak, Piotr; Peng, Anthony W; Harris, Suzan L; Shah, Prahar; Puel, Jean-Luc; Lenoir, Marc; Franco, Santos J; Schwander, Martin

    2017-03-29

    Mutations in the Pejvakin (PJVK) gene are thought to cause auditory neuropathy and hearing loss of cochlear origin by affecting noise-induced peroxisome proliferation in auditory hair cells and neurons. Here we demonstrate that loss of pejvakin in hair cells, but not in neurons, causes profound hearing loss and outer hair cell degeneration in mice. Pejvakin binds to and colocalizes with the rootlet component TRIOBP at the base of stereocilia in injectoporated hair cells, a pattern that is disrupted by deafness-associated PJVK mutations. Hair cells of pejvakin-deficient mice develop normal rootlets, but hair bundle morphology and mechanotransduction are affected before the onset of hearing. Some mechanotransducing shorter row stereocilia are missing, whereas the remaining ones exhibit overextended tips and a greater variability in height and width. Unlike previous studies of Pjvk alleles with neuronal dysfunction, our findings reveal a cell-autonomous role of pejvakin in maintaining stereocilia architecture that is critical for hair cell function.SIGNIFICANCE STATEMENT Two missense mutations in the Pejvakin (PJVK or DFNB59) gene were first identified in patients with audiological hallmarks of auditory neuropathy spectrum disorder, whereas all other PJVK alleles cause hearing loss of cochlear origin. These findings suggest that complex pathogenetic mechanisms underlie human deafness DFNB59. In contrast to recent studies, we demonstrate that pejvakin in auditory neurons is not essential for normal hearing in mice. Moreover, pejvakin localizes to stereociliary rootlets in hair cells and is required for stereocilia maintenance and mechanosensory function of the hair bundle. Delineating the site of the lesion and the mechanisms underlying DFNB59 will allow clinicians to predict the efficacy of different therapeutic approaches, such as determining compatibility for cochlear implants.

  7. Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions

    NASA Astrophysics Data System (ADS)

    Qian, Airong; Zhang, Wei; Weng, Yuanyuan; Tian, Zongcheng; Di, Shengmeng; Yang, Pengfei; Yin, Dachuan; Hu, Lifang; Wang, Zhe; Xu, Huiyun; Shang, Peng

    The aims of this study are to investigate the effects of gravitational environment produced by a superconducting magnet on osteoblast morphology, proliferation and adhesion. A superconducting magnet which can produce large gradient high magnetic field (LGHMF) and provide three apparent gravity levels (0g,1gand2g) was employed to simulate space gravity environment. The effects of LGHMF on osteoblast morphology, proliferation, adhesion and the gene expression of fibronectin and collagen I were detected by scanning electron microscopy, immunocytochemistry, adhesion assays and real time PCR, respectively, after exposure of osteoblasts to LGHMF for 24 h. Osteoblast morphology was affected by LGHMF (0g,1gand2g) and the most evident morphology alteration was observed at 0g condition. Proliferative abilities of MC3T3 and MG-63 cell were affected under LGHMF (0g,1gand2g) conditions compared to control condition. The adhesive abilities of MC3T3 and MG-63 cells to extracellular matrix (ECM) proteins (fibronectin, laminin, collagen IV) were also affected by LGHMF (0g,1gand2g), moreover, the effects of LGHMF on osteoblast adhesion to different ECM proteins were different. Fibronectin gene expression in MG63 cells under zero gravity condition was increased significantly compared to other conditions. Collagen I gene expression in MG-63 and MC3T3 cells was altered by both magnetic field and alerted gravity. The study indicates that the superconducting magnet which can produce LGHMF may be a novel ground-based space gravity simulator and can be used for biological experiment at cellular level.

  8. Factors affecting the development of somatic cell nuclear transfer embryos in Cattle.

    PubMed

    Akagi, Satoshi; Matsukawa, Kazutsugu; Takahashi, Seiya

    2014-01-01

    Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental ability of somatic cell nuclear transfer embryos in cattle.

  9. Factors Affecting Recovery Time of Pulmonary Function in Hospitalized Patients With Acute Asthma Exacerbations

    PubMed Central

    Kim, Hyo-Jung; Lee, Jaemoon; Kim, Jung-Hyun; Park, So-Young; Kwon, Hyouk-Soo; Kim, Tae-Bum; Moon, Hee-Bom

    2016-01-01

    Purpose Prolonged recovery time of pulmonary function after an asthma exacerbation is a significant burden on asthmatics, and management of these patients needs to be improved. The aim of this study was to evaluate factors associated with a longer recovery time of pulmonary function among asthmatic patients hospitalized due to a severe asthma exacerbation. Methods We retrospectively reviewed the medical records of 89 patients who were admitted for the management of acute asthma exacerbations. The recovery time of pulmonary function was defined as the time from the date each patient initially received treatment for asthma exacerbations to the date the patient reached his or her previous best FEV1% value. We investigated the influence of various clinical and laboratory factors on the recovery time. Results The median recovery time of the patients was 1.7 weeks. Multiple linear regression analysis revealed that using regular inhaled corticosteroids (ICS) before an acute exacerbation of asthma and concurrent with viral infection at admission were associated with the prolonged recovery time of pulmonary function. Conclusions The prolonged recovery time of pulmonary function after a severe asthma exacerbation was not shown to be directly associated with poor adherence to ICS. Therefore the results indicate that an unknown subtype of asthma may be associated with the prolonged recovery of pulmonary function time after an acute exacerbation of asthma despite regular ICS use. Further prospective studies to investigate factors affecting the recovery time of pulmonary function after an asthma exacerbation are warranted. PMID:27582400

  10. Passage number affects the pluripotency of mouse embryonic stem cells as judged by tetraploid embryo aggregation.

    PubMed

    Li, Xiang-Yun; Jia, Qing; Di, Ke-Qian; Gao, Shu-Min; Wen, Xiao-Hui; Zhou, Rong-Yan; Wei, Wei; Wang, Li-Ze

    2007-03-01

    The aim of this study was to determine whether the number of passages affected the developmental pluripotency of embryonic stem (ES) cells as measured by the attainment of adult fertile mice derived from embryonic stem (ES) cell/tetraploid embryo complementation. Thirty-six newborns were produced by the aggregation of tetraploid embryos and hybrid ES cells after various numbers of passages. These newborns were entirely derived from ES cells as judged by microsatellite DNA, coat-color phenotype, and germline transmission. Although 15 survived to adulthood, 17 died of respiratory failure, and four were eaten by their foster mother. From the 15 mice that reached adulthood and that could reproduce, none arose from ES cells at passage level 15 or more. All 15 arose from cells at passages 3-11. Our results demonstrate that the number of passages affects the developmental pluripotency of ES cells.

  11. Altered Disrupted-in-Schizophrenia-1 Function Affects the Development of Cortical Parvalbumin Interneurons by an Indirect Mechanism

    PubMed Central

    Millar, J. Kirsty; Price, David J.

    2016-01-01

    Disrupted-in-Schizophrenia-1 (DISC1) gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse formation and maintenance of cortical excitatory neurons. Here, the effects of two loss-of-function point mutations in the mouse Disc1 sequence (Q31L and L100P) on cortical inhibitory interneurons were investigated. None of the mutations affected the overall number of interneurons. However, the 100P, but not the 31L, mutation resulted in a significant decrease in the numbers of interneurons expressing parvalbumin mRNA and protein across the sensory cortex. To investigate role of Disc1 in regulation of parvalbumin expression, mouse wild-type Disc-1 or the 100P mutant form were electroporated in utero into cortical excitatory neurons. Overexpression of wild-type Disc1 in these cells caused increased densities of parvalbumin-expressing interneurons in the electroporated area and in areas connected with it, whereas expression of Disc1-100P did not. We conclude that the 100P mutation prevents expression of parvalbumin by a normally sized cohort of interneurons and that altering Disc1 function in cortical excitatory neurons indirectly affects parvalbumin expression by cortical interneurons, perhaps as a result of altered functional input from the excitatory neurons. PMID:27244370

  12. Effect of fluoroquinolones on mitochondrial function in pancreatic beta cells.

    PubMed

    Ghaly, Hany; Jörns, Anne; Rustenbeck, Ingo

    2014-02-14

    Hyper- and hypoglycaemias are known side effects of fluoroquinolone antibiotics, resulting in a number of fatalities. Fluoroquinolone-induced hypoglycaemias are due to stimulated insulin release by the inhibition of the KATP channel activity of the beta cell. Recently, it was found that fluoroquinolones were much less effective on metabolically intact beta cells than on open cell preparations. Thus the intracellular effects of gatifloxacin, moxifloxacin and ciprofloxacin were investigated by measuring NAD(P)H- and FAD-autofluorescence, the mitochondrial membrane potential, and the adenine nucleotide content of isolated pancreatic islets and beta cells. 100 μM of moxifloxacin abolished the NAD(P)H increase elicited by 20mM glucose, while gatifloxacin diminished it and ciprofloxacin had no significant effect. This pattern was also seen with islets from SUR1 Ko mice, which have no functional KATP channels. Moxifloxacin also diminished the glucose-induced decrease of FAD-fluorescence, which reflects the intramitochondrial production of reducing equivalents. Moxifloxacin, but not ciprofloxacin or gatifloxacin significantly reduced the effect of 20mM glucose on the ATP/ADP ratio. The mitochondrial hyperpolarization caused by 20mM glucose was partially antagonized by moxifloxacin, but not by ciprofloxacin or gatifloxacin. Ultrastructural analyses after 20 h tissue culture showed that all three compounds (at 10 and 100 μM) diminished the number of insulin secretory granules and that gatifloxacin and ciprofloxacin, but not moxifloxacin induced fission/fusion configurations of the beta cell mitochondria. In conclusion, fluoroquinolones affect the function of the mitochondria in pancreatic beta cells which may diminish the insulinotropic effect of KATP channel closure and contribute to the hyperglycaemic episodes.

  13. Intracellular composition of fatty acid affects the processing and function of tyrosinase through the ubiquitin–proteasome pathway

    PubMed Central

    Ando, Hideya; Wen, Zhi-Ming; Kim, Hee-Yong; Valencia, Julio C.; Costin, Gertrude-E.; Watabe, Hidenori; Yasumoto, Ken-ichi; Niki, Yoko; Kondoh, Hirofumi; Ichihashi, Masamitsu; Hearing, Vincent J.

    2005-01-01

    Proteasomes are multicatalytic proteinase complexes within cells that selectively degrade ubiquitinated proteins. We have recently demonstrated that fatty acids, major components of cell membranes, are able to regulate the proteasomal degradation of tyrosinase, a critical enzyme required for melanin biosynthesis, in contrasting manners by relative increases or decreases in the ubiquitinated tyrosinase. In the present study, we show that altering the intracellular composition of fatty acids affects the post-Golgi degradation of tyrosinase. Incubation with linoleic acid (C18:2) dramatically changed the fatty acid composition of cultured B16 melanoma cells, i.e. the remarkable increase in polyunsaturated fatty acids such as linoleic acid and arachidonic acid (C20:4) was compensated by the decrease in monounsaturated fatty acids such as oleic acid (C18:1) and palmitoleic acid (C16:1), with little effect on the proportion of saturated to unsaturated fatty acid. When the composition of intracellular fatty acids was altered, tyrosinase was rapidly processed to the Golgi apparatus from the ER (endoplasmic reticulum) and the degradation of tyrosinase was increased after its maturation in the Golgi. Retention of tyrosinase in the ER was observed when cells were treated with linoleic acid in the presence of proteasome inhibitors, explaining why melanin synthesis was decreased in cells treated with linoleic acid and a proteasome inhibitor despite the abrogation of tyrosinase degradation. These results suggest that the intracellular composition of fatty acid affects the processing and function of tyrosinase in connection with the ubiquitin–proteasome pathway and suggest that this might be a common physiological approach to regulate protein degradation. PMID:16232122

  14. The protective function of personal growth initiative among a genocide-affected population in Rwanda.

    PubMed

    Blackie, Laura E R; Jayawickreme, Eranda; Forgeard, Marie J C; Jayawickreme, Nuwan

    2015-07-01

    The aim of the current study was to investigate the extent to which individual differences in personal growth initiative (PGI) were associated with lower reports of functional impairment of daily activities among a genocide-affected population in Rwanda. PGI measures an individual's motivation to develop as a person and the extent to which he or she is active in setting goals that work toward achieving self-improvement. We found that PGI was negatively associated with functional impairment when controlling for depression, posttraumatic stress disorder, and other demographic factors. Our results suggest that PGI may constitute an important mindset for facilitating adaptive functioning in the aftermath of adversity and in the midst of psychological distress, and as such they might have practical applications for the development of intervention programs.

  15. Developing fragility functions for the areas affected by the 2009 Samoa earthquake and tsunami

    NASA Astrophysics Data System (ADS)

    Gokon, H.; Koshimura, S.; Imai, K.; Matsuoka, M.; Namegaya, Y.; Nishimura, Y.

    2014-12-01

    Fragility functions in terms of flow depth, flow velocity and hydrodynamic force are developed to evaluate structural vulnerability in the areas affected by the 2009 Samoa earthquake and tsunami. First, numerical simulations of tsunami propagation and inundation are conducted to reproduce the features of tsunami inundation. To validate the results, flow depths measured in field surveys and waveforms measured by Deep-ocean Assessment and Reporting of Tsunamis (DART) gauges are utilized. Next, building damage is investigated by visually interpreting changes between pre- and post-tsunami high-resolution satellite images. Finally, the data related to tsunami features and building damage are integrated using Geographic Information System (GIS), and tsunami fragility functions are developed based on the statistical analyses. From the developed fragility functions, we quantitatively understood the vulnerability of a coastal region in American Samoa characterized by steep terrains and ria coasts.

  16. Hypericum perforatum differentially affects corticosteroid receptor-mRNA expression in human monocytic U-937 cells.

    PubMed

    Enning, F; Murck, H; Krieg, J-C; Vedder, H

    2011-09-01

    A dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) axis represents a prominent finding in major depression, possibly related to a dysfunction of the corticosteroid receptor system. Antidepressants are involved in the restoration of the altered feed-back mechanism of the HPA-axis, probably via normalization of corticosteroid receptor functions. Since Hypericum perforatum has antidepressive properties, we here examined its putative actions on glucocorticosteroid receptor mRNA levels in human blood cells as a peripheral model for neuroendocrine effects in human brain cells. Our data show that Hypericum (LI 160) affects the cellular mRNA levels of both, the glucocorticoid receptor (GR)-α and its inhibitory counterpart, the GR-β, at clinically-relevant concentrations. Under these conditions, a bimodal effect was observed. Dose-response studies suggest a rather small effective concentration range and time-effect data show a primary and transient up-regulation of GR-α mRNA levels and a down-regulation of GR-β mRNA levels after 16 h of treatment. The sodium channel blocker benzamil neutralized the effects of Hypericum, pointing to an at least partial mechanism of action via this pathway. In conclusion, Hypericum treatment differentially affects GR-mRNA levels in the human system. Our data suggest a bimodal effect on GR, resulting in a time-and dose-related modification of GR-mediated cellular effects. Such a mechanism has been alleged as an important way of action for a number of antidepressants. It is the first time that a specific effect on both receptors, especially on the subtype of GR-β, is shown under antidepressive treatment in a human system under in vitro conditions.

  17. Arrival order among native plant functional groups does not affect invasibility of constructed dune communities.

    PubMed

    Mason, T J; French, K; Jolley, D

    2013-10-01

    Different arrival order scenarios of native functional groups to a site may influence both resource use during development and final community structure. Arrival order may then indirectly influence community resistance to invasion. We present a mesocosm experiment of constructed coastal dune communities that monitored biotic and abiotic responses to different arrival orders of native functional groups. Constructed communities were compared with unplanted mesocosms. We then simulated a single invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata), a dominant exotic shrub of coastal communities. We evaluated the hypothesis that plantings with simultaneous representation of grass, herb and shrub functional groups at the beginning of the experiment would more completely sequester resources and limit invasion than staggered plantings. Staggered plantings in turn would offer greater resource use and invasion resistance than unplanted mesocosms. Contrary to our expectations, there were few effects of arrival order on abiotic variables for the duration of the experiment and arrival order was unimportant in final community invasibility. All planted mesocosms supported significantly more invader germinants and significantly less invader abundance than unplanted mesocosms. Native functional group plantings may have a nurse effect during the invader germination and establishment phase and a competitive function during the invader juvenile and adult phase. Arrival order per se did not affect resource use and community invasibility in our mesocosm experiment. While grass, herb and shrub functional group plantings will not prevent invasion success in restored communities, they may limit final invader biomass.

