Science.gov

Sample records for affect cell function

  1. Cigarette smoke extract affects mitochondrial function in alveolar epithelial cells.

    PubMed

    Ballweg, Korbinian; Mutze, Kathrin; Königshoff, Melanie; Eickelberg, Oliver; Meiners, Silke

    2014-12-01

    Cigarette smoke is the main risk factor for chronic obstructive pulmonary disease (COPD). Exposure of cells to cigarette smoke induces an initial adaptive cellular stress response involving increased oxidative stress and induction of inflammatory signaling pathways. Exposure of mitochondria to cellular stress alters their fusion/fission dynamics. Whereas mild stress induces a prosurvival response termed stress-induced mitochondrial hyperfusion, severe stress results in mitochondrial fragmentation and mitophagy. In the present study, we analyzed the mitochondrial response to mild and nontoxic doses of cigarette smoke extract (CSE) in alveolar epithelial cells. We characterized mitochondrial morphology, expression of mitochondrial fusion and fission genes, markers of mitochondrial proteostasis, as well as mitochondrial functions such as membrane potential and oxygen consumption. Murine lung epithelial (MLE)12 and primary mouse alveolar epithelial cells revealed pronounced mitochondrial hyperfusion upon treatment with CSE, accompanied by increased expression of the mitochondrial fusion protein mitofusin 2 and increased metabolic activity. We did not observe any alterations in mitochondrial proteostasis, i.e., induction of the mitochondrial unfolded protein response or mitophagy. Therefore, our data indicate an adaptive prosurvival response of mitochondria of alveolar epithelial cells to nontoxic concentrations of CSE. A hyperfused mitochondrial network, however, renders the cell more vulnerable to additional stress, such as sustained cigarette smoke exposure. As such, cigarette smoke-induced mitochondrial hyperfusion, although part of a beneficial adaptive stress response in the first place, may contribute to the pathogenesis of COPD. PMID:25326581

  2. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Liu, Xujie; Feng, Qingling; Bachhuka, Akash; Vasilev, Krasimir

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (sbnd NH2), carboxyl (sbnd COOH) and methyl (sbnd CH3), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (sbnd COOH and sbnd NH2) can absorb more proteins than these modified with more hydrophobic functional group (sbnd CH3). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the sbnd NH2 modified surfaces encourage osteogenic differentiation; the sbnd COOH modified surfaces promote cell adhesion and spreading and the sbnd CH3 modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  3. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function.

    PubMed

    Stelzer, I; Kröpfl, J M; Fuchs, R; Pekovits, K; Mangge, H; Raggam, R B; Gruber, H-J; Prüller, F; Hofmann, P; Truschnig-Wilders, M; Obermayer-Pietsch, B; Haushofer, A C; Kessler, H H; Mächler, P

    2015-10-01

    Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration. PMID:25438993

  4. Gangliosides do not affect ABC transporter function in human neuroblastoma cells.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-06-01

    Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells. PMID:16547352

  5. Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits.

    PubMed

    Ulirsch, Jacob C; Nandakumar, Satish K; Wang, Li; Giani, Felix C; Zhang, Xiaolan; Rogov, Peter; Melnikov, Alexandre; McDonel, Patrick; Do, Ron; Mikkelsen, Tarjei S; Sankaran, Vijay G

    2016-06-01

    Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to simultaneously screen 2,756 variants in strong linkage disequilibrium with 75 sentinel variants associated with red blood cell traits. We show that this assay identifies elements with endogenous erythroid regulatory activity. Across 23 sentinel variants, we conservatively identified 32 MPRA functional variants (MFVs). We used targeted genome editing to demonstrate endogenous enhancer activity across 3 MFVs that predominantly affect the transcription of SMIM1, RBM38, and CD164. Functional follow-up of RBM38 delineates a key role for this gene in the alternative splicing program occurring during terminal erythropoiesis. Finally, we provide evidence for how common GWAS-nominated variants can disrupt cell-type-specific transcriptional regulatory pathways. PMID:27259154

  6. In vitro atrazine exposure affects the phenotypic and functional maturation of dendritic cells

    SciTech Connect

    Pinchuk, Lesya M.; Lee, Sang-Ryul; Filipov, Nikolay M.

    2007-09-15

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1 {mu}M concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion.

  7. In vitro Atrazine Exposure Affects the Phenotypic and Functional Maturation of Dendritic Cells

    PubMed Central

    Pinchuk, Lesya M.; Lee, Sang-Ryul; Filipov, Nikolay M.

    2007-01-01

    Recent data suggest that some of the immunotoxic effects of the herbicide atrazine, a very widely used pesticide, may be due to perturbations in dendritic cell (DC) function. As consequences of atrazine exposure on the phenotypic and functional maturation of DC have not been studied, our objective was, using the murine DC line, JAWSII, to determine whether atrazine will interfere with DC maturation. First, we characterized the maturation of JAWSII cells in vitro by inducing them to mature in the presence of growth factors and selected maturational stimuli in vitro. Next, we exposed the DC cell line to a concentration-range of atrazine and examined its effects on phenotypic and functional maturation of DC. Atrazine exposure interfered with the phenotypic and functional maturation of DC at non-cytotoxic concentrations. Among the phenotypic changes caused by atrazine exposure was a dose-dependent removal of surface MHC-I with a significant decrease being observed at 1µM concentration. In addition, atrazine exposure decreased the expression of the costimulatory molecule CD86 and it downregulated the expression of the CD11b and CD11c accessory molecules and the myeloid developmental marker CD14. When, for comparative purposes, we exposed primary thymic DC to atrazine, MHC-I and CD11c expression was also decreased. Phenotypic changes in JAWSII DC maturation were associated with functional inhibition of maturation as, albeit at higher concentrations, receptor-mediated antigen uptake was increased by atrazine. Thus, our data suggest that atrazine directly targets DC maturation and that toxicants such as atrazine that efficiently remove MHC-I molecules from the DC surface are likely to contribute to immune evasion. PMID:17662328

  8. Polyglucosan Molecules Induce Mitochondrial Impairment and Apoptosis in Germ Cells Without Affecting the Integrity and Functionality of Sertoli Cells.

    PubMed

    Villarroel-Espíndola, Franz; Tapia, Cynthia; González-Stegmaier, Roxana; Concha, Ilona I; Slebe, Juan Carlos

    2016-10-01

    Glycogen is the main storage form of glucose; however, the accumulation of glycogen-like glucose polymers can lead to degeneration and cellular death. Previously, we reported that the accumulation of glycogen in testis of transgenic animals overexpressing a constitutively active form of glycogen synthase enhances the apoptosis of pre-meiotic male germ cells and a complete disorganization of the seminiferous tubules. Here we sought to further identify the effects of glycogen storage in cells from the seminiferous tubules and the mechanism behind the pro-apoptotic activity induced by its accumulation. Using an in vitro culture of Sertoli cells (line 42GPA9) and spermatocyte-like cells (line GC-1) expressing a superactive form of glycogen synthase or the Protein Targeting to Glycogen (PTG), we found that glycogen synthesized in both cell lines is poorly branched. In addition, the immunodetection of key molecules of apoptotic events suggests that cellular death induced by polyglucosan molecules affects GC-1 cells, but not 42GPA9 cells by mitochondrial impairment and activation of an intrinsic apoptotic pathway. Furthermore, we analyzed the effects of glycogen deposition during the establishment of an in vitro blood-testis barrier. The results using a non-permeable fluorescent molecule showed that, in conditions of over-synthesis of glycogen, 42GPA9 cells do not lose their capacity to generate an impermeable barrier and the levels of connexin43, occludin, and ZO1 proteins were not affected. These results suggest that the accumulation of polyglucosan molecules has a selective effect-triggered by the intrinsic activation of the apoptotic pathway-in germ cells without directly affecting Sertoli cells. J. Cell. Physiol. 231: 2142-2152, 2016. © 2016 Wiley Periodicals, Inc. PMID:26790645

  9. Interleukins Affect Equine Endometrial Cell Function: Modulatory Action of Ovarian Steroids

    PubMed Central

    Szóstek, Anna Z.; Galvão, Antonio M.; Hojo, Takuo; Okuda, Kiyoshi; Skarzynski, Dariusz J.

    2014-01-01

    The aim of the present study was to investigate the interaction between ovarian steroids, interleukins and prostaglandins (PG) in equine epithelial and stromal cells in vitro. In Experiment 1, cells were exposed to IL-1α (10 ng/mL), IL-1β (10 ng/mL) or IL-6 (10 ng/mL) for 24 h and cell proliferation was determined using MTT. In Experiment 2, cells were exposed to progesterone (P4; 10−7 M); 17-β estradiol (E2; 10−9 M) or P4+E2 for 24 h and later medium was replaced with a fresh one treated with IL-1α, IL-1β or IL-6 (10 ng/mL, each) for 24 h. The oxytocin (OT; 10−7 M) was used as a positive control. In Experiment 3, cells were exposed to P4 (10−7 M), E2 (10−9 M) or P4+E2 for 24 h and the IL receptor mRNAs transcription was determined using Real-time PCR. Prostaglandins concentration was determined using the direct enzyme immunoassay (EIA) method. Our findings reveal a functional linking between ovarian steroids and IL-stimulated PG secretion by equine endometrial cells. This interaction could be one of the mechanisms responsible for endometrial local orchestrating events during the estrous cycle and early pregnancy. PMID:24719522

  10. Altered membrane lipid composition and functional parameters of circulating cells in cockles (Cerastoderma edule) affected by disseminated neoplasia.

    PubMed

    Le Grand, Fabienne; Soudant, Philippe; Marty, Yanic; Le Goïc, Nelly; Kraffe, Edouard

    2013-01-01

    Membrane lipid composition and morpho-functional parameters were investigated in circulating cells of the edible cockle (Cerastoderma edule) affected by disseminated neoplasia (neoplastic cells) and compared to those from healthy cockles (hemocytes). Membrane sterol levels, phospholipid (PL) class and subclass proportions and their respective fatty acid (FA) compositions were determined. Morpho-functional parameters were evaluated through total hemocyte count (THC), mortality rate, phagocytosis ability and reactive oxygen species (ROS) production. Both morpho-functional parameters and lipid composition were profoundly affected in neoplastic cells. These dedifferentiated cells displayed higher THC (5×), mortality rate (3×) and ROS production with addition of carbonyl cyanide m-chloro phenylhydrazone (1.7×) but lower phagocytosis ability (½×), than unaffected hemocytes. Total PL amounts were higher in neoplastic cells than in hemocytes (12.3 and 5.1 nmol×10(-6) cells, respectively). However, sterols and a particular subclass of PL (plasmalogens; 1-alkenyl-2-acyl PL) were present in similar amounts in both cell type membranes. This led to a two times lower proportion of these membrane lipid constituents in neoplastic cells when compared to hemocytes (20.5% vs. 42.1% of sterols in total membrane lipids and 21.7% vs. 44.2% of plasmalogens among total PL, respectively). Proportions of non-methylene interrupted FA- and 20:1n-11-plasmalogen molecular species were the most impacted in neoplastic cells when compared to hemocytes (⅓× and ¼×, respectively). These changes in response to this leukemia-like disease in bivalves highlight the specific imbalance of plasmalogens and sterols in neoplastic cells, in comparison to the greater stability of other membrane lipid components. PMID:23333874

  11. Interaction of Berberine derivative with protein POT1 affect telomere function in cancer cells

    SciTech Connect

    Xiao, Nannan; Chen, Siqi; Ma, Yan; Qiu, Jun; Tan, Jia-Heng; Ou, Tian-Miao; Gu, Lian-Quan; Huang, Zhi-Shu; Li, Ding

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer The protein POT1 plays an important role in telomere protection. Black-Right-Pointing-Pointer Functional POT1 was overexpressed in Escherichia coli for the first time, and purified. Black-Right-Pointing-Pointer Compound Sysu-00692 was found to be the first POT1-binding ligand. Black-Right-Pointing-Pointer Sysu-00692 could interfere with the binding activity of POT1 in vivo. Black-Right-Pointing-Pointer Sysu-00692 had inhibition on telomerase and cell proliferation. -- Abstract: The protein POT1 plays an important role in telomere protection, which is related with telomere elongation and cell immortality. The protein has been recognized as a promising drug target for cancer treatment. In the present study, we cloned, overexpressed in Escherichia coli for the first time, and purified recombinant human POT1. The protein was proved to be active through filter binding assay, FRET and CD experiments. In the initial screening for protein binding ligands using SPR, compound Sysu-00692 was found to bind well with the POT1, which was confirmed with EMSA. Its in vivo activity study showed that compound Sysu-00692 could interfere with the binding between human POT1 and the telomeric DNA through chromatin immunoprecipitation. Besides, the compound showed mild inhibition on telomerase and cell proliferation. As we know, compound Sysu-00692 is the first reported POT1-binding ligand, which could serve as a lead compound for further improvement. This work offered a potentially new approach for drug design for the treatment of cancers.

  12. Repeated exposure of the developing rat brain to magnetic resonance imaging did not affect neurogenesis, cell death or memory function

    SciTech Connect

    Zhu, Changlian; Gao, Jianfeng; Li, Qian; Huang, Zhiheng; Zhang, Yu; Li, Hongfu; Kuhn, Hans-Georg; Blomgren, Klas

    2011-01-07

    Research highlights: {yields} The effect of MRI on the developing brain is a matter of debate. {yields} Repeated exposure to MRI did not affect neurogenesis. {yields} Memory function was not affected by repeated MRI during development. {yields} Neither late gestation nor young postnatal brains were affected by MRI. {yields} Repeated MRI did not cause cell death in the neurogenic region of the hippocampus. -- Abstract: The effect of magnetic fields on the brain is a matter of debate. The objective of this study was to investigate whether repeated exposure to strong magnetic fields, such as during magnetic resonance imaging (MRI), could elicit changes in the developing rat brain. Embryonic day 15 (E15) and postnatal day 14 (P14) rats were exposed to MRI using a 7.05 T MR system. The animals were anesthetized and exposed for 35 min per day for 4 successive days. Control animals were anesthetized but no MRI was performed. Body temperature was maintained at 37 {sup o}C. BrdU was injected after each session (50 mg/kg). One month later, cell proliferation, neurogenesis and astrogenesis in the dentate gyrus were evaluated, revealing no effects of MRI, neither in the E15, nor in the P14 group. DNA damage in the dentate gyrus in the P14 group was evaluated on P18, 1 day after the last session, using TUNEL staining. There was no difference in the number of TUNEL-positive cells after MRI compared with controls, neither in mature neurons, nor in newborn progenitors (BrdU/TUNEL double-labeled cells). Novel object recognition was performed to assess memory function 1 month after MRI. There was no difference in the recognition index observed after MRI compared with the control rats, neither for the E15, nor for the P14 group. In conclusion, repeated exposure to MRI did not appear to affect neurogenesis, cell death or memory function in rats, neither in late gestation (E15-E18) nor in young postnatal (P14-P17) rats.

  13. Acridine Orange is an Effective Anti-Cancer Drug that Affects Mitochondrial Function in Osteosarcoma Cells.

    PubMed

    Fotia, Caterina; Avnet, Sofia; Kusuzaki, Katsuyuki; Roncuzzi, Laura; Baldini, Nicola

    2015-01-01

    Acridine orange (AO) is an antimalarial drug that accumulates into acidic cellular compartments. Lysosomes are quite acidic in cancer cells, and on this basis we have demonstrated that photoactivated AO is selectively toxic in sarcomas. However, photodynamic therapy is only locally effective, and cannot be used to eradicate systemic residual disease. In this study, we have evaluated the activity of non-photoactivated AO on sensitive and chemoresistant osteosarcoma (OS) cells to be considered for the systemic delivery. Since lysosomes are even more acidic in chemoresistant cells (MDR), we found that AO accumulation was significantly higher in the lysosomes of MDR in respect to parental cells, and in both cell types, therapeutic doses of AO significantly inhibited cell growth. However, the level of growth inhibition was inversely related to the level of lysosomal uptake of AO, suggesting that the main target of this agent is indeed extralysosomal. A significant reduction of intracellular ATP content and of the expression of mitochondrial complex III suggests a mitochondrial targeting. Notably, MDR cells showed a lower mitochondrial activity. Finally, the combined treatment of AO with the anticancer agent doxorubicin (DXR) significantly increased chemotoxicity by promoting DXR mitochondrial targeting, as revealed by the further reduction in ATP intracellular content. In conclusion, AO is able to effectively target both sensitive and resistant OS cells through mitotoxicity. PMID:26381269

  14. CD28/CTLA-4/B7 costimulatory pathway blockade affects regulatory T-cell function in autoimmunity.

    PubMed

    Vogel, Isabel; Kasran, Ahmad; Cremer, Jonathan; Kim, Yoo-Jin; Boon, Louis; Van Gool, Stefaan W; Ceuppens, Jan L

    2015-06-01

    Naïve T cells require B7/CD28 costimulation in order to be fully activated. Attempts to block this pathway have been effective in preventing unwanted immune reactions. As B7 blockade might also affect Treg cells and interfere with negative signaling through membrane CTLA-4 on effector T (Teff) cells, its immune-modulatory effects are potentially more complex. Here, we used the mouse model of multiple sclerosis (MS), EAE, to study the effect of B7 blockade. An effective therapy for MS patients has to interfere with ongoing inflammation, and therefore we injected CTLA-4Ig at day 7 and 9 after immunization, when myelin-reactive T cells have been primed and start migrating toward the CNS. Surprisingly, B7 blockade exacerbated disease signs and resulted in more severe CNS inflammation and demyelination, and was associated with an enhanced production of the inflammatory cytokines IL-17 and IFN-γ. Importantly, CTLA-4Ig treatment resulted in a transient reduction of Ki67 and CTLA-4 expression and function of peripheral Treg cells. Taken together, B7 blockade at a particular stage of the autoimmune response can result in the suppression of Treg cells, leading to a more severe disease. PMID:25727069

  15. Yeast Num1p associates with the mother cell cortex during S/G2 phase and affects microtubular functions

    PubMed Central

    1995-01-01

    The NUM1 gene is involved in the control of nuclear migration in Saccharomyces cerevisiae. The content of NUM1 mRNA fluctuates during the cell cycle, reaching a maximum at S/G2 phase, and the translation product Num1p associates with the cortex of mother cells mainly during S, G2, and mitosis, as seen by indirect immunofluorescence. The nuclear spindle in NUM1-deficient large-budded cells often fails to align along the mother/bud axis, while abnormally elongated astral microtubules emanate from both spindle pole bodies. A num1 null mutation confers temperature sensitivity to the cold-sensitive alpha-tubulin mutant tub1- 1, and shows synthetic lethality with the beta-tubulin mutant alleles tub2-402, tub2-403, tub2-404, and tub2-405. Deletion mapping has defined three functionally important Num1p regions: a potential EF hand Ca2+ binding site, a cluster of potential phosphorylation sites and a pleckstrin homology domain. The latter domain appears to be involved in targeting Num1p to the mother cell cortex. Our data suggest that the periodically expressed NUM1 gene product controls nuclear migration by affecting astral microtubule functions. PMID:7490278

  16. Pancreatic β-Cell Adaptive Plasticity in Obesity Increases Insulin Production but Adversely Affects Secretory Function.

    PubMed

    Alarcon, Cristina; Boland, Brandon B; Uchizono, Yuji; Moore, Patrick C; Peterson, Bryan; Rajan, Suryalekha; Rhodes, Olivia S; Noske, Andrew B; Haataja, Leena; Arvan, Peter; Marsh, Bradly J; Austin, Jotham; Rhodes, Christopher J

    2016-02-01

    Pancreatic β-cells normally produce adequate insulin to control glucose homeostasis, but in obesity-related diabetes, there is a presumed deficit in insulin production and secretory capacity. In this study, insulin production was assessed directly in obese diabetic mouse models, and proinsulin biosynthesis was found to be contrastingly increased, coupled with a significant expansion of the rough endoplasmic reticulum (without endoplasmic reticulum stress) and Golgi apparatus, increased vesicular trafficking, and a depletion of mature β-granules. As such, β-cells have a remarkable capacity to produce substantial quantities of insulin in obesity, which are then made available for immediate secretion to meet increased metabolic demand, but this comes at the price of insulin secretory dysfunction. Notwithstanding, it can be restored. Upon exposing isolated pancreatic islets of obese mice to normal glucose concentrations, β-cells revert back to their typical morphology with restoration of regulated insulin secretion. These data demonstrate an unrealized dynamic adaptive plasticity of pancreatic β-cells and underscore the rationale for transient β-cell rest as a treatment strategy for obesity-linked diabetes. PMID:26307586

  17. New Verapamil Analogs Inhibit Intracellular Mycobacteria without Affecting the Functions of Mycobacterium-Specific T Cells

    PubMed Central

    Ruminiski, Peter G.; Kumar, Malkeet; Singh, Kawaljit; Hamzabegovic, Fahreta; Hoft, Daniel F.; Eickhoff, Christopher S.; Selimovic, Asmir; Campbell, Mary; Chibale, Kelly

    2015-01-01

    There is a growing interest in repurposing mycobacterial efflux pump inhibitors, such as verapamil, for tuberculosis (TB) treatment. To aid in the design of better analogs, we studied the effects of verapamil on macrophages and Mycobacterium tuberculosis-specific T cells. Macrophage activation was evaluated by measuring levels of nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and gamma interferon (IFN-γ). Since verapamil is a known autophagy inducer, the roles of autophagy induction in the antimycobacterial activities of verapamil and norverapamil were studied using bone marrow-derived macrophages from ATG5flox/flox (control) and ATG5flox/flox Lyz-Cre mice. Our results showed that despite the well-recognized effects of verapamil on calcium channels and autophagy, its action on intracellular M. tuberculosis does not involve macrophage activation or autophagy induction. Next, the effects of verapamil and norverapamil on M. tuberculosis-specific T cells were assessed using flow cytometry following the stimulation of peripheral blood mononuclear cells from TB-skin-test-positive donors with M. tuberculosis whole-cell lysate for 7 days in the presence or absence of drugs. We found that verapamil and norverapamil inhibit the expansion of M. tuberculosis-specific T cells. Additionally, three new verapamil analogs were found to inhibit intracellular Mycobacterium bovis BCG, and one of the three analogs (KSV21) inhibited intracellular M. tuberculosis replication at concentrations that did not inhibit M. tuberculosis-specific T cell expansion. KSV21 also inhibited mycobacterial efflux pumps to the same degree as verapamil. More interestingly, the new analog enhances the inhibitory activities of isoniazid and rifampin on intracellular M. tuberculosis. In conclusion, KSV21 is a promising verapamil analog on which to base structure-activity relationship studies aimed at identifying more effective analogs. PMID:26643325

  18. Human Peripheral Blood Mononuclear Cell Function and Dendritic Cell Differentiation Are Affected by Bisphenol-A Exposure

    PubMed Central

    Ariemma, Fabiana; Cimmino, Ilaria; Bruzzese, Dario; Scerbo, Roberta; Picascia, Stefania; D’Esposito, Vittoria; Beguinot, Francesco; Formisano, Pietro

    2016-01-01

    Environmental pollutants, including endocrine disruptor chemicals (EDCs), interfere on human health, leading to hormonal, immune and metabolic perturbations. Bisphenol-A (BPA), a main component of polycarbonate plastics, has been receiving increased attention due to its worldwide distribution with a large exposure. In humans, BPA, for its estrogenic activity, may have a role in autoimmunity, inflammatory and allergic diseases. To this aim, we assessed the effect of low BPA doses on functionality of human peripheral blood mononuclear cells (PBMCs), and on in vitro differentiation of dendritic cells from monocytes (mDCs). Fresh peripheral blood samples were obtained from 12 healthy adult volunteers. PBMCs were left unstimulated or were activated with the mitogen phytohemagglutinin (PHA) or the anti-CD3 and anti-CD28 antibodies and incubated in presence or absence of BPA at 0.1 and 1nM concentrations. The immune-modulatory effect of BPA was assessed by evaluating the cell proliferation and the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13) secreted by PBMCs. mDCs were differentiated with IL-4 and GC-CSF with or without BPA and the expression of differentiation/maturation markers (CD11c, CD1a, CD86, HLA-DR) was evaluated by flow cytometry; furthermore, a panel of 27 different cytokines, growth factors and chemokines were assayed in the mDC culture supernatants. PBMCs proliferation significantly increased upon BPA exposure compared to BPA untreated cells. In addition, a significant decrease in IL-10 secretion was observed in PBMCs incubated with BPA, either in unstimulated or mitogen-stimulated cells, and at both 0.1 and 1nM BPA concentrations. Similarly, IL-13 was reduced, mainly in cells activated by antiCD3/CD28. By contrast, no significant changes in IFN-γ and IL-4 production were found in any condition assayed. Finally, BPA at 1nM increased the density of dendritic cells expressing CD1a and concomitantly

  19. Human Peripheral Blood Mononuclear Cell Function and Dendritic Cell Differentiation Are Affected by Bisphenol-A Exposure.

    PubMed

    Camarca, Alessandra; Gianfrani, Carmen; Ariemma, Fabiana; Cimmino, Ilaria; Bruzzese, Dario; Scerbo, Roberta; Picascia, Stefania; D'Esposito, Vittoria; Beguinot, Francesco; Formisano, Pietro; Valentino, Rossella

    2016-01-01

    Environmental pollutants, including endocrine disruptor chemicals (EDCs), interfere on human health, leading to hormonal, immune and metabolic perturbations. Bisphenol-A (BPA), a main component of polycarbonate plastics, has been receiving increased attention due to its worldwide distribution with a large exposure. In humans, BPA, for its estrogenic activity, may have a role in autoimmunity, inflammatory and allergic diseases. To this aim, we assessed the effect of low BPA doses on functionality of human peripheral blood mononuclear cells (PBMCs), and on in vitro differentiation of dendritic cells from monocytes (mDCs). Fresh peripheral blood samples were obtained from 12 healthy adult volunteers. PBMCs were left unstimulated or were activated with the mitogen phytohemagglutinin (PHA) or the anti-CD3 and anti-CD28 antibodies and incubated in presence or absence of BPA at 0.1 and 1nM concentrations. The immune-modulatory effect of BPA was assessed by evaluating the cell proliferation and the levels of interferon-γ (IFN-γ), interleukin-4 (IL-4), interleukin-10 (IL-10) and interleukin-13 (IL-13) secreted by PBMCs. mDCs were differentiated with IL-4 and GC-CSF with or without BPA and the expression of differentiation/maturation markers (CD11c, CD1a, CD86, HLA-DR) was evaluated by flow cytometry; furthermore, a panel of 27 different cytokines, growth factors and chemokines were assayed in the mDC culture supernatants. PBMCs proliferation significantly increased upon BPA exposure compared to BPA untreated cells. In addition, a significant decrease in IL-10 secretion was observed in PBMCs incubated with BPA, either in unstimulated or mitogen-stimulated cells, and at both 0.1 and 1nM BPA concentrations. Similarly, IL-13 was reduced, mainly in cells activated by antiCD3/CD28. By contrast, no significant changes in IFN-γ and IL-4 production were found in any condition assayed. Finally, BPA at 1nM increased the density of dendritic cells expressing CD1a and concomitantly

  20. Methyl Donor Deficiency Affects Fetal Programming of Gastric Ghrelin Cell Organization and Function in the Rat

    PubMed Central

    Bossenmeyer-Pourié, Carine; Blaise, Sébastien; Pourié, Grégory; Tomasetto, Catherine; Audonnet, Sandra; Ortiou, Sandrine; Koziel, Violette; Rio, Marie-Christine; Daval, Jean-Luc; Guéant, Jean-Louis; Beck, Bernard

    2010-01-01

    Methyl donor deficiency (MDD) during pregnancy influences intrauterine development. Ghrelin is expressed in the stomach of fetuses and influences fetal growth, but MDD influence on gastric ghrelin is unknown. We examined the gastric ghrelin system in MDD-induced intrauterine growth retardation. By using specific markers and approaches (such as periodic acid–Schiff, bromodeoxyuridine, homocysteine, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling, immunostaining, reverse transcription-polymerase chain reaction), we studied the gastric oxyntic mucosa cellular organization and ghrelin gene expression in the mucosa in 20-day-old fetuses and weanling pups, and plasma ghrelin concentration in weanling rat pups of dams either normally fed or deprived of choline, folate, vitamin B6, and vitamin B12 during gestation and suckling periods. MDD fetuses weighed less than controls; the weight deficit reached 57% at weaning (P < 0.001). Both at the end of gestation and at weaning, they presented with an aberrant gastric oxyntic mucosa formation with loss of cell polarity, anarchic cell migration, abnormal progenitor differentiation, apoptosis, and signs of surface layer erosion. Ghrelin cells were abnormally located in the pit region of oxyntic glands. At weaning, plasma ghrelin levels were decreased (−28%; P < 0.001) despite unchanged mRNA expression in the stomach. This decrease was associated with lower body weight. Taken together, these data indicate that one mechanism through which MDD influences fetal programming is the remodeling of gastric cellular organization, leading to dysfunction of the ghrelin system and dramatic effects on growth. PMID:19948829

  1. Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function.

    PubMed

    Kleensang, Andre; Vantangoli, Marguerite M; Odwin-DaCosta, Shelly; Andersen, Melvin E; Boekelheide, Kim; Bouhifd, Mounir; Fornace, Albert J; Li, Heng-Hong; Livi, Carolina B; Madnick, Samantha; Maertens, Alexandra; Rosenberg, Michael; Yager, James D; Zhaog, Liang; Hartung, Thomas

    2016-01-01

    Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines. PMID:27456714

  2. Genetic variability in a frozen batch of MCF-7 cells invisible in routine authentication affecting cell function

    PubMed Central

    Kleensang, Andre; Vantangoli, Marguerite M.; Odwin-DaCosta, Shelly; Andersen, Melvin E.; Boekelheide, Kim; Bouhifd, Mounir; Fornace, Albert J.; Li, Heng-Hong; Livi, Carolina B.; Madnick, Samantha; Maertens, Alexandra; Rosenberg, Michael; Yager, James D.; Zhaog, Liang; Hartung, Thomas

    2016-01-01

    Common recommendations for cell line authentication, annotation and quality control fall short addressing genetic heterogeneity. Within the Human Toxome Project, we demonstrate that there can be marked cellular and phenotypic heterogeneity in a single batch of the human breast adenocarcinoma cell line MCF-7 obtained directly from a cell bank that are invisible with the usual cell authentication by short tandem repeat (STR) markers. STR profiling just fulfills the purpose of authentication testing, which is to detect significant cross-contamination and cell line misidentification. Heterogeneity needs to be examined using additional methods. This heterogeneity can have serious consequences for reproducibility of experiments as shown by morphology, estrogenic growth dose-response, whole genome gene expression and untargeted mass-spectroscopy metabolomics for MCF-7 cells. Using Comparative Genomic Hybridization (CGH), differences were traced back to genetic heterogeneity already in the cells from the original frozen vials from the same ATCC lot, however, STR markers did not differ from ATCC reference for any sample. These findings underscore the need for additional quality assurance in Good Cell Culture Practice and cell characterization, especially using other methods such as CGH to reveal possible genomic heterogeneity and genetic drifts within cell lines. PMID:27456714

  3. Poliovirus Internal Ribosome Entry Segment Structure Alterations That Specifically Affect Function in Neuronal Cells: Molecular Genetic Analysis

    PubMed Central

    Malnou, Cécile E.; Pöyry, Tuija A. A.; Jackson, Richard J.; Kean, Katherine M.

    2002-01-01

    Translation of poliovirus RNA is driven by an internal ribosome entry segment (IRES) present in the 5′ noncoding region of the genomic RNA. This IRES is structured into several domains, including domain V, which contains a large lateral bulge-loop whose predicted secondary structure is unclear. The primary sequence of this bulge-loop is strongly conserved within enteroviruses and rhinoviruses: it encompasses two GNAA motifs which could participate in intrabulge base pairing or (in one case) could be presented as a GNRA tetraloop. We have begun to address the question of the significance of the sequence conservation observed among enterovirus reference strains and field isolates by using a comprehensive site-directed mutagenesis program targeted to these two GNAA motifs. Mutants were analyzed functionally in terms of (i) viability and growth kinetics in both HeLa and neuronal cell lines, (ii) structural analyses by biochemical probing of the RNA, and (iii) translation initiation efficiencies in vitro in rabbit reticulocyte lysates supplemented with HeLa or neuronal cell extracts. Phenotypic analyses showed that only viruses with both GNAA motifs destroyed were significantly affected in their growth capacities, which correlated with in vitro translation defects. The phenotypic defects were strongly exacerbated in neuronal cells, where a temperature-sensitive phenotype could be revealed at between 37 and 39.5°C. Biochemical probing of mutated domain V, compared to the wild type, demonstrated that such mutations lead to significant structural perturbations. Interestingly, revertant viruses possessed compensatory mutations which were distant from the primary mutations in terms of sequence and secondary structure, suggesting that intradomain tertiary interactions could exist within domain V of the IRES. PMID:12368304

  4. Genetic ablation of androgen receptor signaling in fetal Leydig cell lineage affects Leydig cell functions in adult testis.

    PubMed

    Kaftanovskaya, Elena M; Lopez, Carolina; Ferguson, Lydia; Myhr, Courtney; Agoulnik, Alexander I

    2015-06-01

    It is commonly accepted that androgen-producing fetal Leydig cells (FLC) are substituted by adult Leydig cells (ALC) during perinatal testis development. The mechanisms influencing this process are unclear. We used mice with a retinoid acid receptor 2 promoter-Cre recombinase transgene (Rarb-cre) expressed in embryonic FLC precursors, but not in postnatal testis, and a dual fluorescent Cre recombinase reporter to label FLC and ALC in vivo. All FLC in newborn testis had the recombinant, whereas the majority of LC in adult testis had the nonrecombinant reporter. Primary LC cultures from adult testis had either recombinant (20%) or nonrecombinant (80%) cells, demonstrating that the FLC survive in adult testis and their ontogeny is distinct from ALC. Conditional inactivation of androgen receptor (AR) allele using the Rarb-cre transgene resulted in a 50% increase of AR-negative LC in adult testis. The mutant males became infertile with age, with all LC in older testis showing signs of incomplete differentiation, such as a large number of big lipid droplets, an increase of finger-like protrusions, and a misexpression of steroidogenic or FLC- and ALC-specific genes. We propose that the antiandrogenic exposure during early development may similarly result in an increase of FLC in adult testis, leading to abnormal LC differentiation. PMID:25713029

  5. BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro.

    PubMed

    Gargett, Tessa; Fraser, Cara K; Dotti, Gianpietro; Yvon, Eric S; Brown, Michael P

    2015-01-01

    Cancer immunotherapy has long been used in the treatment of metastatic melanoma, and an anti-CTLA-4 monoclonal antibody treatment has recently been approved by the US Food and Drug Administration. Targeted therapies such as small molecule kinase inhibitors targeting deregulated mitogen-activated protein kinase (MAPK) signaling have markedly improved melanoma control in up to 50% of metastatic disease patients and have likewise been recently approved. Combination therapies for melanoma have been proposed as a way to exploit the high-level but short-term responses associated with kinase inhibitor therapies and the low-level but longer-term responses associated with immunotherapy. Cancer immunotherapy now includes adoptive transfer of autologous tumor-specific chimeric antigen receptor (CAR) T cells and this mode of therapy is a candidate for combination with small molecule drugs. This paper describes CART cells that target GD2-expressing melanoma cells and investigates the effects of approved MAPK pathway-targeted therapies for melanoma [vemurafenib (Vem), dabrafenib (Dab), and trametinib (Tram)] on the viability, activation, proliferation, and cytotoxic T lymphocyte activity of these CAR T cells, as well as on normal peripheral blood mononuclear cells. We report that, although all these drugs lead to inhibition of stimulated T cells at high concentrations in vitro, only Vem inhibited T cells at concentrations equivalent to reported plasma concentrations in treated patients. Although the combination of Dab and Tram also resulted in inhibition of T-cell effector functions at some therapeutic concentrations, Dab itself had little adverse effect on CAR T-cell function. These findings may have implications for novel therapeutic combinations of adoptive CAR T-cell immunotherapy and MAPK pathway inhibitors. PMID:25415284

  6. Alcohol and Cannabinoids Differentially Affect HIV Infection and Function of Human Monocyte-Derived Dendritic Cells (MDDC)

    PubMed Central

    Agudelo, Marisela; Figueroa, Gloria; Yndart, Adriana; Casteleiro, Gianna; Muñoz, Karla; Samikkannu, Thangavel; Atluri, Venkata; Nair, Madhavan P.

    2015-01-01

    During human immunodeficiency virus (HIV) infection, alcohol has been known to induce inflammation while cannabinoids have been shown to have an anti-inflammatory role. For instance cannabinoids have been shown to reduce susceptibility to HIV-1 infection and attenuate HIV replication in macrophages. Recently, we demonstrated that alcohol induces cannabinoid receptors and regulates cytokine production by monocyte-derived dendritic cells (MDDC). However, the ability of alcohol and cannabinoids to alter MDDC function during HIV infection has not been clearly elucidated yet. In order to study the potential impact of alcohol and cannabinoids on differentiated MDDC infected with HIV, monocytes were cultured for 7 days with GM-CSF and IL-4, differentiated MDDC were infected with HIV-1Ba-L and treated with EtOH (0.1 and 0.2%), THC (5 and 10 μM), or JWH-015 (5 and 10 μM) for 4–7 days. HIV infection of MDDC was confirmed by p24 and Long Terminal Repeats (LTR) estimation. MDDC endocytosis assay and cytokine array profiles were measured to investigate the effects of HIV and substances of abuse on MDDC function. Our results show the HIV + EtOH treated MDDC had the highest levels of p24 production and expression when compared with the HIV positive controls and the cannabinoid treated cells. Although both cannabinoids, THC and JWH-015 had lower levels of p24 production and expression, the HIV + JWH-015 treated MDDC had the lowest levels of p24 when compared to the HIV + THC treated cells. In addition, MDDC endocytic function and cytokine production were also differentially altered after alcohol and cannabinoid treatments. Our results show a differential effect of alcohol and cannabinoids, which may provide insights into the divergent inflammatory role of alcohol and cannabinoids to modulate MDDC function in the context of HIV infection. PMID:26733986

  7. Loss of Pcgf5 Affects Global H2A Monoubiquitination but Not the Function of Hematopoietic Stem and Progenitor Cells

    PubMed Central

    Aoyama, Kazumasa; Oshima, Motohiko; Saraya, Atsunori; Sugishita, Hiroki; Nakayama, Manabu; Ishikura, Tomoyuki; Koseki, Haruhiko; Iwama, Atsushi

    2016-01-01

    Polycomb-group RING finger proteins (Pcgf1-Pcgf6) are components of Polycomb repressive complex 1 (PRC1)-related complexes that catalyze monoubiquitination of histone H2A at lysine 119 (H2AK119ub1), an epigenetic mark associated with repression of genes. Pcgf5 has been characterized as a component of PRC1.5, one of the non-canonical PRC1, consisting of Ring1a/b, Rybp/Yaf2 and Auts2. However, the biological functions of Pcgf5 have not yet been identified. Here we analyzed the impact of the deletion of Pcgf5 specifically in hematopoietic stem and progenitor cells (HSPCs). Pcgf5 is expressed preferentially in hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) compared with committed myeloid progenitors and differentiated cells. We transplanted bone marrow (BM) cells from Rosa::Cre-ERT control and Cre-ERT;Pcgf5fl/fl mice into lethally irradiated recipient mice. At 4 weeks post-transplantation, we deleted Pcgf5 by injecting tamoxifen, however, no obvious changes in hematopoiesis were detected including the number of HSPCs during a long-term observation period following the deletion. Competitive BM repopulating assays revealed normal repopulating capacity of Pcgf5-deficient HSCs. Nevertheless, Pcgf5-deficient HSPCs showed a significant reduction in H2AK119ub1 levels compared with the control. ChIP-sequence analysis confirmed the reduction in H2AK119ub1 levels, but revealed no significant association of changes in H2AK119ub1 levels with gene expression levels. Our findings demonstrate that Pcgf5-containing PRC1 functions as a histone modifier in vivo, but its role in HSPCs is limited and can be compensated by other PRC1-related complexes in HSPCs. PMID:27136092

  8. Interrupting CD28 costimulation before antigen rechallenge affects CD8(+) T-cell expansion and effector functions during secondary response in mice.

    PubMed

    Fröhlich, Monika; Gogishvili, Tea; Langenhorst, Daniela; Lühder, Fred; Hünig, Thomas

    2016-07-01

    The role of CD28-mediated costimulation in secondary CD8(+) T-cell responses remains controversial. Here, we have used two tools - blocking mouse anti-mouse CD28-specific antibodies and inducible CD28-deleting mice - to obtain definitive answers in mice infected with ovalbumin-secreting Listeria monocytogenes. We report that both blockade and global deletion of CD28 reveal its requirement for full clonal expansion and effector functions such as degranulation and IFN-γ production during the secondary immune response. In contrast, cell-intrinsic deletion of CD28 in transferred TCR-transgenic CD8(+) T cells before primary infection leads to impaired clonal expansion but an increase in cells able to express effector functions in both primary and secondary responses. We suggest that the proliferation-impaired CD8(+) T cells respond to CD28-dependent help from their environment by enhanced functional differentiation. Finally, we report that cell-intrinsic deletion of CD28 after the peak of the primary response does not affect the establishment, maintenance, or recall of long-term memory. Thus, if given sufficient time, the progeny of primed CD8(+) T cells adapt to the absence of this costimulator. PMID:27122236

  9. PEGylation affects cytotoxicity and cell-compatibility of poly(ethylene imine) for lung application: Structure-function relationships

    SciTech Connect

    Beyerle, Andrea; Merkel, Olivia; Stoeger, Tobias; Kissel, Thomas

    2010-01-15

    Poly(ethylene imine) (PEI) has widely been used as non-viral gene carrier due to its capability to form stable complexes by electrostatic interactions with nucleic acids. To reduce cytotoxicity of PEI, several studies have addressed modified PEIs such as block or graft copolymers containing cationic and hydrophilic non-ionic components. Copolymers of PEI and hydrophilic poly(ethylene glycol) (PEG) with various molecular weights and graft densities were shown to exhibit decreased cytotoxicity and potential for DNA and siRNA delivery. In this study, we evaluated the cytotoxicity and cell-compatibility of different PEGylated PEI polymers in two murine lung cell lines. We found that the degree of PEGylation correlated with both cytotoxicity and oxidative stress, but not with proinflammatory effects. AB type copolymers with long PEG blocks caused high membrane damage and significantly decreased the metabolic activity of lung cells. In addition, they significantly increased the release of two lipid mediators such as 8-isoprostanes (8-IP) and prostaglandin E{sub 2} (PGE{sub 2}) in a dose-dependent manner. In contrast, the cytokine profiles which indicated high levels of acute-phase cytokines such as TNF-alpha, IL-6, and G-CSF did not follow any clear structure-function relationship. In conclusion, we found that modification of PEI 25kDa with high degree of PEGylation and low PEG chain length reduced cytotoxic and oxidative stress response in lung cells, while the proinflammatory potential remained unaffected. A degree of substitution in the range of 10 to 30 and PEG-chain lengths up to 2000 Da seem to be beneficial and merit further investigations.

  10. Deregulation of Plant Cell Death Through Disruption of Chloroplast Functionality Affects Asexual Sporulation of Zymoseptoria tritici on Wheat.

    PubMed

    Lee, Wing-Sham; Devonshire, B Jean; Hammond-Kosack, Kim E; Rudd, Jason J; Kanyuka, Kostya

    2015-05-01

    Chloroplasts have a critical role in plant defense as sites for the biosynthesis of the signaling compounds salicylic acid (SA), jasmonic acid (JA), and nitric oxide (NO) and as major sites of reactive oxygen species production. Chloroplasts, therefore, regarded as important players in the induction and regulation of programmed cell death (PCD) in response to abiotic stresses and pathogen attack. The predominantly foliar pathogen of wheat Zymoseptoria tritici is proposed to exploit the plant PCD, which is associated with the transition in the fungus to the necrotrophic phase of infection. In this study virus-induced gene silencing was used to silence two key genes in carotenoid and chlorophyll biosynthesis, phytoene desaturase (PDS) and Mg-chelatase H subunit (ChlH). The chlorophyll-deficient, PDS- and ChlH-silenced leaves of susceptible plants underwent more rapid pathogen-induced PCD but were significantly less able to support the subsequent asexual sporulation of Z. tritici. Conversely, major gene (Stb6)-mediated resistance to Z. tritici was partially compromised in PDS- and ChlH-silenced leaves. Chlorophyll-deficient wheat ears also displayed increased Z. tritici disease lesion formation accompanied by increased asexual sporulation. These data highlight the importance of chloroplast functionality and its interaction with regulated plant cell death in mediating different genotype and tissue-specific interactions between Z. tritici and wheat. PMID:25496594

  11. Methamphetamine Use in HIV-infected Individuals Affects T-cell Function and Viral Outcome during Suppressive Antiretroviral Therapy.

    PubMed

    Massanella, Marta; Gianella, Sara; Schrier, Rachel; Dan, Jennifer M; Pérez-Santiago, Josué; Oliveira, Michelli F; Richman, Douglas D; Little, Susan J; Benson, Constance A; Daar, Eric S; Dube, Michael P; Haubrich, Richard H; Smith, Davey M; Morris, Sheldon R

    2015-01-01

    We investigated the associations between methamphetamine (meth) use, immune function, and the dynamics of HIV and cytomegalovirus [CMV] in the blood and genital tract of HIV-infected ART-suppressed subjects. Self-reported meth use was associated with increased CD4(+) and CD8(+) T-cell proliferation (Ki67(+), p < 0.005), CD4(+) T-cell activation (CD45RA(-)CD38(+), p = 0.005) and exhaustion (PD-1(+), p = 0.0004) in blood, compared to non-meth users. Meth use was also associated with a trend towards higher blood HIV DNA levels (p = 0.09) and more frequent shedding of CMV in seminal plasma (p = 0.002). To explore possible mechanisms, we compared ex vivo spontaneous and antigen-specific proliferation in PBMC collected from subjects with and without positive meth detection in urine (Utox+ vs. Utox-). Despite higher levels of spontaneous proliferation, lymphocytes from Utox+ meth users had a significantly lower proliferative capacity after stimulation with a number of pathogens (CMV, candida, mycobacterium, toxoplasma, HIV, p < 0.04 in all cases), compared to Utox- participants. Our findings suggest that meth users have greater proliferation and exhaustion of the immune system. Meth use is also associated with a loss of control of CMV replication, which could be related to loss of immune response to pathogens. Future studies should consider meth use as a potential modulator of T-cell responses. PMID:26299251

  12. Methamphetamine Use in HIV-infected Individuals Affects T-cell Function and Viral Outcome during Suppressive Antiretroviral Therapy

    PubMed Central

    Massanella, Marta; Gianella, Sara; Schrier, Rachel; Dan, Jennifer M.; Pérez-Santiago, Josué; Oliveira, Michelli F.; Richman, Douglas D.; Little, Susan J.; Benson, Constance A.; Daar, Eric S.; Dube, Michael P.; Haubrich, Richard H.; Smith, Davey M.; Morris, Sheldon R.

    2015-01-01

    We investigated the associations between methamphetamine (meth) use, immune function, and the dynamics of HIV and cytomegalovirus [CMV] in the blood and genital tract of HIV-infected ART-suppressed subjects. Self-reported meth use was associated with increased CD4+ and CD8+ T-cell proliferation (Ki67+, p < 0.005), CD4+ T-cell activation (CD45RA–CD38+, p = 0.005) and exhaustion (PD-1+, p = 0.0004) in blood, compared to non-meth users. Meth use was also associated with a trend towards higher blood HIV DNA levels (p = 0.09) and more frequent shedding of CMV in seminal plasma (p = 0.002). To explore possible mechanisms, we compared ex vivo spontaneous and antigen-specific proliferation in PBMC collected from subjects with and without positive meth detection in urine (Utox+ vs. Utox-). Despite higher levels of spontaneous proliferation, lymphocytes from Utox+ meth users had a significantly lower proliferative capacity after stimulation with a number of pathogens (CMV, candida, mycobacterium, toxoplasma, HIV, p < 0.04 in all cases), compared to Utox- participants. Our findings suggest that meth users have greater proliferation and exhaustion of the immune system. Meth use is also associated with a loss of control of CMV replication, which could be related to loss of immune response to pathogens. Future studies should consider meth use as a potential modulator of T-cell responses. PMID:26299251

  13. Computational design of small phenothiazine dyes for dye-sensitized solar cells by functionalizations affecting the thiophene unit.

    PubMed

    Tu, Wei Han; Tan, Yi Yin; Rege, Omkar; Manzhos, Sergei

    2015-04-01

    We present a computational density functional theory study of the potential to improve the solar absorbance of small organic dyes featuring a phenothiazine donor and an acceptor moiety that combines a thiophene unit and a cyanoacrylic group. We consider different conjugation orders and functional groups on and around the thiophene unit, including electron-donating and electron-withdrawing moieties (H, F, CH3, CF3, and CN). We predict that by combining change of conjugation order and functionalization with electron withdrawing CN groups, it must be possible to decrease the excitation energy by up to 60 % vs. the parent dye (which would correspond to a redshift of the absorption peak maximum from 450 nm to 726 nm), effectively enabling red light absorption with small dyes. The contraction of the band gap is mostly due to the stabilization of the LUMO (by up to 1.8 eV), so that-in spite of the kinetic redundancy of the parent dye with respect to the conduction-band minimum of TiO2-care must be taken to ensure efficient injection when using the dyes in dye-sensitized solar cells. By studying 50 dyes, of which 44 are new dyes that are studied for the first time in this work, we identify parameters (such as charges, dihedral angles between donor and acceptor groups, bond length alternation) which can serve as predictors of the band gap. We find that bond length alternation or dihedral angles are not good predictors, while the charge on the thiophene unit is. PMID:25750021

  14. Involvement of S100A14 protein in cell invasion by affecting expression and function of matrix metalloproteinase (MMP)-2 via p53-dependent transcriptional regulation.

    PubMed

    Chen, Hongyan; Yuan, Yi; Zhang, Chunpeng; Luo, Aiping; Ding, Fang; Ma, Jianlin; Yang, Shouhui; Tian, Yanyan; Tong, Tong; Zhan, Qimin; Liu, Zhihua

    2012-05-18

    S100 proteins have been implicated in tumorigenesis and metastasis. As a member of S100 proteins, the role of S100A14 in carcinogenesis has not been fully understood. Here, we showed that ectopic overexpression of S100A14 promotes motility and invasiveness of esophageal squamous cell carcinoma cells. We investigated the underlying mechanisms and found that the expression of matrix metalloproteinase (MMP)-2 is obviously increased after S100A14 gene overexpression. Inhibition of MMP2 by a specific MMP2 inhibitor at least partly reversed the invasive phenotype of cells overexpressing S100A14. By serendipity, we found that S100A14 could affect p53 transactivity and stability. Thus, we further investigated whether the effect of MMP2 by S100A14 is dependent on p53. A series of biochemical assays showed that S100A14 requires functional p53 to affect MMP2 transcription, and p53 potently transrepresses the expression of MMP2. Finally, RT-quantitative PCR analysis of human breast cancer specimens showed a significant correlation between S100A14 mRNA expression and MMP2 mRNA expression in cases with wild-type p53 but not in cases with mutant p53. Collectively, our data strongly suggest that S100A14 promotes cell motility and invasiveness by regulating the expression and function of MMP2 in a p53-dependent manner. PMID:22451655

  15. Placebo Sleep Affects Cognitive Functioning

    ERIC Educational Resources Information Center

    Draganich, Christina; Erdal, Kristi

    2014-01-01

    The placebo effect is any outcome that is not attributed to a specific treatment but rather to an individual's mindset (Benson & Friedman, 1996). This phenomenon can extend beyond its typical use in pharmaceutical drugs to involve aspects of everyday life, such as the effect of sleep on cognitive functioning. In 2 studies examining whether…

  16. Hyperinsulinemia adversely affects lung structure and function.

    PubMed

    Singh, Suchita; Bodas, Manish; Bhatraju, Naveen K; Pattnaik, Bijay; Gheware, Atish; Parameswaran, Praveen Kolumam; Thompson, Michael; Freeman, Michelle; Mabalirajan, Ulaganathan; Gosens, Reinoud; Ghosh, Balaram; Pabelick, Christina; Linneberg, Allan; Prakash, Y S; Agrawal, Anurag

    2016-05-01

    There is limited knowledge regarding the consequences of hyperinsulinemia on the lung. Given the increasing prevalence of obesity, insulin resistance, and epidemiological associations with asthma, this is a critical lacuna, more so with inhaled insulin on the horizon. Here, we demonstrate that insulin can adversely affect respiratory health. Insulin treatment (1 μg/ml) significantly (P < 0.05) increased the proliferation of primary human airway smooth muscle (ASM) cells and induced collagen release. Additionally, ASM cells showed a significant increase in calcium response and mitochondrial respiration upon insulin exposure. Mice administered intranasal insulin showed increased collagen deposition in the lungs as well as a significant increase in airway hyperresponsiveness. PI3K/Akt mediated activation of β-catenin, a positive regulator of epithelial-mesenchymal transition and fibrosis, was observed in the lungs of insulin-treated mice and lung cells. Our data suggests that hyperinsulinemia may have adverse effects on airway structure and function. Insulin-induced activation of β-catenin in lung tissue and the contractile effects on ASM cells may be causally related to the development of asthma-like phenotype. PMID:26919895

  17. FTY720 ameliorates Th1-mediated colitis in mice by directly affecting the functional activity of CD4+CD25+ regulatory T cells.

    PubMed

    Daniel, Carolin; Sartory, Nico; Zahn, Nadine; Geisslinger, Gerd; Radeke, Heinfried H; Stein, Juergen M

    2007-02-15

    Following the present concepts, the synthetic sphingosine analog of myriocin FTY720 alters migration and homing of lymphocytes via sphingosine 1-phosphate receptors. However, several studies indicate that the immunosuppressive properties of FTY720 may alternatively be due to tolerogenic activities via modulation of dendritic cell differentiation or based on direct effects on CD4(+)CD25(+) regulatory T cells (Treg). As Treg play an important role for the cure of inflammatory colitis, we used the Th1-mediated 2,4,6-trinitrobenzene sulfonic acid (TNBS) colitis model to address the therapeutic potential of FTY720 in vivo. A rectal enema of TNBS was given to BALB/c mice. FTY720 was administered i.p. from days 0 to 3 or 3 to 5. FTY720 substantially reduced all clinical, histopathologic, macroscopic, and microscopic parameters of colitis analyzed. The therapeutic effects of FTY720 were associated with a down-regulation of IL-12p70 and subsequent Th1 cytokines. Importantly, FTY720 treatment resulted in a prominent up-regulation of FoxP3, IL-10, TGFbeta, and CTLA4. Supporting the hypothesis that FTY720 directly affects functional activity of CD4(+)CD25(+) Treg, we measured a significant increase of CD25 and FoxP3 expression in isolated lamina propria CD4(+) T cells of FTY720-treated mice. The impact of FTY720 on Treg induction was further confirmed by concomitant in vivo blockade of CTLA4 or IL-10R which significantly abrogated its therapeutic activity. In conclusion, our data provide clear evidence that in addition to its well-established effects on migration FTY720 leads to a specific down-regulation of proinflammatory signals while simultaneously inducing functional activity of CD4(+)CD25(+) Treg. Thus, FTY720 may offer a promising new therapeutic strategy for the treatment of IBD. PMID:17277153

  18. How mental stress affects endothelial function.

    PubMed

    Toda, Noboru; Nakanishi-Toda, Megumi

    2011-12-01

    Mental stress is an important factor contributing to recognized mechanisms underlying cardiovascular events. Among these, stress-related endothelial dysfunction is an early risk factor that predicts future development of severe cardiovascular disorders. Acute mental stress by a variety of tests impairs endothelial function in humans, although the opposite results have been reported by some investigators. Chronic stress always deteriorates endothelial function in humans and experimental animals. Stress hormones, such as glucocorticoids and pro-inflammatory cytokines, and endothelin-1 liberated in response to mental stress participate in endothelial dysfunction possibly via downregulation of endothelial nitric oxide synthase (eNOS) expression, eNOS inactivation, decreased nitric oxide (NO) actions, and increased NO degradation, together with vasoconstriction counteracting against NO-induced vasodilatation. Catecholamines do not directly affect endothelial function but impair its function when blood pressure elevation by the amines is sustained. Endogenous opioids favorably affect endothelial function, which counteract deteriorating effects of other stress hormones and mediators. Inhibition of cortisol and endothelin-1 production, prevention of pro-inflammatory mediator accumulation, hypnotics, mirthful laughter, humor orientation, and lifestyle modification would contribute to the prevention and treatment for stress-related endothelial dysfunction and future serious cardiovascular disease. PMID:21947555

  19. Functional Interactions between BM88/Cend1, Ran-Binding Protein M and Dyrk1B Kinase Affect Cyclin D1 Levels and Cell Cycle Progression/Exit in Mouse Neuroblastoma Cells

    PubMed Central

    Tsioras, Konstantinos; Papastefanaki, Florentia; Politis, Panagiotis K.; Matsas, Rebecca; Gaitanou, Maria

    2013-01-01

    BM88/Cend1 is a neuronal-lineage specific modulator with a pivotal role in coordination of cell cycle exit and differentiation of neuronal precursors. In the current study we identified the signal transduction scaffolding protein Ran-binding protein M (RanBPM) as a BM88/Cend1 binding partner and showed that BM88/Cend1, RanBPM and the dual specificity tyrosine-phosphorylation regulated kinase 1B (Dyrk1B) are expressed in mouse brain as well as in cultured embryonic cortical neurons while RanBPM can form complexes with either of the two other proteins. To elucidate a potential mechanism involving BM88/Cend1, RanBPM and Dyrk1B in cell cycle progression/exit, we transiently co-expressed these proteins in mouse neuroblastoma Neuro 2a cells. We found that the BM88/Cend1-dependent or Dyrk1B-dependent down-regulation of cyclin D1 is reversed following their functional interaction with RanBPM. More specifically, functional interaction of RanBPM with either BM88/Cend1 or Dyrk1B stabilizes cyclin D1 in the nucleus and promotes 5-bromo-2'-deoxyuridine (BrdU) incorporation as a measure of enhanced cell proliferation. However, the RanBPM-dependent Dyrk1B cytosolic retention and degradation is reverted in the presence of Cend1 resulting in cyclin D1 destabilization. Co-expression of RanBPM with either BM88/Cend1 or Dyrk1B also had a negative effect on Neuro 2a cell differentiation. Our results suggest that functional interactions between BM88/Cend1, RanBPM and Dyrk1B affect the balance between cellular proliferation and differentiation in Neuro 2a cells and indicate that a potentially similar mechanism may influence cell cycle progression/exit and differentiation of neuronal precursors. PMID:24312406

  20. Enterovirus infection of human islets of Langerhans affects β-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure

    PubMed Central

    Hodik, M; Skog, O; Lukinius, A; Isaza-Correa, J M; Kuipers, J; Giepmans, B N G; Frisk, G

    2016-01-01

    Aims/hypothesis In type 1 diabetes (T1D), most insulin-producing β cells are destroyed, but the trigger is unknown. One of the possible triggers is a virus infection and the aim of this study was to test if enterovirus infection affects glucose stimulated insulin secretion and the effect of virus replication on cellular macromolecules and organelles involved in insulin secretion. Methods Isolated human islets were infected with different strains of coxsackievirus B (CVB) virus and the glucose-stimulated insulin release (GSIS) was measured in a dynamic perifusion system. Classical morphological electron microscopy, large-scale electron microscopy, so-called nanotomy, and immunohistochemistry were used to study to what extent virus-infected β cells contained insulin, and real-time PCR was used to analyze virus induced changes of islet specific genes. Results In islets infected with CVB, GSIS was reduced in correlation with the degree of virus-induced islet disintegration. The expression of the gene encoding insulin was decreased in infected islets, whereas the expression of glucagon was not affected. Also, in islets that were somewhat disintegrated, there were uninfected β cells. Ultrastructural analysis revealed that virus particles and virus replication complexes were only present in β cells. There was a significant number of insulin granules remaining in the virus-infected β cells, despite decreased expression of insulin mRNA. In addition, no typical Golgi apparatus was detected in these cells. Exposure of islets to synthetic dsRNA potentiated glucose-stimulated insulin secretion. Conclusions/interpretation Glucose-stimulated insulin secretion; organelles involved in insulin secretion and gene expression were all affected by CVB replication in β cells. PMID:27547409

  1. Estrogen treatment affects brain functioning after menopause.

    PubMed

    Bayer, Ulrike; Hausmann, Markus

    2011-12-01

    Sex hormones have powerful neuromodulatory effects on functional brain organization and cognitive functioning. This paper reviews findings from studies investigating the influence of sex hormones in postmenopausal women with and without hormone therapy (HT). Functional brain organization was investigated using different behavioural tasks in postmenopausal women using either estrogen therapy or combined estrogen plus gestagen therapy and age- and IQ-matched postmenopausal women not taking HT. The results revealed HT-related modulations in specific aspects of functional brain organization including functional cerebral asymmetries and interhemispheric interaction. In contrast to younger women during the menstrual cycle, however, it seems that HT, and especially estrogen therapy, after menopause affects intrahemispheric processing rather than interhemispheric interaction. This might be explained by a faster and more pronounced age-related decline in intrahemispheric relative to interhemispheric functioning, which might be associated with higher sensitivity to HT. Taken together, the findings suggest that the female brain retains its plasticity even after reproductive age and remains susceptible to the effects of sex hormones throughout the lifetime, which might help to discover new clinical approaches in the hormonal treatment of neurological and psychiatric disorders. PMID:22120942

  2. Phagocytosis Is the Main CR3-Mediated Function Affected by the Lupus-Associated Variant of CD11b in Human Myeloid Cells

    PubMed Central

    Cortini, Andrea; Szajna, Marta; Malik, Talat H.; McDonald, Jacqueline U.; Pickering, Matthew C.; Cook, H. Terence; Taylor, Philip R.; Botto, Marina

    2013-01-01

    The CD11b/CD18 integrin (complement receptor 3, CR3) is a surface receptor on monocytes, neutrophils, macrophages and dendritic cells that plays a crucial role in several immunological processes including leukocyte extravasation and phagocytosis. The minor allele of a non-synonymous CR3 polymorphism (rs1143679, conversation of arginine to histidine at position 77: R77H) represents one of the strongest genetic risk factor in human systemic lupus erythematosus, with heterozygosity (77R/H) being the most common disease associated genotype. Homozygosity for the 77H allele has been reported to reduce adhesion and phagocytosis in human monocytes and monocyte-derived macrophages, respectively, without affecting surface expression of CD11b. Herein we comprehensively assessed the influence of R77H on different CR3-mediated activities in monocytes, neutrophils, macrophages and dendritic cells. R77H did not alter surface expression of CD11b including its active form in any of these cell types. Using two different iC3b-coated targets we found that the uptake by heterozygous 77R/H macrophages, monocytes and neutrophils was significantly reduced compared to 77R/R cells. Allele-specific transduced immortalized macrophage cell lines demonstrated that the minor allele, 77H, was responsible for the impaired phagocytosis. R77H did not affect neutrophil adhesion, neutrophil transmigration in vivo or Toll-like receptor 7/8-mediated cytokine release by monocytes or dendritic cells with or without CR3 pre-engagement by iC3b-coated targets. Our findings demonstrate that the reduction in CR3-mediated phagocytosis associated with the 77H CD11b variant is not macrophage-restricted but demonstrable in other CR3-expressing professional phagocytic cells. The association between 77H and susceptibility to systemic lupus erythematosus most likely relates to impaired waste disposal, a key component of lupus pathogenesis. PMID:23451151

  3. The challenging environment on board the International Space Station affects endothelial cell function by triggering oxidative stress through thioredoxin interacting protein overexpression: the ESA-SPHINX experiment.

