Science.gov

Sample records for affect cell function

  1. Does prolonged cycling of moderate intensity affect immune cell function?

    PubMed Central

    Scharhag, J; Meyer, T; Gabriel, H; Schlick, B; Faude, O; Kindermann, W; Shephard, R

    2005-01-01

    Background: Prolonged exercise may induce temporary immunosuppression with a presumed increased susceptibility for infection. However, there are only few data on immune cell function after prolonged cycling at moderate intensities typical for road cycling training sessions. Methods: The present study examined the influence on immune cell function of 4 h of cycling at a constant intensity of 70% of the individual anaerobic threshold. Interleukin-6 (IL-6) and C-reactive protein (CRP), leukocyte and lymphocyte populations, activities of natural killer (NK), neutrophils, and monocytes were examined before and after exercise, and also on a control day without exercise. Results: Cycling for 4 h induced a moderate acute phase response with increases in IL-6 from 1.0 (SD 0.5) before to 9.6 (5.6) pg/ml 1 h after exercise and CRP from 0.5 (SD 0.4) before to 1.8 (1.3) mg/l 1 day after exercise. Although absolute numbers of circulating NK cells, monocytes, and neutrophils increased during exercise, on a per cell basis NK cell activity, neutrophil and monocyte phagocytosis, and monocyte oxidative burst did not significantly change after exercise. However, a minor effect over time for neutrophil oxidative burst was noted, tending to decrease after exercise. Conclusions: Prolonged cycling at moderate intensities does not seem to seriously alter the function of cells of the first line of defence. Therefore, the influence of a single typical road cycling training session on the immune system is only moderate and appears to be safe from an immunological point of view. PMID:15728699

  2. Aluminum fluoride affects the structure and functions of cell membranes.

    PubMed

    Suwalsky, M; Norris, B; Villena, F; Cuevas, F; Sotomayor, P; Zatta, P

    2004-06-01

    No useful biological function for aluminum has been found. To the contrary, it might play an important role in several pathologies, which could be related to its interactions with cell membranes. On the other hand, fluoride is a normal component of body fluids, soft tissues, bones and teeth. Its sodium salt is frequently added to drinking water to prevent dental caries. However, large doses cause severe pathological alterations. In view of the toxicity of Al(3+) and F(-) ions, it was thought of interest to explore the damaging effects that AlF(3) might induce in cell membranes. With this aim, it was incubated with human erythrocytes, which were examined by phase contrast and scanning electron microscopy, and molecular models of biomembranes. The latter consisted of large unilamellar vesicles (LUV) of dimyristoylphosphatidylcholine (DMPC) and bilayers of DMPC and dimyristoylphosphatidylethanolamine (DMPE) which were studied by fluorescence spectroscopy and X-ray diffraction, respectively. In order to understand the effects of AlF(3) on ion transport (principally sodium and chloride) we used the isolated toad skin to which electrophysiological measurements were applied. It was found that AlF(3) altered the shape of erythrocytes inducing the formation of echinocytes. This effect was explained by X-ray diffraction which revealed that AlF(3) perturbed the structure of DMPC, class of lipids located in the outer monolayer of the erythrocyte membrane. This result was confirmed by fluorescence spectroscopy on DMPC LUV. The biphasic (stimulatory followed by inhibitory) effects on the isolated skin suggested changes in apical Cl(-) secretion and moderate ATPase inactivation. PMID:15110101

  3. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  4. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells

    PubMed Central

    2013-01-01

    Background Mesenchymal stromal cells (MSCs) are attractive for cell-based therapies ranging from regenerative medicine and tissue engineering to immunomodulation. However, clinical efficacy is variable and it is unclear how the phenotypes defining bone marrow (BM)-derived MSCs as well as donor characteristics affect their functional properties. Methods BM-MSCs were isolated from 53 (25 female, 28 male; age: 13 to 80 years) donors and analyzed by: (1) phenotype using flow cytometry and cell size measurement; (2) in vitro growth kinetics using population doubling time; (3) colony formation capacity and telomerase activity; and (4) function by in vitro differentiation capacity, suppression of T cell proliferation, cytokines and trophic factors secretion, and hormone and growth factor receptor expression. Additionally, expression of Oct4, Nanog, Prdm14 and SOX2 mRNA was compared to pluripotent stem cells. Results BM-MSCs from younger donors showed increased expression of MCAM, VCAM-1, ALCAM, PDGFRβ, PDL-1, Thy1 and CD71, and led to lower IL-6 production when co-cultured with activated T cells. Female BM-MSCs showed increased expression of IFN-γR1 and IL-6β, and were more potent in T cell proliferation suppression. High-clonogenic BM-MSCs were smaller, divided more rapidly and were more frequent in BM-MSC preparations from younger female donors. CD10, β1integrin, HCAM, CD71, VCAM-1, IFN-γR1, MCAM, ALCAM, LNGFR and HLA ABC were correlated to BM-MSC preparations with high clonogenic potential and expression of IFN-γR1, MCAM and HLA ABC was associated with rapid growth of BM-MSCs. The mesodermal differentiation capacity of BM-MSCs was unaffected by donor age or gender but was affected by phenotype (CD10, IFN-γR1, GD2). BM-MSCs from female and male donors expressed androgen receptor and FGFR3, and secreted VEGF-A, HGF, LIF, Angiopoietin-1, basic fibroblast growth factor (bFGF) and NGFB. HGF secretion correlated negatively to the expression of CD71, CD140b and

  5. Repeated superovulation may affect mitochondrial functions of cumulus cells in mice

    PubMed Central

    Xie, Juan-Ke; Wang, Qian; Zhang, Ting-Ting; Yin, Shen; Zhang, Cui-Lian; Ge, Zhao-Jia

    2016-01-01

    Controlled ovarian stimulation by exogenous gonadotrophins is a key procedure during the in vitro fertilization cycle to obtain a sufficient number of oocytes in humans. Previous studies demonstrated that repeated superovulation had deleterious effects on the ovaries. However, whether repeated superovulation adversely affects the mitochondrial functions of cumulus cells remains unclear. In this study, mice were divided into three groups: superovulation once (R1); superovulation three times (R3), and superovulation five times (R5). We evaluated the effects of repeated superovulation on mitochondrial DNA copies (mtDNA) and observed decreased mtDNA copies per cell with increasing number of superovulation cycles. Further, we investigated the DNA methylation status in exon 2 and the mRNA expression level of nuclear-encoded DNA polymerase gamma A (PolgA). The results showed that the DNA methylation levels of PolgA in R1 and R5 were slightly lower than in R3. Additionally, the altered DNA methylation in PolgA coincided with the changes in PolgA expression in cumulus cells. We also found that the mRNA expression of COX1, CYTB, ND2, and ND4 was altered by repeated superovulation in cumulus cells. Thus, repeated superovulation had adverse effects on mitochondrial function. PMID:27698360

  6. 4-Quinolone drugs affect cell cycle progression and function of human lymphocytes in vitro.

    PubMed Central

    Forsgren, A; Schlossman, S F; Tedder, T F

    1987-01-01

    Most antibacterial agents do not affect human lymphocyte function, but a few are inhibitory. In contrast, a pronounced increase in the incorporation of [3H]thymidine in the presence of 4-quinolones was observed in these studies. The uptake of [3H]thymidine into DNA (trichloroacetic acid precipitable) was significantly increased in phytohemagglutinin-stimulated human lymphocytes when they were exposed to eight new 4-quinolone derivatives, ciprofloxacin, norfloxacin, ofloxacin, A-56619, A-56620, amifloxacin, enoxacin, and pefloxacin, at 1.6 to 6.25 micrograms/ml for 5 days. Four less antibacterially active 4-quinolones (nalidixic acid, cinoxacin, flumequine, and pipemidic acid) stimulated [3H]thymidine incorporation only at higher concentrations or not at all. Kinetic studies showed that incorporation of [3H]thymidine was not affected or slightly inhibited by ciprofloxacin 2 days after phytohemagglutinin stimulation but was increased on days 3 to 6. The total incorporation of [3H]thymidine from day 1 to day 6 after phytohemagglutinin stimulation was increased by 42 to 45% at 5 to 20 micrograms of ciprofloxacin per ml. Increased [3H]thymidine incorporation was also seen when human lymphocytes were stimulated with mitogens other than phytohemagglutinin. Ciprofloxacin added at the start of the culture had a more pronounced effect on [3H]thymidine incorporation than when added later. In spite of the apparent increase in DNA synthesis, lymphocyte growth was inhibited by 20 micrograms of ciprofloxacin per ml, and cell cycle analysis showed that ciprofloxacin inhibited progression through the cell cycle. In addition, immunoglobulin secretion by human lymphocytes stimulated by pokeweed mitogen for Epstein-Barr virus was inhibited by approximately 50% at 5 micrograms of ciprofloxacin per ml. These results suggest that the 4-quinolone drugs may also affect eucaryotic cell function in vitro, but additional studies are needed to establish an in vivo relevance. PMID:3606076

  7. Bisphosphonates modulate vital functions of human osteoblasts and affect their interactions with breast cancer cells.

    PubMed

    Kaiser, Tatjana; Teufel, Ingrid; Geiger, Konstanze; Vater, Yvonne; Aicher, Wilhelm K; Klein, Gerd; Fehm, Tanja

    2013-07-01

    Bisphosphonates (BPs) are in clinical use for the treatment of breast cancer patients with bone metastases. Their anti-resorptive effect is mainly explained by inhibition of osteoclast activity, but recent evidence also points to a direct action of BPs on bone-forming osteoblasts. However, the mechanisms how BPs influence osteoblasts and their interactions with breast cancer cells are still poorly characterized. Human osteoblasts isolated from bone specimens were characterized in depth by their expression of osteogenic marker genes. The influence of the nitrogen-containing BPs zoledronate (Zol), ibandronate (Iban), and pamidronate (Pam) on molecular and cellular functions of osteoblasts was assessed focusing on cell proliferation and viability, apoptosis, cytokine secretion, and osteogenic-associated genes. Furthermore, effects of BPs on osteoblast-breast tumor cell interactions were examined in an established in vitro model system. The BPs Zol and Pam inhibited cell viability of osteoblasts. This effect was mediated by an induction of caspase-dependent apoptosis in osteoblasts. By interfering with the mevalonate pathway, Zol also reduces the proliferation of osteoblasts. The expression of phenotypic markers of osteogenic differentiation was altered by Zol and Pam. In addition, both BPs strongly influenced the secretion of the chemokine CCL2 by osteoblasts. Breast cancer cells also responded to Zol and Pam with a reduced cell adhesion to osteoblast-derived extracellular matrix molecules and with a decreased migration in response to osteoblast-secreted factors. BPs revealed prominent effects on human osteoblasts. Zol and Pam as the most potent BPs affected not only the expression of osteogenic markers, osteoblast viability, and proliferation but also important osteoblast-tumor cell interactions. Changing the osteoblast metabolism by BPs modulates migration and adhesion of breast cancer cells as well. PMID:23807419

  8. Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits.

    PubMed

    Ulirsch, Jacob C; Nandakumar, Satish K; Wang, Li; Giani, Felix C; Zhang, Xiaolan; Rogov, Peter; Melnikov, Alexandre; McDonel, Patrick; Do, Ron; Mikkelsen, Tarjei S; Sankaran, Vijay G

    2016-06-01

    Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways. PMID:27259154

  9. Disturbance in function and expression of condensin affects chromosome compaction in HeLa cells.

    PubMed

    Zhai, Lei; Wang, Hongzhen; Tang, Wen; Liu, Wenguang; Hao, Shui; Zeng, Xianlu

    2011-07-01

    Condensin, a major non-histone protein complex on chromosomes, is responsible for the formation of rod-shaped chromosome in mitosis. A heterodimer composed of SMC2 (structural maintenance of chromosomes) and SMC4 subunits constitutes the core part of condensin. Although extensive studies have been done in yeast, fruit fly and Xenopus to uncover the mechanisms and molecular nature of SMC proteins, little is known about the complex in mammalian cells. We have conducted a series of experiments to unveil the nature of condensin complex in human chromosome formation. The results show that overexpression of the C-terminal domain of SMC subunits disturbs chromosome condensation, leading to formation of swollen chromosomes, while knockdown of SMC subunits severely disturbs mitotic chromosome formation, resulting in chromatin bridges between daughter cells and multiple nuclei in single cells. The salt extraction assay indicates that a fraction of the condensin complex is bound to chromatin in interphase, but most of the condensin bind to chromatin at the onset of mitosis. Thus, disturbance in condensin function or expression affects chromosome condensation and influences mitotic progression.

  10. IL-10 Conditioning of Human Skin Affects the Distribution of Migratory Dendritic Cell Subsets and Functional T Cell Differentiation

    PubMed Central

    Lindenberg, Jelle J.; Oosterhoff, Dinja; Sombroek, Claudia C.; Lougheed, Sinéad M.; Hooijberg, Erik; Stam, Anita G. M.; Santegoets, Saskia J. A. M.; Tijssen, Henk J.; Buter, Jan; Pinedo, Herbert M.; van den Eertwegh, Alfons J. M.; Scheper, Rik J.; Koenen, Hans J. P. M.; van de Ven, Rieneke; de Gruijl, Tanja D.

    2013-01-01

    In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines, IL-10 showed a unique ability to induce predominant migration of an immature CD14+CD141+DC-SIGN+ DC subset with low levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken from skin overlying breast tumors. Whereas predominant migration of mature CD1a+ subsets was associated with release of IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8+ T cells, migration of immature CD14+ DDC was accompanied by increased release of IL-10, poor expansion of CD4+ and CD8+ T cells, and skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of M2-like immature DC with functional qualities conducive to T cell tolerance. PMID:23875023

  11. Transgenic expression of Spi-C impairs B-cell development and function by affecting genes associated with BCR signaling.

    PubMed

    Zhu, Xiang; Schweitzer, Brock L; Romer, Eric J; Sulentic, Courtney E W; DeKoter, Rodney P

    2008-09-01

    Spi-C is an Ets family transcription factor closely related to PU.1 and Spi-B. Expression of Spi-C is developmentally regulated in the B-cell lineage, but its function remains unknown. To determine the function of Spi-C in B-cell development, we generated mice expressing a B-cell-specific Spi-C transgene under the control of the IgH intronic enhancer. Spi-C transgenic mice had 50% fewer B cells than wild-type littermates. Flow cytometric analyses showed that splenic transitional B cells and bone marrow pre-B or immature B cells from transgenic mice were dramatically reduced compared with those of wild type. Both nonspecific and Ag-specific serum IgM levels were significantly increased in transgenic mice, while serum IgG levels were significantly decreased compared with wild type. Spi-C transgenic B cells proliferated poorly after stimulation by anti-IgM or anti-CD40 in vitro, although they responded normally to LPS stimulation. Using real-time RT-PCR, we found that several BCR signaling-related mediators were downregulated at pre-B-cell and mature B-cell stages in transgenic mice, while an inhibitor of BCR signaling was upregulated. Taken together, these data indicate that ectopic expression of Spi-C can impair B-cell development and function by affecting genes associated with BCR signaling.

  12. In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells

    SciTech Connect

    Pinchuk, Lesya M.; Lee, Sang-Ryul; Filipov, Nikolay M.

    2007-09-15

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1 {mu}M concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion.

  13. Aging affects epidermal Langerhans cell development and function and alters their miRNA gene expression profile.

    PubMed

    Xu, Ying-Ping; Qi, Rui-Qun; Chen, Wenbin; Shi, Yuling; Cui, Zhi-Zhong; Gao, Xing-Hua; Chen, Hong-Duo; Zhou, Li; Mi, Qing-Sheng

    2012-11-01

    Immunosenescence is a result of progressive decline in immune system function with advancing age. Epidermal Langerhans cells (LCs), belonging to the dendritic cell (DC) family, act as sentinels to play key roles in the skin immune responses. However, it has not been fully elucidated how aging affects development and function of LCs. Here, we systemically analyzed LC development and function during the aging process in C57BL/6J mice, and performed global microRNA (miRNA) gene expression profiles in aged and young LCs. We found that the frequency and maturation of epidermal LCs were significantly reduced in aged mice starting at 12 months of age, while the Langerin expression and ability to phagocytose Dextran in aged LCs were increased compared to LCs from < 6 month old mice. The migration of LCs to draining lymph nodes was comparable between aged and young mice. Functionally, aged LCs were impaired in their capacity to induce OVA-specific CD4+ and CD8+ T cell proliferation. Furthermore, the expression of miRNAs in aged epidermal LCs showed a distinct profile compared to young LCs. Most interestingly, aging-regulated miRNAs potentially target TGF-β-dependent and non- TGF-β-dependent signal pathways related to LCs. Overall, our data suggests that aging affects LCs development and function, and that age-regulated miRNAs may contribute to the LC developmental and functional changes in aging.

  14. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia.

    PubMed

    Le Grand, Fabienne; Soudant, Philippe; Marty, Yanic; Le Goïc, Nelly; Kraffe, Edouard

    2013-01-01

    Membrane lipid composition and morpho-functional parameters were investigated in circulating cells of the edible cockle (Cerastoderma edule) affected by disseminated neoplasia (neoplastic cells) and compared to those from healthy cockles (hemocytes). Membrane sterol levels, phospholipid (PL) class and subclass proportions and their respective fatty acid (FA) compositions were determined. Morpho-functional parameters were evaluated through total hemocyte count (THC), mortality rate, phagocytosis ability and reactive oxygen species (ROS) production. Both morpho-functional parameters and lipid composition were profoundly affected in neoplastic cells. These dedifferentiated cells displayed higher THC (5×), mortality rate (3×) and ROS production with addition of carbonyl cyanide m-chloro phenylhydrazone (1.7×) but lower phagocytosis ability (½×), than unaffected hemocytes. Total PL amounts were higher in neoplastic cells than in hemocytes (12.3 and 5.1 nmol×10(-6) cells, respectively). However, sterols and a particular subclass of PL (plasmalogens; 1-alkenyl-2-acyl PL) were present in similar amounts in both cell type membranes. This led to a two times lower proportion of these membrane lipid constituents in neoplastic cells when compared to hemocytes (20.5% vs. 42.1% of sterols in total membrane lipids and 21.7% vs. 44.2% of plasmalogens among total PL, respectively). Proportions of non-methylene interrupted FA- and 20:1n-11-plasmalogen molecular species were the most impacted in neoplastic cells when compared to hemocytes (⅓× and ¼×, respectively). These changes in response to this leukemia-like disease in bivalves highlight the specific imbalance of plasmalogens and sterols in neoplastic cells, in comparison to the greater stability of other membrane lipid components.

  15. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia.

    PubMed

    Le Grand, Fabienne; Soudant, Philippe; Marty, Yanic; Le Goïc, Nelly; Kraffe, Edouard

    2013-01-01

    Membrane lipid composition and morpho-functional parameters were investigated in circulating cells of the edible cockle (Cerastoderma edule) affected by disseminated neoplasia (neoplastic cells) and compared to those from healthy cockles (hemocytes). Membrane sterol levels, phospholipid (PL) class and subclass proportions and their respective fatty acid (FA) compositions were determined. Morpho-functional parameters were evaluated through total hemocyte count (THC), mortality rate, phagocytosis ability and reactive oxygen species (ROS) production. Both morpho-functional parameters and lipid composition were profoundly affected in neoplastic cells. These dedifferentiated cells displayed higher THC (5×), mortality rate (3×) and ROS production with addition of carbonyl cyanide m-chloro phenylhydrazone (1.7×) but lower phagocytosis ability (½×), than unaffected hemocytes. Total PL amounts were higher in neoplastic cells than in hemocytes (12.3 and 5.1 nmol×10(-6) cells, respectively). However, sterols and a particular subclass of PL (plasmalogens; 1-alkenyl-2-acyl PL) were present in similar amounts in both cell type membranes. This led to a two times lower proportion of these membrane lipid constituents in neoplastic cells when compared to hemocytes (20.5% vs. 42.1% of sterols in total membrane lipids and 21.7% vs. 44.2% of plasmalogens among total PL, respectively). Proportions of non-methylene interrupted FA- and 20:1n-11-plasmalogen molecular species were the most impacted in neoplastic cells when compared to hemocytes (⅓× and ¼×, respectively). These changes in response to this leukemia-like disease in bivalves highlight the specific imbalance of plasmalogens and sterols in neoplastic cells, in comparison to the greater stability of other membrane lipid components. PMID:23333874

  16. The Fusarium toxin zearalenone and deoxynivalenol affect murine splenic antioxidant functions, interferon levels, and T-cell subsets.

    PubMed

    Ren, Z H; Deng, H D; Wang, Y C; Deng, J L; Zuo, Z C; Wang, Y; Peng, X; Cui, H M; Fang, J; Yu, S M; Shen, L H; Hu, Y C

    2016-01-01

    This study aimed to evaluate the effects of the Fusarium toxin zearalenone (ZEA) and deoxynivalenol (DON) on splenic antioxidant functions, IFN levels, and T-cell subsets in mice. Herein, 360 mice were assigned to nine groups for a 12-day study. Mice were administered an intraperitoneal injection for 4 consecutive days with different concentrations of ZEA alone, DON alone, or ZEA+DON. Spleen and blood samples were collected on days 0, 3, 5, 8, and 12. Mice in each of the experimental groups showed dysreglated splenic antioxidant functions, IFN levels, and T-cell subset frequencies, suggesting that the immune system had been affected. The ZEA+DON-treated groups, especially the group that received a higher concentration of ZEA+DON (Group D2Z2), showed more obvious effects on the dysregulation of splenic antioxidant functions, IFN levels, and T-cell subsets. This finding suggested that DON and ZEA exerted synergistic effects.

  17. Butyrate affects differentiation, maturation and function of human monocyte-derived dendritic cells and macrophages

    PubMed Central

    Millard, A L; Mertes, P M; Ittelet, D; Villard, F; Jeannesson, P; Bernard, J

    2002-01-01

    We studied the in vitro effects of butyric acid on differentiation, maturation and function of dendritic cells (DC) and macrophages (MΦ) generated from human monocytes. A non-toxic dose of butyrate was shown to alter the phenotypic differentiation process of DC as assessed by a persistence of CD14, and a decreased CD54, CD86 and HLA class II expression. The more immature differentiation stage of treated cells was confirmed further by their increased phagocytic capability, their altered capacity to produce IL-10 and IL-12, and their weak allostimulatory abilities. Butyrate also altered DC terminal maturation, regardless of the maturation inducer, as demonstrated by a strong down-regulation of CD83, a decreased expression of CD40, CD86 and HLA class II. Similarly, butyrate altered MΦ differentiation, down-regulating the expression of the restricted membrane antigens and reducing the phagocytic capacity of treated cells. To investigate further the mechanism by which butyrate hampers the monocyte dual differentiation pathway, we studied the effects of 1,25(OH)2D3 alone or in combination with butyrate on the phenotypic features of DC. Unlike 1,25(OH)2D3, butyrate inhibited DC differentiation without redirecting it towards MΦ. Combined treatment gave rise to a new cell subset (CD14high, CD86 and HLA-DRlow) phenotypically distinct from monocytes. These results reveal an alternative mechanism of inhibition of DC and MΦ differentiation. Altogether, our data demonstrate a novel immune suppression property of butyrate that may modulate both inflammatory and immune responses and support further the interest for butyrate and its derivatives as new immunotherapeutic agents. PMID:12390312

  18. Interaction of Berberine derivative with protein POT1 affect telomere function in cancer cells

    SciTech Connect

    Xiao, Nannan; Chen, Siqi; Ma, Yan; Qiu, Jun; Tan, Jia-Heng; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu; Li, Ding

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer The protein POT1 plays an important role in telomere protection. Black-Right-Pointing-Pointer Functional POT1 was overexpressed in Escherichia coli for the first time, and purified. Black-Right-Pointing-Pointer Compound Sysu-00692 was found to be the first POT1-binding ligand. Black-Right-Pointing-Pointer Sysu-00692 could interfere with the binding activity of POT1 in vivo. Black-Right-Pointing-Pointer Sysu-00692 had inhibition on telomerase and cell proliferation. -- Abstract: The protein POT1 plays an important role in telomere protection, which is related with telomere elongation and cell immortality. The protein has been recognized as a promising drug target for cancer treatment. In the present study, we cloned, overexpressed in Escherichia coli for the first time, and purified recombinant human POT1. The protein was proved to be active through filter binding assay, FRET and CD experiments. In the initial screening for protein binding ligands using SPR, compound Sysu-00692 was found to bind well with the POT1, which was confirmed with EMSA. Its in vivo activity study showed that compound Sysu-00692 could interfere with the binding between human POT1 and the telomeric DNA through chromatin immunoprecipitation. Besides, the compound showed mild inhibition on telomerase and cell proliferation. As we know, compound Sysu-00692 is the first reported POT1-binding ligand, which could serve as a lead compound for further improvement. This work offered a potentially new approach for drug design for the treatment of cancers.

  19. Extracellular matrix elasticity and topography: material-based cues that affect cell function via conserved mechanisms.

    PubMed

    Janson, Isaac A; Putnam, Andrew J

    2015-03-01

    Chemical, mechanical, and topographic extracellular matrix (ECM) cues have been extensively studied for their influence on cell behavior. These ECM cues alter cell adhesion, cell shape, and cell migration and activate signal transduction pathways to influence gene expression, proliferation, and differentiation. ECM elasticity and topography, in particular, have emerged as material properties of intense focus based on strong evidence these physical cues can partially dictate stem cell differentiation. Cells generate forces to pull on their adhesive contacts, and these tractional forces appear to be a common element of cells' responses to both elasticity and topography. This review focuses on recently published work that links ECM topography and mechanics and their influence on differentiation and other cell behaviors. We also highlight signaling pathways typically implicated in mechanotransduction that are (or may be) shared by cells subjected to topographic cues. Finally, we conclude with a brief discussion of the potential implications of these commonalities for cell based therapies and biomaterial design.

  20. Expression of PKC iota affects neuronal differentiation of PC12 cells at least partly independent of kinase function

    PubMed Central

    Doonachar, Alana; Schoenfeld, Alan R.

    2014-01-01

    Atypical PKC (aPKC) plays a role in establishing cell polarity and has been indicated in neuronal differentiation and polarization, including neurite formation in rat pheochromocytoma PC12 cells, albeit by unclear mechanisms. Here, the role of the aPKC isoform, PKC iota (PKCι), in the early neuronal differentiation of PC12 cells was investigated. NGF-treated PC12 cells with stably expressed exogenous wild-type PKCι showed decreased expression of a neuroendocrine marker, increased expression of a neuronal marker, and increased neurite formation. Stable expression of a kinase- inactive PKCι, but not constitutively active PKCι lacking a regulatory domain, had similar although less potent effects. Pharmacological inhibition of endogenous aPKC kinase activity in parental PC12 cells did not inhibit neurite formation, suggesting that some of the observed effects of PKCι expression on neuronal differentiation are kinase- independent. Interestingly, exogenous expression of wild-type and kinase-inactive PKCι had little effect on overall PKCι activity, but caused a decrease in PKC zeta (PKCζ) kinase activity, suggesting an interplay between the two isoforms that may underlie the observed results. Overall, these findings suggest that in PC12 and perhaps other neuroendocrine precursor cells, PKCι influences an early differentiation decision between the neuroendocrine (chromaffin) and sympathetic neuron cell lineages, potentially by affecting PKCζ function. PMID:24910851

  1. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    SciTech Connect

    Zhu, Changlian; Gao, Jianfeng; Li, Qian; Huang, Zhiheng; Zhang, Yu; Li, Hongfu; Kuhn, Hans-Georg; Blomgren, Klas

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI), could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.

  2. Pancreatic β-Cell Adaptive Plasticity in Obesity Increases Insulin Production but Adversely Affects Secretory Function.

    PubMed

    Alarcon, Cristina; Boland, Brandon B; Uchizono, Yuji; Moore, Patrick C; Peterson, Bryan; Rajan, Suryalekha; Rhodes, Olivia S; Noske, Andrew B; Haataja, Leena; Arvan, Peter; Marsh, Bradly J; Austin, Jotham; Rhodes, Christopher J

    2016-02-01

    Pancreatic β-cells normally produce adequate insulin to control glucose homeostasis, but in obesity-related diabetes, there is a presumed deficit in insulin production and secretory capacity. In this study, insulin production was assessed directly in obese diabetic mouse models, and proinsulin biosynthesis was found to be contrastingly increased, coupled with a significant expansion of the rough endoplasmic reticulum (without endoplasmic reticulum stress) and Golgi apparatus, increased vesicular trafficking, and a depletion of mature β-granules. As such, β-cells have a remarkable capacity to produce substantial quantities of insulin in obesity, which are then made available for immediate secretion to meet increased metabolic demand, but this comes at the price of insulin secretory dysfunction. Notwithstanding, it can be restored. Upon exposing isolated pancreatic islets of obese mice to normal glucose concentrations, β-cells revert back to their typical morphology with restoration of regulated insulin secretion. These data demonstrate an unrealized dynamic adaptive plasticity of pancreatic β-cells and underscore the rationale for transient β-cell rest as a treatment strategy for obesity-linked diabetes. PMID:26307586

  3. New Verapamil Analogs Inhibit Intracellular Mycobacteria without Affecting the Functions of Mycobacterium-Specific T Cells

    PubMed Central

    Ruminiski, Peter G.; Kumar, Malkeet; Singh, Kawaljit; Hamzabegovic, Fahreta; Hoft, Daniel F.; Eickhoff, Christopher S.; Selimovic, Asmir; Campbell, Mary; Chibale, Kelly

    2015-01-01

    There is a growing interest in repurposing mycobacterial efflux pump inhibitors, such as verapamil, for tuberculosis (TB) treatment. To aid in the design of better analogs, we studied the effects of verapamil on macrophages and Mycobacterium tuberculosis-specific T cells. Macrophage activation was evaluated by measuring levels of nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and gamma interferon (IFN-γ). Since verapamil is a known autophagy inducer, the roles of autophagy induction in the antimycobacterial activities of verapamil and norverapamil were studied using bone marrow-derived macrophages from ATG5flox/flox (control) and ATG5flox/flox Lyz-Cre mice. Our results showed that despite the well-recognized effects of verapamil on calcium channels and autophagy, its action on intracellular M. tuberculosis does not involve macrophage activation or autophagy induction. Next, the effects of verapamil and norverapamil on M. tuberculosis-specific T cells were assessed using flow cytometry following the stimulation of peripheral blood mononuclear cells from TB-skin-test-positive donors with M. tuberculosis whole-cell lysate for 7 days in the presence or absence of drugs. We found that verapamil and norverapamil inhibit the expansion of M. tuberculosis-specific T cells. Additionally, three new verapamil analogs were found to inhibit intracellular Mycobacterium bovis BCG, and one of the three analogs (KSV21) inhibited intracellular M. tuberculosis replication at concentrations that did not inhibit M. tuberculosis-specific T cell expansion. KSV21 also inhibited mycobacterial efflux pumps to the same degree as verapamil. More interestingly, the new analog enhances the inhibitory activities of isoniazid and rifampin on intracellular M. tuberculosis. In conclusion, KSV21 is a promising verapamil analog on which to base structure-activity relationship studies aimed at identifying more effective analogs. PMID:26643325

  4. Human Peripheral Blood Mononuclear Cell Function and Dendritic Cell Differentiation Are Affected by Bisphenol-A Exposure.

    PubMed

    Camarca, Alessandra; Gianfrani, Carmen; Ariemma, Fabiana; Cimmino, Ilaria; Bruzzese, Dario; Scerbo, Roberta; Picascia, Stefania; D'Esposito, Vittoria; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental pollutants, including endocrine disruptor chemicals (EDCs), interfere on human health, leading to hormonal, immune and metabolic perturbations. Bisphenol-A (BPA), a main component of polycarbonate plastics, has been receiving increased attention due to its worldwide distribution with a large exposure. In humans, BPA, for its estrogenic activity, may have a role in autoimmunity, inflammatory and allergic diseases. To this aim, we assessed the effect of low BPA doses on functionality of human peripheral blood mononuclear cells (PBMCs), and on in vitro differentiation of dendritic cells from monocytes (mDCs). Fresh peripheral blood samples were obtained from 12 healthy adult volunteers. PBMCs were left unstimulated or were activated with the mitogen phytohemagglutinin (PHA) or the anti-CD3 and anti-CD28 antibodies and incubated in presence or absence of BPA at 0.1 and 1nM concentrations. The immune-modulatory effect of BPA was assessed by evaluating the cell proliferation and the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13) secreted by PBMCs. mDCs were differentiated with IL-4 and GC-CSF with or without BPA and the expression of differentiation/maturation markers (CD11c, CD1a, CD86, HLA-DR) was evaluated by flow cytometry; furthermore, a panel of 27 different cytokines, growth factors and chemokines were assayed in the mDC culture supernatants. PBMCs proliferation significantly increased upon BPA exposure compared to BPA untreated cells. In addition, a significant decrease in IL-10 secretion was observed in PBMCs incubated with BPA, either in unstimulated or mitogen-stimulated cells, and at both 0.1 and 1nM BPA concentrations. Similarly, IL-13 was reduced, mainly in cells activated by antiCD3/CD28. By contrast, no significant changes in IFN-γ and IL-4 production were found in any condition assayed. Finally, BPA at 1nM increased the density of dendritic cells expressing CD1a and concomitantly

  5. Human Peripheral Blood Mononuclear Cell Function and Dendritic Cell Differentiation Are Affected by Bisphenol-A Exposure

    PubMed Central

    Ariemma, Fabiana; Cimmino, Ilaria; Bruzzese, Dario; Scerbo, Roberta; Picascia, Stefania; D’Esposito, Vittoria; Beguinot, Francesco; Formisano, Pietro

    2016-01-01

    Environmental pollutants, including endocrine disruptor chemicals (EDCs), interfere on human health, leading to hormonal, immune and metabolic perturbations. Bisphenol-A (BPA), a main component of polycarbonate plastics, has been receiving increased attention due to its worldwide distribution with a large exposure. In humans, BPA, for its estrogenic activity, may have a role in autoimmunity, inflammatory and allergic diseases. To this aim, we assessed the effect of low BPA doses on functionality of human peripheral blood mononuclear cells (PBMCs), and on in vitro differentiation of dendritic cells from monocytes (mDCs). Fresh peripheral blood samples were obtained from 12 healthy adult volunteers. PBMCs were left unstimulated or were activated with the mitogen phytohemagglutinin (PHA) or the anti-CD3 and anti-CD28 antibodies and incubated in presence or absence of BPA at 0.1 and 1nM concentrations. The immune-modulatory effect of BPA was assessed by evaluating the cell proliferation and the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13) secreted by PBMCs. mDCs were differentiated with IL-4 and GC-CSF with or without BPA and the expression of differentiation/maturation markers (CD11c, CD1a, CD86, HLA-DR) was evaluated by flow cytometry; furthermore, a panel of 27 different cytokines, growth factors and chemokines were assayed in the mDC culture supernatants. PBMCs proliferation significantly increased upon BPA exposure compared to BPA untreated cells. In addition, a significant decrease in IL-10 secretion was observed in PBMCs incubated with BPA, either in unstimulated or mitogen-stimulated cells, and at both 0.1 and 1nM BPA concentrations. Similarly, IL-13 was reduced, mainly in cells activated by antiCD3/CD28. By contrast, no significant changes in IFN-γ and IL-4 production were found in any condition assayed. Finally, BPA at 1nM increased the density of dendritic cells expressing CD1a and concomitantly

  6. Methyl Donor Deficiency Affects Fetal Programming of Gastric Ghrelin Cell Organization and Function in the Rat

    PubMed Central

    Bossenmeyer-Pourié, Carine; Blaise, Sébastien; Pourié, Grégory; Tomasetto, Catherine; Audonnet, Sandra; Ortiou, Sandrine; Koziel, Violette; Rio, Marie-Christine; Daval, Jean-Luc; Guéant, Jean-Louis; Beck, Bernard

    2010-01-01

    Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation. By using specific markers and approaches (such as periodic acid–Schiff, bromodeoxyuridine, homocysteine, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunostaining, reverse transcription-polymerase chain reaction), we studied the gastric oxyntic mucosa cellular organization and ghrelin gene expression in the mucosa in 20-day-old fetuses and weanling pups, and plasma ghrelin concentration in weanling rat pups of dams either normally fed or deprived of choline, folate, vitamin B6, and vitamin B12 during gestation and suckling periods. MDD fetuses weighed less than controls; the weight deficit reached 57% at weaning (P < 0.001). Both at the end of gestation and at weaning, they presented with an aberrant gastric oxyntic mucosa formation with loss of cell polarity, anarchic cell migration, abnormal progenitor differentiation, apoptosis, and signs of surface layer erosion. Ghrelin cells were abnormally located in the pit region of oxyntic glands. At weaning, plasma ghrelin levels were decreased (−28%; P < 0.001) despite unchanged mRNA expression in the stomach. This decrease was associated with lower body weight. Taken together, these data indicate that one mechanism through which MDD influences fetal programming is the remodeling of gastric cellular organization, leading to dysfunction of the ghrelin system and dramatic effects on growth. PMID:19948829

  7. Sperm function in affective illness.

    PubMed

    Amsterdam, J; Winokur, A; Levin, R

    1981-04-01

    There is evidence for functional changes in the hypothalamic-pituitary-gonadal axis of patients with affective disorders. Little is known concerning spermatogenesis or sperm function in depressed men. We systematically evaluated the sperm indices in a group of depressed males complaining of diminished libido, and a healthy control group. No differences were noted in sperm parameters between the groups.

  8. Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function

    PubMed Central

    Kleensang, Andre; Vantangoli, Marguerite M.; Odwin-DaCosta, Shelly; Andersen, Melvin E.; Boekelheide, Kim; Bouhifd, Mounir; Fornace, Albert J.; Li, Heng-Hong; Livi, Carolina B.; Madnick, Samantha; Maertens, Alexandra; Rosenberg, Michael; Yager, James D.; Zhaog, Liang; Hartung, Thomas

    2016-01-01

    Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines. PMID:27456714

  9. Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function.

    PubMed

    Kleensang, Andre; Vantangoli, Marguerite M; Odwin-DaCosta, Shelly; Andersen, Melvin E; Boekelheide, Kim; Bouhifd, Mounir; Fornace, Albert J; Li, Heng-Hong; Livi, Carolina B; Madnick, Samantha; Maertens, Alexandra; Rosenberg, Michael; Yager, James D; Zhaog, Liang; Hartung, Thomas

    2016-01-01

    Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines. PMID:27456714

  10. Acute myocardial infarction does not affect functional characteristics of adipose-derived stem cells in rats, but reduces the number of stem cells in adipose tissue.

    PubMed

    Naaijkens, B A; Krijnen, P A J; Meinster, E; ter Horst, E N; Vo, K; Musters, R J P; Kamp, O; Niessen, H W M; Juffermans, L J M; van Dijk, A

    2015-12-01

    In most pre-clinical animal studies investigating stem cell therapy in acute myocardial infarction (AMI), the administered stem cells are isolated from healthy donors. In clinical practice, however, patients who suffer from AMI will receive autologous cells, for example using adipose-derived stem cells (ASC). During AMI, inflammation is induced and we hypothesized that this might affect characteristics of ASC. To investigate this, ASC were isolated from rat adipose tissue 1 day (1D group, n = 5) or 7 days (7D group, n = 6) post-AMI, and were compared with ASC from healthy control rats (Control group, n = 6) and sham-operated rats (Sham 1D group, n = 5). We found that significantly fewer ASC were present 1 day post-AMI in the stromal vascular fraction (SVF), determined by a colony-forming-unit assay (p < 0.001 vs. Control and 7D). These data were confirmed by flow cytometry, showing fewer CD90-positive cells in SVF of the 1D group. When cultured, no differences were found in proliferation rate and cell size between the groups in the first three passages. Also, no difference in the differentiation capacity of ASC was found. In conclusion, it was shown that significantly fewer stem cells were present in the SVF 1 day post-AMI; however, the stem cells that were present showed no functional differences.

  11. Luteolin induces apoptosis in multidrug resistant cancer cells without affecting the drug transporter function: involvement of cell line-specific apoptotic mechanisms

    PubMed Central

    Rao, Prema S.; Satelli, Arun; Moridani, Majid; Jenkins, Marjorie; Rao, U. Subrahmanyeswara

    2011-01-01

    Bioflavonoids are of considerable interest to human health as these serve as antioxidant and anticancer agents. Although epidemiological and experimental studies suggest that luteolin, a natural bioflavonoid, exhibits chemopreventive properties, its effectiveness as an antiproliferative agent against multidrug resistant (MDR) cancers is unclear. We thus assessed the antiproliferative effects of luteolin and associated molecular mechanisms using two MDR cancer cell lines that express high levels of P-glycoprotein and ABCG2. In this paper, we demonstrate that luteolin induces apoptosis in P-glycoprotein- and ABCG2-expressing MDR cancer cells without affecting the transport functions of these drug transporters. Analysis of various proliferative signaling pathways indicated that luteolin-induced apoptosis involves reactive oxygen species generation, DNA damage, activation of ATR→Chk2→p53 signaling pathway, inhibition of NF-kB signaling pathway, activation of p38 pathway and depletion of anti-apoptotic proteins. Importantly, use of luteolin in these analyses also identified specific molecular characteristics of NCI-ADR/RES and MCF-7/MitoR cells that highlight their different tissue origins. These results suggest that luteolin possesses therapeutic potential to control the proliferation of MDR cancers without affecting the physiological function of drug transporters in the body tissues. PMID:21792893

  12. Genetic ablation of androgen receptor signaling in fetal Leydig cell lineage affects Leydig cell functions in adult testis.

    PubMed

    Kaftanovskaya, Elena M; Lopez, Carolina; Ferguson, Lydia; Myhr, Courtney; Agoulnik, Alexander I

    2015-06-01

    It is commonly accepted that androgen-producing fetal Leydig cells (FLC) are substituted by adult Leydig cells (ALC) during perinatal testis development. The mechanisms influencing this process are unclear. We used mice with a retinoid acid receptor 2 promoter-Cre recombinase transgene (Rarb-cre) expressed in embryonic FLC precursors, but not in postnatal testis, and a dual fluorescent Cre recombinase reporter to label FLC and ALC in vivo. All FLC in newborn testis had the recombinant, whereas the majority of LC in adult testis had the nonrecombinant reporter. Primary LC cultures from adult testis had either recombinant (20%) or nonrecombinant (80%) cells, demonstrating that the FLC survive in adult testis and their ontogeny is distinct from ALC. Conditional inactivation of androgen receptor (AR) allele using the Rarb-cre transgene resulted in a 50% increase of AR-negative LC in adult testis. The mutant males became infertile with age, with all LC in older testis showing signs of incomplete differentiation, such as a large number of big lipid droplets, an increase of finger-like protrusions, and a misexpression of steroidogenic or FLC- and ALC-specific genes. We propose that the antiandrogenic exposure during early development may similarly result in an increase of FLC in adult testis, leading to abnormal LC differentiation.

  13. BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro.

    PubMed

    Gargett, Tessa; Fraser, Cara K; Dotti, Gianpietro; Yvon, Eric S; Brown, Michael P

    2015-01-01

    Cancer immunotherapy has long been used in the treatment of metastatic melanoma, and an anti-CTLA-4 monoclonal antibody treatment has recently been approved by the US Food and Drug Administration. Targeted therapies such as small molecule kinase inhibitors targeting deregulated mitogen-activated protein kinase (MAPK) signaling have markedly improved melanoma control in up to 50% of metastatic disease patients and have likewise been recently approved. Combination therapies for melanoma have been proposed as a way to exploit the high-level but short-term responses associated with kinase inhibitor therapies and the low-level but longer-term responses associated with immunotherapy. Cancer immunotherapy now includes adoptive transfer of autologous tumor-specific chimeric antigen receptor (CAR) T cells and this mode of therapy is a candidate for combination with small molecule drugs. This paper describes CART cells that target GD2-expressing melanoma cells and investigates the effects of approved MAPK pathway-targeted therapies for melanoma [vemurafenib (Vem), dabrafenib (Dab), and trametinib (Tram)] on the viability, activation, proliferation, and cytotoxic T lymphocyte activity of these CAR T cells, as well as on normal peripheral blood mononuclear cells. We report that, although all these drugs lead to inhibition of stimulated T cells at high concentrations in vitro, only Vem inhibited T cells at concentrations equivalent to reported plasma concentrations in treated patients. Although the combination of Dab and Tram also resulted in inhibition of T-cell effector functions at some therapeutic concentrations, Dab itself had little adverse effect on CAR T-cell function. These findings may have implications for novel therapeutic combinations of adoptive CAR T-cell immunotherapy and MAPK pathway inhibitors.

  14. Alcohol and Cannabinoids Differentially Affect HIV Infection and Function of Human Monocyte-Derived Dendritic Cells (MDDC)

    PubMed Central

    Agudelo, Marisela; Figueroa, Gloria; Yndart, Adriana; Casteleiro, Gianna; Muñoz, Karla; Samikkannu, Thangavel; Atluri, Venkata; Nair, Madhavan P.

    2015-01-01

    During human immunodeficiency virus (HIV) infection, alcohol has been known to induce inflammation while cannabinoids have been shown to have an anti-inflammatory role. For instance cannabinoids have been shown to reduce susceptibility to HIV-1 infection and attenuate HIV replication in macrophages. Recently, we demonstrated that alcohol induces cannabinoid receptors and regulates cytokine production by monocyte-derived dendritic cells (MDDC). However, the ability of alcohol and cannabinoids to alter MDDC function during HIV infection has not been clearly elucidated yet. In order to study the potential impact of alcohol and cannabinoids on differentiated MDDC infected with HIV, monocytes were cultured for 7 days with GM-CSF and IL-4, differentiated MDDC were infected with HIV-1Ba-L and treated with EtOH (0.1 and 0.2%), THC (5 and 10 μM), or JWH-015 (5 and 10 μM) for 4–7 days. HIV infection of MDDC was confirmed by p24 and Long Terminal Repeats (LTR) estimation. MDDC endocytosis assay and cytokine array profiles were measured to investigate the effects of HIV and substances of abuse on MDDC function. Our results show the HIV + EtOH treated MDDC had the highest levels of p24 production and expression when compared with the HIV positive controls and the cannabinoid treated cells. Although both cannabinoids, THC and JWH-015 had lower levels of p24 production and expression, the HIV + JWH-015 treated MDDC had the lowest levels of p24 when compared to the HIV + THC treated cells. In addition, MDDC endocytic function and cytokine production were also differentially altered after alcohol and cannabinoid treatments. Our results show a differential effect of alcohol and cannabinoids, which may provide insights into the divergent inflammatory role of alcohol and cannabinoids to modulate MDDC function in the context of HIV infection. PMID:26733986

  15. Loss of Pcgf5 Affects Global H2A Monoubiquitination but Not the Function of Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Aoyama, Kazumasa; Oshima, Motohiko; Saraya, Atsunori; Sugishita, Hiroki; Nakayama, Manabu; Ishikura, Tomoyuki; Koseki, Haruhiko; Iwama, Atsushi

    2016-01-01

    Polycomb-group RING finger proteins (Pcgf1-Pcgf6) are components of Polycomb repressive complex 1 (PRC1)-related complexes that catalyze monoubiquitination of histone H2A at lysine 119 (H2AK119ub1), an epigenetic mark associated with repression of genes. Pcgf5 has been characterized as a component of PRC1.5, one of the non-canonical PRC1, consisting of Ring1a/b, Rybp/Yaf2 and Auts2. However, the biological functions of Pcgf5 have not yet been identified. Here we analyzed the impact of the deletion of Pcgf5 specifically in hematopoietic stem and progenitor cells (HSPCs). Pcgf5 is expressed preferentially in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) compared with committed myeloid progenitors and differentiated cells. We transplanted bone marrow (BM) cells from Rosa::Cre-ERT control and Cre-ERT;Pcgf5fl/fl mice into lethally irradiated recipient mice. At 4 weeks post-transplantation, we deleted Pcgf5 by injecting tamoxifen, however, no obvious changes in hematopoiesis were detected including the number of HSPCs during a long-term observation period following the deletion. Competitive BM repopulating assays revealed normal repopulating capacity of Pcgf5-deficient HSCs. Nevertheless, Pcgf5-deficient HSPCs showed a significant reduction in H2AK119ub1 levels compared with the control. ChIP-sequence analysis confirmed the reduction in H2AK119ub1 levels, but revealed no significant association of changes in H2AK119ub1 levels with gene expression levels. Our findings demonstrate that Pcgf5-containing PRC1 functions as a histone modifier in vivo, but its role in HSPCs is limited and can be compensated by other PRC1-related complexes in HSPCs. PMID:27136092

  16. Defining the mechanisms by which the reactive oxygen species by-product, 4-hydroxynonenal, affects human sperm cell function.

    PubMed

    Baker, Mark A; Weinberg, Anita; Hetherington, Louise; Villaverde, Ana-Izabel; Velkov, Tony; Baell, Jonathan; Gordon, Christopher P

    2015-04-01

    Lipid peroxidation products such as the naturally occurring aldehyde 4-hydroxynonenal (4-HNE) are known to be cytotoxic toward different cell types, including spermatozoa. In order to understand this at the molecular level, we have employed a proteomic approach to characterize direct 4-HNE adducts on human spermatozoa. Several proteins were identified to be of particular interest, including aldehyde labeling of histone methyltransferase and dynein heavy chain. In addition, we found that 4-HNE bound to part of the activation segment, cysteine residue 199, of protein kinase A (PKA). Interestingly, at low levels, addition of 4-HNE had a stimulatory effect on PKA. However, this did not correlate to increased phosphotyrosine levels during capacitation. This data explains the link between reactive oxygen species and sperm toxicity. Given that epigenetic regulation is likely affected in oxidative-stressed spermatozoa, this data show that spermatozoa appear to shut down under these conditions before reaching the egg.