  18. Does increased physical activity in school affect children's executive function and aerobic fitness?

    PubMed

    Kvalø, S E; Bru, E; Brønnick, K; Dyrstad, S M

    2017-02-16

    This study seeks to explore whether increased PA in school affects children's executive function and aerobic fitness. The "Active school" study was a 10-month randomized controlled trial. The sample included 449 children (10-11 years old) in five intervention and four control schools. The weekly interventions were 2×45 minutes physically active academic lessons, 5×10 minutes physically active breaks, and 5×10 minutes physically active homework. Aerobic fitness was measured using a 10-minute interval running test. Executive function was tested using four cognitive tests (Stroop, verbal fluency, digit span, and Trail Making). A composite score for executive function was computed and used in analyses. Mixed ANCOVA repeated measures were performed to analyze changes in scores for aerobic fitness and executive function. Analysis showed a tendency for a time×group interaction on executive function, but the results were non-significant F(1, 344)=3.64, P=.057. There was no significant time×group interaction for aerobic fitness. Results indicate that increased physical activity in school might improve children's executive function, even without improvement in aerobic fitness, but a longer intervention period may be required to find significant effects.

  19. The association between the body composition and lifestyle affecting pulmonary function in Japanese workers.

    PubMed

    Inomoto, Atsushi; Fukuda, Rika; Deguchi Phn, Junko; Kato, Gohei; Kanzaki Rpt, Ryoko; Hiroshige Rpt, Keiichi; Nakamura, Kouichi; Rpt; Nakano Rpt, Keisuke; Toyonaga, Toshihiro

    2016-10-01

    [Purpose] The purpose of this study was to identify factors related to physical characteristics and lifestyle that affect pulmonary function. [Subjects and Methods] Ninety seven healthy male workers were recruited for this study, and basic information and details about lifestyle were collected. Body composition analyzer and visceral fat measuring device were conducted as measurements. Pulmonary function was measured using spirometer. A multiple stepwise linear regression analysis was performed with pulmonary function as the dependent variable. Variables with a significant association with pulmonary function on univariate analysis were imputed as independent variables. [Results] Height, fat free mass, upper extremity muscle mass, lower extremity muscle mass, and trunk muscle mass had significant positive correlations with FEV1 and FVC. Age, percentage of body fat, and visceral fat area were negatively correlated with FEV1 and FVC. Regarding the association between pulmonary function and lifestyle, a significant difference was found between the smoking index and the presence or absence of metabolic syndrome risk factors and both FEV1 and FVC. The multiple stepwise linear regression analysis with FEV1 as the dependent variable, adjusted for age and height, revealed that visceral fat area and fat free mass were significantly associated with FEV1. A similar analysis, FVC as the dependent variable identified visceral fat area. [Conclusion] FEV1 was independently associated with visceral fat area and fat free mass. FVC was independently associated with visceral fat area. These results may be valuable in preventing the decrease in respiratory function and, hence, in further preventing the onset of COPD.

  20. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis

    PubMed Central

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-01-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios. PMID:26028216

  1. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-06-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios.

  2. Towards Tunable Consensus Clustering for Studying Functional Brain Connectivity During Affective Processing.

    PubMed

    Liu, Chao; Abu-Jamous, Basel; Brattico, Elvira; Nandi, Asoke K

    2017-03-01

    In the past decades, neuroimaging of humans has gained a position of status within neuroscience, and data-driven approaches and functional connectivity analyses of functional magnetic resonance imaging (fMRI) data are increasingly favored to depict the complex architecture of human brains. However, the reliability of these findings is jeopardized by too many analysis methods and sometimes too few samples used, which leads to discord among researchers. We propose a tunable consensus clustering paradigm that aims at overcoming the clustering methods selection problem as well as reliability issues in neuroimaging by means of first applying several analysis methods (three in this study) on multiple datasets and then integrating the clustering results. To validate the method, we applied it to a complex fMRI experiment involving affective processing of hundreds of music clips. We found that brain structures related to visual, reward, and auditory processing have intrinsic spatial patterns of coherent neuroactivity during affective processing. The comparisons between the results obtained from our method and those from each individual clustering algorithm demonstrate that our paradigm has notable advantages over traditional single clustering algorithms in being able to evidence robust connectivity patterns even with complex neuroimaging data involving a variety of stimuli and affective evaluations of them. The consensus clustering method is implemented in the R package "UNCLES" available on http://cran.r-project.org/web/packages/UNCLES/index.html .

  3. Morpho-functional characteristics of rat fetal thyroid gland are affected by prenatal dexamethasone exposure.

    PubMed

    Manojlović-Stojanoski, Milica N; Filipović, Branko R; Nestorović, Nataša M; Šošić-Jurjević, Branka T; Ristić, Nataša M; Trifunović, Svetlana L; Milošević, Verica Lj

    2014-06-01

    Thyroid hormones (TH) and glucocorticoids strongly contribute to the maturation of fetal tissues in the preparation for extrauterine life. Influence of maternal dexamethasone (Dx) administration on thyroid glands morpho-functional characteristics of near term rat fetuses was investigated applying unbiased stereology. On the 16th day of pregnancy dams received 1.0mg/Dx/kg/b.w., followed by 0.5mg/Dx/kg/b.w. on the 17th and 18th days of gestation. The control females received the same volume of saline. The volume of fetal thyroid was estimated using Cavalieri's principle; the physical/fractionator design was applied for the determination of absolute number of follicular cells in mitosis and immunohistochemically labeled C cells; C cell volume was measured using the planar rotator. The functional activity of thyroid tissue was provided from thyroglobulin (Tg) and thyroperoxidase (TPO) immunohistochemical staining. Applying these design-based modern stereological methods it was shown that Dx treatment of gravid females led to a significant decrease of fetal thyroid gland volume in 19- and 21-day-old fetuses, due to decreased proliferation of follicular cells. The Tg and TPO immunohistochemistry demonstrated that intensive TH production starts and continues during the examined period in control and Dx-exposed fetuses. Under the influence of Dx the absolute number of C cells was lower in both groups of near term fetuses, although unchanged relation between the two populations of endocrine cells, follicular and C cells suggesting that structural relationships within the gland are preserved. In conclusion maternal glucocorticoid administration at the thyroid gland level exerts growth-inhibitory and maturational promoting effects in near term rat fetuses.

  4. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond.

  5. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    PubMed Central

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  6. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARgamma Expression and Activation in Differentiating Mesenchymal Stem Cells.

    PubMed

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARgamma2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARgamma, and SREBP-1 were determined by western blot. Finally, DNA binding PPARgamma activity was determined using an ELISA-based PPARgamma activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARgamma expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARgamma activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARgamma expression and activity.

  7. Modulation of α power and functional connectivity during facial affect recognition.

    PubMed

    Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan

    2013-04-03

    Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.

  8. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice

    PubMed Central

    Rahman, Md Saidur; Kwon, Woo-Sung; Karmakar, Polash Chandra; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2016-01-01

    Background: Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. Objectives: The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Methods: Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. Results: BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Conclusions: Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238–245; http://dx.doi.org/10.1289/EHP378 PMID:27384531

  9. Telomerase RNA stem terminus element affects template boundary element function, telomere sequence, and shelterin binding.

    PubMed

    Webb, Christopher J; Zakian, Virginia A

    2015-09-08

    The stem terminus element (STE), which was discovered 13 y ago in human telomerase RNA, is required for telomerase activity, yet its mode of action is unknown. We report that the Schizosaccharomyces pombe telomerase RNA, TER1 (telomerase RNA 1), also contains a STE, which is essential for telomere maintenance. Cells expressing a partial loss-of-function TER1 STE allele maintained short stable telomeres by a recombination-independent mechanism. Remarkably, the mutant telomere sequence was different from that of wild-type cells. Generation of the altered sequence is explained by reverse transcription into the template boundary element, demonstrating that the STE helps maintain template boundary element function. The altered telomeres bound less Pot1 (protection of telomeres 1) and Taz1 (telomere-associated in Schizosaccharomyces pombe 1) in vivo. Thus, the S. pombe STE, although distant from the template, ensures proper telomere sequence, which in turn promotes proper assembly of the shelterin complex.

  10. Multiple Polymorphisms Affect Expression and Function of the Neuropeptide S Receptor (NPSR1)

    PubMed Central

    Anedda, Francesca; Zucchelli, Marco; Schepis, Danika; Hellquist, Anna; Corrado, Lucia; D'Alfonso, Sandra; Achour, Adnane; McInerney, Gerald; Bertorello, Alejandro; Lördal, Mikael; Befrits, Ragnar; Björk, Jan; Bresso, Francesca; Törkvist, Leif; Halfvarson, Jonas

    2011-01-01

    Background neuropeptide S (NPS) and its receptor NPSR1 act along the hypothalamic-pituitary-adrenal axis to modulate anxiety, fear responses, nociception and inflammation. The importance of the NPS-NPSR1 signaling pathway is highlighted by the observation that, in humans, NPSR1 polymorphism associates with asthma, inflammatory bowel disease, rheumatoid arthritis, panic disorders, and intermediate phenotypes of functional gastrointestinal disorders. Because of the genetic complexity at the NPSR1 locus, however, true causative variations remain to be identified, together with their specific effects on receptor expression or function. To gain insight into the mechanisms leading to NPSR1 disease-predisposing effects, we performed a thorough functional characterization of all NPSR1 promoter and coding SNPs commonly occurring in Caucasians (minor allele frequency >0.02). Principal Findings we identified one promoter SNP (rs2530547 [−103]) that significantly affects luciferase expression in gene reporter assays and NPSR1 mRNA levels in human leukocytes. We also detected quantitative differences in NPS-induced genome-wide transcriptional profiles and CRE-dependent luciferase activities associated with three NPSR1 non-synonymous SNPs (rs324981 [Ile107Asn], rs34705969 [Cys197Phe], rs727162 [Arg241Ser]), with a coding variant exhibiting a loss-of-function phenotype (197Phe). Potential mechanistic explanations were sought with molecular modelling and bioinformatics, and a pilot study of 2230 IBD cases and controls provided initial support to the hypothesis that different cis-combinations of these functional SNPs variably affect disease risk. Significance these findings represent a first step to decipher NPSR1 locus complexity and its impact on several human conditions NPS antagonists have been recently described, and our results are of potential pharmacogenetic relevance. PMID:22216302

  11. Acidosis and correction of acidosis does not affect rFVIIa function in swine

    PubMed Central

    Darlington, Daniel N; Kheirabadi, Bijan S; Scherer, Michael R; Martini, Wenjun Z; Cap, Andrew P; Dubick, Michael A

    2012-01-01

    Background: Hemorrhagic shock and trauma are associated with acidosis and altered coagulation. A fall in pH has been reported to attenuate the activity of recombinant activated Factor VII (rFVIIa) in vitro. However, it is not known if acidosis induced by hemorrhagic shock or infusion of HCl attenuates FVIIa activity in vivo. The purpose of this study was to determine if acidosis, induced by two methods, affects recombinant FVIIa (rFVIIa) activity in swine, and if correction of the pH restores rFVIIa activity to normal. Methods: Acidosis was induce in anesthetized swine in two separate models: 1) HCl infusion (n=10) and 2) hemorrhage/hypoventilation (n=8). Three groups per model were used: Control (pH7.4), Acidosis (arterial pH7.1) and Acidosis-Corrected (bicarbonate infusion to return pH from 7.1 to 7.4). Pigs were then injected with rFVIIa (90 μg/kg) or vehicle (saline) at target pH and arterial blood samples were taken for measurement of coagulation function, including Thromboelastography -TEG, Thrombin Generation, Activated Clotting Time, Prothrombin Time, activated Partial Thromboplastin Time, Fibrinogen Concentration and Platelet count before and 5min after injection of rFVIIa. Results: Acidosis led to a hypocoagulation as measured by almost all coagulation parameters in both models. Furthermore, the change in coagulation function produced after infusion of rFVIIa was not different between control, acidosis and acidosis-corrected groups for all coagulation parameters measured. Conclusion: Acidosis associated with hemorrhagic shock or HCl infusion led to a hypocoagulation that was not corrected with bicarbonate infusion. Furthermore, acidosis did not affect rFVIIa function, and correction of the acidosis with bicarbonate had no effect on rFVIIa function in these models. This suggests that in vivo acidosis did not diminish rFVIIa function. PMID:23272296

  12. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  13. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function.

    PubMed

    Zheng, Shiju; Jing, Guoxing; Wang, Xiao; Ouyang, Qiuli; Jia, Lei; Tao, Nengguo

    2015-07-01

    This work investigated the effect of citral on the mitochondrial morphology and function of Penicillium digitatum. Citral at concentrations of 2.0 or 4.0 μL/mL strongly damaged mitochondria of test pathogen by causing the loss of matrix and increase of irregular mitochondria. The deformation extent of the mitochondria of P. digitatum enhanced with increasing concentrations of citral, as evidenced by a decrease in intracellular ATP content and an increase in extracellular ATP content of P. digitatum cells. Oxygen consumption showed that citral resulted in an inhibition in the tricarboxylic acid cycle (TCA) pathway of P. digitatum cells, induced a decrease in activities of citrate synthetase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinodehydrogenase and the content of citric acid, while enhancing the activity of malic dehydrogenase in P. digitatum cells. Our present results indicated that citral could damage the mitochondrial membrane permeability and disrupt the TCA pathway of P. digitatum.

  14. The Functional Effect of Teacher Positive and Neutral Affect on Task Performance of Students with Significant Disabilities

    ERIC Educational Resources Information Center

    Park, Sungho; Singer, George H. S.; Gibson, Mary

    2005-01-01

    The study uses an alternating treatment design to evaluate the functional effect of teacher's affect on students' task performance. Tradition in special education holds that teachers should engage students using positive and enthusiastic affect for task presentations and praise. To test this assumption, we compared two affective conditions. Three…

  15. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease.

  16. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    PubMed Central

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  17. Autologous peripheral blood stem cell harvest: Collection efficiency and factors affecting it

    PubMed Central

    Tiwari, Aseem K.; Pandey, Prashant; Subbaraman, Harini; Bhargava, Rahul; Rawat, Ganesh; Madiraju, Shivani; Raina, Vimarsh; Bhargava, Richa

    2016-01-01

    Background: Harvest of hematopoietic progenitor cells via leukapheresis is being used increasingly for transplants in India. Adequate yield of cells per kilogram body weight of recipient is required for successful engraftment. Collection efficiency (CE) is an objective quality parameter used to assess the quality of leukapheresis program. In this study, we calculated the CE of the ComTec cell separator (Fresenius Kabi, Germany) using two different formulae (CE1 and CE2) and analyzed various patient and procedural factors, which may affect it. Materials and Methods: One hundred and one consecutive procedures in 77 autologous donors carried out over 3 years period were retrospectively reviewed. Various characteristics like gender, age, weight, disease status, hematocrit, preprocedure total leukocyte count, preprocedure CD34 positive (CD34+) cells count, preprocedure absolute CD34+ cell count and processed apheresis volume effect on CE were compared. CE for each procedure was calculated using two different formulae, and results were compared using statistical correlation and regression analysis. Results: The mean CE1 and CE2 was 41.2 and 49.1, respectively. CE2 appeared to be more accurate indicator of overall CE as it considered the impact of continued mobilization of stem cells during apheresis procedure, itself. Of all the factors affecting CE, preprocedure absolute CD34+ was the only independent factor affecting CE. Conclusion: The only factor affecting CE was preprocedure absolute CD34+ cells. Though the mean CE2 was higher than CE1, it was not statistically significant. PMID:27011680

  18. The role of metabolic reprogramming in T cell fate and function

    PubMed Central

    Patsoukis, Nikolaos; Bardhan, Kankana; Weaver, Jessica; Herbel, Christoph; Seth, Pankaj; Li, Lequn; Boussiotis, Vassiliki A.

    2016-01-01

    T lymphocytes undergo extensive changes in their metabolic properties during their transition through various differentiation states, from naïve to effector to memory or regulatory roles. The cause and effect relationship between metabolism and differentiation is a field of intense investigation. Many recent studies demonstrate the dependency of T cell functional outcomes on metabolic pathways and the possibility of metabolic intervention to modify these functions. In this review, we describe the basic metabolic features of T cells and new findings on how these correlate with various differentiation fates and functions. We also highlight the latest information regarding the main factors that affect T cell metabolic reprogramming. PMID:28356677

  19. CD4+ CD25+ regulatory T cells prevent type 1 diabetes preceded by dendritic cell-dominant invasive insulitis by affecting chemotaxis and local invasiveness of dendritic cells.

    PubMed

    Lee, Mi-Heon; Lee, Wen-Hui; Todorov, Ivan; Liu, Chih-Pin

    2010-08-15

    Development of type 1 diabetes (T1D) is preceded by invasive insulitis. Although CD4(+)CD25(+) regulatory T cells (nTregs) induce tolerance that inhibits insulitis and T1D, the in vivo cellular mechanisms underlying this process remain largely unclear. Using an adoptive transfer model and noninvasive imaging-guided longitudinal analyses, we found nTreg depletion did not affect systemic trafficking and tissue localization of diabetogenic CD4(+) BDC2.5 T (BDC) cells in recipient mice prior to development of T1D. In addition, neither the initial expansion/activation of BDC cells nor the number of CD11c(+) or NK cells in islets and pancreatic lymph nodes were altered. Unexpectedly, our results showed nTreg depletion led to accelerated invasive insulitis dominated by CD11c(+) dendritic cells (ISL-DCs), not BDC cells, which stayed in the islet periphery. Compared with control mice, the phenotype of ISL-DCs and their ability to stimulate BDC cells did not change during invasive insulitis development. However, ISL-DCs from nTreg-deficient recipient mice showed increased in vitro migration toward CCL19 and CCL21. These results demonstrated invasive insulitis dominated by DCs, not CD4(+) T cells, preceded T1D onset in the absence of nTregs, and suggested a novel in vivo function of nTregs in T1D prevention by regulating local invasiveness of DCs into islets, at least partly, through regulation of DC chemotaxis toward CCL19/CCL21 produced by the islets.