    PubMed

    Versari, Silvia; Longinotti, Giulia; Barenghi, Livia; Maier, Jeanette Anne Marie; Bradamante, Silvia

    2013-11-01

    Exposure to microgravity generates alterations that are similar to those involved in age-related diseases, such as cardiovascular deconditioning, bone loss, muscle atrophy, and immune response impairment. Endothelial dysfunction is the common denominator. To shed light on the underlying mechanism, we participated in the Progress 40P mission with Spaceflight of Human Umbilical Vein Endothelial Cells (HUVECs): an Integrated Experiment (SPHINX), which consisted of 12 in-flight and 12 ground-based control modules and lasted 10 d. Postflight microarray analysis revealed 1023 significantly modulated genes, the majority of which are involved in cell adhesion, oxidative phosphorylation, stress responses, cell cycle, and apoptosis. Thioredoxin-interacting protein was the most up-regulated (33-fold), heat-shock proteins 70 and 90 the most down-regulated (5.6-fold). Ion channels (TPCN1, KCNG2, KCNJ14, KCNG1, KCNT1, TRPM1, CLCN4, CLCA2), mitochondrial oxidative phosphorylation, and focal adhesion were widely affected. Cytokine detection in the culture media indicated significant increased secretion of interleukin-1α and interleukin-1β. Nitric oxide was found not modulated. Our data suggest that in cultured HUVECs, microgravity affects the same molecular machinery responsible for sensing alterations of flow and generates a prooxidative environment that activates inflammatory responses, alters endothelial behavior, and promotes senescence. PMID:23913861

  4. Coxsackie- and adenovirus receptor (CAR) is expressed in lymphatic vessels in human skin and affects lymphatic endothelial cell function in vitro

    SciTech Connect

    Vigl, Benjamin; Zgraggen, Claudia; Rehman, Nadia; Banziger-Tobler, Nadia E.; Detmar, Michael; Halin, Cornelia

    2009-01-15

    Lymphatic vessels play an important role in tissue fluid homeostasis, intestinal fat absorption and immunosurveillance. Furthermore, they are involved in pathologic conditions, such as tumor cell metastasis and chronic inflammation. In comparison to blood vessels, the molecular phenotype of lymphatic vessels is less well characterized. Performing comparative gene expression analysis we have recently found that coxsackie- and adenovirus receptor (CAR) is significantly more highly expressed in cultured human, skin-derived lymphatic endothelial cells (LECs), as compared to blood vascular endothelial cells. Here, we have confirmed these results at the protein level, using Western blot and FACS analysis. Immunofluorescence performed on human skin confirmed that CAR is expressed at detectable levels in lymphatic vessels, but not in blood vessels. To address the functional significance of CAR expression, we modulated CAR expression levels in cultured LECs in vitro by siRNA- and vector-based transfection approaches. Functional assays performed with the transfected cells revealed that CAR is involved in distinct cellular processes in LECs, such as cell adhesion, migration, tube formation and the control of vascular permeability. In contrast, no effect of CAR on LEC proliferation was observed. Overall, our data suggest that CAR stabilizes LEC-LEC interactions in the skin and may contribute to lymphatic vessel integrity.

  5. Can lifestyle modification affect men's erectile function?

    PubMed

    Hehemann, Marah C; Kashanian, James A

    2016-04-01

    Erectile dysfunction (ED) is a common condition affecting millions of men worldwide. The pathophysiology and epidemiologic links between ED and risk factors for cardiovascular disease (CVD) are well-established. Lifestyle modifications such as smoking cessation, weight reduction, dietary modification, physical activity, and psychological stress reduction have been increasingly recognized as foundational to the prevention and treatment of ED. The aim of this review is to outline behavioral choices which may increase ones risk of developing ED, to present relevant studies addressing lifestyle factors correlated with ED, and to highlight proposed mechanisms for intervention aimed at improving erectile function in men with ED. These recommendations can provide a framework for counseling patients with ED about lifestyle modification. PMID:27141445

  6. Mast Cell Function

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  7. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia

    SciTech Connect

    Chen, Shayan; Feng, Wenli; Yang, Xiao; Yang, Wanzhu; Ru, Yongxin; Liao, Jinfeng; Wang, Lina; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2014-04-18

    Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca{sup 2+} response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.

  8. Does iron deficiency anemia affect olfactory function?

    PubMed

    Dinc, Mehmet Emre; Dalgic, Abdullah; Ulusoy, Seckin; Dizdar, Denizhan; Develioglu, Omer; Topak, Murat

    2016-07-01

    Conclusion This study found a negative effect of IDA on olfactory function. IDA leads to a reduction in olfactory function, and decreases in hemoglobin levels result in further reduction in olfactory function. Objective This study examined the effects of iron-deficiency anemia (IDA) on olfactory function. Method The study enrolled 50 IDA patients and 50 healthy subjects. Olfactory function was evaluated using the Sniffin' Sticks olfactory test. The diagnosis of IDA was made according to World Health Organization (WHO) criteria. Results Patients with IDA had a significantly lower threshold, discrimination, and identification (TDI) value, and a lower threshold compared with the control group. However, there were no significant differences between the groups in terms of smell selectivity values. PMID:26963317

  9. Scorpion venom components that affect ion-channels function

    PubMed Central

    Quintero-Hernández, V.; Jiménez-Vargas, J.M.; Gurrola, G.B.; Valdivia, H.H.F.; Possani, L.D.

    2014-01-01

    SUMMARY The number and types of venom components that affect ion-channel function are reviewed. These are the most important venom components responsible for human intoxication, deserving medical attention, often requiring the use of specific anti-venoms. Special emphasis is given to peptides that recognize Na+-, K+- and Ca++-channels of excitable cells. Knowledge generated by direct isolation of peptides from venom and components deduced from cloned genes, whose amino acid sequences are deposited into databanks are now adays in the order of 1.5 thousands, out of an estimate biodiversity closed to 300,000. Here the diversity of components is briefly reviewed with mention to specific references. Structural characteristic are discussed with examples taken from published work. The principal mechanisms of action of the three different types of peptides are also reviewed. Na+-channel specific venom components usually are modifier of the open and closing kinetic mechanisms of the ion-channels, whereas peptides affecting K+-channels are normally pore blocking agents. The Ryanodine Ca++-channel specific peptides are known for causing sub-conducting stages of the channels conductance and some were shown to be able to internalize penetrating inside the muscle cells. PMID:23891887

  10. How does temperature affect the function of tissue macrophages?

    NASA Astrophysics Data System (ADS)

    Lee, Chen-Ting; Repasky, Elizabeth A.

    2011-03-01

    Macrophages create a major danger signal following injury or infection and upon activation release pro-inflammatory cytokines, which in turn help to generate febrile conditions. Thus, like other cells of the body, tissue macrophages are often exposed to naturally occurring elevations in tissue temperature during inflammation and fever. However, whether macrophages sense and respond to temperature changes in a specific manner which modulates their function is still not clear. In this brief review, we highlight recent studies which have analyzed the effects of temperatures on macrophage function, and summarize the possible underlying molecular mechanisms which have been identified. Mild, physiological range hyperthermia has been shown to have both pro- and anti-inflammatory roles in regulating macrophage inflammatory cytokine production and at the meeting presentation, we will show new data demonstrating that hyperthermia can indeed exert both positive and negative signals to macrophages. While some thermal effects are correlated with the induction of heat shock factors/heat shock proteins, overall it is not clear how mild hyperthermia can exert both pro- and anti-inflammatory functions. We also summarize data which shows that hyperthermia can affect other macrophage effector functions, including the anti-tumor cytotoxicity. Overall, these studies may help us to better understand the immunological role of tissue temperature and may provide important information needed to maximize the application of heat in the treatment of various diseases including cancer.

  11. Physical parameters affecting living cells in space.

    PubMed

    Langbein, D

    1986-01-01

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present. PMID:11537842

  12. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  13. Bisphenol A affects androgen receptor function via multiple mechanisms

    PubMed Central

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B. Alex; Jetten, Anton M.; Austin, Christopher, P.; Tice, Raymond R.

    2013-01-01

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. PMID:23562765

  14. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. PMID:23562765

  15. Biological, functional and genetic characterization of bone marrow-derived mesenchymal stromal cells from pediatric patients affected by acute lymphoblastic leukemia.

    PubMed

    Conforti, Antonella; Biagini, Simone; Del Bufalo, Francesca; Sirleto, Pietro; Angioni, Adriano; Starc, Nadia; Li Pira, Giuseppina; Moretta, Francesca; Proia, Alessandra; Contoli, Benedetta; Genovese, Silvia; Ciardi, Claudia; Avanzini, Maria Antonietta; Rosti, Vittorio; Lo-Coco, Francesco; Locatelli, Franco; Bernardo, Maria Ester

    2013-01-01

    Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment. PMID:24244271

  16. Biological, Functional and Genetic Characterization of Bone Marrow-Derived Mesenchymal Stromal Cells from Pediatric Patients Affected by Acute Lymphoblastic Leukemia

    PubMed Central

    Conforti, Antonella; Biagini, Simone; Del Bufalo, Francesca; Sirleto, Pietro; Angioni, Adriano; Starc, Nadia; Li Pira, Giuseppina; Moretta, Francesca; Proia, Alessandra; Contoli, Benedetta; Genovese, Silvia; Ciardi, Claudia; Avanzini, Maria Antonietta; Rosti, Vittorio; Lo-Coco, Francesco; Locatelli, Franco; Bernardo, Maria Ester

    2013-01-01

    Alterations in hematopoietic microenvironment of acute lymphoblastic leukemia patients have been claimed to occur, but little is known about the components of marrow stroma in these patients. In this study, we characterized mesenchymal stromal cells (MSCs) isolated from bone marrow (BM) of 45 pediatric patients with acute lymphoblastic leukemia (ALL-MSCs) at diagnosis (day+0) and during chemotherapy treatment (days: +15; +33; +78), the time points being chosen according to the schedule of BM aspirates required by the AIEOP-BFM ALL 2009 treatment protocol. Morphology, proliferative capacity, immunophenotype, differentiation potential, immunomodulatory properties and ability to support long-term hematopoiesis of ALL-MSCs were analysed and compared with those from 41 healthy donors (HD-MSCs). ALL-MSCs were also genetically characterized through array-CGH, conventional karyotyping and FISH analysis. Moreover, we compared ALL-MSCs generated at day+0 with those isolated during chemotherapy. Morphology, immunophenotype, differentiation potential and in vitro life-span did not differ between ALL-MSCs and HD-MSCs. ALL-MSCs showed significantly lower proliferative capacity (p<0.001) and ability to support in vitro hematopoiesis (p = 0.04) as compared with HD-MSCs, while they had similar capacity to inhibit in vitro mitogen-induced T-cell proliferation (p = N.S.). ALL-MSCs showed neither the typical translocations carried by the leukemic clone (when present), nor other genetic abnormalities acquired during ex vivo culture. Our findings indicate that ALL-MSCs display reduced ability to proliferate and to support long-term hematopoiesis in vitro. ALL-MSCs isolated at diagnosis do not differ from those obtained during treatment. PMID:24244271

  17. Social functioning and age across affective and non-affective psychoses

    PubMed Central

    Martin, Elizabeth A.; Öngür, Dost; Cohen, Bruce M.; Lewandowski, Kathryn E.

    2014-01-01

    Both non-affective and affective psychoses are associated with deficits in social functioning across the course of the illness. However, it is not clear how social functioning varies among diagnostic groups as a function of age. The current study examined the relationship between social functioning and age in schizophrenia (SZ), schizoaffective disorder (SZA), and psychotic bipolar disorder (PBD). We found that individuals with PBD had the highest functioning while individuals with SZ had the poorest. The functioning of individuals with SZA fell in between the other groups. We also found that older ages were associated with poorer functioning. Although there was not a significant diagnostic group by age interaction, visual inspection of our data suggests a subtly steeper trajectory of decline in PBD. These results indicate that a decline in social functioning with may be an important area of unmet need in treatment across psychotic disorders. PMID:25503785

  18. Regulation of Satellite Cell Function in Sarcopenia

    PubMed Central

    Alway, Stephen E.; Myers, Matthew J.; Mohamed, Junaith S.

    2014-01-01

    The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003

  19. Regulation of satellite cell function in sarcopenia.

    PubMed

    Alway, Stephen E; Myers, Matthew J; Mohamed, Junaith S

    2014-01-01

    The mechanisms contributing to sarcopenia include reduced satellite cell (myogenic stem cell) function that is impacted by the environment (niche) of these cells. Satellite cell function is affected by oxidative stress, which is elevated in aged muscles, and this along with changes in largely unknown systemic factors, likely contribute to the manner in which satellite cells respond to stressors such as exercise, disuse, or rehabilitation in sarcopenic muscles. Nutritional intervention provides one therapeutic strategy to improve the satellite cell niche and systemic factors, with the goal of improving satellite cell function in aging muscles. Although many elderly persons consume various nutraceuticals with the hope of improving health, most of these compounds have not been thoroughly tested, and the impacts that they might have on sarcopenia and satellite cell function are not clear. This review discusses data pertaining to the satellite cell responses and function in aging skeletal muscle, and the impact that three compounds: resveratrol, green tea catechins, and β-Hydroxy-β-methylbutyrate have on regulating satellite cell function and therefore contributing to reducing sarcopenia or improving muscle mass after disuse in aging. The data suggest that these nutraceutical compounds improve satellite cell function during rehabilitative loading in animal models of aging after disuse (i.e., muscle regeneration). While these compounds have not been rigorously tested in humans, the data from animal models of aging provide a strong basis for conducting additional focused work to determine if these or other nutraceuticals can offset the muscle losses, or improve regeneration in sarcopenic muscles of older humans via improving satellite cell function. PMID:25295003

  20. How Does Maternal Employment Affect Children's Socioemotional Functioning?

    ERIC Educational Resources Information Center

    Lam, Gigi

    2015-01-01

    The maternal employment becomes an irreversible trend across the globe. The effect of maternal employment on children's socioemotional functioning is so pervasive that it warrants special attention to investigate into the issue. A trajectory of analytical framework of how maternal employment affects children's socioemotional functioning originates…

  1. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells

    PubMed Central

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-01-01

    Background Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. Methods We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. Results We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by ≥ 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. Conclusion These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer. PMID:19025616

  2. Controlling Cell Function with Geometry

    NASA Astrophysics Data System (ADS)

    Mrksich, Milan

    2012-02-01

    This presentation will describe the use of patterned substrates to control cell shape with examples that illustrate the ways in which cell shape can regulate cell function. Most cells are adherent and must attach to and spread on a surface in order to survive, proliferate and function. In tissue, this surface is the extracellular matrix (ECM), an insoluble scaffold formed by the assembly of several large proteins---including fibronectin, the laminins and collagens and others---but in the laboratory, the surface is prepared by adsorbing protein to glass slides. To pattern cells, gold-coated slides are patterned with microcontact printing to create geometric features that promote cell attachment and that are surrounded by inert regions. Cells attach to these substrates and spread to adopt the shape defined by the underlying pattern and remain stable in culture for several days. Examples will be described that used a series of shapes to reveal the relationship between the shape of the cell and the structure of its cytoskeleton. These geometric cues were used to control cell polarity and the tension, or contractility, present in the cytoskeleton. These rules were further used to control the shapes of mesenchymal stem cells and in turn to control the differentiation of these cells into specialized cell types. For example, stem cells that were patterned into a ``star'' shape preferentially differentiated into bone cells whereas those that were patterned into a ``flower'' shape preferred a fat cell fate. These influences of shape on differentiation depend on the mechanical properties of the cytoskeleton. These examples, and others, reveal that shape is an important cue that informs cell function and that can be combined with the more common soluble cues to direct and study cell function.

  3. Proton transport and cell function.

    PubMed Central

    Ives, H E; Rector, F C

    1984-01-01

    The past five years have witnessed an explosion of information on the many and varied roles of H+ transport in cell function. H+ transport is involved in three broad areas of cell function: (a) maintenance and alteration of intracellular pH for initiation of specific cellular events, (b) generation of pH gradients in localized regions of the cell, including gradients involved in energy transduction, and (c) transepithelial ion transport. These processes each involve one or more of several H+ translocating mechanisms. The first section of this review will discuss these H+ translocating mechanisms and the second part will deal with the cellular functions controlled by H+ transport. PMID:6321552

  4. Serotonin and Dopamine: Unifying Affective, Activational, and Decision Functions

    PubMed Central

    Cools, Roshan; Nakamura, Kae; Daw, Nathaniel D

    2011-01-01

    Serotonin, like dopamine (DA), has long been implicated in adaptive behavior, including decision making and reinforcement learning. However, although the two neuromodulators are tightly related and have a similar degree of functional importance, compared with DA, we have a much less specific understanding about the mechanisms by which serotonin affects behavior. Here, we draw on recent work on computational models of dopaminergic function to suggest a framework by which many of the seemingly diverse functions associated with both DA and serotonin—comprising both affective and activational ones, as well as a number of other functions not overtly related to either—can be seen as consequences of a single root mechanism. PMID:20736991

  5. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder

    PubMed Central

    Roecklein, Kathryn A.; Wong, Patricia M.; Miller, Megan A.; Donofry, Shannon D.; Kamarck, Marissa L.; Brainard, George C.

    2013-01-01

    ROECKLEIN, K.A., WONG, P.M., MILLER, M.A., DONOFRY, S.D., KAMARCK, M.L., BRAINARD, G.C. Melanopsin, Photosensitive Ganglion Cells, and Seasonal Affective Disorder…NEUROSCI BIOBEHAV REV x(x) XXX-XXX, 2012. In two recent reports, melanopsin gene variations were associated with seasonal affective disorder (SAD), and in changes in the timing of sleep and activity in healthy individuals. New studies have deepened our understanding of the retinohypothalamic tract, which translates environmental light received by the retina into neural signals sent to a set of nonvisual nuclei in the brain that are responsible for functions other than sight including circadian, neuroendocrine and neurobehavioral regulation. Because this pathway mediates seasonal changes in physiology, behavior, and mood, individual variations in the pathway may explain why approximately 1–2% of the North American population develops mood disorders with a seasonal pattern (i.e., Major Depressive and Bipolar Disorders with a seasonal pattern, also known as seasonal affective disorder/SAD). Components of depression including mood changes, sleep patterns, appetite, and cognitive performance can be affected by the biological and behavioral responses to light. Specifically, variations in the gene sequence for the retinal photopigment, melanopsin, may be responsible for significant increased risk for mood disorders with a seasonal pattern, and may do so by leading to changes in activity and sleep timing in winter. The retinal sensitivity of SAD is hypothesized to be decreased compared to controls, and that further decrements in winter light levels may combine to trigger depression in winter. Here we outline steps for new research to address the possible role of melanopsin in seasonal affective disorder including chromatic pupillometry designed to measure the sensitivity of melanopsin containing retinal ganglion cells. PMID:23286902

  6. SLE-associated risk factors affect DC function

    PubMed Central

    Son, Myoungsun; Kim, Sun Jung; Diamond, Betty

    2016-01-01

    Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non-activated, non-immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC-intrinsic abnormalities or DC-extrinsic regulators of function can predispose to autoimmunity. PMID:26683148

  7. ``Backpack'' Functionalized Living Immune Cells

    NASA Astrophysics Data System (ADS)

    Swiston, Albert; Um, Soong Ho; Irvine, Darrell; Cohen, Robert; Rubner, Michael

    2009-03-01

    We demonstrate that functional polymeric ``backpacks'' built from polyelectrolyte multilayers (PEMs) can be attached to a fraction of the surface area of living, individual lymphocytes. Backpacks containing fluorescent polymers, superparamagnetic nanoparticles, and commercially available quantum dots have been attached to B and T-cells, which may be spatially manipulated using a magnetic field. Since the backpack does not occlude the entire cellular surface from the environment, this technique allows functional synthetic payloads to be attached to a cell that is free to perform its native functions, thereby synergistically utilizing both biological and synthetic functionalities. For instance, we have shown that backpack-modified T-cells are able to migrate on surfaces for several hours following backpack attachment. Possible payloads within the PEM backpack include drugs, vaccine antigens, thermally responsive polymers, nanoparticles, and imaging agents. We will discuss how this approach has broad potential for applications in bioimaging, single-cell functionalization, immune system and tissue engineering, and cell-based therapeutics where cell-environment interactions are critical.

  8. Lifetime affect and midlife cognitive function: prospective birth cohort study

    PubMed Central

    Richards, M.; Barnett, J. H.; Xu, M. K.; Croudace, T. J.; Gaysina, D.; Kuh, D.; Jones, P. B.

    2014-01-01

    Background Recurrent affective problems are predictive of cognitive impairment, but the timing and directionality, and the nature of the cognitive impairment, are unclear. Aims To test prospective associations between life-course affective symptoms and cognitive function in late middle age. Method A total of 1668 men and women were drawn from the Medical Research Council National Survey of Health and Development (the British 1946 birth cohort). Longitudinal affective symptoms spanning age 13-53 years served as predictors; outcomes consisted of self-reported memory problems at 60-64 years and decline in memory and information processing from age 53 to 60-64 years. Results Regression analyses revealed no clear pattern of association between longitudinal affective symptoms and decline in cognitive test scores, after adjusting for gender, childhood cognitive ability, education and midlife socioeconomic status. In contrast, affective symptoms were strongly, diffusely and independently associated with self-reported memory problems. Conclusions Affective symptoms are more clearly associated with self-reported memory problems in late midlife than with objectively measured cognitive performance. PMID:24357571

  9. Does Subacromial Osteolysis Affect Shoulder Function after Clavicle Hook Plating?

    PubMed Central

    Sun, Siwei; Gan, Minfeng; Sun, Han; Wu, Guizhong; Yang, Huilin; Zhou, Feng

    2016-01-01

    Purpose. To evaluate whether subacromial osteolysis, one of the major complications of the clavicle hook plate procedure, affects shoulder function. Methods. We had performed a retrospective study of 72 patients diagnosed with a Neer II lateral clavicle fracture or Degree-III acromioclavicular joint dislocation in our hospital from July 2012 to December 2013. All these patients had undergone surgery with clavicle hook plate and were divided into two groups based on the occurrence of subacromial osteolysis. By using the Constant-Murley at the first follow-up visit after plates removal, we evaluated patients' shoulder function to judge if it has been affected by subacromial osteolysis. Results. We have analyzed clinical data for these 72 patients, which shows that there is no significant difference between group A (39 patients) and group B (33 patients) in age, gender, injury types or side, and shoulder function (the Constant-Murley scores are 93.38 ± 3.56 versus 94.24 ± 3.60, P > 0.05). Conclusion. The occurrence of subacromial osteolysis is not rare, and also it does not significantly affect shoulder function. PMID:27034937

  10. Genome rearrangement affects RNA virus adaptability on prostate cancer cells.

    PubMed

    Pesko, Kendra; Voigt, Emily A; Swick, Adam; Morley, Valerie J; Timm, Collin; Yin, John; Turner, Paul E

    2015-01-01

    Gene order is often highly conserved within taxonomic groups, such that organisms with rearranged genomes tend to be less fit than wild type gene orders, and suggesting natural selection favors genome architectures that maximize fitness. But it is unclear whether rearranged genomes hinder adaptability: capacity to evolutionarily improve in a new environment. Negative-sense non-segmented RNA viruses (order Mononegavirales) have specific genome architecture: 3' UTR - core protein genes - envelope protein genes - RNA-dependent RNA-polymerase gene - 5' UTR. To test how genome architecture affects RNA virus evolution, we examined vesicular stomatitis virus (VSV) variants with the nucleocapsid (N) gene moved sequentially downstream in the genome. Because RNA polymerase stuttering in VSV replication causes greater mRNA production in upstream genes, N gene translocation toward the 5' end leads to stepwise decreases in N transcription, viral replication and progeny production, and also impacts the activation of type 1 interferon mediated antiviral responses. We evolved VSV gene-order variants in two prostate cancer cell lines: LNCap cells deficient in innate immune response to viral infection, and PC-3 cells that mount an IFN stimulated anti-viral response to infection. We observed that gene order affects phenotypic adaptability (reproductive growth; viral suppression of immune function), especially on PC-3 cells that strongly select against virus infection. Overall, populations derived from the least-fit ancestor (most-altered N position architecture) adapted fastest, consistent with theory predicting populations with low initial fitness should improve faster in evolutionary time. Also, we observed correlated responses to selection, where viruses improved across both hosts, rather than suffer fitness trade-offs on unselected hosts. Whole genomics revealed multiple mutations in evolved variants, some of which were conserved across selective environments for a given gene

  11. Transglutaminase Regulation of Cell Function

    PubMed Central

    Kaartinen, Mari T.; Nurminskaya, Maria; Belkin, Alexey M.; Colak, Gozde; Johnson, Gail V. W.; Mehta, Kapil

    2014-01-01

    Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states. PMID:24692352

  12. Functional significance of preserved affect recognition in schizophrenia

    PubMed Central

    Fiszdon, Joanna M.; Johannesen, Jason K.

    2009-01-01

    Affect recognition (AR) is a core component of social information processing, thus may be critical to understanding social behavior and functioning in broader aspects of daily living. Deficits in AR are well documented in schizophrenia, however, there is also evidence that many individuals with schizophrenia perform AR tasks at near-normal levels. In the current study, we sought to evaluate the functional significance of AR deficits in schizophrenia by comparing subgroups with normal-range and impaired AR performance on proxy and interviewer-rated measures of real-world functioning. Schizophrenia outpatients were classified as normal-range (N=17) and impaired (N=31) based on a logistic cut point in the sample distribution of BLERT scores, referenced to a normative sample of healthy control subjects (N=56). The derived schizophrenia subgroups were then compared on proxy (UCSD, UPSA, SSPA, MMAA) and interviewer-rated (QLS, ILSS) measures of functioning, as well as battery of neurocognitive tests. Initial analyses indicated superior MMAA and QLS performance in the near-normal AR subgroup. Covariate analyses indicated that group differences in neurocognition fully mediated the observed associations between AR and MMAA and attenuated the observed relationships between AR classification and QLS. These results support three main conclusions. First, AR, like many other domains of psychopathology studied in schizophrenia, is preserved in select subgroups. Second, there is a positive relationship between AR performance and functional outcome measures. Third, neurocognition appears to mediate the relationship between AR and measures of functioning. PMID:20202689

  13. Factors affecting sexual function in menopause: A review article.

    PubMed

    Nazarpour, Soheila; Simbar, Masoumeh; Tehrani, Fahimeh Ramezani

    2016-08-01

    This study aimed to systematically review the articles on factors affecting sexual function during menopause. Searching articles indexed in Pubmed, Science Direct, Iranmedex, EMBASE, Scopus, and Scientific Information Database databases, a total number of 42 studies published between 2003 and 2013 were selected. Age, estrogen deficiency, type of menopause, chronic medical problems, partner's sex problems, severity of menopause symptoms, dystocia history, and health status were the physical factors influencing sexual function of menopausal women. There were conflicting results regarding the amount of androgens, hormonal therapy, exercise/physical activity, and obstetric history. In the mental-emotional area, all studies confirmed the impact of depression and anxiety. Social factors, including smoking, alcohol consumption, the quality of relationship with husband, partner's loyalty, sexual knowledge, access to health care, a history of divorce or the death of a husband, living apart from a spouse, and a negative understanding of women's health were found to affect sexual function; however, there were conflicting results regarding the effects of education, occupation, socioeconomic status, marital duration, and frequency of sexual intercourse. PMID:27590367

  14. Diabetes and Stem Cell Function

    PubMed Central

    Fujimaki, Shin; Wakabayashi, Tamami; Takemasa, Tohru; Asashima, Makoto; Kuwabara, Tomoko

    2015-01-01

    Diabetes mellitus is one of the most common serious metabolic diseases that results in hyperglycemia due to defects of insulin secretion or insulin action or both. The present review focuses on the alterations to the diabetic neuronal tissues and skeletal muscle, including stem cells in both tissues, and the preventive effects of physical activity on diabetes. Diabetes is associated with various nervous disorders, such as cognitive deficits, depression, and Alzheimer's disease, and that may be caused by neural stem cell dysfunction. Additionally, diabetes induces skeletal muscle atrophy, the impairment of energy metabolism, and muscle weakness. Similar to neural stem cells, the proliferation and differentiation are attenuated in skeletal muscle stem cells, termed satellite cells. However, physical activity is very useful for preventing the diabetic alteration to the neuronal tissues and skeletal muscle. Physical activity improves neurogenic capacity of neural stem cells and the proliferative and differentiative abilities of satellite cells. The present review proposes physical activity as a useful measure for the patients in diabetes to improve the physiological functions and to maintain their quality of life. It further discusses the use of stem cell-based approaches in the context of diabetes treatment. PMID:26075247

  15. GPCRs in Stem Cell Function

    PubMed Central

    DOZE, VAN A.; PEREZ, DIANNE M.

    2013-01-01

    Many tissues of the body cannot only repair themselves, but also self-renew, a property mainly due to stem cells and the various mechanisms that regulate their behavior. Stem cell biology is a relatively new field. While advances are slowly being realized, stem cells possess huge potential to ameliorate disease and counteract the aging process, causing its speculation as the next panacea. Amidst public pressure to advance rapidly to clinical trials, there is a need to understand the biology of stem cells and to support basic research programs. Without a proper comprehension of how cells and tissues are maintained during the adult life span, clinical trials are bound to fail. This review will cover the basic biology of stem cells, the various types of stem cells, their potential function, and the advantages and disadvantages to their use in medicine. We will next cover the role of G-protein coupled receptors in the regulation of stem cells and their potential in future clinical applications. PMID:23415095

  16. Microbial composition affects the functioning of estuarine sediments

    PubMed Central

    Reed, Heather E; Martiny, Jennifer BH

    2013-01-01

    Although microorganisms largely drive many ecosystem processes, the relationship between microbial composition and their functioning remains unclear. To tease apart the effects of composition and the environment directly, microbial composition must be manipulated and maintained, ideally in a natural ecosystem. In this study, we aimed to test whether variability in microbial composition affects functional processes in a field setting, by reciprocally transplanting riverbed sediments between low- and high-salinity locations along the Nonesuch River (Maine, USA). We placed the sediments into microbial ‘cages' to prevent the migration of microorganisms, while allowing the sediments to experience the abiotic conditions of the surroundings. We performed two experiments, short- (1 week) and long-term (7 weeks) reciprocal transplants, after which we assayed a variety of functional processes in the cages. In both experiments, we examined the composition of bacteria generally (targeting the 16S rDNA gene) and sulfate-reducing bacteria (SRB) specifically (targeting the dsrAB gene) using terminal restriction fragment length polymorphism (T-RFLP). In the short-term experiment, sediment processes (CO2 production, CH4 flux, nitrification and enzyme activities) depended on both the sediment's origin (reflecting differences in microbial composition between salt and freshwater sediments) and the surrounding environment. In the long-term experiment, general bacterial composition (but not SRB composition) shifted in response to their new environment, and this composition was significantly correlated with sediment functioning. Further, sediment origin had a diminished effect, relative to the short-term experiment, on sediment processes. Overall, this study provides direct evidence that microbial composition directly affects functional processes in these sediments. PMID:23235294

  17. Mammalian cadherins DCHS1-FAT4 affect functional cerebral architecture.

    PubMed

    Beste, Christian; Ocklenburg, Sebastian; von der Hagen, Maja; Di Donato, Nataliya

    2016-06-01

    Cortical development is a complex process where a multitude of factors, including cadherins, plays an important role and where disruptions are known to have far reaching effects in neural development and cortical patterning. Cadherins play a central role in structural left-right differentiation during brain and body development, but their effect on a functional level remains elusive. We addressed this question by examining functional cerebral asymmetries in a patient with Van Maldergem Syndrome (VMS) (MIM#601390), which is caused by mutations in DCHS1-FAT4 cadherins, using a dichotic listening task. Using neurophysiological (EEG) data, we show that when key regulators during mammalian cerebral cortical development are disrupted due to DCHS1-FAT4 mutations, functional cerebral asymmetries are stronger. Basic perceptual processing of biaurally presented auditory stimuli was unaffected. This suggests that the strength and emergence of functional cerebral asymmetries is a direct function of proliferation and differentiation of neuronal stem cells. Moreover, these results support the recent assumption that the molecular mechanisms establishing early left-right differentiation are an important factor in the ontogenesis of functional lateralization. PMID:25930014

  18. Factors Affecting Polymer Electrolyte Fuel Cells Performance and Reproducibility

    SciTech Connect

    Moller-Holst S.

    1998-11-01

    Development of fuel cells is often based on small-scale laboratory studies. Due to limited time and budgets, a minimum number of cells are usually prepared and tested, thus, conclusions about improved performance are often drawn from studies of a few cells. Generally, statistics showing the significance of an effect are seldom reported. In this work a simple PEM fuel cell electrode optimization experiment is used as an example to illustrate the importance of statistical evaluation of factors affecting cell performance. The use of fractional factorial design of experiments to reduce the number of cells that have to be studied is also addressed.

  19. How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy.

    PubMed

    Gacerez, Albert T; Arellano, Benjamine; Sentman, Charles L

    2016-12-01

    Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR's function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. J. Cell. Physiol. 231: 2590-2598, 2016. © 2016 Wiley Periodicals, Inc. PMID:27163336

  20. Can the hydrophilicity of functional monomers affect chemical interaction?

    PubMed

    Feitosa, V P; Ogliari, F A; Van Meerbeek, B; Watson, T F; Yoshihara, K; Ogliari, A O; Sinhoreti, M A; Correr, A B; Cama, G; Sauro, S

    2014-02-01

    The number of carbon atoms and/or ester/polyether groups in spacer chains may influence the interaction of functional monomers with calcium and dentin. The present study assessed the chemical interaction and bond strength of 5 standard-synthesized phosphoric-acid ester functional monomers with different spacer chain characteristics, by atomic absorption spectroscopy (AAS), ATR-FTIR, thin-film x-ray diffraction (TF-XRD), scanning electron microscopy (SEM), and microtensile bond strength (μTBS). The tested functional monomers were 2-MEP (two-carbon spacer chain), 10-MDP (10-carbon), 12-MDDP (12-carbon), MTEP (more hydrophilic polyether spacer chain), and CAP-P (intermediate hydrophilicity ester spacer). The intensity of monomer-calcium salt formation measured by AAS differed in the order of 12-MDDP=10-MDP>CAP-P>MTEP>2-MEP. FTIR and SEM analyses of monomer-treated dentin surfaces showed resistance to rinsing for all monomer-dentin bonds, except with 2-MEP. TF-XRD confirmed the weaker interaction of 2-MEP. Highest µTBS was observed for 12-MDDP and 10-MDP. A shorter spacer chain (2-MEP) of phosphate functional monomers induced formation of unstable monomer-calcium salts, and lower chemical interaction and dentin bond strength. The presence of ester or ether groups within longer spacer carbon chains (CAP-P and MTEP) may affect the hydrophilicity, μTBS, and also the formation of monomer-calcium salts. PMID:24284259

  1. Altered cell function in microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, Millie

    1991-01-01

    The paper overviews published results from investigations of changes in basic biological parameters taking place as a result of spaceflight exposure. These include changes in the rates of the DNA, mRNA, and protein biosyntheses; changes in the growth rate of an organism; and alterations in the cytoskeleton structure, differentiation, hormone accumulation, and collagen matrix secretion. These results, obtained both in complex biological organisms and on cultured cells, suggest that a basic cellular function is influenced and changed by microgravity. Many of the above mentioned changes are also found to take place in aging cells.

  2. Acute Zonal Occult Outer Retinopathy in Japanese Patients: Clinical Features, Visual Function, and Factors Affecting Visual Function

    PubMed Central

    Saito, Saho; Saito, Wataru; Saito, Michiyuki; Hashimoto, Yuki; Mori, Shohei; Noda, Kousuke; Namba, Kenichi; Ishida, Susumu

    2015-01-01

    Purpose To evaluate the clinical features and investigate their relationship with visual function in Japanese patients with acute zonal occult outer retinopathy (AZOOR). Methods Fifty-two eyes of 38 Japanese AZOOR patients (31 female and 7 male patients; mean age at first visit, 35.0 years; median follow-up duration, 31 months) were retrospectively collected: 31 untreated eyes with good visual acuity and 21 systemic corticosteroid-treated eyes with progressive visual acuity loss. Variables affecting the logMAR values of best-corrected visual acuity (BCVA) and the mean deviation (MD) on Humphrey perimetry at initial and final visits were examined using multiple stepwise linear regression analysis. Results In untreated eyes, the mean MD at the final visit was significantly higher than that at the initial visit (P = 0.00002). In corticosteroid-treated eyes, the logMAR BCVA and MD at the final visit were significantly better than the initial values (P = 0.007 and P = 0.02, respectively). The final logMAR BCVA was 0.0 or less in 85% of patients. Variables affecting initial visual function were moderate anterior vitreous cells, myopia severity, and a-wave amplitudes on electroretinography; factors affecting final visual function were the initial MD values, female sex, moderate anterior vitreous cells, and retinal atrophy. Conclusions Our data indicated that visual functions in enrolled patients significantly improved spontaneously or after systemic corticosteroids therapy, suggesting that Japanese patients with AZOOR have good visual outcomes during the follow-up period of this study. Furthermore, initial visual field defects, gender, anterior vitreous cells, and retinal atrophy affected final visual functions in these patients. PMID:25919689

  3. Yersinia enterocolitica Affects Intestinal Barrier Function in the Colon.

    PubMed

    Hering, Nina A; Fromm, Anja; Kikhney, Judith; Lee, In-Fah M; Moter, Annette; Schulzke, Jörg D; Bücker, Roland

    2016-04-01

    Infection with Yersinia enterocolitica causes acute diarrhea in early childhood. A mouse infection model presents new findings on pathological mechanisms in the colon. Symptoms involve diarrhea with watery feces and weight loss that have their functional correlates in decreased transepithelial electrical resistance and increased fluorescein permeability. Y. enterocolitica was present within the murine mucosa of both ileum and colon. Here, the bacterial insult was of focal nature and led to changes in tight junction protein expression and architecture. These findings are in concordance with observations from former cell culture studies and suggest a leak flux mechanism of diarrhea. PMID:26621910

  4. Quercetin Affects Erythropoiesis and Heart Mitochondrial Function in Mice.

    PubMed

    Ruiz, Lina M; Salazar, Celia; Jensen, Erik; Ruiz, Paula A; Tiznado, William; Quintanilla, Rodrigo A; Barreto, Marlen; Elorza, Alvaro A

    2015-01-01

    Quercetin, a dietary flavonoid used as a food supplement, showed powerful antioxidant effects in different cellular models. However, recent in vitro and in vivo studies in mammals have suggested a prooxidant effect of quercetin and described an interaction with mitochondria causing an increase in O2 (∙-) production, a decrease in ATP levels, and impairment of respiratory chain in liver tissue. Therefore, because of its dual actions, we studied the effect of quercetin in vivo to analyze heart mitochondrial function and erythropoiesis. Mice were injected with 50 mg/kg of quercetin for 15 days. Treatment with quercetin decreased body weight, serum insulin, and ceruloplasmin levels as compared with untreated mice. Along with an impaired antioxidant capacity in plasma, quercetin-treated mice showed a significant delay on erythropoiesis progression. Heart mitochondrial function was also impaired displaying more protein oxidation and less activity for IV, respectively, than no-treated mice. In addition, a significant reduction in the protein expression levels of Mitofusin 2 and Voltage-Dependent Anion Carrier was observed. All these results suggest that quercetin affects erythropoiesis and mitochondrial function and then its potential use as a dietary supplement should be reexamined. PMID:26106459

  5. Can lifestyle modification affect men’s erectile function?

    PubMed Central

    Hehemann, Marah C.

    2016-01-01

    Erectile dysfunction (ED) is a common condition affecting millions of men worldwide. The pathophysiology and epidemiologic links between ED and risk factors for cardiovascular disease (CVD) are well-established. Lifestyle modifications such as smoking cessation, weight reduction, dietary modification, physical activity, and psychological stress reduction have been increasingly recognized as foundational to the prevention and treatment of ED. The aim of this review is to outline behavioral choices which may increase ones risk of developing ED, to present relevant studies addressing lifestyle factors correlated with ED, and to highlight proposed mechanisms for intervention aimed at improving erectile function in men with ED. These recommendations can provide a framework for counseling patients with ED about lifestyle modification. PMID:27141445

  6. Integrating Negative Affect Measures in a Measurement Model: Assessing the Function of Negative Affect as Interference to Self-Regulation

    ERIC Educational Resources Information Center

    Magno, Carlo

    2010-01-01

    The present study investigated the composition of negative affect and its function as inhibitory to thought processes such as self-regulation. Negative affect in the present study were composed of anxiety, worry, thought suppression, and fear of negative evaluation. These four factors were selected based on the criteria of negative affect by…

  7. To what extent does urbanisation affect fragmented grassland functioning?

    PubMed

    van der Walt, L; Cilliers, S S; Kellner, K; Du Toit, M J; Tongway, D

    2015-03-15

    Urbanisation creates altered environments characterised by increased human habitation, impermeable surfaces, artificial structures, landscape fragmentation, habitat loss, resulting in different resource loss pathways. The vulnerable Rand Highveld Grassland vegetation unit in the Tlokwe Municipal area, South Africa, has been extensively affected and transformed by urbanisation, agriculture, and mining. Grassland fragments in urban areas are often considered to be less species rich and less functional than in the more untransformed or "natural" exurban environments, and are therefore seldom a priority for conservation. Furthermore, urban grassland fragments are often being more intensely managed than exurban areas, such as consistent mowing in open urban areas. Four urbanisation measures acting as indicators for patterns and processes associated with urban areas were calculated for matrix areas surrounding each selected grassland fragment to quantify the position of each grassland remnant along an urbanisation gradient. The grassland fragments were objectively classified into two classes of urbanisation, namely "exurban" and "urban" based on the urbanisation measure values. Grazing was recorded in some exurban grasslands and mowing in some urban grassland fragments. Unmanaged grassland fragments were present in both urban and exurban areas. Fine-scale biophysical landscape function was determined by executing the Landscape Function Analysis (LFA) method. LFA assesses fine-scale landscape patchiness (entailing resource conserving potential and erosion resistance) and 11 soil surface indicators to produce three main LFA parameters (stability, infiltration, and nutrient cycling), which indicates how well a system is functioning in terms of fine-scale biophysical soil processes and characteristics. The aim of this study was to determine the effects of urbanisation and associated management practices on fine-scale biophysical landscape function of urban and exurban

  8. Does Ramadan Fasting Adversely Affect Cognitive Function in Young Females?

    PubMed Central

    Ghayour Najafabadi, Mahboubeh; Rahbar Nikoukar, Laya; Memari, Amir; Ekhtiari, Hamed; Beygi, Sara

    2015-01-01

    We examined the effects of Ramadan fasting on cognitive function in 17 female athletes. Data were obtained from participants of two fasting (n = 9) and nonfasting (n = 8) groups at three periods of the study (before Ramadan, at the third week in Ramadan, and after Ramadan). Digit span test (DST) and Stroop color test were employed to assess short-term memory and inhibition/cognitive flexibility at each time point. There were no significant changes for DST and Stroop task 1 in both groups, whereas Stroop task 2 and task 3 showed significant improvements in Ramadan condition (p < 0.05). Interference indices did not change significantly across the study except in post-Ramadan period of fasting group (p < 0.05). Group × week interaction was significant only for error numbers (p < 0.05). Athletes in nonfasting showed a significant decrease in number of errors in Ramadan compared to baseline (p < 0.05). The results suggest that Ramadan fasting may not adversely affect cognitive function in female athletes. PMID:26697263

  9. Cell surface lectin array: parameters affecting cell glycan signature.

    PubMed

    Landemarre, Ludovic; Cancellieri, Perrine; Duverger, Eric

    2013-04-01

    Among the "omics", glycomics is one of the most complex fields and needs complementary strategies of analysis to decipher the "glycan dictionary". As an alternative method, which has developed since the beginning of the 21st century, lectin array technology could generate relevant information related to glycan motifs, accessibility and a number of other valuable insights from molecules (purified and non-purified) or cells. Based on a cell line model, this study deals with the key parameters that influence the whole cell surface glycan interaction with lectin arrays and the consequences on the interpretation and reliability of the results. The comparison between the adherent and suspension forms of Chinese Hamster Ovary (CHO) cells, showed respective glycan signatures, which could be inhibited specifically by neoglycoproteins. The modifications of the respective glycan signatures were also revealed according to the detachment modes and cell growth conditions. Finally the power of lectin array technology was highlighted by the possibility of selecting and characterizing a specific clone from the mother cell line, based on the slight difference determination in the respective glycan signatures. PMID:22899543

  10. Grape polyphenols do not affect vascular function in healthy men.

    PubMed

    van Mierlo, Linda A J; Zock, Peter L; van der Knaap, Henk C M; Draijer, Richard

    2010-10-01

    Data suggest that polyphenol-rich products may improve endothelial function and other cardiovascular health risk factors. Grape and wine contain high amounts of polyphenols, but effects of these polyphenols have hardly been investigated in isolation in randomized controlled studies. Our objective in this study was to test the chronic effect of polyphenol-rich solids derived from either a wine grape mix or grape seed on flow-mediated dilation (FMD). Blood pressure and other vascular function measures, platelet function, and blood lipids were secondary outcomes. Thirty-five healthy males were randomized in a double-blind, placebo-controlled crossover study consisting of three 2-wk intervention periods separated by 1-wk washout periods. The test products, containing 800 mg of polyphenols, were consumed as capsules. At the end of each intervention period, effects were measured after consumption of a low-fat breakfast (~751 kJ, 25% fat) and a high-fat lunch (~3136 kJ, 78% fat). After the low-fat breakfast, the treatments did not significantly affect FMD. The absolute difference after the wine grape solid treatment was -0.4% (95% CI = -1.8 to 0.9; P = 0.77) and after grape seed solids, 0.2% (95% CI = -1.2 to 1.5; P = 0.94) compared with after the placebo treatment. FMD effects after the high-fat lunch and effects on secondary outcomes also showed no consistent differences between both of the grape solids and placebo treatment. In conclusion, consumption of grape polyphenols has no major impact on FMD in healthy men. Future studies should address whether grape polyphenols can improve FMD and other cardiovascular health risk factors in populations with increased cardiovascular risk. PMID:20702747

  11. Does Bowel Preparation for Colonoscopy Affect Cognitive Function?

    PubMed Central

    Wadsworth, P.; Blackburne, H.; Dixon, L.; Dobbs, B.; Eglinton, T.; Ing, A.; Mulder, R.; Porter, R.J.; Wakeman, C.; Frizelle, F.A.

    2015-01-01

    Abstract Colonoscopy is a common procedure used in the diagnosis and treatment of a range of bowel disorders. Prior preparation involving potent laxatives is a necessary stage to ensure adequate visualization of the bowel wall. It is known that the sedatives given to most patients during the colonoscopy cause a temporary impairment in cognitive function; however, the potential for bowel preparation to affect cognitive function has not previously been investigated. To assess the effect of bowel preparation for colonoscopy on cognitive function. This was a prospective, nonrandomized controlled study of cognitive function in patients who had bowel preparation for colonoscopy compared with those having gastroscopy and therefore no bowel preparation. Cognitive function was assessed using the Modified Mini Mental State Examination (MMMSE) and selected tests from the Cambridge Neuropsychological Test Automated Battery. Individual test scores and changes between initial and subsequent tests were compared between the groups. Age, gender, and weight were also compared. Forty-three colonoscopy and 25 gastroscopy patients were recruited. The 2 groups were similar for age and gender; however, patients having gastroscopy were heavier. MMMSE scores for colonoscopy and gastroscopy groups, respectively, were 28.6 and 29.5 (P = 0.24) at baseline, 28.7 and 29.8 (P = 0.32) at test 2, 28.1 and 28.5 (P = 0.76) at test 3. Motor screening scores for colonoscopy and gastroscopy groups, respectively, were 349.3 and 354.1 (P = 0.97) at baseline, 307.5 and 199.7 (P = 0.06) at test 2, 212.0 and 183.2 (P = 0.33) at test 3. Spatial working memory scores for colonoscopy and gastroscopy groups, respectively, were 14.4 and 6.7 (P = 0.29) at baseline, 9.7 and 4.3 (P = 0.27) at test 2, 10 and 4.5 (P = 0.33) at test 3. Digit Symbol Substitution Test scores for colonoscopy and gastroscopy groups, respectively, were 36.3 and 37.8 (P = 0.84) at baseline, 36.4 and

  12. Does Bowel Preparation for Colonoscopy Affect Cognitive Function?

    PubMed

    Wadsworth, P; Blackburne, H; Dixon, L; Dobbs, B; Eglinton, T; Ing, A; Mulder, R; Porter, R J; Wakeman, C; Frizelle, F A

    2015-11-01

    Colonoscopy is a common procedure used in the diagnosis and treatment of a range of bowel disorders. Prior preparation involving potent laxatives is a necessary stage to ensure adequate visualization of the bowel wall. It is known that the sedatives given to most patients during the colonoscopy cause a temporary impairment in cognitive function; however, the potential for bowel preparation to affect cognitive function has not previously been investigated. To assess the effect of bowel preparation for colonoscopy on cognitive function. This was a prospective, nonrandomized controlled study of cognitive function in patients who had bowel preparation for colonoscopy compared with those having gastroscopy and therefore no bowel preparation. Cognitive function was assessed using the Modified Mini Mental State Examination (MMMSE) and selected tests from the Cambridge Neuropsychological Test Automated Battery. Individual test scores and changes between initial and subsequent tests were compared between the groups. Age, gender, and weight were also compared. Forty-three colonoscopy and 25 gastroscopy patients were recruited. The 2 groups were similar for age and gender; however, patients having gastroscopy were heavier. MMMSE scores for colonoscopy and gastroscopy groups, respectively, were 28.6 and 29.5 (P = 0.24) at baseline, 28.7 and 29.8 (P = 0.32) at test 2, 28.1 and 28.5 (P = 0.76) at test 3. Motor screening scores for colonoscopy and gastroscopy groups, respectively, were 349.3 and 354.1 (P = 0.97) at baseline, 307.5 and 199.7 (P = 0.06) at test 2, 212.0 and 183.2 (P = 0.33) at test 3. Spatial working memory scores for colonoscopy and gastroscopy groups, respectively, were 14.4 and 6.7 (P = 0.29) at baseline, 9.7 and 4.3 (P = 0.27) at test 2, 10 and 4.5 (P = 0.33) at test 3. Digit Symbol Substitution Test scores for colonoscopy and gastroscopy groups, respectively, were 36.3 and 37.8 (P = 0.84) at baseline, 36.4 and 40.0 (P

  13. The FRIABLE1 Gene Product Affects Cell Adhesion in Arabidopsis

    PubMed Central

    Neumetzler, Lutz; Humphrey, Tania; Lumba, Shelley; Snyder, Stephen; Yeats, Trevor H.; Usadel, Björn; Vasilevski, Aleksandar; Patel, Jignasha; Rose, Jocelyn K. C.; Persson, Staffan; Bonetta, Dario

    2012-01-01

    Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion. PMID:22916179

  14. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    PubMed Central

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  15. Functional TLR5 genetic variants affect human colorectal cancer survival.

    PubMed

    Klimosch, Sascha N; Försti, Asta; Eckert, Jana; Knezevic, Jelena; Bevier, Melanie; von Schönfels, Witigo; Heits, Nils; Walter, Jessica; Hinz, Sebastian; Lascorz, Jesus; Hampe, Jochen; Hartl, Dominik; Frick, Julia-Stefanie; Hemminki, Kari; Schafmayer, Clemens; Weber, Alexander N R

    2013-12-15

    Toll-like receptors (TLR) are overexpressed on many types of cancer cells, including colorectal cancer cells, but little is known about the functional relevance of these immune regulatory molecules in malignant settings. Here, we report frequent single-nucleotide polymorphisms (SNP) in the flagellin receptor TLR5 and the TLR downstream effector molecules MyD88 and TIRAP that are associated with altered survival in a large cohort of Caucasian patients with colorectal cancer (n = 613). MYD88 rs4988453, a SNP that maps to a promoter region shared with the acetyl coenzyme-A acyl-transferase-1 (ACAA1), was associated with decreased survival of patients with colorectal cancer and altered transcriptional activity of the proximal genes. In the TLR5 gene, rs5744174/F616L was associated with increased survival, whereas rs2072493/N592S was associated with decreased survival. Both rs2072493/N592S and rs5744174/F616L modulated TLR5 signaling in response to flagellin or to different commensal and pathogenic intestinal bacteria. Notably, we observed a reduction in flagellin-induced p38 phosphorylation, CD62L shedding, and elevated expression of interleukin (IL)-6 and IL-1β mRNA in human primary immune cells from TLR5 616LL homozygote carriers, as compared with 616FF carriers. This finding suggested that the well-documented effect of cytokines like IL-6 on colorectal cancer progression might be mediated by TLR5 genotype-dependent flagellin sensing. Our results establish an important link between TLR signaling and human colorectal cancer with relevance for biomarker and therapy development. PMID:24154872

  16. Sydnone SYD-1 affects the metabolic functions of isolated rat hepatocytes.

    PubMed

    Brandt, Anna Paula; Pires, Amanda do Rocio Andrade; Rocha, Maria Eliane Merlin; Noleto, Guilhermina Rodrigues; Acco, Alexandra; de Souza, Carlos Eduardo Alves; Echevarria, Aurea; Canuto, André Vinícius dos Santos; Cadena, Sílvia Maria Suter Correia

    2014-07-25

    Previously, we demonstrated that sydnone SYD-1 (3-[4-chloro-3-nitrophenyl]-1,2,3-oxadiazolium-5-olate) impairs the mitochondrial functions linked to energy provision and suggested that this effect could be associated with its antitumor activity. Herein, we evaluated the effects of SYD-1 (25 and 50 μM) on rat hepatocytes to determine its cytotoxicity on non-tumor cells. SYD-1 (25 and 50 μM) did not affect the viability of hepatocytes in suspension after 1-40 min of incubation. However, the viability of the cultured hepatocytes was decreased by ∼66% as a consequence of treatment with SYD-1 (50 μM) for 18 h. Under the same conditions, SYD-1 promoted an increase in the release of LDH by ∼19%. The morphological changes in the cultured cells treated with SYD-1 (50 μM) were suggestive of cell distress, which was demonstrated by the presence of rounded hepatocytes, cell fragments and monolayer impairment. Furthermore, fluorescence microscopy showed an increase in the annexin label after treatment with SYD-1 (50 μM), suggesting that apoptosis had been induced in these cells. SYD-1 did not affect the states of respiration in the suspended hepatocytes, but the pyruvate levels were decreased by ∼36%, whereas the lactate levels were increased by ∼22% (for the 50 μM treatment). The basal and uncoupled states of respiration of the cultured hepatocytes were inhibited by ∼79% and ∼51%, respectively, by SYD-1 (50 μM). In these cells, SYD-1 (50 μM) increased the pyruvate and lactate levels by ∼84% and ∼16%, respectively. These results show that SYD-1 affects important metabolic functions related to energy provision in hepatocytes and that this effect was more pronounced on cells in culture than those in suspension. PMID:24836382

  17. The structure and function of fungal cells

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    The structure and function of fungal cell walls were studied with particular emphasis on dermatophytes. Extraction, isolation, analysis, and observation of the cell wall structure and function were performed. The structure is described microscopically and chemically.

  18. Phthalate esters affect maturation and function of primate testis tissue ectopically grafted in mice

    PubMed Central

    Rodriguez-Sosa, Jose R; Bondareva, Alla; Tang, Lin; Avelar, Gleide F.; Coyle, Krysta M.; Modelski, Mark; Alpaugh, Whitney; Conley, Alan; Wynne-Edwards, Katherine; França, Luiz R; Meyers, Stuart; Dobrinski, Ina

    2014-01-01

    Di-n-Butyl (DBP) and Di-(2-EthylHexyl) (DEHP) phthalates can leach from daily-use products resulting in environmental exposure. In male rodents, phthalate exposure results in reproductive effects. To evaluate effects on the immature primate testis, testis fragments from 6-month-old rhesus macaques were grafted subcutaneously to immune-deficient mice, which were exposed to 0, 10, or 500 mg/kg of DBP or DEHP for 14 weeks or 28 weeks (DBP only). DBP exposure reduced the expression of key steroidogenic genes, indicating that Leydig cell function was compromised. Exposure to 500 mg/kg impaired tubule formation and germ cell differentiation and reduced numbers of spermatogonia. Exposure to 10 mg/kg did not affect development, but reduced Sertoli cell number and resulted in increased expression of inhibin B. Exposure to DEHP for 14 week also affected steroidogenic genes expression. Therefore, long-term exposure to phthalate esters affected development and function of the primate testis in a time and dosage dependent manner. PMID:25450860

  19. Ionizing Radiation Impairs T Cell Activation by Affecting Metabolic Reprogramming

    PubMed Central

    Li, Heng-Hong; Wang, Yi-wen; Chen, Renxiang; Zhou, Bin; Ashwell, Jonathan D.; Fornace, Albert J.

    2015-01-01

    Ionizing radiation has a variety of acute and long-lasting adverse effects on the immune system. Whereas measureable effects of radiation on immune cell cytotoxicity and population change have been well studied in human and animal models, little is known about the functional alterations of the surviving immune cells after ionizing radiation. The objective of this study was to delineate the effects of radiation on T cell function by studying the alterations of T cell receptor activation and metabolic changes in activated T cells isolated from previously irradiated animals. Using a global metabolomics profiling approach, for the first time we demonstrate that ionizing radiation impairs metabolic reprogramming of T cell activation, which leads to substantial decreases in the efficiency of key metabolic processes required for activation, such as glucose uptake, glycolysis, and energy metabolism. In-depth understanding of how radiation impacts T cell function highlighting modulation of metabolism during activation is not only a novel approach to investigate the pivotal processes in the shift of T cell homeostasis after radiation, it also may lead to new targets for therapeutic manipulation in the combination of radiotherapy and immune therapy. Given that appreciable effects were observed with as low as 10 cGy, our results also have implications for low dose environmental exposures. PMID:26078715

  20. Genetic background affects susceptibility to tumoral stem cell reprogramming

    PubMed Central

    García-Ramírez, Idoia; Ruiz-Roca, Lucía; Martín-Lorenzo, Alberto; Blanco, Óscar; García-Cenador, María Begoña; García-Criado, Francisco Javier; Vicente-Dueñas, Carolina; Sánchez-García, Isidro

    2013-01-01

    The latest studies of the interactions between oncogenes and its target cell have shown that certain oncogenes may act as passengers to reprogram tissue-specific stem/progenitor cell into a malignant cancer stem cell state. In this study, we show that the genetic background influences this tumoral stem cell reprogramming capacity of the oncogenes using as a model the Sca1-BCRABLp210 mice, where the type of tumor they develop, chronic myeloid leukemia (CML), is a function of tumoral stem cell reprogramming. Sca1-BCRABLp210 mice containing FVB genetic components were significantly more resistant to CML. However, pure Sca1-BCRABLp210 FVB mice developed thymomas that were not seen in the Sca1-BCRABLp210 mice into the B6 background. Collectively, our results demonstrate for the first time that tumoral stem cell reprogramming fate is subject to polymorphic genetic control. PMID:23839033

  1. Functional interplay between the cell cycle and cell phenotypes.

    PubMed

    Chen, Wei-Chiang; Wu, Pei-Hsun; Phillip, Jude M; Khatau, Shyam B; Choi, Jae Min; Dallas, Matthew R; Konstantopoulos, Konstantinos; Sun, Sean X; Lee, Jerry S H; Hodzic, Didier; Wirtz, Denis

    2013-03-01

    Cell cycle distribution of adherent cells is typically assessed using flow cytometry, which precludes the measurements of many cell properties and their cycle phase in the same environment. Here we develop and validate a microscopy system to quantitatively analyze the cell-cycle phase of thousands of adherent cells and their associated cell properties simultaneously. This assay demonstrates that population-averaged cell phenotypes can be written as a linear combination of cell-cycle fractions and phase-dependent phenotypes. By perturbing the cell cycle through inhibition of cell-cycle regulators or changing nuclear morphology by depletion of structural proteins, our results reveal that cell cycle regulators and structural proteins can significantly interfere with each other's prima facie functions. This study introduces a high-throughput method to simultaneously measure the cell cycle and phenotypes at single-cell resolution, which reveals a complex functional interplay between the cell cycle and cell phenotypes. PMID:23319145

  2. Potential cell-specific functions of CXCR4 in atherosclerosis.

    PubMed

    Weber, Christian; Döring, Yvonne; Noels, Heidi

    2016-05-10

    The chemokine CXCL12 and its receptor CXCR4 form an important axis contributing to cellular functions in homeostasis and disease. In addition, the atypical CXCL12 receptor CXCR7 may shape the availability and function of CXCL12. Further to their role through progenitor cell mobilization, CXCL12 and CXCR4 may affect native atherogenesis by modifying atherosclerosis-relevant cellular functions. This short review intends to provide a concise summary of current knowledge with regards to cell-specific functions of CXCL12 and its receptors CXCR4 and CXCR7 with potential implications for the initiation and progression of atherosclerosis. PMID:25586789

  3. Nanoengineering of Immune Cell Function

    PubMed Central

    Shen, Keyue; Milone, Michael C.; Dustin, Michael L.; Kam, Lance C.

    2010-01-01

    T lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies. PMID:21562611

  4. Variation is function: Are single cell differences functionally important?

    PubMed Central

    Dueck, Hannah; Eberwine, James

    2015-01-01

    There is a growing appreciation of the extent of transcriptome variation across individual cells of the same cell type. While expression variation may be a byproduct of, for example, dynamic or homeostatic processes, here we consider whether single‐cell molecular variation per se might be crucial for population‐level function. Under this hypothesis, molecular variation indicates a diversity of hidden functional capacities within an ensemble of “identical” cells, and this functional diversity facilitates collective behavior that would be inaccessible to a homogenous population. In reviewing this topic, we explore possible functions that might be carried by a heterogeneous ensemble of cells; however, this question has proven difficult to test, both because methods to manipulate molecular variation are limited and because it is complicated to define, and measure, population‐level function. We consider several possible methods to further pursue the hypothesis that “variation is function” through the use of comparative analysis and novel experimental techniques. PMID:26625861

  5. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  6. Phosphate Ions Affect the Water Structure at Functionalized Membrane Surfaces.