  17. Allotransplanted DRG neurons or Schwann cells affect functional recovery in a rodent model of sciatic nerve injury

    PubMed Central

    Liu, Weimin; Markman, John D.; Gelbard, Harris A.; Huang, Jason H.

    2015-01-01

    Objective In this study, the functional recoveries of Sprague-Dawley rats following repair of a complete sciatic nerve transection using allotransplanted dorsal root ganglion (DRG) neurons or Schwann cells were examined using a number of outcome measures. Methods Four groups were compared: (1) repair with a nerve guide conduit seeded with allotransplanted Schwann cells harvested from Wistar rats, (2) repair with a nerve guide conduit seeded with DRG neurons, (3) repair with solely a nerve guide conduit, and (4) sham-surgery animals where the sciatic nerve was left intact. The results corroborated our previous reported histology findings and measures of immunogenicity. Results The Wistar-DRG-treated group achieved the best recovery, significantly outperforming both the Wistar-Schwann group and the nerve guide conduit group in the Von Frey assay of touch response (P < 0.05). Additionally, Wistar-DRG and Wistar-Schwann seeded repairs showed lower frequency and severity in an autotomy measure of the self-mutilation of the injured leg because of neuralgia. Conclusion These results suggest that in complete peripheral nerve transections, surgical repair using nerve guide conduits with allotransplanted DRG and Schwann cells may improve recovery, especially DRG neurons, which elicit less of an immune response. PMID:24836462

  18. PEGylation affects cytotoxicity and cell-compatibility of poly(ethylene imine) for lung application: Structure-function relationships

    SciTech Connect

    Beyerle, Andrea; Merkel, Olivia; Stoeger, Tobias; Kissel, Thomas

    2010-01-15

    Poly(ethylene imine) (PEI) has widely been used as non-viral gene carrier due to its capability to form stable complexes by electrostatic interactions with nucleic acids. To reduce cytotoxicity of PEI, several studies have addressed modified PEIs such as block or graft copolymers containing cationic and hydrophilic non-ionic components. Copolymers of PEI and hydrophilic poly(ethylene glycol) (PEG) with various molecular weights and graft densities were shown to exhibit decreased cytotoxicity and potential for DNA and siRNA delivery. In this study, we evaluated the cytotoxicity and cell-compatibility of different PEGylated PEI polymers in two murine lung cell lines. We found that the degree of PEGylation correlated with both cytotoxicity and oxidative stress, but not with proinflammatory effects. AB type copolymers with long PEG blocks caused high membrane damage and significantly decreased the metabolic activity of lung cells. In addition, they significantly increased the release of two lipid mediators such as 8-isoprostanes (8-IP) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. In contrast, the cytokine profiles which indicated high levels of acute-phase cytokines such as TNF-alpha, IL-6, and G-CSF did not follow any clear structure-function relationship. In conclusion, we found that modification of PEI 25kDa with high degree of PEGylation and low PEG chain length reduced cytotoxic and oxidative stress response in lung cells, while the proinflammatory potential remained unaffected. A degree of substitution in the range of 10 to 30 and PEG-chain lengths up to 2000 Da seem to be beneficial and merit further investigations.

  19. Activation of the aryl hydrocarbon receptor affects activation and function of human monocyte-derived dendritic cells.

    PubMed

    Wang, C; Ye, Z; Kijlstra, A; Zhou, Y; Yang, P

    2014-08-01

    Aryl hydrocarbon receptor (AhR) is well known for mediating the toxic effects of dioxin-containing pollutants, but has also been shown to be involved in the natural regulation of the immune response. In this study, we investigated the effect of AhR activation by its endogenous ligands 6-formylindolo[3,2-b]carbazole (FICZ) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the differentiation, maturation and function of monocyte-derived DCs in Behçet's disease (BD) patients. In this study, we showed that AhR activation by FICZ and ITE down-regulated the expression of co-stimulatory molecules including human leucocyte antigen D-related (HLA-DR), CD80 and CD86, while it had no effect on the expression of CD83 and CD40 on DCs derived from BD patients and normal controls. Lipopolysaccharide (LPS)-treated dendritic cells (DCs) from active BD patients showed a higher level of interleukin (IL)-1β, IL-6, IL-23 and tumour necrosis factor (TNF)-α production. FICZ or ITE significantly inhibited the production of IL-1β, IL-6, IL-23 and TNF-α, but induced IL-10 production by DCs derived from active BD patients and normal controls. FICZ or ITE-treated DCs significantly inhibited the T helper type 17 (Th17) and Th1 cell response. Activation of AhR either by FICZ or ITE inhibits DC differentiation, maturation and function. Further studies are needed to investigate whether manipulation of the AhR pathway may be used to treat BD or other autoimmune diseases.

  20. Methamphetamine Use in HIV-infected Individuals Affects T-cell Function and Viral Outcome during Suppressive Antiretroviral Therapy

    PubMed Central

    Massanella, Marta; Gianella, Sara; Schrier, Rachel; Dan, Jennifer M.; Pérez-Santiago, Josué; Oliveira, Michelli F.; Richman, Douglas D.; Little, Susan J.; Benson, Constance A.; Daar, Eric S.; Dube, Michael P.; Haubrich, Richard H.; Smith, Davey M.; Morris, Sheldon R.

    2015-01-01

    We investigated the associations between methamphetamine (meth) use, immune function, and the dynamics of HIV and cytomegalovirus [CMV] in the blood and genital tract of HIV-infected ART-suppressed subjects. Self-reported meth use was associated with increased CD4+ and CD8+ T-cell proliferation (Ki67+, p < 0.005), CD4+ T-cell activation (CD45RA–CD38+, p = 0.005) and exhaustion (PD-1+, p = 0.0004) in blood, compared to non-meth users. Meth use was also associated with a trend towards higher blood HIV DNA levels (p = 0.09) and more frequent shedding of CMV in seminal plasma (p = 0.002). To explore possible mechanisms, we compared ex vivo spontaneous and antigen-specific proliferation in PBMC collected from subjects with and without positive meth detection in urine (Utox+ vs. Utox-). Despite higher levels of spontaneous proliferation, lymphocytes from Utox+ meth users had a significantly lower proliferative capacity after stimulation with a number of pathogens (CMV, candida, mycobacterium, toxoplasma, HIV, p < 0.04 in all cases), compared to Utox- participants. Our findings suggest that meth users have greater proliferation and exhaustion of the immune system. Meth use is also associated with a loss of control of CMV replication, which could be related to loss of immune response to pathogens. Future studies should consider meth use as a potential modulator of T-cell responses. PMID:26299251

  1. Involvement of S100A14 protein in cell invasion by affecting expression and function of matrix metalloproteinase (MMP)-2 via p53-dependent transcriptional regulation.

    PubMed

    Chen, Hongyan; Yuan, Yi; Zhang, Chunpeng; Luo, Aiping; Ding, Fang; Ma, Jianlin; Yang, Shouhui; Tian, Yanyan; Tong, Tong; Zhan, Qimin; Liu, Zhihua

    2012-05-18

    S100 proteins have been implicated in tumorigenesis and metastasis. As a member of S100 proteins, the role of S100A14 in carcinogenesis has not been fully understood. Here, we showed that ectopic overexpression of S100A14 promotes motility and invasiveness of esophageal squamous cell carcinoma cells. We investigated the underlying mechanisms and found that the expression of matrix metalloproteinase (MMP)-2 is obviously increased after S100A14 gene overexpression. Inhibition of MMP2 by a specific MMP2 inhibitor at least partly reversed the invasive phenotype of cells overexpressing S100A14. By serendipity, we found that S100A14 could affect p53 transactivity and stability. Thus, we further investigated whether the effect of MMP2 by S100A14 is dependent on p53. A series of biochemical assays showed that S100A14 requires functional p53 to affect MMP2 transcription, and p53 potently transrepresses the expression of MMP2. Finally, RT-quantitative PCR analysis of human breast cancer specimens showed a significant correlation between S100A14 mRNA expression and MMP2 mRNA expression in cases with wild-type p53 but not in cases with mutant p53. Collectively, our data strongly suggest that S100A14 promotes cell motility and invasiveness by regulating the expression and function of MMP2 in a p53-dependent manner. PMID:22451655

  2. Placebo Sleep Affects Cognitive Functioning

    ERIC Educational Resources Information Center

    Draganich, Christina; Erdal, Kristi

    2014-01-01

    The placebo effect is any outcome that is not attributed to a specific treatment but rather to an individual's mindset (Benson & Friedman, 1996). This phenomenon can extend beyond its typical use in pharmaceutical drugs to involve aspects of everyday life, such as the effect of sleep on cognitive functioning. In 2 studies examining whether…

  3. Long-term culture and cryopreservation does not affect the stability and functionality of human embryonic stem cell-derived hepatocyte-like cells.

    PubMed

    Mandal, Arundhati; Raju, Sheena; Viswanathan, Chandra

    2016-02-01

    Human embryonic stem cells (hESCs) are predicted to be an unlimited source of hepatocytes which can pave the way for applications such as cell replacement therapies or as a model of human development or even to predict the hepatotoxicity of drug compounds. We have optimized a 23-d differentiation protocol to generate hepatocyte-like cells (HLCs) from hESCs, obtaining a relatively pure population which expresses the major hepatic markers and is functional and mature. The stability of the HLCs in terms of hepato-specific marker expression and functionality was found to be intact even after an extended period of in vitro culture and cryopreservation. The hESC-derived HLCs have shown the capability to display sensitivity and an alteration in the level of CYP enzyme upon drug induction. This illustrates the potential of such assays in predicting the hepatotoxicity of a drug compound leading to advancement of pharmacology.

  4. Biochemical and functional analysis of a 9-nt RNA sequence that affects translation efficiency in eukaryotic cells.

    PubMed

    Chappell, Stephen A; Edelman, Gerald M; Mauro, Vincent P

    2004-06-29

    We previously identified an internal ribosome entry site (IRES) within the 5' leader of the mRNA encoding the Gtx homeodomain protein and showed that shorter nonoverlapping segments of this 5' leader could enhance the translation of a second cistron in a dicistronic mRNA. One of these segments was 9 nt in length, and when multiple copies of this IRES module were linked together, IRES activity was greatly enhanced. To further expand the potential uses of these synthetic constructs and facilitate analyses of the mechanism by which they affect translation, we show here that an IRES containing five linked copies of the 9-nt sequence can also enhance translation in the 5' leader of a monocistronic mRNA. Moreover, a search for interactions of the IRES module with cellular factors revealed specific binding to 40S ribosomal subunits but not to other cellular components. Based on the results of earlier studies suggesting that this sequence could bind to a complementary segment of 18S rRNA, we tested various sequences for possible links between the length of the complementary match, their binding to ribosomes, and their influence on translational efficiency. We found that the length of the complementary match was directly correlated with the ability of RNA probes to bind to ribosomes. In addition, translation was maximally enhanced ( approximately 8-fold) by a 7-nt segment of the 9-nt element; the enhancement declined progressively as the complementary stretches became progressively longer or shorter. The results suggest that the Gtx 9-nt sequence affects translation efficiency by a mechanism that involves base pairing to 18S rRNA.

  5. FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells.

    PubMed

    Daniel, Carolin; Sartory, Nico; Zahn, Nadine; Geisslinger, Gerd; Radeke, Heinfried H; Stein, Juergen M

    2007-02-15

    Following the present concepts, the synthetic sphingosine analog of myriocin FTY720 alters migration and homing of lymphocytes via sphingosine 1-phosphate receptors. However, several studies indicate that the immunosuppressive properties of FTY720 may alternatively be due to tolerogenic activities via modulation of dendritic cell differentiation or based on direct effects on CD4(+)CD25(+) regulatory T cells (Treg). As Treg play an important role for the cure of inflammatory colitis, we used the Th1-mediated 2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis model to address the therapeutic potential of FTY720 in vivo. A rectal enema of TNBS was given to BALB/c mice. FTY720 was administered i.p. from days 0 to 3 or 3 to 5. FTY720 substantially reduced all clinical, histopathologic, macroscopic, and microscopic parameters of colitis analyzed. The therapeutic effects of FTY720 were associated with a down-regulation of IL-12p70 and subsequent Th1 cytokines. Importantly, FTY720 treatment resulted in a prominent up-regulation of FoxP3, IL-10, TGFbeta, and CTLA4. Supporting the hypothesis that FTY720 directly affects functional activity of CD4(+)CD25(+) Treg, we measured a significant increase of CD25 and FoxP3 expression in isolated lamina propria CD4(+) T cells of FTY720-treated mice. The impact of FTY720 on Treg induction was further confirmed by concomitant in vivo blockade of CTLA4 or IL-10R which significantly abrogated its therapeutic activity. In conclusion, our data provide clear evidence that in addition to its well-established effects on migration FTY720 leads to a specific down-regulation of proinflammatory signals while simultaneously inducing functional activity of CD4(+)CD25(+) Treg. Thus, FTY720 may offer a promising new therapeutic strategy for the treatment of IBD.

  6. Dissection of signals controlling T cell function and activation: H7, an inhibitor of protein kinase C, blocks induction of primary T cell proliferation by suppressing interleukin (IL)2 receptor expression without affecting IL2 production.

    PubMed

    Hengel, H; Allig, B; Wagner, H; Heeg, K

    1991-07-01

    T cell activation induced via cross-linking of the T cell receptor (TcR) stimulates hydrolysis of phosphatidylinositol to the second messengers diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). DAG is necessary for the activation and function of protein kinase C (PKC) which is suggested to play a key role in the cascade of signal transduction when translocated from the cytosol to the cell membrane. In this report, we investigated responses of resting vs. activated Ly-2+ and L3T4+ T lymphocytes in the presence of the PKC inhibitor H7 [1-(5-isoquinolinylsulfonyl)-2-methylpiperazine]. H7 inhibited the induction of primary T cell proliferation, while interleukin 2 (IL 2) production was fully retained. The effect of the PKC inhibitor on primary T cells depended on the type of ligand interacting with the TcR: increasing doses of concanavalin A or of immobilized anti-CD3 monoclonal antibody (mAb), but not of anti-V beta 8 or of anti-TcR alpha/beta mAb, partly overcame the blockade, indicating a differential signaling compared to the former stimuli. The blockade of T cell proliferation by H7 was not due to an inhibition of PKC translocation, but occurred even 4-8 h after T cell induction and correlated with a significant reduction of IL 2 receptor (IL 2R) expression. In contrast, the mRNA levels of IL 2R and the cellular proto-oncogenes c-fos and c-myc were not affected. On activated T cells, H7 neither blocked proliferation nor IL2R expression. Consequently, H7 dissects the signal resulting in T cell proliferation from those governing the triggering of other T cell functions, i.e. IL 2 production, during primary responses of Ly-2+ or L3T4+ murine T lymphocytes.

  7. Enterovirus infection of human islets of Langerhans affects β-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure

    PubMed Central

    Hodik, M; Skog, O; Lukinius, A; Isaza-Correa, J M; Kuipers, J; Giepmans, B N G; Frisk, G

    2016-01-01

    Aims/hypothesis In type 1 diabetes (T1D), most insulin-producing β cells are destroyed, but the trigger is unknown. One of the possible triggers is a virus infection and the aim of this study was to test if enterovirus infection affects glucose stimulated insulin secretion and the effect of virus replication on cellular macromolecules and organelles involved in insulin secretion. Methods Isolated human islets were infected with different strains of coxsackievirus B (CVB) virus and the glucose-stimulated insulin release (GSIS) was measured in a dynamic perifusion system. Classical morphological electron microscopy, large-scale electron microscopy, so-called nanotomy, and immunohistochemistry were used to study to what extent virus-infected β cells contained insulin, and real-time PCR was used to analyze virus induced changes of islet specific genes. Results In islets infected with CVB, GSIS was reduced in correlation with the degree of virus-induced islet disintegration. The expression of the gene encoding insulin was decreased in infected islets, whereas the expression of glucagon was not affected. Also, in islets that were somewhat disintegrated, there were uninfected β cells. Ultrastructural analysis revealed that virus particles and virus replication complexes were only present in β cells. There was a significant number of insulin granules remaining in the virus-infected β cells, despite decreased expression of insulin mRNA. In addition, no typical Golgi apparatus was detected in these cells. Exposure of islets to synthetic dsRNA potentiated glucose-stimulated insulin secretion. Conclusions/interpretation Glucose-stimulated insulin secretion; organelles involved in insulin secretion and gene expression were all affected by CVB replication in β cells. PMID:27547409

  8. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells.

    PubMed

    Djuric, Ugljesa; Cheung, Aaron Y L; Zhang, Wenbo; Mok, Rebecca S; Lai, Wesley; Piekna, Alina; Hendry, Jason A; Ross, P Joel; Pasceri, Peter; Kim, Dae-Sung; Salter, Michael W; Ellis, James

    2015-04-01

    MECP2 mutations cause the X-linked neurodevelopmental disorder Rett Syndrome (RTT) by consistently altering the protein encoded by the MECP2e1 alternative transcript. While mutations that simultaneously affect both MECP2e1 and MECP2e2 isoforms have been widely studied, the consequence of MECP2e1 deficiency on human neurons remains unknown. Here we report the first isoform-specific patient induced pluripotent stem cell (iPSC) model of RTT. RTTe1 patient iPS cell-derived neurons retain an inactive X-chromosome and express only the mutant allele. Single-cell mRNA analysis demonstrated they have a molecular signature of cortical neurons. Mutant neurons exhibited a decrease in soma size, reduced dendritic complexity and decreased cell capacitance, consistent with impaired neuronal maturation. The soma size phenotype was rescued cell-autonomously by MECP2e1 transduction in a level-dependent manner but not by MECP2e2 gene transfer. Importantly, MECP2e1 mutant neurons showed a dysfunction in action potential generation, voltage-gated Na(+) currents, and miniature excitatory synaptic current frequency and amplitude. We conclude that MECP2e1 mutation affects soma size, information encoding properties and synaptic connectivity in human neurons that are defective in RTT.

  9. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro

    SciTech Connect

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E.; Detmar, Michael; Halin, Cornelia

    2009-01-15

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.

  10. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment.

    PubMed

    Versari, Silvia; Longinotti, Giulia; Barenghi, Livia; Maier, Jeanette Anne Marie; Bradamante, Silvia

    2013-11-01

    Exposure to microgravity generates alterations that are similar to those involved in age-related diseases, such as cardiovascular deconditioning, bone loss, muscle atrophy, and immune response impairment. Endothelial dysfunction is the common denominator. To shed light on the underlying mechanism, we participated in the Progress 40P mission with Spaceflight of Human Umbilical Vein Endothelial Cells (HUVECs): an Integrated Experiment (SPHINX), which consisted of 12 in-flight and 12 ground-based control modules and lasted 10 d. Postflight microarray analysis revealed 1023 significantly modulated genes, the majority of which are involved in cell adhesion, oxidative phosphorylation, stress responses, cell cycle, and apoptosis. Thioredoxin-interacting protein was the most up-regulated (33-fold), heat-shock proteins 70 and 90 the most down-regulated (5.6-fold). Ion channels (TPCN1, KCNG2, KCNJ14, KCNG1, KCNT1, TRPM1, CLCN4, CLCA2), mitochondrial oxidative phosphorylation, and focal adhesion were widely affected. Cytokine detection in the culture media indicated significant increased secretion of interleukin-1α and interleukin-1β. Nitric oxide was found not modulated. Our data suggest that in cultured HUVECs, microgravity affects the same molecular machinery responsible for sensing alterations of flow and generates a prooxidative environment that activates inflammatory responses, alters endothelial behavior, and promotes senescence.

  11. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment.

    PubMed

    Versari, Silvia; Longinotti, Giulia; Barenghi, Livia; Maier, Jeanette Anne Marie; Bradamante, Silvia

    2013-11-01

    Exposure to microgravity generates alterations that are similar to those involved in age-related diseases, such as cardiovascular deconditioning, bone loss, muscle atrophy, and immune response impairment. Endothelial dysfunction is the common denominator. To shed light on the underlying mechanism, we participated in the Progress 40P mission with Spaceflight of Human Umbilical Vein Endothelial Cells (HUVECs): an Integrated Experiment (SPHINX), which consisted of 12 in-flight and 12 ground-based control modules and lasted 10 d. Postflight microarray analysis revealed 1023 significantly modulated genes, the majority of which are involved in cell adhesion, oxidative phosphorylation, stress responses, cell cycle, and apoptosis. Thioredoxin-interacting protein was the most up-regulated (33-fold), heat-shock proteins 70 and 90 the most down-regulated (5.6-fold). Ion channels (TPCN1, KCNG2, KCNJ14, KCNG1, KCNT1, TRPM1, CLCN4, CLCA2), mitochondrial oxidative phosphorylation, and focal adhesion were widely affected. Cytokine detection in the culture media indicated significant increased secretion of interleukin-1α and interleukin-1β. Nitric oxide was found not modulated. Our data suggest that in cultured HUVECs, microgravity affects the same molecular machinery responsible for sensing alterations of flow and generates a prooxidative environment that activates inflammatory responses, alters endothelial behavior, and promotes senescence. PMID:23913861

  12. Mast Cell Function

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  13. Modeling the cathode in a proton exchange membrane fuel cell using density functional theory How the carbon support can affect durability and activity of a platinum catalyst

    NASA Astrophysics Data System (ADS)

    Groves, Michael Nelson

    The current global energy and environmental challenges need to be addressed by developing a new portfolio of clean power producing devices. The proton exchange membrane fuel cell has the potential to be included and can fit into a variety of niches ranging from portable electronics to stationary residential applications. One of the many barriers to commercial viability is the cost of the cathode layer which requires too much platinum metal to achieve a comparable power output as well as would need to be replaced more frequently when compared to conventional sources for most applications. Using density functional theory, an ab initio modeling technique, these durability and activity issues are examined for platinum catalysts on graphene and carbon nanotube supports. The carbon supports were also doped by replacing individual carbon atoms with other second row elements (beryllium, boron, nitrogen, and oxygen) and the effect on the platinum-surface interaction along with the interaction between the platinum and the oxygen reduction reaction intermediates are discussed. Keywords: proton exchange membrane fuel cell, density functional theory, platinum catalyst, oxygen reduction reaction, doped carbon surfaces

  14. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia

    SciTech Connect

    Chen, Shayan; Feng, Wenli; Yang, Xiao; Yang, Wanzhu; Ru, Yongxin; Liao, Jinfeng; Wang, Lina; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2014-04-18

    Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca{sup 2+} response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.

  15. Accessory genes in the darA operon of bacteriophage P1 affect antirestriction function, generalized transduction, head morphogenesis, and host cell lysis.

    PubMed

    Iida, S; Hiestand-Nauer, R; Sandmeier, H; Lehnherr, H; Arber, W

    1998-11-10

    Bacteriophage P1 mutants with the 8.86-kb region between the invertible C-segment and the residential IS1 element deleted from their genome are still able to grow vegetatively and to lysogenize stably, but they show several phenotypic changes. These include the formation of minute plaques due to delayed cell lysis, the abundant production of small-headed particles, a lack of specific internal head proteins, sensitivity to type I host restriction systems, and altered properties to mediate generalized transduction. In the wild-type P1 genome, the accessory genes encoding the functions responsible for these characters are localized in the darA operon that is transcribed late during phage production. We determined the relevant DNA sequence that is located between the C-segment and the IS1 element and contains the cin gene for C-inversion and the accessory genes in the darA operon. The darA operon carries eight open reading frames that could encode polypeptides containing >100 amino acids. Genetic studies indicate that some of these open reading frames, in particular those residing in the 5' part of the darA operon, are responsible for the phenotypic traits identified. The study may contribute to a better comprehension of phage morphogenesis, of the mobilization of host DNA into phage particles mediating generalized transduction, of the defense against type I restriction systems, and of the control of host lysis.

  16. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  17. Physical parameters affecting living cells in space

    NASA Astrophysics Data System (ADS)

    Langbein, Dieter

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.

  18. Positive and negative affective processing exhibit dissociable functional hubs during the viewing of affective pictures.

    PubMed

    Zhang, Wenhai; Li, Hong; Pan, Xiaohong

    2015-02-01

    Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information.

  19. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR.

  20. Bisphenol A affects androgen receptor function via multiple mechanisms

    PubMed Central

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B. Alex; Jetten, Anton M.; Austin, Christopher, P.; Tice, Raymond R.

    2013-01-01

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. PMID:23562765

  1. ABSENCE OF SCLEROSTIN ADVERSELY AFFECTS B CELL SURVIVAL

    PubMed Central

    Cain, Corey J.; Rueda, Randell; McLelland, Bryce; Collette, Nicole M.; Loots, Gabriela G.; Manilay, Jennifer O.

    2012-01-01

    Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in generalized hyperostosis and bones with small bone marrow cavities due to hyperactive mineralizing osteoblast populations. Hematopoietic cell fate decisions are dependent on their local microenvironment, which contains osteoblast and stromal cell populations that support both hematopoietic stem cell quiescence and facilitate B cell development. In this study, we investigated whether high bone mass environments affect B cell development via the utilization of Sost−/− mice, a model of sclerosteosis. We found the bone marrow of Sost−/− mice to be specifically depleted of B cells, due to elevated apoptosis at all B cell developmental stages. In contrast, B cell function in the spleen was normal. Sost expression analysis confirmed that Sost is primarily expressed in osteocytes and is not expressed in any hematopoietic lineage, which indicated that the B cell defects in Sost−/− mice are non-cell autonomous and this was confirmed by transplantation of wildtype (WT) bone marrow into lethally irradiated Sost−/− recipients. WT→Sost−/− chimeras displayed a reduction in B cells, whereas reciprocal Sost−/−→WT chimeras did not, supporting the idea that the Sost−/− bone environment cannot fully support normal B cell development. Expression of the pre-B cell growth stimulating factor, Cxcl12, was significantly lower in bone marrow stromal cells of Sost−/− mice while the Wnt target genes Lef-1 and Ccnd1 remained unchanged in B cells. Taken together, these results demonstrate a novel role for Sost in the regulation of bone marrow environments that support B cells. PMID:22434688

  2. Regulation of satellite cell function in sarcopenia.

    PubMed

    Alway, Stephen E; Myers, Matthew J; Mohamed, Junaith S

    2014-01-01

    The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003

  3. Substrate properties affect collective cell motion

    NASA Astrophysics Data System (ADS)

    Pegoraro, Adrian; Guo, Ming; Ehrlicher, Allen; Weitz, David

    2013-03-01

    When cells move collectively, cooperative motion, which is characterized by long range correlations in cell movement, is necessary for migration. This collective cell motion is influenced by cell-cell interactions as well as by cell-substrate coupling. Furthermore, on soft substrates it is possible for cells to mechanically couple over long distances through the substrate itself. By changing the properties of the substrate, it is possible to decouple some of these contributions and better understand the role they play in collective cell motion. We vary both the substrate stiffness and adhesion protein concentration and find changes in the collective cell motion of the cells despite only small differences in total cell density and average cell size in the confluent layers. We test these changes on polyacrylamide and PDMS substrates as well as on structured substrates made of PDMS posts that prevent mechanical coupling through the substrate while still allowing stiffness to be varied.

  4. Affect integration and reflective function: clarification of central conceptual issues.

    PubMed

    Solbakken, Ole André; Hansen, Roger Sandvik; Monsen, Jon Trygve

    2011-07-01

    The importance of affect regulation, modulation or integration for higher-order reflection and adequate functioning is increasingly emphasized across different therapeutic approaches and theories of change. These processes are probably central to any psychotherapeutic endeavor, whether explicitly conceptualized or not, and in recent years a number of therapeutic approaches have been developed that explicitly target them as a primary area of change. However, there still is important lack of clarity in the field regarding the understanding and operationalization of affect integration, particularly when it comes to specifying underlying mechanisms, the significance of different affect states, and the establishment of operational criteria for measurement. The conceptual relationship between affect integration and reflective function thus remains ambiguous. The present article addresses these topics, indicating ways in which a more complex and exhaustive understanding of integration of affect, cognition and behavior can be attained.

  5. How Does Maternal Employment Affect Children's Socioemotional Functioning?

    ERIC Educational Resources Information Center

    Lam, Gigi

    2015-01-01

    The maternal employment becomes an irreversible trend across the globe. The effect of maternal employment on children's socioemotional functioning is so pervasive that it warrants special attention to investigate into the issue. A trajectory of analytical framework of how maternal employment affects children's socioemotional functioning originates…

  6. Noggin 1 overexpression in retinal progenitors affects bipolar cell generation.

    PubMed

    Messina, Andrea; Bridi, Simone; Bozza, Angela; Bozzi, Yuri; Baudet, Marie-Laure; Casarosa, Simona

    2016-01-01

    Waves of Bone Morphogenetic Proteins (BMPs) and their antagonists are present during initial eye development, but their possible roles in retinogenesis are still unknown. We have recently shown that noggin 1, a BMP antagonist, renders pluripotent cells able to differentiate into retinal precursors, and might be involved in the maintenance of retinal structures in the adult vertebrate eye. Here, we report that noggin 1, differently from noggin 2 and noggin 4, is expressed during all phases of Xenopus laevis retinal development. Gain-of-function experiments by electroporation in the optic vesicle show that overexpression of noggin 1 significantly decreases the number of bipolar cells in the inner nuclear layer of the retina, without significantly affecting the generation of the other retinal cell types. Our data suggest that BMP signaling could be involved in the differentiation of retinal progenitors into specific retinal subtypes during late phases of vertebrate retinal development. PMID:27389985

  7. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells

    PubMed Central

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-01-01

    Background Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. Methods We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. Results We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by ≥ 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. Conclusion These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer. PMID:19025616

  8. Kupffer Cell Metabolism and Function

    PubMed Central

    Nguyen-Lefebvre, Anh Thu; Horuzsko, Anatolij

    2015-01-01

    Kupffer cells are resident liver macrophages and play a critical role in maintaining liver functions. Under physiological conditions, they are the first innate immune cells and protect the liver from bacterial infections. Under pathological conditions, they are activated by different components and can differentiate into M1-like (classical) or M2-like (alternative) macrophages. The metabolism of classical or alternative activated Kupffer cells will determine their functions in liver damage. Special functions and metabolism of Kupffer cells suggest that they are an attractive target for therapy of liver inflammation and related diseases, including cancer and infectious diseases. Here we review the different types of Kupffer cells and their metabolism and functions in physiological and pathological conditions. PMID:26937490

  9. Melanopsin, photosensitive ganglion cells, and seasonal affective disorder.

    PubMed

    Roecklein, Kathryn A; Wong, Patricia M; Miller, Megan A; Donofry, Shannon D; Kamarck, Marissa L; Brainard, George C

    2013-03-01

    In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1-2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells.

  10. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  11. SLE-associated risk factors affect DC function.

    PubMed

    Son, Myoungsun; Kim, Sun Jung; Diamond, Betty

    2016-01-01

    Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non-activated, non-immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC-intrinsic abnormalities or DC-extrinsic regulators of function can predispose to autoimmunity.

  12. SLE-associated risk factors affect DC function.

    PubMed

    Son, Myoungsun; Kim, Sun Jung; Diamond, Betty

    2016-01-01

    Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non-activated, non-immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC-intrinsic abnormalities or DC-extrinsic regulators of function can predispose to autoimmunity. PMID:26683148

  13. SLE-associated risk factors affect DC function

    PubMed Central

    Son, Myoungsun; Kim, Sun Jung; Diamond, Betty

    2016-01-01

    Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non-activated, non-immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC-intrinsic abnormalities or DC-extrinsic regulators of function can predispose to autoimmunity. PMID:26683148

  14. Cognitive function in the affective disorders: a prospective study.

    PubMed

    Bulbena, A; Berrios, G E

    1993-01-01

    A prospective, controlled study of 50 subjects confirmed claims that major depression or mania may cause temporary disorders of attention, memory, visuo-spatial function, and choice reaction time, and cause-independently of medication-the appearance of glabellar tap, positive hand-face test, nuchocephalic reflex, and graphesthesia. On follow-up, all these phenomena either disappeared or markedly improved. Age and age of onset, but not pre-morbid intelligence or history of ECT, seemed to modulate the severity of the cognitive impairment. Presence of delusions predicted poor (but reversible) visuo-spatial function. Cognitive impairment accompanied by reversible soft neurological signs was more marked but patients thus affected surprisingly showed lower depressive scores; this was interpreted as representing a secondary, 'organic' form of affective disorder (i.e. a behavioural phenocopy of depression) characterised by a reduced capacity to experience depressive symptoms and by little improvement at follow-up.

  15. Genome rearrangement affects RNA virus adaptability on prostate cancer cells

    PubMed Central

    Pesko, Kendra; Voigt, Emily A.; Swick, Adam; Morley, Valerie J.; Timm, Collin; Yin, John; Turner, Paul E.

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3′ UTR – core protein genes – envelope protein genes – RNA-dependent RNA-polymerase gene – 5′ UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5′ end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a

  16. Transglutaminase Regulation of Cell Function

    PubMed Central

    Kaartinen, Mari T.; Nurminskaya, Maria; Belkin, Alexey M.; Colak, Gozde; Johnson, Gail V. W.; Mehta, Kapil

    2014-01-01

    Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states. PMID:24692352

  17. Iron affects the structure of cell membrane molecular models.

    PubMed

    Suwalsky, M; Martínez, F; Cárdenas, H; Grzyb, J; Strzałka, K

    2005-03-01

    The effects of Fe(3+) and Fe(2+) on molecular models of biomembranes were investigated. These consisted of bilayers of dimyristoylphosphatidylcholine (DMPC) and of dimyristoylphosphatidylethanolamine (DMPE), classes of phospholipids located in the outer and inner moieties of cell membranes, respectively. X-ray studies showed that very low concentrations of Fe(3+) affected DMPC organization and 10(-3)M induced a total loss of its multilamellar periodic stacking. Experiments carried out with Fe(2+) on DMPC showed weaker effects than those induced by Fe(3+) ions. Similar experiments were performed on DMPE bilayers. Fe(3+) from 10(-7)M up to 10(-4)M had practically no effect on DMPE structure. However, 10(-3)M Fe(3+) induced a deep perturbation of the multilamellar structure of DMPE. However, 10(-3)M Fe(2+) had no effect on DMPE organization practically. Differential scanning calorimetry measurements also revealed different effects of Fe(3+) and Fe(2+) on the phase transition and other thermal properties of the examined lipids. In conclusion, the results obtained indicate that iron ions interact with phospholipid bilayers perturbing their structures. These findings are consistent with the observation that iron ions change cell membrane fluidity and, therefore, affect its functions. PMID:15752465

  18. Telomerase deficiency affects normal brain functions in mice.

    PubMed

    Lee, Jaehoon; Jo, Yong Sang; Sung, Young Hoon; Hwang, In Koo; Kim, Hyuk; Kim, Song-Yi; Yi, Sun Shin; Choi, June-Seek; Sun, Woong; Seong, Je Kyung; Lee, Han-Woong

    2010-02-01

    Telomerase maintains telomere structures and chromosome stability, and it is essential for preserving the characteristics of stem and progenitor cells. In the brain, the hippocampus and the olfactory bulbs are continuously supplied with neural stem and progenitor cells that are required for adult neurogenesis throughout the life. Therefore, we examined whether telomerase plays important roles in maintaining normal brain functions in vivo. Telomerase reverse transcriptase (TERT) expression was observed in the hippocampus, the olfactory bulbs, and the cerebellum, but the telomerase RNA component (TERC) was not detected in hippocampus and olfactory bulbs. Interestingly, TERT-deficient mice exhibited significantly altered anxiety-like behaviors and abnormal olfaction measuring the functions of the hippocampus and the olfactory bulbs, respectively. However, the cerebellum-dependent behavior was not changed in these mutant mice. These results suggest that TERT is constitutively expressed in the hippocampus and the olfactory bulbs, and that it is important for regulating normal brain functions. PMID:19685288

  19. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  20. Functional architecture in the cell nucleus.

    PubMed Central

    Dundr, M; Misteli, T

    2001-01-01

    The major functions of the cell nucleus, including transcription, pre-mRNA splicing and ribosome assembly, have been studied extensively by biochemical, genetic and molecular methods. An overwhelming amount of information about their molecular mechanisms is available. In stark contrast, very little is known about how these processes are integrated into the structural framework of the cell nucleus and how they are spatially and temporally co-ordinated within the three-dimensional confines of the nucleus. It is also largely unknown how nuclear architecture affects gene expression. In order to understand how genomes are organized, and how they function, the basic principles that govern nuclear architecture and function must be uncovered. Recent work combining molecular, biochemical and cell biological methods is beginning to shed light on how the nucleus functions and how genes are expressed in vivo. It has become clear that the nucleus contains distinct compartments and that many nuclear components are highly dynamic. Here we describe the major structural compartments of the cell nucleus and discuss their established and proposed functions. We summarize recent observations regarding the dynamic properties of chromatin, mRNA and nuclear proteins, and we consider the implications these findings have for the organization of nuclear processes and gene expression. Finally, we speculate that self-organization might play a substantial role in establishing and maintaining nuclear organization. PMID:11368755

  1. Diabetes and stem cell function.

    PubMed

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment.

  2. Factors affecting sexual function in menopause: A review article.

    PubMed

    Nazarpour, Soheila; Simbar, Masoumeh; Tehrani, Fahimeh Ramezani

    2016-08-01

    This study aimed to systematically review the articles on factors affecting sexual function during menopause. Searching articles indexed in Pubmed, Science Direct, Iranmedex, EMBASE, Scopus, and Scientific Information Database databases, a total number of 42 studies published between 2003 and 2013 were selected. Age, estrogen deficiency, type of menopause, chronic medical problems, partner's sex problems, severity of menopause symptoms, dystocia history, and health status were the physical factors influencing sexual function of menopausal women. There were conflicting results regarding the amount of androgens, hormonal therapy, exercise/physical activity, and obstetric history. In the mental-emotional area, all studies confirmed the impact of depression and anxiety. Social factors, including smoking, alcohol consumption, the quality of relationship with husband, partner's loyalty, sexual knowledge, access to health care, a history of divorce or the death of a husband, living apart from a spouse, and a negative understanding of women's health were found to affect sexual function; however, there were conflicting results regarding the effects of education, occupation, socioeconomic status, marital duration, and frequency of sexual intercourse. PMID:27590367

  3. Microbial composition affects the functioning of estuarine sediments

    PubMed Central

    Reed, Heather E; Martiny, Jennifer BH

    2013-01-01

    Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment's origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments. PMID:23235294

  4. Altered cell function in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1991-01-01

    The paper overviews published results from investigations of changes in basic biological parameters taking place as a result of spaceflight exposure. These include changes in the rates of the DNA, mRNA, and protein biosyntheses; changes in the growth rate of an organism; and alterations in the cytoskeleton structure, differentiation, hormone accumulation, and collagen matrix secretion. These results, obtained both in complex biological organisms and on cultured cells, suggest that a basic cellular function is influenced and changed by microgravity. Many of the above mentioned changes are also found to take place in aging cells.

  5. Intermediate Filaments as Organizers of Cellular Space: How They Affect Mitochondrial Structure and Function

    PubMed Central

    Schwarz, Nicole; Leube, Rudolf E.

    2016-01-01

    Intermediate filaments together with actin filaments and microtubules form the cytoskeleton, which is a complex and highly dynamic 3D network. Intermediate filaments are the major mechanical stress protectors but also affect cell growth, differentiation, signal transduction, and migration. Using intermediate filament-mitochondrial crosstalk as a prominent example, this review emphasizes the importance of intermediate filaments as crucial organizers of cytoplasmic space to support these functions. We summarize observations in different mammalian cell types which demonstrate how intermediate filaments influence mitochondrial morphology, subcellular localization, and function through direct and indirect interactions and how perturbations of these interactions may lead to human diseases. PMID:27399781

  6. Strategies for cell membrane functionalization

    PubMed Central

    Armstrong, James PK

    2016-01-01

    The ability to rationally manipulate and augment the cytoplasmic membrane can be used to overcome many of the challenges faced by conventional cellular therapies and provide innovative opportunities when combined with new biotechnologies. The focus of this review is on emerging strategies used in cell functionalization, highlighting both pioneering approaches and recent developments. These will be discussed within the context of future directions in this rapidly evolving field. PMID:27229904

  7. Neuroblastoma and dendritic cell function.

    PubMed

    Redlinger, Richard E; Mailliard, Robbie B; Barksdale, Edward M

    2004-02-01

    Neuroblastoma, the most common extracranial solid tumor of childhood, remains a challenge for clinicians and investigators in pediatric surgical oncology. The absence of effective conventional therapies for most patients with neuroblastoma justifies the application of novel, biology-based, experimental approaches to the treatment of this deadly disease. The observation that some aggressive neuroblastomas, particularly in infants, may spontaneously regress suggested that immune-mediated mechanisms may be important in the biology of this disease. Advances in the understanding of the cognate interactions between T cells, antigen-presenting cells and tumors have demonstrated the sentinel role of dendritic cells (DC), the most potent antigen presenting cells, in initiating the cellular immune response to cancer. Until recently the function of DC in pediatric solid tumors, especially neuroblastoma, had not been extensively studied. This review discusses the role of DC in initiating and coordinating the immune response against cancer, the ability of neuroblastoma to induce DC dysregulation at multiple levels by inhibiting DC maturation and function, and the current vaccine strategies being designed to employ the unique ability of DC to promote neuroblastoma regression.

  8. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  9. Acute Zonal Occult Outer Retinopathy in Japanese Patients: Clinical Features, Visual Function, and Factors Affecting Visual Function

    PubMed Central

    Saito, Saho; Saito, Wataru; Saito, Michiyuki; Hashimoto, Yuki; Mori, Shohei; Noda, Kousuke; Namba, Kenichi; Ishida, Susumu

    2015-01-01

    Purpose To evaluate the clinical features and investigate their relationship with visual function in Japanese patients with acute zonal occult outer retinopathy (AZOOR). Methods Fifty-two eyes of 38 Japanese AZOOR patients (31 female and 7 male patients; mean age at first visit, 35.0 years; median follow-up duration, 31 months) were retrospectively collected: 31 untreated eyes with good visual acuity and 21 systemic corticosteroid-treated eyes with progressive visual acuity loss. Variables affecting the logMAR values of best-corrected visual acuity (BCVA) and the mean deviation (MD) on Humphrey perimetry at initial and final visits were examined using multiple stepwise linear regression analysis. Results In untreated eyes, the mean MD at the final visit was significantly higher than that at the initial visit (P = 0.00002). In corticosteroid-treated eyes, the logMAR BCVA and MD at the final visit were significantly better than the initial values (P = 0.007 and P = 0.02, respectively). The final logMAR BCVA was 0.0 or less in 85% of patients. Variables affecting initial visual function were moderate anterior vitreous cells, myopia severity, and a-wave amplitudes on electroretinography; factors affecting final visual function were the initial MD values, female sex, moderate anterior vitreous cells, and retinal atrophy. Conclusions Our data indicated that visual functions in enrolled patients significantly improved spontaneously or after systemic corticosteroids therapy, suggesting that Japanese patients with AZOOR have good visual outcomes during the follow-up period of this study. Furthermore, initial visual field defects, gender, anterior vitreous cells, and retinal atrophy affected final visual functions in these patients. PMID:25919689

  10. Yersinia enterocolitica Affects Intestinal Barrier Function in the Colon.

    PubMed

    Hering, Nina A; Fromm, Anja; Kikhney, Judith; Lee, In-Fah M; Moter, Annette; Schulzke, Jörg D; Bücker, Roland

    2016-04-01

    Infection with Yersinia enterocolitica causes acute diarrhea in early childhood. A mouse infection model presents new findings on pathological mechanisms in the colon. Symptoms involve diarrhea with watery feces and weight loss that have their functional correlates in decreased transepithelial electrical resistance and increased fluorescein permeability. Y. enterocolitica was present within the murine mucosa of both ileum and colon. Here, the bacterial insult was of focal nature and led to changes in tight junction protein expression and architecture. These findings are in concordance with observations from former cell culture studies and suggest a leak flux mechanism of diarrhea.

  11. Can lifestyle modification affect men’s erectile function?

    PubMed Central

    Hehemann, Marah C.

    2016-01-01

    Erectile dysfunction (ED) is a common condition affecting millions of men worldwide. The pathophysiology and epidemiologic links between ED and risk factors for cardiovascular disease (CVD) are well-established. Lifestyle modifications such as smoking cessation, weight reduction, dietary modification, physical activity, and psychological stress reduction have been increasingly recognized as foundational to the prevention and treatment of ED. The aim of this review is to outline behavioral choices which may increase ones risk of developing ED, to present relevant studies addressing lifestyle factors correlated with ED, and to highlight proposed mechanisms for intervention aimed at improving erectile function in men with ED. These recommendations can provide a framework for counseling patients with ED about lifestyle modification. PMID:27141445

  12. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing.

  13. Dehydration affects brain structure and function in healthy adolescents.

    PubMed

    Kempton, Matthew J; Ettinger, Ulrich; Foster, Russell; Williams, Steven C R; Calvert, Gemma A; Hampshire, Adam; Zelaya, Fernando O; O'Gorman, Ruth L; McMorris, Terry; Owen, Adrian M; Smith, Marcus S

    2011-01-01

    It was recently observed that dehydration causes shrinkage of brain tissue and an associated increase in ventricular volume. Negative effects of dehydration on cognitive performance have been shown in some but not all studies, and it has also been reported that an increased perceived effort may be required following dehydration. However, the effects of dehydration on brain function are unknown. We investigated this question using functional magnetic resonance imaging (fMRI) in 10 healthy adolescents (mean age = 16.8, five females). Each subject completed a thermal exercise protocol and nonthermal exercise control condition in a cross-over repeated measures design. Subjects lost more weight via perspiration in the thermal exercise versus the control condition (P < 0.0001), and lateral ventricle enlargement correlated with the reduction in body mass (r = 0.77, P = 0.01). Dehydration following the thermal exercise protocol led to a significantly stronger increase in fronto-parietal blood-oxygen-level-dependent (BOLD) response during an executive function task (Tower of London) than the control condition, whereas cerebral perfusion during rest was not affected. The increase in BOLD response after dehydration was not paralleled by a change in cognitive performance, suggesting an inefficient use of brain metabolic activity following dehydration. This pattern indicates that participants exerted a higher level of neuronal activity in order to achieve the same performance level. Given the limited availability of brain metabolic resources, these findings suggest that prolonged states of reduced water intake may adversely impact executive functions such as planning and visuo-spatial processing. PMID:20336685

  14. Functional roles affect diversity-succession relationships for boreal beetles.

    PubMed

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  15. To what extent does urbanisation affect fragmented grassland functioning?

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban

  16. To what extent does urbanisation affect fragmented grassland functioning?

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban

  17. Integrating Negative Affect Measures in a Measurement Model: Assessing the Function of Negative Affect as Interference to Self-Regulation

    ERIC Educational Resources Information Center

    Magno, Carlo

    2010-01-01

    The present study investigated the composition of negative affect and its function as inhibitory to thought processes such as self-regulation. Negative affect in the present study were composed of anxiety, worry, thought suppression, and fear of negative evaluation. These four factors were selected based on the criteria of negative affect by…

  18. Does Ramadan Fasting Adversely Affect Cognitive Function in Young Females?

    PubMed Central

    Ghayour Najafabadi, Mahboubeh; Rahbar Nikoukar, Laya; Memari, Amir; Ekhtiari, Hamed; Beygi, Sara

    2015-01-01

    We examined the effects of Ramadan fasting on cognitive function in 17 female athletes. Data were obtained from participants of two fasting (n = 9) and nonfasting (n = 8) groups at three periods of the study (before Ramadan, at the third week in Ramadan, and after Ramadan). Digit span test (DST) and Stroop color test were employed to assess short-term memory and inhibition/cognitive flexibility at each time point. There were no significant changes for DST and Stroop task 1 in both groups, whereas Stroop task 2 and task 3 showed significant improvements in Ramadan condition (p < 0.05). Interference indices did not change significantly across the study except in post-Ramadan period of fasting group (p < 0.05). Group × week interaction was significant only for error numbers (p < 0.05). Athletes in nonfasting showed a significant decrease in number of errors in Ramadan compared to baseline (p < 0.05). The results suggest that Ramadan fasting may not adversely affect cognitive function in female athletes. PMID:26697263

  19. Functional Roles Affect Diversity-Succession Relationships for Boreal Beetles

    PubMed Central

    Gibb, Heloise; Johansson, Therese; Stenbacka, Fredrik; Hjältén, Joakim

    2013-01-01

    Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of “functional” groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species). We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists) responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies). Species associated with microhabitats that accumulate with succession (fungi and dead wood) thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience. PMID:23977350

  20. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice.

    PubMed

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  1. The structure and function of fungal cells

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    The structure and function of fungal cell walls were studied with particular emphasis on dermatophytes. Extraction, isolation, analysis, and observation of the cell wall structure and function were performed. The structure is described microscopically and chemically.

  2. Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice.

    PubMed

    Rodriguez-Sosa, Jose R; Bondareva, Alla; Tang, Lin; Avelar, Gleide F; Coyle, Krysta M; Modelski, Mark; Alpaugh, Whitney; Conley, Alan; Wynne-Edwards, Katherine; França, Luiz R; Meyers, Stuart; Dobrinski, Ina

    2014-12-01

    Di-n-Butyl (DBP) and Di-(2-EthylHexyl) (DEHP) phthalates can leach from daily-use products resulting in environmental exposure. In male rodents, phthalate exposure results in reproductive effects. To evaluate effects on the immature primate testis, testis fragments from 6-month-old rhesus macaques were grafted subcutaneously to immune-deficient mice, which were exposed to 0, 10, or 500 mg/kg of DBP or DEHP for 14 weeks or 28 weeks (DBP only). DBP exposure reduced the expression of key steroidogenic genes, indicating that Leydig cell function was compromised. Exposure to 500 mg/kg impaired tubule formation and germ cell differentiation and reduced numbers of spermatogonia. Exposure to 10 mg/kg did not affect development, but reduced Sertoli cell number and resulted in increased expression of inhibin B. Exposure to DEHP for 14 week also affected steroidogenic genes expression. Therefore, long-term exposure to phthalate esters affected development and function of the primate testis in a time and dosage dependent manner.