  20. Listeria monocytogenes infection differentially affects expression of ligands for NK cells and NK cell responses, depending on the cell type infected.

    PubMed

    Shegarfi, Hamid; Rolstad, Bent; Kane, Kevin P; Nestvold, Janne

    2016-04-22

    The pivotal role of NK cells in viral infection is extensively studied, whereas the role of NK cells in bacterial infection has been poorly investigated. Here, we have examined how Listeria monocytogenes (LM) affects expression of ligands for NK cell receptors and subsequent NK cell responses, depending on the type of cell infected. LM infected rat cell lines derived from different tissues were coincubated with splenic NK cells, and NK cell proliferation and IFN-γ production were measured. In addition, expression of ligands for the NK cell receptors Ly49 and NK cell receptor protein 1 (NKR-P1), MHC class I and C-type lectin-related molecules, respectively, was assessed. Infected pleural R2 cells, but not epithelium-derived colon carcinoma cell line CC531 cells, induced proliferation of NK cells. Reporter cells expressing the inhibitory NKR-P1G receptor or the activating NKR-P1F receptor were less stimulated under incubation with infected CC531 cells versus uninfected CC531 controls, suggesting that the ligand(s) in question were down-regulated by infection. Conversely, LM infection of R2 cells did not affect reporter cell stimulation compared with uninfected R2 controls. We characterized a rat monocyte cell line, termed RmW cells. In contrast to LM infected R2 cells that up-regulate MHC class I molecules, RmW cells displayed unchanged MHC class I expression following infection. In line with MHC class I expression, more NK cells produced a higher amount of IFN-γ against infected R2 cells compared with RmW cells. Together, L. monocytogenes infection may variously regulate cellular ligands for NK cells, depending on the cell type infected, affecting the outcome of NK cell responses.

  1. Optimistic Expectancies and Cell-Mediated Immunity: The Role of Positive Affect

    PubMed Central

    Segerstrom, Suzanne C.; Sephton, Sandra E.

    2014-01-01

    Optimistic expectancies affect many psychosocial outcomes and may also predict immune system changes and health, but the nature and mechanisms of any such physiological effects have not been identified. The present study related law-school expectancies to cell-mediated immunity (CMI), examining the within- and between-person components of this relationship and affective mediators. First-year law students (N = 124) completed questionnaire measures of expectancies and affect and received delayed-type hypersensitivity skin tests at five time points. A positive relationship between optimistic expectancies and CMI occurred, in which that changes in optimism correlated with changes in CMI. Likewise, changes in optimism predicted changes in positive and, to a lesser degree, negative affect, but the relationship between optimism and immunity was partially accounted for only by positive affect. This dynamic relationship between expectancies and immunity has positive implications for psychological interventions to improve health, particularly those that increase positive affect. PMID:20424083

  2. Proliferation of mouse embryonic stem cell progeny and the spontaneous contractile activity of cardiomyocytes are affected by microtopography.

    PubMed

    Biehl, Jesse K; Yamanaka, Satoshi; Desai, Tejal A; Boheler, Kenneth R; Russell, Brenda

    2009-08-01

    The niche in which stem cells reside and differentiate is a complex physicochemical microenvironment that regulates cell function. The role played by three-dimensional physical contours was studied on cell progeny derived from mouse embryonic stem cells using microtopographies created on PDMS (poly-dimethyl-siloxane) membranes. While markers of differentiation were not affected, the proliferation of heterogeneous mouse embryonic stem cell-derived progeny was attenuated by 15 microm-, but not 5 microm-high microprojections. This reduction was reversed by Rho kinase and myosin light chain kinase inhibition, which diminishes the tension generating ability of stress fibers. Purified cardiomyocytes derived from embryonic stem cells also showed significant blunting of proliferation and increased beating rates compared with cells grown on flat substrates. Thus, proliferation of stem cell-derived progeny appears to be regulated by microtopography through tension-generation of contractility in the third-dimension. These results emphasize the importance of topographic cues in the modulation of stem cell progeny behavior.

  3. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.

  4. How a High-Gradient Magnetic Field Could Affect Cell Life

    PubMed Central

    Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr

    2016-01-01

    The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate. PMID:27857227

  5. How a High-Gradient Magnetic Field Could Affect Cell Life

    NASA Astrophysics Data System (ADS)

    Zablotskii, Vitalii; Polyakova, Tatyana; Lunov, Oleg; Dejneka, Alexandr

    2016-11-01

    The biological effects of high-gradient magnetic fields (HGMFs) have steadily gained the increased attention of researchers from different disciplines, such as cell biology, cell therapy, targeted stem cell delivery and nanomedicine. We present a theoretical framework towards a fundamental understanding of the effects of HGMFs on intracellular processes, highlighting new directions for the study of living cell machinery: changing the probability of ion-channel on/off switching events by membrane magneto-mechanical stress, suppression of cell growth by magnetic pressure, magnetically induced cell division and cell reprograming, and forced migration of membrane receptor proteins. By deriving a generalized form for the Nernst equation, we find that a relatively small magnetic field (approximately 1 T) with a large gradient (up to 1 GT/m) can significantly change the membrane potential of the cell and thus have a significant impact on not only the properties and biological functionality of cells but also cell fate.

  6. Aging. Aging-induced type I interferon response at the choroid plexus negatively affects brain function.

    PubMed

    Baruch, Kuti; Deczkowska, Aleksandra; David, Eyal; Castellano, Joseph M; Miller, Omer; Kertser, Alexander; Berkutzki, Tamara; Barnett-Itzhaki, Zohar; Bezalel, Dana; Wyss-Coray, Tony; Amit, Ido; Schwartz, Michal

    2014-10-03

    Aging-associated cognitive decline is affected by factors produced inside and outside the brain. By using multiorgan genome-wide analysis of aged mice, we found that the choroid plexus, an interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent gene expression profile that was also found in aged human brains. In aged mice, this response was induced by brain-derived signals, present in the cerebrospinal fluid. Blocking IFN-I signaling within the aged brain partially restored cognitive function and hippocampal neurogenesis and reestablished IFN-II-dependent choroid plexus activity, which is lost in aging. Our data identify a chronic aging-induced IFN-I signature, often associated with antiviral response, at the brain's choroid plexus and demonstrate its negative influence on brain function, thereby suggesting a target for ameliorating cognitive decline in aging.

  7. Integrin α7 is a functional cancer stem cell surface marker in oesophageal squamous cell carcinoma

    PubMed Central

    Ming, Xiao-Yan; Fu, Li; Zhang, Li-Yi; Qin, Yan-Ru; Cao, Ting-Ting; Chan, Kwok Wah; Ma, Stephanie; Xie, Dan; Guan, Xin-Yuan

    2016-01-01

    Non-CG methylation has been associated with stemness regulation in embryonic stem cells. By comparing differentially expressed genes affected by non-CG methylation between tumour and corresponding non-tumour tissues in oesophageal squamous cell carcinoma (OSCC), we find that Integrin α7 (ITGA7) is characterized as a potential cancer stem cell (CSC) marker. Clinical data show that a high frequency of ITGA7+ cells in OSCC tissues is significantly associated with poor differentiation, lymph node metastasis and worse prognosis. Functional studies demonstrate that both sorted ITGA7+ cells and ITGA7 overexpressing cells display enhanced stemness features, including elevated expression of stemness-associated genes and epithelial–mesenchymal transition features, as well as increased abilities to self-renew, differentiate and resist chemotherapy. Mechanistic studies find that ITGA7 regulates CSC properties through the activation of the FAK-mediated signalling pathways. As knockdown of ITGA7 can effectively reduce the stemness of OSCC cells, ITGA7 could be a potential therapeutic target in OSCC treatment. PMID:27924820

  8. Peripheral tissue homing receptors enable T cell entry into lymph nodes and affect the anatomical distribution of memory cells

    PubMed Central

    Brinkman, C. Colin; Rouhani, Sherin J.; Srinivasan, Nithya; Engelhard, Victor H.

    2013-01-01

    Peripheral tissue homing receptors enable T cells to access inflamed non-lymphoid tissues. Here we show that two such molecules, E-selectin ligand and α4β1 integrin, enable activated and memory T cells to enter lymph nodes as well. This affects the quantitative and qualitative distribution of these cells among regional lymph node beds. CD8 memory T cells in lymph nodes that express these molecules were mostly CD62Llo, and would normally be classified as effector memory cells. However, similar to central memory cells, they expanded upon antigen re-encounter. This led to differences in the magnitude of the recall response that depended on the route of immunization. These novel cells share properties of both central and effector memory cells, and reside in lymph nodes based on previously undescribed mechanisms of entry. PMID:23926324

  9. Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth.

    PubMed

    Momoi, Nobuo; Tinney, Joseph P; Liu, Li J; Elshershari, Huda; Hoffmann, Paul J; Ralphe, John C; Keller, Bradley B; Tobita, Kimimasa

    2008-05-01

    Caffeine consumption during pregnancy is reported to increase the risk of in utero growth restriction and spontaneous abortion. In the present study, we tested the hypothesis that modest maternal caffeine exposure affects in utero developing embryonic cardiovascular (CV) function and growth without altering maternal hemodynamics. Caffeine (10 mg.kg(-1).day(-1) subcutaneous) was administered daily to pregnant CD-1 mice from embryonic days (EDs) 9.5 to 18.5 of a 21-day gestation. We assessed maternal and embryonic CV function at baseline and at peak maternal serum caffeine concentration using high-resolution echocardiography on EDs 9.5, 11.5, 13.5, and 18.5. Maternal caffeine exposure did not influence maternal body weight gain, maternal CV function, or embryo resorption. However, crown-rump length and body weight were reduced in maternal caffeine treated embryos by ED 18.5 (P < 0.05). At peak maternal serum caffeine concentration, embryonic carotid artery, dorsal aorta, and umbilical artery flows transiently decreased from baseline at ED 11.5 (P < 0.05). By ED 13.5, embryonic aortic and umbilical artery flows were insensitive to the peak maternal caffeine concentration; however, the carotid artery flow remained affected. By ED 18.5, baseline embryonic carotid artery flow increased and descending aortic flow decreased versus non-caffeine-exposed embryos. Maternal treatment with the adenosine A(2A) receptor inhibitor reproduced the embryonic hemodynamic effects of maternal caffeine exposure. Adenosine A(2A) receptor gene expression levels of ED 11.5 embryo and ED 18.5 uterus were decreased. Results suggest that modest maternal caffeine exposure has adverse effects on developing embryonic CV function and growth, possibly mediated via adenosine A(2A) receptor blockade.

  10. Alcohol Affects Brain Functional Connectivity and its Coupling with Behavior: Greater Effects in Male Heavy Drinkers

    PubMed Central

    Shokri-Kojori, Ehsan; Tomasi, Dardo; Wiers, Corinde E.; Wang, Gene-Jack; Volkow, Nora D.

    2016-01-01

    Acute and chronic alcohol exposure significantly affect behavior but the underlying neurobiological mechanisms are still poorly understood. Here we used functional connectivity density (FCD) mapping to study alcohol-related changes in resting brain activity and their association with behavior. Heavy drinkers (HD; N=16; 16 males) and normal controls (NM; N=24; 14 males) were tested after placebo and after acute alcohol administration. Group comparisons showed that NM had higher FCD in visual and prefrontal cortices, default-mode network regions, and thalamus, while HD had higher FCD in cerebellum. Acute alcohol significantly increased FCD within the thalamus, impaired cognitive and motor functions, and affected self-reports of mood/drug effects in both groups. Partial least squares regression showed alcohol-induced changes in mood/drug effects were associated with changes in thalamic FCD in both groups. Disruptions in motor function were associated with increases in cerebellar FCD in NM and thalamus FCD in HD. Alcohol-induced declines in cognitive performance were associated with connectivity increases in visual cortex and thalamus in NM, but in HD, increases in precuneus FCD were associated with improved cognitive performance. Acute alcohol reduced “neurocognitive coupling”, the association between behavioral performance and FCD (indexing brain activity), an effect that was accentuated in HD compared to NM. Findings suggest that reduced cortical connectivity in HD contribute to decline in cognitive abilities associated with heavy alcohol consumption, whereas increased cerebellar connectivity in HD may have compensatory effects on behavioral performance. The results reveal how drinking history alters the association between brain functional connectivity density and individual differences in behavioral performance. PMID:27021821

  11. Minimal changes of thyroid axis activity influence brain functions in young females affected by subclinical hypothyroidism.

    PubMed

    Menicucci, D; Sebastiani, L; Comparini, A; Pingitore, A; Ghelarducci, B; L'Abbate, A; Iervasi, G; Gemignani, A

    2013-03-01

    There is evidence of an association between thyroid hormones (TH) alterations and mental dysfunctions related to procedural and working memory functions, but the physiological link between these domains is still under debate, also for the presence of age as a confounding factor. Thus, we investigated the TH tuning of cerebral functions in young females affected by the borderline condition of subclinical hypothyroidism (SH) and in euthyroid females of the same age. The experiment consisted in the characterization of the affective state and cognitive abilities of the subjects by means of specific neuropsychological questionnaires, and of brain activity (EEG) in resting state and during the passive viewing of emotional video-clips. We found that SH had i) increased anxiety for Physical Danger; ii) better scores for both Mental Control and no-working-memory-related functions; iii) association between anxiety for Physical Danger and fT4 levels. Thus, in young adults, SH increases inward attention and paradoxically improves some cognitive functions. In addition, self-assessed questionnaires showed that SH had a greater susceptibility to unpleasant emotional stimulation. As for EEG data, SH compared to controls showed: i) reduction of alpha activity and of gamma left lateralization in resting state; ii) increased, and lateralized to the right, beta2 activity during stimulations. Both results indicated that SH have higher levels of arousal and greater susceptibility to negative emotion than controls. In conclusion, our study indicates that minimal changes in TH levels produce subtle but well-defined mental changes, thus encouraging further studies for the prediction of pathology evolution.

  12. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Aquaporin-1 (AQP1) has been associated with tumor development. Here, we investigated how AQP1 may affect cell proliferation. The proliferative rate of adult carotid body (CB) cells, known to proliferate under chronic hypoxia, was analyzed in wild-type (AQP1(+/+) ) and knock out (AQP1(-/-) ) mice, maintained in normoxia or exposed to hypoxia while BrdU was administered. Fewer numbers of total BrdU(+) and TH-BrdU(+) cells were observed in AQP1(-/-) mice, indicating a role for AQP1 in CB proliferation. Then, by flow cytometry, cell cycle state and proliferation of cells overexpressing AQP1 were compared to those of wild-type cells. In the AQP1-overexpressing cells, we observed higher cell proliferation and percentages of cells in phases S and G2/M and fewer apoptotic cells after nocodazole treatment were detected by annexin V staining. Also in these cells, proteomic assays showed higher expression of cyclin D1 and E1 and microarray analysis revealed changes in many cell proliferation-related molecules, including, Zeb 2, Jun, NF-kβ, Cxcl9, Cxcl10, TNF, and the TNF receptor. Overall, our results indicate that the presence of AQP1 modifies the expression of key cell cycle proteins apparently related to increases in cell proliferation. This contributes to explaining the presence of AQP1 in many different tumors.

  13. Functional Connectivity under Anticipation of Shock: Correlates of Trait Anxious Affect versus Induced Anxiety.

    PubMed

    Bijsterbosch, Janine; Smith, Stephen; Bishop, Sonia J

    2015-09-01

    Sustained anxiety about potential future negative events is an important feature of anxiety disorders. In this study, we used a novel anticipation of shock paradigm to investigate individual differences in functional connectivity during prolonged threat of shock. We examined the correlates of between-participant differences in trait anxious affect and induced anxiety, where the latter reflects changes in self-reported anxiety resulting from the shock manipulation. Dissociable effects of trait anxious affect and induced anxiety were observed. Participants with high scores on a latent dimension of anxious affect showed less increase in ventromedial pFC-amygdala connectivity between periods of safety and shock anticipation. Meanwhile, lower levels of induced anxiety were linked to greater augmentation of dorsolateral pFC-anterior insula connectivity during shock anticipation. These findings suggest that ventromedial pFC-amygdala and dorsolateral pFC-insula networks might both contribute to regulation of sustained fear responses, with their recruitment varying independently across participants. The former might reflect an evolutionarily old mechanism for reducing fear or anxiety, whereas the latter might reflect a complementary mechanism by which cognitive control can be implemented to diminish fear responses generated due to anticipation of aversive stimuli or events. These two circuits might provide complementary, alternate targets for exploration in future pharmacological and cognitive intervention studies.