    PubMed

    Barrett, Aliyah; Imbrogno, Joseph; Belfort, Georges; Petersen, Poul B

    2016-09-01

    Antifouling surfaces improve function, efficiency, and safety in products such as water filtration membranes, marine vehicle coatings, and medical implants by resisting protein and biofilm adhesion. Understanding the role of water structure at these materials in preventing protein adhesion and biofilm formation is critical to designing more effective coatings. Such fouling experiments are typically performed under biological conditions using isotonic aqueous buffers. Previous studies have explored the structure of pure water at a few different antifouling surfaces, but the effect of electrolytes and ionic strength (I) on the water structure at antifouling surfaces is not well studied. Here sum frequency generation (SFG) spectroscopy is used to characterize the interfacial water structure at poly(ether sulfone) (PES) and two surface-modified PES films in contact with 0.01 M phosphate buffer with high and low salt (Ionic strength, I= 0.166 and 0.025 M, respectively). Unmodified PES, commonly used as a filtration membrane, and modified PES with a hydrophobic alkane (C18) and with a poly(ethylene glycol) (PEG) were used. In the low ionic strength phosphate buffer, water was strongly ordered near the surface of the PEG-modified PES film due to exclusion of phosphate ions and the creation of a surface potential resulting from charge separation between phosphate anions and sodium cations. However, in the high ionic strength phosphate buffer, the sodium and potassium chloride (138 and 3 mM, respectively) in the phosphate buffered saline screened this charge and substantially reduced water ordering. A much smaller water ordering and subsequent reduction upon salt addition was observed for the C18-modified PES, and little water structure change was seen for the unmodified PES. The large difference in water structuring with increasing ionic strength between widely used phosphate buffer and phosphate buffered saline at the PEG interface demonstrates the importance of studying

  7. Concomitant gastroparesis negatively affects children with functional gallbladder disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to determine whether concomitant gastroparesis and biliary dyskinesia (BD) occur in children, and if so, to determine whether concomitant gastroparesis affects clinical outcome in children with BD. We conducted a retrospective chart review of children with BD (ejecti...

  8. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization

    PubMed Central

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  9. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization.

    PubMed

    Zheng, Guoping; Ge, Menghua; Qiu, Guanguan; Shu, Qiang; Xu, Jianguo

    2015-01-01

    Mesenchymal stromal cells (MSCs) are multipotent and self-renewable cells that reside in almost all postnatal tissues. In recent years, many studies have reported the effect of MSCs on the innate and adaptive immune systems. MSCs regulate the proliferation, activation, and effector function of T lymphocytes, professional antigen presenting cells (dendritic cells, macrophages, and B lymphocytes), and NK cells via direct cell-to-cell contact or production of soluble factors including indoleamine 2,3-dioxygenase, prostaglandin E2, tumor necrosis factor-α stimulated gene/protein 6, nitric oxide, and IL-10. MSCs are also able to reprogram macrophages from a proinflammatory M1 phenotype toward an anti-inflammatory M2 phenotype capable of regulating immune response. Because of their capacity for differentiation and immunomodulation, MSCs have been used in many preclinical and clinical studies as possible new therapeutic agents for the treatment of autoimmune, degenerative, and inflammatory diseases. In this review, we discuss the central role of MSCs in macrophage polarization and outcomes of diseases such as wound healing, brain/spinal cord injuries, and diseases of heart, lung, and kidney in animal models. PMID:26257791

  10. Dendritic Cells under Hypoxia: How Oxygen Shortage Affects the Linkage between Innate and Adaptive Immunity

    PubMed Central

    Winning, Sandra; Fandrey, Joachim

    2016-01-01

    Dendritic cells (DCs) are considered as one of the main regulators of immune responses. They collect antigens, process them, and present typical antigenic structures to lymphocytes, thereby inducing an adaptive immune response. All these processes take place under conditions of oxygen shortage (hypoxia) which is often not considered in experimental settings. This review highlights how deeply hypoxia modulates human as well as mouse immature and mature dendritic cell functions. It tries to link in vitro results to actual in vivo studies and outlines how hypoxia-mediated shaping of dendritic cells affects the activation of (innate) immunity. PMID:26966693

  11. MicroRNA-7a regulates pancreatic β cell function

    PubMed Central

    Latreille, Mathieu; Hausser, Jean; Stützer, Ina; Zhang, Quan; Hastoy, Benoit; Gargani, Sofia; Kerr-Conte, Julie; Pattou, Francois; Zavolan, Mihaela; Esguerra, Jonathan L.S.; Eliasson, Lena; Rülicke, Thomas; Rorsman, Patrik; Stoffel, Markus

    2014-01-01

    Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic β cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of β cell function to metabolic stress. In this study, we determined that miR-7 is a negative regulator of GSIS in β cells. Using Mir7a2 deficient mice, we revealed that miR-7a2 regulates β cell function by directly regulating genes that control late stages of insulin granule fusion with the plasma membrane and ternary SNARE complex activity. Transgenic mice overexpressing miR-7a in β cells developed diabetes due to impaired insulin secretion and β cell dedifferentiation. Interestingly, perturbation of miR-7a expression in β cells did not affect proliferation and apoptosis, indicating that miR-7 is dispensable for the maintenance of endocrine β cell mass. Furthermore, we found that miR-7a levels are decreased in obese/diabetic mouse models and human islets from obese and moderately diabetic individuals with compensated β cell function. Our results reveal an interconnecting miR-7 genomic circuit that regulates insulin granule exocytosis in pancreatic β cells and support a role for miR-7 in the adaptation of pancreatic β cell function in obesity and type 2 diabetes. PMID:24789908

  12. SUMO1 Affects Synaptic Function, Spine Density and Memory

    PubMed Central

    Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E.

    2015-01-01

    Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678

  13. SUMO1 Affects Synaptic Function, Spine Density and Memory.

    PubMed

    Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E

    2015-01-01

    Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678

  14. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    PubMed Central

    Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus

    2012-01-01

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on

  15. Cell-surface serglycin promotes adhesion of myeloma cells to collagen type I and affects the expression of matrix metalloproteinases.

    PubMed

    Skliris, Antonis; Labropoulou, Vassiliki T; Papachristou, Dionysios J; Aletras, Alexios; Karamanos, Nikos K; Theocharis, Achilleas D

    2013-05-01

    Serglycin (SG) is mainly expressed by hematopoetic cells as an intracellular proteoglycan. Multiple myeloma cells constitutively secrete SG, which is also localized on the cell surface in some cell lines. In this study, SG isolated from myeloma cells was found to interact with collagen type I (Col I), which is a major bone matrix component. Notably, myeloma cells positive for cell-surface SG (csSG) adhered significantly to Col I, compared to cells lacking csSG. Removal of csSG by treatment of the cells with chondroitinase ABC or blocking of csSG by an SG-specific polyclonal antibody significantly reduced the adhesion of myeloma cells to Col I. Significant up-regulation of expression of the matrix metalloproteinases MMP-2 and MMP-9 at both the mRNA and protein levels was observed when culturing csSG-positive myeloma cells on Col I-coated dishes or in the presence of soluble Col I. MMP-9 and MMP-2 were also expressed in increased amounts by myeloma cells in the bone marrow of patients with multiple myeloma. Our data indicate that csSG of myeloma cells affects key functional properties, such as adhesion to Col I and the expression of MMPs, and imply that csSG may serve as a potential prognostic factor and/or target for pharmacological interventions in multiple myeloma. PMID:23387827

  16. Stable complex formation between HIV Rev and the nucleosome assembly protein, NAP1, affects Rev function

    SciTech Connect

    Cochrane, Alan; Murley, Laura Lea; Gao Mian; Wong, Raymond; Clayton, Kiera; Brufatto, Nicole; Canadien, Veronica; Mamelak, Daniel; Chen, Tricia; Richards, Dawn; Zeghouf, Mahel; Greenblatt, Jack; Burks, Christian; Frappier, Lori

    2009-05-25

    The Rev protein of HIV-1 is essential for HIV-1 proliferation due to its role in exporting viral RNA from the nucleus. We used a modified version of tandem affinity purification (TAP) tagging to identify proteins interacting with HIV-1 Rev in human cells and discovered a prominent interaction between Rev and nucleosome assembly protein 1 (Nap1). This interaction was also observed by specific retention of Nap1 from human cell lysates on a Rev affinity column. Nap1 was found to bind Rev through the Rev arginine-rich domain and altered the oligomerization state of Rev in vitro. Overexpression of Nap1 stimulated the ability of Rev to export RNA, reduced the nucleolar localization of Rev, and affected Rev nuclear import rates. The results suggest that Nap-1 may influence Rev function by increasing the availability of Rev.

  17. Temperament Affects Sympathetic Nervous Function in a Normal Population

    PubMed Central

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho

    2012-01-01

    Objective Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Methods Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. Results A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. Conclusion These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population. PMID:22993530

  18. Fetal urinoma and prenatal hydronephrosis: how is renal function affected?

    PubMed Central

    Oktar, Tayfun; Salabaş, Emre; Kalelioğlu, İbrahim; Atar, Arda; Ander, Haluk; Ziylan, Orhan; Has, Recep; Yüksel, Atıl

    2013-01-01

    Objective: In our study, the functional prognosis of kidneys with prenatal urinomas were investigated. Material and methods: Between 2006 and 2010, fetal urinomas were detected in 19 fetuses using prenatal ultrasonography (US), and the medical records were reviewed retrospectively. Of the 19 cases, the follow-up data were available for 10 fetuses. The gestational age at diagnosis, prognosis of urinomas, clinical course and renal functions were recorded. Postnatal renal functions were assessed with renal scintigraphy. Results: Unilateral urinomas and increased parenchyma echogenicity in the ipsilateral kidney were detected in all of the fetuses. Of the 10 fetuses with follow-up data, the option of termination was offered in 6 cases of anhydramnios, including 3 cases with signs of infravesical obstruction (a possible posterior urethral valve (PUV) and poor prognostic factors and 3 cases with unilateral hydronephrosis and increased echogenicity in the contralateral kidney. Only one family agreed the termination. The other 5 fetuses died during the early postnatal period. The average postnatal follow-up period in the 4 surviving fetuses was 22.5 months (8–38 months). One patient with a PUV underwent ablation surgery during the early postnatal period. In the postnatal period, none of the 4 kidneys that were ipsilateral to the urinoma were functional on scintigraphic evaluation. The urinomas disappeared in 3 cases. Nephrectomy was performed in one case due to recurrent urinary tract infections. Conclusion: In our study, no function was detected in the ipsilateral kidney of surviving patients with urinomas. Upper urinary tract dilatation accompanied by a urinoma is a poor prognostic factor for renal function. PMID:26328088

  19. The numerology of T cell functional diversity

    PubMed Central

    Haining, W. Nicholas

    2013-01-01

    Memory T cells are heterogeneous in phenotype and function. In this issue of Immunity Newell et al. (2012) use a new flow cytometry platform to show that the functional heterogeneity in the human T cell compartment is even greater than expected. PMID:22284416

  20. The numerology of T cell functional diversity.

    PubMed

    Haining, W Nicholas

    2012-01-27

    Memory T cells are heterogeneous in phenotype and function. In this issue of Immunity, Newell et al. (2012) use a new flow cytometry platform to show that the functional heterogeneity of the human T cell compartment is even greater than previously thought. PMID:22284416

  1. Methyl donor deficiency affects small-intestinal differentiation and barrier function in rats.

    PubMed

    Bressenot, Aude; Pooya, Shabnam; Bossenmeyer-Pourie, Carine; Gauchotte, Guillaume; Germain, Adeline; Chevaux, Jean-Baptiste; Coste, Florence; Vignaud, Jean-Michel; Guéant, Jean-Louis; Peyrin-Biroulet, Laurent

    2013-02-28

    Dietary methyl donors and their genetic determinants are associated with Crohn's disease risk. We investigated whether a methyl-deficient diet (MDD) may affect development and functions of the small intestine in rat pups from dams subjected to the MDD during gestation and lactation. At 1 month before pregnancy, adult females were fed with either a standard food or a diet without vitamin B12, folate and choline. A global wall hypotrophy was observed in the distal small bowel (MDD animals 0·30 mm v. controls 0·58 mm; P< 0·001) with increased crypt apoptosis (3·37 v. 0·4%; P< 0·001), loss of enterocyte differentiation in the villus and a reduction in intestinal alkaline phosphatase production. Cleaved caspase-3 immunostaining (MDD animals 3·37% v. controls 0·4%, P< 0·001) and the Apostain labelling index showed increased crypt apoptosis (3·5 v. 1·4%; P= 0·018). Decreased proliferation was observed in crypts of the proximal small bowel with a reduced number of minichromosome maintenance 6 (MDD animals 52·83% v. controls 83·17%; P= 0·048) and proliferating cell nuclear antigen-positive cells (46·25 v. 59 %; P= 0·05). This lack of enterocyte differentiation in the distal small bowel was associated with an impaired expression of β-catenin and a decreased β-catenin-E-cadherin interaction. The MDD affected the intestinal barrier in the proximal small bowel by decreasing Paneth cell number after immunostaining for lysosyme (MDD animals 8·66% v. controls 21·66%) and by reducing goblet cell number and mucus production after immunostaining for mucin-2 (crypts 8·66 v. 15·33%; villus 7 v. 17%). The MDD has dual effects on the small intestine by producing dramatic effects on enterocyte differentiation and barrier function in rats. PMID:22794784

  2. Can Particulate Pollution Affect Lung Function in Healthy Adults?

    EPA Science Inventory

    Accompanying editorial to paper from Harvard by Rice et al. entitled "Long-Term Exposure to Traffic Emissions and Fine Particulate Matter and Lung Function Decline in the Framingham Heart StudyBy almost any measure the Clean Air Act and its amendments has to be considered as one...

  3. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. PMID:26325197

  4. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  5. Spaceflight alters immune cell function and distribution

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  6. The selection and function of cell type-specific enhancers.

    PubMed

    Heinz, Sven; Romanoski, Casey E; Benner, Christopher; Glass, Christopher K

    2015-03-01

    The human body contains several hundred cell types, all of which share the same genome. In metazoans, much of the regulatory code that drives cell type-specific gene expression is located in distal elements called enhancers. Although mammalian genomes contain millions of potential enhancers, only a small subset of them is active in a given cell type. Cell type-specific enhancer selection involves the binding of lineage-determining transcription factors that prime enhancers. Signal-dependent transcription factors bind to primed enhancers, which enables these broadly expressed factors to regulate gene expression in a cell type-specific manner. The expression of genes that specify cell type identity and function is associated with densely spaced clusters of active enhancers known as super-enhancers. The functions of enhancers and super-enhancers are influenced by, and affect, higher-order genomic organization. PMID:25650801

  7. Metabolic regulation of stem cell function.

    PubMed

    Burgess, R J; Agathocleous, M; Morrison, S J

    2014-07-01

    Stem cell function is regulated by intrinsic mechanisms, such as transcriptional and epigenetic regulators, as well as extrinsic mechanisms, such as short-range signals from the niche and long-range humoral signals. Interactions between these regulatory mechanisms and cellular metabolism are just beginning to be identified. In multiple systems, differentiation is accompanied by changes in glycolysis, oxidative phosphorylation and the levels of reactive oxygen species. Indeed, metabolic pathways regulate proliferation and differentiation by regulating energy production and the generation of substrates for biosynthetic pathways. Some metabolic pathways appear to function differently in stem cells as compared with restricted progenitors and differentiated cells. They also appear to influence stem cell function by regulating signal transduction, epigenetic marks and oxidative stress. Studies to date illustrate the importance of metabolism in the regulation of stem cell function and suggest complex cross-regulation likely exists between metabolism and other stem cell regulatory mechanisms. PMID:24697828

  8. Metalloproteinases: A functional pathway for myeloid cells

    PubMed Central

    Chou, Jonathan; Chan, Matilda F.; Werb, Zena

    2015-01-01

    Myeloid cells have diverse roles in regulating immunity, inflammation, and extracellular matrix (ECM) turnover. To accomplish these tasks, myeloid cells carry an arsenal of metalloproteinases, which include the matrix metalloproteinases (MMPs) and the adamalysins. These enzymes have diverse substrate repertoires, and are thus involved in mediating proteolytic cascades, cell migration and cell signaling. Dysregulation of metalloproteinases contributes to pathogenic processes, including inflammation, fibrosis and cancer. Metalloproteinases also have important non-proteolytic functions in controlling cytoskeletal dynamics during macrophage fusion and enhancing transcription to promote anti-viral immunity. This review highlights the diverse contributions of metalloproteinases to myeloid cell functions. PMID:27227311

  9. RIGHT HEMISPHERIC FUNCTION IN NORMALS, AFFECTIVE DISORDER AND SCHIZOPHRENIA

    PubMed Central

    Borde, Milind; Roy, Amal; Davis, Elizabeth J.B.; Davis, Rachel

    1996-01-01

    The happy-sad chimeric faces test has been established as a useful test of right hemispheric function. It is known to elicit a left hemifacial bias (LHF bias) in right handed subjects. 41 normals and 19 manic, depressive and schizophrenic patients each were tested. All subjects were strictly right handed. Normals and depressives showed significant LHF bias. Monies and schizophrenics did not show significant LHF Bias. This suggests right hemispheric dysfunction in both mania and schizophrenia. PMID:21584135

  10. Nuclear cyclophilins affect spliceosome assembly and function in vitro

    PubMed Central

    Adams, B.M.; Coates, Miranda N.; Jackson, S. RaElle; Jurica, Melissa S.; Davis, Tara L.

    2015-01-01

    Cyclophilins are ubiquitously expressed proteins that bind to prolines and can catalyse cis/trans isomerization of proline residues. There are 17 annotated members of the cyclophilin family in humans, ubiquitously expressed and localized variously to the cytoplasm, nucleus or mitochondria. Surprisingly, all eight of the nuclear localized cyclophilins are found associated with spliceosomal complexes. However, their particular functions within this context are unknown. We have therefore adapted three established assays for in vitro pre-mRNA splicing to probe the functional roles of nuclear cyclophilins in the context of the human spliceosome. We find that four of the eight spliceosom-associated cyclophilins exert strong effects on splicing in vitro. These effects are dose-dependent and, remarkably, uniquely characteristic of each cyclophilin. Using both qualitative and quantitative means, we show that at least half of the nuclear cyclophilins can act as regulatory factors of spliceosome function in vitro. The present work provides the first quantifiable evidence that nuclear cyclophilins are splicing factors and provides a novel approach for future work into small molecule-based modulation of pre-mRNA splicing. PMID:25967372

  11. Prenatal Drug Exposure Affects Neonatal Brain Functional Connectivity

    PubMed Central

    Salzwedel, Andrew P.; Vachet, Clement; Gerig, Guido; Lin, Weili

    2015-01-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala–frontal, insula–frontal, and insula–sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala–frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  12. Prenatal drug exposure affects neonatal brain functional connectivity.

    PubMed

    Salzwedel, Andrew P; Grewen, Karen M; Vachet, Clement; Gerig, Guido; Lin, Weili; Gao, Wei

    2015-04-01

    Prenatal drug exposure, particularly prenatal cocaine exposure (PCE), incurs great public and scientific interest because of its associated neurodevelopmental consequences. However, the neural underpinnings of PCE remain essentially uncharted, and existing studies in school-aged children and adolescents are confounded greatly by postnatal environmental factors. In this study, leveraging a large neonate sample (N = 152) and non-invasive resting-state functional magnetic resonance imaging, we compared human infants with PCE comorbid with other drugs (such as nicotine, alcohol, marijuana, and antidepressant) with infants with similar non-cocaine poly drug exposure and drug-free controls. We aimed to characterize the neural correlates of PCE based on functional connectivity measurements of the amygdala and insula at the earliest stage of development. Our results revealed common drug exposure-related connectivity disruptions within the amygdala-frontal, insula-frontal, and insula-sensorimotor circuits. Moreover, a cocaine-specific effect was detected within a subregion of the amygdala-frontal network. This pathway is thought to play an important role in arousal regulation, which has been shown to be irregular in PCE infants and adolescents. These novel results provide the earliest human-based functional delineations of the neural-developmental consequences of prenatal drug exposure and thus open a new window for the advancement of effective strategies aimed at early risk identification and intervention. PMID:25855194

  13. The effect of negative affect on cognition: Anxiety, not anger, impairs executive function.

    PubMed

    Shields, Grant S; Moons, Wesley G; Tewell, Carl A; Yonelinas, Andrew P

    2016-09-01

    It is often assumed that negative affect impairs the executive functions that underlie our ability to control and focus our thoughts. However, support for this claim has been mixed. Recent work has suggested that different negative affective states like anxiety and anger may reflect physiologically separable states with distinct effects on cognition. However, the effects of these 2 affective states on executive function have never been assessed. As such, we induced anxiety or anger in participants and examined the effects on executive function. We found that anger did not impair executive function relative to a neutral mood, whereas anxiety did. In addition, self-reports of induced anxiety, but not anger, predicted impairments in executive function. These results support functional models of affect and cognition, and highlight the need to consider differences between anxiety and anger when investigating the influence of negative affect on fundamental cognitive processes such as memory and executive function. (PsycINFO Database Record PMID:27100367

  14. Affected functional networks associated with sentence production in classic galactosemia.

    PubMed

    Timmers, Inge; van den Hurk, Job; Hofman, Paul Am; Zimmermann, Luc Ji; Uludağ, Kâmil; Jansma, Bernadette M; Rubio-Gozalbo, M Estela

    2015-08-01

    Patients with the inherited metabolic disorder classic galactosemia have language production impairments in several planning stages. Here, we assessed potential deviations in recruitment and connectivity across brain areas responsible for language production that may explain these deficits. We used functional magnetic resonance imaging (fMRI) to study neural activity and connectivity while participants carried out a language production task. This study included 13 adolescent patients and 13 age- and gender-matched healthy controls. Participants passively watched or actively described an animated visual scene using two conditions, varying in syntactic complexity (single words versus a sentence). Results showed that patients recruited additional and more extensive brain regions during sentence production. Both groups showed modulations with syntactic complexity in left inferior frontal gyrus (IFG), a region associated with syntactic planning, and in right insula. In addition, patients showed a modulation with syntax in left superior temporal gyrus (STG), whereas the controls did not. Further, patients showed increased activity in right STG and right supplementary motor area (SMA). The functional connectivity data showed similar patterns, with more extensive connectivity with frontal and motor regions, and restricted and weaker connectivity with superior temporal regions. Patients also showed higher baseline cerebral blood flow (CBF) in right IFG and trends towards higher CBF in bilateral STG, SMA and the insula. Taken together, the data demonstrate that language abnormalities in classic galactosemia are associated with specific changes within the language network. These changes point towards impairments related to both syntactic planning and speech motor planning in these patients. PMID:25979518

  15. Multifunctional ferromagnetic disks for modulating cell function

    PubMed Central

    Vitol, Elina A.; Novosad, Valentyn; Rozhkova, Elena A.

    2013-01-01

    In this work, we focus on the methods for controlling cell function with ferromagnetic disk-shaped particles. We will first review the history of magnetically assisted modulation of cell behavior and applications of magnetic particles for studying physical properties of a cell. Then, we consider the biological applications of the microdisks such as the method for induction of cancer cell apoptosis, controlled drug release, hyperthermia and MRI imaging. PMID:23766544

  16. Tumor suppressor p53 and its homologue p73alpha affect cell migration.

    PubMed

    Sablina, Anna A; Chumakov, Peter M; Kopnin, Boris P

    2003-07-25

    The p53 tumor suppressor plays a central role in the negative control of growth and survival of abnormal cells. Previously we demonstrated that in addition to these functions, p53 expression affects cell morphology and lamellar activity of the cell edge (Alexandrova, A., Ivanov, A., Chumakov, P. M., Kopnin, P. B., and Vasiliev, J. M. (2000) Oncogene 19, 5826-5830). In the present work we studied the effects of p53 and its homologue p73alpha on cell migration. We found that loss of p53 function correlated with decreased cell migration that was analyzed by in vitro wound closure test and Boyden chamber assay. The decreased motility of p53-deficient cells was observed in different cell contexts: human foreskin fibroblasts (BJ), human colon and lung carcinoma cell lines (HCT116 and H1299, respectively), as well as mouse normal fibroblasts from lung and spleen, peritoneal macrophages, and keratinocytes. On the other hand, overexpression of the p53 family member p73alpha stimulated cell migration. Changes in cell migration correlated directly with transcription activation induced by p53 or p73alpha. Noteworthy, p53 modulated cell motility in the absence of stress. The effect of p53 and p73alpha on cell migration was mediated through the activity of the phosphatidylinositol 3-kinase/Rac1 pathway. This p53/p73 function was mainly associated with some modulation of intracellular signaling rather than with stimulation of production of secreted motogenic factors. The identified novel activity of the p53 family members might be involved in regulation of embryogenesis, wound healing, or inflammatory response. PMID:12750388

  17. Quantitative Proteomics Reveals That the Inhibition of Na(+)/K(+)-ATPase Activity Affects S-Phase Progression Leading to a Chromosome Segregation Disorder by Attenuating the Aurora A Function in Hepatocellular Carcinoma Cells.

    PubMed

    Xu, Zhongwei; Wang, Fengmei; Fan, Fengxu; Gu, Yanjun; Shan, Nana; Meng, Xiangyan; Cheng, Shixiang; Liu, Yingfu; Wang, Chengyan; Song, Yueying; Xu, Ruicheng

    2015-11-01

    Many studies have shown the Na(+)/K(+)-ATPase (NKA) might be a potential target for anticancer therapy. Cardiac glycosides (CGs), as a family of naturally compounds, inhibited the NKA activity. The present study investigates the antitumor effect of ouabain and elucidates the pharmacological mechanisms of CG activity in liver cancer HepG2 cell using SILAC coupled to LC-MS/MS method. Bioinformatics analysis of 330 proteins that were changed in cells under treatment with 0.5 μmol/L ouabain showed that the biological processes are associated with an acute inflammatory response, cell cycle, oxidation reduction, chromosome segregation, and DNA metabolism. We confirmed that ouabain induced chromosome segregation disorder and S-cell cycle block by decreasing the expression of AURKA, SMC2, Cyclin D, and p-CDK1 as well as increasing the expression of p53. We found that the overexpression or inhibition of AURKA significantly reduced or enhanced the ouabain-mediated the anticancer effects. Our findings suggest that AURKA is involved in the anticancer mechanisms of ouabain in HepG2 cells. PMID:26491887

  18. Tricellulin deficiency affects tight junction architecture and cochlear hair cells

    PubMed Central

    Nayak, Gowri; Lee, Sue I.; Yousaf, Rizwan; Edelmann, Stephanie E.; Trincot, Claire; Van Itallie, Christina M.; Sinha, Ghanshyam P.; Rafeeq, Maria; Jones, Sherri M.; Belyantseva, Inna A.; Anderson, James M.; Forge, Andrew; Frolenkov, Gregory I.; Riazuddin, Saima

    2013-01-01

    The two compositionally distinct extracellular cochlear fluids, endolymph and perilymph, are separated by tight junctions that outline the scala media and reticular lamina. Mutations in TRIC (also known as MARVELD2), which encodes a tricellular tight junction protein known as tricellulin, lead to nonsyndromic hearing loss (DFNB49). We generated a knockin mouse that carries a mutation orthologous to the TRIC coding mutation linked to DFNB49 hearing loss in humans. Tricellulin was absent from the tricellular junctions in the inner ear epithelia of the mutant animals, which developed rapidly progressing hearing loss accompanied by loss of mechanosensory cochlear hair cells, while the endocochlear potential and paracellular permeability of a biotin-based tracer in the stria vascularis were unaltered. Freeze-fracture electron microscopy revealed disruption of the strands of intramembrane particles connecting bicellular and tricellular junctions in the inner ear epithelia of tricellulin-deficient mice. These ultrastructural changes may selectively affect the paracellular permeability of ions or small molecules, resulting in a toxic microenvironment for cochlear hair cells. Consistent with this hypothesis, hair cell loss was rescued in tricellulin-deficient mice when generation of normal endolymph was inhibited by a concomitant deletion of the transcription factor, Pou3f4. Finally, comprehensive phenotypic screening showed a broader pathological phenotype in the mutant mice, which highlights the non-redundant roles played by tricellulin. PMID:23979167

  19. The sertolian epithelium in the testis of men affected by 'Sertoli-cell-only syndrome'.

    PubMed

    Tedde, G; Montella, A; Fiocca, D; Delrio, A N

    1993-01-01

    Because of the architectural complexity of the seminiferous epithelium, the Sertoli cell is extremely difficult to study. The individual cellular constituents of the tubular wall are intimately associated with one another; especially Sertoli cells and germinal cells are tightly connected. As implied by the name, Sertoli-cell-only syndrome (SCOS) is characterized by the presence of only Sertoli cells in the seminiferous tubule. The absence of germinal cells makes this condition ideal for the morphological study of Sertoli cell. Testicular biopsy specimens of subjects affected by SCOS were studied under light and electron microscopy. The Sertoli cells appeared to be morphologically normal, except for their shape, that appears to be columnar as result of the complete absence of the germinal cells. The cellular outlines were irregular, particularly at the base, but the cytoplasm contained normal organelles and inclusions. The presence of both pale and dark elements was evident. These differences in staining reflect the variability in concentration of glycogen particles and intermediate microfilaments in the cytoplasm. In spite of these differences between Sertoli cells in SCOS and those in normal subjects, SCOS represents a satisfactory model for the morphological and functional analysis of the Sertoli cells. PMID:7694556

  20. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    MedlinePlus

    ... for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  1. Does Vitamin C Deficiency Affect Cognitive Development and Function?

    PubMed Central

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-01-01

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(−/−) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies. PMID:25244370

  2. Mevalonate availability affects human and rat resistance vessel function.

    PubMed Central

    Roullet, J B; Xue, H; Roullet, C M; Fletcher, W S; Cipolla, M J; Harker, C T; McCarron, D A

    1995-01-01

    Previous data in rat conductance vessels indicated that cellular mevalonate contributes to vascular tone and systemic blood pressure control. Using exogenous mevalonate (M) or lovastatin, a 3-hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase inhibitor (L), we characterized the role of mevalonate availability in resistance artery function, both in experimental animals and humans. Rat mesenteric artery resistance vessels (MARV, n = 9) were incubated for 48 h with either L, M, L + M, or vehicle (V) and tested for reactivity to NE, serotonin, acetylcholine, atrial natriuretic peptide, and sodium nitroprusside (SNP). Lovastatin increased sensitivity to NE (P < 0.03) and serotonin (P < 0.003), and significantly impaired the response to all three vasodilators. These effects were reversed by co-incubation with mevalonate. Mevalonate alone had no effect. In separate experiments, intravascular free Ca2+ concentration (ivfCa2+) was determined in fura-2AM loaded MARV. Basal ivfCa2+ was increased after a 48-h exposure to L (52.7 +/- 4.6 nM, L, vs. 29.7 +/- 2.4 nM, V, n = 12, P < 0.003), as were ivfCa2+ levels following stimulation with low (100 nM) NE concentrations. Similar ivfCa2+ concentrations were achieved during maximum contraction with NE (10 mM) in both groups. Human resistance arteries of human adipose tissue were also studied. Lovastatin increased the sensitivity to NE (ED50 = 372 +/- 56 nM, V, and 99 +/- 33 nM, L, P < 0.001) and significantly decreased the relaxation to acetylcholine and SNP of human vessels. We conclude that mevalonate availability directly contribute to resistance vessel function and vascular signal transduction systems in both experimental animals and humans. The study calls for the identification of non-sterol, mevalonate-derived vasoactive metabolites, and suggests that disorders of the mevalonate pathway can alter vascular tone and cause hypertension. PMID:7615793

  3. Membrane Elastic Properties and Cell Function

    PubMed Central

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C.; Romão, Luciana F.; Amaral, Racκele F.; Salgado, Leonardo T.; Lima, Flavia R.; Farina, Marcos; Viana, Nathan B.; Moura-Neto, Vivaldo; Nussenzveig, H. Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function. PMID:23844071

  4. Loss of Cellulose Synthase-Like F6 Function Affects Mixed-Linkage Glucan Deposition, Cell Wall Mechanical Properties, and Defense Responses in Vegetative Tissues of Rice1[C][W][OA

    PubMed Central

    Vega-Sánchez, Miguel E.; Verhertbruggen, Yves; Christensen, Ulla; Chen, Xuewei; Sharma, Vaishali; Varanasi, Patanjali; Jobling, Stephen A.; Talbot, Mark; White, Rosemary G.; Joo, Michael; Singh, Seema; Auer, Manfred; Scheller, Henrik V.; Ronald, Pamela C.

    2012-01-01

    Mixed-linkage glucan (MLG) is a cell wall polysaccharide containing a backbone of unbranched (1,3)- and (1,4)-linked β-glucosyl residues. Based on its occurrence in plants and chemical characteristics, MLG has primarily been associated with the regulation of cell wall expansion due to its high and transient accumulation in young, expanding tissues. The Cellulose synthase-like F (CslF) subfamily of glycosyltransferases has previously been implicated in mediating the biosynthesis of this polymer. We confirmed that the rice (Oryza sativa) CslF6 gene mediates the biosynthesis of MLG by overexpressing it in Nicotiana benthamiana. Rice cslf6 knockout mutants show a slight decrease in height and stem diameter but otherwise grew normally during vegetative development. However, cslf6 mutants display a drastic decrease in MLG content (97% reduction in coleoptiles and virtually undetectable in other tissues). Immunodetection with an anti-MLG monoclonal antibody revealed that the coleoptiles and leaves retain trace amounts of MLG only in specific cell types such as sclerenchyma fibers. These results correlate with the absence of endogenous MLG synthase activity in mutant seedlings and 4-week-old sheaths. Mutant cell walls are weaker in mature stems but not seedlings, and more brittle in both stems and seedlings, compared to wild type. Mutants also display lesion mimic phenotypes in leaves, which correlates with enhanced defense-related gene expression and enhanced disease resistance. Taken together, our results underline a weaker role of MLG in cell expansion than previously thought, and highlight a structural role for MLG in nonexpanding, mature stem tissues in rice. PMID:22388489

  5. Consumption of bee pollen affects rat ovarian functions.

    PubMed

    Kolesarova, A; Bakova, Z; Capcarova, M; Galik, B; Juracek, M; Simko, M; Toman, R; Sirotkin, A V

    2013-12-01

    The aim of this study was to examine possible effects of bee pollen added to the feed mixture (FM) on rat ovarian functions (secretion activity and apoptosis). We evaluated the bee pollen effect on the release of insulin-like growth factor I (IGF-I) and steroid hormones (progesterone and estradiol), as well as on the expression of markers of apoptosis (Bcl-2, Bax and caspase-3) in rat ovarian fragments. Female rats (n = 15) were fed during 90 days by FM without or with rape seed bee pollen in dose either 3 kg/1000 kg FM or 5 kg/1000 kg FM. Fragments of ovaries isolated from rats of each group (totally 72 pieces) were incubated for 24 h. Hormonal secretion into the culture medium was detected by RIA. The markers of apoptosis were evaluated by Western blotting. It was observed that IGF-I release by rat ovarian fragments was significantly (p < 0.05) decreased; on the other hand, progesterone and estradiol secretion was increased after bee pollen treatment at dose 5 kg/1000 kg FM but not at 3 kg/1000 FM. Accumulation of Bcl-2 was increased by bee pollen added at 3 kg/1000 kg FM, but not at higher dose. Accumulation of Bax was increased in ovaries of rats fed by bee pollen at doses either 3 or 5 kg/1000 kg FM, whilst accumulation of caspase-3 increased after feeding with bee pollen at dose 5 kg/1000 kg FM, but not at 3 kg/1000 kg FM. Our results contribute to new insights regarding the effect of bee pollen on both secretion activity (release of growth factor IGF-I and steroid hormones progesterone and estradiol) and apoptosis (anti- and pro-apoptotic markers Bcl-2, Bax and caspase-3). Bee pollen is shown to be a potent regulator of rat ovarian functions. PMID:23137268

  6. Low-dose irradiation affects the functional behavior of oral microbiota in the context of mucositis.

    PubMed

    Vanhoecke, Barbara W A; De Ryck, Tine R G; De boel, Kevin; Wiles, Siouxsie; Boterberg, Tom; Van de Wiele, Tom; Swift, Simon

    2016-01-01

    The role of host-microbe interactions in the pathobiology of oral mucositis is still unclear; therefore, this study aimed to unravel the effect of irradiation on behavioral characteristics of oral microbial species in the context of mucositis. Using various experimental in vitro setups, the effects of irradiation on growth and biofilm formation of two Candida spp., Streptococcus salivarius and Klebsiella oxytoca in different culture conditions were evaluated. Irradiation did not affect growth of planktonic cells, but reduced the number of K. oxytoca cells in newly formed biofilms cultured in static conditions. Biofilm formation of K. oxytoca and Candida glabrata was affected by irradiation and depended on the culturing conditions. In the presence of mucins, these effects were lost, indicating the protective nature of mucins. Furthermore, the Galleria melonella model was used to study effects on microbial virulence. Irradiated K. oxytoca microbes were more virulent in G. melonella larvae compared to the nonirradiated ones. Our data indicate that low-dose irradiation can have an impact on functional characteristics of microbial species. Screening for pathogens like K. oxytoca in the context of mucosits could be useful to allow early detection and immediate intervention. PMID:26202372

  7. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  8. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    ERIC Educational Resources Information Center

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  9. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…

  10. Arabidopsis AtADF1 is functionally affected by mutations on actin binding sites.

    PubMed

    Dong, Chun-Hai; Tang, Wei-Ping; Liu, Jia-Yao

    2013-03-01

    The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G- and F-actin binding. The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A, R137/A) form another actin binding site that is important for F-actin binding. Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G-actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization. PMID:23190411

  11. DNA Hypomethylation Affects Cancer-Related Biological Functions and Genes Relevant in Neuroblastoma Pathogenesis

    PubMed Central

    Mayol, Gemma; Martín-Subero, José I.; Ríos, José; Queiros, Ana; Kulis, Marta; Suñol, Mariona; Esteller, Manel; Gómez, Soledad; Garcia, Idoia; de Torres, Carmen; Rodríguez, Eva; Galván, Patricia; Mora, Jaume; Lavarino, Cinzia

    2012-01-01

    Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation. PMID:23144874

  12. Oriented cell division affects the global stress and cell packing geometry of a monolayer under stretch.

    PubMed

    Xu, Guang-Kui; Liu, Yang; Zheng, Zhaoliang

    2016-02-01

    Cell division plays a vital role in tissue morphogenesis and homeostasis, and the division plane is crucial for cell fate. For isolated cells, extensive studies show that the orientation of divisions is sensitive to cell shape and the direction of extrinsic mechanical forces. However, it is poorly understood that how the cell divides within a cell monolayer and how the local stress change, due to the division, affects the global stress of epithelial monolayers. Here, we use the vertex dynamics models to investigate the effects of division orientation on the configurations and mechanics of a cell monolayer under stretch. We examine three scenarios of the divisions: dividing along the stretch axis, dividing along the geometric long axis of cells, and dividing at a random angle. It is found that the division along the long cell axis can induce the minimal energy difference, and the global stress of the monolayer after stretch releases more rapidly in this case. Moreover, the long-axis division can result in more random cell orientations and more isotropic cell shapes within the monolayer, comparing with other two cases. This study helps understand the division orientation of cells within a monolayer under mechanical stimuli, and may shed light on linking individual cell׳s behaviors to the global mechanics and patterns of tissues. PMID:26774292

  13. Extender components and surfactants affect boar sperm function and membrane behavior during cryopreservation.

    PubMed

    Pettitt, M J; Buhr, M M

    1998-01-01

    To determine how the individual components of extenders affected boar sperm function and membrane structure and to test a new surfactant's cryoprotective ability, boar sperm were cryopreserved in straws in BF5 extender plus or minus egg yolk plus or minus glycerol plus or minus a surfactant (Orvus ES Paste [OEP] or various concentrations of Pluronic F-127). After thawing, sperm function and fluidity of the isolated head plasma membrane (HPM) were determined. Total motility and adenosine triphosphate content (a measure of viability) were superior postthaw in sperm extended in egg yolk plus glycerol (P < 0.05); neither surfactant improved function. Egg yolk plus any other ingredients improved normal acrosome morphology, whereas a combined measure of motility and normal acrosome morphology was better in the presence of 0.33% OEP or 0.1% Pluronic F-127 (P < 0.05 vs. controls). Head plasma membrane was isolated from freshly collected spermatozoa and spermatozoa cryopreserved in the various extenders. Membrane fluidity was monitored with the probes cis-parinaric acid (cPNA), transparinaric acid (tPNA), and 1,6-diphenyl-1 ,3,5-hexatriene (DPH). The cPNA and the DPH monitor the fluidity of gel and liquid-crystalline areas of the membrane, whereas the tPNA preferentially monitors the gel-phase domains of the membrane. Additionally, DPH monitors the hydrophobic core of the bilayer. In the HPM from fresh sperm, the fluidity of each domain changed over time in a manner unique to that domain, and the behavior of the DPH domain varied among boars. The fluidity dynamics of each domain responded uniquely to cryopreservation. The cPNA domain was unaffected, the tPNA domain was altered by four of the eight extenders, and all extenders affected the fluidity of the DPH domain. Membrane structure was significantly correlated with cell function for sperm cryopreserved in extenders that preserved viability and motility. Sperm cryopreserved in egg yolk plus glycerol plus either OEP or 0

  14. New common variants affecting susceptibility to basal cell carcinoma.

    PubMed

    Stacey, Simon N; Sulem, Patrick; Masson, Gisli; Gudjonsson, Sigurjon A; Thorleifsson, Gudmar; Jakobsdottir, Margret; Sigurdsson, Asgeir; Gudbjartsson, Daniel F; Sigurgeirsson, Bardur; Benediktsdottir, Kristrun R; Thorisdottir, Kristin; Ragnarsson, Rafn; Scherer, Dominique; Hemminki, Kari; Rudnai, Peter; Gurzau, Eugene; Koppova, Kvetoslava; Botella-Estrada, Rafael; Soriano, Virtudes; Juberias, Pablo; Saez, Berta; Gilaberte, Yolanda; Fuentelsaz, Victoria; Corredera, Cristina; Grasa, Matilde; Höiom, Veronica; Lindblom, Annika; Bonenkamp, Johannes J; van Rossum, Michelle M; Aben, Katja K H; de Vries, Esther; Santinami, Mario; Di Mauro, Maria G; Maurichi, Andrea; Wendt, Judith; Hochleitner, Pia; Pehamberger, Hubert; Gudmundsson, Julius; Magnusdottir, Droplaug N; Gretarsdottir, Solveig; Holm, Hilma; Steinthorsdottir, Valgerdur; Frigge, Michael L; Blondal, Thorarinn; Saemundsdottir, Jona; Bjarnason, Hjördis; Kristjansson, Kristleifur; Bjornsdottir, Gyda; Okamoto, Ichiro; Rivoltini, Licia; Rodolfo, Monica; Kiemeney, Lambertus A; Hansson, Johan; Nagore, Eduardo; Mayordomo, José I; Kumar, Rajiv; Karagas, Margaret R; Nelson, Heather H; Gulcher, Jeffrey R; Rafnar, Thorunn; Thorsteinsdottir, Unnur; Olafsson, Jon H; Kong, Augustine; Stefansson, Kari

    2009-08-01

    In a follow-up to our previously reported genome-wide association study of cutaneous basal cell carcinoma (BCC), we describe here several new susceptibility variants. SNP rs11170164, encoding a G138E substitution in the keratin 5 (KRT5) gene, affects risk of BCC (OR = 1.35, P = 2.1 x 10(-9)). A variant at 9p21 near CDKN2A and CDKN2B also confers susceptibility to BCC (rs2151280[C]; OR = 1.19, P = 6.9 x 10(-9)), as does rs157935[T] at 7q32 near the imprinted gene KLF14 (OR = 1.23, P = 5.7 x 10(-10)). The effect of rs157935[T] is dependent on the parental origin of the risk allele. None of these variants were found to be associated with melanoma or fair-pigmentation traits. A melanoma- and pigmentation-associated variant in the SLC45A2 gene, L374F, is associated with risk of both BCC and squamous cell carcinoma. Finally, we report conclusive evidence that rs401681[C] in the TERT-CLPTM1L locus confers susceptibility to BCC but protects against melanoma. PMID:19578363

  15. Factors affecting recovery of postoperative bowel function after pediatric laparoscopic surgery

    PubMed Central

    Michelet, Daphnée; Andreu-Gallien, Juliette; Skhiri, Alia; Bonnard, Arnaud; Nivoche, Yves; Dahmani, Souhayl

    2016-01-01

    Background and Aims: Laparoscopic pediatric surgery allows a rapid postoperative rehabilitation and hospital discharge. However, the optimal postoperative pain management preserving advantages of this surgical technique remains to be determined. This study aimed to identify factors affecting the postoperative recovery of bowel function after laparoscopic surgery in children. Material and Methods: A retrospective analysis of factors affecting recovery of bowel function in children and infants undergoing laparoscopic surgery between January 1, 2009 and September 30, 2009, was performed. Factors included were: Age, weight, extent of surgery (extensive, regional or local), chronic pain (sickle cell disease or chronic intestinal inflammatory disease), American Society of Anaesthesiologists status, postoperative analgesia (ketamine, morphine, nalbuphine, paracetamol, nonsteroidal anti-inflammatory drugs [NSAIDs], nefopam, regional analgesia) both in the Postanesthesia Care Unit and in the surgical ward; and surgical complications. Data analysis used classification and regression tree analysis (CART) with a 10-fold cross validation. Results: One hundred and sixty six patients were included in the analysis. Recovery of bowel function depended upon: The extent of surgery, the occurrence of postoperative surgical complications, the administration of postoperative morphine in the surgical ward, the coadministration of paracetamol and NSAIDs and/or nefopam in the surgical ward and the emergency character of the surgery. The CART method generated a decision tree with eight terminal nodes. The percentage of explained variability of the model and the cross validation were 58% and 49%, respectively. Conclusion: Multimodal analgesia using nonopioid analgesia that allows decreasing postoperative morphine consumption should be considered for the speed of bowel function recovery after laparoscopic pediatric surgery.

  16. Immunological functions of liver sinusoidal endothelial cells.

    PubMed

    Knolle, Percy A; Wohlleber, Dirk

    2016-05-01

    Liver sinusoidal endothelial cells (LSECs) line the liver sinusoids and separate passenger leukocytes in the sinusoidal lumen from hepatocytes. LSECs further act as a platform for adhesion of various liver-resident immune cell populations such as Kupffer cells, innate lymphoid cells or liver dendritic cells. In addition to having an extraordinary scavenger function, LSECs possess potent immune functions, serving as sentinel cells to detect microbial infection through pattern recognition receptor activation and as antigen (cross)-presenting cells. LSECs cross-prime naive CD8 T cells, causing their rapid differentiation into memory T cells that relocate to secondary lymphoid tissues and provide protection when they re-encounter the antigen during microbial infection. Cross-presentation of viral antigens by LSECs derived from infected hepatocytes triggers local activation of effector CD8 T cells and thereby assures hepatic immune surveillance. The immune function of LSECs complements conventional immune-activating mechanisms to accommodate optimal immune surveillance against infectious microorganisms while preserving the integrity of the liver as a metabolic organ. PMID:27041636

  17. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice.

    PubMed

    McGovern, Gillian; Mabbott, Neil; Jeffrey, Martin

    2009-01-01

    Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrP(d)) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrP(d) accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrP(d) plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrP(d) accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrP(d). Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrP(d) accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function. PMID:19997557

  18. PARP1 Gene Knock-Out Increases Resistance to Retinal Degeneration without Affecting Retinal Function

    PubMed Central

    Sahaboglu, Ayse; Tanimoto, Naoyuki; Kaur, Jasvir; Sancho-Pelluz, Javier; Huber, Gesine; Fahl, Edda; Arango-Gonzalez, Blanca; Zrenner, Eberhart; Ekström, Per; Löwenheim, Hubert; Seeliger, Mathias; Paquet-Durand, François

    2010-01-01

    Retinitis pigmentosa (RP) is a group of inherited neurodegenerative diseases affecting photoreceptors and causing blindness in humans. Previously, excessive activation of enzymes belonging to the poly-ADP-ribose polymerase (PARP) group was shown to be involved in photoreceptor degeneration in the human homologous rd1 mouse model for RP. Since there are at least 16 different PARP isoforms, we investigated the exact relevance of the predominant isoform - PARP1 - for photoreceptor cell death using PARP1 knock-out (KO) mice. In vivo and ex vivo morphological analysis using optic coherence tomography (OCT) and conventional histology revealed no major alterations of retinal phenotype when compared to wild-type (wt). Likewise, retinal function as assessed by electroretinography (ERG) was normal in PARP1 KO animals. We then used retinal explant cultures derived from wt, rd1, and PARP1 KO animals to test their susceptibility to chemically induced photoreceptor degeneration. Since photoreceptor degeneration in the rd1 retina is triggered by a loss-of-function in phosphodiesterase-6 (PDE6), we used selective PDE6 inhibition to emulate the rd1 situation on non-rd1 genotypes. While wt retina subjected to PDE6 inhibition showed massive photoreceptor degeneration comparable to rd1 retina, in the PARP1 KO situation, cell death was robustly reduced. Together, these findings demonstrate that PARP1 activity is in principle dispensable for normal retinal function, but is of major importance for photoreceptor degeneration under pathological conditions. Moreover, our results suggest that PARP dependent cell death or PARthanatos may play a major role in retinal degeneration and highlight the possibility to use specific PARP inhibitors for the treatment of RP. PMID:21124852

  19. Mast Cell: A Multi-Functional Master Cell

    PubMed Central

    Krystel-Whittemore, Melissa; Dileepan, Kottarappat N.; Wood, John G.

    2016-01-01

    Mast cells are immune cells of the myeloid lineage and are present in connective tissues throughout the body. The activation and degranulation of mast cells significantly modulates many aspects of physiological and pathological conditions in various settings. With respect to normal physiological functions, mast cells are known to regulate vasodilation, vascular homeostasis, innate and adaptive immune responses, angiogenesis, and venom detoxification. On the other hand, mast cells have also been implicated in the pathophysiology of many diseases, including allergy, asthma, anaphylaxis, gastrointestinal disorders, many types of malignancies, and cardiovascular diseases. This review summarizes the current understanding of the role of mast cells in many pathophysiological conditions. PMID:26779180

  20. SAMM50 Affects Mitochondrial Morphology through the Association of Drp1 in Mammalian Cells.

    PubMed

    Liu, Shuo; Gao, Yali; Zhang, Cheng; Li, Han; Pan, Shiyi; Wang, Xiaoli; Du, Shiming; Deng, Zixin; Wang, Lianrong; Song, Zhiyin; Chen, Shi

    2016-05-01

    Mitochondrial fission and fusion activities are important for cell survival and function. Drp1 is a GTPase protein responsible for mitochondrial division, and SAMM50 is responsible for protein sorting and assembly. We demonstrated that SAMM50 overexpression results in Drp1-dependent mitochondrial fragmentation in HeLa cells. However, the mitochondrial fragmentation induced by SAMM50 overexpression could be reversed through co-expression with MFN2. Furthermore, SAMM50 interacts with Drp1 both in vivo and in vitro. The mitochondria in SAMM50 knockdown HeLa cells displayed a swollen phenotype, and the levels of the SAM complex and OPA1, along with the mitochondrial Drp1 levels, significantly decreased. In addition, mitochondrial inheritance was impaired in SAMM50 silenced cells. These results suggest that SAMM50 affects the Drp1-dependent mitochondrial morphology. PMID:27059175

  1. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    SciTech Connect

    Maneckjee, R.; Minna, J.D. Uniformed Services Univ. of the Health Sciences, Bethesda, MD )

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  2. Chronic Exposure to Bisphenol A Affects Uterine Function During Early Pregnancy in Mice.

    PubMed

    Li, Quanxi; Davila, Juanmahel; Kannan, Athilakshmi; Flaws, Jodi A; Bagchi, Milan K; Bagchi, Indrani C

    2016-05-01

    Environmental and occupational exposure to bisphenol A (BPA), a chemical widely used in polycarbonate plastics and epoxy resins, has received much attention in female reproductive health due to its widespread toxic effects. Although BPA has been linked to infertility and recurrent miscarriage in women, the impact of its exposure on uterine function during early pregnancy remains unclear. In this study, we addressed the effect of prolonged exposure to an environmental relevant dose of BPA on embryo implantation and establishment of pregnancy. Our studies revealed that treatment of mice with BPA led to improper endometrial epithelial and stromal functions thus affecting embryo implantation and establishment of pregnancy. Upon further analyses, we found that the expression of progesterone receptor (PGR) and its downstream target gene, HAND2 (heart and neural crest derivatives expressed 2), was markedly suppressed in BPA-exposed uterine tissues. Previous studies have shown that HAND2 controls embryo implantation by repressing fibroblast growth factor and the MAPK signaling pathways and inhibiting epithelial proliferation. Interestingly, we observed that down-regulation of PGR and HAND2 expression in uterine stroma upon BPA exposure was associated with enhanced activation of fibroblast growth factor and MAPK signaling in the epithelium, thus contributing to aberrant proliferation and lack of uterine receptivity. Further, the differentiation of endometrial stromal cells to decidual cells, an event critical for the establishment and maintenance of pregnancy, was severely compromised in response to BPA. In summary, our studies revealed that chronic exposure to BPA impairs PGR-HAND2 pathway and adversely affects implantation and the establishment of pregnancy. PMID:27022677

  3. Colored dual-functional photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Lee, Jae Yong; Xu, Ting; Park, Hui Joon; Guo, L. Jay

    2016-06-01

    In this article, we review our recent efforts on multi-functional photovoltaic (PV) cells that can produce desired reflective, transmissive, or neutral colors, by controlling light interaction with semiconductors and electrode structures in a desired manner. The PV cells integrated with plasmonic color filtering schemes using subwavelength gratings, and other approaches exploiting photonic resonances in an optical nanocavity consisting of highly absorbing semiconductor media are described. For further enhancement of optical and electrical performance characteristics of the multi-functional PV cells, possible difficulties and the outlook for future work are discussed.

  4. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding

    PubMed Central

    Canault, Matthias; Ghalloussi, Dorsaf; Grosdidier, Charlotte; Guinier, Marie; Perret, Claire; Chelghoum, Nadjim; Germain, Marine; Raslova, Hana; Peiretti, Franck; Morange, Pierre E.; Saut, Noemie; Pillois, Xavier; Nurden, Alan T.; Cambien, François; Pierres, Anne; van den Berg, Timo K.; Kuijpers, Taco W.; Tregouet, David-Alexandre

    2014-01-01

    The nature of an inherited platelet disorder was investigated in three siblings affected by severe bleeding. Using whole-exome sequencing, we identified the culprit mutation (cG742T) in the RAS guanyl-releasing protein-2 (RASGRP2) gene coding for calcium- and DAG-regulated guanine exchange factor-1 (CalDAG-GEFI). Platelets from individuals carrying the mutation present a reduced ability to activate Rap1 and to perform proper αIIbβ3 integrin inside-out signaling. Expression of CalDAG-GEFI mutant in HEK293T cells abolished Rap1 activation upon stimulation. Nevertheless, the PKC- and ADP-dependent pathways allow residual platelet activation in the absence of functional CalDAG-GEFI. The mutation impairs the platelet’s ability to form thrombi under flow and spread normally as a consequence of reduced Rac1 GTP-binding. Functional deficiencies were confined to platelets and megakaryocytes with no leukocyte alteration. This contrasts with the phenotype seen in type III leukocyte adhesion deficiency caused by the absence of kindlin-3. Heterozygous did not suffer from bleeding and have normal platelet aggregation; however, their platelets mimicked homozygous ones by failing to undergo normal adhesion under flow and spreading. Rescue experiments on cultured patient megakaryocytes corrected the functional deficiency after transfection with wild-type RASGRP2. Remarkably, the presence of a single normal allele is sufficient to prevent bleeding, making CalDAG-GEFI a novel and potentially safe therapeutic target to prevent thrombosis. PMID:24958846

  5. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules.

    PubMed

    Tikka, Saara; Monogioudi, Evanthia; Gotsopoulos, Athanasios; Soliymani, Rabah; Pezzini, Francesco; Scifo, Enzo; Uusi-Rauva, Kristiina; Tyynelä, Jaana; Baumann, Marc; Jalanko, Anu; Simonati, Alessandro; Lalowski, Maciej

    2016-03-01

    Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood

  6. Adipose tissue: cell heterogeneity and functional diversity.

    PubMed

    Esteve Ràfols, Montserrat

    2014-02-01

    There are two types of adipose tissue in the body whose function appears to be clearly differentiated. White adipose tissue stores energy reserves as fat, whereas the metabolic function of brown adipose tissue is lipid oxidation to produce heat. A good balance between them is important to maintain energy homeostasis. The concept of white adipose tissue has radically changed in the past decades, and is now considered as an endocrine organ that secretes many factors with autocrine, paracrine, and endocrine functions. In addition, we can no longer consider white adipose tissue as a single tissue, because it shows different metabolic profiles in its different locations, with also different implications. Although the characteristic cell of adipose tissue is the adipocyte, this is not the only cell type present in adipose tissue, neither the most abundant. Other cell types in adipose tissue described include stem cells, preadipocytes, macrophages, neutrophils, lymphocytes, and endothelial cells. The balance between these different cell types and their expression profile is closely related to maintenance of energy homeostasis. Increases in adipocyte size, number and type of lymphocytes, and infiltrated macrophages are closely related to the metabolic syndrome diseases. The study of regulation of proliferation and differentiation of preadipocytes and stem cells, and understanding of the interrelationship between the different cell types will provide new targets for action against these diseases. PMID:23834768

  7. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  8. Corticomotoneuronal cells are “functionally tuned”

    PubMed Central

    Griffin, Darcy M.; Hoffman, Donna S.; Strick, Peter L.

    2016-01-01

    Corticomotoneuronal (CM) cells in the primary motor cortex (M1) have monosynaptic connections with motoneurons. They are one of the few sources of descending commands that directly influence motor output. We examined the contribution of CM cells to the generation of activity in their target muscles. The preferred direction of many CM cells differed from that of their target muscles. Some CM cells were selectively active when a muscle was used as an agonist. Others were selectively active when the same muscle was used as a synergist, fixator, or antagonist. These observations suggest that the different functional uses of a muscle are generated by separate populations of CM cells. We propose that muscle function is one of the dimensions represented in the output of M1. PMID:26542568

  9. Non-canonical Progesterone Signaling in Granulosa Cell Function

    PubMed Central

    Peluso, John J.; Pru, James K.

    2014-01-01

    It has been known for over three decades that progesterone (P4) suppresses follicle growth. It has been assumed that P4 acts directly on granulosa cells of developing follicles to slow their development, since P4 inhibits both mitosis and apoptosis of cultured granulosa cells. However, granulosa cells of developing follicles of mice, rats, monkeys and humans do not express the A or B form of the classic nuclear receptor for progesterone (PGR). In contrast, these granulosa cells express other progesterone binding proteins, one of which is referred to as Progesterone Receptor Membrane Component 1 (PGRMC1). PGRMC1 specifically binds P4 with high affinity and mediates P4’s anti-mitotic and anti-apoptotic action as evidenced by the lack of these P4-dependent effects in PGRMC1-depleted cells. In addition, mice in which PGRMC1 is conditionally depleted in granulosa cells show diminished follicle development. While the mechanism through which P4 activation of PGRMC1 affects granulosa cell function is not well defined, it appears that PGRMC1 controls granulosa cell function in part by regulating gene expression in T cell specific transcription factor/lymphoid enhancer factor (Tcf/Lef)-dependent manner. Clinically, altered PGRMC1 expression has been correlated with premature ovarian failure/insufficiency, polycystic ovarian syndrome and infertility. These collective studies provide strong evidence that PGRMC1 functions as a receptor for P4 in granulosa cells and that altered expression results in compromised reproductive capacity. Ongoing studies seek to define the components of the signal transduction cascade through which P4-activation of PGRMC1 results in the regulation of granulosa cell function. PMID:24516175

  10. Non-canonical progesterone signaling in granulosa cell function.

    PubMed

    Peluso, John J; Pru, James K

    2014-05-01

    It has been known for over 3 decades that progesterone (P4) suppresses follicle growth. It has been assumed that P4 acts directly on granulosa cells of developing follicles to slow their development, as P4 inhibits both mitosis and apoptosis of cultured granulosa cells. However, granulosa cells of developing follicles of mice, rats, monkeys, and humans do not express the A or B isoform of the classic nuclear receptor for P4 (PGR). By contrast, these granulosa cells express other P4 binding proteins, one of which is referred to as PGR membrane component 1 (PGRMC1). PGRMC1 specifically binds P4 with high affinity and mediates P4's anti-mitotic and anti-apoptotic action as evidenced by the lack of these P4-dependent effects in PGRMC1-depleted cells. In addition, mice in which PGRMC1 is conditionally depleted in granulosa cells show diminished follicle development. While the mechanism through which P4 activation of PGRMC1 affects granulosa cell function is not well defined, it appears that PGRMC1 controls granulosa cell function in part by regulating gene expression in T-cell-specific transcription factor/lymphoid enhancer factor-dependent manner. Clinically, altered PGRMC1 expression has been correlated with premature ovarian failure/insufficiency, polycystic ovarian syndrome, and infertility. These collective studies provide strong evidence that PGRMC1 functions as a receptor for P4 in granulosa cells and that altered expression results in compromised reproductive capacity. Ongoing studies seek to define the components of the signal transduction cascade through which P4 activation of PGRMC1 results in the regulation of granulosa cell function. PMID:24516175

  11. Nanotopographical Modulation of Cell Function through Nuclear Deformation

    PubMed Central

    Wang, Kai; Bruce, Allison; Mezan, Ryan; Kadiyala, Anand; Wang, Liying; Dawson, Jeremy; Rojanasakul, Yon; Yang, Yong

    2016-01-01

    Although nanotopography has been shown to be a potent modulator of cell behavior, it is unclear how the nanotopographical cue, through focal adhesions, affects the nucleus, eventually influencing cell phenotype and function. Thus, current methods to apply nanotopography to regulate cell behavior are basically empirical. We, herein, engineered nanotopographies of various shapes (gratings and pillars) and dimensions (feature size, spacing and height), and thoroughly investigated cell spreading, focal adhesion organization and nuclear deformation of human primary fibroblasts as the model cell grown on the nanotopographies. We examined the correlation between nuclear deformation and cell functions such as cell proliferation, transfection and extracellular matrix protein type I collagen production. It was found that the nanoscale gratings and pillars could facilitate focal adhesion elongation by providing anchoring sites, and the nanogratings could orient focal adhesions and nuclei along the nanograting direction, depending on not only the feature size but also the spacing of the nanogratings. Compared with continuous nanogratings, discrete nanopillars tended to disrupt the formation and growth of focal adhesions and thus had less profound effects on nuclear deformation. Notably, nuclear volume could be effectively modulated by the height of nanotopography. Further, we demonstrated that cell proliferation, transfection, and type I collagen production were strongly associated with the nuclear volume, indicating that the nucleus serves as a critical mechanosensor for cell regulation. Our study delineated the relationships between focal adhesions, nucleus and cell function and highlighted that the nanotopography could regulate cell phenotype and function by modulating nuclear deformation. This study provides insight into the rational design of nanotopography for new biomaterials and the cell–substrate interfaces of implants and medical devices. PMID:26844365

  12. Induction of Functional Hair-Cell-Like Cells from Mouse Cochlear Multipotent Cells

    PubMed Central

    Liu, Quanwen; Shen, Yi; Chen, Jiarong; Ding, Jie; Tang, Zihua; Zhang, Cui; Chen, Jianling; Li, Liang; Chen, Ping; Wang, Jinfu

    2016-01-01

    In this paper, we developed a two-step-induction method of generating functional hair cells from inner ear multipotent cells. Multipotent cells from the inner ear were established and induced initially into progenitor cells committed to the inner ear cell lineage on the poly-L-lysine substratum. Subsequently, the committed progenitor cells were cultured on the mitotically inactivated chicken utricle stromal cells and induced into hair-cell-like cells containing characteristic stereocilia bundles. The hair-cell-like cells exhibited rapid permeation of FM1-43FX. The whole-cell patch-clamp technique was used to measure the membrane currents of cells differentiated for 7 days on chicken utricle stromal cells and analyze the biophysical properties of the hair-cell-like cells by recording membrane properties of cells. The results suggested that the hair-cell-like cells derived from inner ear multipotent cells were functional following differentiation in an enabling environment. PMID:27057177

  13. Blood cells and endothelial barrier function.

    PubMed

    Rodrigues, Stephen F; Granger, D Neil

    2015-01-01

    The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction. PMID:25838983

  14. Blood cells and endothelial barrier function

    PubMed Central

    Rodrigues, Stephen F; Granger, D Neil

    2015-01-01

    Abstract The barrier properties of endothelial cells are critical for the maintenance of water and protein balance between the intravascular and extravascular compartments. An impairment of endothelial barrier function has been implicated in the genesis and/or progression of a variety of pathological conditions, including pulmonary edema, ischemic stroke, neurodegenerative disorders, angioedema, sepsis and cancer. The altered barrier function in these conditions is often linked to the release of soluble mediators from resident cells (e.g., mast cells, macrophages) and/or recruited blood cells. The interaction of the mediators with receptors expressed on the surface of endothelial cells diminishes barrier function either by altering the expression of adhesive proteins in the inter-endothelial junctions, by altering the organization of the cytoskeleton, or both. Reactive oxygen species (ROS), proteolytic enzymes (e.g., matrix metalloproteinase, elastase), oncostatin M, and VEGF are part of a long list of mediators that have been implicated in endothelial barrier failure. In this review, we address the role of blood borne cells, including, neutrophils, lymphocytes, monocytes, and platelets, in the regulation of endothelial barrier function in health and disease. Attention is also devoted to new targets for therapeutic intervention in disease states with morbidity and mortality related to endothelial barrier dysfunction. PMID:25838983

  15. Regulation of Dendritic Cell Function by Vitamin D

    PubMed Central

    Barragan, Myriam; Good, Misty; Kolls, Jay K.