  3. Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice

    PubMed Central

    Rodriguez-Sosa, Jose R; Bondareva, Alla; Tang, Lin; Avelar, Gleide F.; Coyle, Krysta M.; Modelski, Mark; Alpaugh, Whitney; Conley, Alan; Wynne-Edwards, Katherine; França, Luiz R; Meyers, Stuart; Dobrinski, Ina

    2014-01-01

    Di-n-Butyl (DBP) and Di-(2-EthylHexyl) (DEHP) phthalates can leach from daily-use products resulting in environmental exposure. In male rodents, phthalate exposure results in reproductive effects. To evaluate effects on the immature primate testis, testis fragments from 6-month-old rhesus macaques were grafted subcutaneously to immune-deficient mice, which were exposed to 0, 10, or 500 mg/kg of DBP or DEHP for 14 weeks or 28 weeks (DBP only). DBP exposure reduced the expression of key steroidogenic genes, indicating that Leydig cell function was compromised. Exposure to 500 mg/kg impaired tubule formation and germ cell differentiation and reduced numbers of spermatogonia. Exposure to 10 mg/kg did not affect development, but reduced Sertoli cell number and resulted in increased expression of inhibin B. Exposure to DEHP for 14 week also affected steroidogenic genes expression. Therefore, long-term exposure to phthalate esters affected development and function of the primate testis in a time and dosage dependent manner. PMID:25450860

  4. Inhibition of HIF-1α Affects Autophagy Mediated Glycosylation in Oral Squamous Cell Carcinoma Cells

    PubMed Central

    Li, Yi-Ning; Hu, Ji-An; Wang, Hui-Ming

    2015-01-01

    Purpose. To validate the function of autophagy with the regulation of hypoxia inhibitor-induced glycosylation in oral squamous cell carcinoma cell. Methods. Human Tca8113 cell line was used to detect autophagy and glycosylation related protein expression by western blotting and immunofluorescence with HIF-1α inhibitor. Short interfering RNA (siRNA) transfection blocked human ATG12 and ATG1. Results. HIF-1α inhibitor PX-478 reduced the amount of LC3-II and LC3-I in Tca8113 cells. PX-478 decreased the expression of O-GlcNAc and OGT and increased OGA expression. The tendency of O-GlcNAc showed a similar pattern to OGT. PX-478 gradually decreased OGT expression in Tca8113 cells. Protein level of O-GlcNAc and OGT increased in ATG12 and ATG1 depletion. The expression of OGT decreased at first and then rose slowly with the treatment of Atg12 and Atg1 siRNA and PX-478 fluctuant. Autophagy affected the stability of OGT when HIF-1α signaling was blocked. Conclusions. Autophagy reduced by hypoxic stress inhibited. HIF-1α inhibitor decreased glycosylation. OGT became unstable in the absence of autophagy when HIF-1α signaling was blocked. PMID:26640316

  5. DHHC2 Affects Palmitoylation, Stability, and Functions of Tetraspanins CD9 and CD151

    PubMed Central

    Sharma, Chandan; Yang, Xiuwei H.

    2008-01-01

    Although palmitoylation markedly affects tetraspanin protein biochemistry and functions, relevant palmitoylating enzymes were not known. There are 23 mammalian “DHHC” (Asp-His-His-Cys) proteins, which presumably palmitoylate different sets of protein substrates. Among DHHC proteins tested, DHHC2 best stimulated palmitoylation of tetraspanins CD9 and CD151, whereas inactive DHHC2 (containing DH→AA or C→S mutations within the DHHC motif) failed to promote palmitoylation. Furthermore, DHHC2 associated with CD9 and CD151, but not other cell surface proteins, and DHHC2 knockdown diminished CD9 and CD151 palmitoylation. Knockdown of six other Golgi-resident DHHC proteins (DHHC3, -4, -8, -17, -18, and -21) had no effect on CD9 or CD151. DHHC2 selectively affected tetraspanin palmitoylation, but not the palmitoylations of integrin β4 subunit and bulk proteins visible in [3H]palmitate-labeled whole cell lysates. DHHC2-dependent palmitoylation also had multiple functional effects. First, it promoted physical associations between CD9 and CD151, and between α3 integrin and other proteins. Second, it protected CD151 and CD9 from lysosomal degradation. Third, the presence of DHHC2, but not other DHHC proteins, shifted cells away from a dispersed state and toward increased cell–cell contacts. PMID:18508921

  6. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  7. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies.

  8. Rosmarinic Acid and Melissa officinalis Extracts Differently Affect Glioblastoma Cells

    PubMed Central

    Ramanauskiene, Kristina; Raudonis, Raimondas

    2016-01-01

    Lemon balm (Melissa officinalis L.) has many biological effects but especially important is its neuroprotective activity. The aim of the study is to produce different extracts of Melissa officinalis and analyse their chemical composition and biological properties on rat glioblastoma C6 cells. Results revealed that rosmarinic acid (RA) is the predominant compound of lemon balm extracts. RA has cytotoxic effect on glioblastoma cells (LC50 290.5 μM after the incubation of 24 h and LC50 171.3 μM after 48 h). RA at concentration 80–130 μM suppresses the cell proliferation and has an antioxidant effect. 200 μM and higher concentrations of RA have a prooxidant effect and initiate cell death through necrosis. The aqueous extract of lemon balm is also enriched in phenolic compounds: protocatechuic, caftaric, caffeic, ferulic, and cichoric acids and flavonoid luteolin-7-glucoside. This extract at concentrations 50 μM–200 μM RA has cytotoxic activity and initiates cell death through apoptosis. Extracts prepared with 70% ethanol contain the biggest amount of active compounds. These extracts have the highest cytotoxic activity on glioblastoma cells. They initiate generation of intracellular ROS and cell death through apoptosis and necrosis. Our data suggest that differently prepared lemon balm extracts differently affect glioblastoma cells and can be used as neuroprotective agents in several therapeutic strategies. PMID:27688825

  9. Substrate elasticity affects bovine satellite cell activation kinetics in vitro.

    PubMed

    Lapin, M R; Gonzalez, J M; Johnson, S E

    2013-05-01

    Satellite cells support efficient postnatal skeletal muscle hypertrophy through fusion into the adjacent muscle fiber. Nuclear contribution allows for maintenance of the fiber myonuclear domain and proficient transcription of myogenic genes. Niche growth factors affect satellite cell biology; however, the interplay between fiber elasticity and microenvironment proteins remains largely unknown. The objective of the experiment was to examine the effects of hepatocyte growth factor (HGF) and surface elasticity on bovine satellite cell (BSC) activation kinetics in vitro. Young's elastic modulus was calculated for the semimembranosus (SM) and LM muscles of young bulls (5 d; n = 8) and adult cows (27 mo; n = 4) cattle. Results indicate that LM elasticity decreased (P < 0.05) with age; no difference in Young's modulus for the SM was noted. Bovine satellite cells were seeded atop polyacrylamide bioscaffolds with surface elasticities that mimic young bull and adult cow LM or traditional cultureware. Cells were maintained in low-serum media supplemented with 5 ng/mL HGF or vehicle only for 24 or 48 h. Activation was evaluated by proliferating cell nuclear antigen (PCNA) immunocytochemistry. Results indicate that BSC maintained on rigid surfaces were activated at 24 h and refractive to HGF supplementation. By contrast, fewer (P < 0.05) BSC had exited quiescence after 24 h of culture on surfaces reflective of either young bull (8.1 ± 1.7 kPa) or adult cow (14.6 ± 1.6 kPa) LM. Supplementation with HGF promoted activation of BSC cultured on bioscaffolds as measured by an increase (P < 0.05) in PCNA immunopositive cells. Culture on pliant surfaces affected neither activation kinetics nor numbers of Paired box 7 (Pax7) immunopositive muscle stem cells (P > 0.05). However, with increasing surface elasticity, an increase (P < 0.05) in the numbers of muscle progenitors was observed. These results confirm that biophysical and biochemical signals regulate BSC activation.

  10. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  11. Variation is function: Are single cell differences functionally important?

    PubMed Central

    Dueck, Hannah; Eberwine, James

    2015-01-01

    There is a growing appreciation of the extent of transcriptome variation across individual cells of the same cell type. While expression variation may be a byproduct of, for example, dynamic or homeostatic processes, here we consider whether single‐cell molecular variation per se might be crucial for population‐level function. Under this hypothesis, molecular variation indicates a diversity of hidden functional capacities within an ensemble of “identical” cells, and this functional diversity facilitates collective behavior that would be inaccessible to a homogenous population. In reviewing this topic, we explore possible functions that might be carried by a heterogeneous ensemble of cells; however, this question has proven difficult to test, both because methods to manipulate molecular variation are limited and because it is complicated to define, and measure, population‐level function. We consider several possible methods to further pursue the hypothesis that “variation is function” through the use of comparative analysis and novel experimental techniques. PMID:26625861

  12. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  13. Mutations in Coliphage P1 Affecting Host Cell Lysis

    PubMed Central

    Walker, Jean Tweedy; Walker, Donald H.

    1980-01-01

    A total of 103 amber mutants of coliphage P1 were tested for lysis of nonpermissive cells. Of these, 83 caused cell lysis at the normal lysis time and have defects in particle morphogenesis. Five amber mutants, with mutations in the same gene (gene 2), caused premature lysis and may have a defect in a lysis regulator. Fifteen amber mutants were unable to cause cell lysis. Artificially lysed cells infected with five of these mutants produced viable phage particles, and phage particles were seen in thin sections of unlysed, infected cells. However, phage production by these mutants was not continued after the normal lysis time. We conclude that the defect of these five mutants is in a lysis function. The five mutations were found to be in the same gene (designated gene 17). The remaining 10 amber mutants, whose mutations were found to be in the same gene (gene 10), were also unable to cause cell lysis. They differed from those in gene 17 in that no viable phage particles were produced from artificially lysed cells, and no phage particles were seen in thin sections of unlysed, infected cells. We conclude that the gene 10 mutants cannot synthesize late proteins, and it is possible that gene 10 may code for a regulator of late gene expression for P1. Images PMID:16789200

  14. Factors affecting white cell content in platelet concentrates.

    PubMed

    Champion, A B; Carmen, R A

    1985-01-01

    In this study, we investigated the factors affecting white cell content in platelet concentrates. White cell yields can be reduced 50 percent by stopping platelet-rich plasma expression when the interface is 1 cm from the top of the blood bag as compared to stopping expression when the interface reaches the top of the bag. Further reductions can be achieved by careful handling during transfer of units from the centrifuge cups to expressors (after the first spin) and by carefully balancing units against each other to ensure proper rotor balance during the first spin. Following these suggestions, blood banks should be able to produce platelet concentrates with white cell yields between 2 and 6 X 10(7) and with platelet yields between 7.5 and 8 X 10(10). Transfusion of this product may reduce febrile reactions and lower the incidence of alloimmunizations. PMID:4024231

  15. Kidney Function, β-Cell Function and Glucose Tolerance in Older Men

    PubMed Central

    Jia, Ting; Risérus, Ulf; Xu, Hong; Lindholm, Bengt; Ärnlöv, Johan; Sjögren, Per; Cederholm, Tommy; Larsson, Tobias E.; Ikizler, Talat Alp

    2015-01-01

    Context: Kidney dysfunction induces insulin resistance, but it is unknown if β cell function is affected. Objective: To investigate insulin release (β cell function) and glucose tolerance following a standardized oral glucose tolerance test (OGTT) across kidney function strata. Setting and Design: Community-based cohort study from the Uppsala Longitudinal Study of Adult Men (ULSAM). Participants and Main Outcome Measure: Included were 1015 nondiabetic Swedish men aged 70–71 years. All participants underwent OGTT and euglycaemic hyperinsulinaemic clamp (HEGC) tests, allowing determination of insulin sensitivity, β cell function, and glucose tolerance. Kidney function was estimated by cystatin C-algorithms. Mixed models were used to identify determinants of insulin secretion after the hyperglycemic load. Results: As many as 466 (46%) of participants presented moderate-advanced kidney disease. Insulin sensitivity (by HEGC) decreased across decreasing kidney function quartiles. After the OGTT challenge, however, β cell function indices (area under the curve for insulin release, the estimated first phase insulin release, and the insulinogenic index) were incrementally higher. Neither the oral disposition index nor the 2-h postload glucose tolerance differed across the kidney function strata. Mixed models showed that dynamic insulin release during the OGTT was inversely associated with kidney function, despite the correction for each individual's insulin sensitivity or its risk factors. Conclusions: In older men, β cell function after a hyperglycemic load appropriately compensated the loss in insulin sensitivity that accompanies kidney dysfunction. As a result, the net balance between insulin sensitivity and β cell function was preserved. PMID:25429626

  16. Culture materials affect ex vivo expansion of hematopoietic progenitor cells.

    PubMed

    LaIuppa, J A; McAdams, T A; Papoutsakis, E T; Miller, W M

    1997-09-01

    Ex vivo expansion of hematopoietic cells is important for applications such as cancer treatment, gene therapy, and transfusion medicine. While cell culture systems are widely used to evaluate the biocompatibility of materials for implantation, the ability of materials to support proliferation of primary human cells in cultures for reinfusion into patients has not been addressed. We screened a variety of commercially available polymer (15 types), metal (four types), and glass substrates for their ability to support expansion of hematopoietic cells when cultured under conditions that would be encountered in a clinical setting. Cultures of peripheral blood (PB) CD34+ cells and mononuclear cells (MNC) were evaluated for expansion of total cells and colony-forming unit-granulocyte monocyte (CFU-GM; progenitors committed to the granulocyte and/or monocyte lineage). Human hematopoietic cultures in serum-free medium were found to be extremely sensitive to the substrate material. The only materials tested that supported expansion at or near the levels of polystyrene were tissue culture polystyrene, Teflon perfluoroalkoxy, Teflon fluorinated ethylene propylene, cellulose acetate, titanium, new polycarbonate, and new polymethylpentene. MNC were less sensitive to the substrate materials than the primitive CD34+ progenitors, although similar trends were seen for expansion of the two cell populations on the substrates tested. CFU-GM expansion was more sensitive to substrate materials than was total cell expansion. The detrimental effects of a number of the materials on hematopoietic cultures appear to be caused by protein adsorption and/or leaching of toxins. Factors such as cleaning, sterilization, and reuse significantly affected the performance of some materials as culture substrates. We also used PB CD34+ cell cultures to examine the biocompatibility of gas-permeable cell culture and blood storage bags and several types of tubing commonly used with biomedical equipment

  17. Clinorotation affects mesophyll photosynthetic cells in leaves of pea seedlings.

    PubMed

    Adamchuk, N I

    1998-07-01

    Experiments with autotrophs in altered gravity condition have a grate significant for development of space biology. The main results of investigation in the photosynthetic apparatus state under microgravity condition have based on the experiments with maturity plants and their differentiated cells. The structural and functional organization of photosynthetic cells in seedlings is poor understandable still. Along with chloroplasts preserving a native membrane system in palisade parenchyma cells of the 29-day pea plant leaves in microgravity, chloroplasts with fribly packed or damaged granae, whose thylakoids appeared as vesicles with an electrontransparent content, were also observed. The investigation of preceding process induced these effects have a sense. That is why, the goal of our experiments was to perform the study of a structural organization of the photosynthetic cells of 3-d pair of pea seedlings leaves under the influence of clinorotation.

  18. Engineering Cell Shape and Function

    NASA Astrophysics Data System (ADS)

    Singhvi, Rahul; Kumar, Amit; Lopez, Gabriel P.; Stephanopoulos, Gregory N.; Wang, Daniel I. C.; Whitesides, George M.; Ingber, Donald E.

    1994-04-01

    An elastomeric stamp, containing defined features on the micrometer scale, was used to imprint gold surfaces with specific patterns of self-assembled monolayers of alkanethiols and, thereby, to create islands of defined shape and size that support extracellular matrix protein adsorption and cell attachment. Through this technique, it was possible to place cells in predetermined locations and arrays, separated by defined distances, and to dictate their shape. Limiting the degree of cell extension provided control over cell growth and protein secretion. This method is experimentally simple and highly adaptable. It should be useful for applications in biotechnology that require analysis of individual cells cultured at high density or repeated access to cells placed in specified locations.

  19. Concomitant gastroparesis negatively affects children with functional gallbladder disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to determine whether concomitant gastroparesis and biliary dyskinesia (BD) occur in children, and if so, to determine whether concomitant gastroparesis affects clinical outcome in children with BD. We conducted a retrospective chart review of children with BD (ejecti...

  20. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization

    PubMed Central

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  1. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity.

    PubMed

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity.

  2. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  3. SUMO1 Affects Synaptic Function, Spine Density and Memory.

    PubMed

    Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E

    2015-01-01

    Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678

  4. Does plutonium intake in workers affect lymphocyte function

    SciTech Connect

    Voelz, G.L.; Stevenson, A.P.; Stewart, C.C.

    1988-01-01

    Measurements of mononuclear cells in peripheral blood of persons with long term internal depositions of plutonium indicate a preferential reduction in suppressor T-lymphocytes (T/sub s/) in some individuals. The decrease in T/sub s/ cells is apparently due to altered radiosensitivity, which is domonstrated in cultured cells subjected to in vitro x-ray radiation. The increase in ratios correlates with the quantity of plutonium deposition in these subjects, but there are wide individual differences. Confirmatory studies are needed in other persons with long term alpha or chronic gamma radiation exposure. If confirmed, the implications would include recognition of a potential mechanism for an enhanced immune system reactivity in some individuals exposed to chronic low level radiation. 13 refs., 1 fig., 1 tab.

  5. Spaceflight alters immune cell function and distribution

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  6. Photoreceptor cells constitutively express functional TLR4

    PubMed Central

    Tu, Zhidan; Portillo, Jose-Andres; Howell, Scott; Bu, Hong; Subauste, Carlos S.; Al-Ubaidi, Muayyad R; Pearlman, Eric; Lin, Feng

    2010-01-01

    Toll-like receptor 4 (TLR4) is expressed on a number of cells including neurons in the brain. However, it has yet to be determined if TLR4 is expressed on photoreceptor cells in the retina. In this report, we examined primary photoreceptor cells and an established photoreceptor cell line (661W). We found that functional TLR4 is constitutively expressed on photoreceptor cells, and can be activated by LPS. We conclude that TLR4 on photoreceptor cells could directly contribute to retinal inflammatory diseases and photoreceptor cell survival. PMID:20801528

  7. Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function

    SciTech Connect

    Cochrane, Alan; Murley, Laura Lea; Gao Mian; Wong, Raymond; Clayton, Kiera; Brufatto, Nicole; Canadien, Veronica; Mamelak, Daniel; Chen, Tricia; Richards, Dawn; Zeghouf, Mahel; Greenblatt, Jack; Burks, Christian; Frappier, Lori

    2009-05-25

    The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.

  8. Fetal urinoma and prenatal hydronephrosis: how is renal function affected?

    PubMed Central

    Oktar, Tayfun; Salabaş, Emre; Kalelioğlu, İbrahim; Atar, Arda; Ander, Haluk; Ziylan, Orhan; Has, Recep; Yüksel, Atıl

    2013-01-01

    Objective: In our study, the functional prognosis of kidneys with prenatal urinomas were investigated. Material and methods: Between 2006 and 2010, fetal urinomas were detected in 19 fetuses using prenatal ultrasonography (US), and the medical records were reviewed retrospectively. Of the 19 cases, the follow-up data were available for 10 fetuses. The gestational age at diagnosis, prognosis of urinomas, clinical course and renal functions were recorded. Postnatal renal functions were assessed with renal scintigraphy. Results: Unilateral urinomas and increased parenchyma echogenicity in the ipsilateral kidney were detected in all of the fetuses. Of the 10 fetuses with follow-up data, the option of termination was offered in 6 cases of anhydramnios, including 3 cases with signs of infravesical obstruction (a possible posterior urethral valve (PUV) and poor prognostic factors and 3 cases with unilateral hydronephrosis and increased echogenicity in the contralateral kidney. Only one family agreed the termination. The other 5 fetuses died during the early postnatal period. The average postnatal follow-up period in the 4 surviving fetuses was 22.5 months (8–38 months). One patient with a PUV underwent ablation surgery during the early postnatal period. In the postnatal period, none of the 4 kidneys that were ipsilateral to the urinoma were functional on scintigraphic evaluation. The urinomas disappeared in 3 cases. Nephrectomy was performed in one case due to recurrent urinary tract infections. Conclusion: In our study, no function was detected in the ipsilateral kidney of surviving patients with urinomas. Upper urinary tract dilatation accompanied by a urinoma is a poor prognostic factor for renal function. PMID:26328088

  9. Metalloproteinases: A functional pathway for myeloid cells

    PubMed Central

    Chou, Jonathan; Chan, Matilda F.; Werb, Zena

    2015-01-01

    Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix (ECM) turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases (MMPs) and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis and cancer. Metalloproteinases also have important non-proteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote anti-viral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions. PMID:27227311

  10. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  11. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  12. Can Particulate Pollution Affect Lung Function in Healthy Adults?

    EPA Science Inventory

    Accompanying editorial to paper from Harvard by Rice et al. entitled "Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart StudyBy almost any measure the Clean Air Act and its amendments has to be considered as one...

  13. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria.

  14. Prenatal drug exposure affects neonatal brain functional connectivity.

    PubMed

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention.

  15. Prenatal drug exposure affects neonatal brain functional connectivity.

    PubMed

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  16. Nuclear cyclophilins affect spliceosome assembly and function in vitro.

    PubMed

    Adams, B M; Coates, Miranda N; Jackson, S RaElle; Jurica, Melissa S; Davis, Tara L

    2015-07-15

    Cyclophilins are ubiquitously expressed proteins that bind to prolines and can catalyse cis/trans isomerization of proline residues. There are 17 annotated members of the cyclophilin family in humans, ubiquitously expressed and localized variously to the cytoplasm, nucleus or mitochondria. Surprisingly, all eight of the nuclear localized cyclophilins are found associated with spliceosomal complexes. However, their particular functions within this context are unknown. We have therefore adapted three established assays for in vitro pre-mRNA splicing to probe the functional roles of nuclear cyclophilins in the context of the human spliceosome. We find that four of the eight spliceosom-associated cyclophilins exert strong effects on splicing in vitro. These effects are dose-dependent and, remarkably, uniquely characteristic of each cyclophilin. Using both qualitative and quantitative means, we show that at least half of the nuclear cyclophilins can act as regulatory factors of spliceosome function in vitro. The present work provides the first quantifiable evidence that nuclear cyclophilins are splicing factors and provides a novel approach for future work into small molecule-based modulation of pre-mRNA splicing.

  17. Development of affective theory of mind across adolescence: disentangling the role of executive functions.

    PubMed

    Vetter, Nora C; Altgassen, Mareike; Phillips, Louise; Mahy, Caitlin E V; Kliegel, Matthias

    2013-01-01

    Theory of mind, the ability to understand mental states, involves inferences about others' cognitive (cognitive theory of mind) and emotional (affective theory of mind) mental states. The current study explored the role of executive functions in developing affective theory of mind across adolescence. Affective theory of mind and three subcomponents of executive functions (inhibition, updating, and shifting) were measured. Affective theory of mind was positively related to age, and all three executive functions. Specifically, inhibition explained the largest amount of variance in age-related differences in affective theory of mind.

  18. Multifunctional ferromagnetic disks for modulating cell function

    PubMed Central

    Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.

    2013-01-01

    In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging. PMID:23766544

  19. Human embryonic stem cells differentiate into functional renal proximal tubular-like cells.

    PubMed

    Narayanan, Karthikeyan; Schumacher, Karl M; Tasnim, Farah; Kandasamy, Karthikeyan; Schumacher, Annegret; Ni, Ming; Gao, Shujun; Gopalan, Began; Zink, Daniele; Ying, Jackie Y

    2013-04-01

    Renal cells are used in basic research, disease models, tissue engineering, drug screening, and in vitro toxicology. In order to provide a reliable source of human renal cells, we developed a protocol for the differentiation of human embryonic stem cells into renal epithelial cells. The differentiated stem cells expressed markers characteristic of renal proximal tubular cells and their precursors, whereas markers of other renal cell types were not expressed or expressed at low levels. Marker expression patterns of these differentiated stem cells and in vitro cultivated primary human renal proximal tubular cells were comparable. The differentiated stem cells showed morphological and functional characteristics of renal proximal tubular cells, and generated tubular structures in vitro and in vivo. In addition, the differentiated stem cells contributed in organ cultures for the formation of simple epithelia in the kidney cortex. Bioreactor experiments showed that these cells retained their functional characteristics under conditions as applied in bioartificial kidneys. Thus, our results show that human embryonic stem cells can differentiate into renal proximal tubular-like cells. Our approach would provide a source for human renal proximal tubular cells that are not affected by problems associated with immortalized cell lines or primary cells.

  20. The effect of negative affect on cognition: Anxiety, not anger, impairs executive function.

    PubMed

    Shields, Grant S; Moons, Wesley G; Tewell, Carl A; Yonelinas, Andrew P

    2016-09-01

    It is often assumed that negative affect impairs the executive functions that underlie our ability to control and focus our thoughts. However, support for this claim has been mixed. Recent work has suggested that different negative affective states like anxiety and anger may reflect physiologically separable states with distinct effects on cognition. However, the effects of these 2 affective states on executive function have never been assessed. As such, we induced anxiety or anger in participants and examined the effects on executive function. We found that anger did not impair executive function relative to a neutral mood, whereas anxiety did. In addition, self-reports of induced anxiety, but not anger, predicted impairments in executive function. These results support functional models of affect and cognition, and highlight the need to consider differences between anxiety and anger when investigating the influence of negative affect on fundamental cognitive processes such as memory and executive function. (PsycINFO Database Record PMID:27100367

  1. Membrane Elastic Properties and Cell Function

    PubMed Central

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C.; Romão, Luciana F.; Amaral, Racκele F.; Salgado, Leonardo T.; Lima, Flavia R.; Farina, Marcos; Viana, Nathan B.; Moura-Neto, Vivaldo; Nussenzveig, H. Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function. PMID:23844071

  2. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    PubMed Central

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  3. Gallium arsenide exposure impairs splenic B cell accessory function.

    PubMed

    Gondre-Lewis, Timothy A; Hartmann, Constance B; Caffrey, Rebecca E; McCoy, Kathleen L

    2003-03-01

    Gallium arsenide (GaAs) is utilized in industries for its semiconductor and optical properties. Chemical exposure of animals systemically suppresses several immune functions. The ability of splenic B cells to activate antigen-specific helper CD4(+) T cell hybridomas was assessed, and various aspects of antigen-presenting cell function were examined. GaAs-exposed murine B cells were impaired in processing intact soluble protein antigens, and the defect was antigen dependent. In contrast, B cells after exposure competently presented peptides to the T cells, which do not require processing. Cell surface expression of major histocompatibility complex (MHC) class II molecules and several costimulatory molecules on splenic B cells, which are critical for helper T cell activation, was not affected by chemical exposure. GaAs exposure also did not influence the stability of MHC class II heterodimers, suggesting that the defect may precede peptide exchange. GaAs-exposed B cells contained a normal level of aspartyl cathepsin activity; however, proteolytic activities of thiol cathepsins B and L were approximately half the control levels. Furthermore, two cleavage fragments of invariant chain, a molecular chaperone of MHC class II molecules, were increased in GaAs-exposed B cells, indicative of defective degradation. Thus, diminished thiol proteolytic activity in B cells may be responsible for their impaired antigen processing and invariant chain degradation, which may contribute to systemic immunosuppression caused by GaAs exposure.

  4. Repeated Traumatic Brain Injury Affects Composite Cognitive Function in Piglets

    PubMed Central

    Friess, Stuart H.; Ichord, Rebecca N.; Ralston, Jill; Ryall, Karen; Helfaer, Mark A.; Smith, Colin

    2009-01-01

    Abstract Cumulative effects of repetitive mild head injury in the pediatric population are unknown. We have developed a cognitive composite dysfunction score that correlates white matter injury severity in neonatal piglets with neurobehavioral assessments of executive function, memory, learning, and problem solving. Anesthetized 3- to 5-day-old piglets were subjected to single (n = 7), double one day apart (n = 7), and double one week apart (n = 7) moderate (190 rad/s) rapid non-impact axial rotations of the head and compared to instrumented shams (n = 7). Animals experiencing two head rotations one day apart had a significantly higher mortality rate (43%) compared to the other groups and had higher failures rates in visual-based problem solving compared to instrumented shams. White matter injury, assessed by β-APP staining, was significantly higher in the double one week apart group compared to that with single injury and sham. Worsening performance on cognitive composite score correlated well with increasing severity of white matter axonal injury. In our immature large animal model of TBI, two head rotations produced poorer outcome as assessed by neuropathology and neurobehavioral functional outcomes compared to that with single rotations. More importantly, we have observed an increase in injury severity and mortality when the head rotations occur 24 h apart compared to 7 days apart. These observations have important clinical translation to infants subjected to repeated inflicted head trauma. PMID:19275468

  5. Tricellulin deficiency affects tight junction architecture and cochlear hair cells

    PubMed Central

    Nayak, Gowri; Lee, Sue I.; Yousaf, Rizwan; Edelmann, Stephanie E.; Trincot, Claire; Van Itallie, Christina M.; Sinha, Ghanshyam P.; Rafeeq, Maria; Jones, Sherri M.; Belyantseva, Inna A.; Anderson, James M.; Forge, Andrew; Frolenkov, Gregory I.; Riazuddin, Saima

    2013-01-01

    The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin. PMID:23979167

  6. The sertolian epithelium in the testis of men affected by 'Sertoli-cell-only syndrome'.

    PubMed

    Tedde, G; Montella, A; Fiocca, D; Delrio, A N

    1993-01-01

    Because of the architectural complexity of the seminiferous epithelium, the Sertoli cell is extremely difficult to study. The individual cellular constituents of the tubular wall are intimately associated with one another; especially Sertoli cells and germinal cells are tightly connected. As implied by the name, Sertoli-cell-only syndrome (SCOS) is characterized by the presence of only Sertoli cells in the seminiferous tubule. The absence of germinal cells makes this condition ideal for the morphological study of Sertoli cell. Testicular biopsy specimens of subjects affected by SCOS were studied under light and electron microscopy. The Sertoli cells appeared to be morphologically normal, except for their shape, that appears to be columnar as result of the complete absence of the germinal cells. The cellular outlines were irregular, particularly at the base, but the cytoplasm contained normal organelles and inclusions. The presence of both pale and dark elements was evident. These differences in staining reflect the variability in concentration of glycogen particles and intermediate microfilaments in the cytoplasm. In spite of these differences between Sertoli cells in SCOS and those in normal subjects, SCOS represents a satisfactory model for the morphological and functional analysis of the Sertoli cells. PMID:7694556

  7. Does vitamin C deficiency affect cognitive development and function?

    PubMed

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-09-01

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(-/-) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies.

  8. Does Vitamin C Deficiency Affect Cognitive Development and Function?

    PubMed Central

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-01-01

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(−/−) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies. PMID:25244370

  9. Endocannabinoids affect the reproductive functions in teleosts and amphibians.

    PubMed

    Cottone, E; Guastalla, A; Mackie, K; Franzoni, M F

    2008-04-16

    Following the discovery in the brain of the bonyfish Fugu rubripes of two genes encoding for type 1 cannabinoid receptors (CB1A and CB1B), investigations on the phylogeny of these receptors have indicated that the cannabinergic system is highly conserved. Among the multiple functions modulated by cannabinoids/endocannabinoids through the CB1 receptors one of the more investigated is the mammalian reproduction. Therefore, since studies performed in animal models other than mammals might provide further insight into the biology of these signalling molecules, the major aim of the present paper was to review the comparative data pointing toward the endocannabinoid involvement in the reproductive control of non-mammalian vertebrates, namely bonyfish and amphibians. The expression and distribution of CB1 receptors were investigated in the CNS and gonads of two teleosts, Pelvicachromis pulcher and Carassius auratus as well as in the anuran amphibians Xenopus laevis and Rana esculenta. In general the large diffusion of neurons targeted by cannabinoids in both fish and amphibian forebrain indicate endocannabinoids as pivotal local messengers in several neural circuits involved in either sensory integrative activities, like the olfactory processes (in amphibians) and food response (in bonyfish), or neuroendocrine machinery (in both). By using immunohistochemistry for CB1 and GnRH-I, the codistribution of the two signalling molecules was found in the fish basal telencephalon and preoptic area, which are key centers for gonadotropic regulation in all vertebrates. A similar topographical codistribution was observed also in the septum of the telencephalon in Rana esculenta and Xenopus laevis. Interestingly, the double standard immunofluorescence on the same brain section, aided with a laser confocal microscope, showed that in anurans a subset of GnRH-I neurons exhibited also the CB1 immunostaining. The fact that CB1-LI-IR was found indeed in the FSH gonadotrophs of the Xenopus

  10. Consumption of bee pollen affects rat ovarian functions.

    PubMed

    Kolesarova, A; Bakova, Z; Capcarova, M; Galik, B; Juracek, M; Simko, M; Toman, R; Sirotkin, A V

    2013-12-01

    The aim of this study was to examine possible effects of bee pollen added to the feed mixture (FM) on rat ovarian functions (secretion activity and apoptosis). We evaluated the bee pollen effect on the release of insulin-like growth factor I (IGF-I) and steroid hormones (progesterone and estradiol), as well as on the expression of markers of apoptosis (Bcl-2, Bax and caspase-3) in rat ovarian fragments. Female rats (n = 15) were fed during 90 days by FM without or with rape seed bee pollen in dose either 3 kg/1000 kg FM or 5 kg/1000 kg FM. Fragments of ovaries isolated from rats of each group (totally 72 pieces) were incubated for 24 h. Hormonal secretion into the culture medium was detected by RIA. The markers of apoptosis were evaluated by Western blotting. It was observed that IGF-I release by rat ovarian fragments was significantly (p < 0.05) decreased; on the other hand, progesterone and estradiol secretion was increased after bee pollen treatment at dose 5 kg/1000 kg FM but not at 3 kg/1000 FM. Accumulation of Bcl-2 was increased by bee pollen added at 3 kg/1000 kg FM, but not at higher dose. Accumulation of Bax was increased in ovaries of rats fed by bee pollen at doses either 3 or 5 kg/1000 kg FM, whilst accumulation of caspase-3 increased after feeding with bee pollen at dose 5 kg/1000 kg FM, but not at 3 kg/1000 kg FM. Our results contribute to new insights regarding the effect of bee pollen on both secretion activity (release of growth factor IGF-I and steroid hormones progesterone and estradiol) and apoptosis (anti- and pro-apoptotic markers Bcl-2, Bax and caspase-3). Bee pollen is shown to be a potent regulator of rat ovarian functions. PMID:23137268

  11. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads.

    PubMed

    Frey-Klett, Pascale; Chavatte, Michaël; Clausse, Marie-Lise; Courrier, Sébastien; Le Roux, Christine; Raaijmakers, Jos; Martinotti, Maria Giovanna; Pierrat, Jean-Claude; Garbaye, Jean

    2005-01-01

    Here we characterized the effect of the ectomycorrhizal symbiosis on the genotypic and functional diversity of soil Pseudomonas fluorescens populations and analysed its possible consequences in terms of plant nutrition, development and health. Sixty strains of P. fluorescens were isolated from the bulk soil of a forest nursery, the ectomycorrhizosphere and the ectomycorrhizas of the Douglas fir (Pseudostuga menziesii) seedlings-Laccaria bicolor S238N. They were characterized in vitro with the following criteria: ARDRA, phosphate solubilization, siderophore, HCN and AIA production, genes of N2-fixation and antibiotic synthesis, in vitro confrontation with a range of phytopathogenic and ectomycorrhizal fungi, effect on the Douglas fir-L. bicolor symbiosis. For most of these criteria, we demonstrated that the ectomycorrhizosphere significantly structures the P. fluorescens populations and selects strains potentially beneficial to the symbiosis and to the plant. This prompts us to propose the ectomycorrhizal symbiosis as a true microbial complex where multitrophic interactions take place. Moreover it underlines the fact that this symbiosis has an indirect positive effect on plant growth, via its selective pressure on bacterial communities, in addition to its known direct positive effect. PMID:15720643

  12. Mitochondria, endothelial cell function, and vascular diseases

    PubMed Central

    Tang, Xiaoqiang; Luo, Yu-Xuan; Chen, Hou-Zao; Liu, De-Pei

    2014-01-01

    Mitochondria are perhaps the most sophisticated and dynamic responsive sensing systems in eukaryotic cells. The role of mitochondria goes beyond their capacity to create molecular fuel and includes the generation of reactive oxygen species, the regulation of calcium, and the activation of cell death. In endothelial cells, mitochondria have a profound impact on cellular function under both healthy and diseased conditions. In this review, we summarize the basic functions of mitochondria in endothelial cells and discuss the roles of mitochondria in endothelial dysfunction and vascular diseases, including atherosclerosis, diabetic vascular dysfunction, pulmonary artery hypertension, and hypertension. Finally, the potential therapeutic strategies to improve mitochondrial function in endothelial cells and vascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants and calorie restriction. PMID:24834056

  13. Three Functions of Cadherins in Cell Adhesion

    PubMed Central

    Maître, Jean-Léon; Heisenberg, Carl-Philipp

    2013-01-01

    Cadherins are transmembrane proteins that mediate cell–cell adhesion in animals. By regulating contact formation and stability, cadherins play a crucial role in tissue morphogenesis and homeostasis. Here, we review the three major functions of cadherins in cell–cell contact formation and stability. Two of those functions lead to a decrease in interfacial tension at the forming cell–cell contact, thereby promoting contact expansion — first, by providing adhesion tension that lowers interfacial tension at the cell–cell contact, and second, by signaling to the actomyosin cytoskeleton in order to reduce cortex tension and thus interfacial tension at the contact. The third function of cadherins in cell–cell contact formation is to stabilize the contact by resisting mechanical forces that pull on the contact. PMID:23885883

  14. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  15. Immunological functions of liver sinusoidal endothelial cells

    PubMed Central

    Knolle, Percy A; Wohlleber, Dirk

    2016-01-01

    Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and separate passenger leukocytes in the sinusoidal lumen from hepatocytes. LSECs further act as a platform for adhesion of various liver-resident immune cell populations such as Kupffer cells, innate lymphoid cells or liver dendritic cells. In addition to having an extraordinary scavenger function, LSECs possess potent immune functions, serving as sentinel cells to detect microbial infection through pattern recognition receptor activation and as antigen (cross)-presenting cells. LSECs cross-prime naive CD8 T cells, causing their rapid differentiation into memory T cells that relocate to secondary lymphoid tissues and provide protection when they re-encounter the antigen during microbial infection. Cross-presentation of viral antigens by LSECs derived from infected hepatocytes triggers local activation of effector CD8 T cells and thereby assures hepatic immune surveillance. The immune function of LSECs complements conventional immune-activating mechanisms to accommodate optimal immune surveillance against infectious microorganisms while preserving the integrity of the liver as a metabolic organ. PMID:27041636

  16. Low-dose irradiation affects the functional behavior of oral microbiota in the context of mucositis

    PubMed Central

    De Ryck, Tine RG; De boel, Kevin; Wiles, Siouxsie; Boterberg, Tom; Van de Wiele, Tom; Swift, Simon

    2015-01-01

    The role of host–microbe interactions in the pathobiology of oral mucositis is still unclear; therefore, this study aimed to unravel the effect of irradiation on behavioral characteristics of oral microbial species in the context of mucositis. Using various experimental in vitro setups, the effects of irradiation on growth and biofilm formation of two Candida spp., Streptococcus salivarius and Klebsiella oxytoca in different culture conditions were evaluated. Irradiation did not affect growth of planktonic cells, but reduced the number of K. oxytoca cells in newly formed biofilms cultured in static conditions. Biofilm formation of K. oxytoca and Candida glabrata was affected by irradiation and depended on the culturing conditions. In the presence of mucins, these effects were lost, indicating the protective nature of mucins. Furthermore, the Galleria melonella model was used to study effects on microbial virulence. Irradiated K. oxytoca microbes were more virulent in G. melonella larvae compared to the nonirradiated ones. Our data indicate that low-dose irradiation can have an impact on functional characteristics of microbial species. Screening for pathogens like K. oxytoca in the context of mucosits could be useful to allow early detection and immediate intervention. PMID:26202372

  17. Evolving functions of endothelial cells in inflammation.

    PubMed

    Pober, Jordan S; Sessa, William C

    2007-10-01

    Inflammation is usually analysed from the perspective of tissue-infiltrating leukocytes. Microvascular endothelial cells at a site of inflammation are both active participants in and regulators of inflammatory processes. The properties of endothelial cells change during the transition from acute to chronic inflammation and during the transition from innate to adaptive immunity. Mediators that act on endothelial cells also act on leukocytes and vice versa. Consequently, many anti-inflammatory therapies influence the behaviour of endothelial cells and vascular therapeutics influence inflammation. This Review describes the functions performed by endothelial cells at each stage of the inflammatory process, emphasizing the principal mediators and signalling pathways involved and the therapeutic implications. PMID:17893694

  18. Gangliosides have a functional role during rotavirus cell entry.

    PubMed

    Martínez, Miguel Angel; López, Susana; Arias, Carlos F; Isa, Pavel

    2013-01-01

    Cell entry of rotaviruses is a complex process, which involves sequential interactions with several cell surface molecules. Among the molecules implicated are gangliosides, glycosphingolipids with one or more sialic acid (SA) residues. The role of gangliosides in rotavirus cell entry was studied by silencing the expression of two key enzymes involved in their biosynthesis--the UDP-glucose:ceramide glucosyltransferase (UGCG), which transfers a glucose molecule to ceramide to produce glucosylceramide GlcCer, and the lactosyl ceramide-α-2,3-sialyl transferase 5 (GM3-s), which adds the first SA to lactoceramide-producing ganglioside GM3. Silencing the expression of both enzymes resulted in decreased ganglioside levels (as judged by GM1a detection). Four rotavirus strains tested (human Wa, simian RRV, porcine TFR-41, and bovine UK) showed a decreased infectivity in cells with impaired ganglioside synthesis; however, their replication after bypassing the entry step was not affected, confirming the importance of gangliosides for cell entry of the viruses. Interestingly, viral binding to the cell surface was not affected in cells with inhibited ganglioside synthesis, but the infectivity of all strains tested was inhibited by preincubation of gangliosides with virus prior to infection. These data suggest that rotaviruses can attach to cell surface in the absence of gangliosides but require them for productive cell entry, confirming their functional role during rotavirus cell entry.

  19. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    ERIC Educational Resources Information Center

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  20. Mast Cell: A Multi-Functional Master Cell

    PubMed Central

    Krystel-Whittemore, Melissa; Dileepan, Kottarappat N.; Wood, John G.

    2016-01-01

    Mast cells are immune cells of the myeloid lineage and are present in connective tissues throughout the body. The activation and degranulation of mast cells significantly modulates many aspects of physiological and pathological conditions in various settings. With respect to normal physiological functions, mast cells are known to regulate vasodilation, vascular homeostasis, innate and adaptive immune responses, angiogenesis, and venom detoxification. On the other hand, mast cells have also been implicated in the pathophysiology of many diseases, including allergy, asthma, anaphylaxis, gastrointestinal disorders, many types of malignancies, and cardiovascular diseases. This review summarizes the current understanding of the role of mast cells in many pathophysiological conditions. PMID:26779180

  1. Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites.

    PubMed

    Dong, Chun-Hai; Tang, Wei-Ping; Liu, Jia-Yao

    2013-03-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G- and F-actin binding. The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A, R137/A) form another actin binding site that is important for F-actin binding. Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G-actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization. PMID:23190411

  2. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…

  3. The cerebellum: its role in language and related cognitive and affective functions.

    PubMed

    De Smet, Hyo Jung; Paquier, Philippe; Verhoeven, Jo; Mariën, Peter

    2013-12-01

    The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral-affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed.

  4. New common variants affecting susceptibility to basal cell carcinoma.

    PubMed

    Stacey, Simon N; Sulem, Patrick; Masson, Gisli; Gudjonsson, Sigurjon A; Thorleifsson, Gudmar; Jakobsdottir, Margret; Sigurdsson, Asgeir; Gudbjartsson, Daniel F; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R; Thorisdottir, Kristin; Ragnarsson, Rafn; Scherer, Dominique; Hemminki, Kari; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Botella-Estrada, Rafael; Soriano, Virtudes; Juberias, Pablo; Saez, Berta; Gilaberte, Yolanda; Fuentelsaz, Victoria; Corredera, Cristina; Grasa, Matilde; Höiom, Veronica; Lindblom, Annika; Bonenkamp, Johannes J; van Rossum, Michelle M; Aben, Katja K H; de Vries, Esther; Santinami, Mario; Di Mauro, Maria G; Maurichi, Andrea; Wendt, Judith; Hochleitner, Pia; Pehamberger, Hubert; Gudmundsson, Julius; Magnusdottir, Droplaug N; Gretarsdottir, Solveig; Holm, Hilma; Steinthorsdottir, Valgerdur; Frigge, Michael L; Blondal, Thorarinn; Saemundsdottir, Jona; Bjarnason, Hjördis; Kristjansson, Kristleifur; Bjornsdottir, Gyda; Okamoto, Ichiro; Rivoltini, Licia; Rodolfo, Monica; Kiemeney, Lambertus A; Hansson, Johan; Nagore, Eduardo; Mayordomo, José I; Kumar, Rajiv; Karagas, Margaret R; Nelson, Heather H; Gulcher, Jeffrey R; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Olafsson, Jon H; Kong, Augustine; Stefansson, Kari

    2009-08-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC), we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 x 10(-9)). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 x 10(-9)), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 x 10(-10)). The effect of rs157935[T] is dependent on the parental origin of the risk allele. None of these variants were found to be associated with melanoma or fair-pigmentation traits. A melanoma- and pigmentation-associated variant in the SLC45A2 gene, L374F, is associated with risk of both BCC and squamous cell carcinoma. Finally, we report conclusive evidence that rs401681[C] in the TERT-CLPTM1L locus confers susceptibility to BCC but protects against melanoma. PMID:19578363

  5. Constitutive Expressor of Pathogenesis-Related Genes5 affects cell wall biogenesis and trichome development

    PubMed Central

    Brininstool, Ginger; Kasili, Remmy; Simmons, L Alice; Kirik, Viktor; Hülskamp, Martin; Larkin, John C

    2008-01-01

    Background The Arabidopsis thaliana CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene has been previously implicated in disease resistance, cell proliferation, cell death, and sugar sensing, and encodes a putative membrane protein of unknown biochemical function. Trichome development is also affected in cpr5 plants, which have leaf trichomes that are reduced in size and branch number. Results In the work presented here, the role of CPR5 in trichome development was examined. Trichomes on cpr5 mutants had reduced birefringence, suggesting a difference in cell wall structure between cpr5 and wild-type trichomes. Consistent with this, leaf cell walls of cpr5 plants contained significantly less paracrystalline cellulose and had an altered wall carbohydrate composition. We also found that the effects of cpr5 on trichome size and endoreplication of trichome nuclear DNA were epistatic to the effects of mutations in triptychon (try) or overexpression of GLABRA3, indicating that these trichome developmental regulators are dependant on CPR5 function for their effects on trichome expansion and endoreplication. Conclusion Our results suggest that CPR5 is unlikely to be a specific regulator of pathogen response pathways or senescence, but rather functions either in cell wall biogenesis or in multiple cell signaling or transcription response pathways. PMID:18485217

  6. Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior.