  14. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    SciTech Connect

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blueher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  15. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis

    PubMed Central

    Kapoor, Sanjay

    2013-01-01

    Rice MADS29 has recently been reported to cause programmed cell death of maternal tissues, the nucellus, and the nucellar projection during early stages of seed development. However, analyses involving OsMADS29 protein expression domains and characterization of OsMADS29 gain-of-function and knockdown phenotypes revealed novel aspects of its function in maintaining hormone homeostasis, which may have a role in the development of embryo and plastid differentiation and starch filling in endosperm cells. The MADS29 transcripts accumulated to high levels soon after fertilization; however, protein accumulation was found to be delayed by at least 4 days. Immunolocalization studies revealed that the protein accumulated initially in the dorsal-vascular trace and the outer layers of endosperm, and subsequently in the embryo and aleurone and subaleurone layers of the endosperm. Ectopic expression of MADS29 resulted in a severely dwarfed phenotype, exhibiting elevated levels of cytokinin, thereby suggesting that cytokinin biosynthesis pathway could be one of the major targets of OsMADS29. Overexpression of OsMADS29 in heterologous BY2 cells was found to mimic the effects of exogenous application of cytokinins that causes differentiation of proplastids to starch-containing amyloplasts and activation of genes involved in the starch biosynthesis pathway. Suppression of MADS29 expression by RNAi severely affected seed set. The surviving seeds were smaller in size, with developmental abnormalities in the embryo and reduced size of endosperm cells, which also contained loosely packed starch granules. Microarray analysis of overexpression and knockdown lines exhibited altered expression of genes involved in plastid biogenesis, starch biosynthesis, cytokinin signalling and biosynthesis. PMID:23929654

  16. Thyroid, brain and mood modulation in affective disorder: insights from molecular research and functional brain imaging.

    PubMed

    Bauer, M; London, E D; Silverman, D H; Rasgon, N; Kirchheiner, J; Whybrow, P C

    2003-11-01

    The efficacy resulting from adjunctive use of supraphysiological doses of levothyroxine has emerged as a promising approach to therapy and prophylaxis for refractory mood disorders. Most patients with mood disorders who receive treatment with supraphysiological doses of levothyroxine have normal peripheral thyroid hormone levels, and also respond differently to the hormone and tolerate it better than healthy individuals and patients with primary thyroid diseases. Progress in molecular and functional brain imaging techniques has provided a new understanding of these phenomena, illuminating the relationship between thyroid function, mood modulation and behavior. Thyroid hormones are widely distributed in the brain and have a multitude of effects on the central nervous system. Notably many of the limbic system structures where thyroid hormone receptors are prevalent have been implicated in the pathogenesis of mood disorders. The influence of the thyroid system on neurotransmitters (particularly serotonin and norepinephrine), which putatively play a major role in the regulation of mood and behavior, may contribute to the mechanisms of mood modulation. Recent functional brain imaging studies using positron emission tomography (PET) with [ (18)F]-fluorodeoxyglucose demonstrated that thyroid hormone treatment with levothyroxine affects regional brain metabolism in patients with hypothyroidism and bipolar disorder. Theses studies confirm that thyroid hormones are active in modulating metabolic function in the mature adult brain, and provide intriging neuroanatomic clues that may guide future research.

  17. No adverse affect after harvesting of free fibula osteoseptocutaneous flaps on gait function.

    PubMed

    Maurer-Ertl, Werner; Glehr, Mathias; Friesenbichler, Joerg; Sadoghi, Patrick; Wiedner, Maria; Haas, Franz; Leithner, Andreas; Windhager, Reinhard; Zwick, Ernst B

    2012-07-01

    The aim of this study was to analyze gait function and muscular strength on donor site after harvesting of a vascularized fibula osteoseptocutaneous flap. Nine patients with a mean follow-up of 33 months (range, 7-59) and a mean resection length of the middle portion of the fibula of 18.0 cm (range, 14.0-23.0) underwent an instrumented three-dimensional gait analysis to evaluate gait function. Furthermore, CYBEX II extremity system was used for muscular strength measurements. Subjective muscle strength measurements were performed according to Kendall et al. and were classified according to the British Medical Research Council. Intraindividual comparison between the operated and the nonoperated leg revealed no significant differences for gait function parameters (cadence, velocity, and stride length, P > 1.00) and for muscular strength measurements for flexion (knee: P = 0.93, ankle: P = 0.54) and extension (knee: P = 0.97, ankle: P= 0.21), respectively. In conclusion, intraindividual comparison of the operated and nonoperated sides after harvesting of the middle portion of the fibula for gaining a free fibula osteoseptocutaneous flap has no adverse affect on gait function or muscular flexion and extension strength on donor site at a mean follow-up of 33 months.

  18. Light availability affects stream biofilm bacterial community composition and function, but not diversity

    PubMed Central

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R.; Battin, Tom J.

    2015-01-01

    Summary Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s−1 m−2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911

  19. Dynamic changes in brain activations and functional connectivity during affectively different tactile stimuli.

    PubMed

    Hua, Qing-Ping; Zeng, Xiang-Zhu; Liu, Jian-Yu; Wang, Jin-Yan; Guo, Jian-You; Luo, Fei

    2008-01-01

    In the present study, we compared brain activations produced by pleasant, neutral and unpleasant touch, to the anterior lateral surface of lower leg of human subjects. It was found that several brain regions, including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), as well as contralateral middle and posterior insula cortex were commonly activated under the three touch conditions. In addition, pleasant and unpleasant touch conditions shared a few brain regions including the contralateral posterior parietal cortex (PPC) and bilateral premotor cortex (PMC). Unpleasant touch specifically activated a set of pain-related brain regions such as contralateral supplementary motor area (SMA) and dorsal parts of bilateral anterior cingulated cortex, etc. Brain regions specifically activated by pleasant touch comprised bilateral lateral orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), intraparietal cortex and left dorsal lateral prefrontal cortex (DLPFC). Using a novel functional connectivity model based on graph theory, we showed that a series of brain regions related to affectively different touch had significant functional connectivity during the resting state. Furthermore, it was found that such a network can be modulated between affectively different touch conditions.

  20. Attachment style predicts affect, cognitive appraisals, and social functioning in daily life.

    PubMed

    Sheinbaum, Tamara; Kwapil, Thomas R; Ballespí, Sergi; Mitjavila, Mercè; Chun, Charlotte A; Silvia, Paul J; Barrantes-Vidal, Neus

    2015-01-01

    The way in which attachment styles are expressed in the moment as individuals navigate their real-life settings has remained an area largely untapped by attachment research. The present study examined how adult attachment styles are expressed in daily life using experience sampling methodology (ESM) in a sample of 206 Spanish young adults. Participants were administered the Attachment Style Interview (ASI) and received personal digital assistants that signaled them randomly eight times per day for 1 week to complete questionnaires about their current experiences and social context. As hypothesized, participants' momentary affective states, cognitive appraisals, and social functioning varied in meaningful ways as a function of their attachment style. Individuals with an anxious attachment, as compared with securely attached individuals, endorsed experiences that were congruent with hyperactivating tendencies, such as higher negative affect, stress, and perceived social rejection. By contrast, individuals with an avoidant attachment, relative to individuals with a secure attachment, endorsed experiences that were consistent with deactivating tendencies, such as decreased positive states and a decreased desire to be with others when alone. Furthermore, the expression of attachment styles in social contexts was shown to be dependent upon the subjective appraisal of the closeness of social contacts, and not merely upon the presence of social interactions. The findings support the ecological validity of the ASI and the person-by-situation character of attachment theory. Moreover, they highlight the utility of ESM for investigating how the predictions derived from attachment theory play out in the natural flow of real life.

  1. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  2. Attachment style predicts affect, cognitive appraisals, and social functioning in daily life

    PubMed Central

    Sheinbaum, Tamara; Kwapil, Thomas R.; Ballespí, Sergi; Mitjavila, Mercè; Chun, Charlotte A.; Silvia, Paul J.; Barrantes-Vidal, Neus

    2015-01-01

    The way in which attachment styles are expressed in the moment as individuals navigate their real-life settings has remained an area largely untapped by attachment research. The present study examined how adult attachment styles are expressed in daily life using experience sampling methodology (ESM) in a sample of 206 Spanish young adults. Participants were administered the Attachment Style Interview (ASI) and received personal digital assistants that signaled them randomly eight times per day for 1 week to complete questionnaires about their current experiences and social context. As hypothesized, participants’ momentary affective states, cognitive appraisals, and social functioning varied in meaningful ways as a function of their attachment style. Individuals with an anxious attachment, as compared with securely attached individuals, endorsed experiences that were congruent with hyperactivating tendencies, such as higher negative affect, stress, and perceived social rejection. By contrast, individuals with an avoidant attachment, relative to individuals with a secure attachment, endorsed experiences that were consistent with deactivating tendencies, such as decreased positive states and a decreased desire to be with others when alone. Furthermore, the expression of attachment styles in social contexts was shown to be dependent upon the subjective appraisal of the closeness of social contacts, and not merely upon the presence of social interactions. The findings support the ecological validity of the ASI and the person-by-situation character of attachment theory. Moreover, they highlight the utility of ESM for investigating how the predictions derived from attachment theory play out in the natural flow of real life. PMID:25852613

  3. Mechanisms of T regulatory cell function.

    PubMed

    Askenasy, Nadir; Kaminitz, Ayelet; Yarkoni, Shai

    2008-05-01

    Regulatory T cells (Treg) play a pivotal role in tolerance to self-antigens and tissue grafts, and suppression of autoimmune reactions. These cells modulate the intensity and quality of immune reactions through attenuation of the cytolytic activities of reactive immune cells. Treg cells operate primarily at the site of inflammation where they modulate the immune reaction through three major mechanisms: a) direct killing of cytotoxic cells through cell-to-cell contact, b) inhibition of cytokine production by cytotoxic cells, in particular interleukin-2, c) direct secretion of immunomodulatory cytokines, in particular TGF-beta and interleukin-10. In addition to differential contributions of these mechanisms under variable inflammatory conditions, mechanistic complexity and diversity evolves from the diverse tasks performed by various Treg cell subsets in different stages of the immune reaction. Here we attempt to integrate the current experimental evidence to delineate the major suppressive pathways of Treg cells.

  4. Poly(Dimethylsiloxane) (PDMS) Affects Gene Expression in PC12 Cells Differentiating into Neuronal-Like Cells

    PubMed Central

    Łopacińska, Joanna M.; Emnéus, Jenny; Dufva, Martin

    2013-01-01

    Introduction Microfluidics systems usually consist of materials like PMMA - poly(methyl methacrylate) and PDMS - poly(dimethylsiloxane) and not polystyrene (PS), which is usually used for cell culture. Cellular and molecular responses in cells grown on PS are well characterized due to decades of accumulated research. In contrast, the experience base is limited for materials used in microfludics chip fabrication. Methods The effect of different materials (PS, PMMA and perforated PMMA with a piece of PDMS underneath) on the growth and differentiation of PC12 (adrenal phaeochromocytoma) cells into neuronal-like cells was investigated using cell viability, cell cycle distribution, morphology, and gene expression analysis. Results/Conclusions After differentiation, the morphology, viability and cell cycle distribution of PC12 cells grown on PS, PMMA with and without PDMS underneath was the same. By contrast, 41 genes showed different expression for PC12 cells differentiating on PMMA as compared to on PS. In contrast, 677 genes showed different expression on PMMA with PDMS underneath as compared with PC12 cells on PS. The differentially expressed genes are involved in neuronal cell development and function. However, there were also many markers for neuronal cell development and functions that were expressed similarly in cells differentiating on PS, PMMA and PMMA with PDMS underneath. In conclusion, it was shown that PMMA has a minor impact and PDMS a major impact on gene expression in PC12 cells. PMID:23301028

  5. The association between the body composition and lifestyle affecting pulmonary function in Japanese workers

    PubMed Central

    Inomoto, Atsushi; Fukuda, Rika; Deguchi, Junko; Kato, Gohei; Kanzaki, Ryoko; Hiroshige, Keiichi; Nakamura, Kouichi; Nakano, Keisuke; Toyonaga, Toshihiro

    2016-01-01

    [Purpose] The purpose of this study was to identify factors related to physical characteristics and lifestyle that affect pulmonary function. [Subjects and Methods] Ninety seven healthy male workers were recruited for this study, and basic information and details about lifestyle were collected. Body composition analyzer and visceral fat measuring device were conducted as measurements. Pulmonary function was measured using spirometer. A multiple stepwise linear regression analysis was performed with pulmonary function as the dependent variable. Variables with a significant association with pulmonary function on univariate analysis were imputed as independent variables. [Results] Height, fat free mass, upper extremity muscle mass, lower extremity muscle mass, and trunk muscle mass had significant positive correlations with FEV1 and FVC. Age, percentage of body fat, and visceral fat area were negatively correlated with FEV1 and FVC. Regarding the association between pulmonary function and lifestyle, a significant difference was found between the smoking index and the presence or absence of metabolic syndrome risk factors and both FEV1 and FVC. The multiple stepwise linear regression analysis with FEV1 as the dependent variable, adjusted for age and height, revealed that visceral fat area and fat free mass were significantly associated with FEV1. A similar analysis, FVC as the dependent variable identified visceral fat area. [Conclusion] FEV1 was independently associated with visceral fat area and fat free mass. FVC was independently associated with visceral fat area. These results may be valuable in preventing the decrease in respiratory function and, hence, in further preventing the onset of COPD. PMID:27821955

  6. Novel single-cell functional analysis of red blood cells using laser tweezers Raman spectroscopy: application for sickle cell disease.

    PubMed

    Liu, Rui; Mao, Ziliang; Matthews, Dennis L; Li, Chin-Shang; Chan, James W; Satake, Noriko

    2013-07-01

    Laser tweezers Raman spectroscopy was used to characterize the oxygenation response of single normal adult, sickle, and cord blood red blood cells (RBCs) to an applied mechanical force. Individual cells were subjected to different forces by varying the laser power of a single-beam optical trap, and the intensities of several oxygenation-specific Raman spectral peaks were monitored to determine the oxygenation state of the cells. For all three cell types, an increase in laser power (or mechanical force) induced a greater deoxygenation of the cell. However, sickle RBCs deoxygenated more readily than normal RBCs when subjected to the same optical forces. Conversely, cord blood RBCs were able to maintain their oxygenation better than normal RBCs. These results suggest that differences in the chemical or mechanical properties of fetal, normal, and sickle cells affect the degree to which applied mechanical forces can deoxygenate the cell. Populations of normal, sickle, and cord RBCs were identified and discriminated based on this mechanochemical phenomenon. This study demonstrates the potential application of laser tweezers Raman spectroscopy as a single-cell, label-free analytical tool to characterize the functional (e.g., mechanical deformability, oxygen binding) properties of normal and diseased RBCs.

  7. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  8. Citrus limon extract: possible inhibitory mechanisms affecting testicular functions and fertility in male mice.

    PubMed

    Singh, Nidhi; Singh, Shio Kumar

    2016-01-01

    The effect of oral administration of 50% ethanolic leaf extract of Citrus limon (500 and 1,000 mg/kg body weight/day) for 35 days on fertility and various male reproductive endpoints was evaluated in Parkes strain of mice. Testicular indices such as histology, 3β- and 17β-HSD enzymes activity, immunoblot expression of StAR and P450scc, and germ cell apoptosis by TUNEL and CASP- 3 expression were assessed. Motility, viability, and number of spermatozoa in the cauda epididymidis, level of serum testosterone, fertility indices, and toxicological parameters were also evaluated. Histologically, testes in extract-treated mice showed nonuniform degenerative changes in the seminiferous tubules. Treatment had adverse effects on steroidogenic markers in the testis and induced germ cell apoptosis. Significant reductions were noted in epididymal sperm parameters and serum level of testosterone in Citrus-treated mice compared to controls. Fertility of the extract-treated males was also suppressed, but libido remained unaffected. By 56 days of treatment withdrawal, alterations induced in the above parameters returned to control levels suggesting that Citrus treatment causes reversible suppression of spermatogenesis and fertility in Parkes mice. Suppression of spermatogenesis may result from germ cell apoptosis because of decreased production of testosterone. The present work indicated that Citrus leaves can affect male reproduction.

  9. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.

    PubMed

    Floriddia, Elisa M; Rathore, Khizr I; Tedeschi, Andrea; Quadrato, Giorgia; Wuttke, Anja; Lueckmann, Jan-Matthis; Kigerl, Kristina A; Popovich, Phillip G; Di Giovanni, Simone

    2012-10-03

    Following spinal trauma, the limited physiological axonal sprouting that contributes to partial recovery of function is dependent upon the intrinsic properties of neurons as well as the inhibitory glial environment. The transcription factor p53 is involved in DNA repair, cell cycle, cell survival, and axonal outgrowth, suggesting p53 as key modifier of axonal and glial responses influencing functional recovery following spinal injury. Indeed, in a spinal cord dorsal hemisection injury model, we observed a significant impairment in locomotor recovery in p53(-/-) versus wild-type mice. p53(-/-) spinal cords showed an increased number of activated microglia/macrophages and a larger scar at the lesion site. Loss- and gain-of-function experiments suggested p53 as a direct regulator of microglia/macrophages proliferation. At the axonal level, p53(-/-) mice showed a more pronounced dieback of the corticospinal tract (CST) and a decreased sprouting capacity of both CST and spinal serotoninergic fibers. In vivo expression of p53 in the sensorimotor cortex rescued and enhanced the sprouting potential of the CST in p53(-/-) mice, while, similarly, p53 expression in p53(-/-) cultured cortical neurons rescued a defect in neurite outgrowth, suggesting a direct role for p53 in regulating the intrinsic sprouting ability of CNS neurons. In conclusion, we show that p53 plays an important regulatory role at both extrinsic and intrinsic levels affecting the recovery of motor function following spinal cord injury. Therefore, we propose p53 as a novel potential multilevel therapeutic target for spinal cord injury.