    2015-01-01

    Studies over the last two decades have revealed profound immunomodulatory aspects of vitamin D on various aspects of the immune system. This review will provide an overview of Vitamin D metabolism, a description of dendritic cell subsets, and highlight recent advances on the effects of vitamin D on dendritic cell function, maturation, cytokine production and antigen presentation. The active form of vitamin D, 1,25(OH)2D3, has important immunoregulatory and anti-inflammatory effects. Specifically, the 1,25(OH)2D3-Vitamin D3 complex can affect the maturation and migration of many dendritic cell subsets, conferring a special immunoregulatory role as well as tolerogenic properties affecting cytokine and chemokine production. Furthermore, there have been many recent studies demonstrating the effects of Vitamin D on allergic disease and autoimmunity. A clear understanding of the effects of the various forms of Vitamin D will provide new opportunities to improve human health. PMID:26402698

  16. Predicting the accuracy of facial affect recognition: the interaction of child maltreatment and intellectual functioning.

    PubMed

    Shenk, Chad E; Putnam, Frank W; Noll, Jennie G

    2013-02-01

    Previous research demonstrates that both child maltreatment and intellectual performance contribute uniquely to the accurate identification of facial affect by children and adolescents. The purpose of this study was to extend this research by examining whether child maltreatment affects the accuracy of facial recognition differently at varying levels of intellectual functioning. A sample of maltreated (n=50) and nonmaltreated (n=56) adolescent females, 14 to 19 years of age, was recruited to participate in this study. Participants completed demographic and study-related questionnaires and interviews to control for potential psychological and psychiatric confounds such as symptoms of posttraumatic stress disorder, negative affect, and difficulties in emotion regulation. Participants also completed an experimental paradigm that recorded responses to facial affect displays starting in a neutral expression and changing into a full expression of one of six emotions: happiness, sadness, anger, disgust, fear, or surprise. Hierarchical multiple regression assessed the incremental advantage of evaluating the interaction between child maltreatment and intellectual functioning. Results indicated that the interaction term accounted for a significant amount of additional variance in the accurate identification of facial affect after controlling for relevant covariates and main effects. Specifically, maltreated females with lower levels of intellectual functioning were least accurate in identifying facial affect displays, whereas those with higher levels of intellectual functioning performed as well as nonmaltreated females. These results suggest that maltreatment and intellectual functioning interact to predict the recognition of facial affect, with potential long-term consequences for the interpersonal functioning of maltreated females. PMID:23036371

  17. CTLA-4 control over Foxp3+ regulatory T cell function.

    PubMed

    Wing, Kajsa; Onishi, Yasushi; Prieto-Martin, Paz; Yamaguchi, Tomoyuki; Miyara, Makoto; Fehervari, Zoltan; Nomura, Takashi; Sakaguchi, Shimon

    2008-10-10

    Naturally occurring Foxp3+CD4+ regulatory T cells (Tregs) are essential for maintaining immunological self-tolerance and immune homeostasis. Here, we show that a specific deficiency of cytotoxic T lymphocyte antigen 4 (CTLA-4) in Tregs results in spontaneous development of systemic lymphoproliferation, fatal T cell-mediated autoimmune disease, and hyperproduction of immunoglobulin E in mice, and it also produces potent tumor immunity. Treg-specific CTLA-4 deficiency impairs in vivo and in vitro suppressive function of Tregs-in particular, Treg-mediated down-regulation of CD80 and CD86 expression on dendritic cells. Thus, natural Tregs may critically require CTLA-4 to suppress immune responses by affecting the potency of antigen-presenting cells to activate other T cells. PMID:18845758

  18. Surface Functionalization for Protein and Cell Patterning

    NASA Astrophysics Data System (ADS)

    Colpo, Pascal; Ruiz, Ana; Ceriotti, Laura; Rossi, François

    The interaction of biological systems with synthetic material surfaces is an important issue for many biological applications such as implanted devices, tissue engineering, cell-based sensors and assays, and more generally biologic studies performed ex vivo. To ensure reliable outcomes, the main challenge resides in the ability to design and develop surfaces or artificial micro-environment that mimic 'natural environment' in interacting with biomolecules and cells without altering their function and phenotype. At this effect, microfabrication, surface chemistry and material science play a pivotal role in the design of advanced in-vitro systems for cell culture applications. In this chapter, we discuss and describe different techniques enabling the control of cell-surface interactions, including the description of some techniques for immobilization of ligands for controlling cell-surface interactions and some methodologies for the creation of well confined cell rich areas.

  19. Brefeldin A inhibits pestivirus release from infected cells, without affecting its assembly and infectivity

    SciTech Connect

    Macovei, Alina; Zitzmann, Nicole; Lazar, Catalin; Dwek, Raymond A.; Branza-Nichita, Norica . E-mail: nichita@biochim.ro

    2006-08-04

    The enveloped bovine viral diarrhea virus (BVDV) is a member of the Pestivirus genus within the Flaviviridae family. While considerable information has been gathered on virus entry into the host cell, genome structure and protein function, little is known about pestivirus morphogenesis and release from cells. Here, we analyzed the intracellular localization, N-glycan processing and secretion of BVDV using brefeldin A (BFA), which blocks protein export from the endoplasmic reticulum (ER) and causes disruption of the Golgi complex with subsequent fusion of its cis and medial cisternae with the ER. BFA treatment of infected cells resulted in complete inhibition of BVDV secretion and increased co-localization of the envelope glycoproteins with the cis-Golgi marker GM 130. Processing of the N-linked glycans was affected by BFA, however, virus assembly was not perturbed and intracellular virions were fully infectious, suggesting that trafficking beyond the cis-Golgi is not a prerequisite for pestivirus infectivity.

  20. Collecting duct intercalated cell function and regulation.

    PubMed

    Roy, Ankita; Al-bataineh, Mohammad M; Pastor-Soler, Núria M

    2015-02-01

    Intercalated cells are kidney tubule epithelial cells with important roles in the regulation of acid-base homeostasis. However, in recent years the understanding of the function of the intercalated cell has become greatly enhanced and has shaped a new model for how the distal segments of the kidney tubule integrate salt and water reabsorption, potassium homeostasis, and acid-base status. These cells appear in the late distal convoluted tubule or in the connecting segment, depending on the species. They are most abundant in the collecting duct, where they can be detected all the way from the cortex to the initial part of the inner medulla. Intercalated cells are interspersed among the more numerous segment-specific principal cells. There are three types of intercalated cells, each having distinct structures and expressing different ensembles of transport proteins that translate into very different functions in the processing of the urine. This review includes recent findings on how intercalated cells regulate their intracellular milieu and contribute to acid-base regulation and sodium, chloride, and potassium homeostasis, thus highlighting their potential role as targets for the treatment of hypertension. Their novel regulation by paracrine signals in the collecting duct is also discussed. Finally, this article addresses their role as part of the innate immune system of the kidney tubule. PMID:25632105

  1. Ethanol Affects the Development of Sensory Hair Cells in Larval Zebrafish (Danio rerio)

    PubMed Central

    Matsui, Jonathan I.

    2013-01-01

    Children born to mothers with substantial alcohol consumption during pregnancy can present a number of morphological, cognitive, and sensory abnormalities, including hearing deficits, collectively known as fetal alcohol syndrome (FAS). The goal of this study was to determine if the zebrafish lateral line could be used to study sensory hair cell abnormalities caused by exposure to ethanol during embryogenesis. Some lateral line sensory hair cells are present at 2 days post-fertilization (dpf) and are functional by 5 dpf. Zebrafish embryos were raised in fish water supplemented with varying concentrations of ethanol (0.75%–1.75% by volume) from 2 dpf through 5 dpf. Ethanol treatment during development resulted in many physical abnormalities characteristic of FAS in humans. Also, the number of sensory hair cells decreased as the concentration of ethanol increased in a dose-dependent manner. The dye FM 1-43FX was used to detect the presence of functional mechanotransduction channels. The percentage of FM 1-43-labeled hair cells decreased as the concentration of ethanol increased. Methanol treatment did not affect the development of hair cells. The cell cycle markers proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU) demonstrated that ethanol reduced the number of sensory hair cells, as a consequence of decreased cellular proliferation. There was also a significant increase in the rate of apoptosis, as determined by TUNEL-labeling, in neuromasts following ethanol treatment during larval development. Therefore, zebrafish are a useful animal model to study the effects of hair cell developmental disorders associated with FAS. PMID:24324841

  2. Functions of fascin in dendritic cells.

    PubMed

    Yamashiro, Shigeko

    2012-01-01

    Fascin-1 is an actin-bundling protein that shares no homology with other actin-bundling proteins. It is greatly induced upon maturation of dendritic cells (DCs). However, fascin-1 is not expressed in other primary blood cells, including macrophages and neutrophils, indicating a unique role of fascin-1 in the function of DCs upon maturation. An increasing body of evidence has shown that fascin-1 plays critical roles in maturation-associated DC functions, including dynamic assembly of veil-like membrane protrusions, disassembly of podosomes, migration to lymph nodes, and the assembly of the immunological synapse. Pathological analyses of fascin-1 expression revealed that fascin-1 is a useful marker of diseases of immune cells, including Langerhans cell histiocytosis and Hodgkin diseases. Furthermore, attempts have been made to explore the use of a fascin-1 promoter for DNA vaccination because it is strong and specific to DCs. PMID:22428853

  3. Prenatal and lactation nicotine exposure affects Sertoli cell and gonadotropin levels in rats.

    PubMed

    Paccola, C C; Miraglia, S M

    2016-02-01

    Nicotine is largely consumed in the world as a component of cigarettes. It can cross the placenta and reach the milk of smoking mothers. This drug induces apoptosis, affects sex hormone secretion, and leads to male infertility. To investigate the exposure to nicotine during the whole intrauterine and lactation phases in Sertoli cells, pregnant rats received nicotine (2 mg/kg per day) through osmotic minipumps. Male offsprings (30, 60, and 90 days old) had blood collected for hormonal analysis (FSH and LH) and their testes submitted for histophatological study, analysis of the frequency of the stages of seminiferous epithelium cycle, immunolabeling of apoptotic epithelial cells (TUNEL and Fas/FasL), analysis of the function and structure of Sertoli cells (respectively using transferrin and vimentin immunolabeling), and analysis of Sertoli-germ cell junctional molecule (β-catenin immunolabeling). The exposure to nicotine increased the FSH and LH plasmatic levels in adult rats. Although nicotine had not changed the number of apoptotic cells, neither in Fas nor FasL expression, it provoked an intense sloughing of epithelial cells and also altered the frequency of some stages of the seminiferous epithelium cycle. Transferrin and β-catenin expressions were not changed, but vimentin was significantly reduced in the early stages of the seminiferous cycle of the nicotine-exposed adult rats. Thus, we concluded that nicotine exposure during all gestational and lactation periods affects the structure of Sertoli cells by events causing intense germ cell sloughing observed in the tubular lumen and can compromise the fertility of the offspring. PMID:26556892

  4. Translocator Protein (TSPO) Affects Mitochondrial Fatty Acid Oxidation in Steroidogenic Cells.

    PubMed

    Tu, Lan N; Zhao, Amy H; Hussein, Mahmoud; Stocco, Douglas M; Selvaraj, Vimal

    2016-03-01

    Translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a highly conserved outer mitochondrial membrane protein present in specific subpopulations of cells within different tissues. In recent studies, the presumptive model depicting mammalian TSPO as a critical cholesterol transporter for steroidogenesis has been refuted by studies examining effects of Tspo gene deletion in vivo and in vitro, biochemical testing of TSPO cholesterol transport function, and specificity of TSPO-mediated pharmacological responses. Nevertheless, high TSPO expression in steroid-producing cells seemed to indicate an alternate function for this protein in steroidogenic mitochondria. To seek an explanation, we used CRISPR/Cas9-mediated TSPO knockout steroidogenic MA-10 Leydig cell (MA-10:TspoΔ/Δ) clones to examine changes to core mitochondrial functions resulting from TSPO deficiency. We observed that 1) MA-10:TspoΔ/Δ cells had a shift in substrate utilization for energy production from glucose to fatty acids with significantly higher mitochondrial fatty acid oxidation (FAO), and increased reactive oxygen species production; and 2) oxygen consumption rate, mitochondrial membrane potential, and proton leak were not different between MA-10:TspoΔ/Δ and MA-10:Tspo+/+ control cells. Consistent with this finding, TSPO-deficient adrenal glands from global TSPO knockout (Tspo(-/-)) mice also showed up-regulation of genes involved in FAO compared with the TSPO floxed (Tspo(fl/fl)) controls. These results demonstrate the first experimental evidence that TSPO can affect mitochondrial energy homeostasis through modulation of FAO, a function that appears to be consistent with high levels of TSPO expression observed in cell types active in lipid storage/metabolism. PMID:26741196

  5. Reactive oxygen species differentially affect T cell receptor-signaling pathways.

    PubMed

    Cemerski, Saso; Cantagrel, Alain; Van Meerwijk, Joost P M; Romagnoli, Paola

    2002-05-31

    Oxidative stress plays an important role in the induction of T lymphocyte hyporesponsiveness observed in several human pathologies including cancer, rheumatoid arthritis, leprosy, and AIDS. To investigate the molecular basis of oxidative stress-induced T cell hyporesponsiveness, we have developed an in vitro system in which T lymphocytes are rendered hyporesponsive by co-culture with oxygen radical-producing activated neutrophils. We have observed a direct correlation between the level of T cell hyporesponsiveness induced and the concentration of reactive oxygen species produced. Moreover, induction of T cell hyporesponsiveness is blocked by addition of N-acetyl cysteine, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, and catalase, confirming the critical role of oxidative stress in this system. The pattern of tyrosine-phosphorylated proteins was profoundly altered in hyporesponsive as compared with normal T cells. In hyporesponsive T cells, T cell receptor (TCR) ligation no longer induced phospholipase C-gamma1 activation and caused reduced Ca(2+) flux. In contrast, despite increased levels of ERK1/2 phosphorylation, TCR-dependent activation of mitogen-activated protein kinase ERK1/2 was unaltered in hyporesponsive T lymphocytes. A late TCR-signaling event such as caspase 3 activation was as well unaffected in hyporesponsive T lymphocytes. Our data indicate that TCR-signaling pathways are differentially affected by physiological levels of oxidative stress and would suggest that although "hyporesponsive" T cells have lost certain effector functions, they may have maintained or gained others. PMID:11916964

  6. Immunometabolism governs dendritic cell and macrophage function

    PubMed Central

    2016-01-01

    Recent studies on intracellular metabolism in dendritic cells (DCs) and macrophages provide new insights on the functioning of these critical controllers of innate and adaptive immunity. Both cell types undergo profound metabolic reprogramming in response to environmental cues, such as hypoxia or nutrient alterations, but importantly also in response to danger signals and cytokines. Metabolites such as succinate and citrate have a direct impact on the functioning of macrophages. Immunogenicity and tolerogenicity of DCs is also determined by anabolic and catabolic processes, respectively. These findings provide new prospects for therapeutic manipulation in inflammatory diseases and cancer. PMID:26694970

  7. Estrogens maintain skeletal muscle and satellite cell functions.

    PubMed

    Kitajima, Yuriko; Ono, Yusuke

    2016-06-01

    Estrogens have crucial roles in an extensive range of physiological functions regulating cellular proliferation and differentiation, development, homeostasis, and metabolism. Therefore, prolonged estrogen insufficiency influences various types of tissues expressing estrogen receptors (ERs). Although ERs are expressed in skeletal muscle and its stem cells, called satellite cells, how prolonged estrogen insufficiency affects their function remains unclear. In this study, we investigated the effect of estrogen reduction on muscle in young ovariectomized (OVX) female mice. We found that reduced estrogens resulted in muscle atrophy in a time-dependent manner. Muscle force generation was reduced in OVX mice. Interestingly, prolonged estrogen insufficiency shifted fiber types toward faster myosin heavy chain isoforms. The number of satellite cells per isolated myofiber was unchanged, while satellite cell expansion, differentiation, and self-renewal were all markedly impaired in OVX mice. Indeed, muscle regeneration was significantly compromised in OVX mice. Taken together, our results demonstrate that estrogens are essential for comprehensively maintaining muscle function with its insufficiency affecting muscle strength and regeneration in young female mice. PMID:27048232

  8. Alteration of POLDIP3 Splicing Associated with Loss of Function of TDP-43 in Tissues Affected with ALS

    PubMed Central

    Shiga, Atsushi; Ishihara, Tomohiko; Miyashita, Akinori; Kuwabara, Misaki; Kato, Taisuke; Watanabe, Norihiro; Yamahira, Akie; Kondo, Chigusa; Yokoseki, Akio; Takahashi, Masuhiro; Kuwano, Ryozo; Kakita, Akiyoshi; Nishizawa, Masatoyo; Takahashi, Hitoshi; Onodera, Osamu

    2012-01-01

    Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease caused by selective loss of motor neurons. In the ALS motor neurons, TAR DNA-binding protein of 43 kDa (TDP-43) is dislocated from the nucleus to cytoplasm and forms inclusions, suggesting that loss of a nuclear function of TDP-43 may underlie the pathogenesis of ALS. TDP-43 functions in RNA metabolism include regulation of transcription, mRNA stability, and alternative splicing of pre-mRNA. However, a function of TDP-43 in tissue affected with ALS has not been elucidated. We sought to identify the molecular indicators reflecting on a TDP-43 function. Using exon array analysis, we observed a remarkable alteration of splicing in the polymerase delta interacting protein 3 (POLDIP3) as a result of the depletion of TDP-43 expression in two types of cultured cells. In the cells treated with TDP-43 siRNA, wild-type POLDIP3 (variant-1) decreased and POLDIP3 lacking exon 3 (variant-2) increased. The RNA binding ability of TDP-43 was necessary for inclusion of POLDIP3 exon 3. Moreover, we found an increment of POLDIP3 variant-2 mRNA in motor cortex, spinal cord and spinal motor neurons collected by laser capture microdissection with ALS. Our results suggest a loss of TDP-43 function in tissues affected with ALS, supporting the hypothesis that a loss of function of TDP-43 underlies the pathogenesis of ALS. PMID:22900096

  9. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis.

    PubMed

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  10. Accumulation of distinct prelamin A variants in human diploid fibroblasts differentially affects cell homeostasis

    SciTech Connect

    Candelario, Jose; Borrego, Stacey; Reddy, Sita; Comai, Lucio

    2011-02-01

    Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies. The mechanisms by which mutations in lamin A affect cell function and cause disease are unclear. Interestingly, recent studies have suggested that alterations in the normal lamin A pathway can contribute to cellular dysfunction. Specifically, we and others have shown, at the cellular level, that in the absence of mutations or altered splicing events, increased expression of wild-type prelamin A results in a growth defective phenotype that resembles that of cells expressing the mutant form of lamin A, termed progerin, associated with Hutchinson-Gilford Progeria syndrome (HGPS). Remarkably, the phenotypes of cells expressing elevated levels of wild-type prelamin A can be reversed by either treatment with farnesyltransferase inhibitors or overexpression of ZMPSTE24, a critical prelamin A processing enzyme, suggesting that minor increases in the steady-state levels of one or more prelamin A intermediates is sufficient to induce cellular toxicity. Here, to investigate the molecular basis of the lamin A pathway toxicity, we characterized the phenotypic changes occurring in cells expressing distinct prelamin A variants mimicking specific prelamin A processing intermediates. This analysis demonstrates that distinct prelamin A variants differentially affect cell growth, nuclear membrane morphology, nuclear distribution of lamin A and the fundamental process of transcription. Expression of prelamin A variants that are constitutively farnesylated induced the formation of lamin A aggregates and dramatic changes in nuclear membrane morphology, which led to reduced

  11. Diesel-Enriched Particulate Matter Functionally Activates Human Dendritic Cells

    PubMed Central

    Porter, Michael; Karp, Matthew; Killedar, Smruti; Bauer, Stephen M.; Guo, Jia; Williams, D'Ann; Breysse, Patrick; Georas, Steve N.; Williams, Marc A.

    2007-01-01

    Epidemiologic studies have associated exposure to airborne particulate matter (PM) with exacerbations of asthma. It is unknown how different sources of PM affect innate immunity. We sought to determine how car- and diesel exhaust–derived PM affects dendritic cell (DC) activation. DC development was modeled using CD34+ hematopoietic progenitors. Airborne PM was collected from exhaust plenums of Fort McHenry Tunnel providing car-enriched particles (CEP) and diesel-enriched particles (DEP). DC were stimulated for 48 hours with CEP, DEP, CD40-ligand, or lipopolysaccharide. DC activation was assessed by flow cytometry, enzyme-linked immunosorbent assay, and standard culture techniques. DEP increased uptake of fluorescein isothiocyanate–dextran (a model antigen) by DC. Diesel particles enhanced cell-surface expression of co-stimulatory molecules (e.g., CD40 [P < 0.01] and MHC class II [P < 0.01]). By contrast, CEP poorly affected antigen uptake and expression of cell surface molecules, and did not greatly affect cytokine secretion by DC. However, DEP increased production of TNF, IL-6, and IFN-γ (P < 0.01), IL-12 (P < 0.05), and vascular endothelial growth factor (P < 0.001). In co-stimulation assays of PM-exposed DC and alloreactive CD4+ T cells, both CEP and DEP directed a Th2-like pattern of cytokine production (e.g., enhanced IL-13 and IL-18 and suppressed IFN-γ production). CD4+ T cells were not functionally activated on exposure to either DEP or CEP. Car- and diesel-enriched particles exert a differential effect on DC activation. Our data support the hypothesis that DEP (and to a lesser extent CEP) regulate important functional aspects of human DC, supporting an adjuvant role for this material. PMID:17630318

  12. Human Immunodeficiency Syndromes Affecting Human Natural Killer Cell Cytolytic Activity

    PubMed Central

    Ham, Hyoungjun; Billadeau, Daniel D.

    2013-01-01

    Natural killer (NK) cells are lymphocytes of the innate immune system that secrete cytokines upon activation and mediate the killing of tumor cells and virus-infected cells, especially those that escape the adaptive T cell response caused by the down regulation of MHC-I. The induction of cytotoxicity requires that NK cells contact target cells through adhesion receptors, and initiate activation signaling leading to increased adhesion and accumulation of F-actin at the NK cell cytotoxic synapse. Concurrently, lytic granules undergo minus-end directed movement and accumulate at the microtubule-organizing center through the interaction with microtubule motor proteins, followed by polarization of the lethal cargo toward the target cell. Ultimately, myosin-dependent movement of the lytic granules toward the NK cell plasma membrane through F-actin channels, along with soluble N-ethylmaleimide-sensitive factor attachment protein receptor-dependent fusion, promotes the release of the lytic granule contents into the cleft between the NK cell and target cell resulting in target cell killing. Herein, we will discuss several disease-causing mutations in primary immunodeficiency syndromes and how they impact NK cell-mediated killing by disrupting distinct steps of this tightly regulated process. PMID:24478771

  13. A Novel Selectable Islet 1 Positive Progenitor Cell Reprogrammed to Expandable and Functional Smooth Muscle Cells.

    PubMed

    Turner, Elizabeth C; Huang, Chien-Ling; Sawhney, Neha; Govindarajan, Kalaimathi; Clover, Anthony J P; Martin, Kenneth; Browne, Tara C; Whelan, Derek; Kumar, Arun H S; Mackrill, John J; Wang, Shaohua; Schmeckpeper, Jeffrey; Stocca, Alessia; Pierce, William G; Leblond, Anne-Laure; Cai, Liquan; O'Sullivan, Donnchadh M; Buneker, Chirlei K; Choi, Janet; MacSharry, John; Ikeda, Yasuhiro; Russell, Stephen J; Caplice, Noel M

    2016-05-01

    Disorders affecting smooth muscle structure/function may require technologies that can generate large scale, differentiated and contractile smooth muscle cells (SMC) suitable for cell therapy. To date no clonal precursor population that provides large numbers of differentiated SMC in culture has been identified in a rodent. Identification of such cells may also enhance insight into progenitor cell fate decisions and the relationship between smooth muscle precursors and disease states that implicate differentiated SMC.  In this study, we used classic clonal expansion techniques to identify novel self-renewing Islet 1 (Isl-1) positive primitive progenitor cells (PPC) within rat bone marrow that exhibited canonical stem cell markers and preferential differentiation towards a smooth muscle-like fate. We subsequently used molecular tagging to select Isl-1 positive clonal populations from expanded and de novo marrow cell populations. We refer to these previously undescribed cells as the PPC given its stem cell marker profile, and robust self-renewal capacity. PPC could be directly converted into induced smooth muscle cells (iSMC) using single transcription factor (Kruppel-like factor 4) knockdown or transactivator (myocardin) overexpression in contrast to three control cells (HEK 293, endothelial cells and mesenchymal stem cells) where such induction was not possible. iSMC exhibited immuno- and cytoskeletal-phenotype, calcium signaling profile and contractile responses similar to bona fide SMC. Passaged iSMC could be expanded to a scale sufficient for large scale tissue replacement.  PPC and reprogramed iSMC so derived may offer future opportunities to investigate molecular, structure/function and cell-based replacement therapy approaches to diverse cardiovascular, respiratory, gastrointestinal, and genitourinary diseases that have as their basis smooth muscle cell functional aberrancy or numerical loss. Stem Cells 2016;34:1354-1368. PMID:26840832

  14. Thought waves remotely affect the performance (output voltage) of photoelectric cells

    NASA Astrophysics Data System (ADS)

    Cao, Dayong; Cao, Daqing

    2012-02-01

    In our experiments, thought waves have been shown to be capable of changing (affecting) the output voltage of photovoltaic cells located from as far away as 1-3 meters. There are no wires between brain and photoelectric cell and so it is presumed only the thought waves act on the photoelectric cell. In continual rotations, the experiments tested different solar cells, measuring devices and lamps, and the experiments were done in different labs. The first experiment was conducted on Oct 2002. Tests are ongoing. Conclusions and assumptions include: 1) the slow thought wave has the energy of space-time as defined by C1.00007: The mass, energy, space and time systemic theory- MEST. Every process releases a field effect electrical vibration which be transmitted and focussed in particular paths; 2) the thought wave has the information of the order of tester; 3) the brain (with the physical system of MEST) and consciousness (with the spirit system of the mind, consciousness, emotion and desire-MECD) can produce the information (a part of them as the Genetic code); 4) through some algorithms such as ACO Ant Colony Optimization and EA Evolutionary Algorithm (or genetic algorithm) working in RAM, human can optimize the information. This Optimizational function is the intelligence; 5) In our experiments, not only can thought waves affect the voltage of the output photoelectric signals by its energy, but they can also selectively increase or decrease those photoelectric currents through remote consciousness interface and a conscious-brain information technology.

  15. Autologous Stem Cell Therapy: How Aging and Chronic Diseases Affect Stem and Progenitor Cells

    PubMed Central

    Efimenko, Anastasia Yu.; Kochegura, Tatiana N.; Akopyan, Zhanna A.; Parfyonova, Yelena V.

    2015-01-01

    Abstract During recent years different types of adult stem/progenitor cells have been successfully applied for the treatment of many pathologies, including cardiovascular diseases. The regenerative potential of these cells is considered to be due to their high proliferation and differentiation capacities, paracrine activity, and immunologic privilege. However, therapeutic efficacy of the autologous stem/progenitor cells for most clinical applications remains modest, possibly because of the attenuation of their regenerative potential in aged patients with chronic diseases such as cardiovascular diseases and metabolic disorders. In this review we will discuss the risk factors affecting the therapeutic potential of adult stem/progenitor cells as well as the main approaches to mitigating them using the methods of regenerative medicine. PMID:26309780

  16. Positive Affect in the Midst of Distress: Implications for Role Functioning

    PubMed Central

    Moskowitz, Judith Tedlie; Shmueli-Blumberg, Dikla; Acree, Michael; Folkman, Susan

    2012-01-01

    Stress has been shown to deplete the self-regulation resources hypothesized to facilitate effective role functioning. However, recent research suggests that positive affect may help to replenish these vital self-regulation resources. Based on revised Stress and Coping theory and the Broaden-and-Build theory of positive emotion, three studies provide evidence of the potential adaptive function of positive affect in the performance of roles for participants experiencing stress. Participants were students (Study 1), caregivers of ill children (Study 2), and individuals recently diagnosed with HIV (Study 3). In cross sectional analyses, using role functioning as an indicator of self-regulation performance, we found that positive affect was significantly correlated with better self regulation performance, independent of the effects of negative affect. The effects were not as strong longitudinally, however, and there was little evidence of a reciprocal association between increases in positive affect and improvements in role functioning over time. The results provide some modest support for hypotheses stemming from the Broaden and Build model of positive emotion and revised Stress and Coping theory, both of which argue for unique adaptive functions of positive affect under stressful conditions. PMID:23175617

  17. Cellular functions of programmed cell death 5.

    PubMed

    Li, Ge; Ma, Dalong; Chen, Yingyu

    2016-04-01

    Programmed cell death 5 (PDCD5) was originally identified as an apoptosis-accelerating protein that is widely expressed and has been well conserved during the process of evolution. PDCD5 has complex biological functions, including programmed cell death and immune regulation. It can accelerate apoptosis in different type of cells in response to different stimuli. During this process, PDCD5 rapidly translocates from the cytoplasm to the nucleus. PDCD5 regulates the activities of TIP60, HDAC3, MDM2 and TP53 transcription factors. These proteins form part of a signaling network that is disrupted in most, if not all, cancer cells. Recent evidence suggests that PDCD5 participates in immune regulation by promoting regulatory T cell function via the PDCD5-TIP60-FOXP3 pathway. The stability and expression of PDCD5 are finely regulated by other molecules, such as NF-κB p65, OTUD5, YAF2 and DNAJB1. PDCD5 is phosphorylated by CK2 at Ser119, which is required for nuclear translocation in response to genotoxic stress. In this review, we describe what is known about PDCD5 and its cellular functions. PMID:26775586

  18. 5-ASA Affects Cell Cycle Progression in Colorectal Cells by Reversibly Activating a Replication Checkpoint

    PubMed Central

    LUCIANI, M. GLORIA; CAMPREGHER, CHRISTOPH; FORTUNE, JOHN M.; KUNKEL, THOMAS A.; GASCHE, CHRISTOPH

    2007-01-01

    Background & Aims Individuals with inflammatory bowel disease are at risk of developing colorectal cancer (CRC). Epidemiologic, animal, and laboratory studies suggest that 5-amino-salicylic acid (5-ASA) protects from the development of CRC by altering cell cycle progression and by inducing apoptosis. Our previous results indicate that 5-ASA improves replication fidelity in colorectal cells, an effect that is active in reducing mutations. In this study, we hypothesized that 5-ASA restrains cell cycle progression by activating checkpoint pathways in colorectal cell lines, which would prevent tumor development and improve genomic stability. Methods CRC cells with different genetic backgrounds such as HT29, HCT116, HCT116p53−/−, HCT116+chr3, and LoVo were treated with 5-ASA for 2–96 hours. Cell cycle progression, phosphorylation, and DNA binding of cell cycle checkpoint proteins were analyzed. Results We found that 5-ASA at concentrations between 10 and 40 mmol/L affects cell cycle progression by inducing cells to accumulate in the S phase. This effect was independent of the hMLH1, hMSH2, and p53 status because it was observed to a similar extent in all cell lines under investigation. Moreover, wash-out experiments demonstrated reversibility within 48 hours. Although p53 did not have a causative role, p53 Ser15 was strongly phosphorylated. Proteins involved in the ATM-and-Rad3-related kinase (ATR)-dependent S-phase checkpoint response (Chk1 and Rad17) were also phosphorylated but not ataxia telengectasia mutated kinase. Conclusions Our data demonstrate that 5-ASA causes cells to reversibly accumulate in S phase and activate an ATR-dependent checkpoint. The activation of replication checkpoint may slow down DNA replication and improve DNA replication fidelity, which increases the maintenance of genomic stability and counteracts carcinogenesis. PMID:17241873

  19. 3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.

    PubMed

    Valenti, Daniela; Vacca, Rosa A; de Bari, Lidia

    2015-12-01

    3-bromopyruvate (3-BP) is an anti-tumour drug effective on hepatocellular carcinoma and other tumour cell types, which affects both glycolytic and mitochondrial targets, depleting cellular ATP pool. Here we tested 3-BP on human prostate cancer cells showing, differently from other tumour types, efficient ATP production and functional mitochondrial metabolism. We found that 3-BP rapidly induced cultured androgen-insensitive (PC-3) and androgen-responsive (LNCaP) prostate cancer cell death at low concentrations (IC(50) values of 50 and 70 μM, respectively) with a multimodal mechanism of action. In particular, 3-BP-treated PC-3 cells showed a selective, strong reduction of glyceraldeide 3-phosphate dehydrogenase activity, due to the direct interaction of the drug with the enzyme. Moreover, 3-BP strongly impaired both glutamate/malate- and succinate-dependent mitochondrial respiration, membrane potential generation and ATP synthesis, concomitant with the inhibition of respiratory chain complex I, II and ATP synthase activities. The drastic reduction of cellular ATP levels and depletion of GSH pool, associated with significant increase in cell oxidative stress, were found after 3-BP treatment of PC-3 cells. Interestingly, the activity of both glyoxalase I and II, devoted to the elimination of the cytotoxic methylglyoxal, was strongly inhibited by 3-BP. Both N-acetylcysteine and aminoguanidine, GSH precursor and methylglyoxal scavenger, respectively, prevented 3-BP-induced PC-3 cell death, showing that impaired cell antioxidant and detoxifying capacities are crucial events leading to cell death. The provided information on the multi-target cytotoxic action of 3-BP, finally leading to PC-3 cell necrosis, might be useful for future development of 3-BP as a therapeutic option for prostate cancer treatment. PMID:26530987

  20. Structure and function of sinusoidal lining cells in the liver.

    PubMed

    Wisse, E; Braet, F; Luo, D; De Zanger, R; Jans, D; Crabbé, E; Vermoesen, A

    1996-01-01

    The hepatic sinusoid harbors 4 different cells: endothelial cells (100, 101), Kupffer cells (96, 102, 103), fat-storing cells (34, 51, 93), and pit cells (14, 107, 108). Each cell type has its own specific morphology and functions, and no transitional stages exist between the cells. These cells have the potential to proliferate locally, either in normal or in special conditions, that is, experiments or disease. Sinusoidal cells from a functional unit together with the parenchymal cells. Isolation protocols exist for all sinusoidal cells. Endothelial cells filter the fluids, exchanged between the sinusoid and the space of Disse through fenestrae (100), which measure 175 nm in diameter and are grouped in sieve plates. Fenestrae occupy 6-8% of the surface (106). No intact basal lamina is present under these cells (100). Various factors change the number and diameter of fenestrae [pressure, alcohol, serotonin, and nicotin; for a review, see Fraser et al (32)]. These changes mainly affect the passage of lipoproteins, which contain cholesterol and vitamin A among other components. Fat-storing cells are pericytes, located in the space of Disse, with long, contractile processes, which probably influence liver (sinusoidal) blood flow. Fat-storing cells possess characteristic fat droplets, which contain a large part of the body's depot of vitamin A (91, 93). These cells play a major role in the synthesis of extracellular matrix (ECM) (34, 39-41). Strongly reduced levels of vitamin A occur in alcoholic livers developing fibrosis (56). Vitamin A deficiency transforms fat-storing cells into myofibroblast-like cells with enhanced ECM production (38). Kupffer cells accumulate in periportal areas. They specifically endocytose endotoxin (70), which activates these macrophages. Lipopolysaccharide, together with interferon gamma, belongs to the most potent activators of Kupffer cells (28). As a result of activation, these cells secrete oxygen radicals, tumor necrosis factor

  1. Kindlin-1 and -2 Have Overlapping Functions in Epithelial Cells

    PubMed Central

    He, Yinghong; Esser, Philipp; Heinemann, Anja; Bruckner-Tuderman, Leena; Has, Cristina

    2011-01-01

    Kindlins are a novel family of intracellular adaptor proteins in integrin-containing focal adhesions. Kindlin-1 and -2 are expressed in the skin, but whether and how they cooperate in adult epithelial cells have remained elusive. We uncovered the overlapping roles of kindlin-1 and -2 in maintaining epithelial integrity and show that the phenotype of kindlin-1-deficient cells can be modulated by regulating kindlin-2 gene expression and vice versa. The experimental evidence is provided by use of human keratinocyte cell lines that express both kindlins, just kindlin-1 or kindlin-2, or none of them. Double deficiency of kindlin-1 and -2 had significant negative effects on focal adhesion formation and actin cytoskeleton organization, cell adhesion, survival, directional migration, and activation of β1 integrin, whereas deficiency of one kindlin only showed variable perturbation of these functions. Cell motility and formation of cell-cell contacts were particularly affected by lack of kindlin-2. These results predict that kindlin-1 and -2 can functionally compensate for each other, at least in part. The high physiologic and pathologic significance of the compensation was emphasized by the discovery of environmental regulation of kindlin-2 expression. UV-B irradiation induced loss of kindlin-2 in keratinocytes. This first example of environmental regulation of kindlin expression has implications for phenotype modulation in Kindler syndrome, a skin disorder caused by kindlin-1 deficiency. PMID:21356350

  2. Multi-walled carbon nanotubes affect drug transport across cell membrane in rat astrocytes

    NASA Astrophysics Data System (ADS)

    Chen, Xiao; Schluesener, Hermann J.

    2010-03-01

    The impact of carbon nanotubes on the cell membrane is an aspect of particular importance and interest in the study of carbon nanotubes' interactions with living systems. One of the many functions of the cell membrane is to execute substance transport into and out of the cell. We investigated the influence of multi-walled carbon nanotubes (MWCNTs) on the transport of several compounds across in the cell membrane of rat astrocytes using flow cytometry. These compounds are fluorescein diacetate, carboxyfluorescein diacetate, rhodamine 123 and doxorubicin, which are prosubstrate/substrates of multidrug transporter proteins. Results showed that MWCNTs significantly inhibited cellular uptake of doxorubicin but not the other drugs and the mode of loading made a significant difference in doxorubicin uptake. Retention of fluorescein, carboxyfluorescein and rhodamine 123 was remarkably higher in MWCNT-exposed cells after an efflux period. A kinetics study also demonstrated slower efflux of intracellular fluorescein and rhodamine 123. Data presented in this paper suggest that MWCNTs could affect drug transport across cell membranes. The implications of the findings are discussed.

  3. Mechanistic adaptability of cancer cells strongly affects anti-migratory drug efficacy

    PubMed Central

    Sun, Wei; Lim, Chwee Teck; Kurniawan, Nicholas Agung

    2014-01-01

    Cancer metastasis involves the dissemination of cancer cells from the primary tumour site and is responsible for the majority of solid tumour-related mortality. Screening of anti-metastasis drugs often includes functional assays that examine cancer cell invasion inside a three-dimensional hydrogel that mimics the extracellular matrix (ECM). Here, we built a mechanically tuneable collagen hydrogel model to recapitulate cancer spreading into heterogeneous tumour stroma and monitored the three-dimensional invasion of highly malignant breast cancer cells, MDA-MB-231. Migration assays were carried out in the presence and the absence of drugs affecting four typical molecular mechanisms involved in cell migration, as well as under five ECMs with different biophysical properties. Strikingly, the effects of the drugs were observed to vary strongly with matrix mechanics and microarchitecture, despite the little dependence of the inherent cancer cell migration on the ECM condition. Specifically, cytoskeletal contractility-targeting drugs reduced migration speed in sparse gels, whereas migration in dense gels was retarded effectively by inhibiting proteolysis. The results corroborate the ability of cancer cells to switch their multiple invasion mechanisms depending on ECM condition, thus suggesting the importance of factoring in the biophysical properties of the ECM in anti-metastasis drug screenings. PMID:25100319

  4. Umbilical Cord Mesenchymal Stromal Cells Affected by Gestational Diabetes Mellitus Display Premature Aging and Mitochondrial Dysfunction

    PubMed Central

    Kim, Jooyeon; Piao, Ying; Pak, Youngmi Kim; Chung, Dalhee; Han, Yu Mi; Hong, Joon Seok; Jun, Eun Jeong; Shim, Jae-Yoon

    2015-01-01

    Human umbilical cord mesenchymal stromal cells (hUC-MSCs) of Wharton's jelly origin undergo adipogenic, osteogenic, and chondrogenic differentiation in vitro. Recent studies have consistently shown their therapeutic potential in various human disease models. However, the biological effects of major pregnancy complications on the cellular properties of hUC-MSCs remain to be studied. In this study, we compared the basic properties of hUC-MSCs obtained from gestational diabetes mellitus (GDM) patients (GDM-UC-MSCs) and normal pregnant women (N-UC-MSCs). Assessments of cumulative cell growth, MSC marker expression, cellular senescence, and mitochondrial function-related gene expression were performed using a cell count assay, senescence-associated β-galactosidase staining, quantitative real-time reverse transcription–polymerase chain reaction, immunoblotting, and cell-based mitochondrial functional assay system. When compared with N-UC-MSCs, GDM-UC-MSCs showed decreased cell growth and earlier cellular senescence with accumulation of p16 and p53, even though they expressed similar levels of CD105, CD90, and CD73 MSC marker proteins. GDM-UC-MSCs also displayed significantly lower osteogenic and adipogenic differentiation potentials than N-UC-MSCs. Furthermore, GDM-UC-MSCs exhibited a low mitochondrial activity and significantly reduced expression of the mitochondrial function regulatory genes ND2, ND9, COX1, PGC-1α, and TFAM. Here, we report intriguing and novel evidence that maternal metabolic derangement during gestation affects the biological properties of fetal cells, which may be a component of fetal programming. Our findings also underscore the importance of the critical assessment of the biological impact of maternal–fetal conditions in biological studies and clinical applications of hUC-MSCs. PMID:25437179

  5. Functional substrates for flexible organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Niggemann, M.; Ruf, D.; Bläsi, B.; Glatthaar, M.; Riede, M.; Müller, C.; Zimmermann, B.; Gombert, A.

    2005-10-01

    Along with efficiency and lifetime, costs are one of the most important aspects for the commercialization of organic solar cells. Thinking of large scale production of organic solar cells by an efficient reel-to-reel process, the materials are expected to determine the costs of the final product. Our approach is to develop functional substrates for organic solar cells which have the potential for cost effective production. The functionality is obtained by combining periodically microstructured substrates with lamellar electrode structures. Such structured substrates were fabricated by cost effective replication from masterstructures that were generated by large area interference lithography. Two cell architectures were investigated - holographic microprisms and interdigital buried nanoelectrodes. A structure period of 20 μm in combination with a 2 μm wide metal grid was chosen for the microprism cells based on the results of electrical calculations. Current-voltage curves with reasonable fill factors were measured for these devices. A significant light trapping effect was predicted from optical simulations. Interdigital buried nanoelectrodes are embedded in the photoactive layer of the solar cell. Separated interdigital metal electrodes with a sufficiently high parallel resistance were manufactured despite a small electrode distance below 400 nm. Experimental results on first photovoltaic devices will be presented. We observe an insufficient rectification of the photovoltaic device which we attribute to partial electron injection into the gold anode.

  6. B-1 Cell Development and Function

    PubMed Central

    Davis, Randall S

    2015-01-01

    Coelomic cavity–derived B-1 and splenic marginal zone (MZ) B lymphocytes play principal roles in frontline host protection at homeostasis and during primary humoral immune responses. Although they share many features that enable rapid and broad-based defense against pathogens, these innate-like subsets have disparate B cell receptor (BCR) signaling features. Members of the Fc receptor–like (FCRL) family are preferentially expressed by B cells and possess tyrosine-based immunoregulatory function. An unusual characteristic of many of these cell surface proteins is the presence of both inhibitory (ITIM) and activating (ITAM-like) motifs in their cytoplasmic tails. In mice, FCRL5 is a discrete marker of splenic MZ and peritoneal B-1 B cells and has both ITIM and ITAM-like sequences. Recent work explored its signaling properties and identified that FCRL5 differentially influences innate-like BCR function. Closer scrutiny of these differences disclosed the ability of FCRL5 to counter-regulate BCR activation by recruiting SHP-1 and Lyn to its cytoplasmic motifs. Furthermore, the disparity in FCRL5 regulation between MZ and B-1 B cells correlated with relative intracellular concentrations of SHP-1. These findings validate and extend our understanding of the unique signaling features in innate-like B cells and provide new insight into the complexity of FCRL modulation. PMID:25964091

  7. Islet-1 Is Essential for Pancreatic β-Cell Function

    PubMed Central

    Ediger, Benjamin N.; Du, Aiping; Liu, Jingxuan; Hunter, Chad S.; Walp, Erik R.; Schug, Jonathan; Kaestner, Klaus H.; Stein, Roland

    2014-01-01

    Islet-1 (Isl-1) is essential for the survival and ensuing differentiation of pancreatic endocrine progenitors. Isl-1 remains expressed in all adult pancreatic endocrine lineages; however, its specific function in the postnatal pancreas is unclear. Here we determine whether Isl-1 plays a distinct role in the postnatal β-cell by performing physiological and morphometric analyses of a tamoxifen-inducible, β-cell–specific Isl-1 loss-of-function mouse: Isl-1L/L; Pdx1-CreERTm. Ablating Isl-1 in postnatal β-cells reduced glucose tolerance without significantly reducing β-cell mass or increasing β-cell apoptosis. Rather, islets from Isl-1L/L; Pdx1-CreERTm mice showed impaired insulin secretion. To identify direct targets of Isl-1, we integrated high-throughput gene expression and Isl-1 chromatin occupancy using islets from Isl-1L/L; Pdx1-CreERTm mice and βTC3 insulinoma cells, respectively. Ablating Isl-1 significantly affected the β-cell transcriptome, including known targets Insulin and MafA as well as novel targets Pdx1 and Slc2a2. Using chromatin immunoprecipitation sequencing and luciferase reporter assays, we found that Isl-1 directly occupies functional regulatory elements of Pdx1 and Slc2a2. Thus Isl-1 is essential for postnatal β-cell function, directly regulates Pdx1 and Slc2a2, and has a mature β-cell cistrome distinct from that of pancreatic endocrine progenitors. PMID:25028525

  8. How does metabolism affect cell death in cancer?

    PubMed

    Villa, Elodie; Ricci, Jean-Ehrland

    2016-07-01

    In cancer research, identifying a specificity of tumor cells compared with 'normal' proliferating cells for targeted therapy is often considered the Holy Grail for researchers and clinicians. Although diverse in origin, most cancer cells share characteristics including the ability to escape cell death mechanisms and the utilization of different methods of energy production. In the current paradigm, aerobic glycolysis is considered the central metabolic characteristic of cancer cells (Warburg effect). However, recent data indicate that cancer cells also show significant changes in other metabolic pathways. Indeed, it was recently suggested that Kreb's cycle, pentose phosphate pathway intermediates, and essential and nonessential amino acids have key roles. Renewed interest in the fact that cancer cells have to reprogram their metabolism in order to proliferate or resist treatment must take into consideration the ability of tumor cells to adapt their metabolism to the local microenvironment (low oxygen, low nutrients). This variety of metabolic sources might be either a strength, resulting in infinite possibilities for adaptation and increased ability to resist chemotherapy-induced death, or a weakness that could be targeted to kill cancer cells. Here, we discuss recent insights showing how energetic metabolism may regulate cell death and how this might be relevant for cancer treatment. PMID:26498911

  9. Stem cell origin differently affects bone tissue engineering strategies

    PubMed Central

    Mattioli-Belmonte, Monica; Teti, Gabriella; Salvatore, Viviana; Focaroli, Stefano; Orciani, Monia; Dicarlo, Manuela; Fini, Milena; Orsini, Giovanna; Di Primio, Roberto; Falconi, Mirella

    2015-01-01

    Bone tissue engineering approaches are encouraging for the improvement of conventional bone grafting technique drawbacks. Thanks to their self-renewal and multi-lineage differentiation ability, stem cells are one of the major actors in tissue engineering approaches, and among these adult mesenchymal stem cells (MSCs) hold a great promise for regenerative medicine strategies. Bone marrow MSCs (BM-MSCs) are the first- identified and well-recognized stem cell population used in bone tissue engineering. Nevertheless, several factors hamper BM-MSC clinical application and subsequently, new stem cell sources have been investigated for these purposes. The fruitful selection and combination of tissue engineered scaffold, progenitor cells, and physiologic signaling molecules allowed the surgeon to reconstruct the missing natural tissue. On the basis of these considerations, we analyzed the capability of two different scaffolds, planned for osteochondral tissue regeneration, to modulate differentiation of adult stem cells of dissimilar local sources (i.e., periodontal ligament, maxillary periosteum) as well as adipose-derived stem cells (ASCs), in view of possible craniofacial tissue engineering strategies. We demonstrated that cells are differently committed toward the osteoblastic phenotype and therefore, taking into account their specific features, they could be intriguing cell sources in different stem cell-based bone/periodontal tissue regeneration approaches. PMID:26441682

  10. PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice

    PubMed Central

    Iglesias, José; Barg, Sebastian; Vallois, David; Lahiri, Shawon; Roger, Catherine; Yessoufou, Akadiri; Pradevand, Sylvain; McDonald, Angela; Bonal, Claire; Reimann, Frank; Gribble, Fiona; Debril, Marie-Bernard; Metzger, Daniel; Chambon, Pierre; Herrera, Pedro; Rutter, Guy A.; Prentki, Marc; Thorens, Bernard; Wahli, Walter

    2012-01-01

    PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action. PMID:23093780

  11. Regulation of Dendritic Cell Function in Inflammation

    PubMed Central

    Said, André; Weindl, Günther

    2015-01-01

    Dendritic cells (DC) are professional antigen presenting cells and link the innate and adaptive immune system. During steady state immune surveillance in skin, DC act as sentinels against commensals and invading pathogens. Under pathological skin conditions, inflammatory cytokines, secreted by surrounding keratinocytes, dermal fibroblasts, and immune cells, influence the activation and maturation of different DC populations including Langerhans cells (LC) and dermal DC. In this review we address critical differences in human DC subtypes during inflammatory settings compared to steady state. We also highlight the functional characteristics of human DC subsets in inflammatory skin environments and skin diseases including psoriasis and atopic dermatitis. Understanding the complex immunoregulatory role of distinct DC subsets in inflamed human skin will be a key element in developing novel strategies in anti-inflammatory therapy. PMID:26229971

  12. Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo

    PubMed Central

    Onjiko, Rosemary M.; Moody, Sally A.; Nemes, Peter

    2015-01-01

    Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo. PMID:25941375

  13. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    PubMed Central

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung-Jui

    2015-01-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  14. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus.

    PubMed

    Swamy, Prashant S; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E; Zhu, Yingying; Peter, Gary F; Hahn, Michael G; Mansfield, Shawn D; Harding, Scott A; Tsai, Chung-Jui

    2015-10-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  15. Harvesting Technique Affects Adipose-Derived Stem Cell Yield

    PubMed Central

    Iyyanki, Tejaswi; Hubenak, Justin; Liu, Jun; Chang, Edward I.; Beahm, Elisabeth K.; Zhang, Qixu

    2015-01-01

    Background The success of an autologous fat graft depends in part on its total stromal vascular fraction (SVF) and adipose-derived stem cells (ASCs). However, variations in the yields of ASCs and SVF cells as a result of different harvesting techniques and donor sites are poorly understood. Objective To investigate the effects of adipose tissue harvesting technique and donor site on the yield of ASCs and SVF cells. Methods Subcutaneous fat tissues from the abdomen, flank, or axilla were harvested from patients of various ages by mechanical liposuction, direct surgical excision, or Coleman's technique with or without centrifugation. Cells were isolated and then analyzed with flow cytometry to determine the yields of total SVF cells and ASCs (CD11b−, CD45−, CD34+, CD90+, D7-FIB+). Differences in ASC and total SVF yields were assessed with one-way analysis of variance. Differentiation experiments were performed to confirm the multilineage potential of cultured SVF cells. Results Compared with Coleman's technique without centrifugation, direct excision yielded significantly more ASCs (P < .001) and total SVF cells (P = .007); liposuction yielded significantly fewer ASCs (P < .001) and total SVF cells (P < .05); and Coleman's technique with centrifugation yielded significantly more total SVF cells (P < .005), but not ASCs. The total number of SVF cells in fat harvested from the abdomen was significantly larger than the number in fat harvested from the flank or axilla (P < .05). Cultured SVF cells differentiated to adipocytes, osteocytes, and chondrocytes. Conclusions Adipose tissue harvested from the abdomen through direct excision or Coleman's technique with centrifugation was found to yield the most SVF cells and ASCs. PMID:25791999

  16. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner.

    PubMed

    Takegahara, Yuki; Yamanouchi, Keitaro; Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. PMID:24720912

  17. Feeding Frequency Affects Cultured Rat Pituitary Cells in Low Gravity

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Grindeland, R. E.; Salada, T.; Cenci, R.; Krishnan, K.; Mukai, C.; Nagaoka, S.

    1996-01-01

    In this report, we describe the results of a rat pituitary cell culture experiment done on STS-65 in which the effect of cell feeding on the release of the six anterior pituitary hormones was studied. We found complex microgravity related interactions between the frequency of cell feeding and the quantity and quality (i.e. biological activity) of some of the six hormones released in flight. Analyses of growth hormone (GH) released from cells into culture media on different mission days using gel filtration and ion exchange chromatography yielded qualitatively similar results between ground and flight samples. Lack of cell feeding resulted in extensive cell clumping in flight (but not ground) cultures. Vigorous fibroblast growth occurred in both ground and flight cultures fed 4 times. These results are interpreted within the context of autocrine and or paracrine feedback interactions. Finally the payload specialist successfully prepared a fresh trypsin solution in microgravity, detached the cells from their surface and reinserted them back into the culture chamber. These cells reattached and continued to release hormone in microgravity. In summary, this experiment shows that pituitary cells are microgravity sensitive and that coupled operations routinely associated with laboratory cel1 culture can also be accomplished in low gravity.

  18. Bax alpha perturbs T cell development and affects cell cycle entry of T cells.

    PubMed Central

    Brady, H J; Gil-Gómez, G; Kirberg, J; Berns, A J

    1996-01-01

    Bax alpha can heterodimerize with Bcl-2 and Bcl-X(L), countering their effects, as well as promoting apoptosis on overexpression. We show that bax alpha transgenic mice have greatly reduced numbers of mature T cells, which results from an impaired positive selection in the thymus. This perturbation in positive selection is accompanied by an increase in the number of cycling thymocytes. Further to this, mature T cells overexpressing Bax alpha have lower levels of p27Kip1 and enter S phase more rapidly in response to interleukin-2 stimulation than do control T cells, while the converse is true of bcl-2 transgenic T cells. These data indicate that apoptotic regulatory proteins can modulate the level of cell cycle-controlling proteins and thereby directly impact on the cell cycle. Images PMID:9003775

  19. Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    PubMed Central

    Marchesini, María Inés; Connolly, Joseph; Delpino, María Victoria; Baldi, Pablo C.; Mujer, Cesar V.; DelVecchio, Vito G.; Comerci, Diego J.

    2011-01-01

    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization. PMID:22174816

  20. Transcriptional modulator ZBED6 affects cell cycle and growth of human colorectal cancer cells

    PubMed Central

    Akhtar Ali, Muhammad; Younis, Shady; Wallerman, Ola; Gupta, Rajesh; Andersson, Leif; Sjöblom, Tobias

    2015-01-01

    The transcription factor ZBED6 (zinc finger, BED-type containing 6) is a repressor of IGF2 whose action impacts development, cell proliferation, and growth in placental mammals. In human colorectal cancers, IGF2 overexpression is mutually exclusive with somatic mutations in PI3K signaling components, providing genetic evidence for a role in the PI3K pathway. To understand the role of ZBED6 in tumorigenesis, we engineered and validated somatic cell ZBED6 knock-outs in the human colorectal cancer cell lines RKO and HCT116. Ablation of ZBED6 affected the cell cycle and led to increased growth rate in RKO cells but reduced growth in HCT116 cells. This striking difference was reflected in the transcriptome analyses, which revealed enrichment of cell-cycle–related processes among differentially expressed genes in both cell lines, but the direction of change often differed between the cell lines. ChIP sequencing analyses displayed enrichment of ZBED6 binding at genes up-regulated in ZBED6-knockout clones, consistent with the view that ZBED6 modulates gene expression primarily by repressing transcription. Ten differentially expressed genes were identified as putative direct gene targets, and their down-regulation by ZBED6 was validated experimentally. Eight of these genes were linked to the Wnt, Hippo, TGF-β, EGF receptor, or PI3K pathways, all involved in colorectal cancer development. The results of this study show that the effect of ZBED6 on tumor development depends on the genetic background and the transcriptional state of its target genes. PMID:26056301

  1. 7SK small nuclear RNA directly affects HMGA1 function in transcription regulation

    PubMed Central

    Eilebrecht, Sebastian; Brysbaert, Guillaume; Wegert, Thomas; Urlaub, Henning; Benecke, Bernd-Joachim; Benecke, Arndt

    2011-01-01

    Non-coding (nc) RNAs are increasingly recognized to play important regulatory roles in eukaryotic gene expression. The highly abundant and essential 7SK ncRNA has been shown to negatively regulate RNA Polymerase II transcription by inactivating the positive transcription elongation factor b (P-TEFb) in cellular and Tat-dependent HIV transcription. Here, we identify a more general, P-TEFb-independent role of 7SK RNA in directly affecting the function of the architectural transcription factor and chromatin regulator HMGA1. An important regulatory role of 7SK RNA in HMGA1-dependent cell differentiation and proliferation regulation is uncovered with the identification of over 1500 7SK-responsive HMGA1 target genes. Elevated HMGA1 expression is observed in nearly every type of cancer making the use of a 7SK substructure in the inhibition of HMGA1 activity, as pioneered here, potentially useful in therapy. The 7SK-HMGA1 interaction not only adds an essential facet to the comprehension of transcriptional plasticity at the coupling of initiation and elongation, but also might provide a molecular link between HIV reprogramming of cellular gene expression-associated oncogenesis. PMID:21087998

  2. The role of mast cells in functional GI disorders.

    PubMed

    Wouters, Mira M; Vicario, Maria; Santos, Javier

    2016-01-01

    Functional gastrointestinal disorders (FGIDs) are characterized by chronic complaints arising from disorganized brain-gut interactions leading to dysmotility and hypersensitivity. The two most prevalent FGIDs, affecting up to 16-26% of worldwide population, are functional dyspepsia and irritable bowel syndrome. Their etiopathogenic mechanisms remain unclear, however, recent observations reveal low-grade mucosal inflammation and immune activation, in association with impaired epithelial barrier function and aberrant neuronal sensitivity. These findings come to challenge the traditional view of FGIDs as pure functional disorders, and relate the origin to a tangible organic substrate. The mucosal inflammatory infiltrate is dominated by mast cells, eosinophils and intraepithelial lymphocytes in the intestine of FGIDs. It is well established that mast cell activation can generate epithelial and neuro-muscular dysfunction and promote visceral hypersensitivity and altered motility patterns in FGIDs, postoperative ileus, food allergy and inflammatory bowel disease. This review will discuss the role of mucosal mast cells in the gastrointestinal tract with a specific focus on recent advances in disease mechanisms and clinical management in irritable bowel syndrome and functional dyspepsia. PMID:26194403

  3. Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions.