    PubMed

    Bellayr, Ian; Holden, Kyle; Mu, Xiaodong; Pan, Haiying; Li, Yong

    2013-01-01

    Skeletal muscle is a large and complex system that is crucial for structural support, movement and function. When injured, the repair of skeletal muscle undergoes three phases: inflammation and degeneration, regeneration and fibrosis formation in severe injuries. During fibrosis formation, muscle healing is impaired because of the accumulation of excess collagen. A group of zinc-dependent endopeptidases that have been found to aid in the repair of skeletal muscle are matrix metalloproteinases (MMPs). MMPs are able to assist in tissue remodeling through the regulation of extracellular matrix (ECM) components, as well as contributing to cell migration, proliferation, differentiation and angiogenesis. In the present study, the effect of GM6001, a broad-spectrum MMP inhibitor, on muscle-derived stem cells (MDSCs) is investigated. We find that MMP inhibition negatively impacts skeletal muscle healing by impairing MDSCs in migratory and multiple differentiation abilities. These results indicate that MMP signaling plays an essential role in the wound healing of muscle tissue because their inhibition is detrimental to stem cells residing in skeletal muscle. PMID:23329998

  7. Factors affecting recovery of postoperative bowel function after pediatric laparoscopic surgery

    PubMed Central

    Michelet, Daphnée; Andreu-Gallien, Juliette; Skhiri, Alia; Bonnard, Arnaud; Nivoche, Yves; Dahmani, Souhayl

    2016-01-01

    Background and Aims: Laparoscopic pediatric surgery allows a rapid postoperative rehabilitation and hospital discharge. However, the optimal postoperative pain management preserving advantages of this surgical technique remains to be determined. This study aimed to identify factors affecting the postoperative recovery of bowel function after laparoscopic surgery in children. Material and Methods: A retrospective analysis of factors affecting recovery of bowel function in children and infants undergoing laparoscopic surgery between January 1, 2009 and September 30, 2009, was performed. Factors included were: Age, weight, extent of surgery (extensive, regional or local), chronic pain (sickle cell disease or chronic intestinal inflammatory disease), American Society of Anaesthesiologists status, postoperative analgesia (ketamine, morphine, nalbuphine, paracetamol, nonsteroidal anti-inflammatory drugs [NSAIDs], nefopam, regional analgesia) both in the Postanesthesia Care Unit and in the surgical ward; and surgical complications. Data analysis used classification and regression tree analysis (CART) with a 10-fold cross validation. Results: One hundred and sixty six patients were included in the analysis. Recovery of bowel function depended upon: The extent of surgery, the occurrence of postoperative surgical complications, the administration of postoperative morphine in the surgical ward, the coadministration of paracetamol and NSAIDs and/or nefopam in the surgical ward and the emergency character of the surgery. The CART method generated a decision tree with eight terminal nodes. The percentage of explained variability of the model and the cross validation were 58% and 49%, respectively. Conclusion: Multimodal analgesia using nonopioid analgesia that allows decreasing postoperative morphine consumption should be considered for the speed of bowel function recovery after laparoscopic pediatric surgery. PMID:27625488

  8. Factors affecting recovery of postoperative bowel function after pediatric laparoscopic surgery

    PubMed Central

    Michelet, Daphnée; Andreu-Gallien, Juliette; Skhiri, Alia; Bonnard, Arnaud; Nivoche, Yves; Dahmani, Souhayl

    2016-01-01

    Background and Aims: Laparoscopic pediatric surgery allows a rapid postoperative rehabilitation and hospital discharge. However, the optimal postoperative pain management preserving advantages of this surgical technique remains to be determined. This study aimed to identify factors affecting the postoperative recovery of bowel function after laparoscopic surgery in children. Material and Methods: A retrospective analysis of factors affecting recovery of bowel function in children and infants undergoing laparoscopic surgery between January 1, 2009 and September 30, 2009, was performed. Factors included were: Age, weight, extent of surgery (extensive, regional or local), chronic pain (sickle cell disease or chronic intestinal inflammatory disease), American Society of Anaesthesiologists status, postoperative analgesia (ketamine, morphine, nalbuphine, paracetamol, nonsteroidal anti-inflammatory drugs [NSAIDs], nefopam, regional analgesia) both in the Postanesthesia Care Unit and in the surgical ward; and surgical complications. Data analysis used classification and regression tree analysis (CART) with a 10-fold cross validation. Results: One hundred and sixty six patients were included in the analysis. Recovery of bowel function depended upon: The extent of surgery, the occurrence of postoperative surgical complications, the administration of postoperative morphine in the surgical ward, the coadministration of paracetamol and NSAIDs and/or nefopam in the surgical ward and the emergency character of the surgery. The CART method generated a decision tree with eight terminal nodes. The percentage of explained variability of the model and the cross validation were 58% and 49%, respectively. Conclusion: Multimodal analgesia using nonopioid analgesia that allows decreasing postoperative morphine consumption should be considered for the speed of bowel function recovery after laparoscopic pediatric surgery.

  9. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues. PMID:26774292

  10. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell's behaviors to the global mechanics and patterns of tissues.

  11. Anabolic androgens affect the competitive interactions in cell migration and adhesion between normal mouse urothelial cells and urothelial carcinoma cells.

    PubMed

    Huang, Chi-Ping; Hsieh, Teng-Fu; Chen, Chi-Cheng; Hung, Xiao-Fan; Yu, Ai-Lin; Chang, Chawnshang; Shyr, Chih-Rong

    2014-09-26

    The urothelium is constantly rebuilt by normal urothelial cells to regenerate damaged tissues caused by stimuli in urine. However, the urothelial carcinoma cells expand the territory by aberrant growth of tumor cells, which migrate and occupy the damaged tissues to spread outside and disrupt the normal cells and organized tissues and form a tumor. Therefore, the interaction between normal urothelial cells and urothelial carcinoma cells affect the initiation and progression of urothelial tumors if normal urothelial cells fail to migrate and adhere to the damages sites to regenerate the tissues. Here, comparing normal murine urothelial cells with murine urothelial carcinoma cells (MBT-2), we found that normal cells had less migration ability than carcinoma cells. And in our co-culture system we found that carcinoma cells had propensity migrating toward normal urothelial cells and carcinoma cells had more advantages to adhere than normal cells. To reverse this condition, we used anabolic androgen, dihyrotestosterone (DHT) to treat normal cells and found that DHT treatment increased the migration ability of normal urothelial cells toward carcinoma cells and the adhesion capacity in competition with carcinoma cells. This study provides the base of a novel therapeutic approach by using anabolic hormone-enforced normal urothelial cells to regenerate the damage urothelium and defend against the occupancy of carcinoma cells to thwart cancer development and recurrence.

  12. Pancreatic stellate cells--multi-functional cells in the pancreas.

    PubMed

    Masamune, Atsushi; Shimosegawa, Tooru

    2013-01-01

    There is accumulating evidence that activated pancreatic stellate cells (PSCs) play a pivotal role in pancreatic fibrosis in chronic pancreatitis and pancreatic cancer. In addition, we have seen great progress in our understanding of the cell biology of PSCs and the interactions between PSCs and other cell types in the pancreas. In response to pancreatic injury or inflammation, quiescent PSCs are activated to myofibroblast-like cells. Recent studies have shown that the activation of intracellular signaling pathways such as mitogen-activated protein kinases plays a role in the activation of PSCs. microRNAs might also play a role, because the microRNA expression profiles are dramatically altered in the process of activation. In addition to producing extracellular matrix components such as type I collagen, PSCs have a wide variety of cell functions related to local immunity, inflammation, angiogenesis, and exocrine and endocrine functions in the pancreas. From this point of view, the interactions between PSCs and other cell types such as pancreatic exocrine cells, endocrine cells, and cancer cells have attracted increasing attention of researchers. PSCs might regulate exocrine functions in the pancreas through the cholecystokinin-induced release of acetylcholine. PSCs induce apoptosis and decrease insulin expression in β-cells, suggesting a novel mechanism of diabetes in diseased pancreas. PSCs promote the progression of pancreatic cancer by multiple mechanisms. Recent studies have shown that PSCs induce epithelial-mesenchymal transition and enhance the stem-cell like features of pancreatic cancer cells. In conclusion, PSCs should now be recognized as not only profibrogenic cells but as multi-functional cells in the pancreas.

  13. Xist function: bridging chromatin and stem cells.

    PubMed

    Wutz, Anton

    2007-09-01

    In mammals, dosage compensation is achieved by transcriptional silencing of one of the two female X chromosomes. X inactivation is dynamically regulated in development. The non-coding Xist RNA localizes to the inactive X, initiates gene repression in the early embryo, and later stabilizes the inactive state. Different functions of Xist are observed depending on which epigenetic regulatory pathways are active in a given cell. Because Xist has evolved recently, with the origin of placental mammals, the underlying pathways are also important in regulating developmental control genes. This review emphasizes the opportunity that Xist provides to functionally define epigenetic transitions in development, to understand cell identity, pluripotency and stem cell differentiation.

  14. Colored dual-functional photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Lee, Jae Yong; Xu, Ting; Park, Hui Joon; Guo, L. Jay

    2016-06-01

    In this article, we review our recent efforts on multi-functional photovoltaic (PV) cells that can produce desired reflective, transmissive, or neutral colors, by controlling light interaction with semiconductors and electrode structures in a desired manner. The PV cells integrated with plasmonic color filtering schemes using subwavelength gratings, and other approaches exploiting photonic resonances in an optical nanocavity consisting of highly absorbing semiconductor media are described. For further enhancement of optical and electrical performance characteristics of the multi-functional PV cells, possible difficulties and the outlook for future work are discussed.

  15. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  16. Immunoregulatory T Cell Function in Multiple Myeloma

    PubMed Central

    Ozer, H.; Han, T.; Henderson, E. S.; Nussbaum, A.; Sheedy, D.

    1981-01-01

    Multiple myeloma is a malignancy characterized by uncontrolled monoclonal B cell differentiation and immunoglobulin production. In most instances, there is concomitant reduction in polyclonal differentiation and immunoglobulin synthesis both in vivo and in vitro. In in vitro pokeweed mitogen-induced B cell differentiation assays, proliferation and polyclonal immunoglobulin secretion optimally requires T cell help and can be inhibited both by monocytes and suppressor T cells. Helper function and monocyte-mediated suppression are relatively radio-resistant whereas T suppressor function is sensitive to 2,000 rad x-irradiation. We have examined myeloma T cell subset function in this assay using recombinations of isolated patient and normal B cells, T cells, and T cell subsets. Monocytes were removed by a carbonyl iron ingestion technique, normal and myeloma T cells were fractionated on the basis of Fc receptors for immunoglobulin (Ig) G (Tγ) or IgM (Tμ or T non-γ), and proliferation and IgG secretion after co-culture determined by [3H]thymidine incorporation and radio-immunoassay, respectively. Myeloma B cells demonstrate quantitatively and qualitatively normal blastogenic responses and are appropriately regulated by either autologous or allogeneic T helper and suppressor subsets. Despite normal proliferation, however, myeloma B cells remain deficient in subsequent differentiation and immunoglobulin secretion even when co-cultured in the absence of monocytes or suppressor T cells and the presence of normal helper cells. Myeloma T cell populations, in contrast, are entirely normal in helper capacity over a range of T:B ratios but are markedly deficient in radiosensitive and concanavalin A-induced suppressor activity. T suppressor cell dysfunction in multiple myeloma is apparently due to a deficit in the T non-γ suppressor subset, whereas Tγ cells, although proportionately reduced, are functionally normal. This unique T suppressor deficit reflects the heterogeneity

  17. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. PMID:23834768

  18. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases.

  19. Corticomotoneuronal cells are “functionally tuned”

    PubMed Central

    Griffin, Darcy M.; Hoffman, Donna S.; Strick, Peter L.

    2016-01-01

    Corticomotoneuronal (CM) cells in the primary motor cortex (M1) have monosynaptic connections with motoneurons. They are one of the few sources of descending commands that directly influence motor output. We examined the contribution of CM cells to the generation of activity in their target muscles. The preferred direction of many CM cells differed from that of their target muscles. Some CM cells were selectively active when a muscle was used as an agonist. Others were selectively active when the same muscle was used as a synergist, fixator, or antagonist. These observations suggest that the different functional uses of a muscle are generated by separate populations of CM cells. We propose that muscle function is one of the dimensions represented in the output of M1. PMID:26542568

  20. Modulators affecting the immune dialogue between human immune and colon cancer cells

    PubMed Central

    Djaldetti, Meir; Bessler, Hanna

    2014-01-01

    The link between chronic inflammation and colorectal cancer has been well established. The events proceeding along tumorigenesis are complicated and involve cells activated at the cancer microenvironment, tumor infiltrating polymorphonuclears, immune cells including lymphocyte subtypes and peripheral blood mononuclear cells (PBMC), as well as tumor-associated macrophages. The immune cells generate inflammatory cytokines, several of them playing a crucial role in tumorigenesis. Additional factors, such as gene expression regulated by cytokines, assembling of tumor growth- and transforming factors, accelerated angiogenesis, delayed apoptosis, contribute all to initiation, development and migration of tumor cells. Oxygen radical species originating from the inflammatory area promote cell mutation and cancer proliferation. Tumor cells may over-express pro-inflammatory mediators that in turn activate immune cells for inflammatory cytokines production. Consequently, an immune dialogue emerges between immune and cancer cells orchestrated through a number of activated molecular pathways. Cytokines, encompassing migration inhibitory factor, transforming growth factor beta 1, tumor necrosis factor-α, Interleukin (IL)-6, IL-10, IL-12, IL-17, IL-23 have been reported to be involved in human cancer development. Some cytokines, namely IL-5, IL-6, IL-10, IL-22 and growth factors promote tumor development and metastasis, and inhibit apoptosis via activation of signal transducer activator transcription-3 transcription factor. Colon cancer environment comprises mesenchymal, endothelial and immune cells. Assessment of the interaction between components in the tumor environment and malignant cells requires a reconsideration of a few topics elucidating the role of chronic inflammation in carcinogenesis, the function of the immune cells expressed by inflammatory cytokine production, the immunomodulation of cancer cells and the existence of a cross-talk between immune and malignant

  1. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells.

    PubMed

    Liu, Quanwen; Shen, Yi; Chen, Jiarong; Ding, Jie; Tang, Zihua; Zhang, Cui; Chen, Jianling; Li, Liang; Chen, Ping; Wang, Jinfu

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment.

  2. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    PubMed Central

    Liu, Quanwen; Shen, Yi; Chen, Jiarong; Ding, Jie; Tang, Zihua; Zhang, Cui; Chen, Jianling; Li, Liang; Chen, Ping; Wang, Jinfu

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment. PMID:27057177

  3. Human Cells Display Reduced Apoptotic Function Relative to Chimpanzee Cells

    PubMed Central

    McDonald, John F.

    2012-01-01

    Previously published gene expression analyses suggested that apoptotic function may be reduced in humans relative to chimpanzees and led to the hypothesis that this difference may contribute to the relatively larger size of the human brain and the increased propensity of humans to develop cancer. In this study, we sought to further test the hypothesis that humans maintain a reduced apoptotic function relative to chimpanzees by conducting a series of apoptotic function assays on human, chimpanzee and macaque primary fibroblastic cells. Human cells consistently displayed significantly reduced apoptotic function relative to the chimpanzee and macaque cells. These results are consistent with earlier findings indicating that apoptotic function is reduced in humans relative to chimpanzees. PMID:23029431

  4. Nanotopographical Modulation of Cell Function through Nuclear Deformation

    PubMed Central

    Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong

    2016-01-01

    Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365

  5. Non-canonical Progesterone Signaling in Granulosa Cell Function

    PubMed Central

    Peluso, John J.; Pru, James K.

    2014-01-01

    It has been known for over three decades that progesterone (P4) suppresses follicle growth. It has been assumed that P4 acts directly on granulosa cells of developing follicles to slow their development, since P4 inhibits both mitosis and apoptosis of cultured granulosa cells. However, granulosa cells of developing follicles of mice, rats, monkeys and humans do not express the A or B form of the classic nuclear receptor for progesterone (PGR). In contrast, these granulosa cells express other progesterone binding proteins, one of which is referred to as Progesterone Receptor Membrane Component 1 (PGRMC1). PGRMC1 specifically binds P4 with high affinity and mediates P4’s anti-mitotic and anti-apoptotic action as evidenced by the lack of these P4-dependent effects in PGRMC1-depleted cells. In addition, mice in which PGRMC1 is conditionally depleted in granulosa cells show diminished follicle development. While the mechanism through which P4 activation of PGRMC1 affects granulosa cell function is not well defined, it appears that PGRMC1 controls granulosa cell function in part by regulating gene expression in T cell specific transcription factor/lymphoid enhancer factor (Tcf/Lef)-dependent manner. Clinically, altered PGRMC1 expression has been correlated with premature ovarian failure/insufficiency, polycystic ovarian syndrome and infertility. These collective studies provide strong evidence that PGRMC1 functions as a receptor for P4 in granulosa cells and that altered expression results in compromised reproductive capacity. Ongoing studies seek to define the components of the signal transduction cascade through which P4-activation of PGRMC1 results in the regulation of granulosa cell function. PMID:24516175

  6. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding

    PubMed Central

    Canault, Matthias; Ghalloussi, Dorsaf; Grosdidier, Charlotte; Guinier, Marie; Perret, Claire; Chelghoum, Nadjim; Germain, Marine; Raslova, Hana; Peiretti, Franck; Morange, Pierre E.; Saut, Noemie; Pillois, Xavier; Nurden, Alan T.; Cambien, François; Pierres, Anne; van den Berg, Timo K.; Kuijpers, Taco W.; Tregouet, David-Alexandre

    2014-01-01

    The nature of an inherited platelet disorder was investigated in three siblings affected by severe bleeding. Using whole-exome sequencing, we identified the culprit mutation (cG742T) in the RAS guanyl-releasing protein-2 (RASGRP2) gene coding for calcium- and DAG-regulated guanine exchange factor-1 (CalDAG-GEFI). Platelets from individuals carrying the mutation present a reduced ability to activate Rap1 and to perform proper αIIbβ3 integrin inside-out signaling. Expression of CalDAG-GEFI mutant in HEK293T cells abolished Rap1 activation upon stimulation. Nevertheless, the PKC- and ADP-dependent pathways allow residual platelet activation in the absence of functional CalDAG-GEFI. The mutation impairs the platelet’s ability to form thrombi under flow and spread normally as a consequence of reduced Rac1 GTP-binding. Functional deficiencies were confined to platelets and megakaryocytes with no leukocyte alteration. This contrasts with the phenotype seen in type III leukocyte adhesion deficiency caused by the absence of kindlin-3. Heterozygous did not suffer from bleeding and have normal platelet aggregation; however, their platelets mimicked homozygous ones by failing to undergo normal adhesion under flow and spreading. Rescue experiments on cultured patient megakaryocytes corrected the functional deficiency after transfection with wild-type RASGRP2. Remarkably, the presence of a single normal allele is sufficient to prevent bleeding, making CalDAG-GEFI a novel and potentially safe therapeutic target to prevent thrombosis. PMID:24958846

  7. Factors affecting the cryosurvival of mouse two-cell embryos.

    PubMed

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) affects RhoA activation in endothelial cells.

    PubMed

    Suzuki, Takahiro; Abe, Mayumi; Miyashita, Hiroki; Kobayashi, Toshimitsu; Sato, Yasufumi

    2007-06-01

    Puromycin insensitive leucyl-specific aminopeptidase (PILSAP) expressed in endothelial cells (ECs) plays an important role in angiogenesis due to its involvement in migration, proliferation and network formation. Here we examined the biological function of PILSAP with respect to EC morphogenesis and the related intracellular signaling for this process. When mouse endothelial MSS31 cells were cultured, a dominant negative PILSAP mutant converted cell shape to disk-like morphology, blocked stress fiber formation, and augmented membrane ruffling in random directions. These phenotypic changes led us to test whether PILSAP affected activities of Rho family small G-proteins. Abrogation of PILSAP enzymatic activity or its expression attenuated RhoA but not Rac1 activation during cell adhesion. This attenuation of RhoA activation was also evident when G-protein coupled receptors such as proteinase-activated receptor or lysophosphatidic acid receptor were activated in ECs. These results indicate that PILSAP affects RhoA activation and that influences the proper function of ECs.

  9. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules.

    PubMed

    Tikka, Saara; Monogioudi, Evanthia; Gotsopoulos, Athanasios; Soliymani, Rabah; Pezzini, Francesco; Scifo, Enzo; Uusi-Rauva, Kristiina; Tyynelä, Jaana; Baumann, Marc; Jalanko, Anu; Simonati, Alessandro; Lalowski, Maciej

    2016-03-01

    Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood

  10. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    PubMed

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  11. Thyroid status affects number and localization of thyroid hormone receptor expressing mast cells in bone marrow.

    PubMed

    Siebler, T; Robson, H; Bromley, M; Stevens, D A; Shalet, S M; Williams, G R

    2002-01-01

    Thyroid hormone (T(3)) plays a key role in endochondral ossification. The process relies on the coordinated synthesis and degradation of cartilage matrix and is disrupted in juvenile hypothyroidism, leading to abnormal skeletal development. Mast cells synthesize and store matrix-degrading enzymes. We examined whether thyroid status influences skeletal mast cell distribution in growing rats to determine whether they might modulate the actions of T(3) in bone. Tibiae were collected for histological, histochemical, immunohistochemical, and immunofluorescence analysis. Mast cells were increased throughout the bone marrow in hypothyroid rats compared with euthyroid, thyrotoxic, and hypothyroid-thyroxine replaced animals. Large numbers were present in metaphyseal marrow adjacent to the growth plate in hypothyroid animals and cells were distributed evenly throughout the marrow. Very few mast cells were present in metaphyseal marrow in other groups, but their numbers increased with increasing distance from the growth plate. T(3) receptor alpha1 (TRalpha1) was expressed in the nucleus and cytoplasm of skeletal mast cells, whereas TRalpha2 and TRbeta1 were restricted to the cytoplasm. Localization of TRs was not affected by altered thyroid status. Thus, disrupted endochondral ossification in hypothyroidism may be mediated in part by skeletal mast cells, which express TR proteins and may function as T(3) target cells.

  12. Regulation of Dendritic Cell Function by Vitamin D

    PubMed Central

    Barragan, Myriam; Good, Misty; Kolls, Jay K.

    2015-01-01

    Studies over the last two decades have revealed profound immunomodulatory aspects of vitamin D on various aspects of the immune system. This review will provide an overview of Vitamin D metabolism, a description of dendritic cell subsets, and highlight recent advances on the effects of vitamin D on dendritic cell function, maturation, cytokine production and antigen presentation. The active form of vitamin D, 1,25(OH)2D3, has important immunoregulatory and anti-inflammatory effects. Specifically, the 1,25(OH)2D3-Vitamin D3 complex can affect the maturation and migration of many dendritic cell subsets, conferring a special immunoregulatory role as well as tolerogenic properties affecting cytokine and chemokine production. Furthermore, there have been many recent studies demonstrating the effects of Vitamin D on allergic disease and autoimmunity. A clear understanding of the effects of the various forms of Vitamin D will provide new opportunities to improve human health. PMID:26402698

  13. Training of affect recognition (TAR) in schizophrenia--impact on functional outcome.

    PubMed

    Sachs, G; Winklbaur, B; Jagsch, R; Lasser, I; Kryspin-Exner, I; Frommann, N; Wölwer, W

    2012-07-01

    Deficits in facial affect recognition as one aspect of social cognitive deficits are treatment targets to improve functional outcome in schizophrenia. According to preliminary results antipsychotics alone show little effects on affect recognition. A few randomized intervention studies have evaluated special psychosocial treatment programs on social cognition. In this study, the effects of a computer-based training of affect recognition were investigated as well as its impact on facial affect recognition and functional outcome, particularly on patients' quality of life. Forty clinically stabilized schizophrenic patients were randomized to a six-week training on affect recognition (TAR) or treatment as usual including occupational therapy (TAU) and completed pre- and post-treatment assessments of emotion recognition, cognition, quality of life and clinical symptoms. Between pre- and post treatment, the TAR group achieved significant improvements in facial affect recognition, in particular in recognizing sad faces and, in addition, in the quality of life domain social relationship. These changes were not found in the TAU group. Furthermore, the TAR training contributes to enhancing some aspects of cognitive functioning and negative symptoms. These improvements in facial affect recognition and quality of life were independent of changes in clinical symptoms and general cognitive functions. The findings support the efficacy of an affect recognition training for patients with schizophrenia and the generalization to social relationship. Further development is needed in the impact of a psychosocial intervention in other aspects of social cognition and functional outcome.

  14. Collecting duct intercalated cell function and regulation.

    PubMed

    Roy, Ankita; Al-bataineh, Mohammad M; Pastor-Soler, Núria M

    2015-02-01

    Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105

  15. Mast cell function: a new vision of an old cell.

    PubMed

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia; Oliver, Constance

    2014-10-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.

  16. Predicting the accuracy of facial affect recognition: the interaction of child maltreatment and intellectual functioning.

    PubMed

    Shenk, Chad E; Putnam, Frank W; Noll, Jennie G

    2013-02-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying levels of intellectual functioning. A sample of maltreated (n=50) and nonmaltreated (n=56) adolescent females, 14 to 19 years of age, was recruited to participate in this study. Participants completed demographic and study-related questionnaires and interviews to control for potential psychological and psychiatric confounds such as symptoms of posttraumatic stress disorder, negative affect, and difficulties in emotion regulation. Participants also completed an experimental paradigm that recorded responses to facial affect displays starting in a neutral expression and changing into a full expression of one of six emotions: happiness, sadness, anger, disgust, fear, or surprise. Hierarchical multiple regression assessed the incremental advantage of evaluating the interaction between child maltreatment and intellectual functioning. Results indicated that the interaction term accounted for a significant amount of additional variance in the accurate identification of facial affect after controlling for relevant covariates and main effects. Specifically, maltreated females with lower levels of intellectual functioning were least accurate in identifying facial affect displays, whereas those with higher levels of intellectual functioning performed as well as nonmaltreated females. These results suggest that maltreatment and intellectual functioning interact to predict the recognition of facial affect, with potential long-term consequences for the interpersonal functioning of maltreated females.

  17. Predicting the accuracy of facial affect recognition: the interaction of child maltreatment and intellectual functioning.

    PubMed

    Shenk, Chad E; Putnam, Frank W; Noll, Jennie G

    2013-02-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying levels of intellectual functioning. A sample of maltreated (n=50) and nonmaltreated (n=56) adolescent females, 14 to 19 years of age, was recruited to participate in this study. Participants completed demographic and study-related questionnaires and interviews to control for potential psychological and psychiatric confounds such as symptoms of posttraumatic stress disorder, negative affect, and difficulties in emotion regulation. Participants also completed an experimental paradigm that recorded responses to facial affect displays starting in a neutral expression and changing into a full expression of one of six emotions: happiness, sadness, anger, disgust, fear, or surprise. Hierarchical multiple regression assessed the incremental advantage of evaluating the interaction between child maltreatment and intellectual functioning. Results indicated that the interaction term accounted for a significant amount of additional variance in the accurate identification of facial affect after controlling for relevant covariates and main effects. Specifically, maltreated females with lower levels of intellectual functioning were least accurate in identifying facial affect displays, whereas those with higher levels of intellectual functioning performed as well as nonmaltreated females. These results suggest that maltreatment and intellectual functioning interact to predict the recognition of facial affect, with potential long-term consequences for the interpersonal functioning of maltreated females. PMID:23036371

  18. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    PubMed

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation.

  19. Translocator Protein (TSPO) Affects Mitochondrial Fatty Acid Oxidation in Steroidogenic Cells.

    PubMed

    Tu, Lan N; Zhao, Amy H; Hussein, Mahmoud; Stocco, Douglas M; Selvaraj, Vimal

    2016-03-01

    Translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a highly conserved outer mitochondrial membrane protein present in specific subpopulations of cells within different tissues. In recent studies, the presumptive model depicting mammalian TSPO as a critical cholesterol transporter for steroidogenesis has been refuted by studies examining effects of Tspo gene deletion in vivo and in vitro, biochemical testing of TSPO cholesterol transport function, and specificity of TSPO-mediated pharmacological responses. Nevertheless, high TSPO expression in steroid-producing cells seemed to indicate an alternate function for this protein in steroidogenic mitochondria. To seek an explanation, we used CRISPR/Cas9-mediated TSPO knockout steroidogenic MA-10 Leydig cell (MA-10:TspoΔ/Δ) clones to examine changes to core mitochondrial functions resulting from TSPO deficiency. We observed that 1) MA-10:TspoΔ/Δ cells had a shift in substrate utilization for energy production from glucose to fatty acids with significantly higher mitochondrial fatty acid oxidation (FAO), and increased reactive oxygen species production; and 2) oxygen consumption rate, mitochondrial membrane potential, and proton leak were not different between MA-10:TspoΔ/Δ and MA-10:Tspo+/+ control cells. Consistent with this finding, TSPO-deficient adrenal glands from global TSPO knockout (Tspo(-/-)) mice also showed up-regulation of genes involved in FAO compared with the TSPO floxed (Tspo(fl/fl)) controls. These results demonstrate the first experimental evidence that TSPO can affect mitochondrial energy homeostasis through modulation of FAO, a function that appears to be consistent with high levels of TSPO expression observed in cell types active in lipid storage/metabolism.

  20. Notch signaling regulates gastric antral LGR5 stem cell function

    PubMed Central

    Demitrack, Elise S; Gifford, Gail B; Keeley, Theresa M; Carulli, Alexis J; VanDussen, Kelli L; Thomas, Dafydd; Giordano, Thomas J; Liu, Zhenyi; Kopan, Raphael; Samuelson, Linda C

    2015-01-01

    The major signaling pathways regulating gastric stem cells are unknown. Here we report that Notch signaling is essential for homeostasis of LGR5+ antral stem cells. Pathway inhibition reduced proliferation of gastric stem and progenitor cells, while activation increased proliferation. Notch dysregulation also altered differentiation, with inhibition inducing mucous and endocrine cell differentiation while activation reduced differentiation. Analysis of gastric organoids demonstrated that Notch signaling was intrinsic to the epithelium and regulated growth. Furthermore, in vivo Notch manipulation affected the efficiency of organoid initiation from glands and single Lgr5-GFP stem cells, suggesting regulation of stem cell function. Strikingly, constitutive Notch activation in LGR5+ stem cells induced tissue expansion via antral gland fission. Lineage tracing using a multi-colored reporter demonstrated that Notch-activated stem cells rapidly generate monoclonal glands, suggesting a competitive advantage over unmanipulated stem cells. Notch activation was associated with increased mTOR signaling, and mTORC1 inhibition normalized NICD-induced increases in proliferation and gland fission. Chronic Notch activation induced undifferentiated, hyper-proliferative polyps, suggesting that aberrant activation of Notch in gastric stem cells may contribute to gastric tumorigenesis. PMID:26271103

  1. Regulating functional cell fates in CD8 T cells

    PubMed Central

    Rao, Rajesh; Li, Qingsheng; Kesterson, Joshua; Eppolito, Cheryl; Mischo, Axel; Singhal, Pankaj

    2016-01-01

    The attributes of specificity and memory enable CD8+ T cells to provide long-lasting protection against a variety of challenges. Although, the importance of CD8+ T cells for protection against intracellular infections and transformation is well-established, the functional type; effector phenotypes (Tc1, Tc2, Tc17 and/or Tcreg) and/or memory (effector or central), of CD8+ T cells most desirable for tumor immunity is not established. To determine the tumor efficacy of various effector types and/or memory CD8 T cells, it is imperative to better understand intrinsic and extrinsic factors that regulate CD8+ T cell differentiation and use this information to generate and test distinct functional cell types in tumor models. The focus of our laboratory investigations is to identify the extrinsic factors such as antigen strength, co-stimulatory molecules, cytokines, and small molecule modifiers that regulate intrinsic programs for various effector and/or memory cell fate in antigen specific CD8 T cells. The use of this information to generate immunity in murine tumor models has facilitated development of new adoptive cell transfer (ACT) as well as immunization strategies for cancer treatment. PMID:19859830

  2. Prenatal and lactation nicotine exposure affects Sertoli cell and gonadotropin levels in rats.

    PubMed

    Paccola, C C; Miraglia, S M

    2016-02-01

    Nicotine is largely consumed in the world as a component of cigarettes. It can cross the placenta and reach the milk of smoking mothers. This drug induces apoptosis, affects sex hormone secretion, and leads to male infertility. To investigate the exposure to nicotine during the whole intrauterine and lactation phases in Sertoli cells, pregnant rats received nicotine (2 mg/kg per day) through osmotic minipumps. Male offsprings (30, 60, and 90 days old) had blood collected for hormonal analysis (FSH and LH) and their testes submitted for histophatological study, analysis of the frequency of the stages of seminiferous epithelium cycle, immunolabeling of apoptotic epithelial cells (TUNEL and Fas/FasL), analysis of the function and structure of Sertoli cells (respectively using transferrin and vimentin immunolabeling), and analysis of Sertoli-germ cell junctional molecule (β-catenin immunolabeling). The exposure to nicotine increased the FSH and LH plasmatic levels in adult rats. Although nicotine had not changed the number of apoptotic cells, neither in Fas nor FasL expression, it provoked an intense sloughing of epithelial cells and also altered the frequency of some stages of the seminiferous epithelium cycle. Transferrin and β-catenin expressions were not changed, but vimentin was significantly reduced in the early stages of the seminiferous cycle of the nicotine-exposed adult rats. Thus, we concluded that nicotine exposure during all gestational and lactation periods affects the structure of Sertoli cells by events causing intense germ cell sloughing observed in the tubular lumen and can compromise the fertility of the offspring.

  3. Lexical and Affective Prosody in Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Grossman, Ruth B.; Bemis, Rhyannon H.; Skwerer, Daniela Plesa; Tager-Flusberg, Helen

    2010-01-01

    Purpose: To investigate the perception and production of lexical stress and processing of affective prosody in adolescents with high-functioning autism (HFA). We hypothesized preserved processing of lexical and affective prosody but atypical lexical prosody production. Method: Sixteen children with HFA and 15 typically developing (TD) peers…

  4. α7nAchR/NMDAR coupling affects NMDAR function and object recognition.

    PubMed

    Li, Shupeng; Nai, Qiang; Lipina, Tatiana V; Roder, John C; Liu, Fang

    2013-12-20

    The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may selectively affect some aspects of learning and memory.

  5. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome

    PubMed Central

    Palumbo, Rosanna; Gogliettino, Marta; Cocca, Ennio; Iannitti, Roberta; Sandomenico, Annamaria; Ruvo, Menotti; Balestrieri, Marco; Rossi, Mosè; Palmieri, Gianna

    2016-01-01

    The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH–proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21Waf1, and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. PMID:27669226

  6. APEH Inhibition Affects Osteosarcoma Cell Viability via Downregulation of the Proteasome.

    PubMed

    Palumbo, Rosanna; Gogliettino, Marta; Cocca, Ennio; Iannitti, Roberta; Sandomenico, Annamaria; Ruvo, Menotti; Balestrieri, Marco; Rossi, Mosè; Palmieri, Gianna

    2016-01-01

    The proteasome is a multienzymatic complex that controls the half-life of the majority of intracellular proteins, including those involved in apoptosis and cell-cycle progression. Recently, proteasome inhibition has been shown to be an effective anticancer strategy, although its downregulation is often accompanied by severe undesired side effects. We previously reported that the inhibition of acylpeptide hydrolase (APEH) by the peptide SsCEI 4 can significantly affect the proteasome activity in A375 melanoma or Caco-2 adenocarcinoma cell lines, thus shedding new light on therapeutic strategies based on downstream regulation of proteasome functions. In this work, we investigated the functional correlation between APEH and proteasome in a panel of cancer cell lines, and evaluated the cell proliferation upon SsCEI 4-treatments. Results revealed that SsCEI 4 triggered a proliferative arrest specifically in osteosarcoma U2OS cells via downregulation of the APEH-proteasome system, with the accumulation of the typical hallmarks of proteasome: NF-κB, p21(Waf1), and polyubiquitinylated proteins. We found that the SsCEI 4 anti-proliferative effect involved a senescence-like growth arrest without noticeable cytotoxicity. These findings represent an important step toward understanding the mechanism(s) underlying the APEH-mediated downregulation of proteasome in order to design new molecules able to efficiently regulate the proteasome system for alternative therapeutic strategies. PMID:27669226

  7. Maternal obesity drives functional alterations in uterine NK cells

    PubMed Central

    Perdu, Sofie; Castellana, Barbara; Kim, Yoona; Chan, Kathy; DeLuca, Lauren; Beristain, Alexander G.

    2016-01-01

    Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development. PMID:27699222

  8. Maternal obesity drives functional alterations in uterine NK cells

    PubMed Central

    Perdu, Sofie; Castellana, Barbara; Kim, Yoona; Chan, Kathy; DeLuca, Lauren; Beristain, Alexander G.

    2016-01-01

    Over one-fifth of North American women of childbearing age are obese, putting these women at risk for a variety of detrimental chronic diseases. In addition, obesity increases the risk for developing major complications during pregnancy. The mechanisms by which obesity contributes to pregnancy complications and loss remain unknown. Increasing evidence indicates that obesity results in major changes to adipose tissue immune cell composition and function; whether or not obesity also affects immune function in the uterus has not been explored. Here we investigated the effect of obesity on uterine natural killer (uNK) cells, which are essential for uterine artery remodeling and placental development. Using a cohort of obese or lean women, we found that obesity led to a significant reduction in uNK cell numbers accompanied with impaired uterine artery remodeling. uNK cells isolated from obese women had altered expression of genes and pathways associated with extracellular matrix remodeling and growth factor signaling. Specifically, uNK cells were hyper-responsive to PDGF, resulting in overexpression of decorin. Functionally, decorin strongly inhibited placental development by limiting trophoblast survival. Together, these findings establish a potentially new link between obesity and poor pregnancy outcomes, and indicate that obesity-driven changes to uterine-resident immune cells critically impair placental development.

  9. Diesel-Enriched Particulate Matter Functionally Activates Human Dendritic Cells

    PubMed Central

    Porter, Michael; Karp, Matthew; Killedar, Smruti; Bauer, Stephen M.; Guo, Jia; Williams, D'Ann; Breysse, Patrick; Georas, Steve N.; Williams, Marc A.

    2007-01-01

    Epidemiologic studies have associated exposure to airborne particulate matter (PM) with exacerbations of asthma. It is unknown how different sources of PM affect innate immunity. We sought to determine how car- and diesel exhaust–derived PM affects dendritic cell (DC) activation. DC development was modeled using CD34+ hematopoietic progenitors. Airborne PM was collected from exhaust plenums of Fort McHenry Tunnel providing car-enriched particles (CEP) and diesel-enriched particles (DEP). DC were stimulated for 48 hours with CEP, DEP, CD40-ligand, or lipopolysaccharide. DC activation was assessed by flow cytometry, enzyme-linked immunosorbent assay, and standard culture techniques. DEP increased uptake of fluorescein isothiocyanate–dextran (a model antigen) by DC. Diesel particles enhanced cell-surface expression of co-stimulatory molecules (e.g., CD40 [P < 0.01] and MHC class II [P < 0.01]). By contrast, CEP poorly affected antigen uptake and expression of cell surface molecules, and did not greatly affect cytokine secretion by DC. However, DEP increased production of TNF, IL-6, and IFN-γ (P < 0.01), IL-12 (P < 0.05), and vascular endothelial growth factor (P < 0.001). In co-stimulation assays of PM-exposed DC and alloreactive CD4+ T cells, both CEP and DEP directed a Th2-like pattern of cytokine production (e.g., enhanced IL-13 and IL-18 and suppressed IFN-γ production). CD4+ T cells were not functionally activated on exposure to either DEP or CEP. Car- and diesel-enriched particles exert a differential effect on DC activation. Our data support the hypothesis that DEP (and to a lesser extent CEP) regulate important functional aspects of human DC, supporting an adjuvant role for this material. PMID:17630318

  10. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells.

    PubMed

    Turner, Elizabeth C; Huang, Chien-Ling; Sawhney, Neha; Govindarajan, Kalaimathi; Clover, Anthony J P; Martin, Kenneth; Browne, Tara C; Whelan, Derek; Kumar, Arun H S; Mackrill, John J; Wang, Shaohua; Schmeckpeper, Jeffrey; Stocca, Alessia; Pierce, William G; Leblond, Anne-Laure; Cai, Liquan; O'Sullivan, Donnchadh M; Buneker, Chirlei K; Choi, Janet; MacSharry, John; Ikeda, Yasuhiro; Russell, Stephen J; Caplice, Noel M

    2016-05-01

    Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC.  In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement.  PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368.

  11. Biomechanical regulation of mesenchymal cell function

    PubMed Central

    Tschumperlin, Daniel J.; Liu, Fei; Tager, Andrew M.

    2016-01-01

    Purpose of review Cells of mesenchymal origin are strongly influenced by their biomechanical environment. They also help to shape tissue architecture and reciprocally influence tissue mechanical environments through their capacity to deposit, remodel, and resorb extracellular matrix and to promote tissue vascularization. Although mechanical regulation of cell function and tissue remodeling has long been appreciated in other contexts, the purpose of this review is to highlight the increasing appreciation of its importance in fibrosis and hypertrophic scarring. Recent findings Experiments in both animal and cellular model systems have demonstrated pivotal roles for the biomechanical environment in regulating myofibroblast differentiation and contraction, endothelial barrier function and angiogenesis, and mesenchymal stem cell fate decisions. Through these studies, a better understanding of the molecular mechanisms transducing the biomechanical environment is emerging, with prominent and interacting roles recently identified for key network components including transforming growth factor-β/SMAD, focal adhesion kinase, MRTFs, Wnt/β-catenin and YAP/TAZ signaling pathways. Summary Progress in understanding biomechanical regulation of mesenchymal cell function is leading to novel approaches for improving clinical outcomes in fibrotic diseases and wound healing. These approaches include interventions aimed at modifying the tissue biomechanical environment, and efforts to target mesenchymal cell activation by, and reciprocal interactions with, the mechanical environment. PMID:23114589

  12. FTY720 ameliorates oxazolone colitis in mice by directly affecting T helper type 2 functions.

    PubMed

    Daniel, Carolin; Sartory, Nico A; Zahn, Nadine; Schmidt, Ronald; Geisslinger, Gerd; Radeke, Heinfried H; Stein, Jurgen M

    2007-07-01

    The sphingosine-1-phosphate analogue FTY720 is known to alter migration and homing of lymphocytes via sphingosine-1-phosphate receptors. However, several studies indicate that its mode of action is more complex and that FTY720 may also directly influence cytokine effector functions. Therefore, we studied the effect of FTY720 in T helper type (Th2)-mediated oxazolone-induced colitis in mice. Following rectal oxazolone instillation, Th2 cells producing IL-13 induce a progressive colitis resembling human ulcerative colitis. A rectal enema of oxazolone [90 mg/kg body weight] was applied to BALB/c mice. FTY720 was administered i.p. from day 0 to 3 or from day 3 to 5 following the instillation of the haptenating agent. Assessment of severity of colitis was performed daily. FTY720 plasma levels were detected using LC-MS/MS-analysis. Colon tissue was analyzed macroscopically and microscopically, myeloperoxidase activity as well as cytokine levels of lamina propria CD4(+) T-cells and T1/ST2 expression were determined. Treatment with FTY720 prominently reduced the clinical and histopathologic severity of oxazolone-induced colitis, abrogating body weight loss, diarrhea, and macroscopic and microscopic intestinal inflammation. The therapeutic effects of FTY720 were associated with a prominent reduction of the key effector Th2 cytokines IL-13, IL-4 and IL-5. Strikingly, FTY720 inhibited GATA3 and T1/ST2 expression which represent highly relevant markers for Th2 differentiation and Th2 effector function, respectively. Our data provide the first evidence that FTY720 exhibits beneficial prophylactic as well as therapeutic effects in Th2-mediated experimental colitis by directly affecting Th2 cytokine profiles probably by reducing T1/ST2, thus offering a new auspicious therapeutic instrument for the treatment of human ulcerative colitis.

  13. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    SciTech Connect

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  14. Structure and function of sinusoidal lining cells in the liver.

    PubMed

    Wisse, E; Braet, F; Luo, D; De Zanger, R; Jans, D; Crabbé, E; Vermoesen, A

    1996-01-01

    The hepatic sinusoid harbors 4 different cells: endothelial cells (100, 101), Kupffer cells (96, 102, 103), fat-storing cells (34, 51, 93), and pit cells (14, 107, 108). Each cell type has its own specific morphology and functions, and no transitional stages exist between the cells. These cells have the potential to proliferate locally, either in normal or in special conditions, that is, experiments or disease. Sinusoidal cells from a functional unit together with the parenchymal cells. Isolation protocols exist for all sinusoidal cells. Endothelial cells filter the fluids, exchanged between the sinusoid and the space of Disse through fenestrae (100), which measure 175 nm in diameter and are grouped in sieve plates. Fenestrae occupy 6-8% of the surface (106). No intact basal lamina is present under these cells (100). Various factors change the number and diameter of fenestrae [pressure, alcohol, serotonin, and nicotin; for a review, see Fraser et al (32)]. These changes mainly affect the passage of lipoproteins, which contain cholesterol and vitamin A among other components. Fat-storing cells are pericytes, located in the space of Disse, with long, contractile processes, which probably influence liver (sinusoidal) blood flow. Fat-storing cells possess characteristic fat droplets, which contain a large part of the body's depot of vitamin A (91, 93). These cells play a major role in the synthesis of extracellular matrix (ECM) (34, 39-41). Strongly reduced levels of vitamin A occur in alcoholic livers developing fibrosis (56). Vitamin A deficiency transforms fat-storing cells into myofibroblast-like cells with enhanced ECM production (38). Kupffer cells accumulate in periportal areas. They specifically endocytose endotoxin (70), which activates these macrophages. Lipopolysaccharide, together with interferon gamma, belongs to the most potent activators of Kupffer cells (28). As a result of activation, these cells secrete oxygen radicals, tumor necrosis factor

  15. Functional substrates for flexible organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Niggemann, M.; Ruf, D.; Bläsi, B.; Glatthaar, M.; Riede, M.; Müller, C.; Zimmermann, B.; Gombert, A.

    2005-10-01

    Along with efficiency and lifetime, costs are one of the most important aspects for the commercialization of organic solar cells. Thinking of large scale production of organic solar cells by an efficient reel-to-reel process, the materials are expected to determine the costs of the final product. Our approach is to develop functional substrates for organic solar cells which have the potential for cost effective production. The functionality is obtained by combining periodically microstructured substrates with lamellar electrode structures. Such structured substrates were fabricated by cost effective replication from masterstructures that were generated by large area interference lithography. Two cell architectures were investigated - holographic microprisms and interdigital buried nanoelectrodes. A structure period of 20 μm in combination with a 2 μm wide metal grid was chosen for the microprism cells based on the results of electrical calculations. Current-voltage curves with reasonable fill factors were measured for these devices. A significant light trapping effect was predicted from optical simulations. Interdigital buried nanoelectrodes are embedded in the photoactive layer of the solar cell. Separated interdigital metal electrodes with a sufficiently high parallel resistance were manufactured despite a small electrode distance below 400 nm. Experimental results on first photovoltaic devices will be presented. We observe an insufficient rectification of the photovoltaic device which we attribute to partial electron injection into the gold anode.

  16. Stem Cells in Functional Bladder Engineering

    PubMed Central

    Smolar, Jakub; Salemi, Souzan; Horst, Maya; Sulser, Tullio; Eberli, Daniel

    2016-01-01

    Conditions impairing bladder function in children and adults, such as myelomeningocele, posterior urethral valves, bladder exstrophy or spinal cord injury, often need urinary diversion or augmentation cystoplasty as when untreated they may cause severe bladder dysfunction and kidney failure. Currently, the gold standard therapy of end-stage bladder disease refractory to conservative management is enterocystoplasty, a surgical enlargement of the bladder with intestinal tissue. Despite providing functional improvement, enterocystoplasty is associated with significant long-term complications, such as recurrent urinary tract infections, metabolic abnormalities, stone formation, and malignancies. Therefore, there is a strong clinical need for alternative therapies for these reconstructive procedures, of which stem cell-based tissue engineering (TE) is considered to be the most promising future strategy. This review is focused on the recent progress in bladder stem cell research and therapy and the challenges that remain for the development of a functional bladder wall. PMID:27781020

  17. Thought waves remotely affect the performance (output voltage) of photoelectric cells

    NASA Astrophysics Data System (ADS)

    Cao, Dayong; Cao, Daqing

    2012-02-01

    In our experiments, thought waves have been shown to be capable of changing (affecting) the output voltage of photovoltaic cells located from as far away as 1-3 meters. There are no wires between brain and photoelectric cell and so it is presumed only the thought waves act on the photoelectric cell. In continual rotations, the experiments tested different solar cells, measuring devices and lamps, and the experiments were done in different labs. The first experiment was conducted on Oct 2002. Tests are ongoing. Conclusions and assumptions include: 1) the slow thought wave has the energy of space-time as defined by C1.00007: The mass, energy, space and time systemic theory- MEST. Every process releases a field effect electrical vibration which be transmitted and focussed in particular paths; 2) the thought wave has the information of the order of tester; 3) the brain (with the physical system of MEST) and consciousness (with the spirit system of the mind, consciousness, emotion and desire-MECD) can produce the information (a part of them as the Genetic code); 4) through some algorithms such as ACO Ant Colony Optimization and EA Evolutionary Algorithm (or genetic algorithm) working in RAM, human can optimize the information. This Optimizational function is the intelligence; 5) In our experiments, not only can thought waves affect the voltage of the output photoelectric signals by its energy, but they can also selectively increase or decrease those photoelectric currents through remote consciousness interface and a conscious-brain information technology.

  18. Primary cilia mechanics affects cell mechanosensation: A computational study.

    PubMed

    Khayyeri, Hanifeh; Barreto, Sara; Lacroix, Damien

    2015-08-21

    Primary cilia (PC) are mechanical cell structures linked to the cytoskeleton and are central to how cells sense biomechanical signals from their environment. However, it is unclear exactly how PC mechanics influences cell mechanosensation. In this study we investigate how the PC mechanical characteristics are involved in the mechanotransduction process whereby cilium deflection under fluid flow induces strains on the internal cell components that regulate the cell׳s mechanosensitive response. Our investigation employs a computational approach in which a finite element model of a cell consisting of a nucleus, cytoplasm, cortex, microtubules, actin bundles and a primary cilium was used together with a finite element representation of a flow chamber. Fluid-structure interaction analysis was performed by simulating perfusion flow of 1mm/s on the cell model. Simulations of cells with different PC mechanical characteristics, showed that the length and the stiffness of PC are responsible for the transmission of mechanical stimuli to the cytoskeleton. Fluid flow deflects the cilium, with the highest strains found at the base of the PC and in the cytoplasm. The PC deflection created further strains on the cell nucleus but did not influence microtubules and actin bundles significantly. Our results indicate that PC deflection under fluid flow stimulation transmits mechanical strain primarily to other essential organelles in the cytoplasm, such as the Golgi complex, that regulate cells' mechanoresponse. The simulations further suggest that cell mechanosensitivity can be altered by targeting PC length and rigidity.

  19. Functional Characterization of HCN Channels in Rat Pancreatic β Cells

    PubMed Central

    Zhang, Yi; Liu, Yunfeng; Qu, Jihong; Hardy, Alexandre; Zhang, Nina; Diao, Jingyu; Strijbos, Paul J.; Tsushima, Robert; Robinson, Richard B.; Gaisano, Herbert Y.; Wang, Qinghua; Wheeler, Michael B.