  10. Endogenous opioid peptides in regulation of innate immunity cell functions.

    PubMed

    Gein, S V; Baeva, T A

    2011-03-01

    Endogenous opioid peptides comprise a group of bioregulatory factors involved in regulation of functional activity of various physiological systems of an organism. One of most important functions of endogenous opioids is their involvement in the interaction between cells of the nervous and immune systems. Summary data on the effects of opioid peptides on regulation of functions of innate immunity cells are presented.

  11. Realistic changes in seaweed biodiversity affect multiple ecosystem functions on a rocky shore.

    PubMed

    Bracken, Matthew E S; Williams, Susan L

    2013-09-01

    Given current threats to biodiversity, understanding the effects of diversity changes on the functions and services associated with intact ecosystems is of paramount importance. However, limited realism in most biodiversity studies makes it difficult to link the large and growing body of evidence for important functional consequences of biodiversity change to real-world losses of biodiversity. Here, we explored two methods of incorporating realism into biodiversity research: (1) the use of two-, five-, and eight-species assemblages that mimicked those that we observed in surveys of seaweed biodiversity patterns on a northern California (USA) rocky shore and the explicit comparison of those assemblages to random assemblages compiled from the same local species pool; and (2) the measurement of two fundamental ecosystem functions, nitrate uptake and photosynthesis, both of which contribute to growth of primary producers. Specifically, we measured nitrate uptake rates of seaweed assemblages as a function of initial nitrate concentrations and photosynthetic rates as a function of irradiance levels for both realistic and random assemblages of seaweeds. We only observed changes in ecosystem functioning along a richness gradient for realistic assemblages, and both maximum nitrate uptake rates (V(max)) and photosynthetic light use efficiency values (alpha(p) = P(max)/I(K)) were higher in realistic assemblages than in random assemblages. Furthermore, the parameter affected by changes in richness depended on the function being measured. Both V(max) and alpha(p) declined with increasing richness in nonrandom assemblages due to a combination of species identity effects (for V(max) and overyielding effects (for both V(max) and alpha(p)). In contrast, neither nitrate uptake efficiency values (alpha(N) = V(max)/K(s)), nor maximum photosynthetic rates (Pmax) changed along the gradient in seaweed species richness. Furthermore, overyielding was only evident in realistic assemblages

  12. Loss of LORELEI function in the pistil delays initiation but does not affect embryo development in Arabidopsis thaliana.

    PubMed

    Tsukamoto, Tatsuya; Palanivelu, Ravishankar

    2010-11-01

    Double fertilization, uniquely observed in plants, requires successful sperm cell delivery by the pollen tube to the female gametophyte, followed by migration, recognition and fusion of the two sperm cells with two female gametic cells. The female gametophyte not only regulates these steps but also controls the subsequent initiation of seed development. Previously, we reported that loss of LORELEI, which encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein, in the female reproductive tissues causes a delay in initiation of seed development. From these studies, however, it was unclear if embryos derived from fertilization of lre-5 gametophytes continued to lag behind wild type during seed development. Additionally, it was not determined if the delay in initiation of seed development had any lingering effects during seed germination. Finally, it was not known if loss of LORELEI function affects seedling development given that LORELEI is expressed in eight-day-old seedlings. Here, we showed that despite a delay in initiation, lre-5/lre-5 embryos recover, becoming equivalent to the developing wild-type embryos beginning at 72 hours after pollination. Additionally, lre-5/lre-5 seed germination, and seedling and root development are indistinguishable from wild type indicating that loss of LORELEI is tolerated, at least under standard growth conditions, in vegetative tissues.

  13. Loss of LORELEI function in the pistil delays initiation but does not affect embryo development in Arabidopsis thaliana

    PubMed Central

    Tsukamoto, Tatsuya

    2010-01-01

    Double fertilization, uniquely observed in plants, requires successful sperm cell delivery by the pollen tube to the female gametophyte, followed by migration, recognition and fusion of the two sperm cells with two female gametic cells. The female gametophyte not only regulates these steps but also controls the subsequent initiation of seed development. Previously, we reported that loss of LORELEI, which encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein, in the female reproductive tissues causes a delay in initiation of seed development. From these studies, however, it was unclear if embryos derived from fertilization of lre-5 gametophytes continued to lag behind wild-type during seed development. Additionally, it was not determined if the delay in initiation of seed development had any lingering effects during seed germination. Finally, it was not known if loss of LORELEI function affects seedling development given that LORELEI is expressed in eight-day-old seedlings. Here, we showed that despite a delay in initiation, lre-5/lre-5 embryos recover, becoming equivalent to the developing wild-type embryos beginning at 72 hours after pollination. Additionally, lre-5/lre-5 seed germination, and seedling and root development are indistinguishable from wild-type indicating that loss of LORELEI is tolerated, at least under standard growth conditions, in vegetative tissues. PMID:21051955

  14. The NK Cell Response to Mouse Cytomegalovirus Infection Affects the Level and Kinetics of the Early CD8+ T-Cell Response

    PubMed Central

    Mitrović, Maja; Arapović, Jurica; Jordan, Stefan; Fodil-Cornu, Nassima; Ebert, Stefan; Vidal, Silvia M.; Krmpotić, Astrid; Reddehase, Matthias J.

    2012-01-01

    Natural killer (NK) cells and CD8+ T cells play a prominent role in the clearance of mouse cytomegalovirus (MCMV) infection. The role of NK cells in modulating the CD8+ T-cell response to MCMV infection is still the subject of intensive research. For analyzing the impact of NK cells on mounting of a CD8+ T-cell response and the contribution of these cells to virus control during the first days postinfection (p.i.), we used C57BL/6 mice in which NK cells are specifically activated through the Ly49H receptor engaged by the MCMV-encoded ligand m157. Our results indicate that the requirement for CD8+ T cells in early MCMV control inversely correlates with the engagement of Ly49H. While depletion of CD8+ T cells has only a minor effect on the early control of wild-type MCMV, CD8+ T cells are essential in the control of Δm157 virus. The frequencies of virus epitope-specific CD8+ T cells and their activation status were higher in mice infected with Δm157 virus. In addition, these mice showed elevated levels of alpha interferon (IFN-α) and several other proinflammatory cytokines as early as 1.5 days p.i. Although the numbers of conventional dendritic cells (cDCs) were reduced later during infection, particularly in Δm157-infected mice, they were not significantly affected at the peak of the cytokine response. Altogether, we concluded that increased antigen load, preservation of early cDCs' function, and higher levels of innate cytokines collectively account for an enhanced CD8+ T-cell response in C57BL/6 mice infected with a virus unable to activate NK cells via the Ly49H–m157 interaction. PMID:22156533

  15. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    PubMed

    Zaller, Johann G; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2)). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  16. Alcohol affects brain functional connectivity and its coupling with behavior: greater effects in male heavy drinkers.

    PubMed

    Shokri-Kojori, E; Tomasi, D; Wiers, C E; Wang, G-J; Volkow, N D

    2016-03-29

    Acute and chronic alcohol exposure significantly affect behavior but the underlying neurobiological mechanisms are still poorly understood. Here, we used functional connectivity density (FCD) mapping to study alcohol-related changes in resting brain activity and their association with behavior. Heavy drinkers (HD, N=16, 16 males) and normal controls (NM, N=24, 14 males) were tested after placebo and after acute alcohol administration. Group comparisons showed that NM had higher FCD in visual and prefrontal cortices, default mode network regions and thalamus, while HD had higher FCD in cerebellum. Acute alcohol significantly increased FCD within the thalamus, impaired cognitive and motor functions, and affected self-reports of mood/drug effects in both groups. Partial least squares regression showed that alcohol-induced changes in mood/drug effects were associated with changes in thalamic FCD in both groups. Disruptions in motor function were associated with increases in cerebellar FCD in NM and thalamus FCD in HD. Alcohol-induced declines in cognitive performance were associated with connectivity increases in visual cortex and thalamus in NM, but in HD, increases in precuneus FCD were associated with improved cognitive performance. Acute alcohol reduced 'neurocognitive coupling', the association between behavioral performance and FCD (indexing brain activity), an effect that was accentuated in HD compared with NM. Findings suggest that reduced cortical connectivity in HD contribute to decline in cognitive abilities associated with heavy alcohol consumption, whereas increased cerebellar connectivity in HD may have compensatory effects on behavioral performance. The results reveal how drinking history alters the association between brain FCD and individual differences in behavioral performance.Molecular Psychiatry advance online publication, 29 March 2016; doi:10.1038/mp.2016.25.

  17. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    SciTech Connect

    Rauner, Gat; Barash, Itamar

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  18. FAK and HAS Inhibition Synergistically Decrease Colon Cancer Cell Viability and Affect Expression of Critical Genes

    PubMed Central

    Heffler, Melissa; Golubovskaya, Vita; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William; Dunn, Kelli B.

    2013-01-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p<0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p<0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heat-shock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways. PMID:22934709

  19. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes.

    PubMed

    Heffler, Melissa; Golubovskaya, Vita M; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G; Dunn, Kelli B

    2013-05-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways.

  20. Ultraviolet irradiation of platelet concentrate abrogates lymphocyte activation without affecting platelet function in vitro

    SciTech Connect

    Kahn, R.A.; Duffy, B.F.; Rodey, G.G.

    1985-11-01

    We studied the effect of ultraviolet (UV) radiation on platelet concentrates. Samples irradiated at 310 mm for 30 minutes at a dose of 1782 J per m2 showed no loss of platelet function in vitro as determined by adenosine diphosphate, collagen, or ristocetin-induced aggregation. Lymphocytes isolated from irradiated units were unable to act as responders or stimulators in a mixed-lymphocyte reaction. These data suggest that UV radiation of platelet concentrates may result in a cell suspension that is unable to evoke an immunological response.

  1. Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function.

    PubMed

    Schedel, Angelika; Kaiser, Kerstin; Uhlig, Stefanie; Lorenz, Florian; Sarin, Anip; Starigk, Julian; Hassmann, Dennis; Bieback, Karen; Bugert, Peter

    2016-01-01

    In our previous investigations we have shown that platelets and their precursors express nicotinic α7 acetylcholine receptors (nAChRα7) that are involved in platelet function and in vitro differentiation of the megakaryoblastic cell line MEG-01. In this study, we were interested in the expression analysis of additional nAChR and the effects of nicotine in an ex vivo model using megakaryocytic cells differentiated from cord blood derived CD34(+) cells (CBMK) and an in vivo model using blood samples from smokers. CBMK were differentiated with thrombopoietin (TPO) for up to 17 days. Quantitative real-time PCR (QRT-PCR), Western blot analysis and flow cytometry were used to investigate nAChR expression (nAChRα7, nAChRα4, nAChRβ2) and nicotine effects. In blood samples of 15 nonsmokers and 16 smokers platelet parameters (count, mean platelet volume--MPV and platelet distribution width--PDW) were determined as indicators for changes of in vivo megakaryopoiesis. Platelet function was determined by the use of whole blood aggregometry and flow cytometry. The functional role of nAChR was evaluated using specific antagonists in aggregometry. CHRNA7, CHRNA4 and CHRNB2 gene transcripts and the corresponding proteins could be identified in CBMK during all stages of differentiation. Platelets contain nAChRα7 and nAChRβ2 but not nAChRα4. Nicotine had no effect on TPO-induced differentiation of CBMK. There was no significant difference in all platelet parameters of the smokers compared to the nonsmokers. In line with this, cholinergic gene transcripts as well as the encoded proteins were equally expressed in both the study groups. Despite our observation of nAChR expression in megakaryopoiesis and platelets, we were not able to detect effects of nicotine in our ex vivo and in vivo models. Thus, the functional role of the nAChR in these cells remains open.

  2. AZFc deletions do not affect the function of human spermatogonia in vitro.

    PubMed

    Nickkholgh, B; Korver, C M; van Daalen, S K M; van Pelt, A M M; Repping, S

    2015-07-01

    Azoospermic factor c (AZFc) deletions are the underlying cause in 10% of azoo- or severe oligozoospermia. Through extensive molecular analysis the precise genetic content of the AZFc region and the origin of its deletion have been determined. However, little is known about the effect of AZFc deletions on the functionality of germ cells at various developmental steps. The presence of normal, fertilization-competent sperm in the ejaculate and/or testis of the majority of men with AZFc deletions suggests that the process of differentiation from spermatogonial stem cells (SSCs) to mature spermatozoa can take place in the absence of the AZFc region. To determine the functionality of AZFc-deleted spermatogonia, we compared in vitro propagated spermatogonia from six men with complete AZFc deletions with spermatogonia from three normozoospermic controls. We found that spermatogonia of AZFc-deleted men behave similar to controls during culture. Short-term (18 days) and long-term (48 days) culture of AZFc-deleted spermatogonia showed the same characteristics as non-deleted spermatogonia. This similarity was revealed by the same number of passages, the same germ cell clusters formation and similar level of genes expression of spermatogonial markers including ubiquitin carboxyl-terminal esterase L1 (UCHL1), zinc finger and BTB domain containing 16 (ZBTB16) and glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRA1), as well as germ cell differentiation markers including signal transducer and activator of transcription 3 (STAT3), spermatogenesis and oogenesis specific basic helix-loophelix 2 (SOHLH2), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) and synaptonemal complex protein 3 (SYCP3). The only exception was melanoma antigen family A4 (MAGEA4) which showed significantly lower expression in AZFc-deleted samples than controls in short-term culture while in long-term culture it was hardly detected in both AZFc-deleted and control

  3. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  4. Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms.

    PubMed

    Bonkowski, Michael; Roy, Jacques

    2005-03-01

    A gradient of microbial diversity in soil was established by inoculating pasteurized soil with microbial populations of different complexity, which were obtained by a combination of soil fumigation and filtering techniques. Four different soil diversity treatments were planted with six different grass species either in monoculture or in polyculture to test how changes of general microbial functions, such as catabolic diversity and nutrient recycling efficiency would affect the performance of the plant communities. Relatively harsh soil treatments were necessary to elicit visible effects on major soil processes such as decomposition and nitrogen cycling due to the high redundancy and resilience of soil microbial communities. The strongest effects of soil diversity manipulations on plant growth occurred in polycultures where interspecific competition between plants was high. In polycultures, soil diversity reduction led to a gradual, linear decline in biomass production of one subordinate grass species (Bromus hordeaceus), which was compensated by increased growth of two intermediate competitors (Aegilops geniculata, B. madritensis). This negative covariance in growth of competing grass species smoothed the effects of soil diversity manipulations at the plant community level. As a result, total shoot biomass production remained constant. Apparently the effects of soil diversity manipulations were buffered because functional redundancy at both, the microbial and the plant community level complemented each other. The results further suggests that small trade-offs in plant fitness due to general functional shifts at the microbial level can be significant for the outcome of competition in plant communities and thus diversity at much larger scales.

  5. Proliferation of Purple Sulphur Bacteria at the Sediment Surface Affects Intertidal Mat Diversity and Functionality

    PubMed Central

    Hubas, Cédric; Jesus, Bruno; Ruivo, Mickael; Meziane, Tarik; Thiney, Najet; Davoult, Dominique; Spilmont, Nicolas; Paterson, David M.; Jeanthon, Christian

    2013-01-01

    There is a relative absence of studies dealing with mats of purple sulphur bacteria in the intertidal zone. These bacteria display an array of metabolic pathways that allow them to disperse and develop under a wide variety of conditions, making these mats important in terms of ecosystem processes and functions. Mass blooms of purple sulphur bacteria develop during summer on sediments in the intertidal zone especially on macroalgal deposits. The microbial composition of different types of mats differentially affected by the development of purple sulphur bacteria was examined, at low tide, using a set of biochemical markers (fatty acids, pigments) and composition was assessed against their influence on ecosystem functions (sediment cohesiveness, CO2 fixation). We demonstrated that proliferation of purple sulphur bacteria has a major impact on intertidal mats diversity and functions. Indeed, assemblages dominated by purple sulphur bacteria (Chromatiaceae) were efficient exopolymer producers and their biostabilisation potential was significant. In addition, the massive growth of purple sulphur bacteria resulted in a net CO2 degassing whereas diatom dominated biofilms represented a net CO2 sink. PMID:24340018

  6. Functional groups affect physical and biological properties of dextran-based hydrogels.

    PubMed

    Sun, Guoming; Shen, Yu-I; Ho, Chia Chi; Kusuma, Sravanti; Gerecht, Sharon

    2010-06-01

    Modification of dextran backbone allows the development of a hydrogel with specific characteristics. To enhance their functionality for tissue-engineered scaffolds, a series of dextran-based macromers was synthesized by incorporating various functional groups, including allyl isocyanate (Dex-AI), ethylamine (Dex-AE), chloroacetic acid (Dex-AC), or maleic-anhydride (Dex-AM) into dextrans. The dextran-based biodegradable hybrid hydrogels are developed by integrating polyethylene glycol diacrylate (PEGDA). To explore the effect of different derivatives on hydrogel properties, three different ratios of Dex/PEGDA are examined: low (20/80), medium (40/60), and high (60/40). Differences in physical and biological properties of the hydrogels are found, including swelling, degradation rate, mechanics, crosslinking density, biocompatibility (in vitro and in vivo), and vascular endothelial growth factor release. The results also indicate that the incorporation of amine groups into dextran gives rise to hydrogels with better biocompatible and release properties. We, therefore, conclude that the incorporation of different functional groups affects the fundamental properties of a dextran-based hydrogel network, and that amine groups are preferred to generate hydrogels for biomedical use.