    PubMed

    Zhou, Jinghua; Zhang, Jianyun; Li, Feixue; Liu, Jing

    2016-05-01

    Triazole fungicides are one of the top ten classes of current-use pesticides. Although exposure to triazole fungicides is associated with reproductive toxicity in mammals, limited information is available regarding the effects of triazole fungicides on human placental trophoblast function. Tebuconazole (TEB) is a common triazole fungicide that has been extensively used for fungi control. In this work, we showed that TEB could reduce cell viability, disturb normal cell cycle distribution and induce apoptosis of human placental trophoblast cell line HTR-8/SVneo (HTR-8). Bcl-2 protein expression decreased and the level of Bax protein increased after TEB treatment in HTR-8 cells. The results demonstrated that this fungicide induced apoptosis of trophoblast cells via mitochondrial pathway. Importantly, we found that the invasive and migratory capacities of HTR-8 cells decreased significantly after TEB administration. TEB altered the expression of key regulatory genes involved in the modulation of trophoblast functions. Taken together, TEB suppressed human trophoblast invasion and migration through affecting the expression of protease, hormones, angiogenic factors, growth factors and cytokines. As the invasive and migratory abilities of trophoblast are essential for successful placentation and fetus development, our findings suggest a potential risk of triazole fungicides to human pregnancy. PMID:26852204

  4. Engineering Cell Instructive Materials To Control Cell Fate and Functions through Material Cues and Surface Patterning.

    PubMed

    Ventre, Maurizio; Netti, Paolo A

    2016-06-22

    Mastering the interaction between cells and extracellular environment is a fundamental prerequisite in order to engineer functional biomaterial interfaces able to instruct cells with specific commands. Such advanced biomaterials might find relevant application in prosthesis design, tissue engineering, diagnostics and stem cell biology. Because of the highly complex, dynamic, and multifaceted context, a thorough understanding of the cell-material crosstalk has not been achieved yet; however, a variety of material features including biological cues, topography, and mechanical properties have been proved to impact the strength and the nature of the cell-material interaction, eventually affecting cell fate and functions. Although the nature of these three signals may appear very different, they are equated by their participation in the same material-cytoskeleton crosstalk pathway as they regulate cell adhesion events. In this work we present recent and relevant findings on the material-induced cell responses, with a particular emphasis on how the presentation of biochemical/biophysical signals modulates cell behavior. Finally, we summarize and discuss the literature data to draw out unifying elements concerning cell recognition of and reaction to signals displayed by material surfaces. PMID:26693600

  5. Raising cytosolic Cl− in cerebellar granule cells affects their excitability and vestibulo-ocular learning

    PubMed Central

    Seja, Patricia; Schonewille, Martijn; Spitzmaul, Guillermo; Badura, Aleksandra; Klein, Ilse; Rudhard, York; Wisden, William; Hübner, Christian A; De Zeeuw, Chris I; Jentsch, Thomas J

    2012-01-01

    Cerebellar cortical throughput involved in motor control comprises granule cells (GCs) and Purkinje cells (PCs), both of which receive inhibitory GABAergic input from interneurons. The GABAergic input to PCs is essential for learning and consolidation of the vestibulo-ocular reflex, but the role of GC excitability remains unclear. We now disrupted the Kcc2 K-Cl cotransporter specifically in either cell type to manipulate their excitability and inhibition by GABAA-receptor Cl− channels. Although Kcc2 may have a morphogenic role in synapse development, Kcc2 disruption neither changed synapse density nor spine morphology. In both GCs and PCs, disruption of Kcc2, but not Kcc3, increased [Cl−]i roughly two-fold. The reduced Cl− gradient nearly abolished GABA-induced hyperpolarization in PCs, but in GCs it merely affected excitability by membrane depolarization. Ablation of Kcc2 from GCs impaired consolidation of long-term phase learning of the vestibulo-ocular reflex, whereas baseline performance, short-term gain-decrease learning and gain consolidation remained intact. These functions, however, were affected by disruption of Kcc2 in PCs. GC excitability plays a previously unknown, but specific role in consolidation of phase learning. PMID:22252133

  6. Altered CD45 isoform expression affects lymphocyte function in CD45 Tg mice.

    PubMed

    Tchilian, Elma Z; Dawes, Ritu; Hyland, Lisa; Montoya, Maria; Le Bon, Agnes; Borrow, Persephone; Hou, Sam; Tough, David; Beverley, Peter C L

    2004-09-01

    Transgenic mice have been constructed expressing high (CD45RABC) and low (CD45R0) molecular weight CD45 isoforms on a CD45-/- background. Phenotypic analysis and in vivo challenge of these mice with influenza and lymphocytic choriomeningitis viruses shows that T cell differentiation and peripheral T cell function are related to the level of CD45 expression but not to which CD45 isoform is expressed. In contrast, B cell differentiation is not restored, irrespective of the level of expression of a single isoform. All CD45 trangenic mice have T cells with an activated phenotype and increased T cell turnover. These effects are more prominent in CD8 than CD4 cells. The transgenic mice share several properties with humans expressing variant CD45 alleles and provide a model to understand immune function in variant individuals. PMID:15302847

  7. Inhibition of cyclooxygenase (COX)-2 affects endothelial progenitor cell proliferation

    SciTech Connect

    Colleselli, Daniela; Bijuklic, Klaudija; Mosheimer, Birgit A.; Kaehler, Christian M. . E-mail: C.M.Kaehler@uibk.ac.at

    2006-09-10

    Growing evidence indicates that inducible cyclooxygenase-2 (COX-2) is involved in the pathogenesis of inflammatory disorders and various types of cancer. Endothelial progenitor cells recruited from the bone marrow have been shown to be involved in the formation of new vessels in malignancies and discussed for being a key point in tumour progression and metastasis. However, until now, nothing is known about an interaction between COX and endothelial progenitor cells (EPC). Expression of COX-1 and COX-2 was detected by semiquantitative RT-PCR and Western blot. Proliferation kinetics, cell cycle distribution and rate of apoptosis were analysed by MTT test and FACS analysis. Further analyses revealed an implication of Akt phosphorylation and caspase-3 activation. Both COX-1 and COX-2 expression can be found in bone-marrow-derived endothelial progenitor cells in vitro. COX-2 inhibition leads to a significant reduction in proliferation of endothelial progenitor cells by an increase in apoptosis and cell cycle arrest. COX-2 inhibition leads further to an increased cleavage of caspase-3 protein and inversely to inhibition of Akt activation. Highly proliferating endothelial progenitor cells can be targeted by selective COX-2 inhibition in vitro. These results indicate that upcoming therapy strategies in cancer patients targeting COX-2 may be effective in inhibiting tumour vasculogenesis as well as angiogenic processes.

  8. Senescence affects endothelial cells susceptibility to dengue virus infection.

    PubMed

    AbuBakar, Sazaly; Shu, Meng-Hooi; Johari, Jefree; Wong, Pooi-Fong

    2014-01-01

    Alteration in the endothelium leading to increased vascular permeability contributes to plasma leakage seen in dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). An earlier study showed that senescent endothelial cells (ECs) altered the ECs permeability. Here we investigated the susceptibility of senescing human umbilical vein endothelial cells (HUVECs) to dengue virus infection and determined if dengue virus infection induces HUVECs senescence. Our results suggest that DENV type-2 (DENV-2) foci forming unit (FFU) and extracellular virus RNA copy number were reduced by at least 35% and 85% in infection of the intermediate young and early senescent HUVECs, respectively, in comparison to infection of young HUVECs. No to low infectivity was recovered from infection of late senescent HUVECs. DENV infection also increases the percentage of HUVECs expressing senescence-associated (SA)-β-gal, cells arrested at the G2/M phase or 4N DNA content stage and cells with enlarged morphology, indicative of senescing cells. Alteration of HUVECs morphology was recorded using impedance-based real-time cell analysis system following DENV-2 infection. These results suggest that senescing HUVECs do not support DENV infection and DENV infection induces HUVECs senescence. The finding highlights the possible role of induction of senescence in DENV infection of the endothelial cells. PMID:24782642

  9. Neuropeptide Y directly affects ovarian cell proliferation and apoptosis.

    PubMed

    Sirotkin, Alexander V; Kardošová, Diana; Alwasel, Saleh Hamad; Harrath, Abdel Halim

    2015-12-01

    The effects of neuropeptide Y (NPY; 0, 10, 100 and 1000 ng/mL) on the expression of PCNA, bax and p53 were examined by immunocytochemistry in porcine luteinized granulosa cells. NPY inhibited proliferation as well as promoted apoptosis and accumulation of p53 in the cells. This is the first report to demonstrate the direct action of NPY on ovarian cell proliferation and apoptosis. The results of the study suggest that the effect is mediated by transcription factor p53. PMID:26679167

  10. Mesenchymal stem cells secretomes' affect multiple myeloma translation initiation.

    PubMed

    Marcus, H; Attar-Schneider, O; Dabbah, M; Zismanov, V; Tartakover-Matalon, S; Lishner, M; Drucker, L

    2016-06-01

    Bone marrow mesenchymal stem cells' (BM-MSCs) role in multiple myeloma (MM) pathogenesis is recognized. Recently, we have published that co-culture of MM cell lines with BM-MSCs results in mutual modulation of phenotype and proteome (via translation initiation (TI) factors eIF4E/eIF4GI) and that there are differences between normal donor BM-MSCs (ND-MSCs) and MM BM-MSCs (MM-MSCs) in this crosstalk. Here, we aimed to assess the involvement of soluble BM-MSCs' (ND, MM) components, more easily targeted, in manipulation of MM cell lines phenotype and TI with specific focus on microvesicles (MVs) capable of transferring critical biological material. We applied ND and MM-MSCs 72h secretomes to MM cell lines (U266 and ARP-1) for 12-72h and then assayed the cells' (viability, cell count, cell death, proliferation, cell cycle, autophagy) and TI (factors: eIF4E, teIF4GI; regulators: mTOR, MNK1/2, 4EBP; targets: cyclin D1, NFκB, SMAD5, cMyc, HIF1α). Furthermore, we dissected the secretome into >100kDa and <100kDa fractions and repeated the experiments. Finally, MVs were isolated from the ND and MM-MSCs secretomes and applied to MM cell lines. Phenotype and TI were assessed. Secretomes of BM-MSCs (ND, MM) significantly stimulated MM cell lines' TI, autophagy and proliferation. The dissected secretome yielded different effects on MM cell lines phenotype and TI according to fraction (>100kDa- repressed; <100kDa- stimulated) but with no association to source (ND, MM). Finally, in analyses of MVs extracted from BM-MSCs (ND, MM) we witnessed differences in accordance with source: ND-MSCs MVs inhibited proliferation, autophagy and TI whereas MM-MSCs MVs stimulated them. These observations highlight the very complex communication between MM and BM-MSCs and underscore its significance to major processes in the malignant cells. Studies into the influential MVs cargo are underway and expected to uncover targetable signals in the regulation of the TI/proliferation/autophagy cascade

  11. Affect and the Brain's Functional Organization: A Resting-State Connectivity Approach

    PubMed Central

    Rohr, Christiane S.; Okon-Singer, Hadas; Craddock, R. Cameron; Villringer, Arno; Margulies, Daniel S.

    2013-01-01

    The question of how affective processing is organized in the brain is still a matter of controversial discussions. Based on previous initial evidence, several suggestions have been put forward regarding the involved brain areas: (a) right-lateralized dominance in emotional processing, (b) hemispheric dominance according to positive or negative valence, (c) one network for all emotional processing and (d) region-specific discrete emotion matching. We examined these hypotheses by investigating intrinsic functional connectivity patterns that covary with results of the Positive and Negative Affective Schedule (PANAS) from 65 participants. This approach has the advantage of being able to test connectivity rather than activation, and not requiring a potentially confounding task. Voxelwise functional connectivity from 200 regions-of-interest covering the whole brain was assessed. Positive and negative affect covaried with functional connectivity involving a shared set of regions, including the medial prefrontal cortex, the anterior cingulate, the visual cortex and the cerebellum. In addition, each affective domain had unique connectivity patterns, and the lateralization index showed a right hemispheric dominance for negative affect. Therefore, our results suggest a predominantly right-hemispheric network with affect-specific elements as the underlying organization of emotional processes. PMID:23935850

  12. Chemosensory Functions for Pulmonary Neuroendocrine Cells

    PubMed Central

    Gu, Xiaoling; Karp, Philip H.; Brody, Steven L.; Pierce, Richard A.; Welsh, Michael J.; Holtzman, Michael J.

    2014-01-01

    The mammalian airways are sensitive to inhaled stimuli, and airway diseases are characterized by hypersensitivity to volatile stimuli, such as perfumes, industrial solvents, and others. However, the identity and function of the cells in the airway that can sense volatile chemicals remain uncertain, particularly in humans. Here, we show that solitary pulmonary neuroendocrine cells (PNECs), which are morphologically distinct and physiologically undefined, might serve as chemosensory cells in human airways. This conclusion is based on our finding that some human PNECs expressed members of the olfactory receptor (OR) family in vivo and in primary cell culture, and are anatomically positioned in the airway epithelium to respond to inhaled volatile chemicals. Furthermore, apical exposure of primary-culture human airway epithelial cells to volatile chemicals decreased levels of serotonin in PNECs, and the led to the release of the neuropeptide calcitonin gene-related peptide (CGRP) to the basal medium. These data suggest that volatile stimulation of PNECs can lead to the secretion of factors that are capable of stimulating the corresponding receptors in the lung epithelium. We also found that the distribution of serotonin and neuropeptide receptors may change in chronic obstructive pulmonary disease, suggesting that increased PNEC-dependent chemoresponsiveness might contribute to the altered sensitivity to volatile stimuli in this disease. Together, these data indicate that human airway epithelia harbor specialized cells that respond to volatile chemical stimuli, and may help to explain clinical observations of odorant-induced airway reactions. PMID:24134460

  13. Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions

    PubMed Central

    Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa

    2010-01-01

    Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms

  14. DNA Replication Licensing Affects Cell Proliferation or Endoreplication in a Cell Type–Specific Manner

    PubMed Central

    del Mar Castellano, María; Boniotti, María Beatrice; Caro, Elena; Schnittger, Arp; Gutierrez, Crisanto

    2004-01-01

    In eukaryotic cells, the function of DNA replication licensing components (Cdc6 and Cdt1, among others) is crucial for cell proliferation and genome stability. However, little is known about their role in whole organisms and whether licensing control interfaces with differentiation and developmental programs. Here, we study Arabidopsis thaliana CDT1, its regulation, and the consequences of overriding licensing control. The availability of AtCDT1 is strictly regulated at two levels: (1) at the transcription level, by E2F and growth-arresting signals, and (2) posttranscriptionally, by CDK phosphorylation, a step that is required for its proteasome-mediated degradation. We also show that CDC6 and CDT1 are key targets for the coordination of cell proliferation, differentiation, and development. Indeed, altered CDT1 or CDC6 levels have cell type–specific effects in developing Arabidopsis plants: in leaf cells competent to divide, cell proliferation is stimulated, whereas in cells programmed to undergo differentiation-associated endoreplication rounds, extra endocycles are triggered. Thus, we propose that DNA replication licensing control is critical for the proper maintenance of proliferative potential, developmental programs, and morphogenetic patterns. PMID:15316110

  15. T Cell Activation Thresholds are Affected by Gravitational

    NASA Technical Reports Server (NTRS)

    Adams, Charley; Gonzalez, M.; Nelman-Gonzalez, M.

    1999-01-01

    T cells stimulated in space flight by various mitogenic signals show a dramatic reduction in proliferation and expression of early activation markers. Similar results are also obtained in a ground based model of microgravity, clinorotation, which provides a vector-averaged reduction of the apparent gravity on cells without significant shear force. Here we demonstrate that T cell inhibition is due to an increase in the required threshold for activation. Dose response curves indicate that cells activated during clinorotation require higher stimulation to achieve the same level of activation, as measured by CD69 expression. Interleukin 2 receptor expression, and DNA synthesis. The amount of stimulation necessary for 50% activation is 5 fold in the clinostat relative to static. Correlation of TCR internalization with activation also exhibit a dramatic right shift in clinorotation, demonstrating unequivocally that signal transduction mechanism independent of TCR triggering account for the increased activation threshold. Previous results from space flight experiments are consistent with the dose response curves obtained for clinorotation. Activation thresholds are important aspects of T cell memory, autoimmunity and tolerance Clinorotation is a useful, noninvasive tool for the study of cellular and biochemical event regulating T cell activation threshold and the effects of gravitation forces on these systems.

  16. Fancb deficiency impairs hematopoietic stem cell function

    PubMed Central

    Du, Wei; Amarachintha, Surya; Erden, Ozlem; Wilson, Andrew; Meetei, Amom Ruhikanta; Andreassen, Paul R.; Namekawa, Satoshi H.; Pang, Qishen

    2015-01-01

    Fanconi anemia (FA) is a genetic disorder characterized by bone marrow failure, variable congenital malformations and a predisposition to malignancies. FANCB (also known as FAAP95), is the only X-linked FA gene discovered thus far. In the present study, we investigated hematopoiesis in adult Fancb deficient (Fancb−/y) mice and found that Fancb−/y mice have decreased hematopoietic stem cell (HSC) quiescence accompanied by reduced progenitor activity in vitro and reduced repopulating capacity in vivo. Like other FA mouse models previously reported, the hematopoietic system of Fancb−/y mice is hypersensitive to DNA cross-linking agent mitomycin C (MMC), which induces bone marrow failure in Fancb−/y mice. Furthermore, Fancb−/y BM exhibits slower recovery kinetics and less tolerance to myelotoxic stress induced by 5-fluorouracil than wild-type littermates. RNA-seq analysis reveals altered expression of genes involved in HSC function and cell cycle regulation in Fancb−/y HSC and progenitor cells. Thus, this Fancb−/y mouse model provides a novel approach for studying the critical role of the FA pathway not only in germ cell development but also in the maintenance of HSC function. PMID:26658157

  17. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    SciTech Connect

    Takegahara, Yuki; Yamanouchi, Keitaro Nakamura, Katsuyuki; Nakano, Shin-ichi; Nishihara, Masugi

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether direct cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.

  18. Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells.

    PubMed

    Lu, Min; Xia, Lijuan; Liu, Yen-Chun; Hochman, Tsivia; Bizzari, Laetizia; Aruch, Daniel; Lew, Jane; Weinberg, Rona; Goldberg, Judith D; Hoffman, Ronald

    2015-08-20

    Myelofibrosis (MF) is characterized by cytopenias, constitutional symptoms, splenomegaly, and marrow histopathological abnormalities (fibrosis, increased microvessel density, and osteosclerosis). The microenvironmental abnormalities are likely a consequence of the elaboration of a variety of inflammatory cytokines generated by malignant megakaryocytes and monocytes. We observed that levels of a specific inflammatory cytokine, lipocalin-2 (LCN2), were elevated in the plasmas of patients with myeloproliferative neoplasms (MF > polycythemia vera or essential thrombocythemia) and that LCN2 was elaborated by MF myeloid cells. LCN2 generates increased reactive oxygen species, leading to increased DNA strand breaks and apoptosis of normal, but not MF, CD34(+) cells. Furthermore, incubation of marrow adherent cells or mesenchymal stem cells with LCN2 increased the generation of osteoblasts and fibroblasts, but not adipocytes. LCN2 priming of mesenchymal stem cells resulted in the upregulation of RUNX2 gene as well as other genes that are capable of further affecting osteoblastogenesis, angiogenesis, and the deposition of matrix proteins. These data indicate that LCN2 is an additional MF inflammatory cytokine that likely contributes to the creation of a cascade of events that results in not only a predominance of the MF clone but also a dysfunctional microenvironment. PMID:26022238

  19. Human proximal tubule cells form functional microtissues.

    PubMed

    Prange, Jenny A; Bieri, Manuela; Segerer, Stephan; Burger, Charlotte; Kaech, Andres; Moritz, Wolfgang; Devuyst, Olivier

    2016-04-01

    The epithelial cells lining the proximal tubules of the kidney mediate complex transport processes and are particularly vulnerable to drug toxicity. Drug toxicity studies are classically based on two-dimensional cultures of immortalized proximal tubular cells. Such immortalized cells are dedifferentiated, and lose transport properties (including saturable endocytic uptake) encountered in vivo. Generating differentiated, organotypic human microtissues would potentially alleviate these limitations and facilitate drug toxicity studies. Here, we describe the generation and characterization of kidney microtissues from immortalized (HK-2) and primary (HRPTEpiC) human renal proximal tubular epithelial cells under well-defined conditions. Microtissue cultures were done in hanging drop GravityPLUS™ culture plates and were characterized for morphology, proliferation and differentiation markers, and by monitoring the endocytic uptake of albumin. Kidney microtissues were successfully obtained by co-culturing HK-2 or HRPTEpiC cells with fibroblasts. The HK-2 microtissues formed highly proliferative, but dedifferentiated microtissues within 10 days of culture, while co-culture with fibroblasts yielded spherical structures already after 2 days. Low passage HRPTEpiC microtissues (mono- and co-culture) were less proliferative and expressed tissue-specific differentiation markers. Electron microscopy evidenced epithelial differentiation markers including microvilli, tight junctions, endosomes, and lysosomes in the co-cultured HRPTEpiC microtissues. The co-cultured HRPTEpiC microtissues showed specific uptake of albumin that could be inhibited by cadmium and gentamycin. In conclusion, we established a reliable hanging drop protocol to obtain functional kidney microtissues with proximal tubular epithelial cell lines. These microtissues could be used for high-throughput drug and toxicology screenings, with endocytosis as a functional readout. PMID:26676951

  20. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings

    PubMed Central

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I.; Bonnema, Guusje; Angenent, Gerco C.; Immink, Richard G. H.; Groot, Steven P. C.

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  1. New thiazolidinediones affect endothelial cell activation and angiogenesis.

    PubMed

    Rudnicki, Martina; Tripodi, Gustavo L; Ferrer, Renila; Boscá, Lisardo; Pitta, Marina G R; Pitta, Ivan R; Abdalla, Dulcineia S P

    2016-07-01

    Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ (PPARγ) agonists used in treating type 2 diabetes that may exhibit beneficial pleiotropic effects on endothelial cells. In this study, we characterized the effects of three new TZDs [GQ-32 (3-biphenyl-4-ylmethyl-5-(4-nitro-benzylidene)-thiazolidine-2,4-dione), GQ-169 (5-(4-chloro-benzylidene)-3-(2,6-dichloro-benzyl)-thiazolidine-2,4-dione), and LYSO-7 (5-(5-bromo-1H-indol-3-ylmethylene)-3-(4-chlorobenzyl)-thiazolidine-2,4-dione)] on endothelial cells. The effects of the new TZDs were evaluated on the production of nitric oxide (NO) and reactive oxygen species (ROS), cell migration, tube formation and the gene expression of adhesion molecules and angiogenic mediators in human umbilical vein endothelial cells (HUVECs). PPARγ activation by new TZDs was addressed with a reporter gene assay. The three new TZDs activated PPARγ and suppressed the tumor necrosis factor α-induced expression of vascular cell adhesion molecule 1 and intercellular adhesion molecule 1. GQ-169 and LYSO-7 also inhibited the glucose-induced ROS production. Although NO production assessed with 4-amino-5-methylamino-2',7'-difluorofluorescein-FM probe indicated that all tested TZDs enhanced intracellular levels of NO, only LYSO-7 treatment significantly increased the release of NO from HUVEC measured by chemiluminescence analysis of culture media. Additionally, GQ-32 and GQ-169 induced endothelial cell migration and tube formation by the up-regulation of angiogenic molecules expression, such as vascular endothelial growth factor A and interleukin 8. GQ-169 also increased the mRNA levels of basic fibroblast growth factor, and GQ-32 enhanced transforming growth factor-β expression. Together, the results of this study reveal that these new TZDs act as partial agonists of PPARγ and modulate endothelial cell activation and endothelial dysfunction besides to stimulate migration and tube formation. PMID:27108791

  2. Low Temperature Affects Stem Cell Maintenance in Brassica oleracea Seedlings.

    PubMed

    de Jonge, Jennifer; Kodde, Jan; Severing, Edouard I; Bonnema, Guusje; Angenent, Gerco C; Immink, Richard G H; Groot, Steven P C

    2016-01-01

    Most of the above ground tissues in higher plants originate from stem cells located in the shoot apical meristem (SAM). Several plant species can suffer from spontaneous stem cell arrest resulting in lack of further shoot development. In Brassica oleracea this SAM arrest is known as blindness and occurs in an unpredictable manner leading to considerable economic losses for plant raisers and farmers. Detailed analyses of seedlings showed that stem cell arrest is triggered by low temperatures during germination. To induce this arrest reproducibly and to study the effect of the environment, an assay was developed. The role of genetic variation on the susceptibility to develop blind seedlings was analyzed by a quantitative genetic mapping approach, using seeds from a double haploid population from a cross between broccoli and Chinese kale, produced at three locations. The analysis revealed, besides an effect of the seed production location, a region on linkage group C3 associated with blindness sensitivity. A subsequent dynamic genome-wide transcriptome analysis resulted in the identification of around 3000 differentially expressed genes early after blindness induction. A large number of cell cycle genes were en masse induced early during the development of blindness, whereas shortly after, all were down-regulated. This miss-regulation of core cell cycle genes is accompanied with a strong reduction of cells reaching the DNA replication phase. From the differentially expressed genes, 90 were located in the QTL region C3. Among them are two genes belonging to the MINICHROMOSOMAL MAINTENANCE gene family, known to be involved in DNA replication, a RETINOBLASTOMA-RELATED gene, a key regulator for cell cycle initiation, and several MutS homologs genes, involved in DNA repair. These genes are potential candidates for being involved in the development of blindness in Brassica oleracea sensitive genotypes. PMID:27375654

  3. Lung function in sickle cell disease.

    PubMed

    Koumbourlis, Anastassios C

    2014-03-01

    Although some of the most severe complications of Sickle Cell Disease (SCD) tend to be acute and severe (e.g. acute chest syndrome, stroke etc.), the chronic ones can be equally debilitating. Prominent among them is the effect that the disease has on lung growth and function. For many years the traditional teaching has been that SCD is associated with the development of a restrictive lung defect. However, there is increasing evidence that this is not a universal finding and that at least during childhood and adolescence, the majority of the patients have a normal or obstructive pattern of lung function. The following article reviews the current knowledge on the effects of SCD on lung growth and function. Special emphasis is given to the controversies among the published articles in the literature and discusses possible causes for these discrepancies. PMID:24268618

  4. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    PubMed Central

    Åsberg, Signe E.; Bones, Atle M.; Øverby, Anders

    2015-01-01

    Isothiocyanates (ITCs) are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC) has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants. PMID:26042144

  5. Post-transcriptional RNA Regulons Affecting Cell Cycle and Proliferation

    PubMed Central

    Blackinton, Jeff G.

    2014-01-01

    The cellular growth cycle is initiated and maintained by punctual, yet agile, regulatory events involving modifications of cell cycle proteins as well as coordinated gene expression to support cyclic checkpoint decisions. Recent evidence indicates that post-transcriptional partitioning of messenger RNA subsets by RNA-binding proteins help physically localize, temporally coordinate, and efficiently translate cell cycle proteins. This dynamic organization of mRNAs encoding cell cycle components contributes to the overall economy of the cell cycle consistent with the post-transcriptional RNA regulon model of gene expression. This review examines several recent studies demonstrating the coordination of mRNA subsets encoding cell cycle proteins during nuclear export and subsequent coupling to protein synthesis, and discusses evidence for mRNA coordination of p53 targets and the DNA damage response pathway. We consider how these observations may connect to upstream and downstream post-transcriptional coordination and coupling of splicing, export, localization, and translation. Published examples from yeast, nematode, insect, and mammalian systems are discussed, and we consider genetic evidence supporting the conclusion that dysregulation of RNA regulons may promote pathogenic states of growth such as carcinogenesis. PMID:24882724

  6. Oxygen concentration inside a functioning photosynthetic cell.

    PubMed

    Kihara, Shigeharu; Hartzler, Daniel A; Savikhin, Sergei

    2014-05-01

    The excess oxygen concentration in the photosynthetic membranes of functioning oxygenic photosynthetic cells was estimated using classical diffusion theory combined with experimental data on oxygen production rates of cyanobacterial cells. The excess oxygen concentration within the plesiomorphic cyanobacterium Gloeobactor violaceus is only 0.025 μM, or four orders of magnitude lower than the oxygen concentration in air-saturated water. Such a low concentration suggests that the first oxygenic photosynthetic bacteria in solitary form could have evolved ∼2.8 billion years ago without special mechanisms to protect them against reactive oxygen species. These mechanisms instead could have been developed during the following ∼500 million years while the oxygen level in the Earth's atmosphere was slowly rising. Excess oxygen concentrations within individual cells of the apomorphic cyanobacteria Synechocystis and Synechococcus are 0.064 and 0.25 μM, respectively. These numbers suggest that intramembrane and intracellular proteins in isolated oxygenic photosynthetic cells are not subjected to excessively high oxygen levels. The situation is different for closely packed colonies of photosynthetic cells. Calculations show that the excess concentration within colonies that are ∼40 μm or larger in diameter can be comparable to the oxygen concentration in air-saturated water, suggesting that species forming colonies require protection against reactive oxygen species even in the absence of oxygen in the surrounding atmosphere. PMID:24806920

  7. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death

    PubMed Central

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  8. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death.

    PubMed

    Kwon, Hyuk-Kwon; Lee, Jae-Hyeok; Shin, Hyeon-Jun; Kim, Jae-Ho; Choi, Sangdun

    2015-01-01

    The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies. PMID:26490051

  9. Claudin-16 affects transcellular Cl− secretion in MDCK cells

    PubMed Central

    Günzel, Dorothee; Amasheh, Salah; Pfaffenbach, Sandra; Richter, Jan F; Kausalya, P Jaya; Hunziker, Walter; Fromm, Michael

    2009-01-01

    Claudin-16 (paracellin-1) is a tight junction protein localized mainly in the thick ascending limb of Henle's loop and also in the distal nephron. Its defect causes familial hypomagnesaemia with hypercalciuria and nephrocalcinosis. This had been taken as an indication that claudin-16 conveys paracellular Mg2+ and Ca2+ transport; however, evidence is still conflicting. We studied paracellular ion permeabilties as well as effects of claudin-16 on the driving forces for passive ion movement. MDCK-C7 cells were stably transfected with wild-type (wt) and mutant (R146T, T233R) claudin-16. Results indicated that paracellular permeability to Mg2+ but not to Ca2+ is increased in cells transfected with wt compared to mutant claudin-16 and control cells. Increased basolateral Mg2+ concentration activated a transcellular Cl− current which was greatly enhanced in cells transfected with wt and T233R claudin-16, as compared to R146T claudin-16-transfected or control cells. This current was triggered by the basolateral calcium-sensing receptor causing Ca2+ release from internal stores, thus activating apical Ca2+-sensitive Cl− channels and basolateral Ca2+-sensitive K+ channels. Immunohistochemical data suggest that the Cl− channel involved is bestrophin. We conclude that claudin-16 itself possesses only moderate paracellular Mg2+ permeability but governs transcellular Cl− currents by interaction with apical Ca2+-activated Cl− channels, presumably bestrophin. As the transepithelial voltage generated by such a current alters the driving force for all ions, this may be the major mechanism to regulate Mg2+ and Ca2+ absorption in the kidney. PMID:19528248

  10. Metacognitive Awareness of Facial Affect in Higher-Functioning Children and Adolescents with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    McMahon, Camilla M.; Henderson, Heather A.; Newell, Lisa; Jaime, Mark; Mundy, Peter

    2016-01-01

    Higher-functioning participants with and without autism spectrum disorder (ASD) viewed a series of face stimuli, made decisions regarding the affect of each face, and indicated their confidence in each decision. Confidence significantly predicted accuracy across all participants, but this relation was stronger for participants with typical…

  11. Automatic Processing of Emotional Faces in High-Functioning Pervasive Developmental Disorders: An Affective Priming Study

    ERIC Educational Resources Information Center

    Kamio, Yoko; Wolf, Julie; Fein, Deborah

    2006-01-01

    This study examined automatic processing of emotional faces in individuals with high-functioning Pervasive Developmental Disorders (HFPDD) using an affective priming paradigm. Sixteen participants (HFPDD and matched controls) were presented with happy faces, fearful faces or objects in both subliminal and supraliminal exposure conditions, followed…

  12. Handgrip Strength, Positive Affect, and Perceived Health Are Prospectively Associated with Fewer Functional Limitations among Centenarians

    ERIC Educational Resources Information Center

    Franke, Warren D.; Margrett, Jennifer A.; Heinz, Melinda; Martin, Peter

    2012-01-01

    This study assessed the association between perceived health, fatigue, positive and negative affect, handgrip strength, objectively measured physical activity, body mass index, and self-reported functional limitations, assessed 6 months later, among 11 centenarians (age = 102 plus or minus 1). Activities of daily living, assessed 6 months prior to…

  13. Weight Reduction in Athletes May Adversely Affect the Phagocytic Function of Monocytes.

    ERIC Educational Resources Information Center

    Kono, Ichiro; And Others

    1988-01-01

    Study of the monocyte phagocytic function in nine competitive athletes before and after a two-week weight reduction (through calorie restriction) program revealed that their pre-program phagocytic activity was higher than in sedentary controls but decreased significantly after the program. This suggests calorie restriction may affect the human…

  14. Automatic facial responses to affective stimuli in high-functioning adults with autism spectrum disorder.

    PubMed

    Mathersul, Danielle; McDonald, Skye; Rushby, Jacqueline A

    2013-01-17

    Individuals with autism spectrum disorder (ASD) demonstrate atypical behavioural responses to affective stimuli, although the underlying mechanisms remain unclear. Investigating automatic responses to these stimuli may help elucidate these mechanisms. 18 high-functioning adults with ASDs and 18 typically developing controls viewed 54 extreme pleasant (erotica), extreme unpleasant (mutilations), and non-social neutral images from the International Affective Picture System (IAPS). Two-thirds of images received an acoustic startle probe 3s post-picture onset. Facial electromyography (EMG) activity (orbicularis, zygomaticus, corrugator), skin conductance (SCR) and cardiac responses were recorded. The adults with ASDs demonstrated typical affective startle modulation and automatic facial EMG responses but atypical autonomic (SCRs and cardiac) responses, suggesting a failure to orient to, or a deliberate effort to disconnect from, socially relevant stimuli (erotica, mutilations). These results have implications for neural systems known to underlie affective processes, including the orbitofrontal cortex and amygdala. PMID:23142408

  15. Combined standard and novel immunosuppressive substances affect B-lymphocyte function.

    PubMed

    Matz, Mareen; Lehnert, Martin; Lorkowski, Christine; Fabritius, Katharina; Weber, Ulrike A; Mashreghi, Mir-Farzin; Neumayer, Hans-H; Budde, Klemens

    2013-04-01

    A considerable fraction of renal transplanted patients is susceptible to humoral rejection. Today well-established therapy regimens are available to control antibody-mediated rejection in the short term. Nevertheless, donor-specific antibodies persist and graft function deteriorates over time. This might be due to insufficient maintenance immunosuppression - which always consists of two to three drugs with different mechanisms of action. Since T- and B-cell functions always depend on each other in the alloimmune response it is of interest to analyze the effects of combined standard and new immunosuppressive substances with T-cell inhibitory properties on B-cell function. The effectiveness of complementary administrations of sotrastaurin, mycophenolic acid and everolimus on the activation and function of human primary B-lymphocytes was tested. Everolimus and mycophenolic acid alone and in combination proved to be highly effective in suppressing B-cell activation, whereas the proteinkinase C inhibitor sotrastaurin had an unexpected and reverse impact on various B-cell functions when applied in combination with the mammalian target of rapamycin and the inosine monophosphate dehydrogenase inhibitor. PMID:23499640

  16. Chronic alcohol exposure affects the cell components involved in membrane traffic in neuronal dendrites.

    PubMed

    Romero, Ana M; Renau-Piqueras, Jaime; Marín, M Pilar; Esteban-Pretel, Guillermo

    2015-01-01

    The specific traffic of the membrane components in neurons is a major requirement to establish and maintain neuronal domains-the axonal and the somatodendritic domains-and their polarized morphology. Unlike axons, dendrites contain membranous organelles, which are involved in the secretory pathway, including the endoplasmic reticulum, the Golgi apparatus and post-Golgi apparatus carriers, the cytoskeleton, and plasma membrane. A variety of molecules and factors are also involved in this process. Previous studies have shown that chronic alcohol exposure negatively affects several of these cell components, such as the Golgi apparatus or cytoskeleton in neurons. Yet very little information is available on the possible effects of this exposure on the remaining cell elements involved in intracellular trafficking in neurons, particularly in dendrites. By qualitative and quantitative electron microscopy, immunofluorescence and immunoblotting, we herein show that chronic exposure to moderate levels (30 mM) of ethanol in cultured neurons reduces the volume and surface density of the rough endoplasmic reticulum, and increases the levels of GRP78, a chaperone involved in endoplasmic reticulum stress. Ethanol also significantly diminishes the proportion of neurons that show an extension of Golgi into dendrites and dendritic Golgi outposts, a structure present exclusively in longer, thicker apical dendrites. Both Golgi apparatus types were also fragmented into a large number of cells. We also investigated the effect of alcohol on the levels of microtubule-based motor proteins KIF5, KIF17, KIFC2, dynein, and myosin IIb, responsible for transporting different cargoes in dendrites. Of these, alcohol differently affects several of them by lowering dynein and raising KIF5, KIFC2, and myosin IIb. These results, together with other previously published ones, suggest that practically all the protein trafficking steps in dendrites are altered to a greater or lesser extent by chronic

  17. Defects in Protein Folding Machinery Affect Cell Wall Integrity and Reduce Ethanol Tolerance in S. cerevisiae.

    PubMed

    Narayanan, Aswathy; Pullepu, Dileep; Reddy, Praveen Kumar; Uddin, Wasim; Kabir, M Anaul

    2016-07-01

    The chaperonin complex CCT/TRiC (chaperonin containing TCP-1/TCP-1 ring complex) participates in the folding of many crucial proteins including actin and tubulin in eukaryotes. Mutations in genes encoding its subunits can affect protein folding and in turn, the physiology of the organism. Stress response in Saccharomyces cerevisiae is important in fermentation reactions and operates through overexpression and underexpression of genes, thus altering the protein profile. Defective protein folding machinery can disturb this process. In this study, the response of cct mutants to stress conditions in general and ethanol in specific was investigated. CCT1 mutants showed decreased resistance to different conditions tested including osmotic stress, metal ions, surfactants, reducing and oxidising agents. Cct1-3 mutant with the mutation in the conserved ATP-binding region showed irreversible defects than other mutants. These mutants were found to have inherent cell wall defects and showed decreased ethanol tolerance. This study reveals that cell wall defects and ethanol sensitivity are linked. Genetic and proteomic analyses showed that the yeast genes RPS6A (ribosomal protein), SCL1 (proteasomal subunit) and TDH3 (glyceraldehyde-3-phosphate dehydrogenase) on overexpression, improved the growth of cct1-3 mutant on ethanol. We propose the breakdown of common stress response pathways caused by mutations in CCT complex and the resulting scarcity of functional stress-responsive proteins, affecting the cell's defence against different stress agents in cct mutants. Defective cytoskeleton and perturbed cell wall integrity reduce the ethanol tolerance in the mutants which are rescued by the extragenic suppressors. PMID:26992923

  18. Creep Function of a Single Living Cell

    PubMed Central

    Desprat, Nicolas; Richert, Alain; Simeon, Jacqueline; Asnacios, Atef

    2005-01-01

    We used a novel uniaxial stretching rheometer to measure the creep function J(t) of an isolated living cell. We show, for the first time at the scale of the whole cell, that J(t) behaves as a power-law J(t) = Atα. For N = 43 mice myoblasts (C2-7), we find α = 0.24 ± 0.01 and A = (2.4 ± 0.3) 10−3 Pa−1 s−α. Using Laplace Transforms, we compare A and α to the parameters G0 and β of the complex modulus G*(ω) = G0ωβ measured by other authors using magnetic twisting cytometry and atomic force microscopy. Excellent agreement between A and G0 on the one hand, and between α and β on the other hand, indicated that the power-law is an intrinsic feature of cell mechanics and not the signature of a particular technique. Moreover, the agreement between measurements at very different size scales, going from a few tens of nanometers to the scale of the whole cell, suggests that self-similarity could be a central feature of cell mechanical structure. Finally, we show that the power-law behavior could explain previous results first interpreted as instantaneous elasticity. Thus, we think that the living cell must definitely be thought of as a material with a large and continuous distribution of relaxation time constants which cannot be described by models with a finite number of springs and dash-pots. PMID:15596508

  19. Analgesic exposure in pregnant rats affects fetal germ cell development with inter-generational reproductive consequences

    PubMed Central

    Dean, Afshan; van den Driesche, Sander; Wang, Yili; McKinnell, Chris; Macpherson, Sheila; Eddie, Sharon L.; Kinnell, Hazel; Hurtado-Gonzalez, Pablo; Chambers, Tom J.; Stevenson, Kerrie; Wolfinger, Elke; Hrabalkova, Lenka; Calarrao, Ana; Bayne, Rosey AL; Hagen, Casper P.; Mitchell, Rod T.; Anderson, Richard A.; Sharpe, Richard M.

    2016-01-01

    Analgesics which affect prostaglandin (PG) pathways are used by most pregnant women. As germ cells (GC) undergo developmental and epigenetic changes in fetal life and are PG targets, we investigated if exposure of pregnant rats to analgesics (indomethacin or acetaminophen) affected GC development and reproductive function in resulting offspring (F1) or in the F2 generation. Exposure to either analgesic reduced F1 fetal GC number in both sexes and altered the tempo of fetal GC development sex-dependently, with delayed meiotic entry in oogonia but accelerated GC differentiation in males. These effects persisted in adult F1 females as reduced ovarian and litter size, whereas F1 males recovered normal GC numbers and fertility by adulthood. F2 offspring deriving from an analgesic-exposed F1 parent also exhibited sex-specific changes. F2 males exhibited normal reproductive development whereas F2 females had smaller ovaries and reduced follicle numbers during puberty/adulthood; as similar changes were found for F2 offspring of analgesic-exposed F1 fathers or mothers, we interpret this as potentially indicating an analgesic-induced change to GC in F1. Assuming our results are translatable to humans, they raise concerns that analgesic use in pregnancy could potentially affect fertility of resulting daughters and grand-daughters. PMID:26813099

  20. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    PubMed Central

    Chevalier, N.R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  1. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration

    NASA Astrophysics Data System (ADS)

    Chevalier, N. R.; Gazguez, E.; Bidault, L.; Guilbert, T.; Vias, C.; Vian, E.; Watanabe, Y.; Muller, L.; Germain, S.; Bondurand, N.; Dufour, S.; Fleury, V.

    2016-02-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development.

  2. How Tissue Mechanical Properties Affect Enteric Neural Crest Cell Migration.

    PubMed

    Chevalier, N R; Gazguez, E; Bidault, L; Guilbert, T; Vias, C; Vian, E; Watanabe, Y; Muller, L; Germain, S; Bondurand, N; Dufour, S; Fleury, V

    2016-01-01

    Neural crest cells (NCCs) are a population of multipotent cells that migrate extensively during vertebrate development. Alterations to neural crest ontogenesis cause several diseases, including cancers and congenital defects, such as Hirschprung disease, which results from incomplete colonization of the colon by enteric NCCs (ENCCs). We investigated the influence of the stiffness and structure of the environment on ENCC migration in vitro and during colonization of the gastrointestinal tract in chicken and mouse embryos. We showed using tensile stretching and atomic force microscopy (AFM) that the mesenchyme of the gut was initially soft but gradually stiffened during the period of ENCC colonization. Second-harmonic generation (SHG) microscopy revealed that this stiffening was associated with a gradual organization and enrichment of collagen fibers in the developing gut. Ex-vivo 2D cell migration assays showed that ENCCs migrated on substrates with very low levels of stiffness. In 3D collagen gels, the speed of the ENCC migratory front decreased with increasing gel stiffness, whereas no correlation was found between porosity and ENCC migration behavior. Metalloprotease inhibition experiments showed that ENCCs actively degraded collagen in order to progress. These results shed light on the role of the mechanical properties of tissues in ENCC migration during development. PMID:26887292

  3. The strength of the HIV-1 3' splice sites affects Rev function

    PubMed Central

    Kammler, Susanne; Otte, Marianne; Hauber, Ilona; Kjems, Jørgen; Hauber, Joachim; Schaal, Heiner

    2006-01-01

    Background The HIV-1 Rev protein is a key component in the early to late switch in HIV-1 splicing from early intronless (e.g. tat, rev) to late intron-containing Rev-dependent (e.g. gag, vif, env) transcripts. Previous results suggested that cis-acting sequences and inefficient 5' and 3' splice sites are a prerequisite for Rev function. However, we and other groups have shown that two of the HIV-1 5' splice sites, D1 and D4, are efficiently used in vitro and in vivo. Here, we focus on the efficiency of the HIV-1 3' splice sites taking into consideration to what extent their intrinsic efficiencies are modulated by their downstream cis-acting exonic sequences. Furthermore, we delineate their role in RNA stabilization and Rev function. Results In the presence of an efficient upstream 5' splice site the integrity of the 3' splice site is not essential for Rev function whereas an efficient 3' splice site impairs Rev function. The detrimental effect of a strong 3' splice site on the amount of Rev-dependent intron-containing HIV-1 glycoprotein coding (env) mRNA is not compensatable by weakening the strength of the upstream 5' splice site. Swapping the HIV-1 3' splice sites in an RRE-containing minigene, we found a 3' splice site usage which was variably dependent on the presence of the usual downstream exonic sequence. The most evident activation of 3' splice site usage by its usual downstream exonic sequence was observed for 3' splice site A1 which was turned from an intrinsic very weak 3' splice site into the most active 3' splice site, even abolishing Rev activity. Performing pull-down experiments with nuclear extracts of HeLa cells we identified a novel ASF/SF2-dependent exonic splicing enhancer (ESE) within HIV-1 exon 2 consisting of a heptameric sequence motif occurring twice (M1 and M2) within this short non-coding leader exon. Single point mutation of M1 within an infectious molecular clone is detrimental for HIV-1 exon 2 recognition without affecting Rev

  4. Synthetic Protocells to Mimic and Test Cell Function

    PubMed Central

    Xu, Jian; Sigworth, Fred J.

    2010-01-01

    Synthetic protocells provide a new means to probe, mimic and deconstruct cell behavior; they are a powerful tool to quantify cell behavior and a useful platform to explore nanomedicine. Protocells are not simple particles; they mimic cell design and typically consist of a stabilized lipid bilayer with membrane proteins. With a finite number of well characterized components, protocells can be designed to maximize useful outputs. Energy conversion in cells is an intriguing output; many natural cells convert transmembrane ion gradients into electricity by membrane-protein regulated ion transport. Here, a synthetic cell system comprising two droplets separated by a lipid bilayer is described that functions as a biological battery. The factors that affect its electrogenic performance are explained and predicted by coupling equations of the electrodes, transport proteins and membrane behavior. We show that the output of such biological batteries can reach an energy density of 6.9 × 106 J·m−3 which is ≈ 5 % of the volumetric energy density of a lead-acid battery. The configuration with maximum power density has an energy conversion efficiency of 10 %. PMID:20217710

  5. Synthetic protocells to mimic and test cell function.

    PubMed

    Xu, Jian; Sigworth, Fred J; LaVan, David A

    2010-01-01

    Synthetic protocells provide a new means to probe, mimic and deconstruct cell behavior; they are a powerful tool to quantify cell behavior and a useful platform to explore nanomedicine. Protocells are not simple particles; they mimic cell design and typically consist of a stabilized lipid bilayer with membrane proteins. With a finite number of well characterized components, protocells can be designed to maximize useful outputs. Energy conversion in cells is an intriguing output; many natural cells convert transmembrane ion gradients into electricity by membrane-protein regulated ion transport. Here, a synthetic cell system comprising two droplets separated by a lipid bilayer is described that functions as a biological battery. The factors that affect its electrogenic performance are explained and predicted by coupling equations of the electrodes, transport proteins and membrane behavior. We show that the output of such biological batteries can reach an energy density of 6.9 x 10(6) J m(-3), which is approximately 5% of the volumetric energy density of a lead-acid battery. The configuration with maximum power density has an energy conversion efficiency of 10%. PMID:20217710

  6. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  7. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion.

    PubMed

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-06-15

    Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  8. Follicular dendritic cell function and murine AIDS.

    PubMed Central

    Masuda, A; Burton, G F; Fuchs, B A; Bhogal, B S; Rupper, R; Szakal, A K; Tew, J G

    1994-01-01

    Infection of mice with LP-BM5 elicits an immunodeficiency state referred to as murine acquired immune deficiency syndrome (MAIDS). Shortly after infection, retrovirus particles become associated with follicular dendritic cells (FDC) and this study was undertaken to determine whether retroviruses alter FDC functions. The FDC functions examined included the ability to: (1) retain antigen (Ag) trapped prior to infection; (2) trap new Ag after infection; (3) maintain specific IgG responses; and (4) provide co-stimulatory signals to B cells. Mice were infected with LP-BM5 and the ability of their FDC to trap and retain 125I-Ag (HSA) was assessed. Serum anti-HSA levels were monitored and FDC co-stimulatory activity was indicated by increased B-cell proliferation. HSA trapped on FDC prior to infection began to disappear by 3 weeks and was practically gone by 6 weeks. Serum anti-HSA titres were maintained normally for about 3 weeks after infection and then declined precipitously. The ability of FDC to trap new Ag began to disappear around the second and third week of infection and was markedly depressed by the fourth week. However, FDC recovered from infected mice retained their ability to co-stimulate anti-mu- and interleukin-4 (IL-4)-activated B cells throughout a 5-week period. In short, the ability of FDC to trap and retain specific Ag and maintain specific antibody levels was markedly depressed after retrovirus infection. However, FDC from infected mice continued to provide co-stimulatory signals and these signals may contribute to the lymphadenopathy and splenomegaly characteristic of MAIDS. Images Figure 4 PMID:8132218

  9. Small but Powerful: Top Predator Local Extinction Affects Ecosystem Structure and Function in an Intermittent Stream

    PubMed Central

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  10. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    PubMed

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  11. Epoxyeicosatrienoic Acids Affect Electrolyte Transport in Renal Tubular Epithelial Cells: Dependence on Cyclooxygenase and Cell Polarity

    PubMed Central

    Nüsing, Rolf M.; Schweer, Horst; Fleming, Ingrid; Zeldin, Darryl C.; Wegmann, Markus

    2007-01-01

    We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, MDCK C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short circuit current (Isc) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Further, both a Cl−-free bath solution and the Ca2+ antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE2 receptors EP2, EP3, and EP4 was demonstrated, apically added PGE2 was ineffective and basolaterally added PGE2 caused a different kinetics in ion transport compared to 5,6-EET. Moreover, PGE2 sythesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE1 in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE1. 5,6-epoxy-PGE1 the precursor of 5,6-dihydroxy-PGE1, caused a similar ion transport as 5,6-EET. Cytochrome P450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl-transport in renal distal tubular cells independent of PGE2 but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE1 by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney. PMID:17494091

  12. Epoxyeicosatrienoic acids affect electrolyte transport in renal tubular epithelial cells: dependence on cyclooxygenase and cell polarity.

    PubMed

    Nüsing, Rolf M; Schweer, Horst; Fleming, Ingrid; Zeldin, Darryl C; Wegmann, Markus

    2007-07-01

    We investigated the effects of epoxyeicosatrienoic acids (EETs) on ion transport in the polarized renal distal tubular cell line, Madin-Darby canine kidney (MDCK) C7. Of the four EET regioisomers (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) studied, only apical, but not basolateral, application of 5,6-EET increased short-circuit current (I(sc)) with kinetics similar to those of arachidonic acid. The ion transport was blocked by preincubation with the cyclooxygenase inhibitor indomethacin or with the chloride channel blocker NPPB. Furthermore, both a Cl(-)-free bath solution and the Ca(2+) antagonist verapamil blocked 5,6-EET-induced ion transport. Although the presence of the PGE(2) receptors EP2, EP3, and EP4 was demonstrated, apically added PGE(2) was ineffective and basolaterally added PGE(2) caused a different kinetics in ion transport compared with 5,6-EET. Moreover, PGE(2) synthesis in MDCK C7 cells was unaffected by 5,6-EET treatment. GC/MS/MS analysis of cell supernatants revealed the presence of the biologically inactive 5,6-dihydroxy-PGE(1) in 5,6-EET-treated cells, but not in control cells. Indomethacin suppressed the formation of 5,6-dihydroxy-PGE(1). 5,6-Epoxy-PGE(1), the precursor of 5,6-dihydroxy-PGE(1), caused a similar ion transport as 5,6-EET. Cytochrome P-450 enzymes homolog to human CYP2C8, CYP2C9, and CYP2J2 protein were detected immunologically in the MDCK C7 cells. Our findings suggest that 5,6-EET affects Cl(-) transport in renal distal tubular cells independent of PGE(2) but by a mechanism, dependent on its conversion to 5,6-epoxy-PGE(1) by cyclooxygenase. We suggest a role for this P450 epoxygenase product in the regulation of electrolyte transport, especially as a saluretic compound acting from the luminal side of tubular cells in the mammalian kidney. PMID:17494091

  13. Potato snakin-1 gene silencing affects cell division, primary metabolism, and cell wall composition.

    PubMed

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  14. Group I PAK inhibitor IPA-3 induces cell death and affects cell adhesivity to fibronectin in human hematopoietic cells.

    PubMed

    Kuželová, Kateřina; Grebeňová, Dana; Holoubek, Aleš; Röselová, Pavla; Obr, Adam

    2014-01-01

    P21-activated kinases (PAKs) are involved in the regulation of multiple processes including cell proliferation, adhesion and migration. However, the current knowledge about their function is mainly based on results obtained in adherent cell types. We investigated the effect of group I PAK inhibition using the compound IPA-3 in a variety of human leukemic cell lines (JURL-MK1, MOLM-7, K562, CML-T1, HL-60, Karpas-299, Jurkat, HEL) as well as in primary blood cells. IPA-3 induced cell death with EC50 ranging from 5 to more than 20 μM. Similar range was found for IPA-3-mediated dephosphorylation of a known PAK downstream effector, cofilin. The cell death was associated with caspase-3 activation, PARP cleavage and apoptotic DNA fragmentation. In parallel, 20 μM IPA-3 treatment induced rapid and marked decrease of the cell adhesivity to fibronectin. Per contra, partial reduction of PAK activity using lower dose IPA-3 or siRNA resulted in a slight increase in the cell adhesivity. The changes in the cell adhesivity were also studied using real-time microimpedance measurement and by interference reflection microscopy. Significant differences in the intracellular IPA-3 level among various cell lines were observed indicating that an active mechanism is involved in IPA-3 transport. PMID:24664099

  15. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells.

    PubMed

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. PMID:25193078

  16. Cholinergic and serotonergic modulations differentially affect large-scale functional networks in the mouse brain.

    PubMed

    Shah, Disha; Blockx, Ines; Keliris, Georgios A; Kara, Firat; Jonckers, Elisabeth; Verhoye, Marleen; Van der Linden, Annemie

    2016-07-01

    Resting-state functional MRI (rsfMRI) is a widely implemented technique used to investigate large-scale topology in the human brain during health and disease. Studies in mice provide additional advantages, including the possibility to flexibly modulate the brain by pharmacological or genetic manipulations in combination with high-throughput functional connectivity (FC) investigations. Pharmacological modulations that target specific neurotransmitter systems, partly mimicking the effect of pathological events, could allow discriminating the effect of specific systems on functional network disruptions. The current study investigated the effect of cholinergic and serotonergic antagonists on large-scale brain networks in mice. The cholinergic system is involved in cognitive functions and is impaired in, e.g., Alzheimer's disease, while the serotonergic system is involved in emotional and introspective functions and is impaired in, e.g., Alzheimer's disease, depression and autism. Specific interest goes to the default-mode-network (DMN), which is studied extensively in humans and is affected in many neurological disorders. The results show that both cholinergic and serotonergic antagonists impaired the mouse DMN-like network similarly, except that cholinergic modulation additionally affected the retrosplenial cortex. This suggests that both neurotransmitter systems are involved in maintaining integrity of FC within the DMN-like network in mice. Cholinergic and serotonergic modulations also affected other functional networks, however, serotonergic modulation impaired the frontal and thalamus networks more extensively. In conclusion, this study demonstrates the utility of pharmacological rsfMRI in animal models to provide insights into the role of specific neurotransmitter systems on functional networks in neurological disorders. PMID:26195064

  17. An investigation on pharmacy functions and services affecting satisfaction of patients with prescriptions in community pharmacies.

    PubMed

    Sakurai, Hidehiko; Nakajima, Fumio; Tada, Yuichirou; Yoshikawa, Emi; Iwahashi, Yoshiki; Fujita, Kenji; Hayase, Yukitoshi

    2009-05-01

    Various functions expected by patient expects are needed with progress in the system for separation of dispensing and prescribing functions. In this investigation, the relationship between patient satisfaction and pharmacy function were analyzed quantitatively. A questionnaire survey was conducted in 178 community pharmacies. Questions on pharmacy functions and services totaled 87 items concerning information service, amenities, safety, personnel training, etc. The questionnaires for patients had five-grade scales and composed 11 items (observed variables). Based on the results, "the percentage of satisfied patients" was determined. Multivariate analysis was performed to investigate the relationship between patient satisfaction and pharmacy functions or services provided, to confirm patient's evaluation of the pharmacy, and how factors affected comprehensive satisfaction. In correlation analysis, "the number of pharmacists" and "comprehensive satisfaction" had a negative correlation. Other interesting results were obtained. As a results of factor analysis, three latent factors were obtained: the "human factor," "patients' convenience," and "environmental factor," Multiple regression analysis showed that the "human factor" affected "comprehensive satisfaction" the most. Various pharmacy functions and services influence patient satisfaction, and improvement in their quality increases patient satisfaction. This will result in the practice of patient-centered medicine. PMID:19420889

  18. Novel cell culture device enabling three-dimensional cell growth and improved cell function.

    PubMed

    Bokhari, Maria; Carnachan, Ross J; Cameron, Neil R; Przyborski, Stefan A

    2007-03-23

    A better understanding of cell biology and cell-cell interactions requires three-dimensional (3-D) culture systems that more closely represent the natural structure and function of tissues in vivo. Here, we present a novel device that provides an environment for routine 3-D cell growth in vitro. We have developed a thin membrane of polystyrene scaffold with a well defined and uniform porous architecture and have adapted this material for cell culture applications. We have exemplified the application of this technology by growing HepG2 liver cells on 2- and 3-D substrates. The performance of HepG2 cells grown on scaffolds was significantly enhanced compared to functional activity of cells grown on 2-D plastic. The incorporation of thin membranes of porous polystyrene to create a novel device has been successfully demonstrated as a new 3-D cell growth technology for routine use in cell culture. PMID:17276400

  19. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells

    SciTech Connect

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53{sup −/−} NE-4Cs). We determined the effect of LPS as a model of inflammation in p53{sup −/−} NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53{sup −/−} NE-4Cs and in LPS-stimulated JMJD2A-kd p53{sup −/−} NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. - Highlights: • Significant up-regulation of epigenetic modifier JMJD2A mRNA upon LPS treatment. • Inhibition of JMJD2A attenuated key inflammatory and tumourigenic genes. • Establishing IPA based functional genomics in JMJD2A-attenuated p53{sup

  20. Functions and sources of perceived social support among children affected by HIV/AIDS in China.

    PubMed

    Zhao, Guoxiang; Li, Xiaoming; Fang, Xiaoyi; Zhao, Junfeng; Hong, Yan; Lin, Xiuyun; Stanton, Bonita

    2011-06-01

    While the relationship between perceived social support (PSS) and psychosocial well-being has been well documented in the global literature, existing studies also suggest the existence of multiple domains in definition and measurement of PSS. The current study, utilizing data from 1299 rural children affected by HIV/AIDS in central China, examines the relative importance of PSS functional measures (informational/emotional, material/tangible, affectionate, and social interaction) and PSS structural measures (family/relatives, teachers, friends, and significant others) in predicting psychosocial outcomes including internalizing problems, externalizing problems, and educational resilience. Both functional and structural measures of PSS provided reliable measures of related but unique aspects of PSS. The findings of the current study confirmed the previous results that PSS is highly correlated with children's psychosocial well-being and such correlations vary by functions and sources of the PSS as well as different psychosocial outcomes. The findings in the current study suggested the roles of specific social support functions or resources may need to be assessed in relation to specific psychosocial outcome and the context of children's lives. The strong association between PSS and psychosocial outcomes underscores the importance of adequate social support to alleviate stressful life events and improve psychosocial well-being of children affected by HIV/AIDS. Meanwhile, the study findings call for gender and developmentally appropriate and situation-specific social support for children and families affected by HIV/AIDS. PMID:21287421

  1. Exogenous gangliosides may affect methylation mechanisms in neuronal cell cultures

    SciTech Connect

    Ferret, B.; Hubsch, A.; Dreyfus, H.; Massarelli, R. )

    1991-02-01

    Primary neurons in culture from chick embryo cerebral hemispheres were treated with a mixture of gangliosides added to the growth medium (final concentration: 10(-5)M and 10(-8)M) from the 3rd to the 6th day in vitro. Under these conditions methylation processes measured with (3H) and (35S) methionine and (3H)ethanolamine as precursors showed an increased methylation of (3H)ethanolamine containing phospholipids, a correspondent increased conversion of these compounds to (3H)choline containing phospholipids, and a general increased methylation of trichloroacetic acid precipitable macromolecules containing labeled methionine. A small increase in protein synthesis was observed after incubation of neurons with (3H)- and (35S)methionine. This was confirmed after electrophoretic separation of a protein extract with increased 3H- and 35S-labeling in protein bands with moecular weights between 50 and 60 KDaltons. A protein band of about 55 KDaltons appeared to be preferentially labelled when (3H) methionine was the precursor. The treatment with gangliosides increased the incorporation of (methyl-3H) label after incubation of neurons with (3H) methionine, into total DNA and decreased that of total RNA. The treatment of neurons in culture with exogenous gangliosides hence affects differently methylation processes, a finding which may confirm the involvement of gangliosides on the intracellular mediation of neuronal information mechanisms.