    2010-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels regulate pacemaker activity in some cardiac cells and neurons. In the present study, we have identified the presence of HCN channels in pancreatic β-cells. We then examined the functional characterization of these channels in β-cells via modulating HCN channel activity genetically and pharmacologically. Voltage-clamp experiments showed that over-expression of HCN2 in rat β-cells significantly increased HCN current (Ih), whereas expression of dominant-negative HCN2 (HCN2-AYA) completely suppressed endogenous Ih. Compared to control β-cells, over-expression of Ih increased insulin secretion at 2.8 mmol/l glucose. However, suppression of Ih did not affect insulin secretion at both 2.8 mmol/l and 11.1 mmol/l glucose. Current-clamp measurements revealed that HCN2 over-expression significantly reduced β-cell membrane input resistance (Rin), and resulted in a less hyperpolarizing membrane response to the currents injected into the cell. Conversely, dominant negative HCN2-AYA expression led to a substantial increase of Rin, which was associated with a more hyperpolarizing membrane response to the currents injected. Remarkably, under low extracellular potassium conditions (2.5mmol/l K+), suppression of Ih resulted in increased membrane hyperpolarization and decreased insulin secretion. We conclude that Ih in β-cells possess the potential to modulate β-cell membrane potential and insulin secretion under hypokalemic conditions. PMID:19654142

  20. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    PubMed

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment. PMID:26530987

  1. Perception of affective prosody in major depression: a link to executive functions?

    PubMed

    Uekermann, Jennifer; Abdel-Hamid, Mona; Lehmkämper, Caroline; Vollmoeller, Wolfgang; Daum, Irene

    2008-07-01

    Major depression is associated with impairments of executive functions and affect perception deficits, both being linked to dysfunction of fronto-subcortical networks. So far, little is known about the relationship between cognitive and affective deficits in major depression. In the present investigation, affect perception and executive functions were assessed in 29 patients with a diagnosis of major depression (Dep) and 29 healthy controls (HC). Both groups were comparable on IQ, age, and gender distribution. Depressed patients showed deficits of perception of affective prosody, which were significantly related to inhibition, set shifting, and working memory. Our findings suggest a significant association between cognitive deficits and affect perception impairments in major depression, which may be of considerable clinical relevance and might be addressed in treatment approaches. Future studies are desirable to investigate the nature of the association in more detail.

  2. Negative affect predicts social functioning across schizophrenia and bipolar disorder: Findings from an integrated data analysis.

    PubMed

    Grove, Tyler B; Tso, Ivy F; Chun, Jinsoo; Mueller, Savanna A; Taylor, Stephan F; Ellingrod, Vicki L; McInnis, Melvin G; Deldin, Patricia J

    2016-09-30

    Most people with a serious mental illness experience significant functional impairment despite ongoing pharmacological treatment. Thus, in order to improve outcomes, a better understanding of functional predictors is needed. This study examined negative affect, a construct comprised of negative emotional experience, as a predictor of social functioning across serious mental illnesses. One hundred twenty-seven participants with schizophrenia, 113 with schizoaffective disorder, 22 with psychosis not otherwise specified, 58 with bipolar disorder, and 84 healthy controls (N=404) completed self-report negative affect measures. Elevated levels of negative affect were observed in clinical participants compared with healthy controls. For both clinical and healthy control participants, negative affect measures were significantly correlated with social functioning, and consistently explained significant amounts of variance in functioning. For clinical participants, this relationship persisted even after accounting for cognition and positive/negative symptoms. The findings suggest that negative affect is a strong predictor of outcome across these populations and treatment of serious mental illnesses should target elevated negative affect in addition to cognition and positive/negative symptoms.

  3. The Kupffer Cell Number Affects the Outcome of Living Donor Liver Transplantation from Elderly Donors

    PubMed Central

    Hidaka, Masaaki; Eguchi, Susumu; Takatsuki, Mitsuhisa; Soyama, Akihiko; Ono, Shinichiro; Adachi, Tomohiko; Natsuda, Koji; Kugiyama, Tota; Hara, Takanobu; Okada, Satomi; Imamura, Hajime; Miuma, Satoshi; Miyaaki, Hisamitsu

    2016-01-01

    Background There have been no previous reports how Kupffer cells affect the outcome of living donor liver transplantation (LDLT) with an elderly donor. The aim of this study was to elucidate the influence of Kupffer cells on LDLT. Methods A total of 161 adult recipients underwent LDLT. The graft survival, prognostic factors for survival, and graft failure after LDLT were examined between cases with a young donor (<50, n = 112) and an elderly donor (≥50, N = 49). The Kupffer cells, represented by CD68-positive cell in the graft, were examined in the young and elderly donors. Results In a multivariable analysis, a donor older than 50 years, sepsis, and diabetes mellitus were significant predictors of graft failure after LDLT. The CD68 in younger donors was significantly more expressed than that in elderly donors. The group with a less number of CD68-positive cells in the graft had a significantly poor survival in the elderly donor group and prognostic factor for graft failure. Conclusions The worse outcome of LDLT with elderly donors might be related to the lower number of Kupffer cells in the graft, which can lead to impaired recovery of the liver function and may predispose patients to infectious diseases after LDLT.

  4. Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy.

    PubMed

    Sun, Wei; Lim, Chwee Teck; Kurniawan, Nicholas Agung

    2014-10-01

    Cancer metastasis involves the dissemination of cancer cells from the primary tumour site and is responsible for the majority of solid tumour-related mortality. Screening of anti-metastasis drugs often includes functional assays that examine cancer cell invasion inside a three-dimensional hydrogel that mimics the extracellular matrix (ECM). Here, we built a mechanically tuneable collagen hydrogel model to recapitulate cancer spreading into heterogeneous tumour stroma and monitored the three-dimensional invasion of highly malignant breast cancer cells, MDA-MB-231. Migration assays were carried out in the presence and the absence of drugs affecting four typical molecular mechanisms involved in cell migration, as well as under five ECMs with different biophysical properties. Strikingly, the effects of the drugs were observed to vary strongly with matrix mechanics and microarchitecture, despite the little dependence of the inherent cancer cell migration on the ECM condition. Specifically, cytoskeletal contractility-targeting drugs reduced migration speed in sparse gels, whereas migration in dense gels was retarded effectively by inhibiting proteolysis. The results corroborate the ability of cancer cells to switch their multiple invasion mechanisms depending on ECM condition, thus suggesting the importance of factoring in the biophysical properties of the ECM in anti-metastasis drug screenings.

  5. Linking and Psychological Functioning in a Chinese Sample: The Multiple Mediation of Response to Positive Affect

    ERIC Educational Resources Information Center

    Yang, Hongfei; Li, Juan

    2016-01-01

    The present study examined the associations between linking, response to positive affect, and psychological functioning in Chinese college students. The results of conducting multiple mediation analyses indicated that emotion- and self-focused positive rumination mediated the relationship between linking and psychological functioning, whereas…

  6. Determining place and process: functional traits of ectomycorrhizal fungi that affect both community structure and ecosystem function.

    PubMed

    Koide, Roger T; Fernandez, Christopher; Malcolm, Glenna

    2014-01-01

    There is a growing interest amongst community ecologists in functional traits. Response traits determine membership in communities. Effect traits influence ecosystem function. One goal of community ecology is to predict the effect of environmental change on ecosystem function. Environmental change can directly and indirectly affect ecosystem function. Indirect effects are mediated through shifts in community structure. It is difficult to predict how environmental change will affect ecosystem function via the indirect route when the change in effect trait distribution is not predictable from the change in response trait distribution. When response traits function as effect traits, however, it becomes possible to predict the indirect effect of environmental change on ecosystem function. Here we illustrate four examples in which key attributes of ectomycorrhizal fungi function as both response and effect traits. While plant ecologists have discussed response and effect traits in the context of community structuring and ecosystem function, this approach has not been applied to ectomycorrhizal fungi. This is unfortunate because of the large effects of ectomycorrhizal fungi on ecosystem function. We hope to stimulate further research in this area in the hope of better predicting the ecosystem- and landscape-level effects of the fungi as influenced by changing environmental conditions.

  7. Maternal age and in vitro culture affect mitochondrial number and function in equine oocytes and embryos.

    PubMed

    Hendriks, W Karin; Colleoni, Silvia; Galli, Cesare; Paris, Damien B B P; Colenbrander, Ben; Roelen, Bernard A J; Stout, Tom A E

    2015-07-01

    Advanced maternal age and in vitro embryo production (IVP) predispose to pregnancy loss in horses. We investigated whether mare age and IVP were associated with alterations in mitochondrial (mt) DNA copy number or function that could compromise oocyte and embryo development. Effects of mare age (<12 vs ≥12 years) on mtDNA copy number, ATP content and expression of genes involved in mitochondrial replication (mitochondrial transcription factor (TFAM), mtDNA polymerase γ subunit B (mtPOLB) and mitochondrial single-stranded DNA-binding protein (SSB)), energy production (ATP synthase-coupling factor 6, mitochondrial-like (ATP-synth_F6)) and oxygen free radical scavenging (glutathione peroxidase 3 (GPX3)) were investigated in oocytes before and after in vitro maturation (IVM), and in early embryos. Expression of TFAM, mtPOLB and ATP-synth-F6 declined after IVM (P<0.05). However, maternal age did not affect oocyte ATP content or expression of genes involved in mitochondrial replication or function. Day 7 embryos from mares ≥12 years had fewer mtDNA copies (P=0.01) and lower mtDNA:total DNA ratios (P<0.01) than embryos from younger mares, indicating an effect not simply due to lower cell number. Day 8 IVP embryos had similar mtDNA copy numbers to Day 7 in vivo embryos, but higher mtPOLB (P=0.013) and a tendency to reduced GPX3 expression (P=0.09). The lower mtDNA number in embryos from older mares may compromise development, but could be an effect rather than cause of developmental retardation. The general down-regulation of genes involved in mitochondrial replication and function after IVM may compromise resulting embryos. PMID:25881326

  8. Would cancer stem cells affect the future investment in stem cell therapy.

    PubMed

    Rameshwar, Pranela

    2012-04-20

    The common goal within the overwhelming interests in stem cell research is to safely translate the science to patients. Although there are various methods by which this goal can be reached, this editorial emphasizes the safety of mesenchymal stem cell (MSC) transplant and possible confounds by the growing information on cancer stem cells (CSCs). There are several ongoing clinical trials with MSCs and their interactions with CSCs need to be examined. The rapid knowledge on MSCs and CSCs has now collided with regards to the safe treatment of MSCs. The information discussed on MSCs can be extrapolated to other stem cells with similar phenotype and functions such as placenta stem cells. MSCs are attractive for cell therapy, mainly due to reduced ethical concerns, ease in expansion and reduced ability to be transformed. Also, MSCs can exert both immune suppressor and tissue regeneration simultaneously. It is expected that any clinical trial with MSCs will take precaution to ensure that the cells are not transformed. However, going forward, the different centers should be aware that MSCs might undergo oncogenic events, especially as undifferentiated cells or early differentiated cells. Another major concern for MSC therapy is their ability to promote tumor growth and perhaps, to protect CSCs by altered immune responses. These issues are discussed in light of a large number of undiagnosed cancers.

  9. Piper and Vismia species from Colombian Amazonia differentially affect cell proliferation of hepatocarcinoma cells.

    PubMed

    Lizcano, Leandro J; Siles, Maite; Trepiana, Jenifer; Hernández, M Luisa; Navarro, Rosaura; Ruiz-Larrea, M Begoña; Ruiz-Sanz, José Ignacio

    2015-01-01

    There is an increasing interest to identify plant-derived natural products with antitumor activities. In this work, we have studied the effects of aqueous leaf extracts from Amazonian Vismia and Piper species on human hepatocarcinoma cell toxicity. Results showed that, depending on the cell type, the plants displayed differential effects; thus, Vismia baccifera induced the selective killing of HepG2, while increasing cell growth of PLC-PRF and SK-HEP-1. In contrast, these two last cell lines were sensitive to the toxicity by Piper krukoffii and Piper putumayoense, while the Piperaceae did not affect HepG2 growth. All the extracts induced cytotoxicity to rat hepatoma McA-RH7777, but were innocuous (V. baccifera at concentrations < 75 µg/mL) or even protected cells from basal death (P. putumayoense) in primary cultures of rat hepatocytes. In every case, cytotoxicity was accompanied by an intracellular accumulation of reactive oxygen species (ROS). These results provide evidence for the anticancer activities of the studied plants on specific cell lines and suggest that cell killing could be mediated by ROS, thus involving mechanisms independent of the plants free radical scavenging activities. Results also support the use of these extracts of the Vismia and Piper genera with opposite effects as a model system to study the mechanisms of the antitumoral activity against different types of hepatocarcinoma. PMID:25558904

  10. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment.

  11. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  12. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    PubMed

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  13. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo

    PubMed Central

    Onjiko, Rosemary M.; Moody, Sally A.; Nemes, Peter

    2015-01-01

    Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo. PMID:25941375

  14. Geometry and Force Control of Cell Function

    PubMed Central

    Freytes, Donald O.; Wan, Leo Q.; Vunjak-Novakovic, Gordana

    2009-01-01

    Tissue engineering is becoming increasingly ambitious in its efforts to create functional human tissues, and to provide stem cell scientists with culture systems of high biological fidelity. Novel engineering designs are being guided by biological principles, in an attempt to recapitulate more faithfully the complexities of native cellular milieu. Three-dimensional (3D) scaffolds are being designed to mimic native-like cell environments and thereby elicit native-like cell responses. Also, the traditional focus on molecular regulatory factors is shifting towards the combined application of molecular and physical factors. Finally, methods are becoming available for the coordinated presentation of molecular and physical factors in the form of controllable spatial and temporal gradients. Taken together, these recent developments enable the interrogation of cellular behavior within dynamic culture settings designed to mimic some aspects of native tissue development, disease, or regeneration. We discuss here these advanced cell culture environments, with emphasis on the derivation of design principles from the development (the biomimetic paradigm) and the geometry-force control of cell function (the biophysical regulation paradigm). PMID:19795385

  15. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus.

    PubMed

    Swamy, Prashant S; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E; Zhu, Yingying; Peter, Gary F; Hahn, Michael G; Mansfield, Shawn D; Harding, Scott A; Tsai, Chung-Jui

    2015-10-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.

  16. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    PubMed Central

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung-Jui

    2015-01-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  17. Harvesting Technique Affects Adipose-Derived Stem Cell Yield

    PubMed Central

    Iyyanki, Tejaswi; Hubenak, Justin; Liu, Jun; Chang, Edward I.; Beahm, Elisabeth K.; Zhang, Qixu

    2015-01-01

    Background The success of an autologous fat graft depends in part on its total stromal vascular fraction (SVF) and adipose-derived stem cells (ASCs). However, variations in the yields of ASCs and SVF cells as a result of different harvesting techniques and donor sites are poorly understood. Objective To investigate the effects of adipose tissue harvesting technique and donor site on the yield of ASCs and SVF cells. Methods Subcutaneous fat tissues from the abdomen, flank, or axilla were harvested from patients of various ages by mechanical liposuction, direct surgical excision, or Coleman's technique with or without centrifugation. Cells were isolated and then analyzed with flow cytometry to determine the yields of total SVF cells and ASCs (CD11b−, CD45−, CD34+, CD90+, D7-FIB+). Differences in ASC and total SVF yields were assessed with one-way analysis of variance. Differentiation experiments were performed to confirm the multilineage potential of cultured SVF cells. Results Compared with Coleman's technique without centrifugation, direct excision yielded significantly more ASCs (P < .001) and total SVF cells (P = .007); liposuction yielded significantly fewer ASCs (P < .001) and total SVF cells (P < .05); and Coleman's technique with centrifugation yielded significantly more total SVF cells (P < .005), but not ASCs. The total number of SVF cells in fat harvested from the abdomen was significantly larger than the number in fat harvested from the flank or axilla (P < .05). Cultured SVF cells differentiated to adipocytes, osteocytes, and chondrocytes. Conclusions Adipose tissue harvested from the abdomen through direct excision or Coleman's technique with centrifugation was found to yield the most SVF cells and ASCs. PMID:25791999

  18. Interneuron cell types are fit to function.

    PubMed

    Kepecs, Adam; Fishell, Gordon

    2014-01-16

    Understanding brain circuits begins with an appreciation of their component parts - the cells. Although GABAergic interneurons are a minority population within the brain, they are crucial for the control of inhibition. Determining the diversity of these interneurons has been a central goal of neurobiologists, but this amazing cell type has so far defied a generalized classification system. Interneuron complexity within the telencephalon could be simplified by viewing them as elaborations of a much more finite group of developmentally specified cardinal classes that become further specialized as they mature. Our perspective emphasizes that the ultimate goal is to dispense with classification criteria and directly define interneuron types by function. PMID:24429630

  19. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  20. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  1. Brucella abortus choloylglycine hydrolase affects cell envelope composition and host cell internalization.

    PubMed

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C; Mujer, Cesar V; DelVecchio, Vito G; Comerci, Diego J

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization.

  2. Impaired function of bone marrow stromal cells in systemic mastocytosis.

    PubMed

    Nemeth, Krisztian; Wilson, Todd M; Ren, Jiaqiang J; Sabatino, Marianna; Stroncek, David M; Krepuska, Miklos; Bai, Yun; Robey, Pamela G; Metcalfe, Dean D; Mezey, Eva

    2015-07-01

    Patients with systemic mastocytosis (SM) have a wide variety of problems, including skeletal abnormalities. The disease results from a mutation of the stem cell receptor (c-kit) in mast cells and we wondered if the function of bone marrow stromal cells (BMSCs; also known as MSCs or mesenchymal stem cells) might be affected by the invasion of bone marrow by mutant mast cells. As expected, BMSCs from SM patients do not have a mutation in c-kit, but they proliferate poorly. In addition, while osteogenic differentiation of the BMSCs seems to be deficient, their adipogenic potential appears to be increased. Since the hematopoietic supportive abilities of BMSCs are also important, we also studied the engraftment in NSG mice of human CD34(+) hematopoietic progenitors, after being co-cultured with BMSCs of healthy volunteers vs. BMSCs derived from patients with SM. BMSCs derived from the bone marrow of patients with SM could not support hematopoiesis to the extent that healthy BMSCs do. Finally, we performed an expression analysis and found significant differences between healthy and SM derived BMSCs in the expression of genes with a variety of functions, including the WNT signaling, ossification, and bone remodeling. We suggest that some of the symptoms associated with SM might be driven by epigenetic changes in BMSCs caused by dysfunctional mast cells in the bone marrow of the patients.

  3. Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning.

    PubMed

    Ventre, Maurizio; Netti, Paolo A

    2016-06-22

    Mastering the interaction between cells and extracellular environment is a fundamental prerequisite in order to engineer functional biomaterial interfaces able to instruct cells with specific commands. Such advanced biomaterials might find relevant application in prosthesis design, tissue engineering, diagnostics and stem cell biology. Because of the highly complex, dynamic, and multifaceted context, a thorough understanding of the cell-material crosstalk has not been achieved yet; however, a variety of material features including biological cues, topography, and mechanical properties have been proved to impact the strength and the nature of the cell-material interaction, eventually affecting cell fate and functions. Although the nature of these three signals may appear very different, they are equated by their participation in the same material-cytoskeleton crosstalk pathway as they regulate cell adhesion events. In this work we present recent and relevant findings on the material-induced cell responses, with a particular emphasis on how the presentation of biochemical/biophysical signals modulates cell behavior. Finally, we summarize and discuss the literature data to draw out unifying elements concerning cell recognition of and reaction to signals displayed by material surfaces.

  4. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells.

    PubMed

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-06-23

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle-related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes.

  5. Glycosaminoglycans affect heparanase location in CHO cell lines.

    PubMed

    Piva, Maria B R; Suarez, Eloah R; Melo, Carina M; Cavalheiro, Renan P; Nader, Helena B; Pinhal, Maria A S

    2015-09-01

    Glycosaminoglycans (GAG) play a ubiquitous role in tissues and cells. In eukaryotic cells, heparan sulfate (HS) is initially degraded by an endo-β-glucuronidase called heparanase-1 (HPSE). HS oligosaccharides generated by the action of HPSE intensify the activity of signaling molecules, activating inflammatory response, tumor metastasis, and angiogenesis. The aim of the present study was to understand if sulfated GAG could modulate HPSE, since the mechanisms that regulate HPSE have not been completely defined. CHO-K1 cells were treated with 4-methylumbelliferone (4-MU) and sodium chlorate, to promote total inhibition of GAG synthesis, and reduce the sulfation pattern, respectively. The GAG profile of the wild CHO-K1 cells and CHO-745, deficient in xylosyltransferase, was determined after [(35)S]-sulfate labeling. HPSE expression was determined via real-time quantitative polymerase chain reaction. Total ablation of GAG with 4-MU in CHO-K1 inhibited HPSE expression, while the lack of sulfation had no effect. Interestingly, 4-MU had no effect in CHO-745 cells for these assays. In addition, a different enzyme location was observed in CHO-K1 wild-type cells, which presents HPSE mainly in the extracellular matrix, in comparison with the CHO-745 mutant cells, which is found in the cytoplasm. In view of our results, we can conclude that GAG are essential modulators of HPSE expression and location. Therefore, GAG profile could impact cell behavior mediated by the regulation of HPSE.

  6. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    PubMed

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  7. Functional repair with neural stem cells.

    PubMed

    Sinden, J D; Stroemer, P; Grigoryan, G; Patel, S; French, S J; Hodges, H

    2000-01-01

    Approval to commence phase I/II clinical trials with neural stem cells requires proof of concept in well-accepted animal models of human neurological disease or injury. We initially showed that the conditionally immortal MHP36 line of hippocampal origin (derived from the H-2Kb-tsA58 transgenic mouse) was effective in repopulating CA1 neurons in models of global ischaemia and repairing cognitive function, and have now shown that this line is multifunctional. MHP36 cells are effective in restoring spatial memory deficits in rats after excitotoxic lesions of the cholinergic projections to cortex and hippocampus and in rats showing cognitive impairments due to normal ageing. Moreover, grafts of MHP36 cells are effective in reversing sensory and motor deficits and reducing lesion volume as a consequence of occlusion of the middle cerebral artery, the major cause of stroke. In contrast, MHP36 cell grafts were unable to repair motor asymmetries in rats with unilateral 6-hydroxydopamine lesions of the nigrostriatal dopamine system, the prototype rodent model of Parkinson's disease. These data show that conditionally immortal neuroepithelial stem cells are multifunctional, being able to repair diverse types of brain damage. However, there are limitations to this multifunctionality, suggesting that lines from different regions of the developing brain will be required to treat different brain diseases. ReNeuron is currently developing human neuroepithelial stem cell lines from different brain regions and with similar reparative properties to our murine lines. PMID:11131543

  8. 4-Methylthiobutyl isothiocyanate (Erucin) from rocket plant dichotomously affects the activity of human immunocompetent cells.

    PubMed

    Gründemann, Carsten; Garcia-Käufer, Manuel; Lamy, Evelyn; Hanschen, Franziska S; Huber, Roman

    2015-03-15

    Isothiocyanates (ITC) from the Brassicaceae plant family are regarded as promising for prevention and treatment of cancer. However, experimental settings consider their therapeutic action without taking into account the risk of unwanted effects on healthy tissues. In the present study we investigated the effects of Eruca sativa seed extract containing MTBITC (Erucin) and pure Erucin from rocket plant on healthy cells of the human immune system in vitro. Hereby, high doses of the plant extract as well as of Erucin inhibited cell viability of human lymphocytes via induction of apoptosis to comparable amounts. Non-toxic low concentrations of the plant extract and pure Erucin altered the expression of the interleukin (IL)-2 receptor but did not affect further T cell activation, proliferation and the release of the effector molecules interferon (IFN)-gamma and IL-2 of T-lymphocytes. However, the activity of NK-cells was significantly reduced by non-toxic concentrations of the plant extract and pure Erucin. These results indicate that the plant extract and pure Erucin interfere with the function of human T lymphocytes and decreases the activity of NK-cells in comparable concentrations. Long-term clinical studies with ITC-enriched plant extracts from Brassicaceae should take this into account.

  9. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  10. Altered CD45 isoform expression affects lymphocyte function in CD45 Tg mice.

    PubMed

    Tchilian, Elma Z; Dawes, Ritu; Hyland, Lisa; Montoya, Maria; Le Bon, Agnes; Borrow, Persephone; Hou, Sam; Tough, David; Beverley, Peter C L

    2004-09-01

    Transgenic mice have been constructed expressing high (CD45RABC) and low (CD45R0) molecular weight CD45 isoforms on a CD45-/- background. Phenotypic analysis and in vivo challenge of these mice with influenza and lymphocytic choriomeningitis viruses shows that T cell differentiation and peripheral T cell function are related to the level of CD45 expression but not to which CD45 isoform is expressed. In contrast, B cell differentiation is not restored, irrespective of the level of expression of a single isoform. All CD45 trangenic mice have T cells with an activated phenotype and increased T cell turnover. These effects are more prominent in CD8 than CD4 cells. The transgenic mice share several properties with humans expressing variant CD45 alleles and provide a model to understand immune function in variant individuals. PMID:15302847

  11. Do testicular opiates regulate Leydig cell function?

    PubMed

    Gerendai, I; Shaha, C; Thau, R; Bardin, C W

    1984-10-01

    beta-Endorphin is believed to be synthesized in testicular Leydig cells. To gain more information about the role of this and other endogenous opioid peptides in the testis, opiate antagonists (naloxone and nalmefene, 100 micrograms/testis) were administered intratesticularly to hemicastrated adult rats. Leydig cell function was evaluated by measurement of serum testosterone and testosterone production in vitro. Estimation of androgen binding protein (rABP) was used as an index of Sertoli cell function. Serum testosterone was reduced significantly by intratesticular administration of naloxone and nalmefene in treated animals. Systemic administration of these antagonists had no effect at the doses used. Testes from treated animals incubated in vitro with or without hCG produced significantly less testosterone than vehicle-treated control testes. Hemicastration reduced rABP synthesis and secretion; however, treatment with opiate antagonists did not alter the amount of this protein in the serum or epididymides of these rats. These observations suggest that endogenous testicular opiates modulate testosterone secretion by Leydig cells. PMID:6541122

  12. Fancb deficiency impairs hematopoietic stem cell function.

    PubMed

    Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Meetei, Amom Ruhikanta; Andreassen, Paul R; Namekawa, Satoshi H; Pang, Qishen

    2015-01-01

    Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, variable congenital malformations and a predisposition to malignancies. FANCB (also known as FAAP95), is the only X-linked FA gene discovered thus far. In the present study, we investigated hematopoiesis in adult Fancb deficient (Fancb(-/y)) mice and found that Fancb(-/y) mice have decreased hematopoietic stem cell (HSC) quiescence accompanied by reduced progenitor activity in vitro and reduced repopulating capacity in vivo. Like other FA mouse models previously reported, the hematopoietic system of Fancb(-/y) mice is hypersensitive to DNA cross-linking agent mitomycin C (MMC), which induces bone marrow failure in Fancb(-/y) mice. Furthermore, Fancb(-/y) BM exhibits slower recovery kinetics and less tolerance to myelotoxic stress induced by 5-fluorouracil than wild-type littermates. RNA-seq analysis reveals altered expression of genes involved in HSC function and cell cycle regulation in Fancb(-/y) HSC and progenitor cells. Thus, this Fancb(-/y) mouse model provides a novel approach for studying the critical role of the FA pathway not only in germ cell development but also in the maintenance of HSC function. PMID:26658157

  13. C282Y-HFE Gene Variant Affects Cholesterol Metabolism in Human Neuroblastoma Cells

    PubMed Central

    Ali-Rahmani, Fatima; Huang, Michael A.; Schengrund, C.-L.; Connor, James R.; Lee, Sang Y.

    2014-01-01

    Although disruptions in the maintenance of iron and cholesterol metabolism have been implicated in several cancers, the association between variants in the HFE gene that is associated with cellular iron uptake and cholesterol metabolism has not been studied. The C282Y-HFE variant is a risk factor for different cancers, is known to affect sphingolipid metabolism, and to result in increased cellular iron uptake. The effect of this variant on cholesterol metabolism and its possible relevance to cancer phenotype was investigated using wild type (WT) and C282Y-HFE transfected human neuroblastoma SH-SY5Y cells. Expression of C282Y-HFE in SH-SY5Y cells resulted in a significant increase in total cholesterol as well as increased transcription of a number of genes involved in its metabolism compared to cells expressing WT-HFE. The marked increase in expression of NPC1L1 relative to that of most other genes, was accompanied by a significant increase in expression of NPC1, a protein that functions in cholesterol uptake by cells. Because inhibitors of cholesterol metabolism have been proposed to be beneficial for treating certain cancers, their effect on the viability of C282Y-HFE neuroblastoma cells was ascertained. C282Y-HFE cells were significantly more sensitive than WT-HFE cells to U18666A, an inhibitor of desmosterol Δ24-reductase the enzyme catalyzing the last step in cholesterol biosynthesis. This was not seen for simvastatin, ezetimibe, or a sphingosine kinase inhibitor. These studies indicate that cancers presenting in carriers of the C282Y-HFE allele might be responsive to treatment designed to selectively reduce cholesterol content in their tumor cells. PMID:24533143

  14. Human proximal tubule cells form functional microtissues.

    PubMed

    Prange, Jenny A; Bieri, Manuela; Segerer, Stephan; Burger, Charlotte; Kaech, Andres; Moritz, Wolfgang; Devuyst, Olivier

    2016-04-01

    The epithelial cells lining the proximal tubules of the kidney mediate complex transport processes and are particularly vulnerable to drug toxicity. Drug toxicity studies are classically based on two-dimensional cultures of immortalized proximal tubular cells. Such immortalized cells are dedifferentiated, and lose transport properties (including saturable endocytic uptake) encountered in vivo. Generating differentiated, organotypic human microtissues would potentially alleviate these limitations and facilitate drug toxicity studies. Here, we describe the generation and characterization of kidney microtissues from immortalized (HK-2) and primary (HRPTEpiC) human renal proximal tubular epithelial cells under well-defined conditions. Microtissue cultures were done in hanging drop GravityPLUS™ culture plates and were characterized for morphology, proliferation and differentiation markers, and by monitoring the endocytic uptake of albumin. Kidney microtissues were successfully obtained by co-culturing HK-2 or HRPTEpiC cells with fibroblasts. The HK-2 microtissues formed highly proliferative, but dedifferentiated microtissues within 10 days of culture, while co-culture with fibroblasts yielded spherical structures already after 2 days. Low passage HRPTEpiC microtissues (mono- and co-culture) were less proliferative and expressed tissue-specific differentiation markers. Electron microscopy evidenced epithelial differentiation markers including microvilli, tight junctions, endosomes, and lysosomes in the co-cultured HRPTEpiC microtissues. The co-cultured HRPTEpiC microtissues showed specific uptake of albumin that could be inhibited by cadmium and gentamycin. In conclusion, we established a reliable hanging drop protocol to obtain functional kidney microtissues with proximal tubular epithelial cell lines. These microtissues could be used for high-throughput drug and toxicology screenings, with endocytosis as a functional readout. PMID:26676951

  15. DNA Replication Licensing Affects Cell Proliferation or Endoreplication in a Cell Type–Specific Manner

    PubMed Central

    del Mar Castellano, María; Boniotti, María Beatrice; Caro, Elena; Schnittger, Arp; Gutierrez, Crisanto

    2004-01-01

    In eukaryotic cells, the function of DNA replication licensing components (Cdc6 and Cdt1, among others) is crucial for cell proliferation and genome stability. However, little is known about their role in whole organisms and whether licensing control interfaces with differentiation and developmental programs. Here, we study Arabidopsis thaliana CDT1, its regulation, and the consequences of overriding licensing control. The availability of AtCDT1 is strictly regulated at two levels: (1) at the transcription level, by E2F and growth-arresting signals, and (2) posttranscriptionally, by CDK phosphorylation, a step that is required for its proteasome-mediated degradation. We also show that CDC6 and CDT1 are key targets for the coordination of cell proliferation, differentiation, and development. Indeed, altered CDT1 or CDC6 levels have cell type–specific effects in developing Arabidopsis plants: in leaf cells competent to divide, cell proliferation is stimulated, whereas in cells programmed to undergo differentiation-associated endoreplication rounds, extra endocycles are triggered. Thus, we propose that DNA replication licensing control is critical for the proper maintenance of proliferative potential, developmental programs, and morphogenetic patterns. PMID:15316110

  16. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  17. Macrophages: important accessory cells for reproductive function.

    PubMed

    Cohen, P E; Nishimura, K; Zhu, L; Pollard, J W

    1999-11-01

    Macrophages are found throughout reproductive tissues. To determine their role(s), we have studied mice homozygous for a null mutation (Csfm(op)) in the gene encoding the major macrophage growth factor, colony-stimulating factor-1 (CSF-1). Both male and female Csfm(op)/Csfm(op) mice have fertility defects. Males have low sperm number and libido as a consequence of dramatically reduced circulating testosterone. Females have extended estrous cycles and poor ovulation rates. CSF-1 is the principal growth factor regulating macrophage populations in the testis, male accessory glands, ovary, and uterus. However, analyses of CSF-1 nullizygous mice suggest that the primary reproductive defect is in the development of feedback regulation of the hypothalamic-pituitary axis. Although not correlating with deficiencies of microglia populations, electrophysiological investigations indicate an impairment of neuronal responses. This suggests that microglia, under the influence of CSF-1, act to organize neuronal connectivity during development and that the absence of this function results in a perturbation of the hypothalamic-pituitary-gonadal axis. Macrophages also appear to have functions in the differentiated tissues of the reproductive system, including having a positive influence on steroidogenic cells. These data suggest that macrophages, through their trophic functions, can be considered as essential accessory cells for normal reproductive functioning.

  18. Affect and the Brain's Functional Organization: A Resting-State Connectivity Approach

    PubMed Central

    Rohr, Christiane S.; Okon-Singer, Hadas; Craddock, R. Cameron; Villringer, Arno; Margulies, Daniel S.

    2013-01-01

    The question of how affective processing is organized in the brain is still a matter of controversial discussions. Based on previous initial evidence, several suggestions have been put forward regarding the involved brain areas: (a) right-lateralized dominance in emotional processing, (b) hemispheric dominance according to positive or negative valence, (c) one network for all emotional processing and (d) region-specific discrete emotion matching. We examined these hypotheses by investigating intrinsic functional connectivity patterns that covary with results of the Positive and Negative Affective Schedule (PANAS) from 65 participants. This approach has the advantage of being able to test connectivity rather than activation, and not requiring a potentially confounding task. Voxelwise functional connectivity from 200 regions-of-interest covering the whole brain was assessed. Positive and negative affect covaried with functional connectivity involving a shared set of regions, including the medial prefrontal cortex, the anterior cingulate, the visual cortex and the cerebellum. In addition, each affective domain had unique connectivity patterns, and the lateralization index showed a right hemispheric dominance for negative affect. Therefore, our results suggest a predominantly right-hemispheric network with affect-specific elements as the underlying organization of emotional processes. PMID:23935850

  19. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  20. Amber mutation affecting the length of Escherichia coli cells.

    PubMed Central

    Martínez-Salas, E; Vicente, M

    1980-01-01

    An amber mutation in a newly found gene (wee) of Escherichia coli has been isolated from strain OV-2, which harbors a temperature-sensitive suppressor. At 42 degrees C cells of the mutant, OV-25, increased in mass and deoxyribonucleic acid content and divided at normal rates, compared with the wild type under the same growth conditions. Total cell length increased under the restrictive conditions, although at a slightly lower rate. Values of mean cell length and cell volume, contrary to what would be expected from the increment in the rate of increase in particles, mass, and deoxyribonucleic acid, became at 42 degrees C smaller than those found in the wild type. A parallel increase in protein content per length and cell density and a loss of viability were found to occur after four generations at the restrictive temperature. The behavior of strain OV-25 in the absence of the wee gene product could be interpreted in terms of either a faulty regulation of the elongation processes or their abnormal coordination with the cell cycle. The genetic location of the wee gene has been found to be at 83.5 min on the E. coli genetic map. PMID:7000749

  1. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  2. Oxygen concentration inside a functioning photosynthetic cell.

    PubMed

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere.

  3. Sexual function and affect in parkinsonian men treated with L-dopa.

    PubMed

    Brown, E; Brown, G M; Kofman, O; Quarrington, B

    1978-12-01

    Using psychiatric interviews, sexual and affect rating scales, hormonal studies, and neurologic assessment, the authors assessed the effect of L-dopa treatment on men with Parkinson's disease. Patients demonstrated variable affect changes. Approximately one-half of the patients reported an increased sexual interest that was not related to improvement in locomotor function. Hormonal factors appeared to be involved. The findings suggest that male parkinsonian patients who possess an intact hypothalamic-pituitary-gonadal axis experience increased sexual function related to L-dopa treatment.

  4. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings

    PubMed Central

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I.; Bonnema, Guusje; Angenent, Gerco C.; Immink, Richard G. H.; Groot, Steven P. C.

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  5. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    PubMed

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  6. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings.

    PubMed

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I; Bonnema, Guusje; Angenent, Gerco C; Immink, Richard G H; Groot, Steven P C

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  7. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  8. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  9. Monoterpene (-)-citronellal affects hepatocarcinoma cell signaling via an olfactory receptor.

    PubMed

    Maßberg, Désirée; Simon, Annika; Häussinger, Dieter; Keitel, Verena; Gisselmann, Günter; Conrad, Heike; Hatt, Hanns

    2015-01-15

    Terpenes are the major constituents of essential oils in plants. In recent years, terpenes have become of clinical relevance due to their ability to suppress cancer development. Their effect on cellular proliferation has made them promising agents in the prevention or treatment of many types of cancer. In the present study, a subset of different monoterpenes was investigated for their molecular effects on the hepatocellular carcinoma cell line Huh7. Using fluorometric calcium imaging, acyclic monoterpene (-)-citronellal was found to induce transient Ca(2+) signals in Huh7 cells by activating a cAMP-dependent signaling pathway. Moreover, we detected the (-)-citronellal-activated human olfactory receptor OR1A2 at the mRNA and protein levels and demonstrated its potential involvement in (-)-citronellal-induced calcium signaling in Huh7 cells. Furthermore, activation of OR1A2 results in phosphorylation of p38 MAPK and reduced cell proliferation, indicating an effect on hepatocellular carcinoma progression. Here, we provide for the first time data on the molecular mechanism evoked by (-)-citronellal in human hepatocellular carcinoma cells. The identified olfactory receptor could serve as a potential therapeutic target for cancer diagnosis and treatment.

  10. How microRNA and transcription factor co-regulatory networks affect osteosarcoma cell proliferation.

    PubMed

    Poos, Kathrin; Smida, Jan; Nathrath, Michaela; Maugg, Doris; Baumhoer, Daniel; Korsching, Eberhard

    2013-01-01

    Osteosarcomas (OS) are complex bone tumors with various genomic alterations. These alterations affect the expression and function of several genes due to drastic changes in the underlying gene regulatory network. However, we know little about critical gene regulators and their functional consequences on the pathogenesis of OS. Therefore, we aimed to determine microRNA and transcription factor (TF) co-regulatory networks in OS cell proliferation. Cell proliferation is an essential part in the pathogenesis of OS and deeper understanding of its regulation might help to identify potential therapeutic targets. Based on expression data of OS cell lines divided according to their proliferative activity, we obtained 12 proliferation-related microRNAs and corresponding target genes. Therewith, microRNA and TF co-regulatory networks were generated and analyzed regarding their structure and functional influence. We identified key co-regulators comprising the microRNAs miR-9-5p, miR-138, and miR-214 and the TFs SP1 and MYC in the derived networks. These regulators are implicated in NFKB- and RB1-signaling and focal adhesion processes based on their common or interacting target genes (e.g., CDK6, CTNNB1, E2F4, HES1, ITGA6, NFKB1, NOTCH1, and SIN3A). Thus, we proposed a model of OS cell proliferation which is primarily co-regulated through the interactions of the mentioned microRNA and TF combinations. This study illustrates the benefit of systems biological approaches in the analysis of complex diseases. We integrated experimental data with publicly available information to unravel the coordinated (post)-transcriptional control of microRNAs and TFs to identify potential therapeutic targets in OS. The resulting microRNA and TF co-regulatory networks are publicly available for further exploration to generate or evaluate own hypotheses of the pathogenesis of OS (http://www.complex-systems.uni-muenster.de/co_networks.html).

  11. Regional tumour glutamine supply affects chromatin and cell identity.

    PubMed

    Højfeldt, Jonas W; Helin, Kristian

    2016-09-28

    Limited perfusion of solid tumours produces a nutrient-deprived tumour core microenvironment. Low glutamine levels in the tumour core are now shown to lead to reduced levels of α-ketoglutarate and decreased histone demethylase activity, thereby promoting a less differentiated and more therapy-resistant state of the tumour cells.

  12. Regional tumour glutamine supply affects chromatin and cell identity.

    PubMed

    Højfeldt, Jonas W; Helin, Kristian

    2016-09-28

    Limited perfusion of solid tumours produces a nutrient-deprived tumour core microenvironment. Low glutamine levels in the tumour core are now shown to lead to reduced levels of α-ketoglutarate and decreased histone demethylase activity, thereby promoting a less differentiated and more therapy-resistant state of the tumour cells. PMID:27684506

  13. Iodine Affects Differentiation and Migration Process in Trophoblastic Cells.

    PubMed

    Olivo-Vidal, Zendy Evelyn; Rodríguez, Roció Coutiño; Arroyo-Helguera, Omar

    2016-02-01

    Iodine deficiency is associated with oxidative stress increase and preeclampsia during gestation, suggesting that iodine concentration plays an important role in the normal placenta physiology. The question raised is to analyze the effect of iodine deficiency on oxidative stress, viability, differentiation, and migration process and changes in the expression of differentiation and migration markers. Iodine deprivation was done using potassium perchlorate (KCLO4) to block sodium iodide symporter (NIS) transporter and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid DIDS to inhibit pendrine (PEN) transport for 3-48 h. Then trophoblast cells were treated with low iodine doses of 5-500 μM and high iodine doses of 100-5000 μM. Oxidative stress, viability, and human chorionic gonadotropin (hGC) were measured by colorimetric methods. Migration throphoblast cells were evaluated by both wound healing and Boyden chamber assays. Changes in mRNA expression were analyzed by real-time RT-PCR. Iodine deprivation induces a significant increase of reactive oxygen species (ROS), viability, and migration process vs control cells. We found a significant overregulation in the mRNA's peroxisome proliferator-activated receptor (PPAR-gamma), Snail, and matrix metalloproteinase-9 (MMP-9) mRNA's in cells deprived of iodine, as well as a down glial cell missing-1 (GCM-1) regulation, hGC, pregnancy-associated plasma protein-A (PAPP-A), and E-cadherin mRNA expression. The expression of hypoxic induction factor alpha (HIFα) mRNA does not change with iodine deprivation. In cells deprived of iodine, supplementing low iodine doses (5-500 μM) does not induce any significant changes in viability. However, ROS and migration process were decreased, although we found an increased human chorionic gonadotropin (hCG) secretion as a differentiation marker. In addition, we found that PPAR-gamma, Snail, and MPP-9 mRNAs expression are downregulated with low iodine doses, in contrast with GCM-1, PAPP

  14. Aflatoxins of type B and G affect porcine dendritic cell maturation in vitro.

    PubMed

    Mehrzad, Jalil; Devriendt, Bert; Baert, Kim; Cox, Eric

    2015-01-01

    The toxic effects of highly carcinogenic mycotoxins, especially aflatoxins (AF), on key antigen-presenting cells, such as dendritic cells (DC), are largely unknown. To elucidate the effect of AF on DC function, porcine monocyte-derived DC (MoDC) were treated with a mixture of several AF (i.e., AFB1, AFB2, AFG1, and AFG2) and the phagocytic capacity, the membrane expression level of several DC activation markers, the T-cell proliferation-inducing capacity, and the cytokine secretion pattern were assessed. As compared to untreated MoDC, AF significantly up-regulated the expression of the co-stimulatory molecules CD25 and CD80/86. However, the phagocytic activity of MoDC was not affected by AF treatment. While the cytokine secretion pattern of AF-treated MoDC was similar to control MoDC, the T-cell proliferation-inducing capacity of MoDC was increased upon aflatoxin treatment. The results indicate that a mixture of naturally occurring AF enhances the antigen-presenting capacity of DC, which could explain the observed immunotoxicity of AF by breaking down tolerance and further emphasizes the need to reduce the admissible level of AF in agricultural commodities.

  15. Creep Function of a Single Living Cell

    PubMed Central

    Desprat, Nicolas; Richert, Alain; Simeon, Jacqueline; Asnacios, Atef

    2005-01-01

    We used a novel uniaxial stretching rheometer to measure the creep function J(t) of an isolated living cell. We show, for the first time at the scale of the whole cell, that J(t) behaves as a power-law J(t) = Atα. For N = 43 mice myoblasts (C2-7), we find α = 0.24 ± 0.01 and A = (2.4 ± 0.3) 10−3 Pa−1 s−α. Using Laplace Transforms, we compare A and α to the parameters G0 and β of the complex modulus G*(ω) = G0ωβ measured by other authors using magnetic twisting cytometry and atomic force microscopy. Excellent agreement between A and G0 on the one hand, and between α and β on the other hand, indicated that the power-law is an intrinsic feature of cell mechanics and not the signature of a particular technique. Moreover, the agreement between measurements at very different size scales, going from a few tens of nanometers to the scale of the whole cell, suggests that self-similarity could be a central feature of cell mechanical structure. Finally, we show that the power-law behavior could explain previous results first interpreted as instantaneous elasticity. Thus, we think that the living cell must definitely be thought of as a material with a large and continuous distribution of relaxation time constants which cannot be described by models with a finite number of springs and dash-pots. PMID:15596508

  16. Human cells and cell membrane molecular models are affected in vitro by chlorpromazine.

    PubMed

    Suwalsky, Mario; Villena, Fernando; Sotomayor, Carlos P; Bolognin, Silvia; Zatta, Paolo

    2008-06-01

    This study presents evidence that chlorpromazine (CPZ) affects human cells and cell membrane molecular models. Human SH-SY5Y neuroblastoma cells incubated with 0.1 mM CPZ suffered a decrease of cell viability. On the other hand, phase contrast microscopy observations of human erythrocytes indicated that they underwent a morphological alteration as 1 microM CPZ changed their discoid normal shape to stomatocytes, and to hemolysis with 1 mM CPZ. X-ray diffraction experiments performed on dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) bilayers, classes of the major phospholipids present in the outer and inner sides of the erythrocyte membrane, respectively showed that CPZ disordered the polar head and acyl chain regions of both DMPC and DMPE, where these interactions were stronger with DMPC bilayers. Fluorescence spectroscopy on DMPC LUV at 18 degrees C confirmed these results. In fact, the assays showed that CPZ induced a significant reduction of their generalized polarization (GP) and anisotropy (r) values, indicative of enhanced disorder at the polar head and acyl chain regions of the DMPC lipid bilayer. PMID:18372093

  17. Functional inactivation of Rb sensitizes cancer cells to TSC2 inactivation induced cell Death

    PubMed Central

    Danos, Arpad M.; Liao, Yang; Li, Xuan; Du, Wei

    2012-01-01

    We showed previously that inactivation of TSC2 induces death in cancer cells lacking the Retinoblastoma (Rb) tumor suppressor under stress conditions, suggesting that inactivation of TSC2 can potentially be used as an approach to specifically kill cancers that have lost WT Rb. As Rb is often inactivated in cancers by overexpression of cyclin D1, loss of p16ink4a cdk inhibitor, or expression of viral oncoproteins, it will be interesting to determine if such functional inactivation of Rb would similarly sensitize cancer cells to TSC2 inactivation induced cell death. In addition, many cancers lack functional Pten, resulting in increased PI3K/Akt signaling that has been shown to modulate E2F-induced cell death. Therefore it will be interesting to test whether loss of Pten will affect TSC2 inactivation induced killing of Rb mutant cancer cells. Here, we show that overexpression of Cyclin D1 or the viral oncogene E1a sensitizes cancer cells to TSC2 knockdown induced cell death and growth inhibition. On the other hand, knockdown of p16ink4a sensitizes cancer cells to TSC2 knockdown induced cell death in a manner that is likely dependant on serum induction of Cyclin D1 to inactivate the Rb function. Additionally, we demonstrate that loss of Pten does not interfere with TSC2 knockdown induced cell death in Rb mutant cancer cells. Together, these results suggest that TSC2 is potentially a useful target for a large spectrum of cancer types with an inactivated Rb pathway. PMID:23022476

  18. Generation of functional hepatic cells from pluripotent stem cells

    PubMed Central

    Han, Songyan; Bourdon, Alice; Hamou, Wissam; Dziedzic, Noelle; Goldman, Orit; Gouon-Evans, Valerie

    2014-01-01

    Liver diseases affect millions of people worldwide, especially in developing country. According to the American Liver Foundation, nearly 1 in every 10 Americans suffers from some form of liver disease. Even though, the liver has great ability to self-repair, in end-stage liver diseases including fibrosis, cirrhosis, and liver cancer induced by viral hepatitis and drugs, the liver regenerative capacity is exhausted. The only successful treatment for chronic liver failure is the whole liver transplantation. More recently, some clinical trials using hepatocyte transplantation have shown some clinical improvement for metabolic liver diseases and acute liver failure. However, the shortage of donor livers remains a life-threatening challenge in liver disease patients. To overcome the scarcity of donor livers, hepatocytes generated from embryonic stem cell or induced pluripotent stem cell differentiation cultures could provide an unlimited supply of such cells for transplantation. This review provides an updated summary of hepatic differentiation protocols published so far, with a characterization of the hepatic cells generated in vitro and their ability to regenerate damaged livers in vivo following transplantation in pre-clinical liver deficient mouse models. PMID:25364624

  19. Handgrip Strength, Positive Affect, and Perceived Health Are Prospectively Associated with Fewer Functional Limitations among Centenarians

    ERIC Educational Resources Information Center

    Franke, Warren D.; Margrett, Jennifer A.; Heinz, Melinda; Martin, Peter

    2012-01-01

    This study assessed the association between perceived health, fatigue, positive and negative affect, handgrip strength, objectively measured physical activity, body mass index, and self-reported functional limitations, assessed 6 months later, among 11 centenarians (age = 102 plus or minus 1). Activities of daily living, assessed 6 months prior to…

  20. Weight Reduction in Athletes May Adversely Affect the Phagocytic Function of Monocytes.

    ERIC Educational Resources Information Center

    Kono, Ichiro; And Others

    1988-01-01

    Study of the monocyte phagocytic function in nine competitive athletes before and after a two-week weight reduction (through calorie restriction) program revealed that their pre-program phagocytic activity was higher than in sedentary controls but decreased significantly after the program. This suggests calorie restriction may affect the human…

  1. Cadmium administration affects circulatory mononuclear cells in rats.

    PubMed

    Djokic, Jelena; Popov Aleksandrov, Aleksandra; Ninkov, Marina; Mirkov, Ivana; Zolotarevski, Lidija; Kataranovski, Dragan; Kataranovski, Milena

    2015-01-01

    Although numerous investigations have demonstrated a direct effect of cadmium (Cd) on peripheral blood mononuclear cell (PBMC) activity in humans, there is virtually no data concerning the in vivo impact of this metal on circulatory mononuclear cells. In this study, the effects of a sub-lethal Cd (1 mg/kg) dose were examined in rats 48 h following a single intraperitoneal injection. Cd treatment resulted in increased total peripheral blood leukocyte levels; however, decreases in PBMC numbers were seen. These changes coincided with an accumulation of mononuclear cells in the lungs and an increase in mononuclear cells expressing CD11b. A lack of effect of Cd on spontaneous nitric oxide (NO) production and on iNOS mRNA levels in the PBMC was also noted. Differential effects of Cd on PBMC inflammatory cytokine (IL-1β, TNFα, IL-6, IFNγ, and IL-17) gene expression and production were also seen. Specifically, except for IL-1β (levels increased), there were decreases (relative to controls) in mRNA levels for all the other cytokines examined. While there were no Cd treatment-related changes in spontaneous production of the cytokines assessed, there seemed to be a trend (p = 0.06) toward a decrease in spontaneous IL-6 release. When these harvested cells were stimulated ex vivo, there was no effect from Cd exposure on LPS-stimulated IL-1β and TNFα or on ConA-stimulated IFNγ or IL-17 production, but a decrease in IL-6 production in response to LPS was, again, noted. A preliminary study with a lower Cd dose (0.5 mg/kg) revealed some of the same outcomes noted here (mononuclear cell infiltration into lungs, increases in PBMC IL-1β mRNA levels), but differential (increased IL-17 mRNA levels) or newly detected outcomes (increased levels of IL-1α mRNA) as well. The described effects of the single in vivo exposure to Cd on PBMC might contribute to a better overall understanding of the immunomodulatory potential of this environmental contaminant.