  7. Proliferation of purple sulphur bacteria at the sediment surface affects intertidal mat diversity and functionality.

    PubMed

    Hubas, Cédric; Jesus, Bruno; Ruivo, Mickael; Meziane, Tarik; Thiney, Najet; Davoult, Dominique; Spilmont, Nicolas; Paterson, David M; Jeanthon, Christian

    2013-01-01

    There is a relative absence of studies dealing with mats of purple sulphur bacteria in the intertidal zone. These bacteria display an array of metabolic pathways that allow them to disperse and develop under a wide variety of conditions, making these mats important in terms of ecosystem processes and functions. Mass blooms of purple sulphur bacteria develop during summer on sediments in the intertidal zone especially on macroalgal deposits. The microbial composition of different types of mats differentially affected by the development of purple sulphur bacteria was examined, at low tide, using a set of biochemical markers (fatty acids, pigments) and composition was assessed against their influence on ecosystem functions (sediment cohesiveness, CO2 fixation). We demonstrated that proliferation of purple sulphur bacteria has a major impact on intertidal mats diversity and functions. Indeed, assemblages dominated by purple sulphur bacteria (Chromatiaceae) were efficient exopolymer producers and their biostabilisation potential was significant. In addition, the massive growth of purple sulphur bacteria resulted in a net CO2 degassing whereas diatom dominated biofilms represented a net CO2 sink.

  8. Aesthetic and Functional Rehabilitation of the Primary Dentition Affected by Amelogenesis Imperfecta

    PubMed Central

    Marquezin, Maria Carolina Salomé; Zancopé, Bruna Raquel; Pacheco, Larissa Ferreira; Gavião, Maria Beatriz Duarte; Pascon, Fernanda Miori

    2015-01-01

    The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child's psychosocial development. PMID:25705526

  9. Interplay between metabolic identities in the intestinal crypt supports stem cell function.

    PubMed

    Rodríguez-Colman, Maria J; Schewe, Matthias; Meerlo, Maaike; Stigter, Edwin; Gerrits, Johan; Pras-Raves, Mia; Sacchetti, Andrea; Hornsveld, Marten; Oost, Koen C; Snippert, Hugo J; Verhoeven-Duif, Nanda; Fodde, Riccardo; Burgering, Boudewijn M T

    2017-03-16

    The small intestinal epithelium self-renews every four or five days. Intestinal stem cells (Lgr5(+) crypt base columnar cells (CBCs)) sustain this renewal and reside between terminally differentiated Paneth cells at the bottom of the intestinal crypt. Whereas the signalling requirements for maintaining stem cell function and crypt homeostasis have been well studied, little is known about how metabolism contributes to epithelial homeostasis. Here we show that freshly isolated Lgr5(+) CBCs and Paneth cells from the mouse small intestine display different metabolic programs. Compared to Paneth cells, Lgr5(+) CBCs display high mitochondrial activity. Inhibition of mitochondrial activity in Lgr5(+) CBCs or inhibition of glycolysis in Paneth cells strongly affects stem cell function, as indicated by impaired organoid formation. In addition, Paneth cells support stem cell function by providing lactate to sustain the enhanced mitochondrial oxidative phosphorylation in the Lgr5(+) CBCs. Mechanistically, we show that oxidative phosphorylation stimulates p38 MAPK activation by mitochondrial reactive oxygen species signalling, thereby establishing the mature crypt phenotype. Together, our results reveal a critical role for the metabolic identity of Lgr5(+) CBCs and Paneth cells in supporting optimal stem cell function, and we identify mitochondria and reactive oxygen species signalling as a driving force of cellular differentiation.

  10. Haspin has Multiple Functions in the Plant Cell Division Regulatory Network.

    PubMed

    Kozgunova, Elena; Suzuki, Takamasa; Ito, Masaki; Higashiyama, Tetsuya; Kurihara, Daisuke

    2016-04-01

    Progression of cell division is controlled by various mitotic kinases. In animal cells, phosphorylation of histone H3 at Thr3 by the kinase Haspin (haploid germ cell-specific nuclear protein kinase) promotes centromeric Aurora B localization to regulate chromosome segregation. However, less is known about the function of Haspin in regulatory networks in plant cells. Here, we show that inhibition of Haspin with 5-iodotubercidin (5-ITu) in Bright Yellow-2 (BY-2) cells delayed chromosome alignment. Haspin inhibition also prevented the centromeric localization of Aurora3 kinase (AUR3) and disrupted its function. This suggested that Haspin plays a role in the specific positioning of AUR3 on chromosomes in plant cells, a function conserved in animals. The results also indicated that Haspin and AUR3 are involved in the same pathway, which regulates chromosome alignment during prometaphase/metaphase. Remarkably, Haspin inhibition by 5-ITu also led to a severe cytokinesis defect, resulting in binuclear cells with a partially formed cell plate. The 5-ITu treatment did not affect microtubules, AUR1/2 or the NACK-PQR pathway; however, it did alter the distribution of actin filaments on the cell plate. Together, these results suggested that Haspin has several functions in regulating cell division in plant cells: in the localization of AUR3 on centromeres and in regulating late cell plate expansion during cytokinesis.

  11. Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD.

    PubMed

    He, Qionger; Titley, Heather; Grasselli, Giorgio; Piochon, Claire; Hansel, Christian

    2013-03-01

    Ethanol profoundly influences cerebellar circuit function and motor control. It has recently been demonstrated that functional N-methyl-(D)-aspartate (NMDA) receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in the adult cerebellum. Using whole cell patch-clamp recordings from mouse cerebellar slices, we examined whether ethanol can affect NMDA receptor signaling in mature Purkinje cells. NMDA receptor-mediated currents were isolated by bath application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzol[f]quinoxaline (NBQX). The remaining (D)-2-amino-5-phosphonovaleric acid ((D)-APV)-sensitive current was reduced by ethanol at concentrations as low as 10 mM. At a concentration of 50 mM ethanol, the blockade of (D)-APV-sensitive CF-excitatory postsynaptic currents was significantly stronger. Ethanol also altered the waveform of CF-evoked complex spikes by reducing the afterdepolarization. This effect was not seen when NMDA receptors were blocked by (D)-APV before ethanol wash-in. In contrast to CF synaptic transmission, parallel fiber (PF) synaptic inputs were not affected by ethanol. Finally, ethanol (10 mM) impaired long-term depression (LTD) at PF to Purkinje cell synapses as induced under control conditions by paired PF and CF activity. However, LTD induced by pairing PF stimulation with depolarizing voltage steps (substituting for CF activation) was not blocked by ethanol. These observations suggest that the sensitivity of cerebellar circuit function and plasticity to low concentrations of ethanol may be caused by an ethanol-mediated impairment of NMDA receptor signaling at CF synapses onto cerebellar Purkinje cells.

  12. Colicin Killing: Foiled Cell Defense and Hijacked Cell Functions

    NASA Astrophysics Data System (ADS)

    de Zamaroczy, Miklos; Chauleau, Mathieu

    , which help to advance our understanding of the molecular events governing colicin import. In particular, our review includes the following: (1) Structural data on the tripartite interaction of a colicin with the outer membrane receptor and the translocation machinery, (2) Comparison of the normal cellular functions of the Tol and Ton systems of the inner membrane with their "hijacked" roles during colicin import, (3) An analysis of the interaction of a nuclease-type colicin with its cognate immunity protein in the context of the immunity of producer cells, and of the dissociation of this complex in the context of the attack of the colicin on target cells, (4) Information on the endoproteolytic cleavage, which presumably accompanies the penetration of nuclease-type colicins into the cytoplasm. The new data presented here provides further insight into cellular functions "hijacked" or "borrowed" by colicins to permit their entry into target cells.

  13. The Tumorigenicity of Multipotent Adult Germline Stem Cells Transplanted into the Heart Is Affected by Natural Killer Cells and by Cyclosporine A Independent of Its Immunosuppressive Effects

    PubMed Central

    Hübscher, Daniela; Kaiser, Diana; Elsner, Leslie; Monecke, Sebastian; Dressel, Ralf; Guan, Kaomei

    2017-01-01

    Transplantation of stem cells represents an upcoming therapy for many degenerative diseases. For clinical use, transplantation of pluripotent stem cell-derived cells should lead to integration of functional grafts without immune rejection or teratoma formation. Our previous studies showed that the risk of teratoma formation is highly influenced by the immune system of the recipients. In this study, we have observed a higher teratoma formation rate when undifferentiated so-called multipotent adult germline stem cells (maGSCs) were transplanted into the heart of T, B, and natural killer (NK) cell-deficient RAG2−/−γc−/− mice than in RAG2−/− mice, which still have NK cells. Notably, in both strains, the teratoma formation rate was significantly reduced by the immunosuppressive drug cyclosporine A (CsA). Thus, CsA had a profound effect on teratoma formation independent of its immunosuppressive effects. The transplantation into RAG2−/− mice led to an activation of NK cells, which reached the maximum 14 days after transplantation and was not affected by CsA. The in vivo-activated NK cells efficiently killed YAC-1 and also maGSC target cells. This NK cell activation was confirmed in C57BL/6 wild-type mice whether treated with CsA or not. Sham operations in wild-type mice indicated that the inflammatory response to open heart surgery rather than the transplantation of maGSCs activated the NK cell system. An activation of NK cells during the transplantation of stem cell-derived in vitro differentiated grafts might be clinically beneficial by reducing the risk of teratoma formation by residual pluripotent cells. PMID:28220117

  14. Triclosan and bisphenol a affect decidualization of human endometrial stromal cells.

    PubMed

    Forte, Maurizio; Mita, Luigi; Cobellis, Luigi; Merafina, Verdiana; Specchio, Raffaella; Rossi, Sergio; Mita, Damiano Gustavo; Mosca, Lavinia; Castaldi, Maria Antonietta; De Falco, Maria; Laforgia, Vincenza; Crispi, Stefania

    2016-02-15

    In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome.

  15. Cell surface alpha 2,6 sialylation affects adhesion of breast carcinoma cells.

    PubMed

    Lin, Shaoqiang; Kemmner, Wolfgang; Grigull, Sabine; Schlag, Peter M

    2002-05-15

    Tumor-associated alterations of cell surface glycosylation play a crucial role in the adhesion and metastasis of carcinoma cells. The aim of this study was to examine the effect of alpha 2,6-sialylation on the adhesion properties of breast carcinoma cells. To this end mammary carcinoma cells, MDA-MB-435, were sense-transfected with sialyltransferase ST6Gal-I cDNA or antisense-transfected with a part of the ST6Gal-I sequence. Sense transfectants showed an enhanced ST6Gal-I mRNA expression and enzyme activity and an increased binding of the lectin Sambucus nigra agglutinin (SNA), specific for alpha 2,6-linked sialic acid. Transfection with ST6Gal-I in the antisense direction resulted in less enzyme activity and SNA reactivity. A sense-transfected clone carrying increased amounts of alpha 2,6-linked sialic acid adhered preferentially to collagen IV and showed reduced cell-cell adhesion and enhanced invasion capacity. In contrast, antisense transfection led to less collagen IV adhesion but enhanced homotypic cell-cell adhesion. In another approach, inhibition of ST6Gal-I enzyme activity by application of soluble antisense-oligodeoxynucleotides was studied. Antisense treatment resulted in reduced ST6 mRNA expression and cell surface 2,6-sialylation and significantly decreased collagen IV adhesion. Our results suggest that cell surface alpha 2,6-sialylation contributes to cell-cell and cell-extracellular matrix adhesion of tumor cells. Inhibition of sialytransferase ST6Gal-I by antisense-oligodeoxynucleotides might be a way to reduce the metastatic capacity of carcinoma cells.

  16. Elastic modulus affects the growth and differentiation of neural stem cells

    PubMed Central

    Jiang, Xian-feng; Yang, Kai; Yang, Xiao-qing; Liu, Ying-fu; Cheng, Yuan-chi; Chen, Xu-yi; Tu, Yue

    2015-01-01

    It remains poorly understood if carrier hardness, elastic modulus, and contact area affect neural stem cell growth and differentiation. Tensile tests show that the elastic moduli of Tiansu and SMI silicone membranes are lower than that of an ordinary dish, while the elastic modulus of SMI silicone membrane is lower than that of Tiansu silicone membrane. Neural stem cells from the cerebral cortex of embryonic day 16 Sprague-Dawley rats were seeded onto ordinary dishes as well as Tiansu silicone membrane and SMI silicone membrane. Light microscopy showed that neural stem cells on all three carriers show improved adherence. After 7 days of differentiation, neuron specific enolase, glial fibrillary acidic protein, and myelin basic protein expression was detected by immunofluorescence. Moreover, flow cytometry revealed a higher rate of neural stem cell differentiation into astrocytes on Tiansu and SMI silicone membranes than on the ordinary dish, which was also higher on the SMI than the Tiansu silicone membrane. These findings confirm that all three cell carrier types have good biocompatibility, while SMI and Tiansu silicone membranes exhibit good mechanical homogenization. Thus, elastic modulus affects neural stem cell differentiation into various nerve cells. Within a certain range, a smaller elastic modulus results in a more obvious trend of cell differentiation into astrocytes. PMID:26604916

  17. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  18. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species.

    PubMed

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs' treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs' treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS.

  19. Heparin affin regulatory peptide/pleiotrophin negatively affects diverse biological activities in C6 glioma cells.

    PubMed

    Parthymou, Anastasia; Lampropoulou, Evgenia; Mikelis, Constantinos; Drosou, Georgia; Papadimitriou, Evangelia

    2008-01-01

    Heparin affin regulatory peptide (HARP) or pleiotrophin seems to be involved in the progression of several tumors of diverse origin. In this study, we tried to determine the role of HARP in rat C6 glioma cells by using an antisense strategy for inhibition of HARP expression. Decrease of the expression of endogenous HARP in C6 cells (AS-C6 cells) significantly increased proliferation, migration, and anchorage-independent growth of cells. Implantation of AS-C6 cells onto chicken embryo chorioallantoic membranes resulted in a significant increase of tumor-induced angiogenesis compared with that induced by non-transfected or C6 cells transfected with the plasmid alone (PC-C6 cells). In the same line, conditioned medium from AS-C6 cells significantly increased endothelial cell proliferation, migration, and tube formation in vitro compared with the effect of conditioned medium from C6 or PC-C6 cells. Interestingly, vascular endothelial growth factor (VEGF) induced C6 cell proliferation and migration, and SU1496, a selective inhibitor of VEGF receptor 2 (VEGFR2), blocked increased glioma cell growth, migration, and angiogenicity observed in AS-C6 cell cultures. The above results seem to be due to a direct interaction between HARP and VEGF in the culture medium of C6 and PC-C6 cells, while AS-C6 cells secreted comparable amounts of VEGF that do not interact with HARP. Collectively, these data suggest that HARP negatively affects diverse biological activities in C6 glioma cells, mainly due to binding of HARP to VEGF, which may sequester secreted VEGF from signalling through VEGFR2.

  20. Metacognitive Awareness of Facial Affect in Higher-Functioning Children and Adolescents with Autism Spectrum Disorder

    PubMed Central

    Henderson, Heather A.; Newell, Lisa; Jaime, Mark; Mundy, Peter

    2015-01-01

    Higher-functioning participants with and without autism spectrum disorder (ASD) viewed a series of face stimuli, made decisions regarding the affect of each face, and indicated their confidence in each decision. Confidence significantly predicted accuracy across all participants, but this relation was stronger for participants with typical development than participants with ASD. In the hierarchical linear modeling analysis, there were no differences in face processing accuracy between participants with and without ASD, but participants with ASD were more confident in their decisions. These results suggest that individuals with ASD have metacognitive impairments and are overconfident in face processing. Additionally, greater metacognitive awareness was predictive of better face processing accuracy, suggesting that metacognition may be a pivotal skill to teach in interventions. PMID:26496991

  1. Identification and Functional Characterization of GAA Mutations in Colombian Patients Affected by Pompe Disease.

    PubMed

    Niño, Mónica Yasmín; Mateus, Heidi Eliana; Fonseca, Dora Janeth; Kroos, Marian A; Ospina, Sandra Yaneth; Mejía, Juan Fernando; Uribe, Jesús Alfredo; Reuser, Arnold J J; Laissue, Paul

    2013-01-01

    Pompe disease (PD) is a recessive metabolic disorder characterized by acid α-glucosidase (GAA) deficiency, which results in lysosomal accumulation of glycogen in all tissues, especially in skeletal muscles. PD clinical course is mainly determined by the nature of the GAA mutations. Although ~400 distinct GAA sequence variations have been described, the genotype-phenotype correlation is not always evident.In this study, we describe the first clinical and genetic analysis of Colombian PD patients performed in 11 affected individuals. GAA open reading frame sequencing revealed eight distinct mutations related to PD etiology including two novel missense mutations, c.1106 T > C (p.Leu369Pro) and c.2236 T > C (p.Trp746Arg). In vitro functional studies showed that the structural changes conferred by both mutations did not inhibit the synthesis of the 110 kD GAA precursor form but affected the processing and intracellular transport of GAA. In addition, analysis of previously described variants located at this position (p.Trp746Gly, p.Trp746Cys, p.Trp746Ser, p.Trp746X) revealed new insights in the molecular basis of PD. Notably, we found that p.Trp746Cys mutation, which was previously described as a polymorphism as well as a causal mutation, displayed a mild deleterious effect. Interestingly and by chance, our study argues in favor of a remarkable Afro-American and European ancestry of the Colombian population. Taken together, our report provides valuable information on the PD genotype-phenotype correlation, which is expected to facilitate and improve genetic counseling of affected individuals and their families.