  2. Phenotype and function of nasal dendritic cells

    PubMed Central

    Lee, Haekyung; Ruane, Darren; Law, Kenneth; Ho, Yan; Garg, Aakash; Rahman, Adeeb; Esterházy, Daria; Cheong, Cheolho; Goljo, Erden; Sikora, Andrew G.; Mucida, Daniel; Chen, Benjamin; Govindraj, Satish; Breton, Gaëlle; Mehandru, Saurabh

    2015-01-01

    Intranasal vaccination generates immunity across local, regional and distant sites. However, nasal dendritic cells (DC), pivotal for the induction of intranasal vaccine- induced immune responses, have not been studied in detail. Here, using a variety of parameters, we define nasal DCs in mice and humans. Distinct subsets of “classical” DCs, dependent on the transcription factor zbtb46 were identified in the murine nose. The murine nasal DCs were FLT3 ligand-responsive and displayed unique phenotypic and functional characteristics including the ability to present antigen, induce an allogeneic T cell response and migrate in response to LPS or live bacterial pathogens. Importantly, in a cohort of human volunteers, BDCA-1+ DCs were observed to be the dominant nasal DC population at steady state. During chronic inflammation, the frequency of both BDCA-1+ and BDCA-3hi DCs was reduced in the nasal tissue, associating the loss of these immune sentinels with chronic nasal inflammation. The present study is the first detailed description of the phenotypic, ontogenetic and functional properties of nasal DCs and will inform the design of preventative immunization strategies as well as therapeutic modalities against chronic rhinosinusitis. PMID:25669151

  3. TMC function in hair cell transduction.

    PubMed

    Holt, Jeffrey R; Pan, Bifeng; Koussa, Mounir A; Asai, Yukako

    2014-05-01

    Transmembrane channel-like (TMC) proteins 1 and 2 are necessary for hair cell mechanotransduction but their precise function is controversial. A growing body of evidence supports a direct role for TMC1 and TMC2 as components of the transduction complex. However, a number of important questions remain and alternate hypotheses have been proposed. Here we present an historical overview of the identification and cloning of Tmc genes, a discussion of mutations in TMC1 that cause deafness in mice and humans and a brief review of other members of the Tmc gene superfamily. We also examine expression of Tmc mRNAs and localization of the protein products. The review focuses on potential functions of TMC proteins and the evidence from Beethoven mice that suggests a direct role for TMC1 in hair cell mechanotransduction. Data that support alternate interpretations are also considered. The article concludes with a discussion of outstanding questions and future directions for TMC research. This article is part of a Special Issue entitled . PMID:24423408

  4. Origins of Protein Functions in Cells

    NASA Technical Reports Server (NTRS)

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  5. Human epithelial cells exposed to functionalized multiwalled carbon nanotubes: interactions and cell surface modifications.

    PubMed

    Fanizza, C; Casciardi, S; Incoronato, F; Cavallo, D; Ursini, C L; Ciervo, A; Maiello, R; Fresegna, A M; Marcelloni, A M; Lega, D; Alvino, A; Baiguera, S

    2015-09-01

    With the expansion of the production and applications of multiwalled carbon nanotubes (MWCNTs) in several industrial and science branches, the potential adverse effects on human health have attracted attention. Numerous studies have been conducted to evaluate how chemical functionalization may affect MWCNT effects; however, controversial data have been reported, showing either increased or reduced toxicity. In particular, the impact of carboxylation on MWCNT cytotoxicity is far from being completely understood. The aim of this work was the evaluation of the modifications induced by carboxylated-MWCNTs (MWCNTs-COOH) on cell surface and the study of cell-MWCNT-COOH interactions by means of field emission scanning electron microscope (FESEM). Human pulmonary epithelial cells (A549) were incubated with MWCNTs-COOH for different exposure times and concentrations (10 μg/mL for 1, 2, 4 h; 5, 10, 20 μg/mL for 24 h). At short incubation time, MWCNTs-COOH were easily observed associated with plasma membrane and in contact with microvilli. After 24 h exposure, FESEM analysis revealed that MWCNTs-COOH induced evident changes in the cellular surface in comparison to control cells: treated cells showed blebs, holes and a depletion of the microvilli density in association with structure modifications, such as widening and/or lengthening. In particular, an increase of cells showing holes and microvilli structure alterations was observed at 20 μg/mL concentration. FESEM analysis showed nanotube agglomerates, of different sizes, entering into the cell with two different mechanisms: inward bending of the membrane followed by nanotube sinking, and nanotube internalization directly through holes. The observed morphological microvilli modifications, induced by MWCNTs-COOH, could affect epithelial functions, such as the control of surfactant production and secretion, leading to pathological conditions, such as alveolar proteinosis. More detailed studies will be, however, necessary to

  6. Testicular Sertoli cell function in ankylosing spondylitis.

    PubMed

    Almeida, Breno Pires; Saad, Carla Gonçalves Schahin; Souza, Fernando Henrique Carlos; Moraes, Julio Cesar Bertacini; Nukumizu, Lucia Akemi; Viana, Vilma Santos Trindade; Bonfá, Eloísa; Silva, Clovis Artur

    2013-07-01

    To assess the testicular Sertoli cell function according to inhibin B levels in ankylosing spondylitis (AS) patients and the possible effect of anti-TNF therapy on this hormone production, 20 consecutive AS patients and 24 healthy controls were evaluated. At study entry, AS patients were not receiving sulfasalazine/methotrexate and never have used biological/cytotoxic agents. They were assessed by serum inhibin B levels, hormone profile, urological examination, testicular ultrasound, seminal parameters, and clinical features. Ten of these patients received anti-TNF treatment and they were reevaluated for Sertoli function and disease parameters at 6 months. Four of them agreed to repeat sperm analysis. At study entry, the median of inhibin B (68 vs. 112.9 pg/mL, p = 0.111), follicle-stimulating hormone levels (3.45 vs. 3.65 IU/L, p = 0.795), and the other hormones was comparable in AS patients and controls (p > 0.05). Sperm analysis was similar in AS patients and controls (p > 0.05) with one AS patient presenting borderline low inhibin B levels. Further analysis at 6 months of the 10 patients referred for anti-TNF therapy, including one with borderline inhibin B, revealed that median inhibin B levels remained stable (116.5 vs. 126.5 pg/mL, p = 0.431) with a significant improvement in C-reactive protein (27.8 vs. 2.27 mg/L, p = 0.039). Sperm motility and concentration were preserved in the four patients who repeated this analysis after TNF blockage. In conclusion, this was the first study to report, using a specific marker, a normal testicular Sertoli cell function in AS patients with mild to moderate disease activity. PMID:23417428

  7. Antihelminthic niclosamide modulates dendritic cells activation and function.

    PubMed

    Wu, Chieh-Shan; Li, Yi-Rong; Chen, Jeremy J W; Chen, Ying-Che; Chu, Chiang-Liang; Pan, I-Hong; Wu, Yu-Shan; Lin, Chi-Chen

    2014-01-01

    Dendritic cells (DCs) link the sensing of the environment by the innate immune system to the initiation of adaptive immune responses. Accordingly, DCs are considered to be a major target in the development of immunomodulating compounds. In this study, the effect of niclosamide, a Food and Drug Administration-approved antihelminthic drug, on the activation of lipopolysaccharide (LPS)-stimulated murine bone marrow-derived DCs was examined. Our experimental results show that niclosamide reduced the pro-inflammatory cytokine and chemokine expression of LPS-activated DCs. In addition, niclosamide also affected the expression of MHC and costimulatory molecules and influenced the ability of the cells to take up antigens. Therefore, in mixed cell cultures composed of syngeneic OVA-specific T cells and DCs, niclosamide-treated DCs showed a decreased ability to stimulate T cell proliferation and IFN-γ production. Furthermore, intravenous injection of niclosamide also attenuated contact hypersensitivity (CHS) in mice during sensitization with 2,4-dinitro-1-fluorobenzene. Blocking the LPS-induced activation of MAPK-ERK, JNK and NF-κB may contribute to the inhibitory effect of niclosamide on DC activation. Collectively, our findings suggest that niclosamide can manipulate the function of DCs. These results provide new insight into the immunopharmacological role of niclosamide and suggest that it may be useful for the treatment of chronic inflammatory disorders or DC-mediated autoimmune diseases. PMID:24561310

  8. Allelic and copy-number variations of FcγRs affect granulocyte function and susceptibility for autoimmune blistering diseases.

    PubMed

    Recke, Andreas; Vidarsson, Gestur; Ludwig, Ralf J; Freitag, Miriam; Möller, Steffen; Vonthein, Reinhard; Schellenberger, Julia; Haase, Ozan; Görg, Siegfried; Nebel, Almut; Flachsbart, Friederike; Schreiber, Stefan; Lieb, Wolfgang; Gläser, Regine; Benoit, Sandrine; Sárdy, Miklós; Eming, Rüdiger; Hertl, Michael; Zillikens, Detlef; König, Inke R; Schmidt, Enno; Ibrahim, Saleh

    2015-07-01

    Low-affinity Fcγ receptors (FcγR) bridge innate and adaptive immune responses. In many autoimmune diseases, these receptors act as key mediators of the pathogenic effects of autoantibodies. Genes encoding FcγR exhibit frequent variations in sequence and gene copy number that influence their functional properties. FcγR variations also affect the susceptibility to systemic autoimmunity, e.g. systemic lupus erythematosus and rheumatoid arthritis. This raises the question whether FcγR variations are also associated with organ-specific autoimmunity, particularly autoantibody-mediated diseases, such as subepidermal autoimmune blistering diseases (AIBD). A multitude of evidence suggests a pathogenic role of neutrophil granulocyte interaction with autoantibodies via FcγR. In a two-stage study, we analyzed whether the FcγR genotype affects neutrophil function and mRNA expression, and consequently, bullous pemphigoid (BP) disease risk. We compared this to findings in pemphigus vulgaris/foliaceus (PV/PF), two Fc-independent AIBDs. Our results indicate that both allele and copy number variation of FcγR genes affect FcγR mRNA expression and reactive oxygen species (ROS) release by granulocytes. Susceptibility of BP was associated with FcγR genotypes that led to a decreased ROS release by neutrophils, indicating an unexpected protective role for these cells. BP and PV/PF differed substantially regarding the FcγR genotype association patterns, pointing towards different disease etiologies. PMID:26032265

  9. Cognitive Function in Adolescent Patients with Anorexia Nervosa and Unipolar Affective Disorders.

    PubMed

    Sarrar, Lea; Holzhausen, Martin; Warschburger, Petra; Pfeiffer, Ernst; Lehmkuhl, Ulrike; Schneider, Nora

    2016-05-01

    Studies have shown impairments in cognitive function among adult patients with anorexia nervosa (AN) and affective disorders (AD). The association between cognitive dysfunctions, AN and AD as well as the specificity for these psychiatric diagnoses remains unclear. Therefore, we examined cognitive flexibility and processing speed in 47 female adolescent patients with AN, 21 female adolescent patients with unipolar affective disorders and 48 female healthy adolescents. All participants completed a neuropsychological test battery. There were no significant group differences regarding cognitive function, except for psychomotor processing speed with poorer performance in patients with AN. A further analysis revealed that all groups performed with the normal range, although patients with AN were over represented in the poorest performing quartile. We found no severe cognitive impairments in either patient group. Nevertheless, belonging to the AN group contributed significantly to poor performances in neuropsychological tasks. Therefore, we conclude that the risk for cognitive impairments is slightly higher for patients with AN. PMID:26695683

  10. The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders.

    PubMed

    Carpenter, Joanne S; Robillard, Rébecca; Lee, Rico S C; Hermens, Daniel F; Naismith, Sharon L; White, Django; Whitwell, Bradley; Scott, Elizabeth M; Hickie, Ian B

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16-30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18-30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a 'long sleep' cluster, a 'disrupted sleep' cluster, and a 'delayed and disrupted sleep' cluster. Circadian clusters included a 'strong circadian' cluster, a 'weak circadian' cluster, and a 'delayed circadian' cluster. Medication use differed between clusters. The 'long sleep' cluster displayed significantly worse visual memory performance compared to the 'disrupted sleep' cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments and improvement of functioning in

  11. The Relationship between Sleep-Wake Cycle and Cognitive Functioning in Young People with Affective Disorders

    PubMed Central

    Carpenter, Joanne S.; Robillard, Rébecca; Lee, Rico S. C.; Hermens, Daniel F.; Naismith, Sharon L.; White, Django; Whitwell, Bradley; Scott, Elizabeth M.; Hickie, Ian B.

    2015-01-01

    Although early-stage affective disorders are associated with both cognitive dysfunction and sleep-wake disruptions, relationships between these factors have not been specifically examined in young adults. Sleep and circadian rhythm disturbances in those with affective disorders are considerably heterogeneous, and may not relate to cognitive dysfunction in a simple linear fashion. This study aimed to characterise profiles of sleep and circadian disturbance in young people with affective disorders and examine associations between these profiles and cognitive performance. Actigraphy monitoring was completed in 152 young people (16–30 years; 66% female) with primary diagnoses of affective disorders, and 69 healthy controls (18–30 years; 57% female). Patients also underwent detailed neuropsychological assessment. Actigraphy data were processed to estimate both sleep and circadian parameters. Overall neuropsychological performance in patients was poor on tasks relating to mental flexibility and visual memory. Two hierarchical cluster analyses identified three distinct patient groups based on sleep variables and three based on circadian variables. Sleep clusters included a ‘long sleep’ cluster, a ‘disrupted sleep’ cluster, and a ‘delayed and disrupted sleep’ cluster. Circadian clusters included a ‘strong circadian’ cluster, a ‘weak circadian’ cluster, and a ‘delayed circadian’ cluster. Medication use differed between clusters. The ‘long sleep’ cluster displayed significantly worse visual memory performance compared to the ‘disrupted sleep’ cluster. No other cognitive functions differed between clusters. These results highlight the heterogeneity of sleep and circadian profiles in young people with affective disorders, and provide preliminary evidence in support of a relationship between sleep and visual memory, which may be mediated by use of antipsychotic medication. These findings have implications for the personalisation of treatments

  12. Amygdala Perfusion Is Predicted by Its Functional Connectivity with the Ventromedial Prefrontal Cortex and Negative Affect

    PubMed Central

    Coombs III, Garth; Loggia, Marco L.; Greve, Douglas N.; Holt, Daphne J.

    2014-01-01

    Background Previous studies have shown that the activity of the amygdala is elevated in people experiencing clinical and subclinical levels of anxiety and depression (negative affect). It has been proposed that a reduction in inhibitory input to the amygdala from the prefrontal cortex and resultant over-activity of the amygdala underlies this association. Prior studies have found relationships between negative affect and 1) amygdala over-activity and 2) reduced amygdala-prefrontal connectivity. However, it is not known whether elevated amygdala activity is associated with decreased amygdala-prefrontal connectivity during negative affect states. Methods Here we used resting-state arterial spin labeling (ASL) and blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) in combination to test this model, measuring the activity (regional cerebral blood flow, rCBF) and functional connectivity (correlated fluctuations in the BOLD signal) of one subregion of the amygdala with strong connections with the prefrontal cortex, the basolateral nucleus (BLA), and subsyndromal anxiety levels in 38 healthy subjects. Results BLA rCBF was strongly correlated with anxiety levels. Moreover, both BLA rCBF and anxiety were inversely correlated with the strength of the functional coupling of the BLA with the caudal ventromedial prefrontal cortex. Lastly, BLA perfusion was found to be a mediator of the relationship between BLA-prefrontal connectivity and anxiety. Conclusions These results show that both perfusion of the BLA and a measure of its functional coupling with the prefrontal cortex directly index anxiety levels in healthy subjects, and that low BLA-prefrontal connectivity may lead to increased BLA activity and resulting anxiety. Thus, these data provide key evidence for an often-cited circuitry model of negative affect, using a novel, multi-modal imaging approach. PMID:24816735

  13. DISC1 gene and affective psychopathology: a combined structural and functional MRI study.

    PubMed

    Opmeer, Esther M; van Tol, Marie-José; Kortekaas, Rudie; van der Wee, Nic J A; Woudstra, Saskia; van Buchem, Mark A; Penninx, Brenda W; Veltman, Dick J; Aleman, André

    2015-02-01

    The gene Disrupted-In-Schizophrenia-1 (DISC1) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISC1 differentially modulates brain function during executive and memory processing, and morphology in regions relevant for depression and anxiety disorders (affective disorders). 128 participants, with (n = 103) and without (controls; n = 25) affective disorders underwent genotyping for Ser704Cys (with Cys-allele considered as risk-allele) and structural and functional (f) Magnetic Resonance Imaging (MRI) during visuospatial planning and emotional episodic memory tasks. For both voxel-based morphometry and fMRI analyses, we investigated the effect of genotype in controls and explored genotypeXdiagnosis interactions. Results are reported at p < 0.05 FWE small volume corrected. In controls, Cys-carriers showed smaller bilateral (para)hippocampal volumes compared with Ser-homozygotes, and lower activation in the anterior cingulate cortex (ACC) and dorsolateral PFC during visuospatial planning. In anxiety patients, Cys-carriers showed larger (para)hippocampal volumes and more ACC activation during visuospatial planning. In depressive patients, no effect of genotype was observed and overall, no effect of genotype on episodic memory processing was detected. We demonstrated that Ser704Cys-genotype influences (para)hippocampal structure and functioning the dorsal PFC during executive planning, most prominently in unaffected controls. Results suggest that presence of psychopathology moderates Ser704Cys effects. PMID:25533973

  14. Affective Response to a Loved One's Pain: Insula Activity as a Function of Individual Differences

    PubMed Central

    Mazzola, Viridiana; Latorre, Valeria; Petito, Annamaria; Gentili, Nicoletta; Fazio, Leonardo; Popolizio, Teresa; Blasi, Giuseppe; Arciero, Giampiero; Bondolfi, Guido

    2010-01-01

    Individual variability in emotion processing may be associated with genetic variation as well as with psychological predispositions such as dispositional affect styles. Our previous fMRI study demonstrated that amygdala reactivity was independently predicted by affective-cognitive styles (phobic prone or eating disorders prone) and genotype of the serotonin transporter in a discrimination task of fearful facial expressions. Since the insula is associated with the subjective evaluation of bodily states and is involved in human feelings, we explored whether its activity could also vary in function of individual differences. In the present fMRI study, the association between dispositional affects and insula reactivity has been examined in two groups of healthy participants categorized according to affective-cognitive styles (phobic prone or eating disorders prone). Images of the faces of partners and strangers, in both painful and neutral situations, were used as visual stimuli. Interaction analyses indicate significantly different activations in the two groups in reaction to a loved one's pain: the phobic prone group exhibited greater activation in the left posterior insula. These results demonstrate that affective-cognitive style is associated with insula activity in pain empathy processing, suggesting a greater involvement of the insula in feelings for a certain cohort of people. In the mapping of individual differences, these results shed new light on variability in neural networks of emotion. PMID:21179564

  15. Nicotine withdrawal modulates frontal brain function during an affective Stroop task

    PubMed Central

    Modlin, Leslie; Wang, Lihong; Kozink, Rachel V.; McClernon, F. Joseph

    2013-01-01

    Background Among nicotine-dependent smokers, smoking abstinence disrupts multiple cognitive and affective processes including conflict resolution and emotional information processing (EIP). However, the neurobiological basis of abstinence effects on resolving emotional interference on cognition remains largely uncharacterized. In this study, functional magnetic resonance imaging (fMRI) was used to investigate smoking abstinence effects on emotion–cognition interactions. Methods Smokers (n=17) underwent fMRI while performing an affective Stroop task (aST) over two sessions: once following 24-h abstinence and once following smoking as usual. The aST includes trials that serially present incongruent or congruent numerical grids bracketed by neutral or negative emotional distractors and view-only emotional image trials. Statistical analyses were conducted using a statistical threshold of p<0.05 cluster corrected. Results Smoking abstinence increased Stroop blood-oxygenation-level-dependent response in the right middle frontal and rostral anterior cingulate gyri. Moreover, withdrawal-induced negative affect was associated with less activation in frontoparietal regions during negative emotional information processing; whereas, during Stroop trials, negative affect predicted greater activation in frontal regions during negative, but not neutral emotional distractor trials. Conclusion Hyperactivation in the frontal executive control network during smoking abstinence may represent a need to recruit additional executive resources to meet task demands. Moreover, abstinence-induced negative affect may disrupt cognitive control neural circuitry during EIP and place additional demands on frontal executive neural resources during cognitive demands when presented with emotionally distracting stimuli. PMID:21989805

  16. Factors Affecting the Development of Somatic Cell Nuclear Transfer Embryos in Cattle

    PubMed Central

    AKAGI, Satoshi; MATSUKAWA, Kazutsugu; TAKAHASHI, Seiya

    2014-01-01

    Nuclear transfer is a complex multistep procedure that includes oocyte maturation, cell cycle synchronization of donor cells, enucleation, cell fusion, oocyte activation and embryo culture. Therefore, many factors are believed to contribute to the success of embryo development following nuclear transfer. Numerous attempts to improve cloning efficiency have been conducted since the birth of the first sheep by somatic cell nuclear transfer. However, the efficiency of somatic cell cloning has remained low, and applications have been limited. In this review, we discuss some of the factors that affect the developmental ability of somatic cell nuclear transfer embryos in cattle. PMID:25341701

  17. [Changes of heart function after different cell type stem cell transplantation in chronic heart failure].

    PubMed

    Fan, Zhongcai; Chen, Mao; Deng, Juelin; Liu, Xiaojing; Zhang, Li; Rao, Li; Yang, Qing; Huang, Dejia

    2006-12-01

    To investigate the feasibility of introcoronary cell infusion into nonischemic heart failure (HF) heart and whether different types of stem cell transplantation would affect heart function to a similar degree. Japanese white ears rabbits were used as HF models by intravenous injection adriamycin. Autologous bone marrow mononuclear cells(BMCs), bone marrow stromal cells (MSCs), skeletal myoblasts (SMs) or culture medium were infused into coronary arteries respectively by occluding the root of ascending aorta. The mortality during and 4 weeks after the procedure the mortality was 7.1% and 16.7% respectively. After 4 weeks, the ejection fraction (EF) in BMCs group had significant improvement (P < 0.05, n=8). No significant difference was seen in MSCs (n =8), SMs (n=6) and sham groups (n=8) compared with pretransplantation (P > 0.05). In sham group,the left ventricular endostolic diameter (LVED) had significant enlargement (P < 0.05), No significant difference was seen in MBCs, MSCs and SMs groups compared with pretransplantation (P > 0.05). Immunofluorescence revealed de novo expression of cardiac troponin I in BMCs and MSCs groups, cardiac troponin I was not detected in SMs group. In conclusions, intracoronary cell transplantation could provide effective cell delivery into dilated cardiomyopathy hearts and could be a useful strategy for treating CHF, BMCs cell transplantation may be the first choice in all the above cell types. PMID:17228727

  18. Altered Disrupted-in-Schizophrenia-1 Function Affects the Development of Cortical Parvalbumin Interneurons by an Indirect Mechanism.

    PubMed

    Borkowska, Malgorzata; Millar, J Kirsty; Price, David J

    2016-01-01

    Disrupted-in-Schizophrenia-1 (DISC1) gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse formation and maintenance of cortical excitatory neurons. Here, the effects of two loss-of-function point mutations in the mouse Disc1 sequence (Q31L and L100P) on cortical inhibitory interneurons were investigated. None of the mutations affected the overall number of interneurons. However, the 100P, but not the 31L, mutation resulted in a significant decrease in the numbers of interneurons expressing parvalbumin mRNA and protein across the sensory cortex. To investigate role of Disc1 in regulation of parvalbumin expression, mouse wild-type Disc-1 or the 100P mutant form were electroporated in utero into cortical excitatory neurons. Overexpression of wild-type Disc1 in these cells caused increased densities of parvalbumin-expressing interneurons in the electroporated area and in areas connected with it, whereas expression of Disc1-100P did not. We conclude that the 100P mutation prevents expression of parvalbumin by a normally sized cohort of interneurons and that altering Disc1 function in cortical excitatory neurons indirectly affects parvalbumin expression by cortical interneurons, perhaps as a result of altered functional input from the excitatory neurons. PMID:27244370

  19. Altered Disrupted-in-Schizophrenia-1 Function Affects the Development of Cortical Parvalbumin Interneurons by an Indirect Mechanism

    PubMed Central

    Millar, J. Kirsty; Price, David J.

    2016-01-01

    Disrupted-in-Schizophrenia-1 (DISC1) gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse formation and maintenance of cortical excitatory neurons. Here, the effects of two loss-of-function point mutations in the mouse Disc1 sequence (Q31L and L100P) on cortical inhibitory interneurons were investigated. None of the mutations affected the overall number of interneurons. However, the 100P, but not the 31L, mutation resulted in a significant decrease in the numbers of interneurons expressing parvalbumin mRNA and protein across the sensory cortex. To investigate role of Disc1 in regulation of parvalbumin expression, mouse wild-type Disc-1 or the 100P mutant form were electroporated in utero into cortical excitatory neurons. Overexpression of wild-type Disc1 in these cells caused increased densities of parvalbumin-expressing interneurons in the electroporated area and in areas connected with it, whereas expression of Disc1-100P did not. We conclude that the 100P mutation prevents expression of parvalbumin by a normally sized cohort of interneurons and that altering Disc1 function in cortical excitatory neurons indirectly affects parvalbumin expression by cortical interneurons, perhaps as a result of altered functional input from the excitatory neurons. PMID:27244370

  20. Neutrophil function in children following allogeneic hematopoietic stem cell transplant.

    PubMed

    Kent, Michael W; Kelher, Marguerite R; Silliman, Christopher C; Quinones, Ralph

    2016-08-01

    HSCT is a lifesaving procedure for children with malignant and non-malignant conditions. The conditioning regimen renders the patient severely immunocompromised and recovery starts with neutrophil (PMN) engraftment. We hypothesize that children demonstrate minimal PMN dysfunction at engraftment and beyond, which is influenced by the stem cell source and the conditioning regimen. Peripheral blood was serially collected from children at 1 to 12 months following allogeneic HSCT. PMN superoxide (O2-) production, degranulation (elastase), CD11b surface expression, and phagocytosis were assessed. Twenty-five patients, mean age of 10.5 yr with 65% males, comprised the study and transplant types included: 14 unrelated cord blood stem cells (cords), seven matched related bone marrow donors, three matched unrelated bone marrow donors, and one peripheral blood progenitor cells. Engraftment occurred at 24 days. There were no significant differences between controls and patients in PMN O2- production, phagocytosis, CD11b surface expression, and total PMN elastase. Elastase release was significantly decreased <6 months vs. controls (p < 0.05) and showed normalization by six months for cords only. The conditioning regimen did not affect PMN function. PMN function returns with engraftment, save elastase release, which occurs later related to the graft source utilized, and its clinical significance is unknown. PMID:27114335

  1. Regulatory T Cells: Differentiation and Function.

    PubMed

    Plitas, George; Rudensky, Alexander Y

    2016-09-01

    The immune system of vertebrate animals has evolved to mount an effective defense against a diverse set of pathogens while minimizing transient or lasting impairment in tissue function that could result from the inflammation caused by immune responses to infectious agents. In addition, misguided immune responses to "self" and dietary antigens, as well as to commensal microorganisms, can lead to a variety of inflammatory disorders, including autoimmunity, metabolic syndrome, allergies, and cancer. Regulatory T cells expressing the X chromosome-linked transcription factor Foxp3 suppress inflammatory responses in diverse biological settings and serve as a vital mechanism of negative regulation of immune-mediated inflammation. Cancer Immunol Res; 4(9); 721-5. ©2016 AACR. PMID:27590281

  2. Some factors affecting the specific toxicity of misonidazole towards hypoxic mammalian cells.

    PubMed Central

    Stratford, I. J.; Gray, P.

    1978-01-01

    The toxic action of misonidazole towards hypoxic mammalian cells has been shown to be a function of serum concentration, with higher serum concentrations enhancing the toxic effect. Added thiols protect cells against misonidazole toxicity. In addition, the action of misonidazole on hypoxic cells labelled with 5-BUdR has been examined. Cells with incroported 5-BUdR are no more sensitive to misonidazole toxicity than are cells without label. PMID:277212

  3. Functional and Genetic Analysis of Epiplakin in Epithelial Cells.

    PubMed

    Szabo, Sandra; Wögenstein, Karl L; Fuchs, Peter

    2016-01-01

    Epiplakin is a large member (>700 kDa) of the plakin protein family and exclusively expressed in epithelial cell types. Compared to other plakin proteins epiplakin exhibits an unusual structure as it consists entirely of a variable number of consecutive plakin repeat domains (13 in humans, 16 in mice). The only binding partners of epiplakin identified so far are keratins of simple as well as of stratified epithelia. Epiplakin-deficient mice show no obvious spontaneous phenotype. However, ex vivo studies using epiplakin-deficient primary cells indicated protective functions of epiplakin in response to stress. Recent studies using stress models for organs of the gastrointestinal tract revealed that epiplakin-deficient mice develop more pronounced pancreas and liver injuries than their wild-type littermates. In addition, impaired stress-induced keratin network reorganization was observed in the affected organs, and primary epiplakin-deficient hepatocytes showed reduced tolerance for forced keratin overexpression which could be rescued by a chemical chaperone. These findings indicate protective functions of epiplakin in chaperoning disease-induced keratin reorganization. In this review, we describe some of the methods we used to analyze epiplakin's function with the focus on biochemical and ex vivo techniques. PMID:26778563

  4. Ion channels modulating mouse dendritic cell functions.

    PubMed

    Matzner, Nicole; Zemtsova, Irina M; Nguyen, Thi Xuan; Duszenko, Michael; Shumilina, Ekaterina; Lang, Florian

    2008-11-15

    Ca(2+)-mediated signal transduction pathways play a central regulatory role in dendritic cell (DC) responses to diverse Ags. However, the mechanisms leading to increased [Ca(2+)](i) upon DC activation remained ill-defined. In the present study, LPS treatment (100 ng/ml) of mouse DCs resulted in a rapid increase in [Ca(2+)](i), which was due to Ca(2+) release from intracellular stores and influx of extracellular Ca(2+) across the cell membrane. In whole-cell voltage-clamp experiments, LPS-induced currents exhibited properties similar to the currents through the Ca(2+) release-activated Ca(2+) channels (CRAC). These currents were highly selective for Ca(2+), exhibited a prominent inward rectification of the current-voltage relationship, and showed an anomalous mole fraction and a fast Ca(2+)-dependent inactivation. In addition, the LPS-induced increase of [Ca(2+)](i) was sensitive to margatoxin and ICAGEN-4, both inhibitors of voltage-gated K(+) (Kv) channels Kv1.3 and Kv1.5, respectively. MHC class II expression, CCL21-dependent migration, and TNF-alpha and IL-6 production decreased, whereas phagocytic capacity increased in LPS-stimulated DCs in the presence of both Kv channel inhibitors as well as the I(CRAC) inhibitor SKF-96365. Taken together, our results demonstrate that Ca(2+) influx in LPS-stimulated DCs occurs via Ca(2+) release-activated Ca(2+) channels, is sensitive to Kv channel activity, and is in turn critically important for DC maturation and functions. PMID:18981098

  5. Altered lysosomal positioning affects lysosomal functions in a cellular model of Huntington's disease.

    PubMed

    Erie, Christine; Sacino, Matthew; Houle, Lauren; Lu, Michael L; Wei, Jianning

    2015-08-01

    Huntington's disease (HD) is a hereditary and devastating neurodegenerative disorder caused by a mutation in the huntingtin protein. Understanding the functions of normal and mutant huntingtin protein is the key to revealing the pathogenesis of HD and developing therapeutic targets. Huntingtin plays an important role in vesicular and organelle trafficking. Lysosomes are dynamic organelles that integrate several degradative pathways and regulate the activity of mammalian target of rapamycin complex 1 (mTORC1). In the present study, we found that the perinuclear accumulation of lysosomes was increased in a cellular model of HD derived from HD knock-in mice and primary fibroblasts from an HD patient. This perinuclear lysosomal accumulation could be reversed when normal huntingtin was overexpressed in HD cells. When we further investigated the functional significance of the increased perinuclear lysosomal accumulation in HD cells, we demonstrated that basal mTORC1 activity was increased in HD cells. In addition, autophagic influx was also increased in HD cells in response to serum deprivation, which leads to premature fusion of lysosomes with autophagosomes. Taken together, our data suggest that the increased perinuclear accumulation of lysosomes may play an important role in HD pathogenesis by altering lysosomal-dependent functions. PMID:25997742

  6. Psychosocial Functioning in Depressive Patients: A Comparative Study between Major Depressive Disorder and Bipolar Affective Disorder

    PubMed Central

    Mittal, Pankaj Kumar; Swami, Mukesh Kumar

    2014-01-01

    Introduction. Major depressive disorder (MDD) and bipolar affective disorder (BAD) are among the leading causes of disability. These are often associated with widespread impairments in all domains of functioning including relational, occupational, and social. The main aim of the study was to examine and compare nature and extent of psychosocial impairment of patients with MDD and BAD during depressive phase. Methodology. 96 patients (48 in MDD group and 48 in BAD group) were included in the study. Patients were recruited in depressive phase (moderate to severe depression). Patients having age outside 18–45 years, psychotic symptoms, mental retardation, and current comorbid medical or axis-1 psychiatric disorder were excluded. Psychosocial functioning was assessed using Range of Impaired Functioning Tool (LIFE-RIFT). Results. Domains of work, interpersonal relationship, life satisfaction, and recreation were all affected in both groups, but the groups showed significant difference in global psychosocial functioning score only (P = 0.031) with BAD group showing more severe impairment. Conclusion. Bipolar depression causes higher global psychosocial impairment than unipolar depression. PMID:24744917

  7. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  8. Metabolic Regulation of Regulatory T Cell Development and Function

    PubMed Central

    Coe, David John; Kishore, Madhav; Marelli-Berg, Federica

    2014-01-01

    It is now well established that the effector T cell (Teff) response is regulated by a series of metabolic switches. Quiescent T cells predominantly require adenosine triphosphate-generating processes, whereas proliferating Teff require high metabolic flux through growth-promoting pathways, such as glycolysis. Pathways that control metabolism and immune cell function are intimately linked, and changes in cell metabolism at both the cell and system levels have been shown to enhance or suppress specific T cell effector functions. Furthermore, functionally distinct T cell subsets require distinct energetic and biosynthetic pathways to support their specific functional needs. In particular, naturally occurring regulatory T cells (Treg) are characterized by a unique metabolic signature distinct to that of conventional Teff cells. We here briefly review the signaling pathways that control Treg metabolism and how this metabolic phenotype integrates their differentiation and function. Ultimately, these metabolic features may provide new opportunities for the therapeutic modulation of unwanted immune responses. PMID:25477880

  9. The protective function of personal growth initiative among a genocide-affected population in Rwanda.

    PubMed

    Blackie, Laura E R; Jayawickreme, Eranda; Forgeard, Marie J C; Jayawickreme, Nuwan

    2015-07-01

    The aim of the current study was to investigate the extent to which individual differences in personal growth initiative (PGI) were associated with lower reports of functional impairment of daily activities among a genocide-affected population in Rwanda. PGI measures an individual's motivation to develop as a person and the extent to which he or she is active in setting goals that work toward achieving self-improvement. We found that PGI was negatively associated with functional impairment when controlling for depression, posttraumatic stress disorder, and other demographic factors. Our results suggest that PGI may constitute an important mindset for facilitating adaptive functioning in the aftermath of adversity and in the midst of psychological distress, and as such they might have practical applications for the development of intervention programs. PMID:26147518

  10. Developing fragility functions for the areas affected by the 2009 Samoa earthquake and tsunami

    NASA Astrophysics Data System (ADS)

    Gokon, H.; Koshimura, S.; Imai, K.; Matsuoka, M.; Namegaya, Y.; Nishimura, Y.

    2014-12-01

    Fragility functions in terms of flow depth, flow velocity and hydrodynamic force are developed to evaluate structural vulnerability in the areas affected by the 2009 Samoa earthquake and tsunami. First, numerical simulations of tsunami propagation and inundation are conducted to reproduce the features of tsunami inundation. To validate the results, flow depths measured in field surveys and waveforms measured by Deep-ocean Assessment and Reporting of Tsunamis (DART) gauges are utilized. Next, building damage is investigated by visually interpreting changes between pre- and post-tsunami high-resolution satellite images. Finally, the data related to tsunami features and building damage are integrated using Geographic Information System (GIS), and tsunami fragility functions are developed based on the statistical analyses. From the developed fragility functions, we quantitatively understood the vulnerability of a coastal region in American Samoa characterized by steep terrains and ria coasts.

  11. Cell adhesion property affected by cyclooxygenase and lipoxygenase: Opto-electric approach.

    PubMed

    Choi, Chang Kyoung; Sukhthankar, Mugdha; Kim, Chul-Ho; Lee, Seong-Ho; English, Anthony; Kihm, Kenneth D; Baek, Seung Joon

    2010-01-15

    Expression of cyclooxygenases (COX) and lipoxygenases (LOX) has been linked to many pathophysiological phenotypes, including cell adhesion. However, many current approaches to measure cellular changes are performed only in a fixed-time point. Since cells dynamically move in conjunction with the cell matrix, there is a pressing need for dynamic or time-dependent methods for the investigation of cell properties. In the presented study, we used stable human colorectal cancer cell lines ectopically expressing COX-1, COX-2, and 15LOX-1, to investigate whether expression of COX-1, COX-2, or 15LOX-1 would affect cell adhesion using our opto-electric methodology. In a fixed-time point experiment, only COX-1- and COX-2-expressing cells enhanced phosphorylation of focal adhesion kinase, but all the transfected cells showed invasion activity. However, in a real-time experiment using opto-electric approaches, transmitted cellular morphology was much different with tight adhesion being shown in COX-2 expressing cells, as imaged by differential interference contrast microscopy (DICM) and interference reflection contrast microscopy (IRCM). Furthermore, micro-impedance measurements showed a continued increase in both resistance and reactance of COX- and LOX-transfected cells, consistent with the imaging data. Our data indicate that both COX- and LOX-expressing cells have strong cell-to-cell and cell-to-substrate adhesions, and that cell imaging analysis with cell impedance data generates fully reliable results on cell adhesion measurement. PMID:20026301

  12. Glyceroglycolipids Affect Uptake of Carotenoids Solubilized in Mixed Micelles by Human Intestinal Caco-2 Cells.

    PubMed

    Kotake-Nara, Eiichi; Yonekura, Lina; Nagao, Akihiko

    2015-09-01

    We previously reported that phospholipids markedly affected the uptake of carotenoids solubilized in mixed micelles by human intestinal Caco-2 cells. In the present study, we found that two classes of dietary glyceroglycolipids and the corresponding lysoglyceroglycolipids affected uptake of β-carotene and lutein by differentiated Caco-2 cells. The levels of carotenoid uptake from micelles containing digalactosyldiacylglycerol or sulfoquinovosyldiacylglycerol were significantly lower than that from control micelles. On the other hand, the uptakes from micelles containing digalactosylmonoacylglycerol or sulfoquinovosylmonoacylglycerol were significantly higher than that from control micelles. In dispersed cells and Caco-2 cells with poor cell-to-cell adhesion, however, the levels of uptake from micelles containing these lyso-lipids were much lower than that from control micelles. The uptake levels from control micelles were markedly decreased depending on the development of cell-to-cell/cell-matrix adhesion in Caco-2 cells, but the uptake levels from the micelles containing these lyso-lipids were not substantially changed, suggesting that the intercellular barrier formed by cell-to-cell/cell-matrix adhesion inhibited the uptake from control micelles, but not from the lyso-lipid-containing micelles. The lyso-lipids appeared to enhance carotenoid uptake by decreasing the intercellular barrier integrity. The results showed that some types of glyceroglycolipids have the potential to modify the intestinal uptake of carotenoids. PMID:26012480

  13. A Genomewide RNAi Screen for Genes That Affect the Stability, Distribution and Function of P Granules in Caenorhabditis elegans

    PubMed Central

    Updike, Dustin L.; Strome, Susan

    2009-01-01

    P granules are non-membrane-bound organelles found in the germ-line cytoplasm throughout Caenorhabditis elegans development. Like their “germ granule” counterparts in other animals, P granules are thought to act as determinants of the identity and special properties of germ cells, properties that include the unique ability to give rise to all tissues of future generations of an organism. Therefore, understanding how P granules work is critical to understanding how cellular immortality and totipotency are retained, gained, and lost. Here we report on a genomewide RNAi screen in C. elegans, which identified 173 genes that affect the stability, localization, and function of P granules. Many of these genes fall into specific classes with shared P-granule phenotypes, allowing us to better understand how cellular processes such as protein degradation, translation, splicing, nuclear transport, and mRNA homeostasis converge on P-granule assembly and function. One of the more striking phenotypes is caused by the depletion of CSR-1, an Argonaute associated with an endogenous siRNA pathway that functions in the germ line. We show that CSR-1 and two other endo-siRNA pathway members, the RNA-dependent RNA polymerase EGO-1 and the helicase DRH-3, act to antagonize RNA and P-granule accumulation in the germ line. Our findings strengthen the emerging view that germ granules are involved in numerous aspects of RNA metabolism, including an endo-siRNA pathway in germ cells. PMID:19805813

  14. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands. PMID:27164912

  15. TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast.

    PubMed

    Rallis, Charalampos; Codlin, Sandra; Bähler, Jürg

    2013-08-01

    Target of rapamycin complex 1 (TORC1) is implicated in growth control and aging from yeast to humans. Fission yeast is emerging as a popular model organism to study TOR signaling, although rapamycin has been thought to not affect cell growth in this organism. Here, we analyzed the effects of rapamycin and caffeine, singly and combined, on multiple cellular processes in fission yeast. The two drugs led to diverse and specific phenotypes that depended on TORC1 inhibition, including prolonged chronological lifespan, inhibition of global translation, inhibition of cell growth and division, and reprograming of global gene expression mimicking nitrogen starvation. Rapamycin and caffeine differentially affected these various TORC1-dependent processes. Combined drug treatment augmented most phenotypes and effectively blocked cell growth. Rapamycin showed a much more subtle effect on global translation than did caffeine, while both drugs were effective in prolonging chronological lifespan. Rapamycin and caffeine did not affect the lifespan via the pH of the growth media. Rapamycin prolonged the lifespan of nongrowing cells only when applied during the growth phase but not when applied after cells had stopped proliferation. The doses of rapamycin and caffeine strongly correlated with growth inhibition and with lifespan extension. This comprehensive analysis will inform future studies into TORC1 function and cellular aging in fission yeast and beyond. PMID:23551936

  16. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    PubMed Central

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  17. A newly recognized autosomal recessive syndrome affecting neurologic function and vision.

    PubMed

    Salih, Mustafa A; Tzschach, Andreas; Oystreck, Darren T; Hassan, Hamdy H; AlDrees, Abdulmajeed; Elmalik, Salah A; El Khashab, Heba Y; Wienker, Thomas F; Abu-Amero, Khaled K; Bosley, Thomas M

    2013-06-01

    Genetic factors represent an important etiologic group in the causation of intellectual disability. We describe a Saudi Arabian family with closley related parents in which four of six children were affected by a congenital cognitive disturbance. The four individuals (aged 18, 16, 13, and 2 years when last examined) had motor and cognitive delay with seizures in early childhood, and three of the four (sparing only the youngest child) had progressive, severe cognitive decline with spasticity. Two affected children had ocular malformations, and the three older children had progressive visual loss. The youngest had normal globes with good functional vision when last examined but exhibited the oculodigital sign, which may signify a subclinical visual deficit. A potentially deleterious nucleotide change (c.1A>G; p.Met1Val) in the C12orf57 gene was homozygous in all affected individuals, heterozygous in the parents, and absent in an unaffected sibling and >350 normal individuals. This gene has no known function. This family manifests a autosomal recessive syndrome with some phenotypic variability that includes abnormal development of brain and eyes, delayed cognitive and motor milestones, seizures, and a severe cognitive and visual decline that is associated with a homozygous variant in a newly identified gene. PMID:23633300

  18. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis.

    PubMed

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-01-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios. PMID:26028216

  19. Incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis

    PubMed Central

    Dang, Wei; Zhang, Wen; Du, Wei-Guo

    2015-01-01

    Identifying how developmental temperature affects the immune system is critical for understanding how ectothermic animals defend against pathogens and their fitness in the changing world. However, reptiles have received little attention regarding this issue. We incubated eggs at three ecologically relevant temperatures to determine how incubation temperature affects the immune function of hatchling soft-shelled turtles, Pelodiscus sinensis. When exposed to bacterial infections, hatchlings from 24 °C had lower cumulative mortalities (55%, therefore, higher immunocompetence) than those from 28 °C (85%) or 32 °C (100%). Consistent with higher immunocompetence, hatchlings from low incubation temperature had higher IgM, IgD, and CD3γ expressions than their counterparts from the other two higher incubation temperatures. Conversely, the activity of immunity-related enzymes did not match the among-temperature difference in immune function. Specifically, enzyme activity was higher at intermediate temperatures (alkaline phosphatase) or was not affected by incubation temperature (acid phosphatase, lysozyme). Our study is the first to provide unequivocal evidence (at the molecular and organismal level) about the significant effect of incubation temperature on offspring immunity in reptiles. Our results also indicate that the reduced immunity induced by high developmental temperatures might increase the vulnerability of reptiles to the outbreak of diseases under global warming scenarios. PMID:26028216

  20. T cell-mediated modulation of mast cell function: heterotypic adhesion-induced stimulatory or inhibitory effects.

    PubMed

    Mekori, Yoseph A; Hershko, Alon Y

    2012-01-01

    Close physical proximity between mast cells and T cells has been demonstrated in several T cell mediated inflammatory processes such as rheumatoid arthritis and sarcoidosis. However, the way by which mast cells are activated in these T cell-mediated immune responses has not been fully elucidated. We have identified and characterized a novel mast cell activation pathway initiated by physical contact with activated T cells, and showed that this pathway is associated with degranulation and cytokine release. The signaling events associated with this pathway of mast cell activation have also been elucidated confirming the activation of the Ras mitogen-activated protein kinase systems. More recently, we hypothesized and demonstrated that mast cells may also be activated by microparticles released from activated T cells that are considered as miniature version of a cell. By extension, microparticles might affect the activity of mast cells, which are usually not in direct contact with T cells at the inflammatory site. Recent works have also focused on the effects of regulatory T cells (Treg) on mast cells. These reports highlighted the importance of the cytokines IL-2 and IL-9, produced by mast cells and T cells, respectively, in obtaining optimal immune suppression. Finally, physical contact, associated by OX40-OX40L engagement has been found to underlie the down-regulatory effects exerted by Treg on mast cell function. PMID:22566892

  1. Elementary neurocognitive function, facial affect recognition and social-skills in schizophrenia.

    PubMed

    Meyer, Melissa B; Kurtz, Matthew M

    2009-05-01

    Social-skill deficits are pervasive in schizophrenia and negatively impact many key aspects of functioning. Prior studies have found that measures of elementary neurocognition and social cognition are related to social-skills. In the present study we selected a range of neurocognitive measures and examined their relationship with identification of happy and sad faces and performance-based social-skills. Fifty-three patients with schizophrenia or schizoaffective disorder participated. Results revealed that: 1) visual vigilance, problem-solving and affect recognition were related to social-skill; 2) links between problem-solving and social-skill, but not visual vigilance and social-skill, remained significant when estimates of verbal intelligence were controlled; 3) affect recognition deficits explained unique variance in social-skill after neurocognitive variables were controlled; and 4) affect recognition deficits partially mediated the relationship of visual vigilance and social-skill. These results support the conclusion that facial affect recognition deficits are a crucial domain of impairment in schizophrenia that both contribute unique variance to social-skill deficits and may also mediate the relationship between some aspects of neurocognition and social-skill. These findings may help guide the development and refinement of cognitive and social-cognitive remediation methods for social-skill impairment. PMID:19328653

  2. Functional Connectivity of Pain-Mediated Affect Regulation in Borderline Personality Disorder

    PubMed Central

    Niedtfeld, Inga; Kirsch, Peter; Schulze, Lars; Herpertz, Sabine C.; Bohus, Martin; Schmahl, Christian

    2012-01-01

    Affective instability and self-injurious behavior are important features of Borderline Personality Disorder. Whereas affective instability may be caused by a pattern of limbic hyperreactivity paired with dysfunctional prefrontal regulation mechanisms, painful stimulation was found to reduce affective arousal at the neural level, possibly underlying the soothing effect of pain in BPD. We used psychophysiological interactions to analyze functional connectivity of (para-) limbic brain structures (i.e. amygdala, insula, anterior cingulate cortex) in Borderline Personality Disorder in response to painful stimulation. Therefore, we re-analyzed a dataset from 20 patients with Borderline Personality Disorder and 23 healthy controls who took part in an fMRI-task inducing negative (versus neutral) affect and subsequently applying heat pain (versus warmth perception). Results suggest an enhanced negative coupling between limbic as well as paralimbic regions and prefrontal regions, specifically with the medial and dorsolateral prefrontal cortex, when patients experienced pain in addition to emotional arousing pictures. When neutral pictures were combined with painful heat sensation, we found positive connectivity in Borderline Personality Disorder between (para-)limbic brain areas and parts of the basal ganglia (lentiform nucleus, putamen), as well areas involved in self-referential processing (precuneus and posterior cingulate). We found further evidence for alterations in the emotion regulation process in Borderline Personality Disorder, in the way that pain improves the inhibition of limbic activity by prefrontal areas. This study provides new insights in pain processing in BPD, including enhanced coupling of limbic structures and basal ganglia. PMID:22428013

  3. Modification of collagen IV by glucose or methylglyoxal alters distinct mesangial cell functions.

    PubMed

    Pozzi, Ambra; Zent, Roy; Chetyrkin, Sergei; Borza, Corina; Bulus, Nada; Chuang, Peale; Chen, Dong; Hudson, Billy; Voziyan, Paul

    2009-10-01

    Diabetic nephropathy (DN) affects both glomerular cells and the extracellular matrix (ECM), yet the pathogenic mechanisms involving cell-matrix interactions are poorly understood. Glycation alters integrin-dependent cell-ECM interactions, and perturbation of these interactions results in severe renal pathology in diabetic animals. Here, we investigated how chemical modifications of the ECM by hyperglycemia and carbonyl stress, two major features of the diabetic milieu, affect mesangial cell functions. Incubation of collagen IV with pathophysiological levels of either the carbonyl compound methylglyoxal (MGO) or glucose resulted in modification of arginine or lysine residues, respectively. Mouse mesangial cells plated on MGO-modified collagen IV showed decreased adhesion and migration. Cells plated on glucose-modified collagen IV showed reduced proliferation and migration and increased collagen IV production. Inhibiting glucose-mediated oxidative modification of collagen IV lysine residues rescued the alterations in cell growth, migration, and collagen synthesis. We propose that diabetic ECM affects mesangial cell functions via two distinct mechanisms: modification of arginine residues by MGO inhibits cell adhesion, whereas oxidative modification of lysine residues by glucose inhibits cell proliferation and increases collagen IV production. These mechanisms may contribute to mesangial cell hypertrophy and matrix expansion in DN. PMID:19608705

  4. Modification of Collagen IV by Glucose or Methylglyoxal Alters Distinct Mesangial Cell Functions

    PubMed Central

    Pozzi, Ambra; Zent, Roy; Chetyrkin, Sergei; Borza, Corina; Bulus, Nada; Chuang, Peale; Chen, Dong; Hudson, Billy

    2009-01-01

    Diabetic nephropathy (DN) affects both glomerular cells and the extracellular matrix (ECM), yet the pathogenic mechanisms involving cell-matrix interactions are poorly understood. Glycation alters integrin-dependent cell-ECM interactions, and perturbation of these interactions results in severe renal pathology in diabetic animals. Here, we investigated how chemical modifications of the ECM by hyperglycemia and carbonyl stress, two major features of the diabetic milieu, affect mesangial cell functions. Incubation of collagen IV with pathophysiological levels of either the carbonyl compound methylglyoxal (MGO) or glucose resulted in modification of arginine or lysine residues, respectively. Mouse mesangial cells plated on MGO-modified collagen IV showed decreased adhesion and migration. Cells plated on glucose-modified collagen IV showed reduced proliferation and migration and increased collagen IV production. Inhibiting glucose-mediated oxidative modification of collagen IV lysine residues rescued the alterations in cell growth, migration, and collagen synthesis. We propose that diabetic ECM affects mesangial cell functions via two distinct mechanisms: modification of arginine residues by MGO inhibits cell adhesion, whereas oxidative modification of lysine residues by glucose inhibits cell proliferation and increases collagen IV production. These mechanisms may contribute to mesangial cell hypertrophy and matrix expansion in DN. PMID:19608705

  5. Telomerase RNA stem terminus element affects template boundary element function, telomere sequence, and shelterin binding

    PubMed Central

    Webb, Christopher J.; Zakian, Virginia A.

    2015-01-01

    The stem terminus element (STE), which was discovered 13 y ago in human telomerase RNA, is required for telomerase activity, yet its mode of action is unknown. We report that the Schizosaccharomyces pombe telomerase RNA, TER1 (telomerase RNA 1), also contains a STE, which is essential for telomere maintenance. Cells expressing a partial loss-of-function TER1 STE allele maintained short stable telomeres by a recombination-independent mechanism. Remarkably, the mutant telomere sequence was different from that of wild-type cells. Generation of the altered sequence is explained by reverse transcription into the template boundary element, demonstrating that the STE helps maintain template boundary element function. The altered telomeres bound less Pot1 (protection of telomeres 1) and Taz1 (telomere-associated in Schizosaccharomyces pombe 1) in vivo. Thus, the S. pombe STE, although distant from the template, ensures proper telomere sequence, which in turn promotes proper assembly of the shelterin complex. PMID:26305931

  6. Primary tumor- and metastasis-derived colon cancer cells differently modulate connexin expression and function in human capillary endothelial cells.

    PubMed

    Thuringer, Dominique; Berthenet, Kevin; Cronier, Laurent; Solary, Eric; Garrido, Carmen

    2015-10-01

    A gradual loss of functional gap junction between tumor cells has been reported with colorectal cancer (CRC) progression. Here, we explored if colon cancer cells could also affect gap junctions in blood capillary cells. Human microvascular endothelial cells (HMEC) were cultured with two CRC cell lines established from a unique patient. SW480 cells, derived from the primary tumor, migrate much faster across HMEC monolayer than SW620 cells derived from a metastatic site. The motile SW480 cells highly express and release HSP27 that increases gap junction formation with HMEC. Soluble HSP27 phosphorylates the connexin Cx43 on serine residues and induces its interaction with the oncoprotein 14-3-3, which promotes Cx43 delivery at the plasma membrane. The factors secreted by less motile SW620 cells do not affect Cx43 expression but up-regulate the expression of the connexin Cx32 through an activation of the chemokine receptor CXCR2. In turn, SW620 secreted factors induce tubulogenesis and ATP release. Altogether, cell lines derived from CRC primary tumor and metastasis differentially adapt endothelial cell functions by modulating connexin expression through released mediators. PMID:26320187

  7. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function.

    PubMed

    Tajnik, Mojca; Rogalska, Malgorzata Ewa; Bussani, Erica; Barbon, Elena; Balestra, Dario; Pinotti, Mirko; Pagani, Franco

    2016-05-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  8. Molecular Basis and Therapeutic Strategies to Rescue Factor IX Variants That Affect Splicing and Protein Function

    PubMed Central

    Bussani, Erica; Barbon, Elena; Pinotti, Mirko; Pagani, Franco

    2016-01-01

    Mutations that result in amino acid changes can affect both pre-mRNA splicing and protein function. Understanding the combined effect is essential for correct diagnosis and for establishing the most appropriate therapeutic strategy at the molecular level. We have identified a series of disease-causing splicing mutations in coagulation factor IX (FIX) exon 5 that are completely recovered by a modified U1snRNP particle, through an SRSF2-dependent enhancement mechanism. We discovered that synonymous mutations and missense substitutions associated to a partial FIX secretion defect represent targets for this therapy as the resulting spliced-corrected proteins maintains normal FIX coagulant specific activity. Thus, splicing and protein alterations contribute to define at the molecular level the disease-causing effect of a number of exonic mutations in coagulation FIX exon 5. In addition, our results have a significant impact in the development of splicing-switching therapies in particular for mutations that affect both splicing and protein function where increasing the amount of a correctly spliced protein can circumvent the basic functional defects. PMID:27227676

  9. Microbial Functional Potential and Community Composition in Permafrost-Affected Soils of the NW Canadian Arctic

    PubMed Central

    Frank-Fahle, Béatrice A.; Yergeau, Étienne; Greer, Charles W.; Lantuit, Hugues; Wagner, Dirk

    2014-01-01

    Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic. PMID:24416279

  10. The functional cycle of visual arrestins in photoreceptor cells

    PubMed Central

    Gurevich, Vsevolod V.; Hanson, Susan M.; Song, Xiufeng; Vishnivetskiy, Sergey A.; Gurevich, Eugenia V.

    2011-01-01

    Visual arrestin-1 plays a key role in the rapid and reproducible shutoff of rhodopsin signaling. Its highly selective binding to light-activated phosphorylated rhodopsin is an integral part of the functional perfection of rod photoreceptors. Structure-function studies revealed key elements of the sophisticated molecular mechanism ensuring arrestin-1 selectivity and paved the way to the targeted manipulation of the arrestin-1 molecule to design mutants that can compensate for congenital defects in rhodopsin phosphorylation. Arrestin-1 self-association and light-dependent translocation in photoreceptor cells work together to keep a constant supply of active rhodopsin-binding arrestin-1 monomer in the outer segment. Recent discoveries of arrestin-1 interaction with other signaling proteins suggest that it is a much more versatile signaling regulator than previously thought, affecting the function of the synaptic terminals and rod survival. Elucidation of the fine molecular mechanisms of arrestin-1 interactions with rhodopsin and other binding partners is necessary for the comprehensive understanding of rod function and for devising novel molecular tools and therapeutic approaches to the treatment of visual disorders. PMID:21824527

  11. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  12. Expression of Selenoprotein Genes Is Affected by Heat Stress in IPEC-J2 Cells.

    PubMed

    Cao, Lei; Tang, Jiayong; Li, Qiang; Xu, Jingyang; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Shang, Haiying; Cai, Jingyi; Zhao, Hua

    2016-08-01

    The aim of this study was to explore the impacts of heat stress (HS) on expressions of selenoprotein genes in IPEC-J2 cells. Cells were cultured with 5 % CO2-humidified chamber at 37 °C until the cells grew to complete confluence and then exposed to a mild hyperthermia at 41.5 °C (HS) or 37 °C (control) for another 24 h, finally harvested for total RNA or protein extraction. Real-time quantitative PCRs (qPCRs) were performed to compare gene expression of 25 selenoprotein genes, 3 tight junction-related genes, and 10 inflammation-related genes. Protein expressions of heat shock protein 70 (Hsp70) and selenoprotein X and P (SelX and SelP) were also investigated by Western blot. The results showed that HS up-regulated (P < 0.05) Hsp70 and one tight junction-related gene [zonula occludens-1 (Zo-1)] in IPEC-J2 cells. At the same time, HS up-regulated (P < 0.05) 4 selenoprotein genes (Gpx3, Dio2, Selk, Sels) and three inflammation-related genes (Il-6, Icam-1, Tgf-β) and down-regulated (P < 0.05 or as indicated) six selenoprotein genes (Gpx2, Gpx6, Txnrd1, Selh, Selm, Selx) and three inflammation-related genes (Ifn-β, Mcp-1, Tnf-α) in the cells. HS also exhibited impacts on protein expressions, which up-regulated Hsp70, down-regulated SelX, and showed no effect on SelP in IPEC-J2 cells. Our results showed that HS affected the expression of inflammation-related genes and up-regulated gene and protein expressions of Hsp70. The changes of so many selenoprotein genes expression implied a potential link between selenoprotein genes and HS. Moreover, the results provided by this IPEC-J2 model may be used to further study the interactive mechanisms between selenoprotein function and potential intestinal damage induced by HS. PMID:26706036

  13. The Functional Effect of Teacher Positive and Neutral Affect on Task Performance of Students with Significant Disabilities

    ERIC Educational Resources Information Center

    Park, Sungho; Singer, George H. S.; Gibson, Mary

    2005-01-01

    The study uses an alternating treatment design to evaluate the functional effect of teacher's affect on students' task performance. Tradition in special education holds that teachers should engage students using positive and enthusiastic affect for task presentations and praise. To test this assumption, we compared two affective conditions. Three…

  14. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    PubMed Central

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  15. Six-Digit CPK and Mildly Affected Renal Function in McArdle Disease

    PubMed Central

    Mcinnes, Andrew D.; DeGroote, Richard J.

    2014-01-01

    A previously healthy, white 12-year-old girl presented with diffuse body aches and poor perfusion. She developed severe respiratory failure and marked rhabdomyolysis and was mechanically ventilated. Although her CPK peaked at 500,000 IU/L, her renal function was mildly affected and her creatinine did not exceed the 0.8 mg/dL. The rhabdomyolysis was gradually resolved following aggressive fluid hydration. The patient did not require dialysis and made a complete recovery. Genetic studies revealed the diagnosis of McArdle disease. PMID:25371840

  16. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    NASA Astrophysics Data System (ADS)

    Kal Van Tam, Janice; Uto, Koichiro; Ebara, Mitsuhiro; Pagliari, Stefania; Forte, Giancarlo; Aoyagi, Takao

    2012-12-01

    The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell-matrix interaction, using poly-ɛ-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  17. Bioactive glass coatings affect the behavior of osteoblast-like cells

    PubMed Central

    Foppiano, Silvia; Marshall, Sally J.; Marshall, Grayson W.; Saiz, Eduardo; Tomsia, Antoni P.

    2007-01-01

    Functionally graded coatings (FGCs) of bioactive glass on titanium alloy (Ti6Al4V) were fabricated by the enameling technique. These innovative coatings may be an alternative to plasma-sprayed, hydroxyapatite-coated implants. Previously we determined that a preconditioning treatment in simulated body fluid (SBF) helped to stabilize FGCs (Foppiano, S., et al., Acta Biomater, 2006; 2(2):133-42). The primary goal of this work was to assess the in vitro cytocompatibility of preconditioned FGCs with MC3T3-E1.4 mouse pre-osteoblastic cells. We evaluated cell adhesion, proliferation and mineralization on FGCs in comparison to uncoated Ti6Al4V and tissue culture polystyrene (TCPS). No difference in cell adhesion was identified, whereas proliferation was significantly different on all materials, being highest on FGCs followed by TCPS and Ti6Al4V. Qualitative and quantitative mineralization assays indicated that mineralization occurred on all materials. The amount of inorganic phosphate released by the mineralizing layers was significantly different, being highest on TCPS, followed by FGC and uncoated Ti6Al4V. The secondary objective of this work was to assess the ability of the FGCs to affect gene expression, indirectly, by means of their dissolution products, which was assessed by real-time reverse-transcription polymerase chain reaction. The FGC dissolution products induced a 2-fold increase in the expression of Runx-2, and a 20% decrease in the expression of collagen type 1 with respect to TCPS extract. These genes are regulators of osteoblast differentiation and mineralization, respectively. The findings of this study indicate that preconditioned FGCs are cytocompatible and suggest that future work may allow composition changes to induce preferred gene expression. PMID:17466608

  18. Zearalenone impairs the male reproductive system functions via inducing structural and functional alterations of sertoli cells.