  2. Automatic facial responses to affective stimuli in high-functioning adults with autism spectrum disorder.

    PubMed

    Mathersul, Danielle; McDonald, Skye; Rushby, Jacqueline A

    2013-01-17

    Individuals with autism spectrum disorder (ASD) demonstrate atypical behavioural responses to affective stimuli, although the underlying mechanisms remain unclear. Investigating automatic responses to these stimuli may help elucidate these mechanisms. 18 high-functioning adults with ASDs and 18 typically developing controls viewed 54 extreme pleasant (erotica), extreme unpleasant (mutilations), and non-social neutral images from the International Affective Picture System (IAPS). Two-thirds of images received an acoustic startle probe 3s post-picture onset. Facial electromyography (EMG) activity (orbicularis, zygomaticus, corrugator), skin conductance (SCR) and cardiac responses were recorded. The adults with ASDs demonstrated typical affective startle modulation and automatic facial EMG responses but atypical autonomic (SCRs and cardiac) responses, suggesting a failure to orient to, or a deliberate effort to disconnect from, socially relevant stimuli (erotica, mutilations). These results have implications for neural systems known to underlie affective processes, including the orbitofrontal cortex and amygdala. PMID:23142408

  3. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  4. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  5. Haptoglobin directly affects T cells and suppresses T helper cell type 2 cytokine release

    PubMed Central

    Arredouani, M; Matthijs, P; Van Hoeyveld, E; Kasran, A; Baumann, H; Ceuppens, J L; Stevens, E

    2003-01-01

    T helper cell type 1 (Th1) and type 2 (Th2) immune responses are characterized by a different pattern of cytokine expression following T-cell activation. Alterations of the ratio of Th1 to Th2 cells are important determinants of susceptibility to viral and parasitic infections, allergies, anti-tumour responses, and autoimmunity. In this work we bring new evidence for an effect of haptoglobin (Hp), a positive acute-phase protein, on T-lymphocyte functions. We show that Hp specifically interacts with both resting and activated CD4+ and CD8+ T cells. This specific binding results in a strong suppression of induced T-cell proliferation. In addition, Hp exhibits a strong in vitro inhibitory effect on Th2 cytokine release, while the production of interferon-γ (IFN-γ) and interleukin-2 (IL-2) is only slightly inhibited at high Hp doses. As a result, the presence of Hp promotes Th1 activation over Th2 activation in vivo as evidenced in Hp-deficient mice. Anti-CD3 monoclonal antibody injection indeed resulted in predominant IL-4 production in Hp−/− mice, in contrast to predominant IFN-γ production in Hp+/+ mice. We conclude that Hp plays a modulating role on the Th1/Th2 balance by promoting a dominant Th1 cellular response. This points to a role of acute-phase proteins in balancing immune responses. PMID:12562322

  6. Anti-hepatoma cells function of luteolin through inducing apoptosis and cell cycle arrest.

    PubMed

    Ding, Shixiong; Hu, Airong; Hu, Yaoren; Ma, Jianbo; Weng, Pengjian; Dai, Jinhua

    2014-04-01

    The aim of this study is to explore the apoptotic induction and cell cycle arrest function of luteolin on the liver cancer cells and the related mechanism. The liver cancer cell line SMMC-7721, BEL-7402, and normal liver cells HL-7702 were treated with different concentrations of luteolin. Cell proliferation ability was tested. Morphological changes of the apoptotic cells were observed under inverted fluorescence microscope after Hoechst33342 staining. We investigated the effect of luteolin on cell cycling and apoptosis with flow cytometry. The mitochondrial membrane potential changes were analyzed after JC-1 staining. Caspases-3 and Bcl-2 family proteins expression were analyzed by real-time PCR. Cell proliferation of SMMC-7721 and BEL-7402 were inhibited by luteolin, and the inhibition was dose-time-dependent. Luteolin could arrest the cells at G1/S stage, reduce mitochondrial membrane potential, and induce higher apoptosis rate and the typical apoptotic morphological changes of the liver carcinoma cells. Q-RT-PCR results also showed that luteolin increased Bax and caspase-3 expression significantly and upregulated Bcl-2 expression in a dose-dependent manner in liver carcinoma cells. However, the normal liver cells HL-7702 was almost not affected by luteolin treatment. Luteolin can inhibit SMMC-7721 and BEL-7402 cell proliferation in a time- and dose-dependent manner. And the mechanism maybe through arresting cell cycle at phase G1/S, enhancing Bax level, reducing anti-apoptotic protein Bcl-2 level, resulting in activating caspase-3 enzyme and decrease of mitochondrial membrane potential, and finally leading to cell apoptosis.

  7. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences

    PubMed Central

    Dean, Afshan; van den Driesche, Sander; Wang, Yili; McKinnell, Chris; Macpherson, Sheila; Eddie, Sharon L.; Kinnell, Hazel; Hurtado-Gonzalez, Pablo; Chambers, Tom J.; Stevenson, Kerrie; Wolfinger, Elke; Hrabalkova, Lenka; Calarrao, Ana; Bayne, Rosey AL; Hagen, Casper P.; Mitchell, Rod T.; Anderson, Richard A.; Sharpe, Richard M.

    2016-01-01

    Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters. PMID:26813099

  8. The strength of the HIV-1 3' splice sites affects Rev function

    PubMed Central

    Kammler, Susanne; Otte, Marianne; Hauber, Ilona; Kjems, Jørgen; Hauber, Joachim; Schaal, Heiner

    2006-01-01

    Background The HIV-1 Rev protein is a key component in the early to late switch in HIV-1 splicing from early intronless (e.g. tat, rev) to late intron-containing Rev-dependent (e.g. gag, vif, env) transcripts. Previous results suggested that cis-acting sequences and inefficient 5' and 3' splice sites are a prerequisite for Rev function. However, we and other groups have shown that two of the HIV-1 5' splice sites, D1 and D4, are efficiently used in vitro and in vivo. Here, we focus on the efficiency of the HIV-1 3' splice sites taking into consideration to what extent their intrinsic efficiencies are modulated by their downstream cis-acting exonic sequences. Furthermore, we delineate their role in RNA stabilization and Rev function. Results In the presence of an efficient upstream 5' splice site the integrity of the 3' splice site is not essential for Rev function whereas an efficient 3' splice site impairs Rev function. The detrimental effect of a strong 3' splice site on the amount of Rev-dependent intron-containing HIV-1 glycoprotein coding (env) mRNA is not compensatable by weakening the strength of the upstream 5' splice site. Swapping the HIV-1 3' splice sites in an RRE-containing minigene, we found a 3' splice site usage which was variably dependent on the presence of the usual downstream exonic sequence. The most evident activation of 3' splice site usage by its usual downstream exonic sequence was observed for 3' splice site A1 which was turned from an intrinsic very weak 3' splice site into the most active 3' splice site, even abolishing Rev activity. Performing pull-down experiments with nuclear extracts of HeLa cells we identified a novel ASF/SF2-dependent exonic splicing enhancer (ESE) within HIV-1 exon 2 consisting of a heptameric sequence motif occurring twice (M1 and M2) within this short non-coding leader exon. Single point mutation of M1 within an infectious molecular clone is detrimental for HIV-1 exon 2 recognition without affecting Rev

  9. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  10. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  11. Group I PAK Inhibitor IPA-3 Induces Cell Death and Affects Cell Adhesivity to Fibronectin in Human Hematopoietic Cells

    PubMed Central

    Kuželová, Kateřina; Grebeňová, Dana; Holoubek, Aleš; Röselová, Pavla; Obr, Adam

    2014-01-01

    P21-activated kinases (PAKs) are involved in the regulation of multiple processes including cell proliferation, adhesion and migration. However, the current knowledge about their function is mainly based on results obtained in adherent cell types. We investigated the effect of group I PAK inhibition using the compound IPA-3 in a variety of human leukemic cell lines (JURL-MK1, MOLM-7, K562, CML-T1, HL-60, Karpas-299, Jurkat, HEL) as well as in primary blood cells. IPA-3 induced cell death with EC50 ranging from 5 to more than 20 μM. Similar range was found for IPA-3-mediated dephosphorylation of a known PAK downstream effector, cofilin. The cell death was associated with caspase-3 activation, PARP cleavage and apoptotic DNA fragmentation. In parallel, 20 μM IPA-3 treatment induced rapid and marked decrease of the cell adhesivity to fibronectin. Per contra, partial reduction of PAK activity using lower dose IPA-3 or siRNA resulted in a slight increase in the cell adhesivity. The changes in the cell adhesivity were also studied using real-time microimpedance measurement and by interference reflection microscopy. Significant differences in the intracellular IPA-3 level among various cell lines were observed indicating that an active mechanism is involved in IPA-3 transport. PMID:24664099

  12. Epoxyeicosatrienoic Acids Affect Electrolyte Transport in Renal Tubular Epithelial Cells: Dependence on Cyclooxygenase and Cell Polarity

    PubMed Central

    Nüsing, Rolf M.; Schweer, Horst; Fleming, Ingrid; Zeldin, Darryl C.; Wegmann, Markus

    2007-01-01

    We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, MDCK C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short circuit current (Isc) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Further, both a Cl−-free bath solution and the Ca2+ antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE2 receptors EP2, EP3, and EP4 was demonstrated, apically added PGE2 was ineffective and basolaterally added PGE2 caused a different kinetics in ion transport compared to 5,6-EET. Moreover, PGE2 sythesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE1 in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE1. 5,6-epoxy-PGE1 the precursor of 5,6-dihydroxy-PGE1, caused a similar ion transport as 5,6-EET. Cytochrome P450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl-transport in renal distal tubular cells independent of PGE2 but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE1 by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney. PMID:17494091

  13. Factors affecting longitudinal functional decline and survival in amyotrophic lateral sclerosis patients.

    PubMed

    Watanabe, Hazuki; Atsuta, Naoki; Nakamura, Ryoichi; Hirakawa, Akihiro; Watanabe, Hirohisa; Ito, Mizuki; Senda, Jo; Katsuno, Masahisa; Izumi, Yuishin; Morita, Mitsuya; Tomiyama, Hiroyuki; Taniguchi, Akira; Aiba, Ikuko; Abe, Koji; Mizoguchi, Kouichi; Oda, Masaya; Kano, Osamu; Okamoto, Koichi; Kuwabara, Satoshi; Hasegawa, Kazuko; Imai, Takashi; Aoki, Masashi; Tsuji, Shoji; Nakano, Imaharu; Kaji, Ryuji; Sobue, Gen

    2015-06-01

    Our objective was to elucidate the clinical factors affecting functional decline and survival in Japanese amyotrophic lateral sclerosis (ALS) patients. We constructed a multicenter prospective ALS cohort that included 451 sporadic ALS patients in the analysis. We longitudinally utilized the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) as the functional scale, and determined the timing of introduction of a tracheostomy for positive-pressure ventilation and death. A joint modelling approach was employed to identify prognostic factors for functional decline and survival. Age at onset was a common prognostic factor for both functional decline and survival (p < 0.001, p < 0.001, respectively). Female gender (p = 0.019) and initial symptoms, including upper limb weakness (p = 0.010), lower limb weakness (p = 0.008) or bulbar symptoms (p = 0.005), were related to early functional decline, whereas neck weakness as an initial symptom (p = 0.018), non-use of riluzole (p = 0.030) and proximal dominant muscle weakness in the upper extremities (p = 0.01) were related to a shorter survival time. A decline in the ALSFRS-R score was correlated with a shortened survival time (p < 0.001). In conclusion, the factors affecting functional decline and survival in ALS were common in part but different to some extent. This difference has not been previously well recognized but is informative in clinical practice and for conducting trials.

  14. The novel herbicide oxaziclomefone inhibits cell expansion in maize cell cultures without affecting turgor pressure or wall acidification.

    PubMed

    O'Looney, Nichola; Fry, Stephen C

    2005-11-01

    Oxaziclomefone [OAC; IUPAC name 3-(1-(3,5-dichlorophenyl)-1-methylethyl)-3,4-dihydro-6-methyl-5-phenyl-2H-1,3-oxazin-4-one] is a new herbicide that inhibits cell expansion in grass roots. Its effects on cell cultures and mode of action were unknown. In principle, cell expansion could be inhibited by a decrease in either turgor pressure or wall extensibility. Cell expansion was estimated as settled cell volume; cell division was estimated by cell counting. Membrane permeability to water was measured by a novel method involving simultaneous assay of the efflux of (3)H(2)O and [(14)C]mannitol from a 'bed' of cultured cells. Osmotic potential was measured by depression of freezing point. OAC inhibited cell expansion in cultures of maize (Zea mays), spinach (Spinacia oleracea) and rose (Rosa sp.), with an ID(50) of 5, 30 and 250 nm, respectively. In maize cultures, OAC did not affect cell division for the first 40 h. It did not affect the osmotic potential of cell sap or culture medium, nor did it impede water transport across cell membranes. It did not affect cells' ability to acidify the apoplast (medium), which may be necessary for 'acid growth'. As OAC did not diminish turgor pressure, its ability to inhibit cell expansion must depend on changes in wall extensibility. It could be a valuable tool for studies on cell expansion.

  15. Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition1[W

    PubMed Central

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  16. Differentiation mechanism and function of the cereal aleurone cells and hormone effects on them.

    PubMed

    Zheng, Yankun; Wang, Zhong

    2014-11-01

    The cereal aleurone cells differentiate from the endosperm epidermis with the exception of endosperm transfer cells. Aleurone cells contain proteins, lipids, and minerals, and are important for digesting the endosperm storage products to nurse the embryo under effects of several hormones during the seed germination. The differentiation of aleurone cells is related to location effect and special gene expression. Moreover, the differentiation of aleurone cells is probably affected by the cues from maternal tissues. In the paper, differentiation mechanism and function of aleurone cells and hormone effects on them are reviewed. Some speculations about the differentiation mechanism of aleurone cells are given here.

  17. Fusion and metabolism of plant cells as affected by microgravity.

    PubMed

    Hampp, R; Hoffmann, E; Schönherr, K; Johann, P; De Filippis, L

    1997-01-01

    Plant cell protoplasts derived from leaf tissue of two different tobacco species (Nicotiana tabacum., N. rustica L.) were exposed to short-term (sounding rocket experiments) and long-term (spacelab) microgravity environments in order to study both (electro) cell fusion and cell metabolism during early and later stages of tissue regeneration. The period of exposure to microgravity varied from 10 min (sounding rocket) to 10 d (space shuttle). The process of electro fusion of protoplasts was improved under conditions of microgravity: the time needed to establish close membrane contact between protoplasts (alignment time) was reduced (5 as compared to 15 s under 1 g) and numbers of fusion products between protoplasts of different specific density were increased by a factor of about 10. In addition, viability of fusion products, as shown by the ability to form callus, increased from about 60% to more than 90%. Regenerated fusion products obtained from both sounding-rocket and spacelab experiments showed a wide range of intermediate properties between the two parental plants. This was verified by isozyme analysis and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). In order to address potential metabolic responses, more general markers such as the overall energy state (ATP/ADP ratio), the redox charge of the diphosphopyridine nucleotide system (NADH/NAD ratio), and the pool size of fructose-2,6-bisphosphate (Fru 2,6 bisp), a regulator of the balance between glycolysis and gluconeogenesis, were determined. Responses of these parameters were different with regard to short-term and long-term exposure. Shortly after transition to reduced gravitation (sounding rocket) ratios of ATP/ADP exhibited strong fluctuation while the pool size of NAD decreased (indicating an increased NADH/NAD ratio) and that of Fru 2,6 bisp increased. As similar changes can be observed under stress conditions, this response is probably indicative of a metabolic stress

  18. SAP modulates B cell functions in a genetic background-dependent manner.

    PubMed

    Detre, Cynthia; Yigit, Burcu; Keszei, Marton; Castro, Wilson; Magelky, Erica M; Terhorst, Cox

    2013-06-01

    Mutations affecting the SLAM-associated protein (SAP) are responsible for the X-linked lympho-proliferative syndrome (XLP), a severe primary immunodeficiency syndrome with disease manifestations that include fatal mononucleosis, B cell lymphoma and dysgammaglobulinemia. It is well accepted that insufficient help by SAP-/- CD4+ T cells, in particular during the germinal center reaction, is a component of dysgammaglobulinemia in XLP patients and SAP-/- animals. It is however not well understood whether in XLP patients and SAP-/- mice B cell functions are affected, even though B cells themselves do not express SAP. Here we report that B cell intrinsic responses to haptenated protein antigens are impaired in SAP-/- mice and in Rag-/- mice into which B cells derived from SAP-/- mice together with wt CD4+ T cells had been transferred. This impaired B cells functions are in part depending on the genetic background of the SAP-/- mouse, which affects B cell homeostasis. Surprisingly, stimulation with an agonistic anti-CD40 causes strong in vivo and in vitro B cell responses in SAP-/- mice. Taken together, the data demonstrate that genetic factors play an important role in the SAP-related B cell functions. The finding that anti-CD40 can in part restore impaired B cell responses in SAP-/- mice, suggests potentially novel therapeutic interventions in subsets of XLP patients.

  19. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  20. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  1. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  2. Red cell antigens: Structure and function

    PubMed Central

    Pourazar, Abbasali

    2007-01-01

    Landsteiner and his colleagues demonstrated that human beings could be classified into four groups depending on the presence of one (A) or another (B) or both (AB) or none (O) of the antigens on their red cells. The number of the blood group antigens up to 1984 was 410. In the next 20 years, there were 16 systems with 144 antigens and quite a collection of antigens waiting to be assigned to systems, pending the discovery of new information about their relationship to the established systems. The importance of most blood group antigens had been recognized by immunological complications of blood transfusion or pregnancies; their molecular structure and function however remained undefined for many decades. Recent advances in molecular genetics and cellular biochemistry resulted in an abundance of new information in this field of research. In this review, we try to give some examples of advances made in the field of ‘structure and function of the red cell surface molecules.’ PMID:21938229

  3. Phagocytic cell function in active brucellosis.

    PubMed Central

    Ocon, P; Reguera, J M; Morata, P; Juarez, C; Alonso, A; Colmenero, J D

    1994-01-01

    In this study, we analyzed phagocytic cell function in 51 patients with active brucellosis and its relationship with different clinical, serological, and evolutionary variables. A control group was made up of 30 blood donors of similar geographic extraction, age, and sex, with no previous history of brucellosis or known exposure ot the infection or specific antibodies. The investigations were carried out at the time of diagnosis, at the conclusion of treatment, and after 6 months of follow-up. Polymorphonuclear leukocyte adherence and nitroblue tetrazolium reduction in response to Brucella antigen were significantly increased in the patients at the time of diagnosis with respect to the control group. In contrast, chemotaxis in response to Brucella antigen and phagocytosis were significantly reduced in the patients with respect to the control group. The alterations in phagocytic cell function were greater in patients with bacteremia, with focal forms of the disease, or with a longer diagnostic delay. Most of these initial alterations tended to normalize with treatment, indicating their transient character. PMID:8112863

  4. Origins of Protein Functions in Cells

    NASA Technical Reports Server (NTRS)

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  5. TAM receptors affect adult brain neurogenesis by negative regulation of microglial cell activation.

    PubMed

    Ji, Rui; Tian, Shifu; Lu, Helen J; Lu, Qingjun; Zheng, Yan; Wang, Xiaomin; Ding, Jixiang; Li, Qiutang; Lu, Qingxian

    2013-12-15

    TAM tyrosine kinases play multiple functional roles, including regulation of the target genes important in homeostatic regulation of cytokine receptors or TLR-mediated signal transduction pathways. In this study, we show that TAM receptors affect adult hippocampal neurogenesis and loss of TAM receptors impairs hippocampal neurogenesis, largely attributed to exaggerated inflammatory responses by microglia characterized by increased MAPK and NF-κB activation and elevated production of proinflammatory cytokines that are detrimental to neuron stem cell proliferation and neuronal differentiation. Injection of LPS causes even more severe inhibition of BrdU incorporation in the Tyro3(-/-)Axl(-/-)Mertk(-/-) triple-knockout (TKO) brains, consistent with the LPS-elicited enhanced expression of proinflammatory mediators, for example, IL-1β, IL-6, TNF-α, and inducible NO synthase, and this effect is antagonized by coinjection of the anti-inflammatory drug indomethacin in wild-type but not TKO brains. Conditioned medium from TKO microglia cultures inhibits neuron stem cell proliferation and neuronal differentiation. IL-6 knockout in Axl(-/-)Mertk(-/-) double-knockout mice overcomes the inflammatory inhibition of neurogenesis, suggesting that IL-6 is a major downstream neurotoxic mediator under homeostatic regulation by TAM receptors in microglia. Additionally, autonomous trophic function of the TAM receptors on the proliferating neuronal progenitors may also promote progenitor differentiation into immature neurons.

  6. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    SciTech Connect

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  7. [Factors affecting plaque formation by Lassa virus in Vero cells].

    PubMed

    Lukashevich, I S; Vasiuchkov, A D; Mar'iankova, R F; Votiakov, V I

    1982-01-01

    The method of Porterfield and Allison was adapted for titration of the infectious activity of Lassa virus by the plaque formation in Vero cells. The virus was cloned, and the effect of the time of adsorption, pH, temperature, as well as polycations (DEAD-dextran, protamine sulphate) dimethylsuphoxide (DMSO), and trypsin added during adsorption or into the agar overlay on the effectiveness of plaque production by Lassa virus (virus titres, plaque size) were studied. The optimal adsorption time was found to be 1 1/2-2 hours, pH 8.0. The number of plaques produced by the virus was approximately similar at 35 degrees C. The substances under study did not enhance the efficacy of plaque formation, on the contrary, DMSO and high concentrations of polycations decreased plaque size.

  8. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    PubMed

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  9. Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain.

    PubMed

    Shah, Disha; Blockx, Ines; Keliris, Georgios A; Kara, Firat; Jonckers, Elisabeth; Verhoye, Marleen; Van der Linden, Annemie

    2016-07-01

    Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders. PMID:26195064

  10. An investigation on pharmacy functions and services affecting satisfaction of patients with prescriptions in community pharmacies.

    PubMed

    Sakurai, Hidehiko; Nakajima, Fumio; Tada, Yuichirou; Yoshikawa, Emi; Iwahashi, Yoshiki; Fujita, Kenji; Hayase, Yukitoshi

    2009-05-01

    Various functions expected by patient expects are needed with progress in the system for separation of dispensing and prescribing functions. In this investigation, the relationship between patient satisfaction and pharmacy function were analyzed quantitatively. A questionnaire survey was conducted in 178 community pharmacies. Questions on pharmacy functions and services totaled 87 items concerning information service, amenities, safety, personnel training, etc. The questionnaires for patients had five-grade scales and composed 11 items (observed variables). Based on the results, "the percentage of satisfied patients" was determined. Multivariate analysis was performed to investigate the relationship between patient satisfaction and pharmacy functions or services provided, to confirm patient's evaluation of the pharmacy, and how factors affected comprehensive satisfaction. In correlation analysis, "the number of pharmacists" and "comprehensive satisfaction" had a negative correlation. Other interesting results were obtained. As a results of factor analysis, three latent factors were obtained: the "human factor," "patients' convenience," and "environmental factor," Multiple regression analysis showed that the "human factor" affected "comprehensive satisfaction" the most. Various pharmacy functions and services influence patient satisfaction, and improvement in their quality increases patient satisfaction. This will result in the practice of patient-centered medicine.

  11. Functions and sources of perceived social support among children affected by HIV/AIDS in China.

    PubMed

    Zhao, Guoxiang; Li, Xiaoming; Fang, Xiaoyi; Zhao, Junfeng; Hong, Yan; Lin, Xiuyun; Stanton, Bonita

    2011-06-01

    While the relationship between perceived social support (PSS) and psychosocial well-being has been well documented in the global literature, existing studies also suggest the existence of multiple domains in definition and measurement of PSS. The current study, utilizing data from 1299 rural children affected by HIV/AIDS in central China, examines the relative importance of PSS functional measures (informational/emotional, material/tangible, affectionate, and social interaction) and PSS structural measures (family/relatives, teachers, friends, and significant others) in predicting psychosocial outcomes including internalizing problems, externalizing problems, and educational resilience. Both functional and structural measures of PSS provided reliable measures of related but unique aspects of PSS. The findings of the current study confirmed the previous results that PSS is highly correlated with children's psychosocial well-being and such correlations vary by functions and sources of the PSS as well as different psychosocial outcomes. The findings in the current study suggested the roles of specific social support functions or resources may need to be assessed in relation to specific psychosocial outcome and the context of children's lives. The strong association between PSS and psychosocial outcomes underscores the importance of adequate social support to alleviate stressful life events and improve psychosocial well-being of children affected by HIV/AIDS. Meanwhile, the study findings call for gender and developmentally appropriate and situation-specific social support for children and families affected by HIV/AIDS. PMID:21287421

  12. Antihelminthic niclosamide modulates dendritic cells activation and function.

    PubMed

    Wu, Chieh-Shan; Li, Yi-Rong; Chen, Jeremy J W; Chen, Ying-Che; Chu, Chiang-Liang; Pan, I-Hong; Wu, Yu-Shan; Lin, Chi-Chen

    2014-01-01

    Dendritic cells (DCs) link the sensing of the environment by the innate immune system to the initiation of adaptive immune responses. Accordingly, DCs are considered to be a major target in the development of immunomodulating compounds. In this study, the effect of niclosamide, a Food and Drug Administration-approved antihelminthic drug, on the activation of lipopolysaccharide (LPS)-stimulated murine bone marrow-derived DCs was examined. Our experimental results show that niclosamide reduced the pro-inflammatory cytokine and chemokine expression of LPS-activated DCs. In addition, niclosamide also affected the expression of MHC and costimulatory molecules and influenced the ability of the cells to take up antigens. Therefore, in mixed cell cultures composed of syngeneic OVA-specific T cells and DCs, niclosamide-treated DCs showed a decreased ability to stimulate T cell proliferation and IFN-γ production. Furthermore, intravenous injection of niclosamide also attenuated contact hypersensitivity (CHS) in mice during sensitization with 2,4-dinitro-1-fluorobenzene. Blocking the LPS-induced activation of MAPK-ERK, JNK and NF-κB may contribute to the inhibitory effect of niclosamide on DC activation. Collectively, our findings suggest that niclosamide can manipulate the function of DCs. These results provide new insight into the immunopharmacological role of niclosamide and suggest that it may be useful for the treatment of chronic inflammatory disorders or DC-mediated autoimmune diseases. PMID:24561310

  13. Social-adaptive and psychological functioning of patients affected by Fabry disease.

    PubMed

    Laney, Dawn Alyssia; Gruskin, Daniel J; Fernhoff, Paul M; Cubells, Joseph F; Ousley, Opal Y; Hipp, Heather; Mehta, Ami J

    2010-12-01

    Fabry disease (FD) is an X-linked lysosomal storage disorder caused by the deficiency of alpha-galactosidase A. In addition to the debilitating physical symptoms of FD, there are also under-recognized and poorly characterized psychiatric features. As a first step toward characterizing psychiatric features of FD, we administered the Achenbach adult self report questionnaire to 30 FD patients and the Achenbach adult behavior checklist questionnaire to 28 partners/parents/friends of FD patients. Data from at least one of the questionnaires were available on 33 subjects. Analysis focused on social-adaptive functioning in various aspects of daily life and on criteria related to the Diagnostic and statistical manual of mental disorders IV (DSM-IV). Adaptive functioning scale values, which primarily measure social and relationship functioning and occupational success, showed that eight FD patients (six female and two male) had mean adaptive functioning deficits as compared to population norms. Greater rates of depression (P < 0.01), anxiety (P = 0.05), depression and anxiety (P = 0.03), antisocial personality (P < 0.001), attention-deficit/hyperactivity (AD/H; P < 0.01), hyperactivity-impulsivity (P < 0.01), and aggressive behavior (P = 0.03) were associated with poorer adaptive functioning. Decreased social-adaptive functioning in this study was not statistically significantly associated to disease severity, pain, or level of vitality. This study shows for the first time that FD patients, particularly women, are affected by decreased social-adaptive functioning. Comprehensive treatment plans for FD should consider assessments and interventions to evaluate and improve social, occupational, and psychological functioning. Attention to the behavioral aspects of FD could lead to improved treatment outcome and improved quality of life. Individuals affected by Fabry disease exhibited social-adaptive functioning deficits that were significantly correlated with anxiety

  14. Cognitive Function in Adolescent Patients with Anorexia Nervosa and Unipolar Affective Disorders.

    PubMed

    Sarrar, Lea; Holzhausen, Martin; Warschburger, Petra; Pfeiffer, Ernst; Lehmkuhl, Ulrike; Schneider, Nora

    2016-05-01

    Studies have shown impairments in cognitive function among adult patients with anorexia nervosa (AN) and affective disorders (AD). The association between cognitive dysfunctions, AN and AD as well as the specificity for these psychiatric diagnoses remains unclear. Therefore, we examined cognitive flexibility and processing speed in 47 female adolescent patients with AN, 21 female adolescent patients with unipolar affective disorders and 48 female healthy adolescents. All participants completed a neuropsychological test battery. There were no significant group differences regarding cognitive function, except for psychomotor processing speed with poorer performance in patients with AN. A further analysis revealed that all groups performed with the normal range, although patients with AN were over represented in the poorest performing quartile. We found no severe cognitive impairments in either patient group. Nevertheless, belonging to the AN group contributed significantly to poor performances in neuropsychological tasks. Therefore, we conclude that the risk for cognitive impairments is slightly higher for patients with AN.

  15. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Lee, Rico S C; Hermens, Daniel F; Naismith, Sharon L; White, Django; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in

  16. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Lee, Rico S C; Hermens, Daniel F; Naismith, Sharon L; White, Django; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in

  17. Regulatory T Cells: Differentiation and Function.

    PubMed

    Plitas, George; Rudensky, Alexander Y

    2016-09-01

    The immune system of vertebrate animals has evolved to mount an effective defense against a diverse set of pathogens while minimizing transient or lasting impairment in tissue function that could result from the inflammation caused by immune responses to infectious agents. In addition, misguided immune responses to "self" and dietary antigens, as well as to commensal microorganisms, can lead to a variety of inflammatory disorders, including autoimmunity, metabolic syndrome, allergies, and cancer. Regulatory T cells expressing the X chromosome-linked transcription factor Foxp3 suppress inflammatory responses in diverse biological settings and serve as a vital mechanism of negative regulation of immune-mediated inflammation. Cancer Immunol Res; 4(9); 721-5. ©2016 AACR. PMID:27590281

  18. Functional topography of serotonergic systems supports the Deakin/Graeff hypothesis of anxiety and affective disorders.

    PubMed

    Paul, Evan D; Lowry, Christopher A

    2013-12-01

    Over 20 years ago, Deakin and Graeff hypothesized about the role of different serotonergic pathways in controlling the behavioral and physiologic responses to aversive stimuli, and how compromise of these pathways could lead to specific symptoms of anxiety and affective disorders. A growing body of evidence suggests these serotonergic pathways arise from topographically organized subpopulations of serotonergic neurons located in the dorsal and median raphe nuclei. We argue that serotonergic neurons in the dorsal/caudal parts of the dorsal raphe nucleus project to forebrain limbic regions involved in stress/conflict anxiety-related processes, which may be relevant for anxiety and affective disorders. Serotonergic neurons in the "lateral wings" of the dorsal raphe nucleus provide inhibitory control over structures controlling fight-or-flight responses. Dysfunction of this pathway could be relevant for panic disorder. Finally, serotonergic neurons in the median raphe nucleus, and the developmentally and functionally-related interfascicular part of the dorsal raphe nucleus, give rise to forebrain limbic projections that are involved in tolerance and coping with aversive stimuli, which could be important for affective disorders like depression. Elucidating the mechanisms through which stress activates these topographically and functionally distinct serotonergic pathways, and how dysfunction of these pathways leads to symptoms of neuropsychiatric disorders, may lead to the development of novel approaches to both the prevention and treatment of anxiety and affective disorders.

  19. Associations between early adrenarche, affective brain function and mental health in children

    PubMed Central

    Whittle, Sarah; Simmons, Julian G.; Byrne, Michelle L.; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L.; Olsson, Craig A.; Dudgeon, Paul; Mundy, Lisa K.; Patton, George C.

    2015-01-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology. PMID:25678548

  20. Associations between early adrenarche, affective brain function and mental health in children.

    PubMed

    Whittle, Sarah; Simmons, Julian G; Byrne, Michelle L; Strikwerda-Brown, Cherie; Kerestes, Rebecca; Seal, Marc L; Olsson, Craig A; Dudgeon, Paul; Mundy, Lisa K; Patton, George C; Allen, Nicholas B

    2015-09-01

    Early timing of adrenarche, associated with relatively high levels of Dehydroepiandrosterone (DHEA) in children, has been associated with mental health and behavioral problems. However, little is known about effects of adreneracheal timing on brain function. The aim of this study was to investigate the effects of early adrenarche (defined by high DHEA levels independent of age) on affective brain function and symptoms of psychopathology in late childhood (N = 83, 43 females, M age 9.53 years, s.d. 0.34 years). Results showed that higher DHEA levels were associated with decreased affect-related brain activity (i) in the mid-cingulate cortex in the whole sample, and (ii) in a number of cortical and subcortical regions in female but not male children. Higher DHEA levels were also associated with increased externalizing symptoms in females, an association that was partly mediated by posterior insula activation to happy facial expressions. These results suggest that timing of adrenarche is an important moderator of affect-related brain function, and that this may be one mechanism linking early adrenarche to psychopathology.

  1. Revealing how species loss affects ecosystem function: the trait-based Price Equation partition.

    PubMed

    Fox, Jeremy W; Harpole, W Stanley

    2008-01-01

    Species loss can alter ecosystem function. Recent work proposes a general theoretical framework, the "Price Equation partition," for understanding how species loss affects ecosystem functions that comprise the summed contributions of individual species (e.g., primary production). The Price Equation partition shows how the difference in function between a pre-species-loss site and a post-loss site can be partitioned into effects of random loss of species richness (species-richness effect; SRE), nonrandom loss of high- or low-functioning species (species-composition effect; SCE), and post-loss changes in the functional contributions of the remaining species (context-dependence effect; CDE). However, the Price Equation partition is silent on the underlying determinants of species' functional contributions. Here we extend the Price Equation partition by using multiple regression to describe how species' functional contributions depend on species' traits. This allows us to reexpress the SCE and CDE in terms of nonrandom loss of species with particular traits (trait-based SCE), and post-loss changes in species' traits and in the relationship between species' traits and species' functional contributions (trait-based CDE). We apply this new trait-based Price Equation partition to studies of species loss from grassland plant communities and protist microcosm food webs. In both studies, post-loss changes in the relationship between species' traits and their functional contributions alter ecosystem function more than nonrandom loss of species with particular traits. The protist microcosm data also illustrate how the trait-based Price Equation partition can be applied when species' functional contributions depend in part on the traits of other species. To do this, we define "synecological" traits that quantify how unique species are (e.g., in diet) compared to other species. Context dependence in the protist microcosm experiment arises in part because species loss alters the

  2. Flow Cytometry Analysis of NK Cell Phenotype and Function in Aging.

    PubMed

    Tarazona, Raquel; Campos, Carmen; Pera, Alejandra; Sanchez-Correa, Beatriz; Solana, Rafael

    2015-01-01

    Natural killer (NK) cells represent a subpopulation of lymphocytes involved in innate immunity, defined recently as group 1 of innate lymphoid cells (ILCs). NK cells are cytotoxic lymphocytes with a relevant role in the destruction of transformed cells as virus-infected or tumor cells, as well as the regulation of the immune response through cytokine and chemokine production that activates other cellular components of innate and adaptive immunity. In humans, NK cell subsets have been defined according to the level of expression of CD56. Aging differentially affects NK cell subsets and NK cell function. Here, we describe protocols for the delineation of NK cell subsets and the analysis of their functional capacity using multiparametric flow cytometry.

  3. Factors affecting the development of somatic cell nuclear transfer embryos in Cattle.

    PubMed

    Akagi, Satoshi; Matsukawa, Kazutsugu; Takahashi, Seiya

    2014-01-01

    Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental ability of somatic cell nuclear transfer embryos in cattle.

  4. Affective Response to a Loved One's Pain: Insula Activity as a Function of Individual Differences

    PubMed Central

    Mazzola, Viridiana; Latorre, Valeria; Petito, Annamaria; Gentili, Nicoletta; Fazio, Leonardo; Popolizio, Teresa; Blasi, Giuseppe; Arciero, Giampiero; Bondolfi, Guido

    2010-01-01

    Individual variability in emotion processing may be associated with genetic variation as well as with psychological predispositions such as dispositional affect styles. Our previous fMRI study demonstrated that amygdala reactivity was independently predicted by affective-cognitive styles (phobic prone or eating disorders prone) and genotype of the serotonin transporter in a discrimination task of fearful facial expressions. Since the insula is associated with the subjective evaluation of bodily states and is involved in human feelings, we explored whether its activity could also vary in function of individual differences. In the present fMRI study, the association between dispositional affects and insula reactivity has been examined in two groups of healthy participants categorized according to affective-cognitive styles (phobic prone or eating disorders prone). Images of the faces of partners and strangers, in both painful and neutral situations, were used as visual stimuli. Interaction analyses indicate significantly different activations in the two groups in reaction to a loved one's pain: the phobic prone group exhibited greater activation in the left posterior insula. These results demonstrate that affective-cognitive style is associated with insula activity in pain empathy processing, suggesting a greater involvement of the insula in feelings for a certain cohort of people. In the mapping of individual differences, these results shed new light on variability in neural networks of emotion. PMID:21179564

  5. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  6. Pleiotropic Mutations at the TUP1 Locus That Affect the Expression of Mating-Type-Dependent Functions in SACCHAROMYCES CEREVISIAE.

    PubMed

    Lemontt, J F; Fugit, D R; Mackay, V L

    1980-04-01

    The umr7-1 mutation, previously identified in a set of mutants that had been selected for defective UV-induced mutagenesis at CAN1, affects other cellular functions, including many of those regulated by the mating-type locus (MAT) in heterothallic Saccharomyces cerevisiae. The recessive umr7-1 allele, mapping approximately 20 cM distal to thr4 on chromosome III, causes clumpy growth in both a and alpha cells and has no apparent effect on a mating functions. However, alpha umr7 meiotic segregants fail to express several alpha-specific functions (e.g., high-frequency conjugation with a strains, secretion of the hormone alpha-factor and response to the hormone a-factor). In addition, alpha umr7 cells exhibit some a-specific characteristics, such as the barrier phenotype (Bar(+)) that prevents diffusion of alpha-factor and an increased mating frequency with alpha strains. The most striking property of alpha umr7 strains is their altered morphology, in which mitotic cells develop an asymmetric pear shape, like that of normal a cells induced to form "shmoos" by interaction with alpha-factor. Some a/alpha-specific diploid functions are also affected by umr7; instead of polar budding patterns, a/alpha umr7/umr7 diploids have medial budding like a/a, alpha/alpha and haploid strains. Moreover, a/alpha umr7/umr7 diploids have lost the ability to sporulate and are Bar(+) like a or a/a strains. Revertant studies indicate that umr7-1 is a single point mutation. The umr7 mutant fails to complement mutants of both tup1 (selected for deoxythymidine monophosphate utilization) and cyc9 (selected for high iso-2-cytochrome c levels), and all three isolates have similar genetic and phenotypic properties. It is suggested that the product of this gene plays some common central role in the complex regulation of the expression of both MAT-dependent and MAT-independent functions.

  7. Gravitational environment produced by a superconducting magnet affects osteoblast morphology and functions

    NASA Astrophysics Data System (ADS)

    Qian, Airong; Zhang, Wei; Weng, Yuanyuan; Tian, Zongcheng; Di, Shengmeng; Yang, Pengfei; Yin, Dachuan; Hu, Lifang; Wang, Zhe; Xu, Huiyun; Shang, Peng

    The aims of this study are to investigate the effects of gravitational environment produced by a superconducting magnet on osteoblast morphology, proliferation and adhesion. A superconducting magnet which can produce large gradient high magnetic field (LGHMF) and provide three apparent gravity levels (0g,1gand2g) was employed to simulate space gravity environment. The effects of LGHMF on osteoblast morphology, proliferation, adhesion and the gene expression of fibronectin and collagen I were detected by scanning electron microscopy, immunocytochemistry, adhesion assays and real time PCR, respectively, after exposure of osteoblasts to LGHMF for 24 h. Osteoblast morphology was affected by LGHMF (0g,1gand2g) and the most evident morphology alteration was observed at 0g condition. Proliferative abilities of MC3T3 and MG-63 cell were affected under LGHMF (0g,1gand2g) conditions compared to control condition. The adhesive abilities of MC3T3 and MG-63 cells to extracellular matrix (ECM) proteins (fibronectin, laminin, collagen IV) were also affected by LGHMF (0g,1gand2g), moreover, the effects of LGHMF on osteoblast adhesion to different ECM proteins were different. Fibronectin gene expression in MG63 cells under zero gravity condition was increased significantly compared to other conditions. Collagen I gene expression in MG-63 and MC3T3 cells was altered by both magnetic field and alerted gravity. The study indicates that the superconducting magnet which can produce LGHMF may be a novel ground-based space gravity simulator and can be used for biological experiment at cellular level.

  8. Altered Disrupted-in-Schizophrenia-1 Function Affects the Development of Cortical Parvalbumin Interneurons by an Indirect Mechanism.

    PubMed

    Borkowska, Malgorzata; Millar, J Kirsty; Price, David J

    2016-01-01

    Disrupted-in-Schizophrenia-1 (DISC1) gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse formation and maintenance of cortical excitatory neurons. Here, the effects of two loss-of-function point mutations in the mouse Disc1 sequence (Q31L and L100P) on cortical inhibitory interneurons were investigated. None of the mutations affected the overall number of interneurons. However, the 100P, but not the 31L, mutation resulted in a significant decrease in the numbers of interneurons expressing parvalbumin mRNA and protein across the sensory cortex. To investigate role of Disc1 in regulation of parvalbumin expression, mouse wild-type Disc-1 or the 100P mutant form were electroporated in utero into cortical excitatory neurons. Overexpression of wild-type Disc1 in these cells caused increased densities of parvalbumin-expressing interneurons in the electroporated area and in areas connected with it, whereas expression of Disc1-100P did not. We conclude that the 100P mutation prevents expression of parvalbumin by a normally sized cohort of interneurons and that altering Disc1 function in cortical excitatory neurons indirectly affects parvalbumin expression by cortical interneurons, perhaps as a result of altered functional input from the excitatory neurons. PMID:27244370

  9. Altered Disrupted-in-Schizophrenia-1 Function Affects the Development of Cortical Parvalbumin Interneurons by an Indirect Mechanism

    PubMed Central

    Millar, J. Kirsty; Price, David J.

    2016-01-01

    Disrupted-in-Schizophrenia-1 (DISC1) gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse formation and maintenance of cortical excitatory neurons. Here, the effects of two loss-of-function point mutations in the mouse Disc1 sequence (Q31L and L100P) on cortical inhibitory interneurons were investigated. None of the mutations affected the overall number of interneurons. However, the 100P, but not the 31L, mutation resulted in a significant decrease in the numbers of interneurons expressing parvalbumin mRNA and protein across the sensory cortex. To investigate role of Disc1 in regulation of parvalbumin expression, mouse wild-type Disc-1 or the 100P mutant form were electroporated in utero into cortical excitatory neurons. Overexpression of wild-type Disc1 in these cells caused increased densities of parvalbumin-expressing interneurons in the electroporated area and in areas connected with it, whereas expression of Disc1-100P did not. We conclude that the 100P mutation prevents expression of parvalbumin by a normally sized cohort of interneurons and that altering Disc1 function in cortical excitatory neurons indirectly affects parvalbumin expression by cortical interneurons, perhaps as a result of altered functional input from the excitatory neurons. PMID:27244370

  10. Cyclin-dependent kinase-mediated phosphorylation of breast cancer metastasis suppressor 1 (BRMS1) affects cell migration.

    PubMed

    Roesley, Siti Nur Ain; Suryadinata, Randy; Morrish, Emma; Tan, Anthonius Ricardo; Issa, Samah M A; Oakhill, Jonathan S; Bernard, Ora; Welch, Danny R; Šarčević, Boris

    2016-01-01

    Expression of Breast Cancer Metastasis Suppressor 1 (BRMS1) reduces the incidence of metastasis in many human cancers, without affecting tumorigenesis. BRMS1 carries out this function through several mechanisms, including regulation of gene expression by binding to the mSin3/histone deacetylase (HDAC) transcriptional repressor complex. In the present study, we show that BRMS1 is a novel substrate of Cyclin-Dependent Kinase 2 (CDK2) that is phosphorylated on serine 237 (S237). Although CDKs are known to regulate cell cycle progression, the mutation of BRMS1 on serine 237 did not affect cell cycle progression and proliferation of MDA-MB-231 breast cancer cells; however, their migration was affected. Phosphorylation of BRMS1 does not affect its association with the mSin3/HDAC transcriptional repressor complex or its transcriptional repressor activity. The serine 237 phosphorylation site is immediately proximal to a C-terminal nuclear localization sequence that plays an important role in BRMS1-mediated metastasis suppression but phosphorylation does not control BRMS1 subcellular localization. Our studies demonstrate that CDK-mediated phosphorylation of BRMS1 regulates the migration of tumor cells.

  11. Altered lysosomal positioning affects lysosomal functions in a cellular model of Huntington's disease.

    PubMed

    Erie, Christine; Sacino, Matthew; Houle, Lauren; Lu, Michael L; Wei, Jianning

    2015-08-01

    Huntington's disease (HD) is a hereditary and devastating neurodegenerative disorder caused by a mutation in the huntingtin protein. Understanding the functions of normal and mutant huntingtin protein is the key to revealing the pathogenesis of HD and developing therapeutic targets. Huntingtin plays an important role in vesicular and organelle trafficking. Lysosomes are dynamic organelles that integrate several degradative pathways and regulate the activity of mammalian target of rapamycin complex 1 (mTORC1). In the present study, we found that the perinuclear accumulation of lysosomes was increased in a cellular model of HD derived from HD knock-in mice and primary fibroblasts from an HD patient. This perinuclear lysosomal accumulation could be reversed when normal huntingtin was overexpressed in HD cells. When we further investigated the functional significance of the increased perinuclear lysosomal accumulation in HD cells, we demonstrated that basal mTORC1 activity was increased in HD cells. In addition, autophagic influx was also increased in HD cells in response to serum deprivation, which leads to premature fusion of lysosomes with autophagosomes. Taken together, our data suggest that the increased perinuclear accumulation of lysosomes may play an important role in HD pathogenesis by altering lysosomal-dependent functions. PMID:25997742

  12. How the sourdough may affect the functional features of leavened baked goods.

    PubMed

    Gobbetti, Marco; Rizzello, Carlo G; Di Cagno, Raffaella; De Angelis, Maria

    2014-02-01

    Sourdough fermentation is one of the oldest food biotechnologies, which has been studied and recently rediscovered for its effect on the sensory, structural, nutritional and shelf life properties of leavened baked goods. Acidification, proteolysis and activation of a number of enzymes as well as the synthesis of microbial metabolites cause several changes during sourdough fermentation, which affect the dough and baked good matrix, and influence the nutritional/functional quality. Currently, the literature is particularly rich of results, which show how the sourdough fermentation may affect the functional features of leavened baked goods. In the form of pre-treating raw materials, fermentation through sourdough may stabilize or to increase the functional value of bran fractions and wheat germ. Sourdough fermentation may decrease the glycaemic response of baked goods, improve the properties and bioavailability of dietary fibre complex and phytochemicals, and may increase the uptake of minerals. Microbial metabolism during sourdough fermentation may also produce new nutritionally active compounds, such as peptides and amino acid derivatives (e.g., γ-amino butyric acid) with various functionalities, and potentially prebiotic exo-polysaccharides. The wheat flour digested via fungal proteases and selected sourdough lactobacilli has been demonstrated to be probably safe for celiac patients.

  13. How the sourdough may affect the functional features of leavened baked goods.

    PubMed

    Gobbetti, Marco; Rizzello, Carlo G; Di Cagno, Raffaella; De Angelis, Maria

    2014-02-01

    Sourdough fermentation is one of the oldest food biotechnologies, which has been studied and recently rediscovered for its effect on the sensory, structural, nutritional and shelf life properties of leavened baked goods. Acidification, proteolysis and activation of a number of enzymes as well as the synthesis of microbial metabolites cause several changes during sourdough fermentation, which affect the dough and baked good matrix, and influence the nutritional/functional quality. Currently, the literature is particularly rich of results, which show how the sourdough fermentation may affect the functional features of leavened baked goods. In the form of pre-treating raw materials, fermentation through sourdough may stabilize or to increase the functional value of bran fractions and wheat germ. Sourdough fermentation may decrease the glycaemic response of baked goods, improve the properties and bioavailability of dietary fibre complex and phytochemicals, and may increase the uptake of minerals. Microbial metabolism during sourdough fermentation may also produce new nutritionally active compounds, such as peptides and amino acid derivatives (e.g., γ-amino butyric acid) with various functionalities, and potentially prebiotic exo-polysaccharides. The wheat flour digested via fungal proteases and selected sourdough lactobacilli has been demonstrated to be probably safe for celiac patients. PMID:24230470

  14. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.

  15. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  16. Morpho-functional characteristics of rat fetal thyroid gland are affected by prenatal dexamethasone exposure.

    PubMed

    Manojlović-Stojanoski, Milica N; Filipović, Branko R; Nestorović, Nataša M; Šošić-Jurjević, Branka T; Ristić, Nataša M; Trifunović, Svetlana L; Milošević, Verica Lj

    2014-06-01

    Thyroid hormones (TH) and glucocorticoids strongly contribute to the maturation of fetal tissues in the preparation for extrauterine life. Influence of maternal dexamethasone (Dx) administration on thyroid glands morpho-functional characteristics of near term rat fetuses was investigated applying unbiased stereology. On the 16th day of pregnancy dams received 1.0mg/Dx/kg/b.w., followed by 0.5mg/Dx/kg/b.w. on the 17th and 18th days of gestation. The control females received the same volume of saline. The volume of fetal thyroid was estimated using Cavalieri's principle; the physical/fractionator design was applied for the determination of absolute number of follicular cells in mitosis and immunohistochemically labeled C cells; C cell volume was measured using the planar rotator. The functional activity of thyroid tissue was provided from thyroglobulin (Tg) and thyroperoxidase (TPO) immunohistochemical staining. Applying these design-based modern stereological methods it was shown that Dx treatment of gravid females led to a significant decrease of fetal thyroid gland volume in 19- and 21-day-old fetuses, due to decreased proliferation of follicular cells. The Tg and TPO immunohistochemistry demonstrated that intensive TH production starts and continues during the examined period in control and Dx-exposed fetuses. Under the influence of Dx the absolute number of C cells was lower in both groups of near term fetuses, although unchanged relation between the two populations of endocrine cells, follicular and C cells suggesting that structural relationships within the gland are preserved. In conclusion maternal glucocorticoid administration at the thyroid gland level exerts growth-inhibitory and maturational promoting effects in near term rat fetuses.

  17. Assessing state stem cell programs in the United States: how has state funding affected publication trends?

    PubMed

    Alberta, Hillary B; Cheng, Albert; Jackson, Emily L; Pjecha, Matthew; Levine, Aaron D

    2015-02-01

    Several states responded to federal funding limitations placed on human embryonic stem cell research and the potential of the field by creating state stem cell funding programs, yet little is known about the impact of these programs. Here we examine how state programs have affected publication trends in four states.

  18. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. PMID:23551936

  19. Primary tumor- and metastasis-derived colon cancer cells differently modulate connexin expression and function in human capillary endothelial cells

    PubMed Central

    Thuringer, Dominique; Berthenet, Kevin; Cronier, Laurent; Solary, Eric; Garrido, Carmen

    2015-01-01

    A gradual loss of functional gap junction between tumor cells has been reported with colorectal cancer (CRC) progression. Here, we explored if colon cancer cells could also affect gap junctions in blood capillary cells. Human microvascular endothelial cells (HMEC) were cultured with two CRC cell lines established from a unique patient. SW480 cells, derived from the primary tumor, migrate much faster across HMEC monolayer than SW620 cells derived from a metastatic site. The motile SW480 cells highly express and release HSP27 that increases gap junction formation with HMEC. Soluble HSP27 phosphorylates the connexin Cx43 on serine residues and induces its interaction with the oncoprotein 14-3-3, which promotes Cx43 delivery at the plasma membrane. The factors secreted by less motile SW620 cells do not affect Cx43 expression but up-regulate the expression of the connexin Cx32 through an activation of the chemokine receptor CXCR2. In turn, SW620 secreted factors induce tubulogenesis and ATP release. Altogether, cell lines derived from CRC primary tumor and metastasis differentially adapt endothelial cell functions by modulating connexin expression through released mediators. PMID:26320187

  20. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis

    PubMed Central

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-01-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios. PMID:26028216

  1. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-06-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios.

  2. The functional cycle of visual arrestins in photoreceptor cells

    PubMed Central

    Gurevich, Vsevolod V.; Hanson, Susan M.; Song, Xiufeng; Vishnivetskiy, Sergey A.; Gurevich, Eugenia V.

    2011-01-01

    Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders. PMID:21824527

  3. Modulation of α power and functional connectivity during facial affect recognition.

    PubMed

    Popov, Tzvetan; Miller, Gregory A; Rockstroh, Brigitte; Weisz, Nathan

    2013-04-01

    Research has linked oscillatory activity in the α frequency range, particularly in sensorimotor cortex, to processing of social actions. Results further suggest involvement of sensorimotor α in the processing of facial expressions, including affect. The sensorimotor face area may be critical for perception of emotional face expression, but the role it plays is unclear. The present study sought to clarify how oscillatory brain activity contributes to or reflects processing of facial affect during changes in facial expression. Neuromagnetic oscillatory brain activity was monitored while 30 volunteers viewed videos of human faces that changed their expression from neutral to fearful, neutral, or happy expressions. Induced changes in α power during the different morphs, source analysis, and graph-theoretic metrics served to identify the role of α power modulation and cross-regional coupling by means of phase synchrony during facial affect recognition. Changes from neutral to emotional faces were associated with a 10-15 Hz power increase localized in bilateral sensorimotor areas, together with occipital power decrease, preceding reported emotional expression recognition. Graph-theoretic analysis revealed that, in the course of a trial, the balance between sensorimotor power increase and decrease was associated with decreased and increased transregional connectedness as measured by node degree. Results suggest that modulations in α power facilitate early registration, with sensorimotor cortex including the sensorimotor face area largely functionally decoupled and thereby protected from additional, disruptive input and that subsequent α power decrease together with increased connectedness of sensorimotor areas facilitates successful facial affect recognition.

  4. Functional connectivity of pain-mediated affect regulation in Borderline Personality Disorder.

    PubMed

    Niedtfeld, Inga; Kirsch, Peter; Schulze, Lars; Herpertz, Sabine C; Bohus, Martin; Schmahl, Christian

    2012-01-01

    Affective instability and self-injurious behavior are important features of Borderline Personality Disorder. Whereas affective instability may be caused by a pattern of limbic hyperreactivity paired with dysfunctional prefrontal regulation mechanisms, painful stimulation was found to reduce affective arousal at the neural level, possibly underlying the soothing effect of pain in BPD.We used psychophysiological interactions to analyze functional connectivity of (para-) limbic brain structures (i.e. amygdala, insula, anterior cingulate cortex) in Borderline Personality Disorder in response to painful stimulation. Therefore, we re-analyzed a dataset from 20 patients with Borderline Personality Disorder and 23 healthy controls who took part in an fMRI-task inducing negative (versus neutral) affect and subsequently applying heat pain (versus warmth perception).Results suggest an enhanced negative coupling between limbic as well as paralimbic regions and prefrontal regions, specifically with the medial and dorsolateral prefrontal cortex, when patients experienced pain in addition to emotional arousing pictures. When neutral pictures were combined with painful heat sensation, we found positive connectivity in Borderline Personality Disorder between (para-)limbic brain areas and parts of the basal ganglia (lentiform nucleus, putamen), as well areas involved in self-referential processing (precuneus and posterior cingulate).We found further evidence for alterations in the emotion regulation process in Borderline Personality Disorder, in the way that pain improves the inhibition of limbic activity by prefrontal areas. This study provides new insights in pain processing in BPD, including enhanced coupling of limbic structures and basal ganglia. PMID:22428013

  5. Telomerase RNA stem terminus element affects template boundary element function, telomere sequence, and shelterin binding.

    PubMed

    Webb, Christopher J; Zakian, Virginia A

    2015-09-01

    The stem terminus element (STE), which was discovered 13 y ago in human telomerase RNA, is required for telomerase activity, yet its mode of action is unknown. We report that the Schizosaccharomyces pombe telomerase RNA, TER1 (telomerase RNA 1), also contains a STE, which is essential for telomere maintenance. Cells expressing a partial loss-of-function TER1 STE allele maintained short stable telomeres by a recombination-independent mechanism. Remarkably, the mutant telomere sequence was different from that of wild-type cells. Generation of the altered sequence is explained by reverse transcription into the template boundary element, demonstrating that the STE helps maintain template boundary element function. The altered telomeres bound less Pot1 (protection of telomeres 1) and Taz1 (telomere-associated in Schizosaccharomyces pombe 1) in vivo. Thus, the S. pombe STE, although distant from the template, ensures proper telomere sequence, which in turn promotes proper assembly of the shelterin complex.

  6. Cells Sensing Mechanical Cues: Stiffness Influences the Lifetime of Cell-Extracellular Matrix Interactions by Affecting the Loading Rate.

    PubMed

    Jiang, Li; Sun, Zhenglong; Chen, Xiaofei; Li, Jing; Xu, Yue; Zu, Yan; Hu, Jiliang; Han, Dong; Yang, Chun

    2016-01-26

    The question of how cells sense substrate mechanical cues has gained increasing attention among biologists. By introducing contour-based data analysis to single-cell force spectroscopy, we identified a loading-rate threshold for the integrin α2β1-DGEA bond beyond which a dramatic increase in bond lifetime was observed. On the basis of mechanical cues (elasticity or topography), the effective spring constant of substrates k is mapped to the loading rate r under actomyosin pulling speed v, which, in turn, affects the lifetime of the integrin-ligand bond. Additionally, downregulating v with a low-dose blebbistatin treatment promotes the neuronal lineage specification of mesenchymal stem cells on osteogenic stiff substrates. Thus, sensing of the loading rate is central to how cells sense mechanical cues that affect cell-extracellular matrix interactions and stem cell differentiation.

  7. Tumors skew endothelial cells to disrupt NK cell, T-cell and macrophage functions

    PubMed Central

    Mulligan, Jennifer K.; Lathers, Deanne M. R.

    2012-01-01

    Introduction Patients and mice with solid tumors, such as Lewis lung carcinoma (LLC), have defects in functions of immune effector cells. Endothelial cells, a component of the tumor vasculature, are potential regulators of immune cell functions. Therefore, these studies examined the impact of exposure to LLC tumor on the ability of endothelial cells to modulate immune cell functions. Materials and methods Endothelial cells were pre-treated with LLC tumor-conditioned medium (EndoT-sup) for 24 h. Control endothelial cells that were exposed to medium (EndoMedia) or epithelial cell-conditioned medium (EndoEpi-sup). After the initial 24 h incubation, endothelial cells were washed and fresh media was added. Cells were allowed to incubate for an additional 24 h. Supernatants from EndoMedia, EndoEpi-sup or EndoT-sup were collected and assayed for immune modulatory products and for immune modulatory activity. Results Supernatant from EndoT-sup contained increased levels of PGE2, IL-6 and VEGF as compared to EndoMedia and EndoEpi-sup controls. NK cell activity, as measured by TNF-α and IFN-γ secretion, was increased following exposure to media conditioned by EndoMedia and EndoEpi-sup. Exposure of NK cells to supernatants of EndoT-sup, also increases TNF-α and IFN-γ secretion, but to a lesser extent than by EndoMedia and EndoEpi-sup. Examination of macrophage functions demonstrated that supernatant from EndoT-sup decreased microbead phagocytosis and increased production of the immune suppressive mediators, IL-10 and PGE2. Lastly, T-cell responses to stimulation with anti-CD3 in the presence of supernatants from EndoT-sup were examined. IFN-γ production by CD8+ T-cells was reduced after exposure to EndoT-sup-conditioned medium, as compared to cells treatments with medium or control conditioned medium. Production of IFN-γ by CD4+ T-cells exposed to EndoT-sup was not altered. Conclusions Taken together, these studies demonstrate that tumors skew endothelial cells to

  8. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function.

    PubMed

    Tajnik, Mojca; Rogalska, Malgorzata Ewa; Bussani, Erica; Barbon, Elena; Balestra, Dario; Pinotti, Mirko; Pagani, Franco

    2016-05-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  9. Laterality affects spontaneous recovery of contralateral hand motor function following motor cortex injury in rhesus monkeys.

    PubMed

    Darling, Warren G; Helle, Nicole; Pizzimenti, Marc A; Rotella, Diane L; Hynes, Stephanie M; Ge, Jizhi; Stilwell-Morecraft, Kimberly S; Morecraft, Robert J

    2013-07-01

    The purpose of this study was to test whether brain laterality influences spontaneous recovery of hand motor function after controlled brain injuries to arm areas of M1 and lateral premotor cortex (LPMC) of the hemisphere contralateral to the preferred hand in rhesus monkeys. We hypothesized that monkeys with stronger hand preference would exhibit poorer recovery of skilled hand use after such brain injury. Degree of handedness was assessed using a standard dexterity board task in which subjects could use either hand to retrieve small food pellets. Fine hand/digit motor function was assessed using a modified dexterity board before and after the M1 and LPMC lesions in ten monkeys. We found a strong negative relationship between the degree of handedness and the recovery of manipulation skill, demonstrating that higher hand preference was associated with poorer recovery of hand fine motor function. We also observed that monkeys with larger lesions within M1 and LPMC had greater initial impairment of manipulation and poorer recovery of reaching skill. We conclude that monkeys with a stronger hand preference are likely to show poorer recovery of contralesional hand fine motor skill after isolated brain lesions affecting the lateral frontal motor areas. These data may be extended to suggest that humans who exhibit weak hand dominance, and perhaps individuals who use both hands for fine motor tasks, may have a more favorable potential for recovery after a unilateral stroke or brain injury affecting the lateral cortical motor areas than individuals with a high degree of hand dominance.

  10. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  11. Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic.

    PubMed

    Frank-Fahle, Béatrice A; Yergeau, Etienne; Greer, Charles W; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.

  12. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function

    PubMed Central

    Bussani, Erica; Barbon, Elena; Pinotti, Mirko; Pagani, Franco

    2016-01-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  13. Effects of light therapy on neuropsychological function and mood in seasonal affective disorder.

    PubMed Central

    Michalon, M; Eskes, G A; Mate-Kole, C C

    1997-01-01

    To date, little attention has been paid to changes in neuropsychological function in seasonal affective disorders (SAD). In this study, we investigated the performance of 30 patients with SAD on a wide range of cognitive variables before and after 2 weeks of light treatment with either white or placebo red light, as well as later in the summertime. Performance of subjects with SAD on neuropsychological tests was compared with a group of 29 age- and education-matched healthy control subjects. The most consistent deficits associated with SAD were on tests of cognitive failures, visual memory, and visual-construction skills. In contrast to specific bright light effects on psychiatric measures, reports of cognitive failures did not change with either light treatment. Visual memory and constructional deficits responded nonspecifically to treatment with either white or the presumed placebo red light. Surprisingly, visual memory deficits were seen again in the summer, at a time when mood, cognitive failures, and other cognitive functions appeared at normal levels. These data suggest that cognitive functioning is affected by SAD. In addition, light treatment may have differential effects on mood and cognition. PMID:9002389

  14. Citral exerts its antifungal activity against Penicillium digitatum by affecting the mitochondrial morphology and function.

    PubMed

    Zheng, Shiju; Jing, Guoxing; Wang, Xiao; Ouyang, Qiuli; Jia, Lei; Tao, Nengguo

    2015-07-01

    This work investigated the effect of citral on the mitochondrial morphology and function of Penicillium digitatum. Citral at concentrations of 2.0 or 4.0 μL/mL strongly damaged mitochondria of test pathogen by causing the loss of matrix and increase of irregular mitochondria. The deformation extent of the mitochondria of P. digitatum enhanced with increasing concentrations of citral, as evidenced by a decrease in intracellular ATP content and an increase in extracellular ATP content of P. digitatum cells. Oxygen consumption showed that citral resulted in an inhibition in the tricarboxylic acid cycle (TCA) pathway of P. digitatum cells, induced a decrease in activities of citrate synthetase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, succinodehydrogenase and the content of citric acid, while enhancing the activity of malic dehydrogenase in P. digitatum cells. Our present results indicated that citral could damage the mitochondrial membrane permeability and disrupt the TCA pathway of P. digitatum.

  15. Expression of Selenoprotein Genes Is Affected by Heat Stress in IPEC-J2 Cells.

    PubMed

    Cao, Lei; Tang, Jiayong; Li, Qiang; Xu, Jingyang; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Shang, Haiying; Cai, Jingyi; Zhao, Hua

    2016-08-01

    The aim of this study was to explore the impacts of heat stress (HS) on expressions of selenoprotein genes in IPEC-J2 cells. Cells were cultured with 5 % CO2-humidified chamber at 37 °C until the cells grew to complete confluence and then exposed to a mild hyperthermia at 41.5 °C (HS) or 37 °C (control) for another 24 h, finally harvested for total RNA or protein extraction. Real-time quantitative PCRs (qPCRs) were performed to compare gene expression of 25 selenoprotein genes, 3 tight junction-related genes, and 10 inflammation-related genes. Protein expressions of heat shock protein 70 (Hsp70) and selenoprotein X and P (SelX and SelP) were also investigated by Western blot. The results showed that HS up-regulated (P < 0.05) Hsp70 and one tight junction-related gene [zonula occludens-1 (Zo-1)] in IPEC-J2 cells. At the same time, HS up-regulated (P < 0.05) 4 selenoprotein genes (Gpx3, Dio2, Selk, Sels) and three inflammation-related genes (Il-6, Icam-1, Tgf-β) and down-regulated (P < 0.05 or as indicated) six selenoprotein genes (Gpx2, Gpx6, Txnrd1, Selh, Selm, Selx) and three inflammation-related genes (Ifn-β, Mcp-1, Tnf-α) in the cells. HS also exhibited impacts on protein expressions, which up-regulated Hsp70, down-regulated SelX, and showed no effect on SelP in IPEC-J2 cells. Our results showed that HS affected the expression of inflammation-related genes and up-regulated gene and protein expressions of Hsp70. The changes of so many selenoprotein genes expression implied a potential link between selenoprotein genes and HS. Moreover, the results provided by this IPEC-J2 model may be used to further study the interactive mechanisms between selenoprotein function and potential intestinal damage induced by HS.

  16. Dietary protein during gestation affects circulating indicators of placental function and fetal development in heifers.

    PubMed

    Sullivan, T M; Micke, G C; Magalhaes, R S; Martin, G B; Wallace, C R; Green, J A; Perry, V E A

    2009-04-01

    The influences of nutritional protein during the first and second trimesters of pregnancy on placental hormones and fetal growth were determined in composite beef heifers. At artificial insemination, heifers were stratified by weight within each composite genotype into 4 treatment groups: High High (HH=1.4kg crude protein (CP)/day for first and second trimesters of gestation; n=16), High Low (HL=1.4kg CP/day for first trimester and 0.4kg CP/day for second trimester; n=19), Low High (LH=0.4kg CP/day for first trimester and 1.4kg CP/day for second trimester; n=17) or Low Low (LL=0.4kg CP/day for first and second trimesters; n=19). Maternal plasma bovine pregnancy associated glycoprotein (bPAG) and progesterone (P4) were determined at gestation day (gd) 28, 82, 179 and 271 (mean gestation length 286 days) in addition to P4 at term. Estrone sulphate (ES) and bovine placental lactogen (bPL) concentrations were measured at gd 124, 179, 236 and 271 and at term in addition to ES at gd 82. Low dietary protein increased placental function as indicated by increased bPAG (P<0.001) and ES (P=0.02) concentrations in first trimester and increased bPL concentrations (P=0.01) in the second trimester of gestation. In the third trimester, when dietary treatment had ceased, placental function was no longer associated with previous dietary treatments. Dam genotype affected placental function as measured by bPL (P<0.001) and ES concentrations (P=0.02). Calf gender, heifer age and maternal insulin-like growth factor (IGF)-I, -II and leptin did not affect hormonal indicators or circulating markers of placental function. Enhanced placental function during the third trimester, as measured by ES, was associated with increased calf birth weight (P=0.003).

  17. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  18. Cadmium affects mitotically inherited histone modification pathways in mouse embryonic stem cells.

    PubMed

    Gadhia, S R; O'Brien, D; Barile, F A

    2015-12-25

    The fetal basis of adult disease (FeBAD) theorizes that embryonic challenges initiate pathologies in adult life through epigenetic modification of gene expression. In addition, inheritance of H3K27 methylation marks, especially in vitro, is still controversial. Metals, such as Cd, are known to affect differentiation, DNA repair and epigenetic status in mES cells. We tested the premise that Cd exerts differential toxicity in mouse embryonic stem (mES) cells by targeting total histone protein (THP) production early in stem cell development, while affecting H3K27-mono-methylation (H3K27me(1)) in latter stages of differentiation. The inability of mES cells to recover from Cd insult at concentrations greater than IC50 indicates that maximum cytotoxicity occurs during initial hours of exposure. Moreover, as a measure of chromatin stability, low dose acute Cd exposure lowers THP production. The heritable effects of Cd exposure on cell proliferation, chromatin stability and transcription observed through several cell population doublings were detected only during alternate passages on days 3, 7, and 11, presumably due to slower maturation of histone methylation marks. These findings demonstrate a selective disruption of chromatin structure following acute Cd exposure, an effect not seen in developmentally mature cells. Hence, we present that acute Cd toxicity is cumulative and disrupts DNA repair, while concurrently affecting cell cycle progression, chromatin stability and transcriptional state in mES cells.

  19. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    PubMed

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells.

  20. Diacylglycerol Kinase ζ Is a Target To Enhance NK Cell Function.

    PubMed

    Yang, Enjun; Singh, Brenal K; Paustian, Amanda M Schmidt; Kambayashi, Taku

    2016-08-01

    Enhancement of NK cell function could be beneficial in treatment of a variety of tumors and infections. However, efforts to improve NK cell function by disrupting negative regulators that target proximal signaling pathways paradoxically results in hyporesponsive rather than hyperresponsive NK cells. In this study, we demonstrate that genetic deletion of diacylglycerol kinase (DGK)ζ, a negative regulator of diacylglycerol-mediated signaling, has the desired effect of enhancing NK cell function due to its distal position in the activating receptor-mediated signaling cascade. Upon stimulation through multiple activating receptors, NK cells from mice lacking DGKζ display increased cytokine production and degranulation in an ERK-dependent manner. Additionally, they have improved cytotoxic functions against tumor cell lines. The enhancement of NK cell function by DGKζ deficiency is NK cell-intrinsic and developmentally independent. Importantly, DGKζ deficiency does not affect inhibitory NK cell receptor expression or function. Thus, DGKζ knockout mice display improved missing self recognition, as evidenced by enhanced rejection of a TAP-deficient tumor in vivo. We propose that enzymes that negatively regulate distal activating receptor signaling pathways such as DGKζ represent novel targets for augmenting the therapeutic potential of NK cells.

  1. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    PubMed Central

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  2. The Functional Effect of Teacher Positive and Neutral Affect on Task Performance of Students with Significant Disabilities

    ERIC Educational Resources Information Center

    Park, Sungho; Singer, George H. S.; Gibson, Mary

    2005-01-01

    The study uses an alternating treatment design to evaluate the functional effect of teacher's affect on students' task performance. Tradition in special education holds that teachers should engage students using positive and enthusiastic affect for task presentations and praise. To test this assumption, we compared two affective conditions. Three…

  3. Beyond growth: novel functions for bacterial cell wall hydrolases.

    PubMed

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  4. Six-Digit CPK and Mildly Affected Renal Function in McArdle Disease

    PubMed Central

    Mcinnes, Andrew D.; DeGroote, Richard J.

    2014-01-01

    A previously healthy, white 12-year-old girl presented with diffuse body aches and poor perfusion. She developed severe respiratory failure and marked rhabdomyolysis and was mechanically ventilated. Although her CPK peaked at 500,000 IU/L, her renal function was mildly affected and her creatinine did not exceed the 0.8 mg/dL. The rhabdomyolysis was gradually resolved following aggressive fluid hydration. The patient did not require dialysis and made a complete recovery. Genetic studies revealed the diagnosis of McArdle disease. PMID:25371840

  5. Strategies for tissue engineering cardiac constructs to affect functional repair following myocardial infarction.

    PubMed

    Ye, Kathy Yuan; Black, Lauren Deems

    2011-10-01

    Tissue-engineered cardiac constructs are a high potential therapy for treating myocardial infarction. These therapies have the ability to regenerate or recreate functional myocardium following the infarction, restoring some of the lost function of the heart and thereby preventing congestive heart failure. Three key factors to consider when developing engineered myocardial tissue include the cell source, the choice of scaffold, and the use of biomimetic culture conditions. This review details the various biomaterials and scaffold types that have been used to generate engineered myocardial tissues as well as a number of different methods used for the fabrication and culture of these constructs. Specific bioreactor design considerations for creating myocardial tissue equivalents in vitro, such as oxygen and nutrient delivery as well as physical stimulation, are also discussed. Lastly, a brief overview of some of the in vivo studies that have been conducted to date and their assessment of the functional benefit in repairing the injured heart with engineered myocardial tissue is provided.

  6. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    NASA Astrophysics Data System (ADS)

    Kal Van Tam, Janice; Uto, Koichiro; Ebara, Mitsuhiro; Pagliari, Stefania; Forte, Giancarlo; Aoyagi, Takao

    2012-12-01

    The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell-matrix interaction, using poly-ɛ-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  7. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective.

  8. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective. PMID:27509764

  9. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors.

    PubMed

    Fedorovich, Natalja E; Kuipers, Elske; Gawlitta, Debby; Dhert, Wouter J A; Alblas, Jacqueline

    2011-10-01

    Insufficient supply of oxygen and nutrients throughout the graft is considered one of the principal limitations in development of large, tissue-engineered bone grafts. Organ or tissue printing by means of three-dimensional (3D) fiber deposition is a novel modality in regenerative medicine that combines pore formation and defined cell placement, and is used here for development of cell-laden hydrogel structures with reproducible internal architecture to sustain oxygen supply and to support adequate tissue development. In this study we tested the effect of porosity on multipotent stromal cells (MSCs) embedded in hydrogel constructs printed with a 3D fiber deposition (3DF) machine. For this, porous and solid alginate hydrogel scaffolds, with MSCs homogeneously dispersed throughout the construct, were printed and analyzed in vitro for the presence of hypoxia markers, metabolism, survival, and osteogenic differentiation. We demonstrated that porosity promotes oxygenation of MSCs in printed hydrogel scaffolds and supported the viability and osteogenic differentiation of embedded cells. Porous and solid printed constructs were subsequently implanted subcutaneously in immunodeficient mice to analyze tissue formation in relation to hypoxia responses of embedded cells. Implantation of printed grafts resulted in ingrowth of vascularized tissue and significantly enhanced oxygenation of embedded MSCs. In conclusion, the introduction of pores significantly enhances the conductive properties of printed hydrogel constructs and contributes to the functionality of embedded osteogenic progenitors.

  10. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Aquaporin-1 (AQP1) has been associated with tumor development. Here, we investigated how AQP1 may affect cell proliferation. The proliferative rate of adult carotid body (CB) cells, known to proliferate under chronic hypoxia, was analyzed in wild-type (AQP1(+/+) ) and knock out (AQP1(-/-) ) mice, maintained in normoxia or exposed to hypoxia while BrdU was administered. Fewer numbers of total BrdU(+) and TH-BrdU(+) cells were observed in AQP1(-/-) mice, indicating a role for AQP1 in CB proliferation. Then, by flow cytometry, cell cycle state and proliferation of cells overexpressing AQP1 were compared to those of wild-type cells. In the AQP1-overexpressing cells, we observed higher cell proliferation and percentages of cells in phases S and G2/M and fewer apoptotic cells after nocodazole treatment were detected by annexin V staining. Also in these cells, proteomic assays showed higher expression of cyclin D1 and E1 and microarray analysis revealed changes in many cell proliferation-related molecules, including, Zeb 2, Jun, NF-kβ, Cxcl9, Cxcl10, TNF, and the TNF receptor. Overall, our results indicate that the presence of AQP1 modifies the expression of key cell cycle proteins apparently related to increases in cell proliferation. This contributes to explaining the presence of AQP1 in many different tumors.

  11. Visualizing the Functional Heterogeneity of Muscle Stem Cells.

    PubMed

    Kitajima, Yasuo; Ogawa, Shizuka; Ono, Yusuke

    2016-01-01

    Skeletal muscle stem cells are satellite cells that play crucial roles in tissue repair and regeneration after muscle injury. Accumulating evidence indicates that satellite cells are genetically and functionally heterogeneous, even within the same muscle. A small population of satellite cells possesses "stemness" and exhibits the remarkable ability to regenerate through robust self-renewal when transplanted into a regenerating muscle niche. In contrast, not all satellite cells self-renew. For example, some cells are committed myogenic progenitors that immediately undergo myogenic differentiation with minimal cell division after activation. Recent studies illuminate the cellular and molecular characteristics of the functional heterogeneity among satellite cells. To evaluate heterogeneity and stem cell dynamics, here we describe methods to conduct a clonal analysis of satellite cells and to visualize a slowly dividing cell population. PMID:27052612

  12. Modest maternal caffeine exposure affects developing embryonic cardiovascular function and growth.

    PubMed

    Momoi, Nobuo; Tinney, Joseph P; Liu, Li J; Elshershari, Huda; Hoffmann, Paul J; Ralphe, John C; Keller, Bradley B; Tobita, Kimimasa

    2008-05-01

    Caffeine consumption during pregnancy is reported to increase the risk of in utero growth restriction and spontaneous abortion. In the present study, we tested the hypothesis that modest maternal caffeine exposure affects in utero developing embryonic cardiovascular (CV) function and growth without altering maternal hemodynamics. Caffeine (10 mg.kg(-1).day(-1) subcutaneous) was administered daily to pregnant CD-1 mice from embryonic days (EDs) 9.5 to 18.5 of a 21-day gestation. We assessed maternal and embryonic CV function at baseline and at peak maternal serum caffeine concentration using high-resolution echocardiography on EDs 9.5, 11.5, 13.5, and 18.5. Maternal caffeine exposure did not influence maternal body weight gain, maternal CV function, or embryo resorption. However, crown-rump length and body weight were reduced in maternal caffeine treated embryos by ED 18.5 (P < 0.05). At peak maternal serum caffeine concentration, embryonic carotid artery, dorsal aorta, and umbilical artery flows transiently decreased from baseline at ED 11.5 (P < 0.05). By ED 13.5, embryonic aortic and umbilical artery flows were insensitive to the peak maternal caffeine concentration; however, the carotid artery flow remained affected. By ED 18.5, baseline embryonic carotid artery flow increased and descending aortic flow decreased versus non-caffeine-exposed embryos. Maternal treatment with the adenosine A(2A) receptor inhibitor reproduced the embryonic hemodynamic effects of maternal caffeine exposure. Adenosine A(2A) receptor gene expression levels of ED 11.5 embryo and ED 18.5 uterus were decreased. Results suggest that modest maternal caffeine exposure has adverse effects on developing embryonic CV function and growth, possibly mediated via adenosine A(2A) receptor blockade.

  13. Colicin Killing: Foiled Cell Defense and Hijacked Cell Functions

    NASA Astrophysics Data System (ADS)

    de Zamaroczy, Miklos; Chauleau, Mathieu

    , which help to advance our understanding of the molecular events governing colicin import. In particular, our review includes the following: (1) Structural data on the tripartite interaction of a colicin with the outer membrane receptor and the translocation machinery, (2) Comparison of the normal cellular functions of the Tol and Ton systems of the inner membrane with their "hijacked" roles during colicin import, (3) An analysis of the interaction of a nuclease-type colicin with its cognate immunity protein in the context of the immunity of producer cells, and of the dissociation of this complex in the context of the attack of the colicin on target cells, (4) Information on the endoproteolytic cleavage, which presumably accompanies the penetration of nuclease-type colicins into the cytoplasm. The new data presented here provides further insight into cellular functions "hijacked" or "borrowed" by colicins to permit their entry into target cells.

  14. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function.

    PubMed

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-07-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell

  15. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function

    PubMed Central

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J.; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-01-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34+ hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34+ cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34+ cells with high (CD34+ MitoHigh) versus low (CD34+ MitoLow) mitochondrial mass. The CD34+ MitoLow fraction contained 6-fold more CD34+CD38− primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34+ MitoHigh fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34+ MitoLow cells was significantly delayed as compared to that of CD34+ MitoHigh cells. The eventual complete differentiation of CD34+ MitoLow cells, which coincided with a robust expansion of the CD34− differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34+ cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of

  16. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis

    PubMed Central

    Kapoor, Sanjay

    2013-01-01

    Rice MADS29 has recently been reported to cause programmed cell death of maternal tissues, the nucellus, and the nucellar projection during early stages of seed development. However, analyses involving OsMADS29 protein expression domains and characterization of OsMADS29 gain-of-function and knockdown phenotypes revealed novel aspects of its function in maintaining hormone homeostasis, which may have a role in the development of embryo and plastid differentiation and starch filling in endosperm cells. The MADS29 transcripts accumulated to high levels soon after fertilization; however, protein accumulation was found to be delayed by at least 4 days. Immunolocalization studies revealed that the protein accumulated initially in the dorsal-vascular trace and the outer layers of endosperm, and subsequently in the embryo and aleurone and subaleurone layers of the endosperm. Ectopic expression of MADS29 resulted in a severely dwarfed phenotype, exhibiting elevated levels of cytokinin, thereby suggesting that cytokinin biosynthesis pathway could be one of the major targets of OsMADS29. Overexpression of OsMADS29 in heterologous BY2 cells was found to mimic the effects of exogenous application of cytokinins that causes differentiation of proplastids to starch-containing amyloplasts and activation of genes involved in the starch biosynthesis pathway. Suppression of MADS29 expression by RNAi severely affected seed set. The surviving seeds were smaller in size, with developmental abnormalities in the embryo and reduced size of endosperm cells, which also contained loosely packed starch granules. Microarray analysis of overexpression and knockdown lines exhibited altered expression of genes involved in plastid biogenesis, starch biosynthesis, cytokinin signalling and biosynthesis. PMID:23929654

  17. Cyclin D1 functions in cell migration.

    PubMed

    Li, Zhiping; Wang, Chenguang; Prendergast, George C; Pestell, Richard G

    2006-11-01

    Cell migration is essential for developmental morphogenesis, tissue repair, and tumor metastasis. A recent study reveals that cyclin D1 acts to promote cell migration by inhibiting Rho/ROCK signaling and expression of thrombospondin-1 (TSP-1), an extracellular matrix protein that regulates cell migration in many settings including cancer. Given the frequent overexpression of cyclin D1 in cancer cells, due to its upregulation by Ras, Rho, Src, and other genes that drive malignant development, the new findings suggest that cyclin D1 may have a central role in mediating invasion and metastasis of cancer cells by controlling Rho/ROCK signaling and matrix deposition of TSP-1.

  18. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    SciTech Connect

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blueher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  19. Functional Connectivity under Anticipation of Shock: Correlates of Trait Anxious Affect versus Induced Anxiety.

    PubMed

    Bijsterbosch, Janine; Smith, Stephen; Bishop, Sonia J

    2015-09-01

    Sustained anxiety about potential future negative events is an important feature of anxiety disorders. In this study, we used a novel anticipation of shock paradigm to investigate individual differences in functional connectivity during prolonged threat of shock. We examined the correlates of between-participant differences in trait anxious affect and induced anxiety, where the latter reflects changes in self-reported anxiety resulting from the shock manipulation. Dissociable effects of trait anxious affect and induced anxiety were observed. Participants with high scores on a latent dimension of anxious affect showed less increase in ventromedial pFC-amygdala connectivity between periods of safety and shock anticipation. Meanwhile, lower levels of induced anxiety were linked to greater augmentation of dorsolateral pFC-anterior insula connectivity during shock anticipation. These findings suggest that ventromedial pFC-amygdala and dorsolateral pFC-insula networks might both contribute to regulation of sustained fear responses, with their recruitment varying independently across participants. The former might reflect an evolutionarily old mechanism for reducing fear or anxiety, whereas the latter might reflect a complementary mechanism by which cognitive control can be implemented to diminish fear responses generated due to anticipation of aversive stimuli or events. These two circuits might provide complementary, alternate targets for exploration in future pharmacological and cognitive intervention studies. PMID:25961638

  20. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise.

  1. Light availability affects stream biofilm bacterial community composition and function, but not diversity.

    PubMed

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R; Battin, Tom J; Bengtsson, Mia M

    2015-12-01

    Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5-152 μmole photons s(-1)  m(-2) ) and combined 454-pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph-derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure-function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes.

  2. Light availability affects stream biofilm bacterial community composition and function, but not diversity.

    PubMed

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R; Battin, Tom J; Bengtsson, Mia M

    2015-12-01

    Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5-152 μmole photons s(-1)  m(-2) ) and combined 454-pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph-derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure-function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911

  3. The consequences of depressive affect on functioning in relation to Cluster B personality disorder features.

    PubMed

    Miller, Joshua D; Gaughan, Eric T; Pryor, Lauren R; Kamen, Charles

    2009-05-01

    The authors examined the effects of depressed affect (DA) on functioning measured by behavioral tasks pertaining to abstract reasoning, social functioning, and delay of gratification in relation to Cluster B personality disorder features (PDs) in a clinical sample. Individuals were randomly assigned to either a DA induction or control condition. Consistent with clinical conceptualizations, the authors expected that Cluster B PD symptoms would be related to maladaptive responding (e.g., poorer delay of gratification) when experiencing DA. As hypothesized, many of the relations between the Cluster B PDs and functioning were moderated by DA (e.g., borderline PD was negatively related to abstract reasoning, but only in the DA condition). However, many of the Cluster B PDs symptom counts were related to more adaptive responses in the DA condition (e.g., less aggressive social functioning, better delay of gratification). The authors speculate that individuals with Cluster B PDs may be more likely to respond maladaptively to alternative negative mood states, such as anger and fear.

  4. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  5. Attachment style predicts affect, cognitive appraisals, and social functioning in daily life.

    PubMed

    Sheinbaum, Tamara; Kwapil, Thomas R; Ballespí, Sergi; Mitjavila, Mercè; Chun, Charlotte A; Silvia, Paul J; Barrantes-Vidal, Neus

    2015-01-01

    The way in which attachment styles are expressed in the moment as individuals navigate their real-life settings has remained an area largely untapped by attachment research. The present study examined how adult attachment styles are expressed in daily life using experience sampling methodology (ESM) in a sample of 206 Spanish young adults. Participants were administered the Attachment Style Interview (ASI) and received personal digital assistants that signaled them randomly eight times per day for 1 week to complete questionnaires about their current experiences and social context. As hypothesized, participants' momentary affective states, cognitive appraisals, and social functioning varied in meaningful ways as a function of their attachment style. Individuals with an anxious attachment, as compared with securely attached individuals, endorsed experiences that were congruent with hyperactivating tendencies, such as higher negative affect, stress, and perceived social rejection. By contrast, individuals with an avoidant attachment, relative to individuals with a secure attachment, endorsed experiences that were consistent with deactivating tendencies, such as decreased positive states and a decreased desire to be with others when alone. Furthermore, the expression of attachment styles in social contexts was shown to be dependent upon the subjective appraisal of the closeness of social contacts, and not merely upon the presence of social interactions. The findings support the ecological validity of the ASI and the person-by-situation character of attachment theory. Moreover, they highlight the utility of ESM for investigating how the predictions derived from attachment theory play out in the natural flow of real life.

  6. Family Functioning and Child Behavioral Problems in Households Affected by HIV and AIDS in Kenya.

    PubMed

    Thurman, Tonya R; Kidman, Rachel; Nice, Johanna; Ikamari, Lawrence

    2015-08-01

    HIV places acute stressors on affected children and families; especially in resource limited contexts like sub-Saharan Africa. Despite their importance, the epidemic's potential consequences for family dynamics and children's psychological health are understudied. Using a population-based sample of 2,487 caregivers and 3,423 children aged 8-14 years from the Central Province of Kenya, analyses were conducted to examine whether parental illness and loss were associated with family functioning and children's externalizing behaviors. After controlling for demographics, a significant relationship between parental illness and externalizing behaviors was found among children of both genders. Orphan status was associated with behavioral problems among only girls. Regardless of gender, children experiencing both parental loss and illness fared the worst. Family functioning measured from the perspective of both caregivers and children also had an independent and important relationship with behavioral problems. Findings suggest that psychological and behavioral health needs may be elevated in households coping with serious illness and reiterate the importance of a family-centered approach for HIV-affected children.

  7. Receptor signaling in immune cell development and function

    PubMed Central

    Shin, Jinwook; Gorentla, Balachandra K.; O’Brien, Tommy; Srivatsan, Sruti; Xu, Li; Chen, Yong; Xie, Danli; Pan, Hongjie

    2011-01-01

    Immune cell development and function must be tightly regulated through cell surface receptors to ensure proper responses to pathogen and tolerance to self. In T cells, the signal from the T-cell receptor is essential for T-cell maturation, homeostasis, and activation. In mast cells, the high-affinity receptor for IgE transduces signal that promotes mast cell survival and induces mast cell activation. In dendritic cells and macrophages, the toll-like receptors recognize microbial pathogens and play critical roles for both innate and adaptive immunity against pathogens. Our research explores how signaling from these receptors is transduced and regulated to better understand these immune cells. Our recent studies have revealed diacylglycerol kinases and TSC1/2-mTOR as critical signaling molecules/regulators in T cells, mast cells, dendritic cells, and macrophages. PMID:21128010

  8. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury.

    PubMed

    Floriddia, Elisa M; Rathore, Khizr I; Tedeschi, Andrea; Quadrato, Giorgia; Wuttke, Anja; Lueckmann, Jan-Matthis; Kigerl, Kristina A; Popovich, Phillip G; Di Giovanni, Simone

    2012-10-01

    Following spinal trauma, the limited physiological axonal sprouting that contributes to partial recovery of function is dependent upon the intrinsic properties of neurons as well as the inhibitory glial environment. The transcription factor p53 is involved in DNA repair, cell cycle, cell survival, and axonal outgrowth, suggesting p53 as key modifier of axonal and glial responses influencing functional recovery following spinal injury. Indeed, in a spinal cord dorsal hemisection injury model, we observed a significant impairment in locomotor recovery in p53(-/-) versus wild-type mice. p53(-/-) spinal cords showed an increased number of activated microglia/macrophages and a larger scar at the lesion site. Loss- and gain-of-function experiments suggested p53 as a direct regulator of microglia/macrophages proliferation. At the axonal level, p53(-/-) mice showed a more pronounced dieback of the corticospinal tract (CST) and a decreased sprouting capacity of both CST and spinal serotoninergic fibers. In vivo expression of p53 in the sensorimotor cortex rescued and enhanced the sprouting potential of the CST in p53(-/-) mice, while, similarly, p53 expression in p53(-/-) cultured cortical neurons rescued a defect in neurite outgrowth, suggesting a direct role for p53 in regulating the intrinsic sprouting ability of CNS neurons. In conclusion, we show that p53 plays an important regulatory role at both extrinsic and intrinsic levels affecting the recovery of motor function following spinal cord injury. Therefore, we propose p53 as a novel potential multilevel therapeutic target for spinal cord injury.

  9. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-01-01

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence. PMID:21170334

  10. Relationship of mercury to cognitive, affective and perceptual motor functioning in a normal sample in Hawaii

    SciTech Connect

    Sine, L.F.

    1983-01-01

    Although the effects of toxic levels of mercury have been well documented, the effects of subclinical levels of mercury on normal populations have generally not been studied. The purpose of this investigation was to assess the impact of mercury risk factors on cognition, affect, psychopathology, and known mercury-related symptoms in a normal sample in Hawaii exposed to subclinical although elevated levels of elemental mercury through inhalation associated with volcanic activity and of methylmercury mostly through ingestion of large ocean species fish. The following summarizes the findings and conclusions of the study: 1) a four week test-retest reliability using 41 of the subjects showed that the 41 measures used in the study exhibited an average correlation of .78. Using all 413 subjects, the average internal consistency measured by Cronbach's ..cap alpha.. was .82 for the 17 affect, psychopathology, and symptom measures; 2) nine mercury source variables were used to predict the amount of total mercury in hair. Interestingly, none of the source variables predicted hair total mercury; 3) the source variables in addition to hair total mercury and statistical control variables were used to predict the twenty-two functioning variables in the four domains cited above with a relative absence of relationships noted. This finding indicates that the normal population in Hawaii appears not to be at risk; and 4) one historical mercury source variable, reported fish intake when young, related to six functioning variables - the psychopathology measures of Somatization, Obsessive-Compulsive and Anxiety as well as the Sensory, Affect and Mental symptoms - with Beta weights in the .15 to .20 range. The implications of the findings were discussed and suggestions offered for future research especially with respect to specific high risk subgroups.

  11. Relationship between Microtubule Network Structure and Intracellular Transport in Cultured Endothelial Cells Affected by Shear Stress

    NASA Astrophysics Data System (ADS)

    Kudo, Susumu; Ikezawa, Kenji; Ikeda, Mariko; Tanishita, Kazuo

    Endothelial cells (ECs) that line the inner surface of blood vessels are barriers to the transport of various substances into or from vessel walls, and are continuously exposed to shear stress induced by blood flow in vivo. Shear stress affects the cytoskeleton (e.g., microtubules, microfilaments, intermediate filaments), and affects the transport of macromolecules. Here, the relationship between the microtubule network structure and this transport process for albumin uptake within cultured aortic endothelial cells affected by shear stress was studied. Based on fluorescent images of albumin uptake obtained by using confocal laser scanning microscopy (CLSM), both the microtubule network and albumin uptake in ECs were disrupted by colchicine and were affected by shear stress loading.

  12. Citrus limon extract: possible inhibitory mechanisms affecting testicular functions and fertility in male mice.

    PubMed

    Singh, Nidhi; Singh, Shio Kumar

    2016-01-01

    The effect of oral administration of 50% ethanolic leaf extract of Citrus limon (500 and 1,000 mg/kg body weight/day) for 35 days on fertility and various male reproductive endpoints was evaluated in Parkes strain of mice. Testicular indices such as histology, 3β- and 17β-HSD enzymes activity, immunoblot expression of StAR and P450scc, and germ cell apoptosis by TUNEL and CASP- 3 expression were assessed. Motility, viability, and number of spermatozoa in the cauda epididymidis, level of serum testosterone, fertility indices, and toxicological parameters were also evaluated. Histologically, testes in extract-treated mice showed nonuniform degenerative changes in the seminiferous tubules. Treatment had adverse effects on steroidogenic markers in the testis and induced germ cell apoptosis. Significant reductions were noted in epididymal sperm parameters and serum level of testosterone in Citrus-treated mice compared to controls. Fertility of the extract-treated males was also suppressed, but libido remained unaffected. By 56 days of treatment withdrawal, alterations induced in the above parameters returned to control levels suggesting that Citrus treatment causes reversible suppression of spermatogenesis and fertility in Parkes mice. Suppression of spermatogenesis may result from germ cell apoptosis because of decreased production of testosterone. The present work indicated that Citrus leaves can affect male reproduction. PMID:26787324

  13. Natural allelic variations in glutathione peroxidase-1 affect its subcellular localization and function.

    PubMed

    Bera, Soumen; Weinberg, Frank; Ekoue, Dede N; Ansenberger-Fricano, Kristine; Mao, Mao; Bonini, Marcelo G; Diamond, Alan M

    2014-09-15

    Glutathione peroxidase 1 (GPx-1) has been implicated in the etiology of several common diseases due to the association between specific allelic variations and cancer risk. The most common among these variations are the codon 198 polymorphism that results in either a leucine or proline and the number of alanine repeat codons in the coding sequence. The molecular and biologic consequences of these variations remain to be characterized. Toward achieving this goal, we have examined the cellular location of GPx-1 encoded by allelic variants by ectopically expressing these genes in MCF-7 human breast carcinoma cells that produce undetectable levels of GPx-1, thus achieving exclusive expression in the same cellular environment. A differential distribution between the cytoplasm and mitochondria was observed, with the allele expressing the leucine-198 polymorphism and 7 alanine repeats being more cytoplasmically located than the other alleles examined. To assess whether the distribution of GPx-1 between the cytoplasm and mitochondria had a biologic consequence, we engineered derivative GPx-1 proteins that were targeted to the mitochondria by the addition of a mitochondria targeting sequence and expressed these proteins in MCF-7 cells. These cells were examined for their response to oxidative stress, energy metabolism, and impact on cancer-associated signaling molecules. The results obtained indicated that both primary GPx-1 sequence and cellular location have a profound impact on cellular biology and offer feasible hypotheses about how expression of distinct GPx-1 alleles can affect cancer risk. Cancer Res; 74(18); 5118-26. ©2014 AACR.