  2. Hypoxia transiently affects skeletal muscle hypertrophy in a functional overload model.

    PubMed

    Chaillou, Thomas; Koulmann, Nathalie; Simler, Nadine; Meunier, Adélie; Serrurier, Bernard; Chapot, Rachel; Peinnequin, Andre; Beaudry, Michèle; Bigard, Xavier

    2012-03-01

    Hypoxia induces a loss of skeletal muscle mass, but the signaling pathways and molecular mechanisms involved remain poorly understood. We hypothesized that hypoxia could impair skeletal muscle hypertrophy induced by functional overload (Ov). To test this hypothesis, plantaris muscles were overloaded during 5, 12, and 56 days in female rats exposed to hypobaric hypoxia (5,500 m), and then, we examined the responses of specific signaling pathways involved in protein synthesis (Akt/mTOR) and breakdown (atrogenes). Hypoxia minimized the Ov-induced hypertrophy at days 5 and 12 but did not affect the hypertrophic response measured at day 56. Hypoxia early reduced the phosphorylation levels of mTOR and its downstream targets P70(S6K) and rpS6, but it did not affect the phosphorylation levels of Akt and 4E-BP1, in Ov muscles. The role played by specific inhibitors of mTOR, such as AMPK and hypoxia-induced factors (i.e., REDD1 and BNIP-3) was studied. REDD1 protein levels were reduced by overload and were not affected by hypoxia in Ov muscles, whereas AMPK was not activated by hypoxia. Although hypoxia significantly increased BNIP-3 mRNA levels at day 5, protein levels remained unaffected. The mRNA levels of the two atrogenes MURF1 and MAFbx were early increased by hypoxia in Ov muscles. In conclusion, hypoxia induced a transient alteration of muscle growth in this hypertrophic model, at least partly due to a specific impairment of the mTOR/P70(S6K) pathway, independently of Akt, by an undefined mechanism, and increased transcript levels for MURF1 and MAFbx that could contribute to stimulate the proteasomal proteolysis.

  3. Balance between macronutrients affects life span and functional senescence in fruit fly Drosophila melanogaster.

    PubMed

    Lushchak, Oleh V; Gospodaryov, Dmytro V; Rovenko, Bohdana M; Glovyak, Andriy D; Yurkevych, Ihor S; Klyuba, Vira P; Shcherbij, Maria V; Lushchak, Volodymyr I

    2012-02-01

    It has recently been demonstrated that as the ratio of protein to carbohydrate (P:C) in the diet declines, life span increases in Drosophila. Here we explored how extremely low dietary ratios of protein to carbohydrate affected longevity and a selection of variables associated with functional senescence. An increase in P:C ratio from 1:57 to 1:20 shortened life span by increasing age-dependent mortality; whereas a further decline in P:C from 1:57 to 1:95 caused a modest decrease in life span. Female flies consuming the 1:20 and 1:38 diets laid more eggs than those consuming the lower P:C diets. Flies fed diets with higher ratios were more resistant to heat stress. Flies consuming the diets with lowest P:C ratios needed more time to restore activity after paralysis. Our study has therefore extended to very low P:C ratios available data demonstrating that dietary P:C ratio affects life span, fecundity and heat stress resistance, with fecundity and heat stress responses showing the opposite trend to life span.

  4. Oral health conditions affect functional and social activities of terminally-ill cancer patients

    PubMed Central

    Fischer, D.J.; Epstein, J.B.; Yao, Y.; Wilkie, D.J.

    2013-01-01

    Purpose Oral conditions are established complications in terminally-ill cancer patients. Yet despite significant morbidity, the characteristics and impact of oral conditions in these patients are poorly documented. The study objective was to characterize oral conditions in terminally-ill cancer patients to determine the presence, severity, and the functional and social impact of these oral conditions. Methods This was an observational clinical study including terminally-ill cancer patients (2.5–3 week life expectancy). Data were obtained via the Oral Problems Scale (OPS) that measures the presence of subjective xerostomia, orofacial pain, taste change, and the functional/social impact of oral conditions and a demographic questionnaire. A standardized oral examination was used to assess objective salivary hypofunction, fungal infection, mucosal erythema, and ulceration. Regression analysis and t test investigated the associations between measures. Results Of 104 participants, most were ≥50 years of age, female, and high-school educated; 45% were African American, 43% Caucasian, and 37% married. Oral conditions frequencies were: salivary hypofunction (98%), mucosal erythema (50%), ulceration (20%), fungal infection (36%), and other oral problems (46%). Xerostomia, taste change, and orofacial pain all had significant functional impact; p<.001, p=.042 and p<.001, respectively. Orofacial pain also had a significant social impact (p<.001). Patients with oral ulcerations had significantly more orofacial pain with a social impact than patients without ulcers (p=.003). Erythema was significantly associated with fungal infection and with mucosal ulceration (p<.001). Conclusions Oral conditions significantly affect functional and social activities in terminally-ill cancer patients. Identification and management of oral conditions in these patients should therefore be an important clinical consideration. PMID:24232310

  5. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  6. Cellular glycosylation affects Herceptin binding and sensitivity of breast cancer cells to doxorubicin and growth factors

    PubMed Central

    Peiris, Diluka; Spector, Alexander F.; Lomax-Browne, Hannah; Azimi, Tayebeh; Ramesh, Bala; Loizidou, Marilena; Welch, Hazel; Dwek, Miriam V.

    2017-01-01

    Alterations in protein glycosylation are a key feature of oncogenesis and have been shown to affect cancer cell behaviour perturbing cell adhesion, favouring cell migration and metastasis. This study investigated the effect of N-linked glycosylation on the binding of Herceptin to HER2 protein in breast cancer and on the sensitivity of cancer cells to the chemotherapeutic agent doxorubicin (DXR) and growth factors (EGF and IGF-1). The interaction between Herceptin and recombinant HER2 protein and cancer cell surfaces (on-rate/off-rate) was assessed using a quartz crystal microbalance biosensor revealing an increase in the accessibility of HER2 to Herceptin following deglycosylation of cell membrane proteins (deglycosylated cells Bmax: 6.83 Hz; glycosylated cells Bmax: 7.35 Hz). The sensitivity of cells to DXR and to growth factors was evaluated using an MTT assay. Maintenance of SKBR-3 cells in tunicamycin (an inhibitor of N-linked glycosylation) resulted in an increase in sensitivity to DXR (0.1 μM DXR P < 0.001) and a decrease in sensitivity to IGF-1 alone and to IGF-1 supplemented with EGF (P < 0.001). This report illustrates the importance of N-linked glycosylation in modulating the response of cancer cells to chemotherapeutic and biological treatments and highlights the potential of glycosylation inhibitors as future combination treatments for breast cancer. PMID:28223691

  7. Behavioral Functions of the Mesolimbic Dopaminergic System: an Affective Neuroethological Perspective

    PubMed Central

    Alcaro, Antonio; Huber, Robert; Panksepp, Jaak

    2008-01-01

    The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories have emphasized DA's involvement in the orchestration of goal-directed behaviors, and in the promotion and reinforcement of learning. The affective neuroethological perspective presented here, views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to avoid harms. A description of the anatomical framework in which the ML system is embedded is followed by the argument that the SEEKING disposition emerges through functional integration of ventral basal ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spread into BG, DA transmission promotes the “release” of neural activity patterns that induce active SEEKING behaviors when expressed at the motor level. Reverberation of these patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual representations within the extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention, incentive salience, associative learning, and anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity of the affect. The implications of such a view for understanding addiction are considered, with particular emphasis on factors predisposing individuals to develop compulsive drug seeking behaviors. PMID:17905440

  8. Andrographolide inhibits hepatoma cells growth and affects the expression of cell cycle related proteins.

    PubMed

    Shen, Kai-Kai; Liu, Tian-Yu; Xu, Chong; Ji, Li-Li; Wang, Zheng-Tao

    2009-09-01

    The present study is aimed to investigate the toxic effects of andrographolide (Andro) on hepatoma cells and elucidate its preliminary mechanisms. After cells were treated with different concentrations of Andro (0-50 micromol x L(-1)) for 24 h, cell viability was evaluated with 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) assay. Furthermore, after hepatoma cells (Hep3B and HepG2) were treated with different concentrations of Andro (0-30 micromol x L(-1)) for 14 d, the number of colony formation was accounted under microscope. Cell cycle related proteins such as Cdc-2, phosphorylated-Cdc-2, Cyclin B and Cyclin D1 were detected with Western blotting assay and the cell cycle was analyzed by flow cytometry using propidium iodide staining. MTT results showed that Andro induced growth inhibition of hepatoma cells in a concentration-dependent manner but had no significant effects on human normal liver L-02 cells. Andro dramatically decreased the colony formation of hepatoma cells in the concentration-dependent manner. Moreover, Andro induced a decrease of Hep3B cells at the G0-G1 phase and a concomitant accumulation of cells at G2-M phase. At the molecular level, Western blotting results showed that Andro decreased the expression of Cdc-2, phosphorylated-Cdc-2, Cyclin D1 and Cyclin B proteins in a time-dependent manner, which are all cell cycle related proteins. Taken together, the results demonstrated that Andro specifically inhibited the growth of hepatoma cells and cellular cell cycle related proteins were possibly involved in this process.

  9. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties

    PubMed Central

    Steucke, Kerianne E.; Tracy, Paige V.; Hald, Eric S.; Hall, Jennifer L.; Alford, Patrick W.

    2015-01-01

    Vascular smooth muscle cells’ primary function is to maintain vascular homeostasis through active contraction and relaxation. In diseases such as hypertension and atherosclerosis, this function is inhibited concurrent to changes in the mechanical environment surrounding vascular smooth muscle cells. It is well established that cell function and extracellular mechanics are interconnected; variations in substrate modulus affect cell migration, proliferation, and differentiation. To date, it is unknown how the evolving extracellular mechanical environment of vascular smooth muscle cells affects their contractile function. Here, we have built upon previous vascular muscular thin film technology to develop a variable-modulus vascular muscular thin film that measures vascular tissue functional contractility on substrates with a range of pathological and physiological moduli. Using this modified vascular muscular thin film, we found that vascular smooth muscle cells generated greater stress on substrates with higher moduli compared to substrates with lower moduli. We then measured protein markers typically thought to indicate a contractile phenotype in vascular smooth muscle cells and found that phenotype is unaffected by substrate modulus. These data suggest that mechanical properties of vascular smooth muscle cells’ extracellular environment directly influence their functional behavior and do so without inducing phenotype switching. PMID:26283412

  10. Oral Administration of a Select Mixture of Bacillus Probiotics Affects the Gut Microbiota and Goblet Cell Function following Escherichia coli Challenge in Newly Weaned Pigs of Genotype MUC4 That Are Supposed To Be Enterotoxigenic E. coli F4ab/ac Receptor Negative.

    PubMed

    Zhang, Wei; Zhu, Yao-Hong; Zhou, Dong; Wu, Qiong; Song, Dan; Dicksved, Johan; Wang, Jiu-Feng

    2017-02-01

    Structural disruption of the gut microbiota and impaired goblet cell function are collateral etiologic factors in enteric diseases. Low, moderate, or high doses of a Bacillus licheniformis-B. subtilis mixture (BLS mix) were orally administered to piglets of genotype MUC4 that are supposed to be F4-expressing enterotoxigenic Escherichia coli strain (F4(+) ETEC) F4ab/ac receptor negative (i.e., MUC4-resistant piglets) for 1 week before F4(+) ETEC challenge. The luminal contents were collected from the mucosa of the colon on day 8 after F4(+) ETEC challenge. The BLS mix attenuated E. coli-induced expansion of Bacteroides uniformis, Eubacterium eligens, Acetanaerobacterium, and Sporobacter populations. Clostridium and Turicibacter populations increased following F4(+) ETEC challenge in pigs pretreated with low-dose BLS mix. Lactobacillus gasseri and Lactobacillus salivarius populations increased after administration of BLS mix during E. coli infection. The beneficial effects of BLS mix were due in part to the expansion of certain Clostridium, Lactobacillus, and Turicibacter populations, with a corresponding increase in the number of goblet cells in the ileum via upregulated Atoh1 expression, in turn increasing MUC2 production and thus preserving the mucus barrier and enhancing host defenses against enteropathogenic bacteria. However, excessive BLS mix consumption may increase the risk for enteritis, partly through disruption of colonic microbial ecology, characterized by expansion of Proteobacteria and impaired goblet cell function in the ileum. Our findings suggest that oral administration of BLS mix reprograms the gut microbiota and enhances goblet cell function to ameliorate enteritis.

  11. Micro- and macrovascular function in children with sickle cell anaemia and sickle cell haemoglobin C disease.

    PubMed

    Möckesch, Berenike; Charlot, Keyne; Jumet, Stéphane; Romana, Marc; Divialle-Doumdo, Lydia; Hardy-Dessources, Marie-Dominique; Petras, Marie; Tressieres, Benoît; Tarer, Vanessa; Hue, Olivier; Etienne-Julan, Maryse; Connes, Philippe; Antoine-Jonville, Sophie

    2017-02-04

    It is unclear whether vascular function is affected similarly in children with sickle cell anaemia (SS) and children with sickle haemoglobin C (SC) disease. Therefore, we compared micro and macrovascular functions in healthy (AA) children, children with SS and SC disease, and assessed their association with physical activity. Participants (24 SS, 22 SC and 16 AA), were compared in terms of 1) thermal hyperaemic response (finger pad warming to 42°C) measured by Laser Doppler techniques, 2) arterial stiffness determined by pulse wave velocity, 3) daily energy expenditure related to moderate and intense physical activities estimated by questionnaire and 4) fitness level, evaluated by the six-minute walk test. Response to heating differed between SS, SC and controls. Peripheral microvascular reactivity was lower and pulse wave velocity higher in SS compared to AA. SC had blunted microvascular reactivity in response to heating compared to AA but pulse wave velocity was not different within the two groups. Physical activity and fitness levels were markedly lower in sickle cell patients compared to healthy controls but no association was observed with vascular function. Microvasodilatory reserve is decreased in both SS and SC patients but only SS patients were also characterised by impaired macrovascular function.

  12. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques.

    PubMed

    Vargas-Inchaustegui, Diego A; Ying, Olivia; Demberg, Thorsten; Robert-Guroff, Marjorie

    2016-01-01

    NK cells are crucial components of the innate immune system due to their capacity to exert rapid cytotoxic and immunomodulatory function in the absence of prior sensitization. NK cells can become activated by exposure to target cells and/or by cytokines produced by antigen-presenting cells. In this study, we examined the effects of a simian immunodeficiency virus (SIV) vaccine regimen and subsequent SIV infection on the cytotoxic and immunomodulatory functions of circulatory NK cells. While vaccination did not significantly impact the capacity of NK cells to kill MHC-devoid 721.221 target cells, SIV-infection led to a significant decrease in target cell killing. NK cells from uninfected macaques were responsive to a low dose (5 ng/ml) of IL-15 pre-activation, leading to significant increases in their cytotoxic potential, however, NK cells from SIV-infected macaques required a higher dose (50 ng/ml) of IL-15 pre-activation in order to significantly increase their cytotoxic potential. By contrast, no differences were observed in the capacity of NK cells from vaccinated and SIV-infected macaques to respond to IL-12 and IL-18. Similarly, NK cells both before and after infection exhibited equivalent responses to Fc-mediated activation. Collectively, our results show that early SIV-infection impairs the natural cytotoxic capacity of circulatory NK cells without affecting Fc-mediated or cytokine-producing function.