    PubMed

    Zheng, WangLong; Pan, ShunYe; Wang, Guangguang; Wang, Ya Jun; Liu, Qing; Gu, JianHong; Yuan, Yan; Liu, Xue Zhong; Liu, Zong Ping; Bian, Jian Chun

    2016-03-01

    The aim of this study was to investigate the effects of ZEA on the cytoskeletal structure, and factors specifically expressed by Sertoli cells. Primary Sertoli cells from rats aged 18-21 days were exposed to increasing ZEA concentrations (0, 5, 10, 20 μg mL(-1)) for 24 h. The results of immunofluorescence showed disruption of α-tubulin filaments and F-actin bundles, and damage to the nucleus of Sertoli cells on exposure to ZEA. In the control group, the protein level expression of androgen-binding protein (ABP), transferrin, vimentin, N-cadherin, and follicle-stimulating hormone receptor (FSHR) were decreased significantly (p<0.05, p<0.01). The mRNA levels of ABP, transferrin, vimentin, N-cadherin, and FSHR varied significantly in the experimental group (p<0.05). The results of enzyme-linked immunosorbent assay indicated a significant decrease in the levels of inhibin-β and transferrin in the cultural supernatants (p<0.05). Additionally, the ultrastructural analysis indicated the absence of mitochondria and Golgi apparatus, and presence of vacuoles in the cytoplasm. These findings showed that ZEA treatment can damage the cytoskeletal structure and affect specific secretory functions of Sertoli cells, which may be an underlying cause of ZEA-induced reproductive toxicity. PMID:26851377

  19. Optimistic Expectancies and Cell-Mediated Immunity: The Role of Positive Affect

    PubMed Central

    Segerstrom, Suzanne C.; Sephton, Sandra E.

    2014-01-01

    Optimistic expectancies affect many psychosocial outcomes and may also predict immune system changes and health, but the nature and mechanisms of any such physiological effects have not been identified. The present study related law-school expectancies to cell-mediated immunity (CMI), examining the within- and between-person components of this relationship and affective mediators. First-year law students (N = 124) completed questionnaire measures of expectancies and affect and received delayed-type hypersensitivity skin tests at five time points. A positive relationship between optimistic expectancies and CMI occurred, in which that changes in optimism correlated with changes in CMI. Likewise, changes in optimism predicted changes in positive and, to a lesser degree, negative affect, but the relationship between optimism and immunity was partially accounted for only by positive affect. This dynamic relationship between expectancies and immunity has positive implications for psychological interventions to improve health, particularly those that increase positive affect. PMID:20424083

  20. Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.

    PubMed

    Eldridge, David J; Poore, Alistair G B; Ruiz-Colmenero, Marta; Letnic, Mike; Soliveres, Santiago

    2016-06-01

    Reports of positive or neutral effects of grazing on plant species richness have prompted calls for livestock grazing to be used as a tool for managing land for conservation. Grazing effects, however, are likely to vary among different response variables, types, and intensity of grazing, and across abiotic conditions. We aimed to examine how grazing affects ecosystem structure, function, and composition. We compiled a database of 7615 records reporting an effect of grazing by sheep and cattle on 278 biotic and abiotic response variables for published studies across Australia. Using these data, we derived three ecosystem measures based on structure, function, and composition, which were compared against six contrasts of grazing pressure, ranging from low to heavy, two different herbivores (sheep, cattle), and across three different climatic zones. Grazing reduced structure (by 35%), function (24%), and composition (10%). Structure and function (but not composition) declined more when grazed by sheep and cattle together than sheep alone. Grazing reduced plant biomass (40%), animal richness (15%), and plant and animal abundance, and plant and litter cover (25%), but had no effect on plant richness nor soil function. The negative effects of grazing on plant biomass, plant cover, and soil function were more pronounced in drier environments. Grazing effects on plant and animal richness and composition were constant, or even declined, with increasing aridity. Our study represents a comprehensive continental assessment of the implications of grazing for managing Australian rangelands. Grazing effects were largely negative, even at very low levels of grazing. Overall, our results suggest that livestock grazing in Australia is unlikely to produce positive outcomes for ecosystem structure, function, and composition or even as a blanket conservation tool unless reduction in specific response variables is an explicit management objective. PMID:27509764

  1. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling

    PubMed Central

    Fröhlich, Florian; Moreira, Karen; Aguilar, Pablo S.; Hubner, Nina C.; Mann, Matthias; Walter, Peter

    2009-01-01

    The protein and lipid composition of eukaryotic plasma membranes is highly dynamic and regulated according to need. The sphingolipid-responsive Pkh kinases are candidates for mediating parts of this regulation, as they affect a diverse set of plasma membrane functions, such as cortical actin patch organization, efficient endocytosis, and eisosome assembly. Eisosomes are large protein complexes underlying the plasma membrane and help to sort a group of membrane proteins into distinct domains. In this study, we identify Nce102 in a genome-wide screen for genes involved in eisosome organization and Pkh kinase signaling. Nce102 accumulates in membrane domains at eisosomes where Pkh kinases also localize. The relative abundance of Nce102 in these domains compared with the rest of the plasma membrane is dynamically regulated by sphingolipids. Furthermore, Nce102 inhibits Pkh kinase signaling and is required for plasma membrane organization. Therefore, Nce102 might act as a sensor of sphingolipids that regulates plasma membrane function. PMID:19564405

  2. Aging. Aging-induced type I interferon signaling at the choroid plexus negatively affects brain function

    PubMed Central

    Baruch, Kuti; Deczkowska, Aleksandra; David, Eyal; Castellano, Joseph M.; Miller, Omer; Kertser, Alexander; Berkutzki, Tamara; Barnett-Itzhaki, Zohar; Bezalel, Dana; Wyss-Coray, Tony; Amit, Ido; Schwartz, Michal

    2016-01-01

    Age-associated cognitive decline is affected by factors produced inside and outside the brain. We found in aged mice and humans, that the choroid plexus (CP), an epithelial interface between the brain and the circulation, shows a type I interferon (IFN-I)-dependent expression profile, often associated with anti-viral responses. This signature was induced by brain-derived signals present in the cerebrospinal fluid of aged mice. Blocking IFN-I signaling within the brain of cognitively-impaired aged mice, using IFN-I receptor neutralizing antibody, led to partial restoration of cognitive function and hippocampal neurogenesis, and reestablished IFN-II-dependent CP activity, lost in aging. Our data identify an aging-induced IFN-I signature at the CP, and demonstrate its negative influence on brain function, thereby suggesting a potential target for therapeutic intervention for age-related cognitive decline. PMID:25147279

  3. Scaffold porosity and oxygenation of printed hydrogel constructs affect functionality of embedded osteogenic progenitors.

    PubMed

    Fedorovich, Natalja E; Kuipers, Elske; Gawlitta, Debby; Dhert, Wouter J A; Alblas, Jacqueline

    2011-10-01

    Insufficient supply of oxygen and nutrients throughout the graft is considered one of the principal limitations in development of large, tissue-engineered bone grafts. Organ or tissue printing by means of three-dimensional (3D) fiber deposition is a novel modality in regenerative medicine that combines pore formation and defined cell placement, and is used here for development of cell-laden hydrogel structures with reproducible internal architecture to sustain oxygen supply and to support adequate tissue development. In this study we tested the effect of porosity on multipotent stromal cells (MSCs) embedded in hydrogel constructs printed with a 3D fiber deposition (3DF) machine. For this, porous and solid alginate hydrogel scaffolds, with MSCs homogeneously dispersed throughout the construct, were printed and analyzed in vitro for the presence of hypoxia markers, metabolism, survival, and osteogenic differentiation. We demonstrated that porosity promotes oxygenation of MSCs in printed hydrogel scaffolds and supported the viability and osteogenic differentiation of embedded cells. Porous and solid printed constructs were subsequently implanted subcutaneously in immunodeficient mice to analyze tissue formation in relation to hypoxia responses of embedded cells. Implantation of printed grafts resulted in ingrowth of vascularized tissue and significantly enhanced oxygenation of embedded MSCs. In conclusion, the introduction of pores significantly enhances the conductive properties of printed hydrogel constructs and contributes to the functionality of embedded osteogenic progenitors. PMID:21599540

  4. Apoptosis-Inducing-Factor-Dependent Mitochondrial Function Is Required for T Cell but Not B Cell Function.

    PubMed

    Milasta, Sandra; Dillon, Christopher P; Sturm, Oliver E; Verbist, Katherine C; Brewer, Taylor L; Quarato, Giovanni; Brown, Scott A; Frase, Sharon; Janke, Laura J; Perry, S Scott; Thomas, Paul G; Green, Douglas R

    2016-01-19

    The role of apoptosis inducing factor (AIF) in promoting cell death versus survival remains controversial. We report that the loss of AIF in fibroblasts led to mitochondrial electron transport chain defects and loss of proliferation that could be restored by ectopic expression of the yeast NADH dehydrogenase Ndi1. Aif-deficiency in T cells led to decreased peripheral T cell numbers and defective homeostatic proliferation, but thymic T cell development was unaffected. In contrast, Aif-deficient B cells developed and functioned normally. The difference in the dependency of T cells versus B cells on AIF for function and survival correlated with their metabolic requirements. Ectopic Ndi1 expression rescued homeostatic proliferation of Aif-deficient T cells. Despite its reported roles in cell death, fibroblasts, thymocytes and B cells lacking AIF underwent normal death. These studies suggest that the primary role of AIF relates to complex I function, with differential effects on T and B cells. PMID:26795252

  5. Normal Glucagon Signaling and β-Cell Function After Near-Total α-Cell Ablation in Adult Mice

    PubMed Central

    Thorel, Fabrizio; Damond, Nicolas; Chera, Simona; Wiederkehr, Andreas; Thorens, Bernard; Meda, Paolo; Wollheim, Claes B.; Herrera, Pedro L.

    2011-01-01

    OBJECTIVE To evaluate whether healthy or diabetic adult mice can tolerate an extreme loss of pancreatic α-cells and how this sudden massive depletion affects β-cell function and blood glucose homeostasis. RESEARCH DESIGN AND METHODS We generated a new transgenic model allowing near-total α-cell removal specifically in adult mice. Massive α-cell ablation was triggered in normally grown and healthy adult animals upon diphtheria toxin (DT) administration. The metabolic status of these mice was assessed in 1) physiologic conditions, 2) a situation requiring glucagon action, and 3) after β-cell loss. RESULTS Adult transgenic mice enduring extreme (98%) α-cell removal remained healthy and did not display major defects in insulin counter-regulatory response. We observed that 2% of the normal α-cell mass produced enough glucagon to ensure near-normal glucagonemia. β-Cell function and blood glucose homeostasis remained unaltered after α-cell loss, indicating that direct local intraislet signaling between α- and β-cells is dispensable. Escaping α-cells increased their glucagon content during subsequent months, but there was no significant α-cell regeneration. Near-total α-cell ablation did not prevent hyperglycemia in mice having also undergone massive β-cell loss, indicating that a minimal amount of α-cells can still guarantee normal glucagon signaling in diabetic conditions. CONCLUSIONS An extremely low amount of α-cells is sufficient to prevent a major counter-regulatory deregulation, both under physiologic and diabetic conditions. We previously reported that α-cells reprogram to insulin production after extreme β-cell loss and now conjecture that the low α-cell requirement could be exploited in future diabetic therapies aimed at regenerating β-cells by reprogramming adult α-cells. PMID:21926270

  6. Aquaporin-1 plays important role in proliferation by affecting cell cycle progression.

    PubMed

    Galán-Cobo, Ana; Ramírez-Lorca, Reposo; Toledo-Aral, Juan José; Echevarría, Miriam

    2016-01-01

    Aquaporin-1 (AQP1) has been associated with tumor development. Here, we investigated how AQP1 may affect cell proliferation. The proliferative rate of adult carotid body (CB) cells, known to proliferate under chronic hypoxia, was analyzed in wild-type (AQP1(+/+) ) and knock out (AQP1(-/-) ) mice, maintained in normoxia or exposed to hypoxia while BrdU was administered. Fewer numbers of total BrdU(+) and TH-BrdU(+) cells were observed in AQP1(-/-) mice, indicating a role for AQP1 in CB proliferation. Then, by flow cytometry, cell cycle state and proliferation of cells overexpressing AQP1 were compared to those of wild-type cells. In the AQP1-overexpressing cells, we observed higher cell proliferation and percentages of cells in phases S and G2/M and fewer apoptotic cells after nocodazole treatment were detected by annexin V staining. Also in these cells, proteomic assays showed higher expression of cyclin D1 and E1 and microarray analysis revealed changes in many cell proliferation-related molecules, including, Zeb 2, Jun, NF-kβ, Cxcl9, Cxcl10, TNF, and the TNF receptor. Overall, our results indicate that the presence of AQP1 modifies the expression of key cell cycle proteins apparently related to increases in cell proliferation. This contributes to explaining the presence of AQP1 in many different tumors. PMID:26081645

  7. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis

    PubMed Central

    Kapoor, Sanjay

    2013-01-01

    Rice MADS29 has recently been reported to cause programmed cell death of maternal tissues, the nucellus, and the nucellar projection during early stages of seed development. However, analyses involving OsMADS29 protein expression domains and characterization of OsMADS29 gain-of-function and knockdown phenotypes revealed novel aspects of its function in maintaining hormone homeostasis, which may have a role in the development of embryo and plastid differentiation and starch filling in endosperm cells. The MADS29 transcripts accumulated to high levels soon after fertilization; however, protein accumulation was found to be delayed by at least 4 days. Immunolocalization studies revealed that the protein accumulated initially in the dorsal-vascular trace and the outer layers of endosperm, and subsequently in the embryo and aleurone and subaleurone layers of the endosperm. Ectopic expression of MADS29 resulted in a severely dwarfed phenotype, exhibiting elevated levels of cytokinin, thereby suggesting that cytokinin biosynthesis pathway could be one of the major targets of OsMADS29. Overexpression of OsMADS29 in heterologous BY2 cells was found to mimic the effects of exogenous application of cytokinins that causes differentiation of proplastids to starch-containing amyloplasts and activation of genes involved in the starch biosynthesis pathway. Suppression of MADS29 expression by RNAi severely affected seed set. The surviving seeds were smaller in size, with developmental abnormalities in the embryo and reduced size of endosperm cells, which also contained loosely packed starch granules. Microarray analysis of overexpression and knockdown lines exhibited altered expression of genes involved in plastid biogenesis, starch biosynthesis, cytokinin signalling and biosynthesis. PMID:23929654

  8. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    SciTech Connect

    Biemann, Ronald; Navarrete Santos, Anne; Navarrete Santos, Alexander; Riemann, Dagmar; Knelangen, Julia; Blueher, Matthias; Koch, Holger; Fischer, Bernd

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study, we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.

  9. Functional Connectivity under Anticipation of Shock: Correlates of Trait Anxious Affect versus Induced Anxiety.

    PubMed

    Bijsterbosch, Janine; Smith, Stephen; Bishop, Sonia J

    2015-09-01

    Sustained anxiety about potential future negative events is an important feature of anxiety disorders. In this study, we used a novel anticipation of shock paradigm to investigate individual differences in functional connectivity during prolonged threat of shock. We examined the correlates of between-participant differences in trait anxious affect and induced anxiety, where the latter reflects changes in self-reported anxiety resulting from the shock manipulation. Dissociable effects of trait anxious affect and induced anxiety were observed. Participants with high scores on a latent dimension of anxious affect showed less increase in ventromedial pFC-amygdala connectivity between periods of safety and shock anticipation. Meanwhile, lower levels of induced anxiety were linked to greater augmentation of dorsolateral pFC-anterior insula connectivity during shock anticipation. These findings suggest that ventromedial pFC-amygdala and dorsolateral pFC-insula networks might both contribute to regulation of sustained fear responses, with their recruitment varying independently across participants. The former might reflect an evolutionarily old mechanism for reducing fear or anxiety, whereas the latter might reflect a complementary mechanism by which cognitive control can be implemented to diminish fear responses generated due to anticipation of aversive stimuli or events. These two circuits might provide complementary, alternate targets for exploration in future pharmacological and cognitive intervention studies. PMID:25961638

  10. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise. PMID:25546134

  11. Light availability affects stream biofilm bacterial community composition and function, but not diversity

    PubMed Central

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R.; Battin, Tom J.

    2015-01-01

    Summary Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s−1 m−2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911

  12. Predicting self-care with patients and family members' affective states and family functioning.

    PubMed

    Musci, E C; Dodd, M J

    1990-01-01

    People with cancer manage the side effects of treatment with the assistance of their family members. This study was designed to describe self-care behaviors (SCBs) initiated by patients and their family members and to determine the relationship between patients and family members' affective states and family functioning and SCBs. Using a longitudinal design, 42 patients and 40 family members were followed during 3 cycles of chemotherapy (12-16 weeks). The patients completed measures of affective state (POMS) each cycle; patients and family members completed a family functioning measure (F-COPES) at second cycle only; and the patients reported in an SCB log on an ongoing basis. The overall pattern of SCBs corroborated previous findings. The average number of SCBs initiated was 1.4 per side effect. Depression and vigor significantly predicted SCBs at Cycle 1 only. The severity of side effects consistently predicted SCB over the 3 cycles (r 2 = -0.39 to -0.46). Patients who experienced more severe side effects were at risk of diminished self-care. PMID:2342973

  13. Family Functioning and Child Behavioral Problems in Households Affected by HIV and AIDS in Kenya.

    PubMed

    Thurman, Tonya R; Kidman, Rachel; Nice, Johanna; Ikamari, Lawrence

    2015-08-01

    HIV places acute stressors on affected children and families; especially in resource limited contexts like sub-Saharan Africa. Despite their importance, the epidemic's potential consequences for family dynamics and children's psychological health are understudied. Using a population-based sample of 2,487 caregivers and 3,423 children aged 8-14 years from the Central Province of Kenya, analyses were conducted to examine whether parental illness and loss were associated with family functioning and children's externalizing behaviors. After controlling for demographics, a significant relationship between parental illness and externalizing behaviors was found among children of both genders. Orphan status was associated with behavioral problems among only girls. Regardless of gender, children experiencing both parental loss and illness fared the worst. Family functioning measured from the perspective of both caregivers and children also had an independent and important relationship with behavioral problems. Findings suggest that psychological and behavioral health needs may be elevated in households coping with serious illness and reiterate the importance of a family-centered approach for HIV-affected children. PMID:25205474

  14. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  15. Breakfast Staple Types Affect Brain Gray Matter Volume and Cognitive Function in Healthy Children

    PubMed Central

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-01-01

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence. PMID:21170334

  16. Relationship between Microtubule Network Structure and Intracellular Transport in Cultured Endothelial Cells Affected by Shear Stress

    NASA Astrophysics Data System (ADS)

    Kudo, Susumu; Ikezawa, Kenji; Ikeda, Mariko; Tanishita, Kazuo

    Endothelial cells (ECs) that line the inner surface of blood vessels are barriers to the transport of various substances into or from vessel walls, and are continuously exposed to shear stress induced by blood flow in vivo. Shear stress affects the cytoskeleton (e.g., microtubules, microfilaments, intermediate filaments), and affects the transport of macromolecules. Here, the relationship between the microtubule network structure and this transport process for albumin uptake within cultured aortic endothelial cells affected by shear stress was studied. Based on fluorescent images of albumin uptake obtained by using confocal laser scanning microscopy (CLSM), both the microtubule network and albumin uptake in ECs were disrupted by colchicine and were affected by shear stress loading.

  17. Relaxin affects cell organization and early and late stages of spermatogenesis in a coculture of rat testicular cells.

    PubMed

    Pimenta, M T; Francisco, R A R; Silva, R P; Porto, C S; Lazari, M F M

    2015-07-01

    Relaxin and its receptor RXFP1 are co-expressed in Sertoli cells, and relaxin can stimulate proliferation of Sertoli cells. In this study, we investigated a role of relaxin in spermatogenesis, using a short-term culture of testicular cells of the rat that allowed differentiation of spermatogonia to spermatids. Sertoli, germ, and peritubular myoid cells were the predominant cell types in the culture. Sertoli and germ cells expressed RXFP1. Cultures were incubated without (control) or with 0.5% fetal bovine serum (FBS) or 100 ng/mL H2 relaxin (RLN) for 2 days. Cell organization, number, and differentiation were analyzed after 2 (D2), 5 (D5) or 8 (D8) days of culturing. Although the proportion of germ cells decayed from D2 to D5, the relative contribution of HC, 1C, 2C, and 4C germ cell populations remained constant in the control group during the whole culture. RLN did not affect the proportion of germ cell populations compared with control, but increased gene and/or protein expression of the undifferentiated and differentiated spermatogonia markers PLZF and c-KIT, and of the post-meiotic marker Odf2 in D5. RLN favored organization of cells in tubule-like structures, the arrangement of myoid cells around the tubules, arrangement of c-KIT-positive spermatogonia at the basal region of the tubules, and expression of the cell junction protein β-catenin close to the plasma membrane region. Knockdown of relaxin with small interfering RNA (siRNA) reduced expression of β-catenin at the cell junctions, and shifted its expression to the nucleus. We propose that relaxin may affect spermatogenesis by modulating spermatogonial self renewal and favoring cell contact. PMID:26041439

  18. Citrus limon extract: possible inhibitory mechanisms affecting testicular functions and fertility in male mice.

    PubMed

    Singh, Nidhi; Singh, Shio Kumar

    2016-01-01

    The effect of oral administration of 50% ethanolic leaf extract of Citrus limon (500 and 1,000 mg/kg body weight/day) for 35 days on fertility and various male reproductive endpoints was evaluated in Parkes strain of mice. Testicular indices such as histology, 3β- and 17β-HSD enzymes activity, immunoblot expression of StAR and P450scc, and germ cell apoptosis by TUNEL and CASP- 3 expression were assessed. Motility, viability, and number of spermatozoa in the cauda epididymidis, level of serum testosterone, fertility indices, and toxicological parameters were also evaluated. Histologically, testes in extract-treated mice showed nonuniform degenerative changes in the seminiferous tubules. Treatment had adverse effects on steroidogenic markers in the testis and induced germ cell apoptosis. Significant reductions were noted in epididymal sperm parameters and serum level of testosterone in Citrus-treated mice compared to controls. Fertility of the extract-treated males was also suppressed, but libido remained unaffected. By 56 days of treatment withdrawal, alterations induced in the above parameters returned to control levels suggesting that Citrus treatment causes reversible suppression of spermatogenesis and fertility in Parkes mice. Suppression of spermatogenesis may result from germ cell apoptosis because of decreased production of testosterone. The present work indicated that Citrus leaves can affect male reproduction. PMID:26787324

  19. Synapses: Sites of Cell Recognition, Adhesion, and Functional Specification

    PubMed Central

    Yamada, Soichiro; Nelson, W. James

    2012-01-01

    Synapses are specialized adhesive contacts characteristic of many types of cell-cell interactions involving neurons, immune cells, epithelial cells, and even pathogens and host cells. Cell-cell adhesion is mediated by structurally diverse classes of cell-surface glycoproteins, which form homophilic or heterophilic interactions across the intercellular space. Adhesion proteins bind to a cytoplasmic network of scaffolding proteins, regulators of the actin cytoskeleton, and signal transduction pathways that control the structural and functional organization of synapses. The themes of this review are to compare the organization of synapses in different cell types and to understand how different classes of cell adhesion proteins and cytoplasmic protein networks specify the assembly of functionally distinct synapses in different cell contexts. PMID:17506641

  20. Visualizing the Functional Heterogeneity of Muscle Stem Cells.

    PubMed

    Kitajima, Yasuo; Ogawa, Shizuka; Ono, Yusuke

    2016-01-01

    Skeletal muscle stem cells are satellite cells that play crucial roles in tissue repair and regeneration after muscle injury. Accumulating evidence indicates that satellite cells are genetically and functionally heterogeneous, even within the same muscle. A small population of satellite cells possesses "stemness" and exhibits the remarkable ability to regenerate through robust self-renewal when transplanted into a regenerating muscle niche. In contrast, not all satellite cells self-renew. For example, some cells are committed myogenic progenitors that immediately undergo myogenic differentiation with minimal cell division after activation. Recent studies illuminate the cellular and molecular characteristics of the functional heterogeneity among satellite cells. To evaluate heterogeneity and stem cell dynamics, here we describe methods to conduct a clonal analysis of satellite cells and to visualize a slowly dividing cell population. PMID:27052612

  1. Colicin Killing: Foiled Cell Defense and Hijacked Cell Functions

    NASA Astrophysics Data System (ADS)

    de Zamaroczy, Miklos; Chauleau, Mathieu

    , which help to advance our understanding of the molecular events governing colicin import. In particular, our review includes the following: (1) Structural data on the tripartite interaction of a colicin with the outer membrane receptor and the translocation machinery, (2) Comparison of the normal cellular functions of the Tol and Ton systems of the inner membrane with their "hijacked" roles during colicin import, (3) An analysis of the interaction of a nuclease-type colicin with its cognate immunity protein in the context of the immunity of producer cells, and of the dissociation of this complex in the context of the attack of the colicin on target cells, (4) Information on the endoproteolytic cleavage, which presumably accompanies the penetration of nuclease-type colicins into the cytoplasm. The new data presented here provides further insight into cellular functions "hijacked" or "borrowed" by colicins to permit their entry into target cells.

  2. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells.

    PubMed

    Chen, Mingli; Yin, Huancai; Bai, Pengli; Miao, Peng; Deng, Xudong; Xu, Yingxue; Hu, Jun; Yin, Jian

    2016-07-15

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity of QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl2 at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd(2+) and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. PMID:27131644

  3. Innate lymphoid cell function in the context of adaptive immunity.

    PubMed

    Bando, Jennifer K; Colonna, Marco

    2016-06-21

    Innate lymphoid cells (ILCs) are a family of innate immune cells that have diverse functions during homeostasis and disease. Subsets of ILCs have phenotypes that mirror those of polarized helper T cell subsets in their expression of core transcription factors and effector cytokines. Given the similarities between these two classes of lymphocytes, it is important to understand which functions of ILCs are specialized and which are redundant with those of T cells. Here we discuss genetic mouse models that have been used to delineate the contributions of ILCs versus those of T cells and review the current understanding of the specialized in vivo functions of ILCs. PMID:27328008

  4. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation

    SciTech Connect

    Rauner, Gat; Barash, Itamar

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine's effect on defined stem cells in the mammary gland of heifers—which are candidates for increased prospective milk production following such manipulation—bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. - Highlights: • Novel “bovinized“ mouse model for exogenous effects on bovine mammary gland. • Xanthosine did not affect stem cell number/function in bovine mammary gland. • Xanthosine caused an immediate decrease in IMPDH expression in bovine mammary gland. • Xanthosine had latent negative effect on cell proliferation in bovine mammary gland. • Xanthosine administration limited mammary tumor growth.

  5. Biochanin A affects steroidogenesis and estrogen receptor-β expression in porcine granulosa cells.

    PubMed

    Nynca, Anna; Swigonska, Sylwia; Piasecka, Joanna; Kolomycka, Agnieszka; Kaminska, Barbara; Radziewicz-Pigiel, Marta; Gut-Nagel, Marta; Ciereszko, Renata E

    2013-10-15

    Biochanin A, similar to other isoflavones, is present in soy and soy-based food, but predominantly in red clover. Red clover extract and biochanin A were reported to affect reproductive processes as well as to demonstrate menopause relief and anticancerogenic properties. Because porcine granulosa cells provide a suitable in vitro model for studying the intracellular mechanism of phytoestrogen action in the ovary, the objective of the study was to evaluate the in vitro effects of biochanin A on the following: (1) progesterone (P4) and estradiol (E2) secretion by granulosa cells, (2) viability of the granulosa cells, and (3) mRNA and protein expression of estrogen receptors α (ERα) and β (ERβ) in the granulosa cells harvested from both medium (3-6 mm) and large (≥8 mm) porcine ovarian follicles. RIA, alamarBlue assay, reverse transcriptase-polymerase chain reaction, and immunocytochemistry were used in the study to address the objectives. Biochanin A significantly inhibited P4 and did not affect E2 secretion by porcine granulosa cells regardless of the size of follicles that served as the source of the cells. Cell viability was not affected by the treatment. Biochanin A did not alter ERα and ERβ mRNA levels in the cultured porcine granulosa cells. In contrast, this isoflavone increased (P < 0.05) the immunoexpression of ERβ in the cells from both follicle types. In summary, biochanin A, similar to genistein and daidzein, affects follicular steroidogenesis and ER expression. Its effect on ERβ protein was more intense compared with other previously examined phytoestrogens. PMID:23953692

  6. Microphthalmia transcription factor regulates pancreatic β-cell function.

    PubMed

    Mazur, Magdalena A; Winkler, Marcus; Ganic, Elvira; Colberg, Jesper K; Johansson, Jenny K; Bennet, Hedvig; Fex, Malin; Nuber, Ulrike A; Artner, Isabella

    2013-08-01

    Precise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell-specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal development and in the adult islet. A Mitf loss-of-function mutation results in improved glucose tolerance and enhanced insulin secretion but no increase in β-cell mass in adult mice. Mutant β-cells secrete more insulin in response to glucose than wild-type cells, suggesting that Mitf is involved in regulating β-cell function. In fact, the transcription of genes critical for maintaining glucose homeostasis (insulin and Glut2) and β-cell formation and function (Pax4 and Pax6) is significantly upregulated in Mitf mutant islets. The increased Pax6 expression may cause the improved β-cell function observed in Mitf mutant animals, as it activates insulin and Glut2 transcription. Chromatin immunoprecipitation analysis shows that Mitf binds to Pax4 and Pax6 regulatory regions, suggesting that Mitf represses their transcription in wild-type β-cells. We demonstrate that Mitf directly regulates Pax6 transcription and controls β-cell function. PMID:23610061

  7. Analysis of Common and Specific Mechanisms of Liver Function Affected by Nitrotoluene Compounds

    PubMed Central

    Deng, Youping; Meyer, Sharon A.; Guan, Xin; Escalon, Barbara Lynn; Ai, Junmei; Wilbanks, Mitchell S.; Welti, Ruth; Garcia-Reyero, Natàlia; Perkins, Edward J.

    2011-01-01

    Background Nitrotoluenes are widely used chemical manufacturing and munitions applications. This group of chemicals has been shown to cause a range of effects from anemia and hypercholesterolemia to testicular atrophy. We have examined the molecular and functional effects of five different, but structurally related, nitrotoluenes on using an integrative systems biology approach to gain insight into common and disparate mechanisms underlying effects caused by these chemicals. Methodology/Principal Findings Sprague-Dawley female rats were exposed via gavage to one of five concentrations of one of five nitrotoluenes [2,4,6-trinitrotoluene (TNT), 2-amino-4,6-dinitrotoluene (2ADNT) 4-amino-2,6-dinitrotoulene (4ADNT), 2,4-dinitrotoluene (2,4DNT) and 2,6-dinitrotoluene (2,6DNT)] with necropsy and tissue collection at 24 or 48 h. Gene expression profile results correlated well with clinical data and liver histopathology that lead to the concept that hematotoxicity was followed by hepatotoxicity. Overall, 2,4DNT, 2,6DNT and TNT had stronger effects than 2ADNT and 4ADNT. Common functional terms, gene expression patterns, pathways and networks were regulated across all nitrotoluenes. These pathways included NRF2-mediated oxidative stress response, aryl hydrocarbon receptor signaling, LPS/IL-1 mediated inhibition of RXR function, xenobiotic metabolism signaling and metabolism of xenobiotics by cytochrome P450. One biological process common to all compounds, lipid metabolism, was found to be impacted both at the transcriptional and lipid production level. Conclusions/Significance A systems biology strategy was used to identify biochemical pathways affected by five nitroaromatic compounds and to integrate data that tie biochemical alterations to pathological changes. An integrative graphical network model was constructed by combining genomic, gene pathway, lipidomic, and physiological endpoint results to better understand mechanisms of liver toxicity and physiological endpoints

  8. Earthworm-Mycorrhiza Interactions Can Affect the Diversity, Structure and Functioning of Establishing Model Grassland Communities

    PubMed Central

    Zaller, Johann G.; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m−2). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  9. Effect of Vascular Endothelial Growth Factor and Erythropoietin on Functional Activity of Fibroblasts and Multipotent Mesenchymal Stromal Cells.

    PubMed

    Bondarenko, N A; Nikonorova, Yu V; Surovtseva, M A; Lykov, A P; Poveshchenko, O V; Poveshchenko, A F; Pokushalov, E A; Romanov, A B; Konenkov, V I

    2016-02-01

    The study examined the effect of VEGF and erythropoietin on proliferative and migratory activities of skin fibroblasts and multipotent mesenchymal stromal cells of human adipose tissue. VEGF stimulated proliferation and migration of fi broblasts, but produced no significant effect on functional activity of multipotent mesenchymal stem cells. Erythropoietin stimulated proliferation of both cell types, but did not affect their migration. PMID:26899850

  10. Catechins Variously Affect Activities of Conjugation Enzymes in Proliferating and Differentiated Caco-2 Cells.

    PubMed

    Lněničková, Kateřina; Procházková, Eliška; Skálová, Lenka; Matoušková, Petra; Bártíková, Hana; Souček, Pavel; Szotáková, Barbora

    2016-01-01

    The knowledge of processes in intestinal cells is essential, as most xenobiotics come into contact with the small intestine first. Caco-2 cells are human colorectal adenocarcinoma that once differentiated, exhibit enterocyte-like characteristics. Our study compares activities and expressions of important conjugation enzymes and their modulation by green tea extract (GTE) and epigallocatechin gallate (EGCG) using both proliferating (P) and differentiated (D) caco-2 cells. The mRNA levels of the main conjugation enzymes were significantly elevated after the differentiation of Caco-2 cells. However, no increase in conjugation enzymes' activities in differentiated cells was detected in comparison to proliferating ones. GTE/EGCG treatment did not affect the mRNA levels of any of the conjugation enzymes tested in either type of cells. Concerning conjugation enzymes activities, GTE/EGCG treatment elevated glutathione S-transferase (GST) activity by approx. 30% and inhibited catechol-O-methyltransferase (COMT) activity by approx. 20% in differentiated cells. On the other hand, GTE as well as EGCG treatment did not significantly affect the activities of conjugation enzymes in proliferating cells. Administration of GTE/EGCG mediated only mild changes of GST and COMT activities in enterocyte-like cells, indicating a low risk of GTE/EGCG interactions with concomitantly administered drugs. However, a considerable chemo-protective effect of GTE via the pronounced induction of detoxifying enzymes cannot be expected as well. PMID:27617982

  11. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes.

    PubMed

    Heffler, Melissa; Golubovskaya, Vita M; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G; Dunn, Kelli B

    2013-05-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways. PMID:22934709

  12. Evaluation of Functional NK Cell Responses in Vaccinated and SIV-Infected Rhesus Macaques

    PubMed Central

    Vargas-Inchaustegui, Diego A.; Ying, Olivia; Demberg, Thorsten; Robert-Guroff, Marjorie

    2016-01-01

    NK cells are crucial components of the innate immune system due to their capacity to exert rapid cytotoxic and immunomodulatory function in the absence of prior sensitization. NK cells can become activated by exposure to target cells and/or by cytokines produced by antigen-presenting cells. In this study, we examined the effects of a simian immunodeficiency virus (SIV) vaccine regimen and subsequent SIV infection on the cytotoxic and immunomodulatory functions of circulatory NK cells. While vaccination did not significantly impact the capacity of NK cells to kill MHC-devoid 721.221 target cells, SIV-infection led to a significant decrease in target cell killing. NK cells from uninfected macaques were responsive to a low dose (5 ng/ml) of IL-15 pre-activation, leading to significant increases in their cytotoxic potential, however, NK cells from SIV-infected macaques required a higher dose (50 ng/ml) of IL-15 pre-activation in order to significantly increase their cytotoxic potential. By contrast, no differences were observed in the capacity of NK cells from vaccinated and SIV-infected macaques to respond to IL-12 and IL-18. Similarly, NK cells both before and after infection exhibited equivalent responses to Fc-mediated activation. Collectively, our results show that early SIV-infection impairs the natural cytotoxic capacity of circulatory NK cells without affecting Fc-mediated or cytokine-producing function.

  13. Ultraviolet irradiation of platelet concentrate abrogates lymphocyte activation without affecting platelet function in vitro

    SciTech Connect

    Kahn, R.A.; Duffy, B.F.; Rodey, G.G.

    1985-11-01

    We studied the effect of ultraviolet (UV) radiation on platelet concentrates. Samples irradiated at 310 mm for 30 minutes at a dose of 1782 J per m2 showed no loss of platelet function in vitro as determined by adenosine diphosphate, collagen, or ristocetin-induced aggregation. Lymphocytes isolated from irradiated units were unable to act as responders or stimulators in a mixed-lymphocyte reaction. These data suggest that UV radiation of platelet concentrates may result in a cell suspension that is unable to evoke an immunological response.

  14. AZFc deletions do not affect the function of human spermatogonia in vitro

    PubMed Central

    Nickkholgh, B.; Korver, C.M.; van Daalen, S.K.M.; van Pelt, A.M.M.; Repping, S.

    2015-01-01

    Azoospermic factor c (AZFc) deletions are the underlying cause in 10% of azoo- or severe oligozoospermia. Through extensive molecular analysis the precise genetic content of the AZFc region and the origin of its deletion have been determined. However, little is known about the effect of AZFc deletions on the functionality of germ cells at various developmental steps. The presence of normal, fertilization-competent sperm in the ejaculate and/or testis of the majority of men with AZFc deletions suggests that the process of differentiation from spermatogonial stem cells (SSCs) to mature spermatozoa can take place in the absence of the AZFc region. To determine the functionality of AZFc-deleted spermatogonia, we compared in vitro propagated spermatogonia from six men with complete AZFc deletions with spermatogonia from three normozoospermic controls. We found that spermatogonia of AZFc-deleted men behave similar to controls during culture. Short-term (18 days) and long-term (48 days) culture of AZFc-deleted spermatogonia showed the same characteristics as non-deleted spermatogonia. This similarity was revealed by the same number of passages, the same germ cell clusters formation and similar level of genes expression of spermatogonial markers including ubiquitin carboxyl-terminal esterase L1 (UCHL1), zinc finger and BTB domain containing 16 (ZBTB16) and glial cell line-derived neurotrophic factor family receptor alpha 1 (GFRA1), as well as germ cell differentiation markers including signal transducer and activator of transcription 3 (STAT3), spermatogenesis and oogenesis specific basic helix-loophelix 2 (SOHLH2), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT) and synaptonemal complex protein 3 (SYCP3). The only exception was melanoma antigen family A4 (MAGEA4) which showed significantly lower expression in AZFc-deleted samples than controls in short-term culture while in long-term culture it was hardly detected in both AZFc-deleted and control

  15. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms

    PubMed Central

    Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions. PMID:26098633

  16. MeCP2 Affects Skeletal Muscle Growth and Morphology through Non Cell-Autonomous Mechanisms.

    PubMed

    Conti, Valentina; Gandaglia, Anna; Galli, Francesco; Tirone, Mario; Bellini, Elisa; Campana, Lara; Kilstrup-Nielsen, Charlotte; Rovere-Querini, Patrizia; Brunelli, Silvia; Landsberger, Nicoletta

    2015-01-01

    Rett syndrome (RTT) is an autism spectrum disorder mainly caused by mutations in the X-linked MECP2 gene and affecting roughly 1 out of 10.000 born girls. Symptoms range in severity and include stereotypical movement, lack of spoken language, seizures, ataxia and severe intellectual disability. Notably, muscle tone is generally abnormal in RTT girls and women and the Mecp2-null mouse model constitutively reflects this disease feature. We hypothesized that MeCP2 in muscle might physiologically contribute to its development and/or homeostasis, and conversely its defects in RTT might alter the tissue integrity or function. We show here that a disorganized architecture, with hypotrophic fibres and tissue fibrosis, characterizes skeletal muscles retrieved from Mecp2-null mice. Alterations of the IGF-1/Akt/mTOR pathway accompany the muscle phenotype. A conditional mouse model selectively depleted of Mecp2 in skeletal muscles is characterized by healthy muscles that are morphologically and molecularly indistinguishable from those of wild-type mice raising the possibility that hypotonia in RTT is mainly, if not exclusively, mediated by non-cell autonomous effects. Our results suggest that defects in paracrine/endocrine signaling and, in particular, in the GH/IGF axis appear as the major cause of the observed muscular defects. Remarkably, this is the first study describing the selective deletion of Mecp2 outside the brain. Similar future studies will permit to unambiguously define the direct impact of MeCP2 on tissue dysfunctions. PMID:26098633

  17. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef

    PubMed Central

    Burkepile, Deron E.; Hay, Mark E.

    2008-01-01

    Consumer effects on prey are well known for cascading through food webs and producing dramatic top-down effects on community structure and ecosystem function. Bottom-up effects of prey (primary producer) biodiversity are also well known. However, the role of consumer diversity in affecting community structure or ecosystem function is not well understood. Here, we show that herbivore species richness can be critical for maintaining the structure and function of coral reefs. In two experiments over 2 years, we constructed large cages enclosing single herbivore species, equal densities of mixed species of herbivores, or excluding herbivores and assessed effects on both seaweeds and corals. When compared with single-herbivore treatments, mixed-herbivore treatments lowered macroalgal abundance by 54–76%, enhanced cover of crustose coralline algae (preferred recruitment sites for corals) by 52–64%, increased coral cover by 22%, and prevented coral mortality. Complementary feeding by herbivorous fishes drove the herbivore richness effects, because macroalgae were unable to effectively deter fishes with different feeding strategies. Maintaining herbivore species richness appears critical for preserving coral reefs, because complementary feeding by diverse herbivores produces positive, but indirect, effects on corals, the foundation species for the ecosystem. PMID:18845686

  18. Artefacts and biases affecting the evaluation of scoring functions on decoy sets for protein structure prediction

    PubMed Central

    Handl, Julia; Knowles, Joshua; Lovell, Simon C.

    2009-01-01

    Motivation: Decoy datasets, consisting of a solved protein structure and numerous alternative native-like structures, are in common use for the evaluation of scoring functions in protein structure prediction. Several pitfalls with the use of these datasets have been identified in the literature, as well as useful guidelines for generating more effective decoy datasets. We contribute to this ongoing discussion an empirical assessment of several decoy datasets commonly used in experimental studies. Results: We find that artefacts and sampling issues in the large majority of these data make it trivial to discriminate the native structure. This underlines that evaluation based on the rank/z-score of the native is a weak test of scoring function performance. Moreover, sampling biases present in the way decoy sets are generated or used can strongly affect other types of evaluation measures such as the correlation between score and root mean squared deviation (RMSD) to the native. We demonstrate how, depending on type of bias and evaluation context, sampling biases may lead to both over- or under-estimation of the quality of scoring terms, functions or methods. Availability: Links to the software and data used in this study are available at http://dbkgroup.org/handl/decoy_sets. Contact: simon.lovell@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:19297350

  19. Aesthetic and functional rehabilitation of the primary dentition affected by amelogenesis imperfecta.

    PubMed

    Marquezin, Maria Carolina Salomé; Zancopé, Bruna Raquel; Pacheco, Larissa Ferreira; Gavião, Maria Beatriz Duarte; Pascon, Fernanda Miori

    2015-01-01

    The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child's psychosocial development. PMID:25705526

  20. Aesthetic and Functional Rehabilitation of the Primary Dentition Affected by Amelogenesis Imperfecta

    PubMed Central

    Marquezin, Maria Carolina Salomé; Zancopé, Bruna Raquel; Pacheco, Larissa Ferreira; Gavião, Maria Beatriz Duarte; Pascon, Fernanda Miori

    2015-01-01

    The objective of this case report was to describe the oral rehabilitation of a five-year-old boy patient diagnosed with amelogenesis imperfecta (AI) in the primary dentition. AI is a group of hereditary disorders that affects the enamel structure. The patient was brought to the dental clinic complaining of tooth hypersensitivity during meals. The medical history and clinical examination were used to arrive at the diagnosis of AI. The treatment was oral rehabilitation of the primary molars with stainless steel crowns and resin-filled celluloid forms. The main objectives of the selected treatment were to enhance the esthetics, restore masticatory function, and eliminate the teeth sensitivity. The child was monitored in the pediatric dentistry clinic at four-month intervals until the mixed dentition stage. Treatment not only restored function and esthetic, but also showed a positive psychological impact and thereby improved perceived quality of life. The preventive, psychological, and curative measures of a young child with AI were successful. This result can encourage the clinicians to seek a cost-effective technique such as stainless steel crowns, and resin-filled celluloid forms to reestablish the oral functions and improve the child's psychosocial development. PMID:25705526

  1. SIRT1 reduces endothelial activation without affecting vascular function in ApoE-/- mice

    PubMed Central

    Stein, Sokrates; Schäfer, Nicola; Breitenstein, Alexander; Besler, Christian; Winnik, Stephan; Lohmann, Christine; Heinrich, Kathrin; Brokopp, Chad E.; Handschin, Christoph; Landmesser, Ulf; Tanner, Felix C.; Lüscher, Thomas F.; Matter, Christian M.

    2010-01-01

    Excessive production of reactive oxygen species (ROS) contributes to progression of atherosclerosis, at least in part by causing endothelial dysfunction and inflammatory activation. The class III histone deacetylase SIRT1 has been implicated in extension of lifespan. In the vasculature,SIRT1 gain-of-function using SIRT1 overexpression or activation has been shown to improve endothelial function in mice and rats via stimulation of endothelial nitric oxide (NO) synthase (eNOS). However, the effects of SIRT1 loss-of-function on the endothelium in atherosclerosis remain to be characterized. Thus, we have investigated the endothelial effects of decreased endogenous SIRT1 in hypercholesterolemic ApoE-/- mice. We observed no difference in endothelial relaxation and eNOS (Ser1177) phosphorylation between 20-week old male atherosclerotic ApoE-/- SIRT1+/- and ApoE-/- SIRT1+/+ mice. However, SIRT1 prevented endothelial superoxide production, inhibited NF-κB signaling, and diminished expression of adhesion molecules. Treatment of young hypercholesterolemic ApoE-/- SIRT1+/- mice with lipopolysaccharide to boost NF-κB signaling led to a more pronounced endothelial expression of ICAM-1 and VCAM-1 as compared to ApoE-/- SIRT1+/+ mice. In conclusion, endogenous SIRT1 diminishes endothelial activation in ApoE-/- mice, but does not affect endothelium-dependent vasodilatation. PMID:20606253

  2. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  3. Proliferation of Purple Sulphur Bacteria at the Sediment Surface Affects Intertidal Mat Diversity and Functionality

    PubMed Central

    Hubas, Cédric; Jesus, Bruno; Ruivo, Mickael; Meziane, Tarik; Thiney, Najet; Davoult, Dominique; Spilmont, Nicolas; Paterson, David M.; Jeanthon, Christian

    2013-01-01

    There is a relative absence of studies dealing with mats of purple sulphur bacteria in the intertidal zone. These bacteria display an array of metabolic pathways that allow them to disperse and develop under a wide variety of conditions, making these mats important in terms of ecosystem processes and functions. Mass blooms of purple sulphur bacteria develop during summer on sediments in the intertidal zone especially on macroalgal deposits. The microbial composition of different types of mats differentially affected by the development of purple sulphur bacteria was examined, at low tide, using a set of biochemical markers (fatty acids, pigments) and composition was assessed against their influence on ecosystem functions (sediment cohesiveness, CO2 fixation). We demonstrated that proliferation of purple sulphur bacteria has a major impact on intertidal mats diversity and functions. Indeed, assemblages dominated by purple sulphur bacteria (Chromatiaceae) were efficient exopolymer producers and their biostabilisation potential was significant. In addition, the massive growth of purple sulphur bacteria resulted in a net CO2 degassing whereas diatom dominated biofilms represented a net CO2 sink. PMID:24340018

  4. Centriole biogenesis and function in multiciliated cells

    PubMed Central

    Zhang, Siwei; Mitchell, Brian J.

    2016-01-01

    The use of Xenopus embryonic skin as a model system for the development of ciliated epithelia is well established. This tissue is comprised of numerous cell types, most notably the multiciliated cells (MCCs) that each contain approximately 150 motile cilia. At the base of each cilium lies the centriole-based structure called the basal body. Centriole biogenesis is typically restricted to two new centrioles per cell cycle, each templating from an existing “mother” centriole. In contrast, MCCs are post-mitotic cells in which the majority of centrioles arise “de novo” without templating from a mother centriole, instead, these centrioles nucleate from an electron-dense structure termed the deuterostome. How centriole number is regulated in these cells and the mechanism by which the deuterosome templates nascent centrioles is still poorly understood. Here, we describe methods for regulating MCC cell fate as well as for visualizing and manipulating centriole biogenesis. PMID:26175436

  5. Prostate stem cell antigen interacts with nicotinic acetylcholine receptors and is affected in Alzheimer's disease.

    PubMed

    Jensen, Majbrit M; Arvaniti, Maria; Mikkelsen, Jens D; Michalski, Dominik; Pinborg, Lars H; Härtig, Wolfgang; Thomsen, Morten S

    2015-04-01

    Alzheimer's disease (AD) is a neurodegenerative disorder involving impaired cholinergic neurotransmission and dysregulation of nicotinic acetylcholine receptors (nAChRs). Ly-6/neurotoxin (Lynx) proteins have been shown to modulate cognition and neural plasticity by binding to nAChR subtypes and modulating their function. Hence, changes in nAChR regulatory proteins such as Lynx proteins could underlie the dysregulation of nAChRs in AD. Using Western blotting, we detected bands corresponding to the Lynx proteins prostate stem cell antigen (PSCA) and Lypd6 in human cortex indicating that both proteins are present in the human brain. We further showed that PSCA forms stable complexes with the α4 nAChR subunit and decreases nicotine-induced extracellular-signal regulated kinase phosphorylation in PC12 cells. In addition, we analyzed protein levels of PSCA and Lypd6 in postmortem tissue of medial frontal gyrus from AD patients and found significantly increased PSCA levels (approximately 70%). In contrast, no changes in Lypd6 levels were detected. In concordance with our findings in AD patients, PSCA levels were increased in the frontal cortex of triple transgenic mice with an AD-like pathology harboring human transgenes that cause both age-dependent β-amyloidosis and tauopathy, whereas Tg2576 mice, which display β-amyloidosis only, had unchanged PSCA levels compared to wild-type animals. These findings identify PSCA as a nAChR-binding protein in the human brain that is affected in AD, suggesting that PSCA-nAChR interactions may be involved in the cognitive dysfunction observed in AD. PMID:25680266

  6. Exposure to Phthalates Affects Calcium Handling and Intercellular Connectivity of Human Stem Cell-Derived Cardiomyocytes

    PubMed Central

    Posnack, Nikki Gillum; Idrees, Rabia; Ding, Hao; Jaimes III, Rafael; Stybayeva, Gulnaz; Karabekian, Zaruhi; Laflamme, Michael A.; Sarvazyan, Narine

    2015-01-01

    Background The pervasive nature of plastics has raised concerns about the impact of continuous exposure to plastic additives on human health. Of particular concern is the use of phthalates in the production of flexible polyvinyl chloride (PVC) products. Di-2-ethylhexyl-phthalate (DEHP) is a commonly used phthalate ester plasticizer that imparts flexibility and elasticity to PVC products. Recent epidemiological studies have reported correlations between urinary phthalate concentrations and cardiovascular disease, including an increased risk of high blood pressure and coronary risk. Yet, there is little direct evidence linking phthalate exposure to adverse effects in human cells, including cardiomyocytes. Methods and Results The effect of DEHP on calcium handling was examined using monolayers of gCAMP3 human embryonic stem cell-derived cardiomyocytes, which contain an endogenous calcium sensor. Cardiomyocytes were exposed to DEHP (5 – 50 μg/mL), and calcium transients were recorded using a Zeiss confocal imaging system. DEHP exposure (24 – 72 hr) had a negative chronotropic and inotropic effect on cardiomyocytes, increased the minimum threshold voltage required for external pacing, and modified connexin-43 expression. Application of Wy-14,643 (100 μM), an agonist for the peroxisome proliferator-activated receptor alpha, did not replicate DEHP’s effects on calcium transient morphology or spontaneous beating rate. Conclusions Phthalates can affect the normal physiology of human cardiomyocytes, including DEHP elicited perturbations in cardiac calcium handling and intercellular connectivity. Our findings call for additional studies to clarify the extent by which phthalate exposure can alter cardiac function, particularly in vulnerable patient populations who are at risk for high phthalate exposure. PMID:25799571

  7. Decreased Zinc Availability Affects Glutathione Metabolism in Neuronal Cells and in the Developing Brain

    PubMed Central

    Omata, Yo; Salvador, Gabriela A.; Oteiza, Patricia I.

    2013-01-01

    A deficit in zinc (Zn) availability can increase cell oxidant production, affect the antioxidant defense system, and trigger oxidant-sensitive signals in neuronal cells. This work tested the hypothesis that a decreased Zn availability can affect glutathione (GSH) metabolism in the developing rat brain and in neuronal cells in culture, as well as the capacity of human neuroblastoma IMR-32 cells to upregulate GSH when challenged with dopamine (DA). GSH levels were low in the brain of gestation day 19 (GD19) fetuses from dams fed marginal Zn diets throughout gestation and in Zn-deficient IMR-32 cells. γ-Glutamylcysteine synthetase (GCL), the first enzyme in the GSH synthetic pathway, was altered by Zn deficiency (ZD). The protein and mRNA levels of the GCL modifier (GCLM) and catalytic (GCLC) subunits were lower in the Zn-deficient GD19 fetal brain and in IMR-32 cells compared with controls. The nuclear translocation of transcription factor nuclear factor (erythroid-derived 2)-like 2, which controls GCL transcription, was impaired by ZD. Posttranslationally, the caspase-3-dependent GCLC cleavage was high in Zn-deficient IMR-32 cells. Cells challenged with DA showed an increase in GCLM and GCLC protein and mRNA levels and a consequent increase in GSH concentration. Although Zn-deficient cells partially upregulated GCL subunits after exposure to DA, GSH content remained low. In summary, results show that a low Zn availability affects the GSH synthetic pathway in neuronal cells and fetal brain both at transcriptional and posttranslational levels. This can in part underlie the GSH depletion associated with ZD and the high sensitivity of Zn-deficient neurons to pro-oxidative stressors. PMID:23377617

  8. Microphthalmia Transcription Factor Regulates Pancreatic β-Cell Function

    PubMed Central

    Mazur, Magdalena A.; Winkler, Marcus; Ganić, Elvira; Colberg, Jesper K.; Johansson, Jenny K.; Bennet, Hedvig; Fex, Malin; Nuber, Ulrike A.; Artner, Isabella

    2013-01-01

    Precise regulation of β-cell function is crucial for maintaining blood glucose homeostasis. Pax6 is an essential regulator of β-cell–specific factors like insulin and Glut2. Studies in the developing eye suggest that Pax6 interacts with Mitf to regulate pigment cell differentiation. Here, we show that Mitf, like Pax6, is expressed in all pancreatic endocrine cells during mouse postnatal development and in the adult islet. A Mitf loss-of-function mutation results in improved glucose tolerance and enhanced insulin secretion but no increase in β-cell mass in adult mice. Mutant β-cells secrete more insulin in response to glucose than wild-type cells, suggesting that Mitf is involved in regulating β-cell function. In fact, the transcription of genes critical for maintaining glucose homeostasis (insulin and Glut2) and β-cell formation and function (Pax4 and Pax6) is significantly upregulated in Mitf mutant islets. The increased Pax6 expression may cause the improved β-cell function observed in Mitf mutant animals, as it activates insulin and Glut2 transcription. Chromatin immunoprecipitation analysis shows that Mitf binds to Pax4 and Pax6 regulatory regions, suggesting that Mitf represses their transcription in wild-type β-cells. We demonstrate that Mitf directly regulates Pax6 transcription and controls β-cell function. PMID:23610061

  9. Deficient natural killer cell function in preeclampsia

    SciTech Connect

    Alanen, A.; Lassila, O.

    1982-11-01

    Natural killer cell activity of peripheral blood lymphocytes was measured against K-562 target cells with a 4-hour /sup 51/Cr release assay in 15 primigravid women with preeclamptic symptoms. Nineteen primigravid women with an uncomplicated pregnancy and 18 nonpregnant women served as controls. The natural killer cell activity of preeclamptic women was observed to be significantly lower than that of both control groups. Natural killer cells in preeclamptic women responded normally to augmentation caused by interferon. These findings give further evidence for the participation of the maternal immune system in this pregnancy disorder.

  10. Skewed B cell differentiation affects lymphoid organogenesis but not T cell-mediated autoimmunity.

    PubMed

    Colombo, E; Tentorio, P; Musio, S; Rajewsky, K; Pedotti, R; Casola, S; Farina, C

    2014-04-01

    B cell receptor (BCR) signalling determines B cell differentiation and may potentially alter T cell-mediated immune responses. In this study we used two transgenic strains of BCR-deficient mice expressing Epstein-Barr virus latent membrane protein (LMP)2A in B cells, where either follicular and marginal zone differentiation (D(H)LMP2A mice) or B-1 cell development (V(H)LMP2A mice) were supported, and evaluated the effects of skewed B lymphocyte differentiation on lymphoid organogenesis and T cell responses in vivo. Compared to wild-type animals, both transgenic strains displayed alterations in the composition of lymphoid organs and in the dynamics of distinct immune cell subsets following immunization with the self-antigen PLP₁₈₅₋₂₀₆. However, ex-vivo T cell proliferation to PLP₁₈₅₋₂₀₆ peptide measured in immunized D(H)LMP2A and V(H)LMP2A mice was similar to that detected in immunized control mice. Further, clinical expression of experimental autoimmune encephalitis in both LMP2A strains was identical to that of wild-type mice. In conclusion, mice with skewed B cell differentiation driven by LMP2A expression in BCR-negative B cells do not show changes in the development of a T cell mediated disease model of autoimmunity, suggesting that compensatory mechanisms support the generation of T cell responses. PMID:24325711

  11. Insulin-Producing Endocrine Cells Differentiated In Vitro From Human Embryonic Stem Cells Function in Macroencapsulation Devices In Vivo

    PubMed Central

    Ambruzs, Dana M.; Moorman, Mark A.; Bhoumik, Anindita; Cesario, Rosemary M.; Payne, Janice K.; Kelly, Jonathan R.; Haakmeester, Carl; Srijemac, Robert; Wilson, Alistair Z.; Kerr, Justin; Frazier, Mauro A.; Kroon, Evert J.; D’Amour, Kevin A.

    2015-01-01

    The PEC-01 cell population, differentiated from human embryonic stem cells (hESCs), contains pancreatic progenitors (PPs) that, when loaded into macroencapsulation devices (to produce the VC-01 candidate product) and transplanted into mice, can mature into glucose-responsive insulin-secreting cells and other pancreatic endocrine cells involved in glucose metabolism. We modified the protocol for making PEC-01 cells such that 73%–80% of the cell population consisted of PDX1-positive (PDX1+) and NKX6.1+ PPs. The PPs were further differentiated to islet-like cells (ICs) that reproducibly contained 73%–89% endocrine cells, of which approximately 40%–50% expressed insulin. A large fraction of these insulin-positive cells were single hormone-positive and expressed the transcription factors PDX1 and NKX6.1. To preclude a significant contribution of progenitors to the in vivo function of ICs, we used a simple enrichment process to remove remaining PPs, yielding aggregates that contained 93%–98% endocrine cells and 1%–3% progenitors. Enriched ICs, when encapsulated and implanted into mice, functioned similarly to the VC-01 candidate product, demonstrating conclusively that in vitro-produced hESC-derived insulin-producing cells can mature and function in vivo in devices. A scaled version of our suspension culture was used, and the endocrine aggregates could be cryopreserved and retain functionality. Although ICs expressed multiple important β cell genes, the cells contained relatively low levels of several maturity-associated markers. Correlating with this, the time to function of ICs was similar to PEC-01 cells, indicating that ICs required cell-autonomous maturation after delivery in vivo, which would occur concurrently with graft integration into the host. Significance Type 1 diabetes (T1D) affects approximately 1.25 million people in the U.S. alone and is deadly if not managed with insulin injections. This paper describes the production of insulin

  12. Cell trapping in activated micropores for functional analysis.

    PubMed

    Talasaz, AmirAli H; Powell, Ashley A; Stahl, Patrik; Ronaghi, Mostafa; Jeffrey, Stefanie S; Mindrinos, Michael; Davis, Ronald W

    2006-01-01

    This paper presents a novel device which provides the opportunity to perform high-throughput biochemical assays on different individual cells. In particular, the proposed device is suited to screen the rare cells in biological samples for early stage cancer diagnosis and explore their biochemical functionality. In the process, single cells are precisely positioned and captured in activated micropores. To show the performance of the proposed device, cultured yeast cells and human epithelial circulating tumor cells are successfully captured. PMID:17945673

  13. Triclosan and bisphenol a affect decidualization of human endometrial stromal cells.

    PubMed

    Forte, Maurizio; Mita, Luigi; Cobellis, Luigi; Merafina, Verdiana; Specchio, Raffaella; Rossi, Sergio; Mita, Damiano Gustavo; Mosca, Lavinia; Castaldi, Maria Antonietta; De Falco, Maria; Laforgia, Vincenza; Crispi, Stefania

    2016-02-15

    In recent years, impaired fertility and endometrium related diseases are increased. Many evidences suggest that environmental pollution might be considered a risk factor for endometrial physiopathology. Among environmental pollutants, endocrine disrupting chemicals (EDCs) act on endocrine system, causing hormonal imbalance which, in turn, leads to female and male reproductive dysfunctions. In this work, we studied the effects of triclosan (TCL) and bisphenol A (BPA), two widespread EDCs, on human endometrial stromal cells (ESCs), derived from endometrial biopsies from woman not affected by endometriosis. Cell proliferation, cell cycle, migration and decidualization mechanisms were investigated. Treatments have been performed with both the EDCs separately or in presence and in absence of progesterone used as decidualization stimulus. Both TCL and BPA did not affect cell proliferation, but they arrested ESCs at G2/M phase of cell cycle enhancing cell migration. TCL and BPA also increased gene expression and protein levels of some decidualization markers, such as insulin growth factor binding protein 1 (IGFBP1) and prolactin (PRL), amplifying the effect of progesterone alone. All together, our data strongly suggest that TCL and BPA might alter human endometrium physiology so affecting fertility and pregnancy outcome. PMID:26604029

  14. Valproic Acid Affects Membrane Trafficking and Cell-Wall Integrity in Fission Yeast

    PubMed Central

    Miyatake, Makoto; Kuno, Takayoshi; Kita, Ayako; Katsura, Kosaku; Takegawa, Kaoru; Uno, Satoshi; Nabata, Toshiya; Sugiura, Reiko

    2007-01-01

    Valproic acid (VPA) is widely used to treat epilepsy and manic-depressive illness. Although VPA has been reported to exert a variety of biochemical effects, the exact mechanisms underlying its therapeutic effects remain elusive. To gain further insights into the molecular mechanisms of VPA action, a genetic screen for fission yeast mutants that show hypersensitivity to VPA was performed. One of the genes that we identified was vps45+, which encodes a member of the Sec1/Munc18 family that is implicated in membrane trafficking. Notably, several mutations affecting membrane trafficking also resulted in hypersensitivity to VPA. These include ypt3+ and ryh1+, both encoding a Rab family protein, and apm1+, encoding the μ1 subunit of the adaptor protein complex AP-1. More importantly, VPA caused vacuolar fragmentation and inhibited the glycosylation and the secretion of acid phosphatase in wild-type cells, suggesting that VPA affects membrane trafficking. Interestingly, the cell-wall-damaging agents such as micafungin or the inhibition of calcineurin dramatically enhanced the sensitivity of wild-type cells to VPA. Consistently, VPA treatment of wild-type cells enhanced their sensitivity to the cell-wall-digesting enzymes. Altogether, our results suggest that VPA affects membrane trafficking, which leads to the enhanced sensitivity to cell-wall damage in fission yeast. PMID:17287531

  15. T follicular helper cell differentiation, function, and roles in disease

    PubMed Central

    Crotty, Shane

    2014-01-01

    Summary Follicular helper T (Tfh) cells are specialized providers of T cell help to B cells, and are essential for germinal center formation, affinity maturation, and the development of most high affinity antibodies and memory B cells. Tfh cell differentiation is a multi-stage, multi-factorial process involving B cell lymphoma 6 (Bcl6) and other transcription factors. This article reviews understanding of Tfh cell biology, including their differentiation, migration, transcriptional regulation, and B cell help functions. Tfh cells are critical components of many protective immune responses against pathogens. As such, there is strong interest in harnessing Tfh cells to improve vaccination strategies. Tfh cells also have roles in a range of other diseases, particularly autoimmune diseases. Overall, there have been dramatic advances in this young field, but there is much to be learned about Tfh cell biology in the interest of applying that knowledge to biomedical needs. PMID:25367570

  16. Cognitive and cognitive-motor interventions affecting physical functioning: A systematic review

    PubMed Central

    2011-01-01

    Background Several types of cognitive or combined cognitive-motor intervention types that might influence physical functions have been proposed in the past: training of dual-tasking abilities, and improving cognitive function through behavioral interventions or the use of computer games. The objective of this systematic review was to examine the literature regarding the use of cognitive and cognitive-motor interventions to improve physical functioning in older adults or people with neurological impairments that are similar to cognitive impairments seen in aging. The aim was to identify potentially promising methods that might be used in future intervention type studies for older adults. Methods A systematic search was conducted for the Medline/Premedline, PsycINFO, CINAHL and EMBASE databases. The search was focused on older adults over the age of 65. To increase the number of articles for review, we also included those discussing adult patients with neurological impairments due to trauma, as these cognitive impairments are similar to those seen in the aging population. The search was restricted to English, German and French language literature without any limitation of publication date or restriction by study design. Cognitive or cognitive-motor interventions were defined as dual-tasking, virtual reality exercise, cognitive exercise, or a combination of these. Results 28 articles met our inclusion criteria. Three articles used an isolated cognitive rehabilitation intervention, seven articles used a dual-task intervention and 19 applied a computerized intervention. There is evidence to suggest that cognitive or motor-cognitive methods positively affects physical functioning, such as postural control, walking abilities and general functions of the upper and lower extremities, respectively. The majority of the included studies resulted in improvements of the assessed functional outcome measures. Conclusions The current evidence on the effectiveness of cognitive or

  17. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  18. Raman spectroscopy and imaging of whole functional cells

    NASA Astrophysics Data System (ADS)

    McNaughton, Don; Lim, Janelle; Hammer, Larissa; Langford, Steven J.; Collie, Jocelyn; Wood, Bayden R.

    2005-02-01

    With the advent of Raman spectrometers based on CCD array detectors, instruments have been coupled to optical microscopes leading to all the advantages of bright field microscopy with the added advantage of a direct chemical probe. The primary biological solvent, water, is a weak Raman scatterer and so these instruments can now be used to investigate the chemistry of living systems at spatial resolutions of 1 μm and below. We have developed techniques that allow us to study functional red blood cells and monitor the exchange of ligands and the development and chemistry of disease processes. These techniques take advantage of Aggregated Enhanced Raman Spectroscopy, which enables us to use the haem group of the haemoglobins and related haem pigments, such as the malarial pigment haemozoin, as a sensitive probe for changes in oxidation state, spin state and electronic structure. We have used the Raman microprobe to investigate the effect of drugs such as quinoline on the food vacuole of the malarial parasite in vivo. Sickle cell disease affects 1 out of 600 African American births and is caused by a mutant form (β6 glu-->val) of haemoglobin (HbS). HbS polymerizes and forms higher order aggregates under hypoxic conditions, leading to distortion and rigidity of the erythrocyte. These rigid cells can block the microvasculature resulting in tissue ischaemia, organ damage, and ultimately death. The sensitivity of the Raman technique to haem aggregation provides a tool with which we can analyse the changes that occur between normal and sickle cells.

  19. MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation.

    PubMed

    Lopez-Ramirez, Miguel Alejandro; Wu, Dongsheng; Pryce, Gareth; Simpson, Julie E; Reijerkerk, Arie; King-Robson, Josh; Kay, Oliver; de Vries, Helga E; Hirst, Mark C; Sharrack, Basil; Baker, David; Male, David Kingsley; Michael, Gregory J; Romero, Ignacio Andres

    2014-06-01

    Blood-brain barrier (BBB) dysfunction is a hallmark of neurological conditions such as multiple sclerosis (MS) and stroke. However, the molecular mechanisms underlying neurovascular dysfunction during BBB breakdown remain elusive. MicroRNAs (miRNAs) have recently emerged as key regulators of pathogenic responses, although their role in central nervous system (CNS) microvascular disorders is largely unknown. We have identified miR-155 as a critical miRNA in neuroinflammation at the BBB. miR-155 is expressed at the neurovascular unit of individuals with MS and of mice with experimental autoimmune encephalomyelitis (EAE). In mice, loss of miR-155 reduced CNS extravasation of systemic tracers, both in EAE and in an acute systemic inflammation model induced by lipopolysaccharide. In cultured human brain endothelium, miR-155 was strongly and rapidly upregulated by inflammatory cytokines. miR-155 up-regulation mimicked cytokine-induced alterations in junctional organization and permeability, whereas inhibition of endogenous miR-155 partially prevented a cytokine-induced increase in permeability. Furthermore, miR-155 modulated brain endothelial barrier function by targeting not only cell-cell complex molecules such as annexin-2 and claudin-1, but also focal adhesion components such as DOCK-1 and syntenin-1. We propose that brain endothelial miR-155 is a negative regulator of BBB function that may constitute a novel therapeutic target for CNS neuroinflammatory disorders. PMID:24604078

  20. Metacognitive Awareness of Facial Affect in Higher-Functioning Children and Adolescents with Autism Spectrum Disorder.

    PubMed

    McMahon, Camilla M; Henderson, Heather A; Newell, Lisa; Jaime, Mark; Mundy, Peter

    2016-03-01

    Higher-functioning participants with and without autism spectrum disorder (ASD) viewed a series of face stimuli, made decisions regarding the affect of each face, and indicated their confidence in each decision. Confidence significantly predicted accuracy across all participants, but this relation was stronger for participants with typical development than participants with ASD. In the hierarchical linear modeling analysis, there were no differences in face processing accuracy between participants with and without ASD, but participants with ASD were more confident in their decisions. These results suggest that individuals with ASD have metacognitive impairments and are overconfident in face processing. Additionally, greater metacognitive awareness was predictive of better face processing accuracy, suggesting that metacognition may be a pivotal skill to teach in interventions. PMID:26496991

  1. How measurement artifacts affect cerebral autoregulation outcomes: A technical note on transfer function analysis.

    PubMed

    Meel-van den Abeelen, Aisha S S; de Jong, Daan L K; Lagro, Joep; Panerai, Ronney B; Claassen, Jurgen A H R

    2016-05-01

    Cerebral autoregulation (CA) is the mechanism that aims to maintain adequate cerebral perfusion during changes in blood pressure (BP). Transfer function analysis (TFA), the most reported method in literature to quantify CA, shows large between-study variability in outcomes. The aim of this study is to investigate the role of measurement artifacts in this variation. Specifically, the role of distortion in the BP and/or CBFV measurementon TFA outcomes was investigated. The influence of three types of artifacts on TFA outcomes was studied: loss of signal, motion artifacts, and baseline drifts. TFA metrics of signals without the simulated artifacts were compared with those of signals with artifacts. TFA outcomes scattered highly when more than 10% of BP signal or over 8% of the CBFV signal was lost, or when measurements contained one or more artifacts resulting from head movement. Furthermore, baseline drift affected interpretation of TFA outcomes when the power in the BP signal was 5 times the power in the LF band. In conclusion, loss of signal in BP and loss in CBFV, affects interpretation of TFA outcomes. Therefore, it is vital to validate signal quality to the defined standards before interpreting TFA outcomes. PMID:26935320

  2. Melanoma Cancer Stem Cells: Markers and Functions

    PubMed Central

    Parmiani, Giorgio

    2016-01-01

    The discovery of cancer stem cells (CSCs) in human solid tumors has allowed a better understanding of the biology and neoplastic transformation of normal melanocytes, and the possible mechanisms by which melanoma cells acquire tumorigenicity. In this review I summarize the literature findings on the potential biomarkers of melanoma CSCs, their presence in the melanoma cell populations, the interaction with the immune system (with both T and NK cells) and the role of melanoma CSCs in the clinics. Given the extraordinary progress in the therapy of melanoma caused by immune checkpoint antibodies blockade, I discuss how these antibodies can work by the activation of melanoma infiltrating T cells specifically recognizing neo-antigens expressed even by melanoma CSCs. This is the mechanism that can induce a regression of the metastatic melanomas. PMID:26978405

  3. Sensory integration dysfunction affects efficacy of speech therapy on children with functional articulation disorders

    PubMed Central

    Tung, Li-Chen; Lin, Chin-Kai; Hsieh, Ching-Lin; Chen, Ching-Chi; Huang, Chin-Tsan; Wang, Chun-Hou

    2013-01-01

    Background Articulation disorders in young children are due to defects occurring at a certain stage in sensory and motor development. Some children with functional articulation disorders may also have sensory integration dysfunction (SID). We hypothesized that speech therapy would be less efficacious in children with SID than in those without SID. Hence, the purpose of this study was to compare the efficacy of speech therapy in two groups of children with functional articulation disorders: those without and those with SID. Method: A total of 30 young children with functional articulation disorders were divided into two groups, the no-SID group (15 children) and the SID group (15 children). The number of pronunciation mistakes was evaluated before and after speech therapy. Results: There were no statistically significant differences in age, sex, sibling order, education of parents, and pretest number of mistakes in pronunciation between the two groups (P > 0.05). The mean and standard deviation in the pre- and post-test number of mistakes in pronunciation were 10.5 ± 3.2 and 3.3 ± 3.3 in the no-SID group, and 10.1 ± 2.9 and 6.9 ± 3.5 in the SID group, respectively. Results showed great changes after speech therapy treatment (F = 70.393; P < 0.001) and interaction between the pre/post speech therapy treatment and groups (F = 11.119; P = 0.002). Conclusions: Speech therapy can improve the articulation performance of children who have functional articulation disorders whether or not they have SID, but it results in significantly greater improvement in children without SID. SID may affect the treatment efficiency of speech therapy in young children with articulation disorders. PMID:23355780

  4. Macrofauna assemblage composition and soil moisture interact to affect soil ecosystem functions

    NASA Astrophysics Data System (ADS)

    Collison, E. J.; Riutta, T.; Slade, E. M.

    2013-02-01

    Changing climatic conditions and habitat fragmentation are predicted to alter the soil moisture conditions of temperate forests. It is not well understood how the soil macrofauna community will respond to changes in soil moisture, and how changes to species diversity and community composition may affect ecosystem functions, such as litter decomposition and soil fluxes. Moreover, few studies have considered the interactions between the abiotic and biotic factors that regulate soil processes. Here we attempt to disentangle the interactive effects of two of the main factors that regulate soil processes at small scales - moisture and macrofauna assemblage composition. The response of assemblages of three common temperate soil invertebrates (Glomeris marginata Villers, Porcellio scaber Latreille and Philoscia muscorum Scopoli) to two contrasting soil moisture levels was examined in a series of laboratory mesocosm experiments. The contribution of the invertebrates to the leaf litter mass loss of two common temperate tree species of contrasting litter quality (easily decomposing Fraxinus excelsior L. and recalcitrant Quercus robur L.) and to soil CO2 fluxes were measured. Both moisture conditions and litter type influenced the functioning of the invertebrate assemblages, which was greater in high moisture conditions compared with low moisture conditions and on good quality vs. recalcitrant litter. In high moisture conditions, all macrofauna assemblages functioned at equal rates, whereas in low moisture conditions there were pronounced differences in litter mass loss among the assemblages. This indicates that species identity and assemblage composition are more important when moisture is limited. We suggest that complementarity between macrofauna species may mitigate the reduced functioning of some species, highlighting the importance of maintaining macrofauna species richness.

  5. Retrospective analysis of lung function abnormalities of Bhopal gas tragedy affected population

    PubMed Central

    De, Sajal

    2012-01-01

    Background & objectives: A large numbers of subjects were exposed to the aerosol of methyl isocyanate (MIC) during Bhopal gas disaster and lung was one of the most commonly affected organs. The aim of the present study was to analyze retrospectively the lung function abnormalities among the surviving MIC exposed population (gas victims) and to compare it with the non-MIC exposed (non gas exposed) population. Methods: The spirometry data of both gas victims and non gas exposed population who attended the Bhopal Memorial Hospital & Research Centre for evaluation of their respiratory complaints from August 2001 to December 2009, were retrospectively evaluated and compared. Results: A total 4782 gas victims and 1190 non gas exposed individuals performed spirometry during the study period. Among the gas victims, obstructive pattern was the commonest (50.8%) spirometric abnormality followed by restrictive pattern (13.3%). The increased relative risk of developing restrictive abnormality among gas victims was observed in 20-29 yr age group only (adjusted relative risk: 2.94, P<0.001). Male gas victims were more affected by severe airflow obstruction than females and the overall increased relative risk (1.33 to 1.45, P<0.001) of developing obstructive pattern among gas victims was observed. Interpretation & conclusions: The present study showed that the relative risk for pulmonary function abnormalities in gas victims was significantly more among those who were young at the time of disaster. Increased smoking habit among gas victims might have played an additive effect on predominance of obstructive pattern in spirometry. PMID:22446861

  6. Behavioral Functions of the Mesolimbic Dopaminergic System: an Affective Neuroethological Perspective

    PubMed Central

    Alcaro, Antonio; Huber, Robert; Panksepp, Jaak

    2008-01-01

    The mesolimbic dopaminergic (ML-DA) system has been recognized for its central role in motivated behaviors, various types of reward, and, more recently, in cognitive processes. Functional theories have emphasized DA's involvement in the orchestration of goal-directed behaviors, and in the promotion and reinforcement of learning. The affective neuroethological perspective presented here, views the ML-DA system in terms of its ability to activate an instinctual emotional appetitive state (SEEKING) evolved to induce organisms to search for all varieties of life-supporting stimuli and to avoid harms. A description of the anatomical framework in which the ML system is embedded is followed by the argument that the SEEKING disposition emerges through functional integration of ventral basal ganglia (BG) into thalamocortical activities. Filtering cortical and limbic input that spread into BG, DA transmission promotes the “release” of neural activity patterns that induce active SEEKING behaviors when expressed at the motor level. Reverberation of these patterns constitutes a neurodynamic process for the inclusion of cognitive and perceptual representations within the extended networks of the SEEKING urge. In this way, the SEEKING disposition influences attention, incentive salience, associative learning, and anticipatory predictions. In our view, the rewarding properties of drugs of abuse are, in part, caused by the activation of the SEEKING disposition, ranging from appetitive drive to persistent craving depending on the intensity of the affect. The implications of such a view for understanding addiction are considered, with particular emphasis on factors predisposing individuals to develop compulsive drug seeking behaviors. PMID:17905440

  7. Microchannel Acoustophoresis does not Impact Survival or Function of Microglia, Leukocytes or Tumor Cells

    PubMed Central

    Lenshof, Andreas; Augustsson, Per; Hansson, Magnus J.; Elmér, Eskil; Lilja, Hans; Brundin, Patrik; Laurell, Thomas; Deierborg, Tomas

    2013-01-01

    Background The use of acoustic forces to manipulate particles or cells at the microfluidic scale (i.e. acoustophoresis), enables non-contact, label-free separation based on intrinsic cell properties such as size, density and compressibility. Acoustophoresis holds great promise as a cell separation technique in several research and clinical areas. However, it has been suggested that the force acting upon cells undergoing acoustophoresis may impact cell viability, proliferation or cell function via subtle phenotypic changes. If this were the case, it would suggest that the acoustophoresis method would be a less useful tool for many cell analysis applications as well as for cell therapy. Methods We investigate, for the first time, several key aspects of cellular changes following acoustophoretic processing. We used two settings of ultrasonic actuation, one that is used for cell sorting (10 Vpp operating voltage) and one that is close to the maximum of what the system can generate (20 Vpp). We used microglial cells and assessed cell viability and proliferation, as well as the inflammatory response that is indicative of more subtle changes in cellular phenotype. Furthermore, we adapted a similar methodology to monitor the response of human prostate cancer cells to acoustophoretic processing. Lastly, we analyzed the respiratory properties of human leukocytes and thrombocytes to explore if acoustophoretic processing has adverse effects. Results BV2 microglia were unaltered after acoustophoretic processing as measured by apoptosis and cell turnover assays as well as inflammatory cytokine response up to 48 h following acoustophoresis. Similarly, we found that acoustophoretic processing neither affected the cell viability of prostate cancer cells nor altered their prostate-specific antigen secretion following androgen receptor activation. Finally, human thrombocytes and leukocytes displayed unaltered mitochondrial respiratory function and integrity after acoustophoretic

  8. Th17 Cell Plasticity and Functions in Cancer Immunity

    PubMed Central

    Guéry, Leslie; Hugues, Stéphanie

    2015-01-01

    Th17 cells represent a particular subset of T helper lymphocytes characterized by high production of IL-17 and other inflammatory cytokines. Th17 cells participate in antimicrobial immunity at mucosal and epithelial barriers and particularly fight against extracellular bacteria and fungi. While a role for Th17 cells in promoting inflammation and autoimmune disorders has been extensively and elegantly demonstrated, it is still controversial whether and how Th17 cells influence tumor immunity. Although Th17 cells specifically accumulate in many different types of tumors compared to healthy tissues, the outcome might however differ from a tumor type to another. Th17 cells were consequently associated with both good and bad prognoses. The high plasticity of those cells toward cells exhibiting either anti-inflammatory or in contrast pathogenic functions might contribute to Th17 versatile functions in the tumor context. On one hand, Th17 cells promote tumor growth by inducing angiogenesis (via IL-17) and by exerting themselves immunosuppressive functions. On the other hand, Th17 cells drive antitumor immune responses by recruiting immune cells into tumors, activating effector CD8+ T cells, or even directly by converting toward Th1 phenotype and producing IFN-γ. In this review, we are discussing the impact of the tumor microenvironment on Th17 cell plasticity and function and its implications in cancer immunity. PMID:26583099

  9. Slits Affect the Timely Migration of Neural Crest Cells via Robo Receptor

    PubMed Central

    Giovannone, Dion; Reyes, Michelle; Reyes, Rachel; Correa, Lisa; Martinez, Darwin; Ra, Hannah; Gomez, Gustavo; Kaiser, Josh; Ma, Le; Stein, Mary-Pat; de Bellard, Maria Elena

    2013-01-01

    SUMMARY Background Neural crest cells emerge by delamination from the dorsal neural tube and give rise to various components of the peripheral nervous system in vertebrate embryos. These cells change from non-motile into highly motile cells migrating to distant areas before further differentiation. Mechanisms controlling delamination and subsequent migration of neural crest cells are not fully understood. Slit2, a chemorepellant for axonal guidance that repels and stimulates motility of trunk neural crest cells away from the gut has recently been suggested to be a tumor suppressor molecule. The goal of this study was to further investigate the role of Slit2 in trunk neural crest cell migration by constitutive expression in neural crest cells. Results We found that Slit gain-of-function significantly impaired neural crest cell migration while Slit loss-of-function favored migration. In addition, we observed that the distribution of key cytoskeletal markers was disrupted in both gain and loss of function instances. Conclusions These findings suggest that Slit molecules might be involved in the processes that allow neural crest cells to begin migration and transitioning to a mesenchymal type. PMID:22689303

  10. Immunoregulatory function of human intestinal mucosa lymphoid cells: evidence for enhanced suppressor cell activity in inflammatory bowel disease.

    PubMed Central

    Fiocchi, C; Youngman, K R; Farmer, R G

    1983-01-01

    Abnormalities in immune regulation at the gut level may be relevant to the pathogenesis of inflammatory bowel disease, but little is known about the immunoregulatory properties of intestinal mononuclear cells. Therefore, we wished to see if lymphoid cells derived from the lamina propria of surgically resected bowel specimens have any modulatory effect upon the immune response of peripheral blood mononuclear cells from patients with ulcerative colitis or Crohn's disease. When autologous peripheral blood and intestinal lamina propria lymphoid cells were mixed at different ratios and cultured in the presence of phytohaemagglutinin, we were able to show that intestinal mononuclear cells had the capacity to modify the mitogenic response of the cultured cells. These intestinal immunoregulatory cells, when obtained from mucosa affected by inflammatory bowel disease, express a significantly enhanced suppressor cell activity as compared with those from non-inflamed control mucosa. Such suppressor cell activity varies with cell concentration and requires cell proliferation, but it is independent of anatomical origin (small vs large bowel), type of inflammatory bowel disease (ulcerative colitis vs Crohn's disease) or immunosuppressive therapy. These findings point to an important functional difference between inflammatory bowel disease and control intestinal mucosa mononuclear cells. The enhanced suppressor activity of lamina propria mononuclear cells may be associated with impairment of cell-mediated immunity at the gut level. This may be related to the pathogenesis of inflammatory bowel disease by leading to defective intestinal immune regulatory events, which may not be detectable at the peripheral level. PMID:6223862

  11. Cell Adhesion on Surface-Functionalized Magnesium.

    PubMed

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance. PMID:27089250

  12. Diagnosis of NMOS DRAM functional performance as affected by a picosecond dye laser

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Schwartz, H. R.; Edmonds, L. D.; Zoutendyk, J. A.

    1992-01-01

    A picosec pulsed dye laser beam was at selected wavelengths successfully used to simulate heavy-ion single-event effects (SEEs) in negative channel NMOS DRAMs. A DRAM was used to develop the test technique because bit-mapping capability and previous heavy-ion upset data were available. The present analysis is the first to establish such a correlation between laser and heavy-ion data for devices, such as the NMOS DRAM, where charge collection is dominated by long-range diffusion, which is controlled by carrier density at remote distances from a depletion region. In the latter case, penetration depth is an important parameter and is included in the present analysis. A single-pulse picosecond dye laser beam (1.5 microns diameter) focused onto a single cell component can upset a single memory cell; clusters of memory cell upsets (multiple errors) were observed when the laser energy was increased above the threshold energy. The multiple errors were analyzed as a function of the bias voltage and total energy of a single pulse. A diffusion model to distinguish the multiple upsets from the laser-induced charge agreed well with previously reported heavy ion data.

  13. Vacuolar ATPase depletion affects mitochondrial ATPase function, kinetoplast dependency, and drug sensitivity in trypanosomes.

    PubMed

    Baker, Nicola; Hamilton, Graham; Wilkes, Jonathan M; Hutchinson, Sebastian; Barrett, Michael P; Horn, David

    2015-07-21

    Kinetoplastid parasites cause lethal diseases in humans and animals. The kinetoplast itself contains the mitochondrial genome, comprising a huge, complex DNA network that is also an important drug target. Isometamidium, for example, is a key veterinary drug that accumulates in the kinetoplast in African trypanosomes. Kinetoplast independence and isometamidium resistance are observed where certain mutations in the F1-γ-subunit of the two-sector F1Fo-ATP synthase allow for Fo-independent generation of a mitochondrial membrane potential. To further explore kinetoplast biology and drug resistance, we screened a genome-scale RNA interference library in African trypanosomes for isometamidium resistance mechanisms. Our screen identified 14 V-ATPase subunits and all 4 adaptin-3 subunits, implicating acidic compartment defects in resistance; V-ATPase acidifies lysosomes and related organelles, whereas adaptin-3 is responsible for trafficking among these organelles. Independent strains with depleted V-ATPase or adaptin-3 subunits were isometamidium resistant, and chemical inhibition of the V-ATPase phenocopied this effect. While drug accumulation in the kinetoplast continued after V-ATPase subunit depletion, acriflavine-induced kinetoplast loss was specifically tolerated in these cells and in cells depleted for adaptin-3 or endoplasmic reticulum membrane complex subunits, also identified in our screen. Consistent with kinetoplast dispensability, V-ATPase defective cells were oligomycin resistant, suggesting ATP synthase uncoupling and bypass of the normal Fo-A6-subunit requirement; this subunit is the only kinetoplast-encoded product ultimately required for viability in bloodstream-form trypanosomes. Thus, we describe 30 genes and 3 protein complexes associated with kinetoplast-dependent growth. Mutations affecting these genes could explain natural cases of dyskinetoplasty and multidrug resistance. Our results also reveal potentially conserved communication between the

  14. Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells

    PubMed Central

    Kretlow, James D; Jin, Yu-Qing; Liu, Wei; Zhang, Wen Jie; Hong, Tan-Hui; Zhou, Guangdong; Baggett, L Scott; Mikos, Antonios G; Cao, Yilin

    2008-01-01

    Background Bone marrow-derived mesenchymal stem cells (BMSCs) are a widely researched adult stem cell population capable of differentiation into various lineages. Because many promising applications of tissue engineering require cell expansion following harvest and involve the treatment of diseases and conditions found in an aging population, the effect of donor age and ex vivo handling must be understood in order to develop clinical techniques and therapeutics based on these cells. Furthermore, there currently exists little understanding as to how these two factors may be influenced by one another. Results Differences in the adipogenic, chondrogenic, and osteogenic differentiation capacity of murine MSCs harvested from donor animals of different age and number of passages of these cells were observed. Cells from younger donors adhered to tissue culture polystyrene better and proliferated in greater number than those from older animals. Chondrogenic and osteogenic potential decreased with age for each group, and adipogenic differentiation decreased only in cells from the oldest donors. Significant decreases in differentiation potentials due to passage were observed as well for osteogenesis of BMSCs from the youngest donors and chondrogenesis of the cells from the oldest donors. Conclusion Both increasing age and the number of passages have lineage dependent effects on BMSC differentiation potential. Furthermore, there is an obvious interplay between donor age and cell passage that in the future must be accounted for when developing cell-based therapies for clinical use. PMID:18957087

  15. Dental enamel cells express functional SOCE channels

    PubMed Central

    Nurbaeva, Meerim K.; Eckstein, Miriam; Concepcion, Axel R.; Smith, Charles E.; Srikanth, Sonal; Paine, Michael L.; Gwack, Yousang; Hubbard, Michael J.; Feske, Stefan; Lacruz, Rodrigo S.

    2015-01-01

    Dental enamel formation requires large quantities of Ca2+ yet the mechanisms mediating Ca2+ dynamics in enamel cells are unclear. Store-operated Ca2+ entry (SOCE) channels are important Ca2+ influx mechanisms in many cells. SOCE involves release of Ca2+ from intracellular pools followed by Ca2+ entry. The best-characterized SOCE channels are the Ca2+ release-activated Ca2+ (CRAC) channels. As patients with mutations in the CRAC channel genes STIM1 and ORAI1 show abnormal enamel mineralization, we hypothesized that CRAC channels might be an important Ca2+ uptake mechanism in enamel cells. Investigating primary murine enamel cells, we found that key components of CRAC channels (ORAI1, ORAI2, ORAI3, STIM1, STIM2) were expressed and most abundant during the maturation stage of enamel development. Furthermore, inositol 1,4,5-trisphosphate receptor (IP3R) but not ryanodine receptor (RyR) expression was high in enamel cells suggesting that IP3Rs are the main ER Ca2+ release mechanism. Passive depletion of ER Ca2+ stores with thapsigargin resulted in a significant raise in [Ca2+]i consistent with SOCE. In cells pre-treated with the CRAC channel blocker Synta-66 Ca2+ entry was significantly inhibited. These data demonstrate that enamel cells have SOCE mediated by CRAC channels and implicate them as a mechanism for Ca2+ uptake in enamel formation. PMID:26515404

  16. The effect of rotation on function and signal transduction in immune cell

    NASA Astrophysics Data System (ADS)

    Song, J. P.; Zhong, P.; Li, Y. H.; Yang, F.

    Objective Both spaceflight and modeled weightlessness on ground could compromise immune function especially cellular immunity In turn astrouants would not resist to external pathogen effectually the health status and work ability of astrounants were perhaps affected but the cellular and molecular mechanisms by which spaceflight alters human immune functions are poorly understood The aim this trial was to using high aspect rotation vessal HARV investigate the functional changes of immune cell rotated for virous time period in vitro and explore mechanisms in which space weightlessness affect immune function through cell signal transduction Methods Using high aspect rotation vessal HARV as simulated weightlessness model mouse splenic lymphocyte and Jurkat E6 1 as cell model the effects of rotation on cell proliferation cytokine secretion expression and activation of signal molecule ZAP-70 were studied Results After rotation T lymphocytic proliferation in mouse splenocyte were inhibited and the concentration of IL-2 and IFN- A secreted were reduced markly and all this happen within 6 hours after T cell were activated The activity of ZAP-70 in Jurkat cell were repressed significantly Conclusion Incapable activation of ZAP-70 might be one cause of depressed lymphocyte function under weightlessness

  17. The aprosodias: further functional-anatomical evidence for the organisation of affective language in the right hemisphere.

    PubMed Central

    Gorelick, P B; Ross, E D

    1987-01-01

    Fourteen right-handed patients with right hemispheric strokes were examined for disorders of affective language in order to further define the clinical-anatomical correlates of the aprosodias. A bedside evaluation strategy and CT scan mappings were utilised to make these comparisons. There were six patients with motor aprosodia, one with global aprosodia, two with conduction aprosodia, one with sensory aprosodia, one with transcortical sensory aprosodia, one with pure affective deafness and two with normal examinations of affect. Functional-anatomical correlations were consistent with those predicted previously. Recovery of affective language function in selected cases was characterised by improvements in affective-prosodic repetition and/or evolution into other aprosodic subtypes. Our results lend further support to the hypothesis that the organisation of affective language in the right hemisphere mirrors that of propositional language in the left hemisphere. Images PMID:2438386

  18. Functional calcium imaging in zebrafish lateral-line hair cells.

    PubMed

    Zhang, Q X; He, X J; Wong, H C; Kindt, K S

    2016-01-01

    Sensory hair-cell development, function, and regeneration are fundamental processes that are challenging to study in mammalian systems. Zebrafish are an excellent alternative model to study hair cells because they have an external auxiliary organ called the lateral line. The hair cells of the lateral line are easily accessible, which makes them suitable for live, function-based fluorescence imaging. In this chapter, we describe methods to perform functional calcium imaging in zebrafish lateral-line hair cells. We compare genetically encoded calcium indicators that have been used previously to measure calcium in lateral-line hair cells. We also outline equipment required for calcium imaging and compare different imaging systems. Lastly, we discuss how to set up optimal imaging parameters and how to process and visualize calcium signals. Overall, using these methods, in vivo calcium imaging is a powerful tool to examine sensory hair-cell function in an intact organism. PMID:27263415

  19. Key Immune Cell Cytokines Affects the Telomere Activity of Cord Blood Cells In vitro

    PubMed Central

    Brazvan, Balal; Farahzadi, Raheleh; Mohammadi, Seyede Momeneh; Montazer Saheb, Soheila; Shanehbandi, Dariush; Schmied, Laurent; Soleimani Rad, Jafar; Darabi, Masoud; Nozad Charoudeh, Hojjatollah

    2016-01-01

    Purpose: Telomere is a nucleoprotein complex at the end of eukaryotic chromosomes and its length is regulated by telomerase. The number of DNA repeat sequence (TTAGGG)n is reduced with each cell division in differentiated cells. The aim of this study was to evaluate the effect of SCF (Stem Cell Factor), Flt3 (Fms- Like tyrosine kinase-3), Interleukin-2, 7 and 15 on telomere length and hTERT gene expression in mononuclear and umbilical cord blood stem cells (CD34+ cells) during development to lymphoid cells. Methods: The mononuclear cells were isolated from umbilical cord blood by Ficoll-Paque density gradient. Then cells were cultured for 21 days in the presence of different cytokines. Telomere length and hTERT gene expression were evaluated in freshly isolated cells, 7, 14 and 21 days of culture by real-time PCR. The same condition had been done for CD34+ cells but telomere length and hTERT gene expression were measured at initial and day 21 of the experiment. Results: Highest hTERT gene expression and maximum telomere length were measured at day14 of MNCs in the presence of IL-7 and IL-15. Also, there was a significant correlation between telomere length and telomerase gene expression in MNCs at 14 days in a combination of IL-7 and IL-15 (r = 0.998, p =0.04). In contrast, IL-2 showed no distinct effect on telomere length and hTERT gene expression in cells. Conclusion: Taken together, IL-7 and IL-15 increased telomere length and hTERT gene expression at 14 day of the experiment. In conclusion, it seems likely that cells maintain naïve phenotype due to prolonged exposure of IL-7 and IL-15. PMID:27478776

  20. Characterization of the activities of actin-affecting drugs on tumor cell migration

    SciTech Connect

    Hayot, Caroline; Debeir, Olivier; Ham, Philippe van; Damme, Marc van; Kiss, Robert; Decaestecker, Christine . E-mail: cdecaes@ulb.ac.be

    2006-02-15

    Metastases kill 90% of cancer patients. It is thus a major challenge in cancer therapy to inhibit the spreading of tumor cells from primary tumor sites to those particular organs where metastases are likely to occur. Whereas the actin cytoskeleton is a key component involved in cell migration, agents targeting actin dynamics have been relatively poorly investigated. Consequently, valuable in vitro pharmacological tools are needed to selectively identify this type of agent. In response to the absence of any standardized process, the present work aims to develop a multi-assay strategy for screening actin-affecting drugs with anti-migratory potentials. To validate our approach, we used two cancer cell lines (MCF7 and A549) and three actin-affecting drugs (cytochalasin D, latrunculin A, and jasplakinolide). We quantified the effects of these drugs on the kinetics of actin polymerization in tubes (by means of spectrofluorimetry) and on the dynamics of actin cytoskeletons within whole cells (by means of fluorescence microscopy). Using quantitative videomicroscopy, we investigated the actual effects of the drugs on cell motility. Finally, the combined drug effects on cell motility and cell growth were evaluated by means of a scratch-wound assay. While our results showed concordant drug-induced effects on actin polymerization occurring in vitro in test tubes and within whole cells, the whole cell assay appeared more sensitive than the tube assay. The inhibition of actin polymerization induced by cytochalasin D was paralleled by a decrease in cell motility for both cell types. In the case of jasplakinolide, which induces actin polymerization, while it significantly enhanced the locomotion of the A549 cells, it significantly inhibited that of the MCF-7 ones. All these effects were confirmed by means of the scratch-wound assay except of the jasplakinolide-induced effects on MCF-7 cell motility. These later seemed compensated by an additional effect occurring during wound

  1. Factors affecting the attachment of Treponema pallidum to mammalian cells in vitro.

    PubMed

    Wong, G H; Steiner, B; Faine, S; Graves, S

    1983-02-01

    Attachment of Treponema pallidum (Nichols) to mammalian cells is probably the first step in the pathogenesis of syphilis. It may also be important for the multiplication of T pallidum in vitro. When factors affecting the attachment of T pallidum to mammalian cells in vitro were studied significantly greater numbers of treponemes were found to attach to baby rabbit genital organ (BRGO) cells than to five other mammalian cell lines. When attached to BRGO cells T pallidum survived longer in vitro than unattached treponemes. Eagle's minimal essential medium was superior to three other culture media in increasing attachment and maintaining the survival of treponemes. Dithiothreitol (0.25-1.0 mmol/l) had no effect on the attachment of T pallidum to BRGO cells. Anaerobic conditions were superior to microaerophilic conditions, and the latter were superior to aerobic conditions for the attachment and survival of T pallidum to BRGO cells. Within the range of concentrations tested the number of treponemes attached to the BRGO cells was directly dependent on the concentrations of viable treponemes in the inoculum. Greater numbers of treponemes attached to actively metabolising BRGO cells than to quiescent or slowly growing cells. PMID:6337680

  2. Study of curcumin immunomodulatory effects on reactive astrocyte cell function.

    PubMed

    Seyedzadeh, Mir Hadi; Safari, Zohreh; Zare, Ahad; Gholizadeh Navashenaq, Jamshid; Razavi, Seyed Alireza; Kardar, Gholam Ali; Khorramizadeh, Mohammad Reza

    2014-09-01

    Multiple sclerosis (MS) is considered an inflammatory and neurodegenerative disease of the central nervous system (CNS) which most often presents as relapsing-remitting episodes. Recent evidence suggests that activated astrocytes play a dual functional role in CNS inflammatory disorders such as MS. In this study, we tried to induce anti-inflammatory functions of astrocytes by curcumin. The effects of curcumin were examined on human a astrocyte cell line (U373-MG) induced by lipopolysaccharide (LPS) in vitro. Matrix metalloproteinase (MMP)-9 activity was assessed by gelatin zymography. Cytokine levels were evaluated by quantitative ELISA method and mRNA expression was measured by real-time PCR. We found that curcumin decreased the release of IL-6 and reduced MMP-9 enzyme activity. It down-regulated MCP-1 mRNA expression too. However, curcumin did not have significant effects on the expression of neurotrophin (NT)-3 and insulin-like growth factor (IGF)-1 mRNAs. Results suggest that curcumin might beneficially affect astrocyte population in CNS neuroinflammatory environment lean to anti-inflammatory response and help to components in respects of CNS repair. Our findings offer curcumin as a new therapeutic agent with the potential of regulating astrocyte-mediated inflammatory diseases in the CNS. PMID:24998635

  3. JAK2 inhibitors do not affect stem cells present in the spleens of patients with myelofibrosis.

    PubMed

    Wang, Xiaoli; Ye, Fei; Tripodi, Joseph; Hu, Cing Siang; Qiu, Jiajing; Najfeld, Vesna; Novak, Jesse; Li, Yan; Rampal, Raajit; Hoffman, Ronald

    2014-11-01

    Dysregulation of Janus kinase (JAK)-signal transducer and activator of transcription signaling is central to the pathogenesis of myelofibrosis (MF). JAK2 inhibitor therapy in MF patients results in a rapid reduction of the degree of splenomegaly, yet the mechanism underlying this effect remains unknown. The in vitro treatment of splenic and peripheral blood MF CD34(+) cells with the JAK1/2/3 inhibitor, AZD1480, reduced the absolute number of CD34(+), CD34(+)CD90(+), and CD34(+)CXCR4(+) cells as well as assayable hematopoietic progenitor cells (HPCs) irrespective of the JAK2 and calreticulin mutational status. Furthermore, AZD1480 treatment resulted in only a modest reduction in the proportion of HPCs that were JAK2V617F(+) or had a chromosomal abnormality. To study the effect of the drug on MF stem cells (MF-SCs), splenic CD34(+) cells were treated with AZD1480 and transplanted into immunodeficient mice. JAK2 inhibitor therapy did not affect the degree of human cell chimerism or the proportion of malignant donor cells. These data indicate that JAK2 inhibitor treatment affects a subpopulation of MF-HPCs, while sparing another HPC subpopulation as well as MF-SCs. This pattern of activity might account for the reduction in spleen size observed with JAK2 inhibitor therapy as well as the rapid increase in spleen size observed frequently with its discontinuation. PMID:25193869

  4. JAK2 inhibitors do not affect stem cells present in the spleens of patients with myelofibrosis

    PubMed Central

    Wang, Xiaoli; Ye, Fei; Tripodi, Joseph; Hu, Cing Siang; Qiu, Jiajing; Najfeld, Vesna; Novak, Jesse; Li, Yan; Rampal, Raajit

    2014-01-01

    Dysregulation of Janus kinase (JAK)–signal transducer and activator of transcription signaling is central to the pathogenesis of myelofibrosis (MF). JAK2 inhibitor therapy in MF patients results in a rapid reduction of the degree of splenomegaly, yet the mechanism underlying this effect remains unknown. The in vitro treatment of splenic and peripheral blood MF CD34+ cells with the JAK1/2/3 inhibitor, AZD1480, reduced the absolute number of CD34+, CD34+CD90+, and CD34+CXCR4+ cells as well as assayable hematopoietic progenitor cells (HPCs) irrespective of the JAK2 and calreticulin mutational status. Furthermore, AZD1480 treatment resulted in only a modest reduction in the proportion of HPCs that were JAK2V617F+ or had a chromosomal abnormality. To study the effect of the drug on MF stem cells (MF-SCs), splenic CD34+ cells were treated with AZD1480 and transplanted into immunodeficient mice. JAK2 inhibitor therapy did not affect the degree of human cell chimerism or the proportion of malignant donor cells. These data indicate that JAK2 inhibitor treatment affects a subpopulation of MF-HPCs, while sparing another HPC subpopulation as well as MF-SCs. This pattern of activity might account for the reduction in spleen size observed with JAK2 inhibitor therapy as well as the rapid increase in spleen size observed frequently with its discontinuation. PMID:25193869

  5. Plant-derived decapeptide OSIP108 interferes with Candida albicans biofilm formation without affecting cell viability.

    PubMed

    Delattin, Nicolas; De Brucker, Katrijn; Craik, David J; Cheneval, Olivier; Fröhlich, Mirjam; Veber, Matija; Girandon, Lenart; Davis, Talya R; Weeks, Anne E; Kumamoto, Carol A; Cos, Paul; Coenye, Tom; De Coninck, Barbara; Cammue, Bruno P A; Thevissen, Karin

    2014-05-01

    We previously identified a decapeptide from the model plant Arabidopsis thaliana, OSIP108, which is induced upon fungal pathogen infection. In this study, we demonstrated that OSIP108 interferes with biofilm formation of the fungal pathogen Candida albicans without affecting the viability or growth of C. albicans cells. OSIP108 displayed no cytotoxicity against various human cell lines. Furthermore, OSIP108 enhanced the activity of the antifungal agents amphotericin B and caspofungin in vitro and in vivo in a Caenorhabditis elegans-C. albicans biofilm infection model. These data point to the potential use of OSIP108 in combination therapy with conventional antifungal agents. In a first attempt to unravel its mode of action, we screened a library of 137 homozygous C. albicans mutants, affected in genes encoding cell wall proteins or transcription factors important for biofilm formation, for altered OSIP108 sensitivity. We identified 9 OSIP108-tolerant C. albicans mutants that were defective in either components important for cell wall integrity or the yeast-to-hypha transition. In line with these findings, we demonstrated that OSIP108 activates the C. albicans cell wall integrity pathway and that its antibiofilm activity can be blocked by compounds inhibiting the yeast-to-hypha transition. Furthermore, we found that OSIP108 is predominantly localized at the C. albicans cell surface. These data point to interference of OSIP108 with cell wall-related processes of C. albicans, resulting in impaired biofilm formation. PMID:24566179

  6. Histopathology of growth anomaly affecting the coral, Montipora capitata: implications on biological functions and population viability.

    PubMed

    Burns, John H R; Takabayashi, Misaki

    2011-01-01

    Growth anomalies (GAs) affect the coral, Montipora capitata, at Wai'ōpae, southeast Hawai'i Island. Our histopathological analysis of this disease revealed that the GA tissue undergoes changes which compromise anatomical machinery for biological functions such as defense, feeding, digestion, and reproduction. GA tissue exhibited significant reductions in density of ova (66.1-93.7%), symbiotic dinoflagellates (38.8-67.5%), mesenterial filaments (11.2-29.0%), and nematocytes (28.8-46.0%). Hyperplasia of the basal body wall but no abnormal levels of necrosis and algal or fungal invasion was found in GA tissue. Skeletal density along the basal body wall was significantly reduced in GAs compared to healthy or unaffected sections. The reductions in density of the above histological features in GA tissue were collated with disease severity data to quantify the impact of this disease at the colony and population level. Resulting calculations showed this disease reduces the fecundity of M. capitata colonies at Wai'ōpae by 0.7-49.6%, depending on GA severity, and the overall population fecundity by 2.41±0.29%. In sum, GA in this M. capitata population reduces the coral's critical biological functions and increases susceptibility to erosion, clearly defining itself as a disease and an ecological threat. PMID:22205976

  7. Merkel cells and touch domes: More than mechanosensory functions?

    PubMed Central

    Xiao, Ying; Williams, Jonathan S.; Brownell, Isaac

    2014-01-01

    The touch dome is an innervated structure in the epidermis of mammalian skin. Composed of specialized keratinocytes and neuroendocrine Merkel cells, the touch dome has distinct molecular characteristics compared to the surrounding epidermal keratinocytes. Much of the research on Merkel cell function has focused on their role in mechanosensation, specifically light-touch. Recently, more has been discovered about Merkel cell molecular characteristics and their cells of origin. Here we review Merkel cell and touch dome biology, and discuss potential functions beyond mechanosensation. PMID:24862916

  8. Formulation Changes Affect Material Properties and Cell Behavior in HA-Based Hydrogels

    PubMed Central

    Lawyer, Thomas; McIntosh, Kristen; Clavijo, Cristian; Potekhina, Lydia; Mann, Brenda K.

    2012-01-01

    To develop and optimize new scaffold materials for tissue engineering applications, it is important to understand how changes to the scaffold affect the cells that will interact with that scaffold. In this study, we used a hyaluronic acid- (HA-) based hydrogel as a synthetic extracellular matrix, containing modified HA (CMHA-S), modified gelatin (Gtn-S), and a crosslinker (PEGda). By varying the concentrations of these components, we were able to change the gelation time, enzymatic degradation, and compressive modulus of the hydrogel. These changes also affected fibroblast spreading within the hydrogels and differentially affected the proliferation and metabolic activity of fibroblasts and mesenchymal stem cells (MSCs). In particular, PEGda concentration had the greatest influence on gelation time, compressive modulus, and cell spreading. MSCs appeared to require a longer period of adjustment to the new microenvironment of the hydrogels than fibroblasts. Fibroblasts were able to proliferate in all formulations over the course of two weeks, but MSCs did not. Metabolic activity changed for each cell type during the two weeks depending on the formulation. These results highlight the importance of determining the effect of matrix composition changes on a particular cell type of interest in order to optimize the formulation for a given application. PMID:23251160

  9. T Cell Signaling Targets for Enhancing Regulatory or Effector Function

    PubMed Central

    Pan, Fan; Fan, Huimin; Liu, Zhongmin; Jiang, Shuiping

    2015-01-01

    To respond to infection, resting or naïve T cells must undergo activation, clonal expansion, and differentiation into specialized functional subsets of effector T cells. However, to prevent excessive or self-destructive immune responses, regulatory T cells (Tregs) are instrumental in suppressing the activation and function of effector cells, including effector T cells. The transcription factor Forkhead box P3 (Foxp3) regulates the expression of genes involved in the development and function of Tregs. Foxp3 interacts with other transcription factors and with epigenetic elements such as histone deacetylases (HDACs) and histone acetyltransferases. Treg suppressive function can be increased by exposure to HDAC inhibitors. The individual contributions of different HDAC family members to Treg function and their respective mechanisms of action, however, remain unclear. A study showed that HDAC6, HDAC9, and Sirtuin-1 had distinct effects on Foxp3 expression and function, suggesting that selectively targeting HDACs individually or in combination may enhance Treg stability and suppressive function. Another study showed that the receptor programmed death 1 (PD-1), a well-known inhibitor of T cell activation, halted cell cycle progression in effector T cells by inhibiting the transcription of the gene encoding the substrate-recognition component (Skp2) of the ubiquitin ligase SCFSkp2. Together, these findings reveal new signaling targets for enhancing Treg or effector T cell function that may be helpful in designing future therapies, either to increase Treg suppressive function in transplantation and autoimmune diseases or to block PD-1 function, thus increasing the magnitude of antiviral or antitumor immune responses of effector T cells. PMID:22855503

  10. Shape functions for velocity interpolation in general hexahedral cells

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.

    2002-01-01

    Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.

  11. Selexipag: a selective prostacyclin receptor agonist that does not affect rat gastric function.

    PubMed

    Morrison, Keith; Ernst, Roland; Hess, Patrick; Studer, Rolf; Clozel, Martine

    2010-10-01

    Selexipag [2-{4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}-N-(methylsulfonyl)acetamide] is an orally available prostacyclin (PGI(2)) receptor (IP receptor) agonist that is chemically distinct from PGI(2) and is in clinical development for the treatment of pulmonary arterial hypertension. Selexipag is highly selective for the human IP receptor in vitro, whereas analogs of PGI(2) can activate prostanoid receptors other than the IP receptor. The goal of this study was to determine the impact of selectivity for the IP receptor on gastric function by measuring 1) contraction of rat gastric fundus ex vivo and 2) the rates of gastric emptying and intestinal transport in response to selexipag in comparison with other PGI(2) analogs. The rat gastric fundus expresses mRNA encoding multiple prostanoid receptors to different levels: prostaglandin E receptor 1 (EP(1)) > prostaglandin E receptor 3 (EP(3)), IP receptor > prostaglandin D(2) receptor 1, thromboxane receptor. Selexipag and metabolite {4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy}acetic acid (ACT-333679) did not contract gastric fundus at concentrations up to 10(-3) M. In contrast, the PGI(2) analogs iloprost and beraprost evoked concentration-dependent contraction of gastric fundus. Contraction to treprostinil was observed at high concentration (10(-4) M). Contraction to all PGI(2) analogs was mediated via activation of EP(3) receptors, although EP(1) receptors also contributed to the contraction of gastric fundus to iloprost and beraprost. Antagonism of IP receptors did not affect responses. Oral selexipag did not significantly alter gastric function in vivo, as measured by rates of stomach emptying and intestinal transport, whereas beraprost slowed gastrointestinal transport. The high functional selectivity of selexipag and ACT-333679 for the IP receptor precludes a stimulatory action on gastric smooth muscle and may help minimize gastric side effects such as nausea and vomiting. PMID:20660124

  12. Key soil functional properties affected by soil organic matter - evidence from published literature

    NASA Astrophysics Data System (ADS)

    Murphy, Brian

    2015-07-01

    The effect of varying the amount of soil organic matter on a range of individual soil properties was investigated using a literature search of published information largely from Australia, but also included relevant information from overseas. Based on published pedotransfer functions, soil organic matter was shown to increase plant available water by 2 to 3 mm per 10 cm for each 1% increase in soil organic carbon, with the largest increases being associated with sandy soils. Aggregate stability increased with increasing soil organic carbon, with aggregate stability decreasing rapidly when soil organic carbon fell below 1.2 to 1.5 5%. Soil compactibility, friability and soil erodibility were favourably improved by increasing the levels of soil organic carbon. Nutrient cycling was a major function of soil organic matter. Substantial amounts of N, P and S become available to plants when the soil organic matter is mineralised. Soil organic matter also provides a food source for the microorganisms involved in the nutrient cycling of N, P, S and K. In soils with lower clay contents, and less active clays such as kaolinites, soil organic matter can supply a significant amount of the cation exchange capacity and buffering capacity against acidification. Soil organic matter can have a cation exchange capacity of 172 to 297 cmol(+)/kg. As the cation exchange capacity of soil organic matter varies with pH, the effectiveness of soil organic matter to contribute to cation exchange capacity below pH 5.5 is often minimal. Overall soil organic matter has the potential to affect a range of functional soil properties.

  13. Fatostatin Inhibits Cancer Cell Proliferation by Affecting Mitotic Microtubule Spindle Assembly and Cell Division.

    PubMed

    Gholkar, Ankur A; Cheung, Keith; Williams, Kevin J; Lo, Yu-Chen; Hamideh, Shadia A; Nnebe, Chelsea; Khuu, Cindy; Bensinger, Steven J; Torres, Jorge Z

    2016-08-12

    The sterol regulatory element-binding protein (SREBP) transcription factors have become attractive targets for pharmacological inhibition in the treatment of metabolic diseases and cancer. SREBPs are critical for the production and metabolism of lipids and cholesterol, which are essential for cellular homeostasis and cell proliferation. Fatostatin was recently discovered as a specific inhibitor of SREBP cleavage-activating protein (SCAP), which is required for SREBP activation. Fatostatin possesses antitumor properties including the inhibition of cancer cell proliferation, invasion, and migration, and it arrests cancer cells in G2/M phase. Although Fatostatin has been viewed as an antitumor agent due to its inhibition of SREBP and its effect on lipid metabolism, we show that Fatostatin's anticancer properties can also be attributed to its inhibition of cell division. We analyzed the effect of SREBP activity inhibitors including Fatostatin, PF-429242, and Betulin on the cell cycle and determined that only Fatostatin possessed antimitotic properties. Fatostatin inhibited tubulin polymerization, arrested cells in mitosis, activated the spindle assembly checkpoint, and triggered mitotic catastrophe and reduced cell viability. Thus Fatostatin's ability to inhibit SREBP activity and cell division could prove beneficial in treating aggressive types of cancers such as glioblastomas that have elevated lipid metabolism and fast proliferation rates and often develop resistance to current anticancer therapies. PMID:27378817

  14. Functionally Active Gap Junctions between Connexin 43-Positive Mesenchymal Stem Cells and Glioma Cells.

    PubMed

    Gabashvili, A N; Baklaushev, V P; Grinenko, N F; Levinskii, A B; Mel'nikov, P A; Cherepanov, S A; Chekhonin, V P

    2015-05-01

    The formation of functional gap junctions between mesenchymal stem cells and cells of low-grade rat glioma C6 cells was studied in in vitro experiments. Immunocytochemical analysis with antibodies to connexin 43 extracellular loop 2 showed that mesenchymal stem cells as well as C6 glioma cells express the main astroglial gap junction protein connexin 43. Analysis of migration activity showed that mesenchymal stem cells actively migrate towards C6 glioma cells. During co-culturing, mesenchymal stem cells and glioma C6 form functionally active gap junctions mediating the transport of cytoplasmic dye from glioma cells to mesenchymal stem cells in the opposite direction. Fluorometry showed that the intensity of transport of low-molecular substances through heterologous gap junctions between mesenchymal stem cells and glioma cells is similar to that through homologous gap junctions between glioma cells. This phenomenon can be used for the development of new methods of cell therapy of high-grade gliomas. PMID:26033611

  15. The inhibition of aromatase alters the mechanical and rheological properties of non-small-cell lung cancer cell lines affecting cell migration.

    PubMed

    Giannopoulou, E; Siatis, K E; Metsiou, D; Kritikou, I; Papachristou, D J; Kalofonou, M; Koutras, A; Athanassiou, G; Kalofonos, H P

    2015-02-01

    Tumor invasion and metastasis are key aspects of non-small cell lung cancer (NSCLC). During migration, cells undergo mechanical alterations. The mechanical phenotype of breast cancer cells is correlated with aromatase gene expression. We have previously shown that targeting aromatase is a promising strategy for NSCLC. The aim of this study was to examine morphological and mechanical changes of NSCLC cells, upon treatment with aromatase inhibitor and correlate their ability to migrate and invade. In vitro experiments were performed using H23 and A549 NSCLC cell lines and exemestane was used for aromatase inhibition. We demonstrated that exemestane reduced H23 cell migration and invasion and caused changes in cell morphology including increased vacuolar structures and greater pleomorphism. In addition, exemestane changed the distribution of α-tubulin in H23 and A549 cells in a way that might destabilize microtubules polymerization. These effects were associated with increased cell viscosity and decreased elastic shear modulus. Although exemestane caused similar effects in A549 cells regarding viscosity and elastic shear modulus, it did not affect A549 cell migration and caused an increase in invasion. The increased invasion was in line with vimentin perinuclear localization. Our data show that the treatment of NSCLC cells with an aromatase inhibitor not only affects cell migration and invasion but also alters the mechanical properties of the cells. It suggests that the different origin of cancer cells is associated with different morphological characteristics and mechanical behavior. PMID:25450981

  16. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells

    PubMed Central

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  17. Inhibition of Protease-Activated Receptor 1 Does not Affect Dendritic Homeostasis of Cultured Mouse Dentate Granule Cells.

    PubMed

    Schuldt, Gerlind; Galanis, Christos; Strehl, Andreas; Hick, Meike; Schiener, Sabine; Lenz, Maximilian; Deller, Thomas; Maggio, Nicola; Vlachos, Andreas

    2016-01-01

    Protease-activated receptors (PARs) are widely expressed in the central nervous system (CNS). While a firm link between PAR1-activation and functional synaptic and intrinsic neuronal properties exists, studies on the role of PAR1 in neural structural plasticity are scarce. The physiological function of PAR1 in the brain remains not well understood. We here sought to determine whether prolonged pharmacologic PAR1-inhibition affects dendritic morphologies of hippocampal neurons. To address this question we employed live-cell microscopy of mouse dentate granule cell dendrites in 3-week old entorhino-hippocampal slice cultures prepared from Thy1-GFP mice. A subset of cultures were treated with the PAR1-inhibitor SCH79797 (1 μM; up to 3 weeks). No major effects of PAR1-inhibition on static and dynamic parameters of dentate granule cell dendrites were detected under control conditions. Granule cells of PAR1-deficient slice cultures showed unaltered dendritic morphologies, dendritic spine densities and excitatory synaptic strength. Furthermore, we report that PAR1-inhibition does not prevent dendritic retraction following partial deafferentation in vitro. Consistent with this finding, no major changes in PAR1-mRNA levels were detected in the denervated dentate gyrus (DG). We conclude that neural PAR1 is not involved in regulating the steady-state dynamics or deafferentation-induced adaptive changes of cultured dentate granule cell dendrites. These results indicate that drugs targeting neural PAR1-signals may not affect the stability and structural integrity of neuronal networks in healthy brain regions. PMID:27378862

  18. Somatic growth and lung function in sickle cell disease.

    PubMed

    Catanzaro, Tina; Koumbourlis, Anastassios C

    2014-03-01

    Somatic growth is a key indicator of overall health and well-being with important prognostic implications in the management of chronic disease. Worldwide studies of growth in children and adults with SCD have predominantly shown delayed growth (especially in terms of body weight) that is gradual and progressive in nature. However, more recent studies have shown that a substantial number of patients with SCD have normal weight gain whereas some are even obese. Height in patients with SCD is not universally affected even among those with suboptimal weight gain, whereas some achieve the same or greater height than healthy controls. The relationship between somatic growth and lung function in SCD is not yet clearly defined. As a group, patients with SCD tend to have lower lung volumes compared with healthy controls. These findings are similar across the age spectrum and across ethnic/racial lines regardless of the differences in body weight. Several mechanisms and risk factors have been proposed to explain these findings. These include malnutrition, racial differences and socioeconomic status. In addition, there are structural changes of the thorax (specifically the anterio-posterior chest diameter and anterio-posterior to lateral chest ratio) specific to sickle cell disease, that potentially interfere with normal lung growth. Although, caloric and protein intake have been shown to improve both height and weight, the composition of an optimal diet remains unclear. The following article reviews the current knowledge and controversies regarding somatic growth and its relationship with lung function in sickle cell disease (SCD) as well as the role of specific deficiencies of certain micronutrients. PMID:24268619

  19. Surface Chemical Gradient Affects the Differentiation of Human Adipose-Derived Stem Cells via ERK1/2 Signaling Pathway.

    PubMed

    Liu, Xujie; Shi, Shengjun; Feng, Qingling; Bachhuka, Akash; He, Wei; Huang, Qianli; Zhang, Ranran; Yang, Xing; Vasilev, Krasimir

    2015-08-26

    To understand the role of surface chemistry on cell behavior and the associated molecular mechanisms, we developed and utilized a surface chemical gradient of amine functional groups by carefully adjusting the gas composition of 1,7-octadiene (OD) and allylamine (AA) of the plasma phase above a moving substrate. The chemical gradient surface used in the present work shows an increasing N/C ratio and wettability from the OD side toward the AA side with no change in surface topography. Under standard culture conditions (with serum), human adipose-derived stem cells (hASCs) adhesion and spreading area increased toward the AA side of the gradient. However, there were no differences in cell behavior in the absence of serum. These results, supported by the trends in proteins adsorption on the gradient surface, demonstrated that surface chemistry affects the response of hASCs through cell-adhesive serum proteins, rather than interacting directly with the cells. The expression of p-ERK and the osteogenic differentiation increased toward the AA side of the gradient, while adipogenic differentiation decreased in the same direction; however, when the activation of ERK1/2 was blocked by PD98059, the levels of osteogenic or adipogenic differentiation on different regions of the chemical gradient were the same. This indicates that ERK1/2 may be an important downstream signaling pathway of surface chemistry directed stem cell fate. PMID:26237746

  20. Immunomodulatory functions of mesenchymal stem cells and possible mechanisms.

    PubMed

    Wang, Qing; Ding, Gang; Xu, Xin

    2016-09-01

    In addition to their well-studied self-renewal capabilities and multipotent differentiation properties, mesenchymal stem cells (MSCs) have been reported to possess profound immunomodulatory functions both in vitro and in vivo. More and more studies have shown that MSCs are capable of interacting closely with almost all subsets of immune cells, such as T cells, B cells, dendritic cells, natural killer cells, macrophages, and neutrophils etc. The immunomodulatory property of MSCs may shed light on the treatment of a variety of autoimmune and inflammation-related diseases. In this article, we will review the studies on the immunomodulatory and anti-inflammatory functions of MSCs and the mechanisms responsible for the interaction between immune cells and MSCs, which could improve the development of promising approaches for cell-mediated immune therapies. PMID:26932157

  1. IFN‐λ3 polymorphism indirectly influences NK cell phenotype and function during acute HCV infection

    PubMed Central

    Depla, Marion; Pelletier, Sandy; Bédard, Nathalie; Brunaud, Camille; Bruneau, Julie

    2016-01-01

    Abstract Introduction Polymorphisms in the type III interferon IFN‐λ3 and the killer cell immunoglobulin‐like receptor (KIR) genes controlling the activity of natural killer (NK) cells can predict spontaneous resolution of acute hepatitis C virus (HCV) infection. We hypothesized that IFN‐λ3 polymorphism may modulate NK cell function during acute HCV. Methods We monitored the plasma levels of type III IFNs in relation to the phenotype and the function of NK cells in a cohort of people who inject drugs (PWID) during acute HCV infection with different outcomes. Results Early acute HCV was associated with high variability in type III IFNs plasma levels and the favorable IFN‐λ3 CC genotype was associated with higher viral loads. Reduced expression of Natural Killer Group Protein 2A (NKG2A) was associated with lower IFN‐λ3 plasma levels and the CC genotype. IFN‐γ production by NK cells was higher in individuals with the CC genotype during acute infection but this did not prevent viral persistence. IFN‐λ3 plasma levels did not correlate with function of NK cells and IFN‐λ3 prestimulation did not affect NK cell activation and function. Conclusions These results suggest that IFN‐λ3 polymorphism indirectly influences NK cell phenotype and function during acute HCV but oth