  14. Citrus limon extract: possible inhibitory mechanisms affecting testicular functions and fertility in male mice.

    PubMed

    Singh, Nidhi; Singh, Shio Kumar

    2016-01-01

    The effect of oral administration of 50% ethanolic leaf extract of Citrus limon (500 and 1,000 mg/kg body weight/day) for 35 days on fertility and various male reproductive endpoints was evaluated in Parkes strain of mice. Testicular indices such as histology, 3β- and 17β-HSD enzymes activity, immunoblot expression of StAR and P450scc, and germ cell apoptosis by TUNEL and CASP- 3 expression were assessed. Motility, viability, and number of spermatozoa in the cauda epididymidis, level of serum testosterone, fertility indices, and toxicological parameters were also evaluated. Histologically, testes in extract-treated mice showed nonuniform degenerative changes in the seminiferous tubules. Treatment had adverse effects on steroidogenic markers in the testis and induced germ cell apoptosis. Significant reductions were noted in epididymal sperm parameters and serum level of testosterone in Citrus-treated mice compared to controls. Fertility of the extract-treated males was also suppressed, but libido remained unaffected. By 56 days of treatment withdrawal, alterations induced in the above parameters returned to control levels suggesting that Citrus treatment causes reversible suppression of spermatogenesis and fertility in Parkes mice. Suppression of spermatogenesis may result from germ cell apoptosis because of decreased production of testosterone. The present work indicated that Citrus leaves can affect male reproduction.

  15. Exploring the function of cell shape and size during mitosis.

    PubMed

    Cadart, Clotilde; Zlotek-Zlotkiewicz, Ewa; Le Berre, Maël; Piel, Matthieu; Matthews, Helen K

    2014-04-28

    Dividing cells almost always adopt a spherical shape. This is true of most eukaryotic cells lacking a rigid cell wall and is observed in tissue culture and single-celled organisms, as well as in cells dividing inside tissues. While the mechanisms underlying this shape change are now well described, the functional importance of the spherical mitotic cell for the success of cell division has been thus far scarcely addressed. Here we discuss how mitotic rounding contributes to spindle assembly and positioning, as well as the potential consequences of abnormal mitotic cell shape and size on chromosome segregation, tissue growth, and cancer.

  16. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    SciTech Connect

    Rauner, Gat; Barash, Itamar

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  17. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques.

    PubMed

    Vargas-Inchaustegui, Diego A; Ying, Olivia; Demberg, Thorsten; Robert-Guroff, Marjorie

    2016-01-01

    NK cells are crucial components of the innate immune system due to their capacity to exert rapid cytotoxic and immunomodulatory function in the absence of prior sensitization. NK cells can become activated by exposure to target cells and/or by cytokines produced by antigen-presenting cells. In this study, we examined the effects of a simian immunodeficiency virus (SIV) vaccine regimen and subsequent SIV infection on the cytotoxic and immunomodulatory functions of circulatory NK cells. While vaccination did not significantly impact the capacity of NK cells to kill MHC-devoid 721.221 target cells, SIV-infection led to a significant decrease in target cell killing. NK cells from uninfected macaques were responsive to a low dose (5 ng/ml) of IL-15 pre-activation, leading to significant increases in their cytotoxic potential, however, NK cells from SIV-infected macaques required a higher dose (50 ng/ml) of IL-15 pre-activation in order to significantly increase their cytotoxic potential. By contrast, no differences were observed in the capacity of NK cells from vaccinated and SIV-infected macaques to respond to IL-12 and IL-18. Similarly, NK cells both before and after infection exhibited equivalent responses to Fc-mediated activation. Collectively, our results show that early SIV-infection impairs the natural cytotoxic capacity of circulatory NK cells without affecting Fc-mediated or cytokine-producing function. PMID:27630641

  18. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques

    PubMed Central

    Vargas-Inchaustegui, Diego A.; Ying, Olivia; Demberg, Thorsten; Robert-Guroff, Marjorie

    2016-01-01

    NK cells are crucial components of the innate immune system due to their capacity to exert rapid cytotoxic and immunomodulatory function in the absence of prior sensitization. NK cells can become activated by exposure to target cells and/or by cytokines produced by antigen-presenting cells. In this study, we examined the effects of a simian immunodeficiency virus (SIV) vaccine regimen and subsequent SIV infection on the cytotoxic and immunomodulatory functions of circulatory NK cells. While vaccination did not significantly impact the capacity of NK cells to kill MHC-devoid 721.221 target cells, SIV-infection led to a significant decrease in target cell killing. NK cells from uninfected macaques were responsive to a low dose (5 ng/ml) of IL-15 pre-activation, leading to significant increases in their cytotoxic potential, however, NK cells from SIV-infected macaques required a higher dose (50 ng/ml) of IL-15 pre-activation in order to significantly increase their cytotoxic potential. By contrast, no differences were observed in the capacity of NK cells from vaccinated and SIV-infected macaques to respond to IL-12 and IL-18. Similarly, NK cells both before and after infection exhibited equivalent responses to Fc-mediated activation. Collectively, our results show that early SIV-infection impairs the natural cytotoxic capacity of circulatory NK cells without affecting Fc-mediated or cytokine-producing function.

  19. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques

    PubMed Central

    Vargas-Inchaustegui, Diego A.; Ying, Olivia; Demberg, Thorsten; Robert-Guroff, Marjorie

    2016-01-01

    NK cells are crucial components of the innate immune system due to their capacity to exert rapid cytotoxic and immunomodulatory function in the absence of prior sensitization. NK cells can become activated by exposure to target cells and/or by cytokines produced by antigen-presenting cells. In this study, we examined the effects of a simian immunodeficiency virus (SIV) vaccine regimen and subsequent SIV infection on the cytotoxic and immunomodulatory functions of circulatory NK cells. While vaccination did not significantly impact the capacity of NK cells to kill MHC-devoid 721.221 target cells, SIV-infection led to a significant decrease in target cell killing. NK cells from uninfected macaques were responsive to a low dose (5 ng/ml) of IL-15 pre-activation, leading to significant increases in their cytotoxic potential, however, NK cells from SIV-infected macaques required a higher dose (50 ng/ml) of IL-15 pre-activation in order to significantly increase their cytotoxic potential. By contrast, no differences were observed in the capacity of NK cells from vaccinated and SIV-infected macaques to respond to IL-12 and IL-18. Similarly, NK cells both before and after infection exhibited equivalent responses to Fc-mediated activation. Collectively, our results show that early SIV-infection impairs the natural cytotoxic capacity of circulatory NK cells without affecting Fc-mediated or cytokine-producing function. PMID:27630641

  20. Realistic changes in seaweed biodiversity affect multiple ecosystem functions on a rocky shore.

    PubMed

    Bracken, Matthew E S; Williams, Susan L

    2013-09-01

    Given current threats to biodiversity, understanding the effects of diversity changes on the functions and services associated with intact ecosystems is of paramount importance. However, limited realism in most biodiversity studies makes it difficult to link the large and growing body of evidence for important functional consequences of biodiversity change to real-world losses of biodiversity. Here, we explored two methods of incorporating realism into biodiversity research: (1) the use of two-, five-, and eight-species assemblages that mimicked those that we observed in surveys of seaweed biodiversity patterns on a northern California (USA) rocky shore and the explicit comparison of those assemblages to random assemblages compiled from the same local species pool; and (2) the measurement of two fundamental ecosystem functions, nitrate uptake and photosynthesis, both of which contribute to growth of primary producers. Specifically, we measured nitrate uptake rates of seaweed assemblages as a function of initial nitrate concentrations and photosynthetic rates as a function of irradiance levels for both realistic and random assemblages of seaweeds. We only observed changes in ecosystem functioning along a richness gradient for realistic assemblages, and both maximum nitrate uptake rates (V(max)) and photosynthetic light use efficiency values (alpha(p) = P(max)/I(K)) were higher in realistic assemblages than in random assemblages. Furthermore, the parameter affected by changes in richness depended on the function being measured. Both V(max) and alpha(p) declined with increasing richness in nonrandom assemblages due to a combination of species identity effects (for V(max) and overyielding effects (for both V(max) and alpha(p)). In contrast, neither nitrate uptake efficiency values (alpha(N) = V(max)/K(s)), nor maximum photosynthetic rates (Pmax) changed along the gradient in seaweed species richness. Furthermore, overyielding was only evident in realistic assemblages

  1. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties

    PubMed Central

    Steucke, Kerianne E.; Tracy, Paige V.; Hald, Eric S.; Hall, Jennifer L.; Alford, Patrick W.

    2015-01-01

    Vascular smooth muscle cells’ primary function is to maintain vascular homeostasis through active contraction and relaxation. In diseases such as hypertension and atherosclerosis, this function is inhibited concurrent to changes in the mechanical environment surrounding vascular smooth muscle cells. It is well established that cell function and extracellular mechanics are interconnected; variations in substrate modulus affect cell migration, proliferation, and differentiation. To date, it is unknown how the evolving extracellular mechanical environment of vascular smooth muscle cells affects their contractile function. Here, we have built upon previous vascular muscular thin film technology to develop a variable-modulus vascular muscular thin film that measures vascular tissue functional contractility on substrates with a range of pathological and physiological moduli. Using this modified vascular muscular thin film, we found that vascular smooth muscle cells generated greater stress on substrates with higher moduli compared to substrates with lower moduli. We then measured protein markers typically thought to indicate a contractile phenotype in vascular smooth muscle cells and found that phenotype is unaffected by substrate modulus. These data suggest that mechanical properties of vascular smooth muscle cells’ extracellular environment directly influence their functional behavior and do so without inducing phenotype switching. PMID:26283412

  2. Centriole biogenesis and function in multiciliated cells

    PubMed Central

    Zhang, Siwei; Mitchell, Brian J.

    2016-01-01

    The use of Xenopus embryonic skin as a model system for the development of ciliated epithelia is well established. This tissue is comprised of numerous cell types, most notably the multiciliated cells (MCCs) that each contain approximately 150 motile cilia. At the base of each cilium lies the centriole-based structure called the basal body. Centriole biogenesis is typically restricted to two new centrioles per cell cycle, each templating from an existing “mother” centriole. In contrast, MCCs are post-mitotic cells in which the majority of centrioles arise “de novo” without templating from a mother centriole, instead, these centrioles nucleate from an electron-dense structure termed the deuterostome. How centriole number is regulated in these cells and the mechanism by which the deuterosome templates nascent centrioles is still poorly understood. Here, we describe methods for regulating MCC cell fate as well as for visualizing and manipulating centriole biogenesis. PMID:26175436

  3. Centriole biogenesis and function in multiciliated cells.

    PubMed

    Zhang, Siwei; Mitchell, Brian J

    2015-01-01

    The use of Xenopus embryonic skin as a model system for the development of ciliated epithelia is well established. This tissue is comprised of numerous cell types, most notably the multiciliated cells (MCCs) that each contain approximately 150 motile cilia. At the base of each cilium lies the centriole-based structure called the basal body. Centriole biogenesis is typically restricted to two new centrioles per cell cycle, each templating from an existing "mother" centriole. In contrast, MCCs are post-mitotic cells in which the majority of centrioles arise "de novo" without templating from a mother centriole, instead, these centrioles nucleate from an electron-dense structure termed the deuterostome. How centriole number is regulated in these cells and the mechanism by which the deuterosome templates nascent centrioles is still poorly understood. Here, we describe methods for regulating MCC cell fate as well as for visualizing and manipulating centriole biogenesis.

  4. Deficient natural killer cell function in preeclampsia

    SciTech Connect

    Alanen, A.; Lassila, O.

    1982-11-01

    Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.

  5. Earthworm-Mycorrhiza Interactions Can Affect the Diversity, Structure and Functioning of Establishing Model Grassland Communities

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m−2). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  6. Catechins Variously Affect Activities of Conjugation Enzymes in Proliferating and Differentiated Caco-2 Cells.

    PubMed

    Lněničková, Kateřina; Procházková, Eliška; Skálová, Lenka; Matoušková, Petra; Bártíková, Hana; Souček, Pavel; Szotáková, Barbora

    2016-01-01

    The knowledge of processes in intestinal cells is essential, as most xenobiotics come into contact with the small intestine first. Caco-2 cells are human colorectal adenocarcinoma that once differentiated, exhibit enterocyte-like characteristics. Our study compares activities and expressions of important conjugation enzymes and their modulation by green tea extract (GTE) and epigallocatechin gallate (EGCG) using both proliferating (P) and differentiated (D) caco-2 cells. The mRNA levels of the main conjugation enzymes were significantly elevated after the differentiation of Caco-2 cells. However, no increase in conjugation enzymes' activities in differentiated cells was detected in comparison to proliferating ones. GTE/EGCG treatment did not affect the mRNA levels of any of the conjugation enzymes tested in either type of cells. Concerning conjugation enzymes activities, GTE/EGCG treatment elevated glutathione S-transferase (GST) activity by approx. 30% and inhibited catechol-O-methyltransferase (COMT) activity by approx. 20% in differentiated cells. On the other hand, GTE as well as EGCG treatment did not significantly affect the activities of conjugation enzymes in proliferating cells. Administration of GTE/EGCG mediated only mild changes of GST and COMT activities in enterocyte-like cells, indicating a low risk of GTE/EGCG interactions with concomitantly administered drugs. However, a considerable chemo-protective effect of GTE via the pronounced induction of detoxifying enzymes cannot be expected as well. PMID:27617982

  7. Normal Development and Function of T Cells in Proline Rich 7 (Prr7) Deficient Mice

    PubMed Central

    Hrdinka, Matous; Sudan, Kritika; Just, Sissy; Drobek, Ales; Stepanek, Ondrej; Schlüter, Dirk; Reinhold, Dirk; Jordan, Bryen A.; Gintschel, Patricia; Schraven, Burkhart; Kreutz, Michael R.

    2016-01-01

    Transmembrane adaptor proteins (TRAPs) are important organisers for the transduction of immunoreceptor-mediated signals. Prr7 is a TRAP that regulates T cell receptor (TCR) signalling and potently induces cell death when overexpressed in human Jurkat T cells. Whether endogenous Prr7 has a similar functional role is currently unknown. To address this issue, we analysed the development and function of the immune system in Prr7 knockout mice. We found that loss of Prr7 partially impairs development of single positive CD4+ T cells in the thymus but has no effect on the development of other T cell subpopulations, B cells, NK cells, or NKT cells. Moreover, Prr7 does not affect the TCR signalling pathway as T cells derived from Prr7 knockout and wild-type animals and stimulated in vitro express the same levels of the activation marker CD69, and retain their ability to proliferate and activate induced cell death programs. Importantly, Prr7 knockout mice retained the capacity to mount a protective immune response when challenged with Listeria monocytogenes infection in vivo. In addition, T cell effector functions (activation, migration, and reactivation) were normal following induction of experimental autoimmune encephalomyelitis (EAE) in Prr7 knockout mice. Collectively, our work shows that loss of Prr7 does not result in a major immune system phenotype and suggests that Prr7 has a dispensable function for TCR signalling. PMID:27657535

  8. Megakaryocytes and platelets express nicotinic acetylcholine receptors but nicotine does not affect megakaryopoiesis or platelet function.

    PubMed

    Schedel, Angelika; Kaiser, Kerstin; Uhlig, Stefanie; Lorenz, Florian; Sarin, Anip; Starigk, Julian; Hassmann, Dennis; Bieback, Karen; Bugert, Peter

    2016-01-01

    In our previous investigations we have shown that platelets and their precursors express nicotinic α7 acetylcholine receptors (nAChRα7) that are involved in platelet function and in vitro differentiation of the megakaryoblastic cell line MEG-01. In this study, we were interested in the expression analysis of additional nAChR and the effects of nicotine in an ex vivo model using megakaryocytic cells differentiated from cord blood derived CD34(+) cells (CBMK) and an in vivo model using blood samples from smokers. CBMK were differentiated with thrombopoietin (TPO) for up to 17 days. Quantitative real-time PCR (QRT-PCR), Western blot analysis and flow cytometry were used to investigate nAChR expression (nAChRα7, nAChRα4, nAChRβ2) and nicotine effects. In blood samples of 15 nonsmokers and 16 smokers platelet parameters (count, mean platelet volume--MPV and platelet distribution width--PDW) were determined as indicators for changes of in vivo megakaryopoiesis. Platelet function was determined by the use of whole blood aggregometry and flow cytometry. The functional role of nAChR was evaluated using specific antagonists in aggregometry. CHRNA7, CHRNA4 and CHRNB2 gene transcripts and the corresponding proteins could be identified in CBMK during all stages of differentiation. Platelets contain nAChRα7 and nAChRβ2 but not nAChRα4. Nicotine had no effect on TPO-induced differentiation of CBMK. There was no significant difference in all platelet parameters of the smokers compared to the nonsmokers. In line with this, cholinergic gene transcripts as well as the encoded proteins were equally expressed in both the study groups. Despite our observation of nAChR expression in megakaryopoiesis and platelets, we were not able to detect effects of nicotine in our ex vivo and in vivo models. Thus, the functional role of the nAChR in these cells remains open.

  9. AZFc deletions do not affect the function of human spermatogonia in vitro

    PubMed Central

    Nickkholgh, B.; Korver, C.M.; van Daalen, S.K.M.; van Pelt, A.M.M.; Repping, S.

    2015-01-01

    Azoospermic factor c (AZFc) deletions are the underlying cause in 10% of azoo- or severe oligozoospermia. Through extensive molecular analysis the precise genetic content of the AZFc region and the origin of its deletion have been determined. However, little is known about the effect of AZFc deletions on the functionality of germ cells at various developmental steps. The presence of normal, fertilization-competent sperm in the ejaculate and/or testis of the majority of men with AZFc deletions suggests that the process of differentiation from spermatogonial stem cells (SSCs) to mature spermatozoa can take place in the absence of the AZFc region. To determine the functionality of AZFc-deleted spermatogonia, we compared in vitro propagated spermatogonia from six men with complete AZFc deletions with spermatogonia from three normozoospermic controls. We found that spermatogonia of AZFc-deleted men behave similar to controls during culture. Short-term (18 days) and long-term (48 days) culture of AZFc-deleted spermatogonia showed the same characteristics as non-deleted spermatogonia. This similarity was revealed by the same number of passages, the same germ cell clusters formation and similar level of genes expression of spermatogonial markers including ubiquitin carboxyl-terminal esterase L1 (UCHL1), zinc finger and BTB domain containing 16 (ZBTB16) and glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRA1), as well as germ cell differentiation markers including signal transducer and activator of transcription 3 (STAT3), spermatogenesis and oogenesis specific basic helix-loophelix 2 (SOHLH2), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) and synaptonemal complex protein 3 (SYCP3). The only exception was melanoma antigen family A4 (MAGEA4) which showed significantly lower expression in AZFc-deleted samples than controls in short-term culture while in long-term culture it was hardly detected in both AZFc-deleted and control

  10. Cell differentiation within a yeast colony: metabolic and regulatory parallels with a tumor-affected organism.

    PubMed

    Cáp, Michal; Stěpánek, Luděk; Harant, Karel; Váchová, Libuše; Palková, Zdena

    2012-05-25

    Nutrient sensing and metabolic reprogramming are crucial for metazoan cell aging and tumor growth. Here, we identify metabolic and regulatory parallels between a layered, multicellular yeast colony and a tumor-affected organism. During development, a yeast colony stratifies into U and L cells occupying the upper and lower colony regions, respectively. U cells activate a unique metabolism controlled by the glutamine-induced TOR pathway, amino acid-sensing systems (SPS and Gcn4p) and signaling from mitochondria with lowered respiration. These systems jointly modulate U cell physiology, which adapts to nutrient limitations and utilize the nutrients released from L cells. Stress-resistant U cells share metabolic pathways and other similar characteristics with tumor cells, including the ability to proliferate. L cells behave similarly to stressed and starving cells, which activate degradative mechanisms to provide nutrients to U cells. Our data suggest a nutrient flow between both cell types, resembling the Cori cycle and glutamine-NH(4)(+) shuttle between tumor and healthy metazoan cells.

  11. Cell autonomy of DSCAM function in retinal development.

    PubMed

    Fuerst, Peter G; Bruce, Freyja; Rounds, Ryan P; Erskine, Lynda; Burgess, Robert W

    2012-01-15

    Cell adhesion molecules (CAMs) provide identifying cues by which neural architecture is sculpted. The Down Syndrome Cell Adhesion Molecule (DSCAM) is required for many neurodevelopmental processes in different species and also has several potential mechanisms of activity, including homophilic adhesion, homophilic repulsion and heterophilic interactions. In the mouse retina, Dscam is expressed in many, but not all neuronal subtypes. Mutations in Dscam cause the fasciculation of dendrites of neighboring homotypic neurons, indicating a role in self-avoidance among cells of a given type, a disruption of the non-random patterning of their cell bodies, and a decrease in developmental cell death in affected cell populations. In order to address how DSCAM facilitates retinal pattering, we developed a conditional allele of Dscam to use alongside existing Dscam mutant mouse strains. Conditional deletion of Dscam reproduces cell spacing, cell number and dendrite arborization defects. Inducible deletion of Dscam and retinal ganglion cell depletion in Brn3b mutant retinas both indicate that these DSCAM-mediated phenotypes can occur independently. In chimeric retinas, in which wild type and Dscam mutant cells are comingled, Dscam mutant cells entangle adjacent wild type cells of the same type, as if both cells were lacking Dscam, consistent with DSCAM-dependent cell spacing and neurite arborization being mediated through homophilic binding cell-to-cell. Deletion of Dscam in specific cell types causes cell-type-autonomous cell body spacing defects, indicating that DSCAM mediates arborization and spacing by acting within given cell types. We also examine the cell autonomy of DSCAM in laminar stratification and find that laminar disorganization can be caused in a non-cell autonomous fashion. Finally, we find Dscam dosage-dependent defects in developmental cell death and amacrine cell spacing, relevant to the increased cell death and other disorders observed in Down syndrome mouse

  12. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    PubMed Central

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  13. Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses.

    PubMed

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Ledesma, Maria Dolores; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2015-09-01

    The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4(+) T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation, and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward proinflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD(+) levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify strategies for intervention in mitochondrial-related diseases.

  14. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions.

  15. Static magnetic fields affect capillary flow of red blood cells in striated skin muscle.

    PubMed

    Brix, Gunnar; Strieth, Sebastian; Strelczyk, Donata; Dellian, Marc; Griebel, Jürgen; Eichhorn, Martin E; Andrā, Wilfried; Bellemann, Matthias E

    2008-01-01

    Blood flowing in microvessels is one possible site of action of static magnetic fields (SMFs). We evaluated SMF effects on capillary flow of red blood cells (RBCs) in unanesthetized hamsters, using a skinfold chamber technique for intravital fluorescence microscopy. By this approach, capillary RBC velocities (v(RBC)), capillary diameters (D), arteriolar diameters (D(art)), and functional vessel densities (FVD) were measured in striated skin muscle at different magnetic flux densities. Exposure above a threshold level of about 500 mT resulted in a significant (P < 0.001) reduction of v(RBC) in capillaries as compared to the baseline value. At the maximum field strength of 587 mT, v(RBC) was reduced by more than 40%. Flow reduction was reversible when the field strength was decreased below the threshold level. In contrast, mean values determined at different exposure levels for the parameters D, D(art), and FVD did not vary by more than 5%. Blood flow through capillary networks is affected by strong SMFs directed perpendicular to the vessels. Since the influence of SMFs on blood flow in microvessels directed parallel to the field as well as on collateral blood supply could not be studied, our findings should be carefully interpreted with respect to the setting of safety guidelines.

  16. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms

    PubMed Central

    Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions. PMID:26098633

  17. Haemoglobin synthesis in K562 erythroleukaemia cells is affected by intimate contact with monolayers of various human cell types.

    PubMed

    Zuhrie, S R; Pearson, J D; Wickramasinghe, S N

    1988-01-01

    The haemoglobin content of K562 erythroleukaemia cells was affected by co-culture over monolayers of various human cell types. Haemoglobin synthesis was increased after co-culture with umbilical-cord-derived endothelial cells and most monolayers of bone-marrow-derived macrophages, and inhibited after co-culture with two fibroblast lines, blood-monocyte-derived macrophages, a neuroglial cell line (U-251 MG) and most monolayers of bone-marrow-derived stromal cells. These effects were modified when a thin layer of agar was placed over the monolayers. Cell-free culture media conditioned by all but two of the seven types of monolayer studied inhibited haemoglobin synthesis by K562 cells; those conditioned by blood-monocyte-derived macrophages and two of 11 monolayers of bone-marrow-derived macrophages stimulated haemoglobin synthesis. Thus, the haemoglobin content of K562 cells appeared to be influenced both by intimate contact between K562 cells and the cells of the monolayers and by humoral factors released by the monolayers. The data support the concept that erythroid differentiation is partly dependent on intimate contact between erythroid progenitor cells and microenvironmental cells.

  18. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance.

  19. Aesthetic and Functional Rehabilitation of the Primary Dentition Affected by Amelogenesis Imperfecta

    PubMed Central

    Marquezin, Maria Carolina Salomé; Zancopé, Bruna Raquel; Pacheco, Larissa Ferreira; Gavião, Maria Beatriz Duarte; Pascon, Fernanda Miori

    2015-01-01

    The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child's psychosocial development. PMID:25705526

  20. Aesthetic and functional rehabilitation of the primary dentition affected by amelogenesis imperfecta.

    PubMed

    Marquezin, Maria Carolina Salomé; Zancopé, Bruna Raquel; Pacheco, Larissa Ferreira; Gavião, Maria Beatriz Duarte; Pascon, Fernanda Miori

    2015-01-01

    The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child's psychosocial development. PMID:25705526

  1. Prospective Memory Function in Late Adulthood: Affect at Encoding and Resource Allocation Costs

    PubMed Central

    Henry, Julie D.; Joeffry, Sebastian; Terrett, Gill; Ballhausen, Nicola; Kliegel, Matthias; Rendell, Peter G.

    2015-01-01

    Some studies have found that prospective memory (PM) cues which are emotionally valenced influence age effects in prospective remembering, but it remains unclear whether this effect reflects the operation of processes implemented at encoding or retrieval. In addition, none of the prior ageing studies of valence on PM function have examined potential costs of engaging in different valence conditions, or resource allocation trade-offs between the PM and the ongoing task. In the present study, younger, young-old and old-old adults completed a PM task in which the valence of the cues varied systematically (positive, negative or neutral) at encoding, but was kept constant (neutral) at retrieval. The results indicated that PM accuracy did not vary as a function of affect at encoding, and that this effect did not interact with age group. There was also no main or interaction effect of valence on PM reaction time in PM cue trials, indicating that valence costs across the three encoding conditions were equivalent. Old-old adults’ PM accuracy was reduced relative to both young-old and younger adults. Prospective remembering incurred dual-task costs for all three groups. Analyses of reaction time data suggested that for both young-old and old-old, these costs were greater, implying differential resource allocation cost trade-offs. However, when reaction time data were expressed as a proportional change that adjusted for the general slowing of the older adults, costs did not differ as a function of group. PMID:25893540

  2. Proliferation of Purple Sulphur Bacteria at the Sediment Surface Affects Intertidal Mat Diversity and Functionality

    PubMed Central

    Hubas, Cédric; Jesus, Bruno; Ruivo, Mickael; Meziane, Tarik; Thiney, Najet; Davoult, Dominique; Spilmont, Nicolas; Paterson, David M.; Jeanthon, Christian

    2013-01-01

    There is a relative absence of studies dealing with mats of purple sulphur bacteria in the intertidal zone. These bacteria display an array of metabolic pathways that allow them to disperse and develop under a wide variety of conditions, making these mats important in terms of ecosystem processes and functions. Mass blooms of purple sulphur bacteria develop during summer on sediments in the intertidal zone especially on macroalgal deposits. The microbial composition of different types of mats differentially affected by the development of purple sulphur bacteria was examined, at low tide, using a set of biochemical markers (fatty acids, pigments) and composition was assessed against their influence on ecosystem functions (sediment cohesiveness, CO2 fixation). We demonstrated that proliferation of purple sulphur bacteria has a major impact on intertidal mats diversity and functions. Indeed, assemblages dominated by purple sulphur bacteria (Chromatiaceae) were efficient exopolymer producers and their biostabilisation potential was significant. In addition, the massive growth of purple sulphur bacteria resulted in a net CO2 degassing whereas diatom dominated biofilms represented a net CO2 sink. PMID:24340018

  3. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  4. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef

    PubMed Central

    Burkepile, Deron E.; Hay, Mark E.

    2008-01-01

    Consumer effects on prey are well known for cascading through food webs and producing dramatic top-down effects on community structure and ecosystem function. Bottom-up effects of prey (primary producer) biodiversity are also well known. However, the role of consumer diversity in affecting community structure or ecosystem function is not well understood. Here, we show that herbivore species richness can be critical for maintaining the structure and function of coral reefs. In two experiments over 2 years, we constructed large cages enclosing single herbivore species, equal densities of mixed species of herbivores, or excluding herbivores and assessed effects on both seaweeds and corals. When compared with single-herbivore treatments, mixed-herbivore treatments lowered macroalgal abundance by 54–76%, enhanced cover of crustose coralline algae (preferred recruitment sites for corals) by 52–64%, increased coral cover by 22%, and prevented coral mortality. Complementary feeding by herbivorous fishes drove the herbivore richness effects, because macroalgae were unable to effectively deter fishes with different feeding strategies. Maintaining herbivore species richness appears critical for preserving coral reefs, because complementary feeding by diverse herbivores produces positive, but indirect, effects on corals, the foundation species for the ecosystem. PMID:18845686

  5. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease.

    PubMed

    Jensen, Majbrit M; Arvaniti, Maria; Mikkelsen, Jens D; Michalski, Dominik; Pinborg, Lars H; Härtig, Wolfgang; Thomsen, Morten S

    2015-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial frontal gyrus from AD patients and found significantly increased PSCA levels (approximately 70%). In contrast, no changes in Lypd6 levels were detected. In concordance with our findings in AD patients, PSCA levels were increased in the frontal cortex of triple transgenic mice with an AD-like pathology harboring human transgenes that cause both age-dependent β-amyloidosis and tauopathy, whereas Tg2576 mice, which display β-amyloidosis only, had unchanged PSCA levels compared to wild-type animals. These findings identify PSCA as a nAChR-binding protein in the human brain that is affected in AD, suggesting that PSCA-nAChR interactions may be involved in the cognitive dysfunction observed in AD. PMID:25680266

  6. Exposure to Phthalates Affects Calcium Handling and Intercellular Connectivity of Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Posnack, Nikki Gillum; Idrees, Rabia; Ding, Hao; Jaimes III, Rafael; Stybayeva, Gulnaz; Karabekian, Zaruhi; Laflamme, Michael A.; Sarvazyan, Narine

    2015-01-01

    Background The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC) products. Di-2-ethylhexyl-phthalate (DEHP) is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes. Methods and Results The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 – 50 μg/mL), and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 – 72 hr) had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM), an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP’s effects on calcium transient morphology or spontaneous beating rate. Conclusions Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure. PMID:25799571

  7. Cell Adhesion on Surface-Functionalized Magnesium.

    PubMed

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  8. Decreased Zinc Availability Affects Glutathione Metabolism in Neuronal Cells and in the Developing Brain

    PubMed Central

    Omata, Yo; Salvador, Gabriela A.; Oteiza, Patricia I.

    2013-01-01

    A deficit in zinc (Zn) availability can increase cell oxidant production, affect the antioxidant defense system, and trigger oxidant-sensitive signals in neuronal cells. This work tested the hypothesis that a decreased Zn availability can affect glutathione (GSH) metabolism in the developing rat brain and in neuronal cells in culture, as well as the capacity of human neuroblastoma IMR-32 cells to upregulate GSH when challenged with dopamine (DA). GSH levels were low in the brain of gestation day 19 (GD19) fetuses from dams fed marginal Zn diets throughout gestation and in Zn-deficient IMR-32 cells. γ-Glutamylcysteine synthetase (GCL), the first enzyme in the GSH synthetic pathway, was altered by Zn deficiency (ZD). The protein and mRNA levels of the GCL modifier (GCLM) and catalytic (GCLC) subunits were lower in the Zn-deficient GD19 fetal brain and in IMR-32 cells compared with controls. The nuclear translocation of transcription factor nuclear factor (erythroid-derived 2)-like 2, which controls GCL transcription, was impaired by ZD. Posttranslationally, the caspase-3-dependent GCLC cleavage was high in Zn-deficient IMR-32 cells. Cells challenged with DA showed an increase in GCLM and GCLC protein and mRNA levels and a consequent increase in GSH concentration. Although Zn-deficient cells partially upregulated GCL subunits after exposure to DA, GSH content remained low. In summary, results show that a low Zn availability affects the GSH synthetic pathway in neuronal cells and fetal brain both at transcriptional and posttranslational levels. This can in part underlie the GSH depletion associated with ZD and the high sensitivity of Zn-deficient neurons to pro-oxidative stressors. PMID:23377617

  9. Effects of leptin replacement therapy on pancreatic β-cell function in patients with lipodystrophy.

    PubMed

    Muniyappa, Ranganath; Brown, Rebecca J; Mari, Andrea; Joseph, Jalaja; Warren, Mary A; Cochran, Elaine K; Skarulis, Monica C; Gorden, Phillip

    2014-04-01

    OBJECTIVE Leptin administration is known to directly modulate pancreatic β-cell function in leptin-deficient rodent models. However, human studies examining the effects of leptin administration on β-cell function are lacking. In this study, we examined the effects (16-20 weeks) of leptin replacement on β-cell function in patients with lipodystrophy. RESEARCH DESIGN AND METHODS In a prospective, open-label, currently ongoing study, we studied the effects of leptin replacement on β-cell function in 13 patients with congenital or acquired lipodystrophy. Insulin secretory rate (ISR) was calculated by C-peptide deconvolution from plasma glucose and C-peptide levels measured during oral glucose tolerance tests (OGTTs) performed at baseline and after 16-20 weeks of leptin replacement. β-Cell glucose sensitivity and rate sensitivity were assessed by mathematical modeling of OGTT. RESULTS There was a significant decrease in triglycerides, free fatty acids, and glycosylated hemoglobin levels (A1C) after leptin therapy. Patients with lipodystrophy have high fasting and glucose-stimulated ISR. However, leptin therapy had no significant effect on fasting ISR, total insulin secretion during OGTT, β-cell glucose sensitivity, rate sensitivity, or insulin clearance. CONCLUSIONS In contrast to the suppressive effects of leptin on β-cell function in rodents, 16-20-week treatment with leptin in lipodystrophy patients did not significantly affect insulin secretion or β-cell function in leptin-deficient individuals with lipodystrophy.

  10. Microchannel Acoustophoresis does not Impact Survival or Function of Microglia, Leukocytes or Tumor Cells

    PubMed Central

    Lenshof, Andreas; Augustsson, Per; Hansson, Magnus J.; Elmér, Eskil; Lilja, Hans; Brundin, Patrik; Laurell, Thomas; Deierborg, Tomas

    2013-01-01

    Background The use of acoustic forces to manipulate particles or cells at the microfluidic scale (i.e. acoustophoresis), enables non-contact, label-free separation based on intrinsic cell properties such as size, density and compressibility. Acoustophoresis holds great promise as a cell separation technique in several research and clinical areas. However, it has been suggested that the force acting upon cells undergoing acoustophoresis may impact cell viability, proliferation or cell function via subtle phenotypic changes. If this were the case, it would suggest that the acoustophoresis method would be a less useful tool for many cell analysis applications as well as for cell therapy. Methods We investigate, for the first time, several key aspects of cellular changes following acoustophoretic processing. We used two settings of ultrasonic actuation, one that is used for cell sorting (10 Vpp operating voltage) and one that is close to the maximum of what the system can generate (20 Vpp). We used microglial cells and assessed cell viability and proliferation, as well as the inflammatory response that is indicative of more subtle changes in cellular phenotype. Furthermore, we adapted a similar methodology to monitor the response of human prostate cancer cells to acoustophoretic processing. Lastly, we analyzed the respiratory properties of human leukocytes and thrombocytes to explore if acoustophoretic processing has adverse effects. Results BV2 microglia were unaltered after acoustophoretic processing as measured by apoptosis and cell turnover assays as well as inflammatory cytokine response up to 48 h following acoustophoresis. Similarly, we found that acoustophoretic processing neither affected the cell viability of prostate cancer cells nor altered their prostate-specific antigen secretion following androgen receptor activation. Finally, human thrombocytes and leukocytes displayed unaltered mitochondrial respiratory function and integrity after acoustophoretic

  11. Role of SHIP1 in Invariant NKT Cell Development and Functions.

    PubMed

    Anderson, Courtney K; Salter, Alexander I; Toussaint, Leon E; Reilly, Emma C; Fugère, Céline; Srivastava, Neetu; Kerr, William G; Brossay, Laurent

    2015-09-01

    SHIP1 is a 5'-inositol phosphatase known to negatively regulate the signaling product of the PI3K pathway, phosphatidylinositol (3-5)-trisphosphate. SHIP1 is recruited to a large number of inhibitory receptors expressed on invariant NK (iNKT) cells. We hypothesized that SHIP1 deletion would have major effects on iNKT cell development by altering the thresholds for positive and negative selection. Germline SHIP1 deletion has been shown to affect T cells as well as other immune cell populations. However, the role of SHIP1 on T cell function has been controversial, and its participation on iNKT cell development and function has not been examined. We evaluated the consequences of SHIP1 deletion on iNKT cells using germline-deficient mice, chimeric mice, and conditionally deficient mice. We found that T cell and iNKT cell development are impaired in germline-deficient animals. However, this phenotype can be rescued by extrinsic expression of SHIP1. In contrast, SHIP1 is required cell autonomously for optimal iNKT cell cytokine secretion. This suggests that SHIP1 calibrates the threshold of iNKT cell reactivity. These data further our understanding of how iNKT cell activation is regulated and provide insights into the biology of this unique cell lineage. PMID:26232432

  12. Triclosan and bisphenol a affect decidualization of human endometrial stromal cells.

    PubMed

    Forte, Maurizio; Mita, Luigi; Cobellis, Luigi; Merafina, Verdiana; Specchio, Raffaella; Rossi, Sergio; Mita, Damiano Gustavo; Mosca, Lavinia; Castaldi, Maria Antonietta; De Falco, Maria; Laforgia, Vincenza; Crispi, Stefania

    2016-02-15

    In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome. PMID:26604029

  13. Dental enamel cells express functional SOCE channels.

    PubMed

    Nurbaeva, Meerim K; Eckstein, Miriam; Concepcion, Axel R; Smith, Charles E; Srikanth, Sonal; Paine, Michael L; Gwack, Yousang; Hubbard, Michael J; Feske, Stefan; Lacruz, Rodrigo S

    2015-10-30

    Dental enamel formation requires large quantities of Ca(2+) yet the mechanisms mediating Ca(2+) dynamics in enamel cells are unclear. Store-operated Ca(2+) entry (SOCE) channels are important Ca(2+) influx mechanisms in many cells. SOCE involves release of Ca(2+) from intracellular pools followed by Ca(2+) entry. The best-characterized SOCE channels are the Ca(2+) release-activated Ca(2+) (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca(2+) uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca(2+) release mechanism. Passive depletion of ER Ca(2+) stores with thapsigargin resulted in a significant raise in [Ca(2+)]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca(2+) entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca(2+) uptake in enamel formation.

  14. Genome wide functional genetics in haploid cells.

    PubMed

    Elling, Ulrich; Penninger, Josef M

    2014-08-01

    Some organisms such as yeast or males of social insects are haploid, i.e. they carry a single set of chromosomes, while haploidy in mammals is exclusively restricted to mature germ cells. A single copy of the genome provides the basis for genetic analyses where any recessive mutation of essential genes will show a clear phenotype due to the absence of a second gene copy. Most prominently, haploidy in yeast has been utilized for recessive genetic screens that have markedly contributed to our understanding of development, basic physiology, and disease. Somatic mammalian cells carry two copies of chromosomes (diploidy) that obscure genetic analysis. Near haploid human leukemic cells however have been developed as a high throughput screening tool. Although deemed impossible, we and others have generated mammalian haploid embryonic stem cells from parthenogenetic mouse embryos. Haploid stem cells open the possibility of combining the power of a haploid genome with pluripotency of embryonic stem cells to uncover fundamental biological processes in defined cell types at a genomic scale. Haploid genetics has thus become a powerful alternative to RNAi or CRISPR based screens. PMID:24950427

  15. Dental enamel cells express functional SOCE channels

    PubMed Central

    Nurbaeva, Meerim K.; Eckstein, Miriam; Concepcion, Axel R.; Smith, Charles E.; Srikanth, Sonal; Paine, Michael L.; Gwack, Yousang; Hubbard, Michael J.; Feske, Stefan; Lacruz, Rodrigo S.

    2015-01-01

    Dental enamel formation requires large quantities of Ca2+ yet the mechanisms mediating Ca2+ dynamics in enamel cells are unclear. Store-operated Ca2+ entry (SOCE) channels are important Ca2+ influx mechanisms in many cells. SOCE involves release of Ca2+ from intracellular pools followed by Ca2+ entry. The best-characterized SOCE channels are the Ca2+ release-activated Ca2+ (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca2+ uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca2+ release mechanism. Passive depletion of ER Ca2+ stores with thapsigargin resulted in a significant raise in [Ca2+]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca2+ entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca2+ uptake in enamel formation. PMID:26515404

  16. Slits Affect the Timely Migration of Neural Crest Cells via Robo Receptor

    PubMed Central

    Giovannone, Dion; Reyes, Michelle; Reyes, Rachel; Correa, Lisa; Martinez, Darwin; Ra, Hannah; Gomez, Gustavo; Kaiser, Josh; Ma, Le; Stein, Mary-Pat; de Bellard, Maria Elena

    2013-01-01

    SUMMARY Background Neural crest cells emerge by delamination from the dorsal neural tube and give rise to various components of the peripheral nervous system in vertebrate embryos. These cells change from non-motile into highly motile cells migrating to distant areas before further differentiation. Mechanisms controlling delamination and subsequent migration of neural crest cells are not fully understood. Slit2, a chemorepellant for axonal guidance that repels and stimulates motility of trunk neural crest cells away from the gut has recently been suggested to be a tumor suppressor molecule. The goal of this study was to further investigate the role of Slit2 in trunk neural crest cell migration by constitutive expression in neural crest cells. Results We found that Slit gain-of-function significantly impaired neural crest cell migration while Slit loss-of-function favored migration. In addition, we observed that the distribution of key cytoskeletal markers was disrupted in both gain and loss of function instances. Conclusions These findings suggest that Slit molecules might be involved in the processes that allow neural crest cells to begin migration and transitioning to a mesenchymal type. PMID:22689303

  17. Metacognitive Awareness of Facial Affect in Higher-Functioning Children and Adolescents with Autism Spectrum Disorder.

    PubMed

    McMahon, Camilla M; Henderson, Heather A; Newell, Lisa; Jaime, Mark; Mundy, Peter

    2016-03-01

    Higher-functioning participants with and without autism spectrum disorder (ASD) viewed a series of face stimuli, made decisions regarding the affect of each face, and indicated their confidence in each decision. Confidence significantly predicted accuracy across all participants, but this relation was stronger for participants with typical development than participants with ASD. In the hierarchical linear modeling analysis, there were no differences in face processing accuracy between participants with and without ASD, but participants with ASD were more confident in their decisions. These results suggest that individuals with ASD have metacognitive impairments and are overconfident in face processing. Additionally, greater metacognitive awareness was predictive of better face processing accuracy, suggesting that metacognition may be a pivotal skill to teach in interventions.

  18. Gain-of-function screen for genes that affect Drosophila muscle pattern formation.

    PubMed

    Staudt, Nicole; Molitor, Andreas; Somogyi, Kalman; Mata, Juan; Curado, Silvia; Eulenberg, Karsten; Meise, Martin; Siegmund, Thomas; Häder, Thomas; Hilfiker, Andres; Brönner, Günter; Ephrussi, Anne; Rørth, Pernille; Cohen, Stephen M; Fellert, Sonja; Chung, Ho-Ryun; Piepenburg, Olaf; Schäfer, Ulrich; Jäckle, Herbert; Vorbrüggen, Gerd

    2005-10-01

    This article reports the production of an EP-element insertion library with more than 3,700 unique target sites within the Drosophila melanogaster genome and its use to systematically identify genes that affect embryonic muscle pattern formation. We designed a UAS/GAL4 system to drive GAL4-responsive expression of the EP-targeted genes in developing apodeme cells to which migrating myotubes finally attach and in an intrasegmental pattern of cells that serve myotubes as a migration substrate on their way towards the apodemes. The results suggest that misexpression of more than 1.5% of the Drosophila genes can interfere with proper myotube guidance and/or muscle attachment. In addition to factors already known to participate in these processes, we identified a number of enzymes that participate in the synthesis or modification of protein carbohydrate side chains and in Ubiquitin modifications and/or the Ubiquitin-dependent degradation of proteins, suggesting that these processes are relevant for muscle pattern formation.

  19. Circumcision during the phallic period: does it affect the psychosexual functions in adulthood?

    PubMed

    Armagan, A; Silay, M S; Karatag, T; Akman, T; Tepeler, A; Ersoz, C; Akcay, M

    2014-04-01

    The aim of this study was to elucidate whether circumcision during the phallic period (3-to 6-year old) has a negative impact on psychosexual functions in adulthood. Over a 6-month period, healthy and sexually active men between 30 and 40 years without any comorbidities were involved. Participants were evaluated with detailed history, physical examination, International Index of Erectile Function (IIEF), Premature Ejaculation Diagnostic Tool (PEDT) and Beck Depression Inventory. Cases were divided into two groups according to the age at circumcision (group-1: phallic period, group-2: nonphallic period). Student's t-test and Kruskall-Wallis were used for statistical analysis. Of the 321 participants, a total of 302 men were eligible for the study (group-1: n = 135, group-2: n = 167). No statistical difference was found between the mean total IIEF scores (group-1: 25.1 ± 4.8, group-2: 25.4 ± 4.6, P > 0.05). The subdomains of IIEF; erectile function, orgasm, sexual desire, intercourse satisfaction, overall satisfaction were also found to be comparable. Additionally, the PEDT scores were similar between the two groups (group-1: 8.2 ± 4.8, group-2: 8.7 ± 5.4, P > 0.05). Finally, Beck depression scores were also found to be comparable between the groups (group-1: 10.8 ± 10.4, group-2: 9.8 ± 8.9, P > 0.05). Our results suggest that circumcision during the phallic period does not negatively affect the psychosexual functions in adulthood.

  20. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  1. Oral health conditions affect functional and social activities of terminally-ill cancer patients

    PubMed Central

    Fischer, D.J.; Epstein, J.B.; Yao, Y.; Wilkie, D.J.

    2013-01-01

    Purpose Oral conditions are established complications in terminally-ill cancer patients. Yet despite significant morbidity, the characteristics and impact of oral conditions in these patients are poorly documented. The study objective was to characterize oral conditions in terminally-ill cancer patients to determine the presence, severity, and the functional and social impact of these oral conditions. Methods This was an observational clinical study including terminally-ill cancer patients (2.5–3 week life expectancy). Data were obtained via the Oral Problems Scale (OPS) that measures the presence of subjective xerostomia, orofacial pain, taste change, and the functional/social impact of oral conditions and a demographic questionnaire. A standardized oral examination was used to assess objective salivary hypofunction, fungal infection, mucosal erythema, and ulceration. Regression analysis and t test investigated the associations between measures. Results Of 104 participants, most were ≥50 years of age, female, and high-school educated; 45% were African American, 43% Caucasian, and 37% married. Oral conditions frequencies were: salivary hypofunction (98%), mucosal erythema (50%), ulceration (20%), fungal infection (36%), and other oral problems (46%). Xerostomia, taste change, and orofacial pain all had significant functional impact; p<.001, p=.042 and p<.001, respectively. Orofacial pain also had a significant social impact (p<.001). Patients with oral ulcerations had significantly more orofacial pain with a social impact than patients without ulcers (p=.003). Erythema was significantly associated with fungal infection and with mucosal ulceration (p<.001). Conclusions Oral conditions significantly affect functional and social activities in terminally-ill cancer patients. Identification and management of oral conditions in these patients should therefore be an important clinical consideration. PMID:24232310

  2. How measurement artifacts affect cerebr