  13. Cell cycle regulation of glucocorticoid receptor function.

    PubMed Central

    Hsu, S C; Qi, M; DeFranco, D B

    1992-01-01

    Glucocorticoid receptor (GR) nuclear translocation, transactivation and phosphorylation were examined during the cell cycle in mouse L cell fibroblasts. Glucocorticoid-dependent transactivation of the mouse mammary tumor virus promoter was observed in G0 and S phase synchronized L cells, but not in G2 synchronized cells. G2 effects were selective on the glucocorticoid hormone signal transduction pathway, since glucocorticoid but not heavy metal induction of the endogenous Metallothionein-1 gene was also impaired in G2 synchronized cells. GRs that translocate to the nucleus of G2 synchronized cells in response to dexamethasone treatment were not efficiently retained there and redistributed to the cytoplasmic compartment. In contrast, GRs bound by the glucocorticoid antagonist RU486 were efficiently retained within nuclei of G2 synchronized cells. Inefficient nuclear retention was observed for both dexamethasone- and RU486-bound GRs in L cells that actively progress through G2 following release from an S phase arrest. Finally, site-specific alterations in GR phosphorylation were observed in G2 synchronized cells suggesting that cell cycle regulation of specific protein kinases and phosphatases could influence nuclear retention, recycling and transactivation activity of the GR. Images PMID:1505524

  14. Diagnosis of NMOS DRAM functional performance as affected by a picosecond dye laser

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Schwartz, H. R.; Edmonds, L. D.; Zoutendyk, J. A.

    1992-01-01

    A picosec pulsed dye laser beam was at selected wavelengths successfully used to simulate heavy-ion single-event effects (SEEs) in negative channel NMOS DRAMs. A DRAM was used to develop the test technique because bit-mapping capability and previous heavy-ion upset data were available. The present analysis is the first to establish such a correlation between laser and heavy-ion data for devices, such as the NMOS DRAM, where charge collection is dominated by long-range diffusion, which is controlled by carrier density at remote distances from a depletion region. In the latter case, penetration depth is an important parameter and is included in the present analysis. A single-pulse picosecond dye laser beam (1.5 microns diameter) focused onto a single cell component can upset a single memory cell; clusters of memory cell upsets (multiple errors) were observed when the laser energy was increased above the threshold energy. The multiple errors were analyzed as a function of the bias voltage and total energy of a single pulse. A diffusion model to distinguish the multiple upsets from the laser-induced charge agreed well with previously reported heavy ion data.

  15. Structure and function of RNase AS, a polyadenylate-specific exoribonuclease affecting mycobacterial virulence in vivo.

    PubMed

    Romano, Maria; van de Weerd, Robert; Brouwer, Femke C C; Roviello, Giovanni N; Lacroix, Ruben; Sparrius, Marion; van den Brink-van Stempvoort, Gunny; Maaskant, Janneke J; van der Sar, Astrid M; Appelmelk, Ben J; Geurtsen, Jeroen J; Berisio, Rita

    2014-05-06

    The cell-envelope of Mycobacterium tuberculosis plays a key role in bacterial virulence and antibiotic resistance. Little is known about the molecular mechanisms of regulation of cell-envelope formation. Here, we elucidate functional and structural properties of RNase AS, which modulates M. tuberculosis cell-envelope properties and strongly impacts bacterial virulence in vivo. The structure of RNase AS reveals a resemblance to RNase T from Escherichia coli, an RNase of the DEDD family involved in RNA maturation. We show that RNase AS acts as a 3'-5'-exoribonuclease that specifically hydrolyzes adenylate-containing RNA sequences. Also, crystal structures of complexes with AMP and UMP reveal the structural basis for the observed enzyme specificity. Notably, RNase AS shows a mechanism of substrate recruitment, based on the recognition of the hydrogen bond donor NH2 group of adenine. Our work opens a field for the design of drugs able to reduce bacterial virulence in vivo.

  16. Transplantable Subcutaneous Hepatoma 22a Affects Functional Activity of Resident Tissue Macrophages in Periphery

    PubMed Central

    Kisseleva, Ekaterina P.; Krylov, Andrei V.; Stepanova, Olga I.; Lioudyno, Victoria I.

    2011-01-01

    Tumors spontaneously develop central necroses due to inadequate blood supply. Recent data indicate that dead cells and their products are immunogenic to the host. We hypothesized that macrophage tumor-dependent reactions can be mediated differentially by factors released from live or dead tumor cells. In this study, functional activity of resident peritoneal macrophages was investigated in parallel with tumor morphology during the growth of syngeneic nonimmunogenic hepatoma 22a. Morphometrical analysis of tumor necroses, mitoses and leukocyte infiltration was performed in histological sections. We found that inflammatory potential of peritoneal macrophages in tumor-bearing mice significantly varied depending on the stage of tumor growth and exhibited two peaks of activation as assessed by nitroxide and superoxide anion production, 5′-nucleotidase activity and pinocytosis. Increased inflammatory reactions were not followed by the enhancement of angiogenic potential as assessed by Vascular Endothelial Growth Factor mRNA expression. Phases of macrophage activity corresponded to the stages of tumor growth characterized by high proliferative potential. The appearance and further development of necrotic tissue inside the tumor did not coincide with changes in macrophage behavior and therefore indirectly indicated that activation of macrophages was a reaction mostly to the signals produced by live tumor cells. PMID:21760797

  17. Controlling Functional Group Architecture in Artificial Cells

    DTIC Science & Technology

    2015-07-02

    cycloadditions to modify reactive groups within the phospholipid membrane structure and how the nature of the reactive elements, the copper catalyst ...within the phospholipid membrane structure and how the nature of the reactive elements, the copper catalyst , the azide, and the alkyne, affect the...the copper catalyst , the azide, and the alkyne, affect the location and yield of the resulting product in the phospholipid membrane. 2. Reasons why

  18. Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro.

    PubMed

    Ben-Dov, N; Shefer, G; Irintchev, A; Wernig, A; Oron, U; Halevy, O; Irinitchev, A

    1999-01-11

    Low-energy laser (He-Ne) irradiation was found to promote skeletal muscle regeneration in vivo. In this study, its effect on the proliferation and differentiation of satellite cells in vitro was evaluated. Primary rat satellite cells were irradiated for various time periods immediately after preparation, and thymidine incorporation was determined after 2 days in culture. Laser irradiation affected thymidine incorporation in a bell-shaped manner, with a peak at 3 s of irradiation. Three seconds of irradiation caused an induction of cell-cycle regulatory proteins: cyclin D1, cyclin E and cyclin A in an established line of mouse satellite cells, pmi28, and proliferating cell nuclear antigen (PCNA) in primary rat satellite cells. The induction of cyclins by laser irradiation was compatible with their induction by serum refeeding of the cells. Laser irradiation effect on cell proliferation was dependent on the rat's age. At 3 weeks of age, thymidine incorporation in the irradiated cells was more than twofold higher than that in the controls, while at 6 weeks of age this difference had almost disappeared. Myosin heavy chain (MHC) protein levels were twofold lower in the irradiated than in the control cells, whereas the proliferation of the irradiated cells was twofold higher. Fusion percentage was lower in the irradiated compared to non-irradiated cells. In light of these data, the promoting effect of laser irradiation on skeletal muscle regeneration in vivo may be due to its effect on the activation of early cell-cycle regulatory genes in satellite cells, leading to increased proliferation and to a delay in cell differentiation.

  19. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice

    PubMed Central

    Hrdinka, Matous; Sudan, Kritika; Just, Sissy; Drobek, Ales; Stepanek, Ondrej; Schlüter, Dirk; Reinhold, Dirk; Jordan, Bryen A.; Gintschel, Patricia; Schraven, Burkhart; Kreutz, Michael R.

    2016-01-01

    Transmembrane adaptor proteins (TRAPs) are important organisers for the transduction of immunoreceptor-mediated signals. Prr7 is a TRAP that regulates T cell receptor (TCR) signalling and potently induces cell death when overexpressed in human Jurkat T cells. Whether endogenous Prr7 has a similar functional role is currently unknown. To address this issue, we analysed the development and function of the immune system in Prr7 knockout mice. We found that loss of Prr7 partially impairs development of single positive CD4+ T cells in the thymus but has no effect on the development of other T cell subpopulations, B cells, NK cells, or NKT cells. Moreover, Prr7 does not affect the TCR signalling pathway as T cells derived from Prr7 knockout and wild-type animals and stimulated in vitro express the same levels of the activation marker CD69, and retain their ability to proliferate and activate induced cell death programs. Importantly, Prr7 knockout mice retained the capacity to mount a protective immune response when challenged with Listeria monocytogenes infection in vivo. In addition, T cell effector functions (activation, migration, and reactivation) were normal following induction of experimental autoimmune encephalomyelitis (EAE) in Prr7 knockout mice. Collectively, our work shows that loss of Prr7 does not result in a major immune system phenotype and suggests that Prr7 has a dispensable function for TCR signalling. PMID:27657535

  20. Deficient natural killer cell function in preeclampsia

    SciTech Connect

    Alanen, A.; Lassila, O.

    1982-11-01

    Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.

  1. Structure and Function of Subsurface Microbial Communities Affecting Radionuclide Transport and Bio-immobilization

    SciTech Connect

    Kerkhof, Lee

    2013-10-23

    The goal of this research project was to employ a multi-disciplinary team to investigate the DOE-ERSP Field Research Center at Oak Ridge, TN (ORFRC), which contains well-defined subsurface contaminant plumes with contrasting pH and redox conditions. Part of the team would pursue cultivation-independent characterization of the microbial groups catalyzing relevant biogeochemical reactions to gain an understanding of the physiological mechanisms controlling radionuclide immobilization. Other team members would focus on cultivation and physiological characterization of model microorganisms from the site using single cell sorting methods. In order to understand and predict the in situ function of microbial communities, the PIs hope to develop new strategies for cultivation and to couple phylogenetic structure with microbial community function. Specific objectives by the Rutgers group was to discern the active bacteria at the Oak Ridge Research Field Challenge Site: 1. by applying stable isotope probing techniques to enrichment cultures developed from Florida State University; 2. by fingerprinting intact rRNA from groundwater samples obtained along the various flow pathways at ORFRC; and 3. by identifying functional genes for N and S cycling along the flowpaths to aid in detection of active bacteria.

  2. Key Immune Cell Cytokines Affects the Telomere Activity of Cord Blood Cells In vitro

    PubMed Central

    Brazvan, Balal; Farahzadi, Raheleh; Mohammadi, Seyede Momeneh; Montazer Saheb, Soheila; Shanehbandi, Dariush; Schmied, Laurent; Soleimani Rad, Jafar; Darabi, Masoud; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: Telomere is a nucleoprotein complex at the end of eukaryotic chromosomes and its length is regulated by telomerase. The number of DNA repeat sequence (TTAGGG)n is reduced with each cell division in differentiated cells. The aim of this study was to evaluate the effect of SCF (Stem Cell Factor), Flt3 (Fms- Like tyrosine kinase-3), Interleukin-2, 7 and 15 on telomere length and hTERT gene expression in mononuclear and umbilical cord blood stem cells (CD34+ cells) during development to lymphoid cells. Methods: The mononuclear cells were isolated from umbilical cord blood by Ficoll-Paque density gradient. Then cells were cultured for 21 days in the presence of different cytokines. Telomere length and hTERT gene expression were evaluated in freshly isolated cells, 7, 14 and 21 days of culture by real-time PCR. The same condition had been done for CD34+ cells but telomere length and hTERT gene expression were measured at initial and day 21 of the experiment. Results: Highest hTERT gene expression and maximum telomere length were measured at day14 of MNCs in the presence of IL-7 and IL-15. Also, there was a significant correlation between telomere length and telomerase gene expression in MNCs at 14 days in a combination of IL-7 and IL-15 (r = 0.998, p =0.04). In contrast, IL-2 showed no distinct effect on telomere length and hTERT gene expression in cells. Conclusion: Taken together, IL-7 and IL-15 increased telomere length and hTERT gene expression at 14 day of the experiment. In conclusion, it seems likely that cells maintain naïve phenotype due to prolonged exposure of IL-7 and IL-15. PMID:27478776

  3. [Relations between red cell structure, function and immune homeostasis in prostatic diseases].

    PubMed

    Shatokhin, M N; Teodorovich, O V; Konoplia, A I; Dolgareva, S A; Gavriliuk, V P; Krasnov, L V; Mavrin, M Iu

    2012-01-01

    Patients with chronic prostatitis alone and in combination with prostatic adenoma have changes in the activity of the complement system, neutrophil function and content of pro- and anti-inflammatory cytokines. Abnormal representation of the proteins of the red cell membrane in patients with prostatic diseases affects structural and functional activity of erythrocytes in these patients. Dynamic changes in immune status of patients with chronic prostatitis and prostatic adenoma correlate with changes in functional red cell activity. This fact helps better understanding of pathogenesis of chronic prostatitis and prostatic adenoma.

  4. Histopathology of Growth Anomaly Affecting the Coral, Montipora capitata: Implications on Biological Functions and Population Viability

    PubMed Central

    Burns, John H. R.; Takabayashi, Misaki

    2011-01-01

    Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'ōpae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1–93.7%), symbiotic dinoflagellates (38.8–67.5%), mesenterial filaments (11.2–29.0%), and nematocytes (28.8–46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'ōpae by 0.7–49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat. PMID:22205976

  5. A systematic review of early life factors which adversely affect subsequent lung function.

    PubMed

    Kouzouna, A; Gilchrist, F J; Ball, V; Kyriacou, T; Henderson, J; Pandyan, A D; Lenney, W

    2016-09-01

    It has been known for many years that multiple early life factors can adversely affect lung function and future respiratory health. This is the first systematic review to attempt to analyse all these factors simultaneously. We adhered to strict a priori criteria for inclusion and exclusion of studies. The initial search yielded 29,351 citations of which 208 articles were reviewed in full and 25 were included in the review. This included 6 birth cohorts and 19 longitudinal population studies. The 25 studies reported the effect of 74 childhood factors (on their own or in combinations with other factors) on subsequent lung function reported as percent predicted forced expiration in one second (FEV1). The childhood factors that were associated with a significant reduction in future FEV1 could be grouped as: early infection, bronchial hyper-reactivity (BHR) / airway lability, a diagnosis of asthma, wheeze, family history of atopy or asthma, respiratory symptoms and prematurity / low birth weight. A complete mathematical model will only be possible if the raw data from all previous studies is made available. This highlights the need for increased cooperation between researchers and the need for international consensus about the outcome measures for future longitudinal studies.

  6. Maternal creatine supplementation affects the morpho-functional development of hippocampal neurons in rat offspring.

    PubMed

    Sartini, S; Lattanzi, D; Ambrogini, P; Di Palma, M; Galati, C; Savelli, D; Polidori, E; Calcabrini, C; Rocchi, M B L; Sestili, P; Cuppini, R

    2016-01-15

    Creatine supplementation has been shown to protect neurons from oxidative damage due to its antioxidant and ergogenic functions. These features have led to the hypothesis of creatine supplementation use during pregnancy as prophylactic treatment to prevent CNS damage, such as hypoxic-ischemic encephalopathy. Unfortunately, very little is known on the effects of creatine supplementation during neuron differentiation, while in vitro studies revealed an influence on neuron excitability, leaving the possibility of creatine supplementation during the CNS development an open question. Using a multiple approach, we studied the hippocampal neuron morphological and functional development in neonatal rats born by dams supplemented with 1% creatine in drinking water during pregnancy. CA1 pyramidal neurons of supplemented newborn rats showed enhanced dendritic tree development, increased LTP maintenance, larger evoked-synaptic responses, and higher intrinsic excitability in comparison to controls. Moreover, a faster repolarizing phase of action potential with the appearance of a hyperpolarization were recorded in neurons of the creatine-treated group. Consistently, CA1 neurons of creatine exposed pups exhibited a higher maximum firing frequency than controls. In summary, we found that creatine supplementation during pregnancy positively affects morphological and electrophysiological development of CA1 neurons in offspring rats, increasing neuronal excitability. Altogether, these findings emphasize the need to evaluate the benefits and the safety of maternal intake of creatine in humans.

  7. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo

    PubMed Central

    Ambruzs, Dana M.; Moorman, Mark A.; Bhoumik, Anindita; Cesario, Rosemary M.; Payne, Janice K.; Kelly, Jonathan R.; Haakmeester, Carl; Srijemac, Robert; Wilson, Alistair Z.; Kerr, Justin; Frazier, Mauro A.; Kroon, Evert J.; D’Amour, Kevin A.

    2015-01-01

    The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%–80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs. The PPs were further differentiated to islet-like cells (ICs) that reproducibly contained 73%–89% endocrine cells, of which approximately 40%–50% expressed insulin. A large fraction of these insulin-positive cells were single hormone-positive and expressed the transcription factors PDX1 and NKX6.1. To preclude a significant contribution of progenitors to the in vivo function of ICs, we used a simple enrichment process to remove remaining PPs, yielding aggregates that contained 93%–98% endocrine cells and 1%–3% progenitors. Enriched ICs, when encapsulated and implanted into mice, functioned similarly to the VC-01 candidate product, demonstrating conclusively that in vitro-produced hESC-derived insulin-producing cells can mature and function in vivo in devices. A scaled version of our suspension culture was used, and the endocrine aggregates could be cryopreserved and retain functionality. Although ICs expressed multiple important β cell genes, the cells contained relatively low levels of several maturity-associated markers. Correlating with this, the time to function of ICs was similar to PEC-01 cells, indicating that ICs required cell-autonomous maturation after delivery in vivo, which would occur concurrently with graft integration into the host. Significance Type 1 diabetes (T1D) affects approximately 1.25 million people in the U.S. alone and is deadly if not managed with insulin injections. This paper describes the production of insulin

  8. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogene