Science.gov

Sample records for affect cell survival

  1. ABSENCE OF SCLEROSTIN ADVERSELY AFFECTS B CELL SURVIVAL

    PubMed Central

    Cain, Corey J.; Rueda, Randell; McLelland, Bryce; Collette, Nicole M.; Loots, Gabriela G.; Manilay, Jennifer O.

    2012-01-01

    Increased osteoblast activity in sclerostin-knockout (Sost−/−) mice results in generalized hyperostosis and bones with small bone marrow cavities due to hyperactive mineralizing osteoblast populations. Hematopoietic cell fate decisions are dependent on their local microenvironment, which contains osteoblast and stromal cell populations that support both hematopoietic stem cell quiescence and facilitate B cell development. In this study, we investigated whether high bone mass environments affect B cell development via the utilization of Sost−/− mice, a model of sclerosteosis. We found the bone marrow of Sost−/− mice to be specifically depleted of B cells, due to elevated apoptosis at all B cell developmental stages. In contrast, B cell function in the spleen was normal. Sost expression analysis confirmed that Sost is primarily expressed in osteocytes and is not expressed in any hematopoietic lineage, which indicated that the B cell defects in Sost−/− mice are non-cell autonomous and this was confirmed by transplantation of wildtype (WT) bone marrow into lethally irradiated Sost−/− recipients. WT→Sost−/− chimeras displayed a reduction in B cells, whereas reciprocal Sost−/−→WT chimeras did not, supporting the idea that the Sost−/− bone environment cannot fully support normal B cell development. Expression of the pre-B cell growth stimulating factor, Cxcl12, was significantly lower in bone marrow stromal cells of Sost−/− mice while the Wnt target genes Lef-1 and Ccnd1 remained unchanged in B cells. Taken together, these results demonstrate a novel role for Sost in the regulation of bone marrow environments that support B cells. PMID:22434688

  2. Glycopeptidolipid of Mycobacterium smegmatis J15cs Affects Morphology and Survival in Host Cells

    PubMed Central

    Fujiwara, Nagatoshi; Maeda, Shinji; Naka, Takashi; Taniguchi, Hatsumi; Yamamoto, Saburo; Ayata, Minoru

    2015-01-01

    Mycobacterium smegmatis has been widely used as a mycobacterial infection model. Unlike the M. smegmatis mc2155 strain, M. smegmatis J15cs strain has the advantage of surviving for one week in murine macrophages. In our previous report, we clarified that the J15cs strain has deleted apolar glycopeptidolipids (GPLs) in the cell wall, which may affect its morphology and survival in host cells. In this study, the gene causing the GPL deletion in the J15cs strain was identified. The mps1-2 gene (MSMEG_0400-0402) correlated with GPL biosynthesis. The J15cs strain had 18 bps deleted in the mps1 gene compared to that of the mc2155 strain. The mps1-complemented J15cs mutant restored the expression of GPLs. Although the J15cs strain produces a rough and dry colony, the colony morphology of this mps1-complement was smooth like the mc2155 strain. The length in the mps1-complemented J15cs mutant was shortened by the expression of GPLs. In addition, the GPL-restored J15cs mutant did not survive as long as the parent J15cs strain in the murine macrophage cell line J774.1 cells. The results are direct evidence that the deletion of GPLs in the J15cs strain affects bacterial size, morphology, and survival in host cells. PMID:25970481

  3. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii

    PubMed Central

    Martins-Duarte, Erica S.; Dubar, Faustine; Lawton, Philippe; França da Silva, Cristiane; C. Soeiro, Maria de Nazaré; de Souza, Wanderley; Biot, Christophe; Vommaro, Rossiane C.

    2015-01-01

    Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite’s DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM). When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13–25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment). Light microscopy examination early (6 and 24h) post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition - with the appearance of ‘tethered’ parasites – malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results show

  4. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii.

    PubMed

    Martins-Duarte, Erica S; Dubar, Faustine; Lawton, Philippe; da Silva, Cristiane França; Soeiro, Maria de Nazaré C; de Souza, Wanderley; Biot, Christophe; Vommaro, Rossiane C

    2015-01-01

    Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite's DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM). When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13-25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment). Light microscopy examination early (6 and 24h) post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition--with the appearance of 'tethered' parasites--malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results show that Cipro

  5. Active Smoking May Negatively Affect Response Rate, Progression-Free Survival, and Overall Survival of Patients With Metastatic Renal Cell Carcinoma Treated With Sunitinib

    PubMed Central

    Keizman, Daniel; Gottfried, Maya; Ish-Shalom, Maya; Maimon, Natalie; Peer, Avivit; Neumann, Avivit; Hammers, Hans; Eisenberger, Mario A.; Sinibaldi, Victoria; Pili, Roberto; Hayat, Henry; Kovel, Svetlana; Sella, Avishay; Boursi, Ben; Weitzen, Rony; Mermershtain, Wilmosh; Rouvinov, Keren; Berger, Raanan; Carducci, Michael A.

    2014-01-01

    Background. Obesity, smoking, hypertension, and diabetes are risk factors for renal cell carcinoma development. Their presence has been associated with a worse outcome in various cancers. We sought to determine their association with outcome of sunitinib treatment in metastatic renal cell carcinoma (mRCC). Methods. An international multicenter retrospective study of sunitinib-treated mRCC patients was performed. Multivariate analyses were performed to determine the association between outcome and the pretreatment status of smoking, body mass index, hypertension, diabetes, and other known prognostic factors. Results. Between 2004 and 2013, 278 mRCC patients were treated with sunitinib: 59 were active smokers, 67 were obese, 73 were diabetic, and 165 had pretreatment hypertension. Median progression-free survival (PFS) was 9 months, and overall survival (OS) was 22 months. Factors associated with PFS were smoking status (past and active smokers: hazard ratio [HR]: 1.17, p = .39; never smokers: HR: 2.94, p < .0001), non-clear cell histology (HR: 1.62, p = .011), pretreatment neutrophil-to-lymphocyte ratio >3 (HR: 3.51, p < .0001), use of angiotensin system inhibitors (HR: 0.63, p = .01), sunitinib dose reduction or treatment interruption (HR: 0.72, p = .045), and Heng risk (good and intermediate risk: HR: 1.07, p = .77; poor risk: HR: 1.87, p = .046). Factors associated with OS were smoking status (past and active smokers: HR: 1.25, p = .29; never smokers: HR: 2.7, p < .0001), pretreatment neutrophil-to-lymphocyte ratio >3 (HR: 2.95, p < .0001), and sunitinib-induced hypertension (HR: 0.57, p = .002). Conclusion. Active smoking may negatively affect the PFS and OS of sunitinib-treated mRCC. Clinicians should consider advising patients to quit smoking at initiation of sunitinib treatment for mRCC. PMID:24309979

  6. Centriole Amplification in Zebrafish Affects Proliferation and Survival but Not Differentiation of Neural Progenitor Cells.

    PubMed

    Dzafic, Edo; Strzyz, Paulina J; Wilsch-Bräuninger, Michaela; Norden, Caren

    2015-10-01

    In animal cells, supernumerary centrosomes, resulting from centriole amplification, cause mitotic aberrations and have been associated with diseases, including microcephaly and cancer. To evaluate how centriole amplification impacts organismal development at the cellular and tissue levels, we used the in vivo imaging potential of the zebrafish. We demonstrate that centriole amplification can induce multipolar anaphase, resulting in binucleated cells. Such binucleation causes substantial apoptosis in the neuroepithelium. Interestingly, not all epithelia are similarly sensitive to binucleation, as skin cells tolerate it without entering apoptosis. In the neuroepithelium, however, binucleation leads to tissue degeneration and subsequent organismal death. Notably, this tissue degeneration can be efficiently counterbalanced by compensatory proliferation of wild-type cells. Because the risk for generating a binucleated daughter recurs at every cell division, centriole amplification in the neuroepithelium is especially deleterious during progenitor proliferation. Once cells reach the differentiation phase, however, centriole amplification does not impair neuronal differentiation.

  7. Dichloroacetate affects proliferation but not survival of human colorectal cancer cells.

    PubMed

    Delaney, L M; Ho, N; Morrison, J; Farias, N R; Mosser, D D; Coomber, B L

    2015-01-01

    Dichloroacetate (DCA) is a metabolic reprogramming agent that reverses the Warburg effect, causing cancer cells to couple glycolysis to oxidative phosphorylation. This has been shown to induce apoptosis and reduce the growth of various types of cancer but not normal cells. Colorectal cancer cells HCT116, HCT116 p53(-/-), and HCT116 Bax(-/-), were treated with DCA in vitro. Response to treatment was determined by measuring PDH phosphorylation, apoptosis, proliferation, and cell cycle. Molecular changes associated with these responses were determined using western immunoblotting and quantitative PCR. Treatment with 20 mM DCA did not increase apoptosis, despite decreasing levels of anti-apoptotic protein Mcl-1 after 6 h, in any of the cell lines observed. Mcl-1 expression was stabilized with MG-132, an inhibitor of proteasomal degradation. A decrease in Mcl-1 correlated with a decrease in proliferation, both of which showed dose-dependence in DCA treated cells. Cells showed nuclear localization of Mcl-1, however cell cycle was unaffected by DCA treatment. These data suggest that a reduction in the prosurvival Bcl-2 family member Mcl-1 due to increased proteasomal degradation is correlated with the ability of DCA to reduce proliferation of HCT116 human colorectal cancer cells without causing apoptosis.

  8. Overexpression of pairedless Pax6 in the retina disrupts corneal development and affects lens cell survival.

    PubMed

    Kim, Jiha; Lauderdale, James D

    2008-01-01

    The Pax6 transcription factor is required for multiple aspects of vertebrate eye development. The Pax6 gene encodes isoforms that either contain (Pax6+PD) or lack (Pax6DeltaPD) the N-terminal paired-box DNA-binding domain, in addition to the homeodomain. Alternative promoters control the expression of Pax6+PD and Pax6DeltaPD in the eye. Using a modified bacterial artificial chromosome (BAC) transgene that specifically expresses Pax6DeltaPD, but not paired-containing Pax6, in the normal endogenous pattern, we show that overexpression of Pax6DeltaPD causes a severe microphthalmic phenotype in both wild-type and Pax6-deficient (Sey(/+)) mice in a dosage-dependent manner. The microphthalmic phenotype is due to lens degeneration during embryonic development. Lens development initiates correctly, but cells in the lens undergo apoptotic cell death between E12 and E13. Concomitantly, in these mice, changes in Bmp4, Msx1, and Wnt2b expression were observed in the mesenchymal cells of the developing cornea. To visualize Pax6DeltaPD expression, we developed a dual-reporter Pax6 BAC transgene in which EGFP and DsRed demonstrate paired-containing and pairedless transcripts, respectively. In BAC transgenic mice, DsRed is predominantly expressed in the peripheral neural retina during early eye development, but not in the developing lens or cornea. Later DsRed is strongly expressed in the developing ciliary body, but not in the iris. We suggest that the ratio of Pax6+PD and Pax6DeltaPD isoforms in the distal retina is important for both cornea and lens development, either directly by controlling transcription of necessary growth factors or indirectly by controlling development of the distal neural retina.

  9. Fatherhood reduces the survival of adult-generated cells and affects various types of behavior in the prairie vole (Microtus ochrogaster ).

    PubMed

    Lieberwirth, Claudia; Wang, Yue; Jia, Xixi; Liu, Yan; Wang, Zuoxin

    2013-11-01

    Motherhood has profound effects on physiology, neuronal plasticity, and behavior. We conducted a series of experiments to test the hypothesis that fatherhood, similarly to motherhood, affects brain plasticity (such as cell proliferation and survival) and various behaviors in the highly social prairie vole (Microtus ochrogaster). In Experiment 1, adult males were housed with their same-sex cage mate (control), single-housed (isolation), or housed with a receptive female to mate and produce offspring (father) for 6 weeks. Fatherhood significantly reduced cell survival (assessed by bromodeoxyuridine labeling), but not cell proliferation (assessed by Ki67-labeling), in the amygdala, dentate gyrus of the hippocampus, and ventromedial hypothalamus, suggesting that fatherhood affects brain plasticity. In Experiment 2, neither acute (20 min) nor chronic (20 min daily for 10 consecutive days) pup exposure altered cell proliferation or survival in the brain, but chronic pup exposure increased circulating corticosterone levels. These data suggest that reduced cell survival in the brain of prairie vole fathers was unlikely to be due to the level of pup exposure and display of paternal behavior, and may not be mediated by circulating corticosterone. The effects of fatherhood on various behaviors (including anxiety-like, depression-like, and social behaviors) were examined in Experiment 3. The data indicated that fatherhood increased anxiety- and depression-like behaviors as well as altered aggression and social recognition memory in male prairie voles. These results warrant further investigation of a possible link between brain plasticity and behavioral changes observed due to fatherhood.

  10. Serine protease inhibitor-6 differentially affects the survival of effector and memory alloreactive CD8-T cells.

    PubMed

    Azzi, J; Ohori, S; Ting, C; Uehara, M; Abdoli, R; Smith, B D; Safa, K; Solhjou, Z; Lukyanchykov, P; Patel, J; McGrath, M; Abdi, R

    2015-01-01

    The clonal expansion of effector T cells and subsequent generation of memory T cells are critical in determining the outcome of transplantation. While cytotoxic T lymphocytes induce direct cytolysis of target cells through secretion of Granzyme-B (GrB), they also express cytoplasmic serine protease inhibitor-6 (Spi6) to protect themselves from GrB that has leaked from granules. Here, we studied the role of GrB/Spi6 axis in determining clonal expansion of alloreactive CD8-T cells and subsequent generation of memory CD8-T cells in transplantation. CD8-T cells from Spi6(-/-) mice underwent more GrB mediated apoptosis upon alloantigen stimulation in vitro and in vivo following adoptive transfer into an allogeneic host. Interestingly, while OT1.Spi6(-/-) CD8 T cells showed significantly lower clonal expansion following skin transplants from OVA mice, there was no difference in the size of the effector memory CD8-T cells long after transplantation. Furthermore, lack of Spi6 resulted in a decrease of short-lived-effector-CD8-cells but did not impact the pool of memory-precursor-effector-CD8-cells. Similar results were found in heart transplant models. Our findings suggest that the final alloreactive CD8-memory-pool-size is independent from the initial clonal-proliferation as memory precursors express low levels of GrB and therefore are independent of Spi6 for survival. These data advance our understanding of memory T cells generation in transplantation and provide basis for Spi6 based strategies to target effector T cells.

  11. Serine Protease Inhibitor-6 Differentially Affects the Survival of Effector and Memory Alloreactive CD8-T Cells

    PubMed Central

    Azzi, J.; Ohori, S.; Ting, C.; Uehara, M.; Abdoli, R.; Smith, B. D.; Safa, K.; Solhjou, Z.; Lukyanchykov, P.; Patel, J.; McGrath, M.; Abdi, R.

    2016-01-01

    The clonal expansion of effector T cells and subsequent generation of memory T cells are critical in determining the outcome of transplantation. While cytotoxic T lymphocytes induce direct cytolysis of target cells through secretion of Granzyme-B (GrB), they also express cytoplasmic serine protease inhibitor-6 (Spi6) to protect themselves from GrB that has leaked from granules. Here, we studied the role of GrB/Spi6 axis in determining clonal expansion of alloreactive CD8-T cells and subsequent generation of memory CD8-T cells in transplantation. CD8-T cells from Spi6−/− mice underwent more GrB mediated apoptosis upon alloantigen stimulation in vitro and in vivo following adoptive transfer into an allogeneic host. Interestingly, while OT1.Spi6−/− CD8 T cells showed significantly lower clonal expansion following skin transplants from OVA mice, there was no difference in the size of the effector memory CD8-T cells long after transplantation. Furthermore, lack of Spi6 resulted in a decrease of short-lived-effector-CD8-cells but did not impact the pool of memory-precursor-effector-CD8-cells. Similar results were found in heart transplant models. Our findings suggest that the final alloreactive CD8-memory-pool-size is independent from the initial clonal-proliferation as memory precursors express low levels of GrB and therefore are independent of Spi6 for survival. These data advance our understanding of memory T cells generation in transplantation and provide basis for Spi6 based strategies to target effector T cells. PMID:25534448

  12. Combination bortezomib and rituximab treatment affects multiple survival and death pathways to promote apoptosis in mantle cell lymphoma

    PubMed Central

    Alinari, Lapo; White, Valerie L; Earl, Christian T; Ryan, Timothy P; Johnston, Jeffrey S; Dalton, James T; Ferketich, Amy K; Lai, Raymond; Lucas, David M; Porcu, Pierluigi; Blum, Kristie A; Byrd, John C

    2009-01-01

    Mantle cell lymphoma (MCL) is a distinct histologic subtype of B cell non-Hodgkins lymphoma (NHL) associated with an aggressive clinical course. Inhibition of the ubiquitin-proteasome pathway modulates survival and proliferation signals in MCL and has shown clinical benefit in this disease. This has provided rationale for exploring combination regimens with B-cell selective immunotherapies such as rituximab. In this study, we examined the effects of combined treatment with bortezomib and rituximab on patient-derived MCL cell lines (Jeko, Mino, SP53) and tumor samples from patients with MCL where we validate reversible proteasome inhibition concurrent with cell cycle arrest and additive induction of apoptosis. When MCL cells were exposed to single agent bortezomib or combination bortezomib/rituximab, caspase dependent and independent apoptosis was observed. Single agent bortezomib or rituximab treatment of Mino and Jeko cell lines and patient samples resulted in decreased levels of nuclear NFκB complex(es) capable of binding p65 consensus oligonucleotides, and this decrease was enhanced by the combination. Constitutive activation of the Akt pathway was also diminished with bortezomib alone or in combination with rituximab. On the basis of in vitro data demonstrating additive apoptosis and enhanced NFκB and phosphorylated Akt depletion in MCL with combination bortezomib plus rituximab, a phase II trial of bortezomib-rituximab in patients with relapsed/refractory MCL is underway. PMID:20046572

  13. Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy.

    PubMed

    Sleigh, James N; Barreiro-Iglesias, Antón; Oliver, Peter L; Biba, Angeliki; Becker, Thomas; Davies, Kay E; Becker, Catherina G; Talbot, Kevin

    2014-02-15

    Spinal muscular atrophy (SMA) is characterized by the selective loss of spinal motor neurons owing to reduced levels of survival motor neuron (Smn) protein. In addition to its well-established role in assembling constituents of the spliceosome, diverse cellular functions have been proposed for Smn, but the reason why low levels of this widely expressed protein result in selective motor neuron pathology is still debated. In longitudinal studies of exon-level changes in SMA mouse model tissues, designed to determine the contribution of splicing dysfunction to the disease, we have previously shown that a generalized defect in splicing is unlikely to play a causative role in SMA. Nevertheless, we identified a small subset of genes that were alternatively spliced in the spinal cord compared with control mice before symptom onset, indicating a possible mechanistic role in disease. Here, we have performed functional studies of one of these genes, chondrolectin (Chodl), known to be highly expressed in motor neurons and important for correct motor axon outgrowth in zebrafish. Using in vitro and in vivo models of SMA, we demonstrate altered expression of Chodl in SMA mouse spinal motor neurons, show that Chodl has distinct effects on cell survival and neurite outgrowth and that increasing the expression of chodl can rescue motor neuron outgrowth defects in Smn-depleted zebrafish. Our findings thus link the dysregulation of Chodl to the pathophysiology of motor neuron degeneration in SMA.

  14. Genetic and epigenetic factors affect RET gene expression in breast cancer cell lines and influence survival in patients

    PubMed Central

    Griseri, Paola; Garrone, Ornella; Lo Sardo, Alessandra; Monteverde, Martino; Rusmini, Marta; Tonissi, Federica; Merlano, Marco; Bruzzi, Paolo

    2016-01-01

    Germline and somatic mutations play a crucial role in breast cancer (BC), driving the initiation, progression, response to therapy and outcome of the disease. Hormonal therapy is limited to patients with tumors expressing steroid hormone receptors, such as estrogen receptor (ER), nevertheless resistance often limits its success. The RET gene is known to be involved in neurocristopathies such as Hirschsprung disease and Multiple Endocrine Neoplasia type 2, in the presence of loss-of-function and gain-of-function mutations, respectively. More recently, RET over-expression has emerged as a new player in ER-positive (ER+) BC, and as a potential target to enhance sensitivity and avoid resistance to tamoxifen therapy. Therefore, targeting the RET pathway may lead to new therapies in ER+ BC. To this end, we have investigated the molecular mechanisms which underlie RET overexpression and its possible modulation in two BC cell lines, MCF7 and T47D, showing different RET expression levels. Moreover, we have carried out a pilot association study in 93 ER+ BC patients. Consistent with the adverse role of RET over-expression in BC, increased overall survival was observed in carriers of the variant allele of SNP rs2435357, a RET polymorphism already known to be associated with reduced RET expression. PMID:27034161

  15. The ROCK inhibitor Y-27632 negatively affects the expansion/survival of both fresh and cryopreserved cord blood-derived CD34+ hematopoietic progenitor cells: Y-27632 negatively affects the expansion/survival of CD34+HSPCs.

    PubMed

    Bueno, Clara; Montes, Rosa; Menendez, Pablo

    2010-06-01

    Cord blood (CB) is an unlimited source of hematopoietic stem and progenitor cells (HSPC). The use of cryopreserved CB-derived CD34+ HSPCs is successful in children and usually leads to rapid hematopoietic recovery upon transplantation. However, current methods for ex vivo expansion of HSPCs still result in a loss of multilineage differentiation potential and current freeze-thawing protocols result in significant cell death and loss of CD34+ HSPCs. The major cause for the loss of viability after slow freezing is apoptosis induced directly by cryoinjury. Very recent reports have demonstrated that Y-27632, a selective and robust ROCK inhibitor is a potent inhibitor of the apoptosis and is efficient in enhancing the post-thaw survival and recovery of different human stem cells including human embryos, hESCs, induced pluripotent stem cells and mesenchymal stem cells. Here, we analyzed the effect of such an inhibitor in CB-derived CD34+ HSPCs. CB-derived CD34+ HSPCs were MACS-isolated and treated with or without 10 microM of Y-27632. The effect of Y-27632 on culture homeostasis was determined in both fresh and cryopreserved CB-derived CD34+ HSPCs. Our results indicate that the Y-27632 not only dramatically inhibits cell expansion of both fresh and cryopreserved CD34+ HSPCs but also impairs survival/recovery of CD34+ HSPCs upon thawing regardless whether Y-27632 is added to both the cryopreservation and the expansion media and or just to the expansion culture medium with or without hematopoietic cytokines. This study identifies for the first time a detrimental effect of Y-27632 on the expansion and survival of both fresh and cryopreserved CB-derived CD34+ HSPCs, suggesting that Y-27632 may have a differential impact on distinct lineage/tissue-specific stem cells. Our data suggest different functions of Y-27632 on human stem cells growing in suspension versus those growing attached to either treated tissue culture plastic or extracellular matrix. We discourage any clinical

  16. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  17. Growth factors and hormones which affect survival, growth, and differentiation of the MCF-7 stem cells and their descendants

    SciTech Connect

    Resnicoff, M.; Medrano, E.E. )

    1989-03-01

    The human breast tumor cell line was separated by Percoll density gradient centrifugation into six different subpopulations, A to F, of which (E) appears to contain the stem cells on the basis of several criteria. The authors analyzed the response of the isolated subpopulations to insulin, thrombin, PGF{sub 2{alpha}}, estradiol, and 13-cis-retinal. They demonstrate that the first two growth factors stimulate ({sup 3}H)thymidine incorporation in the more differentiated subpopulations (D and F), while PGF{sub 2{alpha}} has mitogenic activity in subpopulations C and D. In the absence of any added growth factor, estradiol has the extreme and transient capacity of allowing the stem cell to detach from the tissue culture dish and to grow in suspension as multicellular aggregates (MCF-7/SE cells). 13-cis-Retinal acts as a negative modulator of differentiation and protects the cells from the inhibitory and differentiation activity in Na-butyrate.

  18. Factors affecting survival following radical mastectomy.

    PubMed

    Freund, H; Grover, N B; Durst, A L

    1978-01-01

    Data on 17 potentially useful factors from 152 women undergoing radical mastectomy for operable breast cancer were analyzed in order to determine the effect of each on survival and their relative importance. Only four, clinical stage, clinical and pathological lymph node involvement, and appearance of recurrence and metastases, proved to be of significant prognostic value. Axillary nodal involvement was the main single determinant of survival. Multiple regression analysis, based on factor analysis of the original input variables, was able to account for 34% of the variance in survival and is thus of only very limited use as a predictive instrument in the clinical management of prospective patients. PMID:651367

  19. Survival of auditory hair cells.

    PubMed

    Seymour, Michelle L; Pereira, Fred A

    2015-07-01

    The inability of mammals to regenerate auditory hair cells creates a pressing need to understand the means of enhancing hair cell survival following insult or injury. Hair cells are easily damaged by noise exposure, by ototoxic medications and as a consequence of aging processes, all of which lead to progressive and permanent hearing impairment as hair cells are lost. Significant efforts have been invested in designing strategies to prevent this damage from occurring since permanent hearing loss has a profound impact on communication and quality of life for patients. In this mini-review, we discuss recent progress in the use of antioxidants, anti-inflammatories and apoptosis inhibitors to enhance hair cell survival. We conclude by clarifying the distinction between protection and rescue strategies and by highlighting important areas of future research.

  20. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cryogenic technologies are required to preserve embryonic axes of recalcitrant seeds. Formation of potentially lethal intracellular ice limits successful cryopreservation; thus, it is important to understand the relationships among cryo-exposure techniques, water content and survival. In this pap...

  1. Genitourinary mast cells and survival.

    PubMed

    Theoharides, Theoharis C; Stewart, Julia M

    2015-10-01

    Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to "smell danger", but to promote survival and procreation. PMID:26813805

  2. Genitourinary mast cells and survival

    PubMed Central

    Stewart, Julia M.

    2015-01-01

    Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to “smell danger”, but to promote survival and procreation. PMID:26813805

  3. Does immunohistochemistry affect response to therapy and survival of inoperable non-small cell lung carcinoma patients? A survey of 145 stage III-IV consecutive cases.

    PubMed

    Pelosi, Giuseppe; Haspinger, Eva Regina; Bimbatti, Manuela; Leone, Giorgia; Paolini, Biagio; Fabbri, Alessandra; Tamborini, Elena; Perrone, Federica; Testi, Adele; Garassino, Marina; Maisonneuve, Patrick; de Braud, Filippo; Pilotti, Silvana; Pastorino, Ugo

    2014-04-01

    Whether non-small cell lung carcinoma (NSCLC) unveiled by immunohistochemistry (IHC) has the same clinical outcome as those typed by morphology is still matter of debate. A total of 145 stage III-IV, consecutive inoperable NSCLC patients treated by chemotherapy (133 cases) or EGFR tyrosine kinase inhibitor (12 cases) and including 100 biopsies, 11 surgical specimens, and 34 cytological samples had originally accounted for 120 adenocarcinomas (ADs), 19 squamous cell carcinomas (SQCs), and 6 adenosquamous carcinomas (ADSQCs) by integrating morphology and thyroid transcription factor-1 (TTF1)/p40 IHC. Thirty-two NSCLC-not otherwise specified (NSCLC-NOS) cases were identified by morphology revision of the original diagnoses, which showed solid growth pattern (P < .001), 22 ADs, 5 SQCs, and 5 ADSQCs by IHC profiling (P < .001), and 10 gene-altered tumors (3 EGFR, 5 KRAS, and 2 ALK). While no significant relationships were observed between response to therapy and original, morphology or IHC diagnoses, driver mutations and tumor differentiation by TTF1 expression, AD run better progression-free survival (PFS) or overall survival (OS) than other tumor types by morphology (P = .010 and P = .047) and IHC (P = .033 and P = .046), respectively. Furthermore, patients with NSCLC-NOS confirmed as AD by IHC tended to have poorer OS (P = .179) and PFS (P = .193) similar to that of ADSQC and SQC (P = .702 and P = .540, respectively). A category of less differentiated AD with poorer prognosis on therapy could be identified by IHC, while there were no differences for SQC or ADSQC. The terminology of "NSCLC-NOS, favor by IHC" is appropriate to alert clinicians toward more aggressive tumors. PMID:24326823

  4. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    PubMed Central

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  5. Multiple weather factors affect apparent survival of European passerine birds.

    PubMed

    Salewski, Volker; Hochachka, Wesley M; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  6. Early life triclocarban exposure during lactation affects neonate rat survival.

    PubMed

    Kennedy, Rebekah C M; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A; Hu, Pan; Bae, Jiyoung; Gee, Nancy A; Lasley, Bill L; Zhao, Ling; Chen, Jiangang

    2015-01-01

    Triclocarban (3,4,4'-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure.

  7. Early Life Triclocarban Exposure During Lactation Affects Neonate Rat Survival

    PubMed Central

    Kennedy, Rebekah C. M.; Menn, Fu-Min; Healy, Laura; Fecteau, Kellie A.; Hu, Pan; Bae, Jiyoung; Gee, Nancy A.; Lasley, Bill L.; Zhao, Ling

    2015-01-01

    Triclocarban (3,4,4′-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure. PMID:24803507

  8. Chemical ions affect survival of avian cholera organisms in pondwater

    USGS Publications Warehouse

    Price, J.I.; Yandell, B.S.; Porter, W.P.

    1992-01-01

    Avian cholera (Pasteurella multocida) is a major disease of wild waterfowl, but its epizootiology remains little understood. Consequently, we examined whether chemical ions affected survival of avian cholera organisms in water collected from the Nebraska Rainwater Basin where avian cholera is enzootic. We tested the response of P. multocida to ammonium (NH4), calcium (Ca), magnesium (Mg), nitrate (NO3), and ortho-phosphate (PO4) ions individually and in combination using a fractional factorial design divided into 4 blocks. High concentrations of Ca and Mg, singly or in combination, increased survival of P. multocida organisms (P < 0.001). We developed a survival index to predict whether or not specific ponds could be "problem" or "nonproblem" avian cholera sites based on concentrations of these ions in the water.

  9. Stem cell death and survival in heart regeneration and repair.

    PubMed

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  10. HFE polymorphisms affect survival of brain tumor patients.

    PubMed

    Lee, Sang Y; Slagle-Webb, Becky; Sheehan, Jonas M; Zhu, Junjia; Muscat, Joshua E; Glantz, Michael; Connor, James R

    2015-03-01

    The HFE (high iron) protein plays a key role in the regulation of body iron. HFE polymorphisms (H63D and C282Y) are the common genetic variants in Caucasians. Based on frequency data, both HFE polymorphisms have been associated with increased risk in a number of cancers. The prevalence of the two major HFE polymorphisms in a human brain tumor patient populations and the impact of HFE polymorphisms on survival have not been studied. In the present study, there is no overall difference in survival by HFE genotype. However, male GBM patients with H63D HFE (H63D) have poorer overall survival than wild type HFE (WT) male GBM (p = 0.03). In GBM patients with the C282Y HFE polymorphism (C282Y), female patients have poorer survival than male patients (p = 0.05). In addition, female metastatic brain tumor patients with C282Y have shorter survival times post diagnosis than WT patients (p = 0.02) or male metastatic brain tumor patients with C282Y (p = 0.02). There is a tendency toward a lower proportion of H63D genotype in GBM patients than a non-tumor control group (p = 0.09) or other subtypes of brain tumors. In conclusion, our study suggests that HFE genotype impacts survival of brain tumor patients in a gender specific manner. We previously reported that glioma and neuroblastoma cell lines with HFE polymorphisms show greater resistance to chemo and radiotherapy. Taken together, these data suggest HFE genotype is an important consideration for evaluating and planning therapeutic strategies in brain tumor patients.

  11. Air-drying kinetics affect yeast membrane organization and survival.

    PubMed

    Lemetais, Guillaume; Dupont, Sébastien; Beney, Laurent; Gervais, Patrick

    2012-10-01

    The plasma membrane (PM) is a key structure for the survival of cells during dehydration. In this study, we focused on the concomitant changes in survival and in the lateral organization of the PM in yeast strains during desiccation, a natural or technological environmental perturbation that involves transition from a liquid to a solid medium. To evaluate the role of the PM in survival during air-drying, a wild-type yeast strain and an osmotically fragile mutant (erg6Δ) were used. The lateral organization of the PM (microdomain distribution) was observed using a fluorescent marker related to a specific green fluorescent protein-labeled membrane protein (Sur7-GFP) after progressive or rapid desiccation. We also evaluated yeast behavior during a model dehydration experiment performed in liquid medium (osmotic stress). For both strains, we observed similar behavior after osmotic and desiccation stresses. In particular, the same lethal magnitude of dehydration and the same lethal kinetic effect were found for both dehydration methods. Thus, yeast survival after progressive air-drying was related to PM reorganization, suggesting the positive contribution of passive lateral rearrangements of the membrane components. This study also showed that the use of glycerol solutions is an efficient means to simulate air-drying desiccation.

  12. Extent of Surgery Affects Survival for Papillary Thyroid Cancer

    PubMed Central

    Bilimoria, Karl Y.; Bentrem, David J.; Ko, Clifford Y.; Stewart, Andrew K.; Winchester, David P.; Talamonti, Mark S.; Sturgeon, Cord

    2007-01-01

    Background: The extent of surgery for papillary thyroid cancers (PTC) remains controversial. Consensus guidelines have recommended total thyroidectomy for PTC ≥1 cm; however, no study has supported this recommendation based on a survival advantage. The objective of this study was to examine whether the extent of surgery affects outcomes for PTC and to determine whether a size threshold could be identified above which total thyroidectomy is associated with improved outcomes. Methods: From the National Cancer Data Base (1985–1998), 52,173 patients underwent surgery for PTC. Survival was estimated by the Kaplan-Meier method and compared using log-rank tests. Cox Proportional Hazards modeling stratified by tumor size was used to assess the impact of surgical extent on outcomes and to identify a tumor size threshold above which total thyroidectomy is associated with an improvement in recurrence and long-term survival rates. Results: Of the 52,173 patients, 43,227 (82.9%) underwent total thyroidectomy, and 8946 (17.1%) underwent lobectomy. For PTC <1 cm extent of surgery did not impact recurrence or survival (P = 0.24, P = 0.83). For tumors ≥1 cm, lobectomy resulted in higher risk of recurrence and death (P = 0.04, P = 0.009). To minimize the influence of larger tumors, 1 to 2 cm lesions were examined separately: lobectomy again resulted in a higher risk of recurrence and death (P = 0.04, P = 0.04). Conclusions: The results of this study demonstrate that total thyroidectomy results in lower recurrence rates and improved survival for PTC ≥1.0 cm compared with lobectomy. This is the first study to demonstrate that total thyroidectomy for PTC ≥1.0 cm improves outcomes. PMID:17717441

  13. Biological variability model of cell survival curves

    SciTech Connect

    Domon, M.

    1980-06-01

    The radiation sensitivity of a mammalian cell population has been conventionally characterized by the survival curve parameters, n and D/sub 0/. The present correspondence concerns the interpretation of these parameters when there is biological variability in the radiation sensitivity of a cell population. To derive a relationship between the survival curve parameters and the biological variability, a log-normal distribution was assumed for the sensitivity variability. For a given spread of the distribution, a survival curve on a semilogarithmic scale was obtained graphically. Analysis of such survival curves led to the conclusion that n is inversely related to the spread and the D/sub 0/ is determined by both the LD/sub 50/ and the spread of the log-normal distribution.

  14. Targeting Cell Survival Proteins for Cancer Cell Death

    PubMed Central

    Pandey, Manoj K.; Prasad, Sahdeo; Tyagi, Amit Kumar; Deb, Lokesh; Huang, Jiamin; Karelia, Deepkamal N.; Amin, Shantu G.; Aggarwal, Bharat B.

    2016-01-01

    Escaping from cell death is one of the adaptations that enable cancer cells to stave off anticancer therapies. The key players in avoiding apoptosis are collectively known as survival proteins. Survival proteins comprise the Bcl-2, inhibitor of apoptosis (IAP), and heat shock protein (HSP) families. The aberrant expression of these proteins is associated with a range of biological activities that promote cancer cell survival, proliferation, and resistance to therapy. Several therapeutic strategies that target survival proteins are based on mimicking BH3 domains or the IAP-binding motif or competing with ATP for the Hsp90 ATP-binding pocket. Alternative strategies, including use of nutraceuticals, transcriptional repression, and antisense oligonucleotides, provide options to target survival proteins. This review focuses on the role of survival proteins in chemoresistance and current therapeutic strategies in preclinical or clinical trials that target survival protein signaling pathways. Recent approaches to target survival proteins-including nutraceuticals, small-molecule inhibitors, peptides, and Bcl-2-specific mimetic are explored. Therapeutic inventions targeting survival proteins are promising strategies to inhibit cancer cell survival and chemoresistance. However, complete eradication of resistance is a distant dream. For a successful clinical outcome, pretreatment with novel survival protein inhibitors alone or in combination with conventional therapies holds great promise. PMID:26927133

  15. Personality and morphological traits affect pigeon survival from raptor attacks

    PubMed Central

    Santos, Carlos D.; Cramer, Julia F.; Pârâu, Liviu G.; Miranda, Ana C.; Wikelski, Martin; Dechmann, Dina K. N.

    2015-01-01

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances. PMID:26489437

  16. Personality and morphological traits affect pigeon survival from raptor attacks.

    PubMed

    Santos, Carlos D; Cramer, Julia F; Pârâu, Liviu G; Miranda, Ana C; Wikelski, Martin; Dechmann, Dina K N

    2015-10-22

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances.

  17. Factors affecting ventriculoperitoneal shunt survival in adult patients

    PubMed Central

    Khan, Farid; Rehman, Abdul; Shamim, Muhammad S.; Bari, Muhammad E.

    2015-01-01

    Background: Ventriculoperitoneal (VP) shunt insertion remains the mainstay of treatment for hydrocephalus despite a high rate of complications. The predictors of shunt malfunction have been studied mostly in pediatric patients. In this study, we report our 11-year experience with VP shunts in adult patients with hydrocephalus. We also assess the various factors affecting shunt survival in a developing country setting. Methods: A retrospective chart analysis was conducted for all adult patients who had undergone shunt placement between the years 2001 and 2011. Kaplan–Meier curves were used to determine the duration from shunt placement to first malfunction and log-rank (Cox–Mantel) tests were used to determine the factors affecting shunt survival. Results: A total of 227 patients aged 18–85 years (mean: 45.8 years) were included in the study. The top four etiologies of hydrocephalus included post-cranial surgery (23.3%), brain tumor or cyst (22.9%), normal pressure hydrocephalus (15%), and intracranial hemorrhage (13.7%). The overall incidence of shunt malfunction was 15.4% with the median time to first shunt failure being 120 days. Etiology of hydrocephalus (P = 0.030) had a significant association with the development of shunt malfunction. Early shunt failure was associated with age (P < 0.001), duration of hospital stay (P < 0.001), Glasgow Coma Scale (GCS) score less than 13 (P = 0.010), excision of brain tumors (P = 0.008), and placement of extra-ventricular drains (P = 0.033). Conclusions: Patients with increased age, prolonged hospital stay, GCS score of less than 13, extra-ventricular drains in situ, or excision of brain tumors were more likely to experience early shunt malfunction. PMID:25722930

  18. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction

    PubMed Central

    Pu, Xiangyuan; Ren, Meixia; An, Weiwei; Zhang, Ruoxin; Yan, Shunying; Situ, Haiteng; He, Xinjie; Chen, Yequn; Tan, Xuerui; Xiao, Qingzhong; Tucker, Arthur T.; Caulfield, Mark J.; Ye, Shu

    2016-01-01

    Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD

  19. Coronary-Heart-Disease-Associated Genetic Variant at the COL4A1/COL4A2 Locus Affects COL4A1/COL4A2 Expression, Vascular Cell Survival, Atherosclerotic Plaque Stability and Risk of Myocardial Infarction.

    PubMed

    Yang, Wei; Ng, Fu Liang; Chan, Kenneth; Pu, Xiangyuan; Poston, Robin N; Ren, Meixia; An, Weiwei; Zhang, Ruoxin; Wu, Jingchun; Yan, Shunying; Situ, Haiteng; He, Xinjie; Chen, Yequn; Tan, Xuerui; Xiao, Qingzhong; Tucker, Arthur T; Caulfield, Mark J; Ye, Shu

    2016-07-01

    Genome-wide association studies have revealed an association between coronary heart disease (CHD) and genetic variation on chromosome 13q34, with the lead single nucleotide polymorphism rs4773144 residing in the COL4A2 gene in this genomic region. We investigated the functional effects of this genetic variant. Analyses of primary cultures of vascular smooth muscle cells (SMCs) and endothelial cells (ECs) from different individuals showed a difference between rs4773144 genotypes in COL4A2 and COL4A1 expression levels, being lowest in the G/G genotype, intermediate in A/G and highest in A/A. Chromatin immunoprecipitation followed by allelic imbalance assays of primary cultures of SMCs and ECs that were of the A/G genotype revealed that the G allele had lower transcriptional activity than the A allele. Electrophoretic mobility shift assays and luciferase reporter gene assays showed that a short DNA sequence encompassing the rs4773144 site interacted with a nuclear protein, with lower efficiency for the G allele, and that the G allele sequence had lower activity in driving reporter gene expression. Analyses of cultured SMCs from different individuals demonstrated that cells of the G/G genotype had higher apoptosis rates. Immunohistochemical and histological examinations of ex vivo atherosclerotic coronary arteries from different individuals disclosed that atherosclerotic plaques with the G/G genotype had lower collagen IV abundance and thinner fibrous cap, a hallmark of unstable, rupture-prone plaques. A study of a cohort of patients with angiographically documented coronary artery disease showed that patients of the G/G genotype had higher rates of myocardial infarction, a phenotype often caused by plaque rupture. These results indicate that the CHD-related genetic variant at the COL4A2 locus affects COL4A2/COL4A1 expression, SMC survival, and atherosclerotic plaque stability, providing a mechanistic explanation for the association between the genetic variant and CHD

  20. Experimentally induced anhydrobiosis in the tardigrade Richtersius coronifer: phenotypic factors affecting survival.

    PubMed

    Jönsson, K Ingemar; Rebecchi, Lorena

    2002-11-01

    The ability of some animal taxa (e.g., nematodes, rotifers, and tardigrades) to enter an ametabolic (cryptobiotic) state is well known. Nevertheless, the phenotypic factors affecting successful anhydrobiosis have rarely been investigated. We report a laboratory study on the effects of body size, reproductive condition, and energetic condition on anhydrobiotic survival in a population of the eutardigrade Richtersius coronifer. Body size and energetic condition interacted in affecting the probability of survival, while reproductive condition had no effect. Large tardigrades had a lower probability of survival than medium-sized tardigrades and showed a positive response in survival to energetic condition. This suggests that energy constrained the possibility for large tardigrades to enter and to leave anhydrobiosis. As a possible alternative explanation for low survival in the largest specimens we discuss the expression of senescence. In line with the view that processes related to anhydrobiosis are connected with energetic costs we documented a decrease in the size of storage cells over a period of anhydrobiosis, showing for the first time that energy is consumed in the process of anhydrobiosis in tardigrades.

  1. TRAIL treatment provokes mutations in surviving cells

    PubMed Central

    Lovric, M M; Hawkins, C J

    2010-01-01

    Chemotherapy and radiotherapy commonly damage DNA and trigger p53-dependent apoptosis through intrinsic apoptotic pathways. Two unfortunate consequences of this mechanism are resistance due to blockade of p53 or intrinsic apoptosis pathways, and mutagenesis of non-malignant surviving cells which can impair cellular function or provoke second malignancies. Death ligand-based drugs, such as tumor necrosis factor-related apoptosis inducing ligand (TRAIL), stimulate extrinsic apoptotic signaling, and may overcome resistance to treatments that induce intrinsic apoptosis. As death receptor ligation does not damage DNA as a primary mechanism of pro-apoptotic action, we hypothesized that surviving cells would remain genetically unscathed, suggesting that death ligand-based therapies may avoid some of the adverse effects associated with traditional cancer treatments. Surprisingly, however, treatment with sub-lethal concentrations of TRAIL or FasL was mutagenic. Mutations arose in viable cells that contained active caspases, and overexpression of the caspase-8 inhibitor crmA or silencing of caspase-8 abolished TRAIL-mediated mutagenesis. Downregulation of the apoptotic nuclease caspase-activated DNAse (CAD)/DNA fragmentation factor 40 (DFF40) prevented the DNA damage associated with TRAIL treatment. Although death ligands do not need to damage DNA in order to induce apoptosis, surviving cells nevertheless incur DNA damage after treatment with these agents. PMID:20639907

  2. Factors affecting survival of bacteriophage on tomato leaf surfaces.

    PubMed

    Iriarte, F B; Balogh, B; Momol, M T; Smith, L M; Wilson, M; Jones, J B

    2007-03-01

    The ability of bacteriophage to persist in the phyllosphere for extended periods is limited by many factors, including sunlight irradiation, especially in the UV zone, temperature, desiccation, and exposure to copper bactericides. The effects of these factors on persistence of phage and formulated phage (phage mixed with skim milk) were evaluated. In field studies, copper caused significant phage reduction if applied on the day of phage application but not if applied 4 or 7 days in advance. Sunlight UV was evaluated for detrimental effects on phage survival on tomato foliage in the field. Phage was applied in the early morning, midmorning, early afternoon, and late evening, while UVA plus UVB irradiation and phage populations were monitored. The intensity of UV irradiation positively correlated with phage population decline. The protective formulation reduced the UV effect. In order to demonstrate direct effects of UV, phage suspensions were exposed to UV irradiation and assayed for effectiveness against bacterial spot of tomato. UV significantly reduced phage ability to control bacterial spot. Ambient temperature had a pronounced effect on nonformulated phage but not on formulated phages. The effects of desiccation and fluorescent light illumination on phage were investigated. Desiccation caused a significant but only slight reduction in phage populations after 60 days, whereas fluorescent light eliminated phages within 2 weeks. The protective formulation eliminated the reduction caused by both of these factors. Phage persistence was dramatically affected by UV, while the other factors had less pronounced effects. Formulated phage reduced deleterious effects of the studied environmental factors. PMID:17259361

  3. Effects of Triclosan on Neural Stem Cell Viability and Survival.

    PubMed

    Park, Bo Kyung; Gonzales, Edson Luck T; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  4. Effects of Triclosan on Neural Stem Cell Viability and Survival

    PubMed Central

    Park, Bo Kyung; Gonzales, Edson Luck T.; Yang, Sung Min; Bang, Minji; Choi, Chang Soon; Shin, Chan Young

    2016-01-01

    Triclosan is an antimicrobial or sanitizing agent used in personal care and household products such as toothpaste, soaps, mouthwashes and kitchen utensils. There are increasing evidence of the potentially harmful effects of triclosan in many systemic and cellular processes of the body. In this study, we investigated the effects of triclosan in the survivability of cultured rat neural stem cells (NSCs). Cortical cells from embryonic day 14 rat embryos were isolated and cultured in vitro. After stabilizing the culture, triclosan was introduced to the cells with concentrations ranging from 1 μM to 50 μM and in varied time periods. Thereafter, cell viability parameters were measured using MTT assay and PI staining. TCS decreased the cell viability of treated NSC in a concentration-dependent manner along with increased expressions of apoptotic markers, cleaved caspase-3 and Bax, while reduced expression of Bcl2. To explore the mechanisms underlying the effects of TCS in NSC, we measured the activation of MAPKs and intracellular ROS. TCS at 50 μM induced the activations of both p38 and JNK, which may adversely affect cell survival. In contrast, the activities of ERK, Akt and PI3K, which are positively correlated with cell survival, were inhibited. Moreover, TCS at this concentration augmented the ROS generation in treated NSC and depleted the glutathione activity. Taken together, these results suggest that TCS can induce neurodegenerative effects in developing rat brains through mechanisms involving ROS activation and apoptosis initiation. PMID:26759708

  5. DO AUTOCHTHONOUS BACTERIA AFFECT GIARDIA CYST SURVIVAL IN NATURAL WATERS?

    EPA Science Inventory

    Giardia lamblia survives in and is transmitted to susceptible human and animal populations via water, where it is present in an environmentally resistant cyst form. Previous research has highlighted the importance of water temperature in cyst survival, and has also suggested the ...

  6. Developmental and evolutionary history affect survival in stressful environments.

    PubMed

    Hopkins, Gareth R; Brodie, Edmund D; French, Susannah S

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history.

  7. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  8. Platelet microparticles promote neural stem cell proliferation, survival and differentiation.

    PubMed

    Hayon, Yael; Dashevsky, Olga; Shai, Ela; Varon, David; Leker, Ronen R

    2012-07-01

    Platelet microparticles (PMP) are small subcellular fragments, shed upon platelet activation. PMP host a variety of cytokines and growth factor that were previously shown to affect angiogenesis and postischemic tissue regeneration. This study attempted to explore the effect of PMP on neural stem cell (NSC) proliferation, survival and differentiation. Cells were grown as neurospheres and treated with PMP, or relevant growth factors, sphere size and cell fates were evaluated. PMP treatment led to larger neurospheres with increased cell survival. PMP treatment was comparable with the effect of acceptable single growth factors such as fibroblastic growth factor (FGF), vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). PMP treatment also increased the differentiation potential of NSC to glia and neurons. Specific growth factor inhibitors only partly blocked these effects, which were associated with increments in ERK and Akt phosphorylation. In this study, we show that various growth factors contained within the PMP promote neuronal cell proliferation, survival and differentiation. The results suggest a role for platelet microparticles in augmenting endogenous neural progenitor and stem cells angiogenesis and neurogenesis that might be utilized for treatment following brain injury.

  9. Notch1, Notch2, and Epstein-Barr virus-encoded nuclear antigen 2 signaling differentially affects proliferation and survival of Epstein-Barr virus-infected B cells.

    PubMed

    Kohlhof, Hella; Hampel, Franziska; Hoffmann, Reinhard; Burtscher, Helmut; Weidle, Ulrich H; Hölzel, Michael; Eick, Dirk; Zimber-Strobl, Ursula; Strobl, Lothar J

    2009-05-28

    The canonical mode of transcriptional activation by both the Epstein-Barr viral protein, Epstein-Barr virus-encoded nuclear antigen 2 (EBNA2), and an activated Notch receptor (Notch-IC) requires their recruitment to RBPJ, suggesting that EBNA2 uses the Notch pathway to achieve B-cell immortalization. To gain further insight into the biologic equivalence between Notch-IC and EBNA2, we performed a genome-wide expression analysis, revealing that Notch-IC and EBNA2 exhibit profound differences in the regulation of target genes. Whereas Notch-IC is more potent in regulating genes associated with differentiation and development, EBNA2 is more potent in inducing viral and cellular genes involved in proliferation, survival, and chemotaxis. Because both EBNA2 and Notch-IC induced the expression of cell cycle-associated genes, we analyzed whether Notch1-IC or Notch2-IC can replace EBNA2 in B-cell immortalization. Although Notch-IC could drive quiescent B cells into the cell cycle, B-cell immortalization was not maintained, partially due to an increased apoptosis rate in Notch-IC-expressing cells. Expression analysis revealed that both EBNA2 and Notch-IC induced the expression of proapoptotic genes, but only in EBNA2-expressing cells were antiapoptotic genes strongly up-regulated. These findings suggest that Notch signaling in B cells and B-cell lymphomas is only compatible with proliferation if pathways leading to antiapototic signals are active. PMID:19339697

  10. Survival during the Breeding Season: Nest Stage, Parental Sex, and Season Advancement Affect Reed Warbler Survival

    PubMed Central

    Wierucka, Kaja; Halupka, Lucyna; Klimczuk, Ewelina; Sztwiertnia, Hanna

    2016-01-01

    Avian annual survival has received much attention, yet little is known about seasonal patterns in survival, especially of migratory passerines. In order to evaluate survival rates and timing of mortality within the breeding season of adult reed warblers (Acrocephalus scirpaceus), mark-recapture data were collected in southwest Poland, between 2006 and 2012. A total of 612 individuals (304 females and 308 males) were monitored throughout the entire breeding season, and their capture-recapture histories were used to model survival rates. Males showed higher survival during the breeding season (0.985, 95% CI: 0.941–0.996) than females (0.869, 95% CI: 0.727–0.937). Survival rates of females declined with the progression of the breeding season (from May to August), while males showed constant survival during this period. We also found a clear pattern within the female (but not male) nesting cycle: survival was significantly lower during the laying, incubation, and nestling periods (0.934, 95% CI: 0.898–0.958), when birds spent much time on the nest, compared to the nest building and fledgling periods (1.000, 95% CI: 1.00–1.000), when we did not record any female mortality. These data (coupled with some direct evidence, like bird corpses or blood remains found next to/on the nest) may suggest that the main cause of adult mortality was on-nest predation. The calculated survival rates for both sexes during the breeding season were high compared to annual rates reported for this species, suggesting that a majority of mortality occurs at other times of the year, during migration or wintering. These results have implications for understanding survival variation within the reproductive period as well as general trends of avian mortality. PMID:26934086

  11. Cellular Stress Responses: Cell Survival and Cell Death

    PubMed Central

    Fulda, Simone; Gorman, Adrienne M.; Hori, Osamu; Samali, Afshin

    2010-01-01

    Cells can respond to stress in various ways ranging from the activation of survival pathways to the initiation of cell death that eventually eliminates damaged cells. Whether cells mount a protective or destructive stress response depends to a large extent on the nature and duration of the stress as well as the cell type. Also, there is often the interplay between these responses that ultimately determines the fate of the stressed cell. The mechanism by which a cell dies (i.e., apoptosis, necrosis, pyroptosis, or autophagic cell death) depends on various exogenous factors as well as the cell's ability to handle the stress to which it is exposed. The implications of cellular stress responses to human physiology and diseases are manifold and will be discussed in this review in the context of some major world health issues such as diabetes, Parkinson's disease, myocardial infarction, and cancer. PMID:20182529

  12. Mixing gilts in early pregnancy does not affect embryo survival.

    PubMed

    van Wettere, W H E J; Pain, S J; Stott, P G; Hughes, P E

    2008-03-01

    There is general acceptance that mixing sows during the first 3 weeks of gestation is detrimental to embryo development and survival. However, there is a paucity of data describing the influence of group housing and remixing during the first 14 days of gestation on pregnancy outcomes. Using 96 purebred maternal (Large White)/terminal (Duroc) line gilts, the current study determined the effects of regrouping, and the timing of regrouping, during the pre-implantation period on embryo mortality. The study was conducted in 2 blocks, with 12 gilts allocated to each of 4 treatments in each block. At 175 days of age, the combination of PG600 and 20 min of daily physical boar contact was used to stimulate puberty, with boar contact resuming 12 days after first detection of oestrus and gilts receiving two artificial inseminations (AIs), 24 h apart, at their second oestrus. After their first AI gilts were allocated to one of four treatment groups (n=12 gilts/treatment). Gilts in one treatment group were housed individually in stalls (STALL). The remaining gilts continued to be housed in their pre-AI groups and were either not remixed (NOMIX), or remixed to form new groups on day 3/4 (RMIXD3/4) or day 8/9 (RMIXD8/9) of gestation (day 0=day of first detection of second oestrus and first insemination). Group-housed gilts were housed in groups of 6, with a space allowance of 2.4 m2/gilt. All gilts were fed once a day (2.2 kg/gilt). Reproductive tracts were collected on day 26.6+/-0.13 of gestation, and the number of corpora lutea (CL) and viable embryos counted. Pregnancy rate was similar across all treatments, averaging 94.5% across the four treatment groups. The number of embryos present on day 26 of gestation was unaffected by housing treatments (P>0.05); gilts in the STALL, NOMIX, RMIXD3/4 and RMIXD8/9 groups possessed 13.2+/-0.67, 12.9+/-0.66, 14.1+/-0.46 and 13.8+/-0.57 embryos, respectively. Similarly, embryo survival rates were 0.91+/-0.04, 0.85+/-0.04, 0.91+/-0.02 and 0

  13. Macrophage-mediated chronic lymphocytic leukemia cell survival is independent of APRIL signaling.

    PubMed

    van Attekum, Mha; Terpstra, S; Reinen, E; Kater, A P; Eldering, E

    2016-01-01

    Survival of chronic lymphocytic leukemia (CLL) cells is mainly driven by interactions within the lymph node (LN) microenvironment with bystander cells such as T cells or cells from the monocytic lineage. Although the survival effect by T cells is largely governed by the TNFR ligand family member CD40L, the exact mechanism of monocyte-derived cell-induced survival is not known. An important role has been attributed to the TNFR ligand, a proliferation-inducing ligand (APRIL), although the exact mechanism remained unclear. Since we detected that APRIL was expressed by CD68+ cells in CLL LN, we addressed its relevance in various aspects of CLL biology, using a novel APRIL overexpressing co-culture system, recombinant APRIL, and APRIL reporter cells. Unexpectedly, we found, that in these various systems, APRIL had no effect on survival of CLL cells, and activation of NF-κB was not enhanced on APRIL stimulation. Moreover, APRIL stity mulation did not affect CLL proliferation, neither as single stimulus nor in combination with known CLL proliferation stimuli. Furthermore, the survival effect conveyed by macrophages to CLL cells was not affected by transmembrane activator and CAML interactor-Fc, an APRIL decoy receptor. We conclude that the direct role ascribed to APRIL in CLL cell survival might be overestimated due to application of supraphysiological levels of recombinant APRIL. PMID:27551513

  14. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle. PMID:27632932

  15. Cell survival and multiplication. The overriding need for signals: from unicellular to multicellular systems.

    PubMed

    Rasmussen, L; Christensen, S T; Schousboe, P; Wheatley, D N

    1996-04-01

    There are clear similarities in the control mechanisms for cell survival and multiplication in the two eukaryotes, the ciliate Tetrahymena thermophila and the yeast, Saccharomyces cerevisiae. Cell multiplication in both organisms is activated by the same compounds (phorbol esters, diacylglycerol, tetrapyrroles, etc.). These compounds also affect cell multiplication and other activities in mammalian cell systems. This homology in control mechanisms in two distinct groups of unicellular eukaryotes on the one hand, and in cells from multicellular animals on the other, leads us to propose that these cytoplasmic control mechanisms for cell survival and multiplication originated in the unicellular eukaryotes. PMID:8998973

  16. Leptin promotes cell proliferation and survival of trophoblastic cells.

    PubMed

    Magariños, María Paula; Sánchez-Margalet, Víctor; Kotler, Mónica; Calvo, Juan Carlos; Varone, Cecilia L

    2007-02-01

    Leptin, the 16-kDa protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta. In the present work, we studied a possible effect of leptin on trophoblastic cell proliferation, survival, and apoptosis. Recombinant human leptin added to JEG-3 and BeWo choriocarcinoma cell lines showed a stimulatory effect on cell proliferation up to 3 and 2.4 times, respectively, measured by (3)H-thymidine incorporation and cell counting. These effects were time and dose dependent. Maximal effect was achieved at 250 ng leptin/ml for JEG-3 cells and 50 ng leptin/ml for BeWo cells. Moreover, by inhibiting endogenous leptin expression with 2 microM of an antisense oligonucleotide (AS), cell proliferation was diminished. We analyzed cell population distribution during the different stages of cell cycle by fluorescence-activated cell sorting, and we found that leptin treatment displaced the cells towards a G2/M phase. We also found that leptin upregulated cyclin D1 expression, one of the key cell cycle-signaling proteins. Since proliferation and death processes are intimately related, the effect of leptin on cell apoptosis was investigated. Treatment with 2 microM leptin AS increased the number of apoptotic cells 60 times, as assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and the caspase-3 activity was increased more than 2 fold. This effect was prevented by the addition of 100 ng leptin/ml. In conclusion, we provide evidence that suggests that leptin is a trophic and mitogenic factor for trophoblastic cells by virtue of its inhibiting apoptosis and promoting proliferation. PMID:17021346

  17. Integrin Signaling in Cancer Cell Survival and Chemoresistance

    PubMed Central

    Aoudjit, Fawzi; Vuori, Kristiina

    2012-01-01

    Resistance to apoptosis and chemotherapy is a hallmark of cancer cells, and it is a critical factor in cancer recurrence and patient relapse. Extracellular matrix (ECM) via its receptors, the integrins, has emerged as a major pathway contributing to cancer cell survival and resistance to chemotherapy. Several studies over the last decade have demonstrated that ECM/integrin signaling provides a survival advantage to various cancer cell types against numerous chemotherapeutic drugs and against antibody therapy. In this paper, we will discuss the major findings on how ECM/integrin signaling protects tumor cells from drug-induced apoptosis. We will also discuss the potential role of ECM in malignant T-cell survival and in cancer stem cell resistance. Understanding how integrins and their signaling partners promote tumor cell survival and chemoresistance will likely lead to the development of new therapeutic strategies and agents for cancer treatment. PMID:22567280

  18. PI3 Kinase signals BCR dependent mature B cell survival

    PubMed Central

    Srinivasan, Lakshmi; Sasaki, Yoshiteru; Calado, Dinis Pedro; Zhang, Baochun; Paik, Ji Hye; DePinho, Ronald A.; Kutok, Jeffrey L.; Kearney, John F.; Otipoby, Kevin L.; Rajewsky, Klaus

    2009-01-01

    Summary Previous work has shown that mature B cells depend upon survival signals delivered to the cells by their antigen receptor (BCR). To identify the molecular nature of this survival signal, we have developed a genetic approach in which ablation of the BCR is combined with the activation of specific, BCR dependent signaling cascades in mature B cells in vivo. Using this system, we provide evidence that the survival of BCR deficient mature B cells can be rescued by a single signaling pathway downstream of the BCR, namely PI3K signaling, with the FOXO1 transcription factor playing a central role. PMID:19879843

  19. Survival of salmonella on dried fruits and in aqueous dried fruit homogenates as affected by temperature.

    PubMed

    Beuchat, Larry R; Mann, David A

    2014-07-01

    A study was done to determine the ability of Salmonella to survive on dried cranberries, raisins, and strawberries and in date paste, as affected by storage temperature. Acid-adapted Salmonella, initially at 6.57 to 7.01 log CFU/g, was recovered from mist-inoculated cranberries (water activity [aw] 0.47) and raisins (aw 0.46) stored at 25°C for 21 days but not 42 days, strawberries (aw 0.21) for 42 days but not 84 days, and date paste (aw 0.69) for 84 days but not 126 days. In contrast, the pathogen was detected in strawberries stored at 4°C for 182 days (6 months) but not 242 days (8 months) and in cranberries, date paste, and raisins stored for 242 days. Surface-grown cells survived longer than broth-grown cells in date paste. The order of rate of inactivation at 4°C was cranberry > strawberry > raisin > date paste. Initially at 2.18 to 3.35 log CFU/g, inactivation of Salmonella on dry (sand)&ndash inoculated fruits followed trends similar to those for mist-inoculated fruits. Survival of Salmonella in aqueous homogenates of dried fruits as affected by fruit concentration and temperature was also studied. Growth was not observed in 10% (aw 0.995 to 0.999) and 50% (aw 0.955 to 0.962) homogenates of the four fruits held at 4°C, 50% homogenates at 25°C, and 10% cranberry and strawberry homogenates at 25°C. Growth of the pathogen in 10% date paste and raisin homogenates stored at 25°C was followed by rapid inactivation. Results of these studies suggest the need to subject dried fruits that may be contaminated with Salmonella to a lethal process and prevent postprocess contamination before they are eaten out-of-hand or used as ingredients in ready-to-eat foods. Observations showing that Salmonella can grow in aqueous homogenates of date paste and raisins emphasize the importance of minimizing contact of these fruits with high-moisture environments during handling and storage.

  20. Factors affecting breeding season survival of Red-Headed Woodpeckers in South Carolina.

    SciTech Connect

    Kilgo, John, C.; Vukovich, Mark

    2011-11-18

    Red-headed woodpecker (Melanerpes erythrocephalus) populations have declined in the United States and Canada over the past 40 years. However, few demographic studies have been published on the species and none have addressed adult survival. During 2006-2007, we estimated survival probabilities of 80 radio-tagged red-headed woodpeckers during the breeding season in mature loblolly pine (Pinus taeda) forests in South Carolina. We used known-fate models in Program MARK to estimate survival within and between years and to evaluate the effects of foliar cover (number of available cover patches), snag density treatment (high density vs. low density), and sex and age of woodpeckers. Weekly survival probabilities followed a quadratic time trend, being lowest during mid-summer, which coincided with the late nestling and fledgling period. Avian predation, particularly by Cooper's (Accipiter cooperii) and sharp-shinned hawks (A. striatus), accounted for 85% of all mortalities. Our best-supported model estimated an 18-week breeding season survival probability of 0.72 (95% CI = 0.54-0.85) and indicated that the number of cover patches interacted with sex of woodpeckers to affect survival; females with few available cover patches had a lower probability of survival than either males or females with more cover patches. At the median number of cover patches available (n = 6), breeding season survival of females was 0.82 (95% CI = 0.54-0.94) and of males was 0.60 (95% CI = 0.42-0.76). The number of cover patches available to woodpeckers appeared in all 3 of our top models predicting weekly survival, providing further evidence that woodpecker survival was positively associated with availability of cover. Woodpecker survival was not associated with snag density. Our results suggest that protection of {ge}0.7 cover patches per ha during vegetation control activities in mature pine forests will benefit survival of this Partners In Flight Watch List species.

  1. Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature.

    PubMed

    Torvinen, Eila; Lehtola, Markku J; Martikainen, Pertti J; Miettinen, Ilkka T

    2007-10-01

    Mycobacterium avium is a potential pathogen occurring in drinking water systems. It is a slowly growing bacterium producing a thick cell wall containing mycolic acids, and it is known to resist chlorine better than many other microbes. Several studies have shown that pathogenic bacteria survive better in biofilms than in water. By using Propella biofilm reactors, we studied how factors generally influencing the growth of biofilms (flow rate, phosphorus concentration, and temperature) influence the survival of M. avium in drinking water biofilms. The growth of biofilms was followed by culture and DAPI (4',6'-diamidino-2-phenylindole) staining, and concentrations of M. avium were determined by culture and fluorescence in situ hybridization methods. The spiked M. avium survived in biofilms for the 4-week study period without a dramatic decline in concentration. The addition of phosphorus (10 microg/liter) increased the number of heterotrophic bacteria in biofilms but decreased the culturability of M. avium. The reason for this result is probably that phosphorus increased competition with other microbes. An increase in flow velocity had no effect on the survival of M. avium, although it increased the growth of biofilms. A higher temperature (20 degrees C versus 7 degrees C) increased both the number of heterotrophic bacteria and the survival of M. avium in biofilms. In conclusion, the results show that in terms of affecting the survival of slowly growing M. avium in biofilms, temperature is a more important factor than the availability of nutrients like phosphorus.

  2. Transmission of survival signals through Delta-like 1 on activated CD4+ T cells

    PubMed Central

    Furukawa, Takahiro; Ishifune, Chieko; Tsukumo, Shin-ichi; Hozumi, Katsuto; Maekawa, Yoichi; Matsui, Naoko; Kaji, Ryuji; Yasutomo, Koji

    2016-01-01

    Notch expressed on CD4+ T cells transduces signals that mediate their effector functions and survival. Although Notch signaling is known to be cis-inhibited by Notch ligands expressed on the same cells, the role of Notch ligands on T cells remains unclear. In this report we demonstrate that the CD4+ T cell Notch ligand Dll1 transduces signals required for their survival. Co-transfer of CD4+ T cells from Dll1−/− and control mice into recipient mice followed by immunization revealed a rapid decline of CD4+ T cells from Dll1−/− mice compared with control cells. Dll1−/− mice exhibited lower clinical scores of experimental autoimmune encephalitis than control mice. The expression of Notch target genes in CD4+ T cells from Dll1−/− mice was not affected, suggesting that Dll1 deficiency in T cells does not affect cis Notch signaling. Overexpression of the intracellular domain of Dll1 in Dll1-deficient CD4+ T cells partially rescued impaired survival. Our data demonstrate that Dll1 is an independent regulator of Notch-signaling important for the survival of activated CD4+ T cells, and provide new insight into the physiological roles of Notch ligands as well as a regulatory mechanism important for maintaining adaptive immune responses. PMID:27659682

  3. Pak2 regulates hematopoietic progenitor cell proliferation, survival and differentiation

    PubMed Central

    Zeng, Yi; Broxmeyer, Hal E.; Staser, Karl; Chitteti, Brahmananda Reddy; Park, Su-Jung; Hahn, Seongmin; Cooper, Scott; Sun, Zejin; Jiang, Li; Yang, XianLin; Yuan, Jin; Kosoff, Rachelle; Sandusky, George; Srour, Edward F.; Chernoff, Jonathan; Clapp, Wade

    2015-01-01

    p21-activated kinase 2 (Pak2), a serine/threonine kinase, has been previously shown to be essential for hematopoietic stem cell (HSC) engraftment. However, Pak2 modulation of long-term hematopoiesis and lineage commitment remain unreported. Utilizing a conditional Pak2 knock out (KO) mouse model, we found that disruption of Pak2 in HSCs induced profound leukopenia and a mild macrocytic anemia. Although loss of Pak2 in HSCs leads to less efficient short- and long-term competitive hematopoiesis than wild type (WT) cells, it does not affect HSC self-renewal per se. Pak2 disruption decreased the survival and proliferation of multi-cytokine stimulated immature progenitors. Loss of Pak2 skewed lineage differentiation toward granulocytopoiesis and monocytopoiesis in mice as evidenced by 1) a three to six-fold increase in the percentage of peripheral blood granulocytes and a significant increase in the percentage of granulocyte-monocyte progenitors (GMPs) in mice transplanted with Pak2-disrupted BM; 2) Pak2-disrupted BM and c-kit+ cells yielded higher numbers of more mature subsets of granulocyte-monocyte colonies and polymophonuclear neutrophils (PMNs), respectively, when cultured in the presence of granulocyte-macrophage colony stimulating factor (GM-CSF). Pak2 disruption resulted respectively in decreased and increased gene expression of transcription factors JunB and c-Myc, which may suggest underlying mechanisms by which Pak2 regulates granulocyte-monocyte lineage commitment. Furthermore, Pak2 disruption led to 1) higher percentage of CD4+CD8+ double positive T cells and lower percentages of CD4+CD8− or CD4−CD8+ single positive T cells in thymus and 2) decreased numbers of mature B cells and increased numbers of Pre-Pro B cells in BM, suggesting defects in lymphopoiesis. PMID:25586960

  4. Cell survival in a simulated Mars environment

    NASA Astrophysics Data System (ADS)

    Todd, Paul; Kurk, Michael Andy; Boland, Eugene; Thomas, David

    2016-07-01

    The most ancient life forms on earth date back comfortably to the time when liquid water was believed to be abundant on Mars. These ancient life forms include cyanobacteria, contemporary autotrophic earth organisms believed to have descended from ancestors present as long as 3.5 billion years ago. Contemporary cyanobacteria have adapted to the earth environment's harshest conditions (long-term drying, high and low temperature), and, being autotrophic, they are among the most likely life forms to withstand space travel and the Mars environment. However, it is unlikely that humans would unwittingly contaminate a planetary spacecraft with these microbes. One the other hand, heterotrophic microbes that co-habit with humans are more likely spacecraft contaminants, as history attests. Indeed, soil samples from the Atacama desert have yielded colony-forming organisms resembling enteric bacteria. There is a need to understand the survivability of cyanobacteria (likely survivors, unlikely contaminants) and heterotrophic eubacteria (unlikely survivors, likely contaminants) under simulated planetary conditions. A 35-day test was performed in a commercial planetary simulation system (Techshot, Inc., Greenville, IN) in which the minimum night-time temperature was -80 C, the maximum daytime temperature was +26 C, the simulated day-night light cycle in earth hours was 12-on and 12-off, and the total pressure of the pure CO _{2} atmosphere was maintained below 11 mbar. Any water present was allowed to equilibrate with the changing temperature and pressure. The gas phase was sampled into a CR1-A low-pressure hygrometer (Buck Technologies, Boulder, CO), and dew/frost point was measured once every hour and recorded on a data logger, along with the varying temperature in the chamber, from which the partial pressure of water was calculated. According to measurements there was no liquid water present throughout the test except during the initial pump-down period when aqueous specimens

  5. Rich Medium Composition Affects Escherichia coli Survival, Glycation, and Mutation Frequency during Long-Term Batch Culture

    PubMed Central

    Kram, Karin E.

    2015-01-01

    Bacteria such as Escherichia coli are frequently grown to high density to produce biomolecules for study in the laboratory. To achieve this, cells can be incubated in extremely rich media that increase overall cell yield. In these various media, bacteria may have different metabolic profiles, leading to changes in the amounts of toxic metabolites produced. We have previously shown that stresses experienced during short-term growth can affect the survival of cells during the long-term stationary phase (LTSP). Here, we incubated cells in LB, 2× yeast extract-tryptone (YT), Terrific Broth, or Super Broth medium and monitored survival during the LTSP, as well as other reporters of genetic and physiological change. We observe differential cell yield and survival in all media studied. We propose that differences in long-term survival are the result of changes in the metabolism of components of the media that may lead to increased levels of protein and/or DNA damage. We also show that culture pH and levels of protein glycation, a covalent modification that causes protein damage, affect long-term survival. Further, we measured mutation frequency after overnight incubation and observed a correlation between high mutation frequencies at the end of the log phase and loss of viability after 4 days of LTSP incubation, indicating that mutation frequency is potentially predictive of long-term survival. Since glycation and mutation can be caused by oxidative stress, we measured expression of the oxyR oxidative stress regulator during log-phase growth and found that higher levels of oxyR expression during the log phase are consistent with high mutation frequency and lower cell density during the LTSP. Since these complex rich media are often used when producing large quantities of biomolecules in the laboratory, the observed increase in damage resulting in glycation or mutation may lead to production of a heterogeneous population of plasmids or proteins, which could affect the

  6. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  7. Techniques for measuring red cell, platelet, and WBC survival

    SciTech Connect

    Mayer, K.; Freeman, J.E.

    1986-01-01

    Blood cell survival studies yield valuable information concerning production and destruction of cells circulating in the bloodstream. Methodologies for the measurement of red cell survival include nonisotopic methods such as differential agglutination and hemolysis. The isotopic label may be radioactive or, if not, will require availability of a mass spectrograph. These methods fall into two categories, one where red cells of all ages are labeled (/sup 51/Cr, DFP32, etc.) and those employing a cohort label of newly formed cells (/sup 14/C glycine, /sup 75/Se methionine, etc.). Interpretation of results for methodology employed and mechanism of destruction, random or by senescence, are discussed. A similar approach is presented for platelet and leukocyte survival studies. The inherent difficulties and complications of sequestration, storage, and margination of these cells are emphasized and discussed. 38 references.

  8. Surviving apoptosis: life-death signaling in single cells

    PubMed Central

    Flusberg, Deborah A.; Sorger, Peter K.

    2015-01-01

    Tissue development and homeostasis are regulated by opposing pro-survival and pro-death signals. An interesting feature of the Tumor Necrosis Factor (TNF) family of ligands is that they simultaneously activate opposing signals within a single cell via the same ligand-receptor complex. The magnitude of pro-death events such as caspase activation and pro-survival events such as NF-κB activation vary not only from one cell type to the next but also among individual cells of the same type due to intrinsic and extrinsic noise. The molecules involved in these pro-survival/pro-death pathways, and the different phenotypes that result from their activities, have been recently reviewed. Here we focus on the impact of cell-to-cell variability in the strength of these opposing signals on shaping cell fate decisions. PMID:25920803

  9. Properties of lewis lung carcinoma cells surviving curcumin toxicity.

    PubMed

    Yan, Dejun; Geusz, Michael E; Jamasbi, Roudabeh J

    2012-01-01

    The anti-inflammatory agent curcumin can selectively eliminate malignant rather than normal cells. The present study examined the effects of curcumin on the Lewis lung carcinoma (LLC) cell line and characterized a subpopulation surviving curcumin treatments. Cell density was measured after curcumin was applied at concentrations between 10 and 60 μM for 30 hours. Because of the high cell loss at 60 μM, this dose was chosen to select for surviving cells that were then used to establish a new cell line. The resulting line had approximately 20% slower growth than the original LLC cell line and based on ELISA contained less of two markers, NF-κB and ALDH1A, used to identify more aggressive cancer cells. We also injected cells from the original and surviving lines subcutaneously into syngeneic C57BL/6 mice and monitored tumor development over three weeks and found that the curcumin surviving-line remained tumorigenic. Because curcumin has been reported to kill cancer cells more effectively when administered with light, we examined this as a possible way of enhancing the efficacy of curcumin against LLC cells. When LLC cells were exposed to curcumin and light from a fluorescent lamp source, cell loss caused by 20 μM curcumin was enhanced by about 50%, supporting a therapeutic use of curcumin in combination with white light. This study is the first to characterize a curcumin-surviving subpopulation among lung cancer cells. It shows that curcumin at a high concentration either selects for an intrinsically less aggressive cell subpopulation or generates these cells. The findings further support a role for curcumin as an adjunct to traditional chemical or radiation therapy of lung and other cancers.

  10. Factors affecting longitudinal functional decline and survival in amyotrophic lateral sclerosis patients.

    PubMed

    Watanabe, Hazuki; Atsuta, Naoki; Nakamura, Ryoichi; Hirakawa, Akihiro; Watanabe, Hirohisa; Ito, Mizuki; Senda, Jo; Katsuno, Masahisa; Izumi, Yuishin; Morita, Mitsuya; Tomiyama, Hiroyuki; Taniguchi, Akira; Aiba, Ikuko; Abe, Koji; Mizoguchi, Kouichi; Oda, Masaya; Kano, Osamu; Okamoto, Koichi; Kuwabara, Satoshi; Hasegawa, Kazuko; Imai, Takashi; Aoki, Masashi; Tsuji, Shoji; Nakano, Imaharu; Kaji, Ryuji; Sobue, Gen

    2015-06-01

    Our objective was to elucidate the clinical factors affecting functional decline and survival in Japanese amyotrophic lateral sclerosis (ALS) patients. We constructed a multicenter prospective ALS cohort that included 451 sporadic ALS patients in the analysis. We longitudinally utilized the revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) as the functional scale, and determined the timing of introduction of a tracheostomy for positive-pressure ventilation and death. A joint modelling approach was employed to identify prognostic factors for functional decline and survival. Age at onset was a common prognostic factor for both functional decline and survival (p < 0.001, p < 0.001, respectively). Female gender (p = 0.019) and initial symptoms, including upper limb weakness (p = 0.010), lower limb weakness (p = 0.008) or bulbar symptoms (p = 0.005), were related to early functional decline, whereas neck weakness as an initial symptom (p = 0.018), non-use of riluzole (p = 0.030) and proximal dominant muscle weakness in the upper extremities (p = 0.01) were related to a shorter survival time. A decline in the ALSFRS-R score was correlated with a shortened survival time (p < 0.001). In conclusion, the factors affecting functional decline and survival in ALS were common in part but different to some extent. This difference has not been previously well recognized but is informative in clinical practice and for conducting trials.

  11. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought.

  12. Leaf biomechanical properties in Arabidopsis thaliana polysaccharide mutants affect drought survival.

    PubMed

    Balsamo, Ronald; Boak, Merewyn; Nagle, Kayla; Peethambaran, Bela; Layton, Bradley

    2015-11-26

    Individual sugars are the building blocks of cell wall polysaccharides, which in turn comprise a plant׳s overall architectural structure. But which sugars play the most prominent role in maintaining a plant׳s mechanical stability during large cellular deformations induced by drought? We investigated the individual contributions of several genes that are involved in the synthesis of monosaccharides which are important for cell wall structure. We then measured drought tolerance and mechanical integrity during simulated drought in Arabidopsis thaliana. To assess mechanical properties, we designed a small-scale tensile tester for measuring failure strain, ultimate tensile stress, work to failure, toughness, and elastic modulus of 6-week-old leaves in both hydrated and drought-simulated states. Col-0 mutants used in this study include those deficient in lignin, cellulose, components of hemicellulose such as xylose and fucose, the pectic components arabinose and rhamnose, as well as mutants with enhanced arabinose and total pectin content. We found that drought tolerance is correlated to the mechanical and architectural stability of leaves as they experience dehydration. Of the mutants, S096418 with mutations for reduced xylose and galactose was the least drought tolerant, while the arabinose-altered CS8578 mutants were the least affected by water loss. There were also notable correlations between drought tolerance and mechanical properties in the diminished rhamnose mutant, CS8575 and the dehydrogenase-disrupted S120106. Our findings suggest that components of hemicellulose and pectins affect leaf biomechanical properties and may play an important role in the ability of this model system to survive drought. PMID:26520913

  13. Surviving cells after treatment with gemcitabine or 5-fluorouracil for the study of de novo resistance of pancreatic cancer.

    PubMed

    Liu, Qing-Hua; Zhang, Jing; Zhao, Chen-Yan; Yu, Dang-Hui; Bu, Hai-Ji; Chen, Ying; Ni, Can-Yong; Zhu, Ming-Hua

    2012-01-01

    One of the hallmarks of pancreatic cancer is its inherent insensitivity to chemotherapy. This study was undertaken to develop a cell model for the study of de novo resistance of pancreatic cancer. The surviving pancreatic cancer cells after a 3-day exposure to gemcitabine or 5-fluorouracil followed by another 7-day recovery were potentially drug-resistant. They had similar morphology and comparable growth and tumorigenic potentials to their untreated parental cells. Repeated subculture affected the cell-cycle profile and growth characteristics of the surviving cells. Our data suggest that surviving pancreatic cancer cells after drug treatment are a useful model for exploring intrinsic resistance.

  14. Enrichment materials do not negatively affect reproductive success and offspring survival and weight in mice.

    PubMed

    Shair, Harry N; Nunez, Yasmin; Osman, Mohamed M

    2011-12-19

    Environmental enrichment is designed to improve the overall welfare of laboratory animals, including mice. Few studies have directly assessed the effects of different types of enrichment on mouse offspring survival and growth. The authors examined how survival and growth of C57BL/6 mouse pups are affected by three kinds of cage enrichment materials: compressed cotton squares, two-ply tissues and plastic igloos. During the last week of gestation and the first two weeks postpartum, the authors observed cages with litters and noted use of the enrichment materials, quality of nest construction, number of pups per litter and weight of pups. Both the first and second litters were evaluated for each dam. Dams and pups had continuous contact with the enrichment materials, especially cotton squares and tissues. Neither the presence nor the type of enrichment material influenced the survival and weight of offspring, suggesting that the use of such materials does not negatively impact reproductive success or offspring survival.

  15. Social isolation increases cell proliferation in male and cell survival in female California mice (Peromyscus californicus).

    PubMed

    Ruscio, Michael G; Bradley King, S; Haun, Harold L

    2015-11-01

    Social environment has direct effects on an animal's behavior, physiology and neurobiology. In particular, adult neurogenesis is notably affected by a variety of social manipulations, including social isolation. We hypothesized that social isolation should have particularly acute effects on neurogenesis in a highly social (monogamous and bi-parental) species such as Peromyscus californicus, the California mouse. Adult male and female P. californicus mice were housed in isolation or in same-sex pairs for 4 or 24 days. At the end of each period, either cell proliferation or cell survival was quantified with BrdU label and neuronal markers (either TuJ1 or NeuN). After 4 days, isolated males had greater cellular proliferation in the dentate gyrus of the hippocampus (DG) than pair housed males. After 24 days, isolate females demonstrated greater cell survival in the DG than paired females. Males demonstrated a similar, but non-significant pattern. No differences in cellular proliferation or cell survival were found in the subventricular zone (SVZ), or medial amygdala (MeA). These results add to the evidence which demonstrates that neurogenic responses to environmental conditions are not identical across species. These data may be critical in understanding the functional significance of neurogenesis as it relates to the interactions between social systems, social environment and the display of social behaviors.

  16. Re-Evaluating Neonatal-Age Models for Ungulates: Does Model Choice Affect Survival Estimates?

    PubMed Central

    Grovenburg, Troy W.; Monteith, Kevin L.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Brinkman, Todd J.; Monteith, Kyle B.; Gilbert, Sophie L.; Smith, Joshua B.; Bleich, Vernon C.; Swanson, Christopher C.; Jenks, Jonathan A.

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001–2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  17. Re-evaluating neonatal-age models for ungulates: does model choice affect survival estimates?

    PubMed

    Grovenburg, Troy W; Monteith, Kevin L; Jacques, Christopher N; Klaver, Robert W; DePerno, Christopher S; Brinkman, Todd J; Monteith, Kyle B; Gilbert, Sophie L; Smith, Joshua B; Bleich, Vernon C; Swanson, Christopher C; Jenks, Jonathan A

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001-2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  18. Re-evaluating neonatal-age models for ungulates: Does model choice affect survival estimates?

    USGS Publications Warehouse

    Grovenburg, Troy W.; Monteith, Kevin L.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Brinkman, Todd J.; Monteith, Kyle B.; Gilbert, Sophie L.; Smith, Joshua B.; Bleich, Vernon C.; Swanson, Christopher C.; Jenks, Jonathan A.

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001–2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  19. Re-evaluating neonatal-age models for ungulates: does model choice affect survival estimates?

    PubMed

    Grovenburg, Troy W; Monteith, Kevin L; Jacques, Christopher N; Klaver, Robert W; DePerno, Christopher S; Brinkman, Todd J; Monteith, Kyle B; Gilbert, Sophie L; Smith, Joshua B; Bleich, Vernon C; Swanson, Christopher C; Jenks, Jonathan A

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001-2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  20. Alpha tumor necrosis factor contributes to CD8{sup +} T cell survival in the transition phase

    SciTech Connect

    Shi, Meiqing; Ye, Zhenmin; Umeshappa, Keshav Sokke; Moyana, Terence; Xiang, Jim . E-mail: jxiang@scf.sk.ca

    2007-08-31

    Cytokine and costimulation signals determine CD8{sup +} T cell responses in proliferation phase. In this study, we assessed the potential effect of cytokines and costimulations to CD8{sup +} T cell survival in transition phase by transferring in vitro ovalbumin (OVA)-pulsed dendritic cell-activated CD8{sup +} T cells derived from OVA-specific T cell receptor transgenic OT I mice into wild-type C57BL/6 mice or mice with designated gene knockout. We found that deficiency of IL-10, IL-12, IFN-{gamma}, CD28, CD40, CD80, CD40L, and 41BBL in recipients did not affect CD8{sup +} T cell survival after adoptive transfer. In contrast, TNF-{alpha} deficiency in both recipients and donor CD8{sup +} effector T cells significantly reduced CD8{sup +} T cell survival. Therefore, our data demonstrate that the host- and T cell-derived TNF-{alpha} signaling contributes to CD8{sup +} effector T cell survival and their transition to memory T cells in the transition phase, and may be useful information when designing vaccination.

  1. High-content screening for chemical modulators of embryonal carcinoma cell differentiation and survival.

    PubMed

    Barbaric, Ivana; Jones, Mark; Harley, David J; Gokhale, Paul J; Andrews, Peter W

    2011-07-01

    Disentangling the complex interactions that govern stem cell fate choices of self-renewal, differentiation, or death presents a formidable challenge. Image-based phenotype-driven screening meets this challenge by providing means for rapid testing of many small molecules simultaneously. Pluripotent embryonal carcinoma (EC) cells offer a convenient substitute for embryonic stem (ES) cells in such screens because they are simpler to maintain and control. The authors developed an image-based screening assay to identify compounds that affect survival or differentiation of the human EC stem cell line NTERA2 by measuring the effect on cell number and the proportion of cells expressing a pluripotency-associated marker SSEA3. A pilot screen of 80 kinase inhibitors identified several compounds that improved cell survival or induced differentiation. The survival compounds Y-27632, HA-1077, and H-8 all strongly inhibit the kinases ROCK and PRK2, highlighting the important role of these kinases in EC cell survival. Two molecules, GF109203x and rottlerin, induced EC differentiation. The effects of rottlerin were also investigated in human ES cells. Rottlerin inhibited the self-renewal ability of ES cells, caused the cell cycle arrest, and repressed the expression of pluripotency-associated genes.

  2. Intracellular calcium and survival of tadpole forebrain cells in anoxia.

    PubMed

    Hedrick, Michael S; Fahlman, Christian S; Bickler, Philip E

    2005-02-01

    The frog brain survives hypoxia with a slow loss of energy charge and ion homeostasis. Because hypoxic death in most neurons is associated with increases in intracellular calcium ([Ca2+]i), we examined the relationship between [Ca2+]i and survival of a mixed population of isolated cells from the forebrain of North American bullfrog Rana catesbeiana tadpoles. Forebrain cells from stage V-XV tadpoles were isolated by enzymatic digestion and loaded with one of three different calcium indicators (Fura-2, Fura 2-FF and BTC) to provide estimates of [Ca2+]i accurate at low and high [Ca2+]i. Propidium iodide (PI) fluorescence was used as an indicator of cell viability. Cells were exposed to anoxia (100% N2) and measurements of [Ca2+]i and cell survival made from 1 h to 18 h. Intracellular [Ca2+] increased significantly after 3-6 h anoxia (P<0.05), regardless of the type of Ca2+ indicator used; however, there were substantial differences in the measurements of [Ca2+]i with the different indicators, reflecting their varying affinities for Ca2+. Resting [Ca2+]i was approximately 50 nmol l(-1) and increased to about 9-30 micromol l(-1) after 4-6 h anoxia. The significant increase in [Ca2+]i during anoxia was not associated with significant increases in cell death, with 85-95% survival over this time period. Cells exposed to anoxia for 18 h, or those made anoxic for 4-6 and reoxygenated for 12 h to 16 h, had survival rates greater than 70%, but survival was significantly less than normoxic controls. These results indicate that large increases in [Ca2+]i are not necessarily associated with hypoxic cell death in vertebrate brain cells. PMID:15695760

  3. Bcl-2 family proteins: master regulators of cell survival.

    PubMed

    Hatok, Jozef; Racay, Peter

    2016-08-01

    The most prominent function of proteins of the Bcl-2 family is regulation of the initiation of intrinsic (mitochondrial) pathways of apoptosis. However, recent research has revealed that in addition to regulation of mitochondrial apoptosis, proteins of the Bcl-2 family play important roles in regulating other cellular pathways with a strong impact on cell survival like autophagy, endoplasmic reticulum (ER) stress response, intracellular calcium dynamics, cell cycle progression, mitochondrial dynamics and energy metabolism. This review summarizes the recent knowledge about functions of Bcl-2 family proteins that are related to cell survival. PMID:27505095

  4. Offspring size at weaning affects survival to recruitment and reproductive performance of primiparous gray seals

    PubMed Central

    Bowen, William D; den Heyer, Cornelia E; McMillan, Jim I; Iverson, Sara J

    2015-01-01

    Offspring size affects survival and subsequent reproduction in many organisms. However, studies of offspring size in large mammals are often limited to effects on juveniles because of the difficulty of following individuals to maturity. We used data from a long-term study of individually marked gray seals (Halichoerus grypus; Fabricius, 1791) to test the hypothesis that larger offspring have higher survival to recruitment and are larger and more successful primiparous mothers than smaller offspring. Between 1998 and 2002, 1182 newly weaned female pups were branded with unique permanent marks on Sable Island, Canada. Each year through 2012, all branded females returning to the breeding colony were identified in weekly censuses and a subset were captured and measured. Females that survived were significantly longer offspring than those not sighted, indicating size-selective mortality between weaning and recruitment. The probability of female survival to recruitment varied among cohorts and increased nonlinearly with body mass at weaning. Beyond 51.5 kg (mean population weaning mass) weaning mass did not influence the probability of survival. The probability of female survival to recruitment increased monotonically with body length at weaning. Body length at primiparity was positively related to her body length and mass at weaning. Three-day postpartum mass (proxy for birth mass) of firstborn pups was also positively related to body length of females when they were weaned. However, females that were longer or heavier when they were weaned did not wean heavier firstborn offspring. PMID:25897381

  5. Cell Biology: ERADicating Survival with BOK.

    PubMed

    Chipuk, Jerry Edward; Luna-Vargas, Mark P

    2016-06-01

    Mechanistic insights into the function of the pro-apoptotic BCL-2 family member BOK have remained elusive. A recent study shows that healthy cells constitutively degrade BOK via the ER-associated degradation and ubiquitin-proteasome pathways; following proteasome inhibition, BOK is stabilized to initiate a unique pro-apoptotic death program.

  6. Spatial Variation and Resuscitation Process Affecting Survival after Out-of-Hospital Cardiac Arrests (OHCA)

    PubMed Central

    Chen, Chien-Chou; Chen, Chao-Wen; Ho, Chi-Kung; Liu, I-Chuan; Lin, Bo-Cheng; Chan, Ta-Chien

    2015-01-01

    Background Ambulance response times and resuscitation efforts are critical predictors of the survival rate after out-of-hospital cardiac arrests (OHCA). On the other hand, rural-urban differences in the OHCA survival rates are an important public health issue. Methods We retrospectively reviewed the January 2011–December 2013 OHCA registry data of Kaohsiung City, Taiwan. With particular focus on geospatial variables, we aimed to unveil risk factors predicting the overall OHCA survival until hospital admission. Spatial analysis, network analysis, and the Kriging method by using geographic information systems were applied to analyze spatial variations and calculate the transport distance. Logistic regression was used to identify the risk factors for OHCA survival. Results Among the 4,957 patients, the overall OHCA survival to hospital admission was 16.5%. In the multivariate analysis, female sex (adjusted odds ratio:, AOR, 1.24 [1.06–1.45]), events in public areas (AOR: 1.30 [1.05–1.61]), exposure to automated external defibrillator (AED) shock (AOR: 1.70 [1.30–2.23]), use of laryngeal mask airway (LMA) (AOR: 1.35 [1.16–1.58]), non-trauma patients (AOR: 1.41 [1.04–1.90]), ambulance bypassed the closest hospital (AOR: 1.28 [1.07–1.53]), and OHCA within the high population density areas (AOR: 1.89 [1.55–2.32]) were positively associated with improved OHCA survival. By contrast, a prolonged total emergency medical services (EMS) time interval was negatively associated with OHCA survival (AOR: 0.98 [0.96–0.99]). Conclusions Resuscitative efforts, such as AED or LMA use, and a short total EMS time interval improved OHCA outcomes in emergency departments. The spatial heterogeneity of emergency medical resources between rural and urban areas might affect survival rate. PMID:26659851

  7. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    SciTech Connect

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice; Washko, Daniel; Takagawa, Junya; Ye, Jianqin; Grossman, William; Su Hua

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs or VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.

  8. Homeostatic responses by surviving cortical pyramidal cells in neurodegenerative tauopathy.

    PubMed

    Crimins, Johanna L; Rocher, Anne B; Peters, Alan; Shultz, Penny; Lewis, Jada; Luebke, Jennifer I

    2011-11-01

    Cortical neuron death is prevalent by 9 months in rTg(tau(P301L))4510 tau mutant mice (TG) and surviving pyramidal cells exhibit dendritic regression and spine loss. We used whole-cell patch-clamp recordings to investigate the impact of these marked structural changes on spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) of layer 3 pyramidal cells in frontal cortical slices from behaviorally characterized TG and non-transgenic (NT) mice at this age. Frontal lobe function of TG mice was intact following a short delay interval but impaired following a long delay interval in an object recognition test, and cortical atrophy and cell loss were pronounced. Surviving TG cells had significantly reduced dendritic diameters, total spine density, and mushroom spines, yet sEPSCs were increased and sIPSCs were unchanged in frequency. Thus, despite significant regressive structural changes, synaptic responses were not reduced in TG cells, indicating that homeostatic compensatory mechanisms occur during progressive tauopathy. Consistent with this idea, surviving TG cells were more intrinsically excitable than NT cells, and exhibited sprouting of filopodia and axonal boutons. Moreover, the neuropil in TG mice showed an increased density of asymmetric synapses, although their mean size was reduced. Taken together, these data indicate that during progressive tauopathy, cortical pyramidal cells compensate for loss of afferent input by increased excitability and establishment of new synapses. These compensatory homeostatic mechanisms may play an important role in slowing the progression of neuronal network dysfunction during neurodegenerative tauopathies.

  9. Brain size affects female but not male survival under predation threat

    PubMed Central

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas; Sorci, Gabriele

    2015-01-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. PMID:25960088

  10. Brain size affects female but not male survival under predation threat.

    PubMed

    Kotrschal, Alexander; Buechel, Séverine D; Zala, Sarah M; Corral-Lopez, Alberto; Penn, Dustin J; Kolm, Niclas

    2015-07-01

    There is remarkable diversity in brain size among vertebrates, but surprisingly little is known about how ecological species interactions impact the evolution of brain size. Using guppies, artificially selected for large and small brains, we determined how brain size affects survival under predation threat in a naturalistic environment. We cohoused mixed groups of small- and large-brained individuals in six semi-natural streams with their natural predator, the pike cichlid, and monitored survival in weekly censuses over 5 months. We found that large-brained females had 13.5% higher survival compared to small-brained females, whereas the brain size had no discernible effect on male survival. We suggest that large-brained females have a cognitive advantage that allows them to better evade predation, whereas large-brained males are more colourful, which may counteract any potential benefits of brain size. Our study provides the first experimental evidence that trophic interactions can affect the evolution of brain size. PMID:25960088

  11. Demography of forest birds in Panama: How do transients affect estimates of survival rates?

    USGS Publications Warehouse

    Brawn, J.D.; Karr, J.R.; Nichols, J.D.; Robinson, W.D.; Adams, N.J.; Slotow, R.H.

    1998-01-01

    Estimates of annual survival rates for a multispecies sample of neotropical birds from Panama have proven controversial. Traditionally, tropical birds were thought to have high survival rates for their size, but analyses by Kart et al. (1990. Am. Nat. 136:277-91) contradicted that view, suggesting tropical birds may not have systematically high survival rates. A persistent criticism of that study has been that the estimates were biased by transient birds captured only once as they passed through the area being sampled. New models that formally adjust for transient individuals have been developed since 1990. Preliminary analyses using these models indicate that, despite some variation among species, overall estimates of survival rates for understory birds in Panama are not strongly affected by adjustments for transients. We also compare estimates of survival rates based on mark-recapture models with observations of colour-marked birds. The demographic traits of birds in the tropics (and elsewhere) vary within and among species according to combinations of historical and ongoing ecological factors. Understanding sources of this variation is the challenge for future work.

  12. Cyclooxygenase-2 is induced by p38 MAPK and promotes cell survival.

    PubMed

    Parente, Rosanna; Trifirò, Elisabetta; Cuozzo, Francesca; Valia, Sandro; Cirone, Mara; Di Renzo, Livia

    2013-05-01

    The Na+ ionophore monensin affects cellular pH and, depending on its concentration, causes the survival or death of tumor cells. In the present study, we elucidated the survival pathway activated in U937 cells, a human lymphoma-derived cell line. These cells treated with monensin at a concentration of 5 µM were growth-arrested in G1, activated p38 mitogen-activated protein kinase (MAPK) and showed an increased expression of cyclooxygenase-2 (COX-2). The latter two molecular events were linked, as pharmacological inhibition of the MAPK did not allow COX-2 increased expression. Furthermore, we showed that p38 and COX-2 keep monensin-stressed U937 cells alive, as pharmacological inhibition of each enzyme caused cell death. PMID:23446663

  13. Multiphasic survival response of a radioresistant lepidopteran insect cell line

    SciTech Connect

    Koval, T.M.

    1984-06-01

    TN-368 lepidoteran insect cells display a multiphasic survival response in both air and nitrogen. In each case the survival curve is characterized by an initial small-shouldered region near the 0.1 survival level, and finally a shallow slope component. The oxygen enhancement ratio (OER) for the first portion of the curve is 1.6. The OER for the latter portion of the curve is 1.7. The D/sub 0/ values for each slope and the width of the plateau region all increase proportionally for the nitrogen curve over that of air, the OER being approximately the same for both curve components. A similar multiphasic response was observed at dose rates of 202, 49.6 and 9.1 Gy/min. Although cell cycle variations in radiosensitivity may contribute slightly to the response, an inducible or activated repair process would be consistent with the results.

  14. CCCTC-binding Factor Mediates Effects of Glucose On Beta Cell Survival

    PubMed Central

    Tsui, Shanli; Dai, Wei; Lu, Luo

    2013-01-01

    Objectives Pancreatic islet β-cell survival is important in regulating insulin activities and maintaining glucose homeostasis. Recently, Pax6 has been shown to be essential for many vital functions in β-cells, though the molecular mechanisms of its regulation in β-cells remain unclear. The present study investigates the novel effects of glucose- and insulin-induced CTCF activity on Pax6 gene expression as well as the subsequent effects of insulin-activated signaling pathways on β-cell proliferation. Material and methods Pancreatic β-TC-1-6 cells were cultured in DMEM medium and stimulated with high concentrations of glucose (5 to 125 mM) and cell viability was assessed by MTT assays. The effect of CTCF on Pax6 was evaluated in high glucose-induced and CCCTC-binding Factor (CTCF)/Erk suppressed cells by promoter reporter and Western analyses. Results Increases in glucose and insulin concentrations up-regulated CTCF and consequently down-regulated Pax6 in β-cell survival and proliferation. Knocking-down CTCF directly affected Pax6 transcription through CTCF binding and blocked the response to glucose. Altered Erk activity mediated the effects of CTCF on controlling Pax6 expression, which partially regulates β-cell proliferation. Conclusions CTCF functions as a molecular mediator between insulin-induced upstream Erk signaling and Pax6 expression in pancreatic β-cells. This pathway may contribute to regulation of β-cell survival and proliferation. PMID:24354619

  15. A semi-mechanistic red blood cell survival model provides some insight into red blood cell destruction mechanisms.

    PubMed

    Korell, Julia; Duffull, Stephen B

    2013-08-01

    Most mathematical models developed for the survival of haematological cell populations, in particular red blood cells (RBCs), follow the principle of parsimony. They focus on the predominant destruction mechanism of age-related cell death (senescence) and do not account for within subject variability in the RBC lifespan. However, assessment of the underlying physiological destruction mechanisms can be of interest in pathological conditions that affect RBC survival, for example sickle cell anaemia or anaemia of chronic kidney disease. We have previously proposed a semi-mechanistic RBC survival model which accounts for four different types of RBC destruction mechanisms. In this work, it is shown that the proposed model in combination with informative RBC survival data is able to provide a deeper insight into RBC destruction mechanisms. The proposed model was applied in a non-linear mixed effect modelling framework to biotin derived RBC survival data available from literature. Three mechanisms were estimable based on the available data of twelve subjects, including random destruction, senescence and destruction due to delayed failure. It was possible to identify three subjects with a decreased RBC survival in the study population. These three subjects all showed differences in the contribution of the estimated destruction mechanisms: an increased random destruction, versus an accelerated senescence, versus a combination of both.

  16. Mitochondrial calcium uniporter activity is dispensable for MDA-MB-231 breast carcinoma cell survival.

    PubMed

    Hall, Duane D; Wu, Yuejin; Domann, Frederick E; Spitz, Douglas R; Anderson, Mark E

    2014-01-01

    Calcium uptake through the mitochondrial Ca2+ uniporter (MCU) is thought to be essential in regulating cellular signaling events, energy status, and survival. Functional dissection of the uniporter is now possible through the recent identification of the genes encoding for MCU protein complex subunits. Cancer cells exhibit many aspects of mitochondrial dysfunction associated with altered mitochondrial Ca2+ levels including resistance to apoptosis, increased reactive oxygen species production and decreased oxidative metabolism. We used a publically available database to determine that breast cancer patient outcomes negatively correlated with increased MCU Ca2+ conducting pore subunit expression and decreased MICU1 regulatory subunit expression. We hypothesized breast cancer cells may therefore be sensitive to MCU channel manipulation. We used the widely studied MDA-MB-231 breast cancer cell line to investigate whether disruption or increased activation of mitochondrial Ca2+ uptake with specific siRNAs and adenoviral overexpression constructs would sensitize these cells to therapy-related stress. MDA-MB-231 cells were found to contain functional MCU channels that readily respond to cellular stimulation and elicit robust AMPK phosphorylation responses to nutrient withdrawal. Surprisingly, knockdown of MCU or MICU1 did not affect reactive oxygen species production or cause significant effects on clonogenic cell survival of MDA-MB-231 cells exposed to irradiation, chemotherapeutic agents, or nutrient deprivation. Overexpression of wild type or a dominant negative mutant MCU did not affect basal cloning efficiency or ceramide-induced cell killing. In contrast, non-cancerous breast epithelial HMEC cells showed reduced survival after MCU or MICU1 knockdown. These results support the conclusion that MDA-MB-231 breast cancer cells do not rely on MCU or MICU1 activity for survival in contrast to previous findings in cells derived from cervical, colon, and prostate cancers and

  17. The Hippo pathway promotes cell survival in response to chemical stress.

    PubMed

    Di Cara, F; Maile, T M; Parsons, B D; Magico, A; Basu, S; Tapon, N; King-Jones, K

    2015-09-01

    Cellular stress defense mechanisms have evolved to maintain homeostasis in response to a broad variety of environmental challenges. Stress signaling pathways activate multiple cellular programs that range from the activation of survival pathways to the initiation of cell death when cells are damaged beyond repair. To identify novel players acting in stress response pathways, we conducted a cell culture RNA interference (RNAi) screen using caffeine as a xenobiotic stress-inducing agent, as this compound is a well-established inducer of detoxification response pathways. Specifically, we examined how caffeine affects cell survival when Drosophila kinases and phosphatases were depleted via RNAi. Using this approach, we identified and validated 10 kinases and 4 phosphatases that are essential for cell survival under caffeine-induced stress both in cell culture and living flies. Remarkably, our screen yielded an enrichment of Hippo pathway components, indicating that this pathway regulates cellular stress responses. Indeed, we show that the Hippo pathway acts as a potent repressor of stress-induced cell death. Further, we demonstrate that Hippo activation is necessary to inhibit a pro-apoptotic program triggered by the interaction of the transcriptional co-activator Yki with the transcription factor p53 in response to a range of stress stimuli. Our in vitro and in vivo loss-of-function data therefore implicate Hippo signaling in the transduction of cellular survival signals in response to chemical stress.

  18. Metabolic pathways promoting cancer cell survival and growth.

    PubMed

    Boroughs, Lindsey K; DeBerardinis, Ralph J

    2015-04-01

    Activation of oncogenes and loss of tumour suppressors promote metabolic reprogramming in cancer, resulting in enhanced nutrient uptake to supply energetic and biosynthetic pathways. However, nutrient limitations within solid tumours may require that malignant cells exhibit metabolic flexibility to sustain growth and survival. Here, we highlight these adaptive mechanisms and also discuss emerging approaches to probe tumour metabolism in vivo and their potential to expand the metabolic repertoire of malignant cells even further.

  19. Mechanosensitive pannexin-1 channels mediate microvascular metastatic cell survival.

    PubMed

    Furlow, Paul W; Zhang, Steven; Soong, T David; Halberg, Nils; Goodarzi, Hani; Mangrum, Creed; Wu, Y Gloria; Elemento, Olivier; Tavazoie, Sohail F

    2015-07-01

    During metastatic progression, circulating cancer cells become lodged within the microvasculature of end organs, where most die from mechanical deformation. Although this phenomenon was first described over a half-century ago, the mechanisms enabling certain cells to survive this metastasis-suppressive barrier remain unknown. By applying whole-transcriptome RNA-sequencing technology to isogenic cancer cells of differing metastatic capacities, we identified a mutation encoding a truncated form of the pannexin-1 (PANX1) channel, PANX1(1-89), as recurrently enriched in highly metastatic breast cancer cells. PANX1(1-89) functions to permit metastatic cell survival during traumatic deformation in the microvasculature by augmenting ATP release from mechanosensitive PANX1 channels activated by membrane stretch. PANX1-mediated ATP release acts as an autocrine suppressor of deformation-induced apoptosis through P2Y-purinergic receptors. Finally, small-molecule therapeutic inhibition of PANX1 channels is found to reduce the efficiency of breast cancer metastasis. These data suggest a molecular basis for metastatic cell survival on microvasculature-induced biomechanical trauma. PMID:26098574

  20. Cancer Cell Cannibalism: A Primeval Option to Survive.

    PubMed

    Lozupone, F; Fais, S

    2015-01-01

    Cancer cell cannibalism is currently defined as a phenomenon in which an ensemble of a larger cell containing a smaller one, often in a big cytoplasmic vacuole, is detected in either cultured tumor cells or a tumor sample. After almost one century of considering this phenomenon as a sort of neglected curiosity, some recent studies have first proposed tumor cell cannibalism as a sort of "aberrant phagocytosis", making malignant cells very similar to professional phagocytes. Later, further research has shown that, differently to macrophages, exclusively ingesting exogenous material, apoptotic bodies, or cell debris, tumor cells are able to engulf other cells, including lymphocytes and erythrocytes, either dead or alive, with the main purpose to feed on them. This phenomenon has been associated to the malignancy of tumors, mostly exclusive of metastatic cells, and often associated to poor prognosis. The cannibalistic behavior increased depending on the microenvironmental condition of tumor cells, such as low nutrient supply or low pH, suggesting its key survival option for malignant cancers. However, the evidence that malignant cells may cannibalize tumor-infiltrating lymphocytes that act as their killers, suggests that tumor cell cannibalism could be a very direct and efficient way to neutralize immune response, as well. Tumor cell cannibalism may represent a sign of regression to a simpler, ancestral or primeval life style, similar to that of unicellular microorganisms, such as amoebas, where the goal is to survive and propagate in an overcrowded and very hostile microenvironment. In fact, we discovered that metastatic melanoma cells share with amoebas a transmembrane protein TM9SF4, indeed related to the cannibal behavior of these cells. This review attempts to provide a comprehensive description of the current knowledge about the role of TM9SF4 in cancer, highlighting its role as a key player in the cannibal behavior of malignant cancer cells. Moreover, we discuss

  1. Cancer Cell Cannibalism: A Primeval Option to Survive.

    PubMed

    Lozupone, F; Fais, S

    2015-01-01

    Cancer cell cannibalism is currently defined as a phenomenon in which an ensemble of a larger cell containing a smaller one, often in a big cytoplasmic vacuole, is detected in either cultured tumor cells or a tumor sample. After almost one century of considering this phenomenon as a sort of neglected curiosity, some recent studies have first proposed tumor cell cannibalism as a sort of "aberrant phagocytosis", making malignant cells very similar to professional phagocytes. Later, further research has shown that, differently to macrophages, exclusively ingesting exogenous material, apoptotic bodies, or cell debris, tumor cells are able to engulf other cells, including lymphocytes and erythrocytes, either dead or alive, with the main purpose to feed on them. This phenomenon has been associated to the malignancy of tumors, mostly exclusive of metastatic cells, and often associated to poor prognosis. The cannibalistic behavior increased depending on the microenvironmental condition of tumor cells, such as low nutrient supply or low pH, suggesting its key survival option for malignant cancers. However, the evidence that malignant cells may cannibalize tumor-infiltrating lymphocytes that act as their killers, suggests that tumor cell cannibalism could be a very direct and efficient way to neutralize immune response, as well. Tumor cell cannibalism may represent a sign of regression to a simpler, ancestral or primeval life style, similar to that of unicellular microorganisms, such as amoebas, where the goal is to survive and propagate in an overcrowded and very hostile microenvironment. In fact, we discovered that metastatic melanoma cells share with amoebas a transmembrane protein TM9SF4, indeed related to the cannibal behavior of these cells. This review attempts to provide a comprehensive description of the current knowledge about the role of TM9SF4 in cancer, highlighting its role as a key player in the cannibal behavior of malignant cancer cells. Moreover, we discuss

  2. Survival of mature T cells depends on signaling through HOIP

    PubMed Central

    Okamura, Kazumi; Kitamura, Akiko; Sasaki, Yoshiteru; Chung, Doo Hyun; Kagami, Shoji; Iwai, Kazuhiro; Yasutomo, Koji

    2016-01-01

    T cell development in the thymus is controlled by a multistep process. The NF-κB pathway regulates T cell development as well as T cell activation at multiple differentiation stages. The linear ubiquitin chain assembly complex (LUBAC) is composed of Sharpin, HOIL-1L and HOIP, and it is crucial for regulating the NF-κB and cell death pathways. However, little is known about the roles of LUBAC in T-cell development and activation. Here, we show that in T-HOIPΔlinear mice lacking the ubiquitin ligase activity of LUBAC, thymic CD4+ or CD8+ T cell numbers were markedly reduced with severe defects in NKT cell development. HOIPΔlinear CD4+ T cells failed to phosphorylate IκBα and JNK through T cell receptor-mediated stimulation. Mature CD4+ and CD8+ T cells in T-HOIPΔlinear mice underwent apoptosis more rapidly than control T cells, and it was accompanied by lower CD127 expression on CD4+CD24low and CD8+CD24low T cells in the thymus. The enforced expression of CD127 in T-HOIPΔlinear thymocytes rescued the development of mature CD8+ T cells. Collectively, our results showed that LUBAC ligase activity is key for the survival of mature T cells, and suggest multiple roles of the NF-κB and cell death pathways in activating or maintaining T cell-mediated adaptive immune responses. PMID:27786304

  3. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    SciTech Connect

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella; Schulz-Schaeffer, Walter; Rave-Fraenk, Margret; Hasselblatt, Martin; Jelkmann, Wolfgang; Giese, Alf; Ehrenreich, Hannelore

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains of nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.

  4. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells

    PubMed Central

    Karvela, Maria; Baquero, Pablo; Kuntz, Elodie M.; Mukhopadhyay, Arunima; Mitchell, Rebecca; Allan, Elaine K.; Chan, Edmond; Kranc, Kamil R.; Calabretta, Bruno; Salomoni, Paolo; Gottlieb, Eyal; Holyoake, Tessa L.; Helgason, G. Vignir

    2016-01-01

    ABSTRACT A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34+ progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. PMID:27168493

  5. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells.

    PubMed

    Karvela, Maria; Baquero, Pablo; Kuntz, Elodie M; Mukhopadhyay, Arunima; Mitchell, Rebecca; Allan, Elaine K; Chan, Edmond; Kranc, Kamil R; Calabretta, Bruno; Salomoni, Paolo; Gottlieb, Eyal; Holyoake, Tessa L; Helgason, G Vignir

    2016-06-01

    A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34(+) progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. PMID:27168493

  6. Prewinter management affects Megachile rotundata (Hymenoptera: Megachilidae) prepupal physiology and adult emergence and survival.

    PubMed

    Pitts-Singer, Theresa L; James, Rosalind R

    2009-08-01

    The alfalfa leafcutting bee, Megachile rotundata F. (Hymenoptera: Megachilidae), is widely used as a pollinator for production of alfalfa, Medicago sativa L., seed, and populations of these bees can be maintained by alfalfa seed growers or can be purchased from mostly Canadian bee providers. M. rotundata raised in Canada have higher survival rates during the incubation that occurs after winter storage than do bees produced in the northwestern United States, but no reason has been found for this difference. We investigated whether storing immature M. rotundata for various time periods at a warm temperature (16 degrees C) before winter or allowing them to remain unmanaged at ambient temperatures affects physiological aspects of prepupae during the winter as well as the survival and longevity of adult bees after spring or summer incubation. Our results show that the timing of the onset of winter storage and incubation does affect prepupal weights, prepupal lipid and water contents, adult emergence, and adult female longevity. Winter storage of prepupae in November or December with a late June incubation resulted in heavier adults that emerged more readily than bees incubated in late May. However, adult females incubated in May thrived longer than June-incubated bees if fed a honey-water diet. Thus, some prewinter management regimes for M. rotundata commercial stocks may be more effective than others for achieving optimal adult emergence synchrony, as well as adult survival and longevity for pollination of a summer crop. PMID:19736750

  7. Immunoparesis status in immunoglobulin light chain amyloidosis at diagnosis affects response and survival by regimen type

    PubMed Central

    Muchtar, Eli; Dispenzieri, Angela; Kumar, Shaji K.; Dingli, David; Lacy, Martha Q.; Buadi, Francis K.; Hayman, Suzanne R.; Kapoor, Prashant; Leung, Nelson; Chakraborty, Rajshekhar; Russell, Stephen; Lust, John A.; Lin, Yi; Go, Ronald S.; Zeldenrust, Steven; Kyle, Robert A.; Rajkumar, S. Vincent; Gertz, Morie A.

    2016-01-01

    Clinical tools to guide in the appropriate treatment selection in immunoglobulin light chain (AL) amyloidosis are not well developed. We evaluated the response and outcome for various regimens at first-line treatment (n=681) and first progression (n=240) stratified by the immunoparesis status at diagnosis. Immunoparesis was assessed by the average relative difference of the uninvolved immunoglobulins, classifying patients into a negative average relative difference (i.e. significant immunoparesis) or a positive average relative difference (no/modest immunoparesis). Treatment was categorized as autologous stem cell transplant and four non-transplant regimens (melphalan-based; bortezomib-based, immunomodulatory drug-based and dexamethasone alone). Patients with significant immunoparesis who underwent stem cell transplant had a significantly lower rate of very good partial response or better response (58%), progression-free survival (median 30 months) and overall survival (108 months), compared to those without significant immunoparesis (80%, 127 months, median not reached, respectively; P<0.001 for all comparisons). Among the non-transplant regimens, melphalan resulted in an unfavorable progression-free survival (11 vs. 27 months; P<0.001) and overall survival (30 vs. 74 months; P=0.001) in patients with significant immunoparesis compared to those without significant immunoparesis. In contrast, no significant difference in outcomes between the immunoparesis groups was seen for those treated with bortezomib or immunomodulatory drugs. At first progression, immunoparesis status did not impact response or survival of any regimen. Melphalan at first-line provided poorer outcomes for patients with significant immunoparesis, while bortezomib or immunomodulatory drugs were more likely to overcome the adverse prognosis associated with significant immunoparesis. PMID:27479823

  8. Survival of Enterobacter sakazakii in powdered infant formula as affected by composition, water activity, and temperature.

    PubMed

    Gurtler, Joshua B; Beuchat, Larry R

    2007-07-01

    A study was done to determine survival characteristics of Enterobacter sakazakii in four milk-based and two soybean-based powdered infant formulas. A 10-strain mixture of E. sakazakii was inoculated into the six infant formulas at water activity (aw) 0.25 to 0.30, 0.31 to 0.33, and 0.43 to 0.50 to give low (0.80 log CFU/g) and high (4.66 to 4.86 log CFU/g) populations. At an initial population of 0.80 log CFU/g, E. sakazakii was detected by enrichment in six of six, four of six, and one of six formulas stored for 12 months at 4, 21, and 30 degrees C, respectively. In four of six formulas at aw values of 0.25 to 0.30, initially high populations decreased significantly (P < or = 0.05), although by less than 1 log CFU/g, within 6 months at 4 degrees C. Populations decreased significantly in all formulas in the aw range of 0.25 to 0.50 during storage for 1 month at 21 or 30 degrees C and again between 1 and 6 months in most formulas. Significant reductions occurred between 6 and 12 months in some formulas. At all storage temperatures, reductions in populations tended to be greater in formulas at aw 0.43 to 0.50 than in formulas at aw 0.25 to 0.30. The rate of inactivation of E. sakazakii in formulas was not markedly influenced by formula composition. Cells from mucoid and nonmucoid colonies formed by two strains on violet red bile glucose agar supplemented with pyruvate were inoculated into a milk-based powdered infant formula and a soybean-based powdered infant formula having a high aw range of 0.43 to 0.86 and stored at 4, 21, and 30 degrees C for up to 36 weeks. With few exceptions, populations of both strains decreased significantly in both formulas within 2 weeks at all temperatures; rates of death increased with increased aw and storage temperature. The presence of mucoidal extracellular materials on the surface of E. sakazakii cells was not associated with protection against death. This study shows that the retention of viability of E. sakazakii in powdered

  9. Salinity fluctuation of the brine discharge affects growth and survival of the seagrass Cymodocea nodosa.

    PubMed

    Garrote-Moreno, A; Fernández-Torquemada, Y; Sánchez-Lizaso, J L

    2014-04-15

    The increase of seawater desalination plants may affect seagrasses as a result of its hypersaline effluents. There are some studies on the salinity tolerance of seagrasses under controlled laboratory conditions, but few have been done in situ. To this end, Cymodocea nodosa shoots were placed during one month at four localities: two close to a brine discharge; and the other two not affected by the discharge, and this experiment was repeated four times. The results obtained showed a decrease in growth and an increased mortality at the localities affected by the brine discharge. An increase was detected in the percentage of horizontal shoots in respect to vertical shoots at the impacted localities. It is probably that not only the average salinity, but also the constant salinity fluctuations and slightly higher temperatures associated with the brine that may have caused physiological stress thus reducing C. nodosa growth and survival.

  10. Inositol 1,4,5-trisphosphate receptor-isoform diversity in cell death and survival.

    PubMed

    Ivanova, Hristina; Vervliet, Tim; Missiaen, Ludwig; Parys, Jan B; De Smedt, Humbert; Bultynck, Geert

    2014-10-01

    Cell-death and -survival decisions are critically controlled by intracellular Ca(2+) homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca(2+) flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca(2+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca(2+), Ca(2+)-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca(2+) store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca(2+) leak. Third, we will review the regulation of the Ca(2+)-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.

  11. Effects of microwaves on cell survival at elevated temperatures

    SciTech Connect

    Robinson, J.E.; Harrison, G.H.; McCulloch, D.; McCready, W.A.

    1981-12-01

    Since microwaves are used in human cancer therapy, information on specific biological effects of microwaves at elevated temperatures is important. To help supply this information, we exposed mammalian cells (CHO) and bacteria (Serratia marcescens) to hyperthermal temperatures (43, 44, and 45/sup o/C for CHO and 48, 49, and 50/sup o/C for the bacteria) with and without microwave irradiation. Temperature control was maintained by a refrigeration-reheat system and high-velocity water recirculation. The 2450-MHz microwave source was operated in a pulsed mode with power density up to 500 mW/cm/sup 2/. As expected, the survival curve slopes for both cell types increased rapidly with temperature, doubling for each degree Celsius. Microwave irradiation produced no significant change in extrapolation number for either cell type. However, survival curves of CHO cells which received microwaves were steeper by a factor of 1.25 than their sham-irradiated controls. No significant effect on slope was seen with the bacteria. Liquid crystal thermometry revealed a microwave-induced temperature elevation of 0.3/sup o/C in the glass microcapillary exposure tubes. This temperature elevation closely corresponded to the observed difference in survival curve slopes for the CHO cells and suggests a simple thermal origin for that difference.

  12. Gender Specific Mutation Incidence and Survival Associations in Clear Cell Renal Cell Carcinoma (CCRCC).

    PubMed

    Ricketts, Christopher J; Linehan, W Marston

    2015-01-01

    Renal cell carcinoma (RCC) is diagnosed in >200,000 individuals worldwide each year, accounting for ~2% of all cancers, but the spread of this disease amongst genders is distinctly uneven. In the U.S. the male:female incidence ratio is approximately 2:1. A potential hypothesis is mutation spectra may differ between tumors dependent upon the gender of the patient, such as mutations of X chromosome encoded genes being more prevalent in male-derived tumors. Combined analysis of three recent large-scale clear cell renal cell carcinoma (CCRCC) mutation sequencing projects identified a significantly increased mutation frequency of PBRM1 and the X chromosome encoded KDM5C in tumors from male patients and BAP1 in tumors from female patients. Mutation of BAP1 had previously been significantly associated with poorer overall survival; however, when stratified by gender, mutation of BAP1 only significantly affected overall survival in female patients. Mutation of chromatin remodeling genes alters gene regulation, but the overall effect of these alterations may also be modified by the presence of other gender specific factors. Thus, the combination of gender and mutation of a specific gene, such as BAP1, may have implications not only for prognosis but also for understanding the role of chromatin remodeling gene mutations in kidney cancer progression.

  13. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury

    PubMed Central

    Duprey-Díaz, Mildred V.; Blagburn, Jonathan M.; Blanco, Rosa E.

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  14. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury.

    PubMed

    Duprey-Díaz, Mildred V; Blagburn, Jonathan M; Blanco, Rosa E

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  15. Effects of ice-seeding temperature and intracellular trehalose contents on survival of frozen Saccharomyces cerevisiae cells.

    PubMed

    Nakamura, Toshihide; Takagi, Hiroshi; Shima, Jun

    2009-04-01

    Freezing tolerance is an important characteristic for baker's yeast, Saccharomyces cerevisiae, as it is used to make frozen dough. The ability of yeast cells to survive freezing is thought to depend on various factors. The purpose of this work was to study the viability of yeast cells during the freezing process. We examined factors potentially affecting their survival, including the growth phase, ice-seeding temperature, intracellular trehalose content, freezing period, and duration of supercooling. The results showed that the ice-seeding temperature significantly affected cell viability. In the stationary phase, trehalose accumulation did not affect the viability of yeast cells after brief freezing, although it did significantly affect the viability after prolonged freezing. In the log phase, the ice-seeding temperature was more important for cell survival than the presence of trehalose during prolonged freezing. The importance of increasing the extracellular ice-seeding temperature was verified by comparing frozen yeast survival rates in a freezing test with ice-seeding temperatures of -5 degrees C and -15 degrees C. We also found that the cell survival rates began to increase at 3h of supercooling. The yeast cells may adapt to subzero temperatures and/or acquire tolerance to freezing stress during the supercooling. PMID:19126409

  16. BAFF: a fundamental survival factor for B cells.

    PubMed

    Mackay, Fabienne; Browning, Jeffrey L

    2002-07-01

    B-cell-activating factor of the tumour-necrosis-factor family (BAFF) enhances B-cell survival--a function that is indispensable for B-cell maturation--and has a role in enhancing immune responses. Moreover, the overexpression of BAFF results in severe autoimmune disorders in mice, and elevated serum levels of BAFF occur in some patients who have autoimmune diseases. The elucidation of the role of BAFF has set the stage for a new approach to the treatment of autoimmune disease.

  17. Factors affecting the cryosurvival of mouse two-cell embryos.

    PubMed

    Critser, J K; Arneson, B W; Aaker, D V; Huse-Benda, A R; Ball, G D

    1988-01-01

    A series of 4 experiments was conducted to examine factors affecting the survival of frozen-thawed 2-cell mouse embryos. Rapid addition of 1.5 M-DMSO (20 min equilibration at 25 degrees C) and immediate, rapid removal using 0.5 M-sucrose did not alter the frequency (mean +/- s.e.m.) of blastocyst development in vitro when compared to untreated controls (90.5 +/- 2.7% vs 95.3 +/- 2.8%). There was an interaction between the temperature at which slow cooling was terminated and thawing rate. Termination of slow cooling (-0.3 degrees C/min) at -40 degrees C with subsequent rapid thawing (approximately 1500 degrees C/min) resulted in a lower frequency of blastocyst development than did termination of slow cooling at -80 degrees C with subsequent slow thawing (+8 degrees C/min) (36.8 +/- 5.6% vs 63.9 +/- 5.7%). When slow cooling was terminated between -40 and -60 degrees C, higher survival rates were achieved with rapid thawing. When slow cooling was terminated below -60 degrees C, higher survival rates were obtained with slow thawing rates. In these comparisons absolute survival rates were highest among embryos cooled below -60 degrees C and thawed slowly. However, when slow cooling was terminated at -32 degrees C, with subsequent rapid warming, survival rates were not different from those obtained when embryos were cooled to -80 degrees C and thawed slowly (52.4 +/- 9.5%, 59.5 +/- 8.6%). These results suggest that optimal cryosurvival rates may be obtained from 2-cell mouse embryos by a rapid or slow thawing procedure, as has been found for mouse preimplantation embryos at later stages.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Phagocytosis of platelets enhances endothelial cell survival under serum deprivation.

    PubMed

    Jiang, Ping; Ren, Ya-Li; Lan, Yong; Li, Jia-Liang; Luo, Jun; Li, Jian; Cai, Jian-Ping

    2015-07-01

    Platelets are key players in fundamental processes of vascular biology, such as angiogenesis, tissue regeneration, and tumor metastasis. However, the underlying mechanisms remain unclear. In this study, some tumor vascular endothelial cells were positively stained by antiplatelet antibodies. Further investigation revealed that platelets were taken up by endothelial cells in vitro and in vivo. Human umbilical vascular endothelial cells were rendered apoptotic under conditions of serum deprivation. However, endothelial apoptosis was suppressed and cell viability was enhanced when platelets were added to the cultures. Endothelial survival was paralleled by an upregulation of phosphorylated Akt and p70 S6K. In conclusion, this study demonstrated that platelets can be phagocytosed by endothelial cells, and the phagocytosed platelets could suppress endothelial apoptosis and promote cell viability level. The mechanism underlying this process involves the activation of Akt signaling.

  19. Intercellular bridges are essential for human parthenogenetic cell survival.

    PubMed

    Pennarossa, Georgia; Maffei, Sara; Tettamanti, Gianluca; Congiu, Terenzio; deEguileor, Magda; Gandolfi, Fulvio; Brevini, Tiziana A L

    2015-05-01

    Parthenogenetic cells, obtained from in vitro activated mammalian oocytes, display multipolar spindles, chromosome malsegregation and a high incidence of aneuploidy, probably due to the lack of paternal contribution. Despite this, parthenogenetic cells do not show high rates of apoptosis and are able to proliferate in a way comparable to their biparental counterpart. We hypothesize that a series of adaptive mechanisms are present in parthenogenetic cells, allowing a continuous proliferation and ordinate cell differentiation both in vitro and in vivo. Here we identify the presence of intercellular bridges that contribute to the establishment of a wide communication network among human parthenogenetic cells, providing a mutual exchange of missing products. Silencing of two molecules essential for intercellular bridge formation and maintenance demonstrates the key function played by these cytoplasmic passageways that ensure normal cell functions and survival, alleviating the unbalance in cellular component composition. PMID:25700933

  20. Phagocytosis of platelets enhances endothelial cell survival under serum deprivation

    PubMed Central

    Ren, Ya-Li; Lan, Yong; Li, Jia-Liang; Luo, Jun; Li, Jian; Cai, Jian-Ping

    2015-01-01

    Platelets are key players in fundamental processes of vascular biology, such as angiogenesis, tissue regeneration, and tumor metastasis. However, the underlying mechanisms remain unclear. In this study, some tumor vascular endothelial cells were positively stained by antiplatelet antibodies. Further investigation revealed that platelets were taken up by endothelial cells in vitro and in vivo. Human umbilical vascular endothelial cells were rendered apoptotic under conditions of serum deprivation. However, endothelial apoptosis was suppressed and cell viability was enhanced when platelets were added to the cultures. Endothelial survival was paralleled by an upregulation of phosphorylated Akt and p70 S6K. In conclusion, this study demonstrated that platelets can be phagocytosed by endothelial cells, and the phagocytosed platelets could suppress endothelial apoptosis and promote cell viability level. The mechanism underlying this process involves the activation of Akt signaling. PMID:25577801

  1. Survival of tumor and normal cells upon targeting with electron-emitting radionuclides

    SciTech Connect

    Rajon, Didier; Bolch, Wesley E.; Howell, Roger W.

    2013-01-15

    Purpose: Previous studies have shown that the mean absorbed dose to a tissue element may not be a suitable quantity for correlating with the biological response of cells in that tissue element. Cell survival can depend strongly on the distribution of radioactivity at the cellular and multicellular levels. Furthermore, when cellular absorbed doses are examined, the cross-dose from neighbor cells can be less radiotoxic than the self-dose component. To better understand how the nonuniformity of activity among cells can affect the dose response, a computer model of a 3D tissue culture was previously constructed and showed that activity distribution among cells is significantly more relevant than the mean absorbed dose for low-energy-electron emitters. The present work greatly expands upon those findings. Methods: In the present study, we used this same computer model but restricted the number of labeled cells to a fraction of the whole cell population (50%, 10%, and 1%, respectively). The labeled cells were randomly distributed among the whole cell population. Results: While the activity distribution is an important factor in determining the tissue response for low-energy-electron emitters, the fraction of labeled cells has an even more pronounced effect on survival response. For all electron energies studied, reducing the percentage of cells labeled significantly increases the surviving fraction of the whole population. Conclusions: This study provides abundant information on killing tumor and normal cells under some conditions relevant to targeted radionuclide therapy of isolated tumor cells and micrometastases. The percentage of cells labeled, activity distribution among the labeled cells, and electron energy play key roles in determining their response. Most importantly, and not previously demonstrated, lognormal activity distributions can have a profound impact on the response of the tumor cells even when the radionuclide emits high-energy electrons.

  2. Stress and morphine affect survival of rats challenged with a mammary ascites tumor (MAT 13762B).

    PubMed

    Lewis, J W; Shavit, Y; Terman, G W; Gale, R P; Liebeskind, J C

    We have previously shown that exposure to inescapable footshock stress decreases survival of rats injected with a mammary ascites tumor (MAT 13762B). This increased vulnerability to the tumor challenge was prevented by an opiate antagonist, naltrexone, suggesting mediation by opioid peptides. Supporting this hypothesis, we now report that a high dose of an opiate agonist, morphine, also reduces survival of rats given the same tumor. This effect shows tolerance after 14 daily injections. The adverse effect of stress, however, did not show other signs of opioid involvement: it manifested neither tolerance with repeated stress exposures nor cross-tolerance in morphine-tolerant rats. Our recent findings that stress and morphine reduce natural killer cell cytotoxicity in a similar fashion suggest an immune mechanism that may explain the present results.

  3. Regulation of Proliferation-Survival Decisions during Tumor Cell Hypoxia

    PubMed Central

    Schmaltz, Cornelius; Hardenbergh, Patricia Harrigan; Wells, Audrey; Fisher, David E.

    1998-01-01

    Hypoxia may influence tumor biology in paradoxically opposing ways: it is lethal as a direct stress trigger, yet hypoxic zones in solid tumors harbor viable cells which are particularly resistant to treatment and contribute importantly to disease relapse. To examine mechanisms underlying growth-survival decisions during hypoxia, we have compared genetically related transformed and untransformed fibroblast cells in vitro for proliferation, survival, clonogenicity, cell cycle, and p53 expression. Hypoxia induces G0/G1 arrest in primary fibroblasts but triggers apoptosis in oncogene-transformed derivatives. Unexpectedly, the mechanism of apoptosis is seen to require accumulated acidosis and is rescued by enhanced buffering. The direct effect of hypoxia under nonacidotic conditions is unique to transformed cells in that they override the hypoxic G0/G1 arrest of primary cells. Moreover, when uncoupled from acidosis, hypoxia enhances tumor cell viability and clonogenicity relative to normoxia. p53 is correspondingly upregulated in response to hypoxia-induced acidosis but downregulated during hypoxia without acidosis. Hypoxia may thus produce both treatment resistance and a growth advantage. Given strong evidence that hypoxic regions in solid tumors are often nonacidotic (G. Helmlinger, F. Yuan, M. Dellian, and R. K. Jain, Nat. Med. 3:177–182, 1997), this behavior may influence relapse and implicates such cells as potentially important therapeutic targets. PMID:9566903

  4. Brain Metastasis-Initiating Cells: Survival of the Fittest

    PubMed Central

    Singh, Mohini; Manoranjan, Branavan; Mahendram, Sujeivan; McFarlane, Nicole; Venugopal, Chitra; Singh, Sheila K.

    2014-01-01

    Brain metastases (BMs) are the most common brain tumor in adults, developing in about 10% of adult cancer patients. It is not the incidence of BM that is alarming, but the poor patient prognosis. Even with aggressive treatments, median patient survival is only months. Despite the high rate of BM-associated mortality, very little research is conducted in this area. Lack of research and staggeringly low patient survival is indicative that a novel approach to BMs and their treatment is needed. The ability of a small subset of primary tumor cells to produce macrometastases is reminiscent of brain tumor-initiating cells (BTICs) or cancer stem cells (CSCs) hypothesized to form primary brain tumors. BTICs are considered stem cell-like due to their self-renewal and differentiation properties. Similar to the subset of cells forming metastases, BTICs are most often a rare subpopulation. Based on the functional definition of a TIC, cells capable of forming a BM could be considered to be brain metastasis-initiating cells (BMICs). These putative BMICs would not only have the ability to initiate tumor growth in a secondary niche, but also the machinery to escape the primary tumor, migrate through the circulation, and invade the neural niche. PMID:24857921

  5. Brain metastasis-initiating cells: survival of the fittest.

    PubMed

    Singh, Mohini; Manoranjan, Branavan; Mahendram, Sujeivan; McFarlane, Nicole; Venugopal, Chitra; Singh, Sheila K

    2014-05-22

    Brain metastases (BMs) are the most common brain tumor in adults, developing in about 10% of adult cancer patients. It is not the incidence of BM that is alarming, but the poor patient prognosis. Even with aggressive treatments, median patient survival is only months. Despite the high rate of BM-associated mortality, very little research is conducted in this area. Lack of research and staggeringly low patient survival is indicative that a novel approach to BMs and their treatment is needed. The ability of a small subset of primary tumor cells to produce macrometastases is reminiscent of brain tumor-initiating cells (BTICs) or cancer stem cells (CSCs) hypothesized to form primary brain tumors. BTICs are considered stem cell-like due to their self-renewal and differentiation properties. Similar to the subset of cells forming metastases, BTICs are most often a rare subpopulation. Based on the functional definition of a TIC, cells capable of forming a BM could be considered to be brain metastasis-initiating cells (BMICs). These putative BMICs would not only have the ability to initiate tumor growth in a secondary niche, but also the machinery to escape the primary tumor, migrate through the circulation, and invade the neural niche.

  6. Oxygen cycling to improve survival of stem cells for myocardial repair: A review.

    PubMed

    Dall, Christopher; Khan, Mahmood; Chen, Chun-An; Angelos, Mark G

    2016-05-15

    Heart disease represents the leading cause of death among Americans. There is currently no clinical treatment to regenerate viable myocardium following myocardial infarction, and patients may suffer progressive deterioration and decreased myocardial function from the effects of remodeling of the necrotic myocardium. New therapeutic strategies hold promise for patients who suffer from ischemic heart disease by directly addressing the restoration of functional myocardium following death of cardiomyocytes. Therapeutic stem cell transplantation has shown modest benefit in clinical human trials with decreased fibrosis and increased functional myocardium. Moreover, autologous transplantation holds the potential to implement these therapies while avoiding the immunomodulation concerns of heart transplantation. Despite these benefits, stem cell therapy has been characterized by poor survival and low engraftment of injected stem cells. The hypoxic tissue environment of the ischemic/infracting myocardium impedes stem cell survival and engraftment in myocardial tissue. Hypoxic preconditioning has been suggested as a viable strategy to increase hypoxic tolerance of stem cells. A number of in vivo and in vitro studies have demonstrated improved stem cell viability by altering stem cell secretion of protein signals and up-regulation of numerous paracrine signaling pathways that affect inflammatory, survival, and angiogenic signaling pathways. This review will discuss both the mechanisms of hypoxic preconditioning as well as the effects of hypoxic preconditioning in different cell and animal models, examining the pitfalls in current research and the next steps into potentially implementing this methodology in clinical research trials.

  7. Metallodrug induced apoptotic cell death and survival attempts are characterizable by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2014-09-01

    Chrysotherapeutics are under investigation as new or additional treatments for different types of cancers. In this study, gold complexes were investigated for their anticancer potential using Raman spectroscopy. The aim of the study was to determine whether Raman spectroscopy could be used for the characterization of metallodrug-induced cell death. Symptoms of cell death such as decreased peak intensities of proteins bonds and phosphodiester bonds found in deoxyribose nucleic acids were evident in the principal component analysis of the spectra. Vibrational bands around 761 cm-1 and 1300 cm-1 (tryptophan, ethanolamine group, and phosphatidylethanolamine) and 1720 cm-1 (ester bonds associated with phospholipids) appeared in the Raman spectra of cervical adenocarcinoma (HeLa) cells after metallodrug treatment. The significantly (p < 0.05, one way analysis of variance) increased intensity of phosphatidylethanolamine after metallodrug treatment could be a molecular signature of induced apoptosis since both the co-regulated phosphatidylserine and phosphatidylethanolamine are externalized during cell death. Treated cells had significantly higher levels of glucose and glycogen vibrational peaks, indicative of a survival mechanism of cancer cells under chemical stress. Cancer cells excrete chemotherapeutics to improve their chances of survival and utilize glucose to achieve this. Raman spectroscopy was able to monitor a survival strategy of cancer cells in the form of glucose uptake to alleviate chemical stress. Raman spectroscopy was invaluable in obtaining molecular information generated by biomolecules affected by anticancer metallodrug treatments and presents an alternative to less reproducible, conventional biochemical assays for cytotoxicity analyses.

  8. Oxygen cycling to improve survival of stem cells for myocardial repair: A review.

    PubMed

    Dall, Christopher; Khan, Mahmood; Chen, Chun-An; Angelos, Mark G

    2016-05-15

    Heart disease represents the leading cause of death among Americans. There is currently no clinical treatment to regenerate viable myocardium following myocardial infarction, and patients may suffer progressive deterioration and decreased myocardial function from the effects of remodeling of the necrotic myocardium. New therapeutic strategies hold promise for patients who suffer from ischemic heart disease by directly addressing the restoration of functional myocardium following death of cardiomyocytes. Therapeutic stem cell transplantation has shown modest benefit in clinical human trials with decreased fibrosis and increased functional myocardium. Moreover, autologous transplantation holds the potential to implement these therapies while avoiding the immunomodulation concerns of heart transplantation. Despite these benefits, stem cell therapy has been characterized by poor survival and low engraftment of injected stem cells. The hypoxic tissue environment of the ischemic/infracting myocardium impedes stem cell survival and engraftment in myocardial tissue. Hypoxic preconditioning has been suggested as a viable strategy to increase hypoxic tolerance of stem cells. A number of in vivo and in vitro studies have demonstrated improved stem cell viability by altering stem cell secretion of protein signals and up-regulation of numerous paracrine signaling pathways that affect inflammatory, survival, and angiogenic signaling pathways. This review will discuss both the mechanisms of hypoxic preconditioning as well as the effects of hypoxic preconditioning in different cell and animal models, examining the pitfalls in current research and the next steps into potentially implementing this methodology in clinical research trials. PMID:27091653

  9. Negative synergism of rainfall patterns and predators affects frog egg survival.

    PubMed

    Touchon, Justin Charles; Warkentin, Karen Michelle

    2009-07-01

    1. The importance of rainfall is recognized in arid habitats, but has rarely been explored in ecosystems not viewed as rainfall limited. In addition, most attempts to study how rainfall affects organismal survival have focused on long-term rainfall metrics (e.g. monthly or seasonal patterns) instead of short-term measures. For organisms that are short lived or are sensitive to desiccation, short-term patterns of rainfall may provide insight to understanding what determines survival in particular habitats. 2. We monitored daily rainfall and survival of arboreal eggs of the treefrog Dendropsophus ebraccatus at two ponds during the rainy season in central Panama. Desiccation and predation were the primary sources of egg mortality and their effects were not independent. Rainfall directly reduced desiccation mortality by hydrating and thickening the jelly surrounding eggs. In addition, rainfall reduced predation on egg clutches. 3. To elucidate the mechanism by which rainfall alters predation, we exposed experimentally hydrated and dehydrated egg clutches to the two D. ebraccatus egg predators most common at our site, ants and social wasps. Ants and wasps preferentially preyed on dehydrated clutches and ants consumed dehydrated eggs three times faster than hydrated eggs. 4. Rainfall patterns are expected to change and the responses of organisms that use rainfall as a reliable cue to reproduce may prove maladaptive. If rainfall becomes more sporadic, as is predicted to happen during this century, it may have negative consequences for desiccation-sensitive organisms. PMID:19486379

  10. Review of Factors Affecting the Growth and Survival of Follicular Grafts

    PubMed Central

    Parsley, William M; Perez-Meza, David

    2010-01-01

    Great strides have been made in hair restoration over the past 20 years. A better understanding of natural balding and non-balding patterns along with more respect for ageing has helped guide proper hairline design. Additionally, the use of smaller grafts has created a significantly improved natural appearance to the transplanted grafts. Inconsistent growth and survival of follicular grafts, however, has continued to be a problem that has perplexed hair restoration surgeons. This review attempts to explore the stresses affecting grafts during transplantation and some of the complexities involved in graft growth and survival. These authors reviewed the literature to determine the primary scope of aspects influencing growth and survival of follicular grafts. This scope includes patient selection, operating techniques, graft care, storage solutions and additives. The primary focus of the hair restoration surgeons should first be attention to the fundamentals of hair care, hydration, temperature, time out of body and gentle handling. Factors such as advanced storage solutions and additives can be helpful once the fundamentals have been addressed. PMID:21031063

  11. Age and Sex of Mice Markedly Affect Survival Times Associated with Hyperoxic Acute Lung Injury.

    PubMed

    Prows, Daniel R; Gibbons, William J; Smith, Jessica J; Pilipenko, Valentina; Martin, Lisa J

    2015-01-01

    Mortality associated with acute lung injury (ALI) remains substantial, with recent estimates of 35-45% similar to those obtained decades ago. Although evidence for sex-related differences in ALI mortality remains equivocal, death rates differ markedly for age, with more than 3-fold increased mortality in older versus younger patients. Strains of mice also show large differences in ALI mortality. To tease out genetic factors affecting mortality, we established a mouse model of differential hyperoxic ALI (HALI) survival. Separate genetic analyses of backcross and F2 populations generated from sensitive C57BL/6J (B) and resistant 129X1/SvJ (X1) progenitor strains identified two quantitative trait loci (QTLs; Shali1 and Shali2) with strong, equal but opposite, within-strain effects on survival. Congenic lines confirmed these opposing QTL effects, but also retained the low penetrance seen in the 6-12 week X1 control strain. Sorting mice into distinct age groups revealed that 'age at exposure' inversely correlated with survival time and explained reduced penetrance of the resistance trait. While B mice were already sensitive by 6 weeks old, X1 mice maintained significant resistance up to 3-4 weeks longer. Reanalysis of F2 data gave analogous age-related findings, and also supported sex-specific linkage for Shali1 and Shali2. Importantly, we have demonstrated in congenic mice that these age effects on survival correspond with B alleles for Shali1 (6-week old mice more sensitive) and Shali2 (10-week old mice more resistant) placed on the X1 background. Further studies revealed significant sex-specific survival differences in subcongenics for both QTLs. Accounting for age and sex markedly improved penetrance of both QTLs, thereby reducing trait variability, refining Shali1 to <8.5Mb, and supporting several sub-QTLs within the Shali2 interval. Together, these congenics will allow age- and sex-specific studies to interrogate myriad subphenotypes affected during ALI

  12. Age and Sex of Mice Markedly Affect Survival Times Associated with Hyperoxic Acute Lung Injury

    PubMed Central

    Prows, Daniel R.; Gibbons, William J.; Smith, Jessica J.; Pilipenko, Valentina; Martin, Lisa J.

    2015-01-01

    Mortality associated with acute lung injury (ALI) remains substantial, with recent estimates of 35–45% similar to those obtained decades ago. Although evidence for sex-related differences in ALI mortality remains equivocal, death rates differ markedly for age, with more than 3-fold increased mortality in older versus younger patients. Strains of mice also show large differences in ALI mortality. To tease out genetic factors affecting mortality, we established a mouse model of differential hyperoxic ALI (HALI) survival. Separate genetic analyses of backcross and F2 populations generated from sensitive C57BL/6J (B) and resistant 129X1/SvJ (X1) progenitor strains identified two quantitative trait loci (QTLs; Shali1 and Shali2) with strong, equal but opposite, within-strain effects on survival. Congenic lines confirmed these opposing QTL effects, but also retained the low penetrance seen in the 6–12 week X1 control strain. Sorting mice into distinct age groups revealed that ‘age at exposure’ inversely correlated with survival time and explained reduced penetrance of the resistance trait. While B mice were already sensitive by 6 weeks old, X1 mice maintained significant resistance up to 3–4 weeks longer. Reanalysis of F2 data gave analogous age-related findings, and also supported sex-specific linkage for Shali1 and Shali2. Importantly, we have demonstrated in congenic mice that these age effects on survival correspond with B alleles for Shali1 (6-week old mice more sensitive) and Shali2 (10-week old mice more resistant) placed on the X1 background. Further studies revealed significant sex-specific survival differences in subcongenics for both QTLs. Accounting for age and sex markedly improved penetrance of both QTLs, thereby reducing trait variability, refining Shali1 to <8.5Mb, and supporting several sub-QTLs within the Shali2 interval. Together, these congenics will allow age- and sex-specific studies to interrogate myriad subphenotypes affected during ALI

  13. Ceramide Kinase Promotes Tumor Cell Survival and Mammary Tumor Recurrence

    PubMed Central

    Payne, Ania W.; Pant, Dhruv K.; Pan, Tien-chi; Chodosh, Lewis A.

    2014-01-01

    Recurrent breast cancer is typically an incurable disease and, as such, is disproportionately responsible for deaths from this disease. Recurrent breast cancers arise from the pool of disseminated tumor cells (DTCs) that survive adjuvant or neoadjuvant therapy, and patients with detectable DTCs following therapy are at substantially increased risk for recurrence. Consequently, the identification of pathways that contribute to the survival of breast cancer cells following therapy could aid in the development of more effective therapies that decrease the burden of residual disease and thereby reduce the risk of breast cancer recurrence. We now report that Ceramide Kinase (Cerk) is required for mammary tumor recurrence following HER2/neu pathway inhibition and is spontaneously up-regulated during tumor recurrence in multiple genetically engineered mouse models for breast cancer. We find that Cerk is rapidly up-regulated in tumor cells following HER2/neu down-regulation or treatment with Adriamycin and that Cerk is required for tumor cell survival following HER2/neu down-regulation. Consistent with our observations in mouse models, analysis of gene expression profiles from over 2,200 patients revealed that elevated CERK expression is associated with an increased risk of recurrence in women with breast cancer. Additionally, although CERK expression is associated with aggressive subtypes of breast cancer, including those that are ER–, HER2+, basal-like, or high grade, its association with poor clinical outcome is independent of these clinicopathological variables. Together, our findings identify a functional role for Cerk in breast cancer recurrence and suggest the clinical utility of agents targeted against this pro-survival pathway. PMID:25164007

  14. B-cell survival factors in autoimmune rheumatic disorders.

    PubMed

    Morais, Sandra A; Vilas-Boas, Andreia; Isenberg, David A

    2015-08-01

    Autoimmune rheumatic disorders have complex etiopathogenetic mechanisms in which B cells play a central role. The importance of factors stimulating B cells, notably the B-cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) axis is now recognized. BAFF and APRIL are cytokines essential for B-cell proliferation and survival from the immature stages to the development of plasma cells. Their levels are increased in some subsets of patients with autoimmune disorders. Several recent biologic drugs have been developed to block this axis, namely belimumab [already licensed for systemic lupus erythematosus (SLE) treatment], tabalumab, atacicept and blisibimod. Many clinical trials to evaluate the safety and efficacy of these drugs in several autoimmune disorders are ongoing, or have been completed recently. This review updates the information on the use of biologic agents blocking BAFF/APRIL for patients with SLE, rheumatoid arthritis, Sjögren's syndrome and myositis. PMID:26288664

  15. B-cell survival factors in autoimmune rheumatic disorders

    PubMed Central

    Morais, Sandra A.; Vilas-Boas, Andreia

    2015-01-01

    Autoimmune rheumatic disorders have complex etiopathogenetic mechanisms in which B cells play a central role. The importance of factors stimulating B cells, notably the B-cell activating factor (BAFF) and A proliferation inducing ligand (APRIL) axis is now recognized. BAFF and APRIL are cytokines essential for B-cell proliferation and survival from the immature stages to the development of plasma cells. Their levels are increased in some subsets of patients with autoimmune disorders. Several recent biologic drugs have been developed to block this axis, namely belimumab [already licensed for systemic lupus erythematosus (SLE) treatment], tabalumab, atacicept and blisibimod. Many clinical trials to evaluate the safety and efficacy of these drugs in several autoimmune disorders are ongoing, or have been completed recently. This review updates the information on the use of biologic agents blocking BAFF/APRIL for patients with SLE, rheumatoid arthritis, Sjögren’s syndrome and myositis. PMID:26288664

  16. Mast Cell Stabilization Improves Survival by Preventing Apoptosis in Sepsis

    PubMed Central

    Ramos, Laura; Peña, Geber; Cai, Bolin; Deitch, E. A.; Ulloa, Luis

    2011-01-01

    Inhibiting single cytokines produced modest effects in clinical trials, in part because the cytokines werenot specific for sepsis, and sepsis may require cellular strategies. Previous studies reported that mast cells (MCs) fight infections in early sepsis. In this study, we report that MC stabilizers restrain serum TNF levels and improve survival in wild-type but not in MC-deficient mice. Yet, MC depletion in knockout mice attenuates serum TNF but does not improve survival in sepsis. Serum HMGB1 was the only factor correlating with survival. MC stabilizers inhibit systemic HMGB1 levels and rescue mice from established peritonitis. MC stabilizers fail to inhibit HMGB1 secretion from macrophages, but they prevent apoptosis and caspase-3 activation in sepsis. These results suggest that MC stabilization provides therapeutic benefits in sepsis by inhibiting extracellular release of HMGB1 from apoptotic cells. Our study provides the first evidence that MCs have major immunological implications regulating cell death in sepsis and represent a pharmacological target for infectious disorders in a clinically realistic time frame. PMID:20519642

  17. Cerebral metastases from Merkel cell carcinoma: long-term survival

    PubMed Central

    Honeybul, S.

    2016-01-01

    Merkel cell carcinoma is a rare primary cutaneous neuroendocrine tumour that is locally aggressive. In most cases the primary treatment is local surgical excision; however, there is a high incidence recurrence both local and distant. Cerebral metastases from Merkel cell carcinoma are extremely uncommon with only 12 cases published in the literature. This case is particularly unusual in that, not only was no established primary lesion identified, but also the patient has survived for 10 years following initial diagnosis and for 9 years following excision of a single brain metastasis. PMID:27765804

  18. IGFBP2 promotes glioma tumor stem cell expansion and survival

    SciTech Connect

    Hsieh, David; Hsieh, Antony; Stea, Baldassarre; Ellsworth, Ron

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance. These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.

  19. Talc pleurodesis as surgical palliation of patients with malignant pleural effusion. Analysis of factors affecting survival.

    PubMed

    Lumachi, Franco; Mazza, Francesco; Ermani, Mario; Chiara, Giordano B; Basso, Stefano M M

    2012-11-01

    Malignant pleural effusion (MPE) is common in most patients with advanced cancer, especially in those with lung cancer, metastatic breast carcinoma and lymphoma. This complication usually leads patients to suffer from significant dyspnea, which may impair their mobility and reduce their quality of life. In patients with MPE, several interventions have been shown to be useful for palliation of the symptoms, including talc pleurodesis. The aim of this study was to evaluate prognostic factors for survival of patients with symptomatic MPE who underwent palliative video-assisted thoracoscopic (VATS) talc pleurodesis. Thirty-five patients with MPE underwent VATS, evacuation of the pleural fluid and talc pleurodesis with large-particle talc. There were 22 (62.9%) males and 13 (37.1%) females, with an overall median age of 69 years (range 42-81 years). The main causes of MPE were non-small cell lung carcinoma, breast or ovarian cancer and malignant pleural mesothelioma. The age did not differ (p=0.88) between men (68.6±11.6 years) and women (68.0±8.7 years). The mean quantity of pleural effusion was 2005.7±1078.9 ml, while the overall survival was 11.2±8.9 months. We did not find any relationship between survival and gender (log-rank test, p=0.53) or underlying malignancy associated with MPE (p=0.89, 0.48 and 0.36 for secondary cancer, lung cancer and mesothelioma, respectively). Similarly, no correlation was found between survival and age of the patients (Cox's regression, p=0.44) or quantity of pleural effusion (p=0.88). Our results show that the prognosis of patients after talc pleurodesis is independent of age, gender, type of malignancy and amount of pleural effusion, thus, suggesting the utility of treating all patients with symptomatic MPE early.

  20. Nicotine-mediated signals modulate cell death and survival of T lymphocytes

    SciTech Connect

    Oloris, Silvia C.S.; Frazer-Abel, Ashley A.; Jubala, Cristan M.; Fosmire, Susan P.; Helm, Karen M.; Robinson, Sally R.; Korpela, Derek M.; Duckett, Megan M.; Baksh, Shairaz; Modiano, Jaime F.

    2010-02-01

    The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act both as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.

  1. Repeated freeze-thaw cycles reduce the survival rate of osteocytes in bone-tendon constructs without affecting the mechanical properties of tendons.

    PubMed

    Suto, Kaori; Urabe, Ken; Naruse, Kouji; Uchida, Kentaro; Matsuura, Terumasa; Mikuni-Takagaki, Yuko; Suto, Mitsutoshi; Nemoto, Noriko; Kamiya, Kentaro; Itoman, Moritoshi

    2012-03-01

    Frozen bone-patellar tendon bone allografts are useful in anterior cruciate ligament reconstruction as the freezing procedure kills tissue cells, thereby reducing immunogenicity of the grafts. However, a small portion of cells in human femoral heads treated by standard bone-bank freezing procedures survive, thus limiting the effectiveness of allografts. Here, we characterized the survival rates and mechanisms of cells isolated from rat bones and tendons that were subjected to freeze-thaw treatments, and evaluated the influence of these treatments on the mechanical properties of tendons. After a single freeze-thaw cycle, most cells isolated from frozen bone appeared morphologically as osteocytes and expressed both osteoblast- and osteocyte-related genes. Transmission electron microscopic observation of frozen cells using freeze-substitution revealed that a small number of osteocytes maintained large nuclei with intact double membranes, indicating that these osteocytes in bone matrix were resistant to ice crystal formation. We found that tendon cells were completely killed by a single freeze-thaw cycle, whereas bone cells exhibited a relatively high survival rate, although survival was significantly reduced after three freeze-thaw cycles. In patella tendons, the ultimate stress, Young's modulus, and strain at failure showed no significant differences between untreated tendons and those subjected to five freeze-thaw cycles. In conclusion, we identified that cells surviving after freeze-thaw treatment of rat bones were predominantly osteocytes. We propose that repeated freeze-thaw cycles could be applied for processing bone-tendon constructs prior to grafting as the treatment did not affect the mechanical property of tendons and drastically reduced surviving osteocytes, thereby potentially decreasing allograft immunogenecity.

  2. NFAT transcription factors regulate survival, proliferation, migration, and differentiation of neural precursor cells.

    PubMed

    Serrano-Pérez, María C; Fernández, Miriam; Neria, Fernando; Berjón-Otero, Mónica; Doncel-Pérez, Ernesto; Cano, Eva; Tranque, Pedro

    2015-06-01

    The study of factors that regulate the survival, proliferation, and differentiation of neural precursor cells (NPCs) is essential to understand neural development as well as brain regeneration. The Nuclear Factor of Activated T Cells (NFAT) is a family of transcription factors that can affect these processes besides playing key roles during development, such as stimulating axonal growth in neurons, maturation of immune system cells, heart valve formation, and differentiation of skeletal muscle and bone. Interestingly, NFAT signaling can also promote cell differentiation in adults, participating in tissue regeneration. The goal of the present study is to evaluate the expression of NFAT isoforms in NPCs, and to investigate its possible role in NPC survival, proliferation, migration, and differentiation. Our findings indicate that NFAT proteins are active not only in neurogenic brain regions such as hippocampus and subventricular zone (SVZ), but also in cultured NPCs. The inhibition of NFAT activation with the peptide VIVIT reduced neurosphere size and cell density in NPC cultures by decreasing proliferation and increasing cell death. VIVIT also decreased NPC migration and differentiation of astrocytes and neurons from NPCs. In addition, we identified NFATc3 as a predominant NFAT isoform in NPC cultures, finding that a constitutively-active form of NFATc3 expressed by adenoviral infection reduces NPC proliferation, stimulates migration, and is a potent inducer of NPC differentiation into astrocytes and neurons. In summary, our work uncovers active roles for NFAT signaling in NPC survival, proliferation and differentiation, and highlights its therapeutic potential for tissue regeneration.

  3. CXCR4 engagement promotes dendritic cell survival and maturation

    SciTech Connect

    Kabashima, Kenji Sugita, Kazunari; Shiraishi, Noriko; Tamamura, Hirokazu; Fujii, Nobutaka; Tokura, Yoshiki

    2007-10-05

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important for not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.

  4. Bordetella pertussis entry into respiratory epithelial cells and intracellular survival.

    PubMed

    Lamberti, Yanina; Gorgojo, Juan; Massillo, Cintia; Rodriguez, Maria E

    2013-12-01

    Bordetella pertussis is the causative agent of pertussis, aka whooping cough. Although generally considered an extracellular pathogen, this bacterium has been found inside respiratory epithelial cells, which might represent a survival strategy inside the host. Relatively little is known, however, about the mechanism of internalization and the fate of B. pertussis inside the epithelia. We show here that B. pertussis is able to enter those cells by a mechanism dependent on microtubule assembly, lipid raft integrity, and the activation of a tyrosine-kinase-mediated signaling. Once inside the cell, a significant proportion of the intracellular bacteria evade phagolysosomal fusion and remain viable in nonacidic lysosome-associated membrane-protein-1-negative compartments. In addition, intracellular B. pertussis was found able to repopulate the extracellular environment after complete elimination of the extracellular bacteria with polymyxin B. Taken together, these data suggest that B. pertussis is able to survive within respiratory epithelial cells and by this means potentially contribute to host immune system evasion.

  5. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells.

    PubMed

    Berard, Marion; Brandt, Katja; Bulfone-Paus, Silvia; Tough, David F

    2003-05-15

    IL-15 stimulates the proliferation of memory phenotype CD44(high)CD8(+) T cells and is thought to play a key role in regulating the turnover of these cells in vivo. We have investigated whether IL-15 also has the capacity to affect the life span of naive phenotype (CD44(low)) CD8(+) T cells. We report that IL-15 promotes the survival of both CD44(low) and CD44(high) CD8(+) T cells, doing so at much lower concentrations than required to induce proliferation of CD44(high) cells. Rescue from apoptosis was associated with the up-regulation of Bcl-2 in both cell types, whereas elevated expression of Bcl-x(L) was observed among CD44(high) but not CD44(low) CD8(+) cells. An investigation into the role of IL-15R subunits in mediating the effects of IL-15 revealed distinct contributions of the alpha- and beta- and gamma-chains. Most strikingly, IL-15R alpha was not essential for either induction of proliferation or promotion of survival by IL-15, but did greatly enhance the sensitivity of cells to low concentrations of IL-15. By contrast, the beta- and gamma-chains of the IL-15R were absolutely required for the proliferative and pro-survival effects of IL-15, although it was not necessary for CD44(high)CD8(+) cells to express higher levels of IL-15R beta than CD44(low) cells to proliferate in response to IL-15. These results show that IL-15 has multiple effects on CD8 T cells and possesses the potential to regulate the life span of naive as well as memory CD8(+) T cells. PMID:12734346

  6. Control of Neural Stem Cell Survival by Electroactive Polymer Substrates

    PubMed Central

    Lundin, Vanessa; Herland, Anna; Berggren, Magnus

    2011-01-01

    Stem cell function is regulated by intrinsic as well as microenvironmental factors, including chemical and mechanical signals. Conducting polymer-based cell culture substrates provide a powerful tool to control both chemical and physical stimuli sensed by stem cells. Here we show that polypyrrole (PPy), a commonly used conducting polymer, can be tailored to modulate survival and maintenance of rat fetal neural stem cells (NSCs). NSCs cultured on PPy substrates containing different counter ions, dodecylbenzenesulfonate (DBS), tosylate (TsO), perchlorate (ClO4) and chloride (Cl), showed a distinct correlation between PPy counter ion and cell viability. Specifically, NSC viability was high on PPy(DBS) but low on PPy containing TsO, ClO4 and Cl. On PPy(DBS), NSC proliferation and differentiation was comparable to standard NSC culture on tissue culture polystyrene. Electrical reduction of PPy(DBS) created a switch for neural stem cell viability, with widespread cell death upon polymer reduction. Coating the PPy(DBS) films with a gel layer composed of a basement membrane matrix efficiently prevented loss of cell viability upon polymer reduction. Here we have defined conditions for the biocompatibility of PPy substrates with NSC culture, critical for the development of devices based on conducting polymers interfacing with NSCs. PMID:21494605

  7. Chronic, dietary polybrominated diphenyl ether exposure affects survival, growth, and development of Rana pipiens tadpoles.

    PubMed

    Cary Coyle, Tawnya L; Karasov, William H

    2010-01-01

    Levels of polybrominated diphenyl ethers (PBDEs) in the environment have been increasing rapidly over the past two decades; however, the toxicology of these compounds to aquatic organisms is poorly understood. Because amphibians play a role in both aquatic and terrestrial food webs, and are currently undergoing worldwide population declines, it is of interest to determine how PBDEs may affect amphibian health. This is the first study that reports chronic, dietary effects of environmentally relevant levels (7-277 ng/g wet food) of PBDEs in amphibians throughout larval development. Beginning at the free-swimming stage (Gosner Stage [GS] 25), Rana pipiens tadpoles were orally exposed to a technical pentabromodiphenyl ether mixture (DE-71) through metamorphic climax (GS 42). On exposure day 43, a subset of tadpoles was removed for body residue analysis. Sum PBDEs in whole-body tissue correlated linearly to dietary concentrations with BDE-99 represented as the highest contributing congener in both diet and tissue. Survival among all treatments compared to the control was decreased by DE-71 exposure. Further, growth and development were delayed in all but the highest treatment, perhaps indicating greater PBDE tolerance among those individuals that survived the highest treatment. Time to metamorphic climax was delayed, on average, 22 to 36 d in DE-71-treated tadpoles compared to control tadpoles. Additionally, size at metamorphosis was smaller in the highest treatment, suggesting that individuals that survived and metamorphosed similarly to the controls did so with a trade-off in size. At environmentally relevant levels, PBDEs induced mortality as well as sublethal effects on developing tadpoles through dietary exposure.

  8. Polycyclic aromatic hydrocarbons affect survival and development of common snapping turtle (Chelydra serpentina) embryos and hatchlings.

    PubMed

    Van Meter, Robin J; Spotila, James R; Avery, Harold W

    2006-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds found in the John Heinz National Wildlife Refuge in Philadelphia, Pennsylvania. We assessed the impact of PAHs and crude oil on snapping turtle development and behavior by exposing snapping turtle eggs from the Refuge and from three clean reference sites to individual PAHs or a crude oil mixture at stage 9 of embryonic development. Exposure to PAHs had a significant effect on survival rates in embryos from one clean reference site, but not in embryos from the other sites. There was a positive linear relationship between level of exposure to PAHs and severity of deformities in embryos collected from two of the clean reference sites. Neither righting response nor upper temperature tolerance (critical thermal maximum, CTM) of snapping turtle hatchlings with no or minor deformities was significantly affected by exposure to PAHs. PMID:16360251

  9. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells.

    PubMed

    Bauckman, Kyle; Haller, Edward; Taran, Nicholas; Rockfield, Stephanie; Ruiz-Rivera, Abigail; Nanjundan, Meera

    2015-03-01

    The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron. Interestingly, Ru360 (an inhibitor of the mitochondrial calcium uniporter) reversed mitochondrial changes and restored cell survival in HEY ovarian carcinoma cells treated with iron. Further, cells treated with Ru360 and iron also had reduced autophagic punctae with increased lysosomal numbers, implying cross-talk between these compartments. Mitochondrial changes were dependent on activation of the Ras/MAPK pathway since treatment with a MAPK inhibitor restored expression of TOM20/TOM70 proteins. Although glutathione antioxidant levels were reduced in HEY treated with iron, extracellular glutamate levels were unaltered. Strikingly, oxalomalate (inhibitor of aconitase, involved in glutamate production) reversed iron-induced responses in a similar manner to Ru360. Collectively, our results implicate iron in modulating cell survival in a mitochondria-dependent manner in ovarian cancer cells. PMID:25697096

  10. Rapamycin increases RSV RNA levels and survival of RSV-infected dendritic cell depending on T cell contact.

    PubMed

    do Nascimento de Freitas, Deise; Gassen, Rodrigo Benedetti; Fazolo, Tiago; Souza, Ana Paula Duarte de

    2016-10-01

    The macrolide rapamycin inhibits mTOR (mechanist target of rapamycin) function and has been broadly used to unveil the role of mTOR in immune responses. Inhibition of mTOR on dendritic cells (DC) can influence cellular immune response and the survival of DC. RSV is the most common cause of hospitalization in infants and is a high priority candidate to vaccine development. In this study we showed that rapamycin treatment on RSV-infected murine bone marrow-derived DC (BMDC) decreases the frequency of CD8(+)CD44(high) T cells. However, inhibition of mTOR on RSV-infected BMDC did not modify the activation phenotype of these cells. RSV-RNA levels increase when infected BMDC were treated with rapamycin. Moreover, we observed that rapamycin diminishes apoptosis cell death of RSV-infected BMDC co-culture with T cells and this effect was abolished when the cells were co-cultured in a transwell system that prevents cell-to-cell contact or migration. Taken together, these data indicate that rapamycin treatment present a toxic effect on RSV-infected BMDC increasing RSV-RNA levels, affecting partially CD8 T cell differentiation and also increasing BMDC survival in a mechanism dependent on T cell contact. PMID:27466155

  11. Rapamycin increases RSV RNA levels and survival of RSV-infected dendritic cell depending on T cell contact.

    PubMed

    do Nascimento de Freitas, Deise; Gassen, Rodrigo Benedetti; Fazolo, Tiago; Souza, Ana Paula Duarte de

    2016-10-01

    The macrolide rapamycin inhibits mTOR (mechanist target of rapamycin) function and has been broadly used to unveil the role of mTOR in immune responses. Inhibition of mTOR on dendritic cells (DC) can influence cellular immune response and the survival of DC. RSV is the most common cause of hospitalization in infants and is a high priority candidate to vaccine development. In this study we showed that rapamycin treatment on RSV-infected murine bone marrow-derived DC (BMDC) decreases the frequency of CD8(+)CD44(high) T cells. However, inhibition of mTOR on RSV-infected BMDC did not modify the activation phenotype of these cells. RSV-RNA levels increase when infected BMDC were treated with rapamycin. Moreover, we observed that rapamycin diminishes apoptosis cell death of RSV-infected BMDC co-culture with T cells and this effect was abolished when the cells were co-cultured in a transwell system that prevents cell-to-cell contact or migration. Taken together, these data indicate that rapamycin treatment present a toxic effect on RSV-infected BMDC increasing RSV-RNA levels, affecting partially CD8 T cell differentiation and also increasing BMDC survival in a mechanism dependent on T cell contact.

  12. Myocardial survival signaling in response to stem cell transplantation

    PubMed Central

    Li, Hongzhe; Malhotra, Deepak; Yeh, Che-chung; Tu, Richard; Zhu, Bo-Qing; Birger, Noy; Wisneski, Andrew; Cha, John; Karliner, Joel S.; Mann, Michael J.

    2009-01-01

    BACKGROUND: Experimental human stem cell transplantation to the heart has begun, but the mechanisms underlying benefits seen in pre-clinical models, both at the site of cell injection and at more distant regions, remain uncertain. We hypothesize that these benefits may be best understood first at the level of key intracellular signaling cascades in the host myocardium that may be responsible for functional and structural preservation of the heart. STUDY DESIGN: Western blot and ELISA were used to assess key pathways that regulate cardiac myocyte survival and hypertrophy in both the infarct/borderzone (I/BZ) and remote myocardium (RM) of C57/B6 mouse hearts subjected to coronary artery ligation, with subsequent injection of either vehicle or bone marrow-derived adult mesenchymal stem cells (MSC). RESULTS: Improved left ventricular function with MSC transplantation was associated with a relative preservation of Akt phosphorylation (activation) and of phosphorylation of downstream mediators of cell survival and hypertrophy. There was no significant difference in activation of MAP kinase p38, and activation of the anti-apoptotic MAP kinase ERK was lower at one week after MSC treatment but rose above controls by week 2. Similar changes were observed in both the I/BZ and the RM. CONCLUSION: Stem cell transplantation in the post-MI murine myocardium is associated with preservation of Akt signaling. Together with a possible later increase in ERK activation, this signaling change may be responsible for cardioprotection. Further focused investigation may identify elements in transplantation regimens that optimize this mechanism of benefit, and that may increase the likelihood of human clinical success. PMID:19476797

  13. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism

    PubMed Central

    Rachakonda, P. Sivaramakrishna; Hosen, Ismail; de Verdier, Petra J.; Fallah, Mahdi; Heidenreich, Barbara; Ryk, Charlotta; Wiklund, N. Peter; Steineck, Gunnar; Schadendorf, Dirk; Hemminki, Kari; Kumar, Rajiv

    2013-01-01

    The telomerase reverse transcriptase (TERT) promoter, an important element of telomerase expression, has emerged as a target of cancer-specific mutations. Originally described in melanoma, the mutations in TERT promoter have been shown to be common in certain other tumor types that include glioblastoma, hepatocellular carcinoma, and bladder cancer. To fully define the occurrence and effect of the TERT promoter mutations, we investigated tumors from a well-characterized series of 327 patients with urothelial cell carcinoma of bladder. The somatic mutations, mainly at positions −124 and −146 bp from ATG start site that create binding motifs for E-twenty six/ternary complex factors (Ets/TCF), affected 65.4% of the tumors, with even distribution across different stages and grades. Our data showed that a common polymorphism rs2853669, within a preexisting Ets2 binding site in the TERT promoter, acts as a modifier of the effect of the mutations on survival and tumor recurrence. The patients with the mutations showed poor survival in the absence [hazard ratio (HR) 2.19, 95% confidence interval (CI) 1.02–4.70] but not in the presence (HR 0.42, 95% CI 0.18–1.01) of the variant allele of the polymorphism. The mutations in the absence of the variant allele were highly associated with the disease recurrence in patients with Tis, Ta, and T1 tumors (HR 1.85, 95% CI 1.11–3.08). The TERT promoter mutations are the most common somatic lesions in bladder cancer with clinical implications. The association of the mutations with patient survival and disease recurrence, subject to modification by a common polymorphism, can be a unique putative marker with individualized prognostic potential. PMID:24101484

  14. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  15. PDK2-mediated alternative splicing switches Bnip3 from cell death to cell survival.

    PubMed

    Gang, Hongying; Dhingra, Rimpy; Lin, Junjun; Hai, Yan; Aviv, Yaron; Margulets, Victoria; Hamedani, Mohammad; Thanasupawat, Thatchawan; Leygue, Etienne; Klonisch, Thomas; Davie, James R; Kirshenbaum, Lorrie A

    2015-09-28

    Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1-6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death. The findings of the present study reveal a novel survival pathway that functionally couples the unique glycolytic phenotype in cancer cells to hypoxia resistance via a PDK2-dependent mechanism that switches Bnip3 from cell death to survival. Discovery of the survival Bnip3Δex3 isoform may fundamentally explain how certain cells resist Bnip3 and avert death during hypoxia.

  16. PDK2-mediated alternative splicing switches Bnip3 from cell death to cell survival

    PubMed Central

    Gang, Hongying; Dhingra, Rimpy; Lin, Junjun; Hai, Yan; Aviv, Yaron; Margulets, Victoria; Hamedani, Mohammad; Thanasupawat, Thatchawan; Leygue, Etienne; Klonisch, Thomas; Davie, James R.

    2015-01-01

    Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1–6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death. The findings of the present study reveal a novel survival pathway that functionally couples the unique glycolytic phenotype in cancer cells to hypoxia resistance via a PDK2-dependent mechanism that switches Bnip3 from cell death to survival. Discovery of the survival Bnip3Δex3 isoform may fundamentally explain how certain cells resist Bnip3 and avert death during hypoxia. PMID:26416963

  17. PDK2-mediated alternative splicing switches Bnip3 from cell death to cell survival.

    PubMed

    Gang, Hongying; Dhingra, Rimpy; Lin, Junjun; Hai, Yan; Aviv, Yaron; Margulets, Victoria; Hamedani, Mohammad; Thanasupawat, Thatchawan; Leygue, Etienne; Klonisch, Thomas; Davie, James R; Kirshenbaum, Lorrie A

    2015-09-28

    Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1-6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death. The findings of the present study reveal a novel survival pathway that functionally couples the unique glycolytic phenotype in cancer cells to hypoxia resistance via a PDK2-dependent mechanism that switches Bnip3 from cell death to survival. Discovery of the survival Bnip3Δex3 isoform may fundamentally explain how certain cells resist Bnip3 and avert death during hypoxia. PMID:26416963

  18. Simulated predator extinctions: predator identity affects survival and recruitment of oysters.

    PubMed

    O'Connor, Nessa E; Grabowski, Jonathan H; Ladwig, Laura M; Bruno, John F

    2008-02-01

    The rate of species loss is increasing at a global scale, and human-induced extinctions are biased toward predator species. We examined the effects of predator extinctions on a foundation species, the eastern oyster (Crassostrea virginica). We performed a factorial experiment manipulating the presence and abundance of three of the most common predatory crabs, the blue crab (Callinectes sapidus), stone crab (Menippe mercenaria), and mud crab (Panopeus herbstii) in estuaries in the eastern United States. We tested the effects of species richness and identity of predators on juvenile oyster survival, oyster recruitment, and organic matter content of sediment. We also manipulated the density of each of the predators and controlled for the loss of biomass of species by maintaining a constant mass of predators in one set of treatments and simultaneously using an additive design. This design allowed us to test the density dependence of our results and test for functional compensation by other species. The identity of predator species, but not richness, affected oyster populations. The loss of blue crabs, alone or in combination with either of the other species, affected the survival rate of juvenile oysters. Blue crabs and stone crabs both affected oyster recruitment and sediment organic matter negatively. Mud crabs at higher than ambient densities, however, could fulfill some of the functions of blue and stone crabs, suggesting a level of ecological redundancy. Importantly, the strong effects of blue crabs in all processes measured no longer occurred when individuals were present at higher-than-ambient densities. Their role as dominant predator is, therefore, dependent on their density within the system and the density of other species within their guild (e.g., mud crabs). Our findings support the hypothesis that the effects of species loss at higher trophic levels are determined by predator identity and are subject to complex intraguild interactions that are largely

  19. Endothelial Cell Implantation and Survival within Experimental Gliomas

    NASA Astrophysics Data System (ADS)

    Lal, Bachchu; Indurti, Ravi R.; Couraud, Pierre-Olivier; Goldstein, Gary W.; Laterra, John

    1994-10-01

    The delivery of therapeutic genes to primary brain neoplasms opens new opportunities for treating these frequently fatal tumors. Efficient gene delivery to tissues remains an important obstacle to therapy, and this problem has unique characteristics in brain tumors due to the blood-brain and blood-tumor barriers. The presence of endothelial mitogens and vessel proliferation within solid tumors suggests that genetically modified endothelial cells might efficiently transplant to brain tumors. Rat brain endothelial cells immortalized with the adenovirus E1A gene and further modified to express the β-galactosidase reporter were examined for their ability to survive implantation to experimental rat gliomas. Rats received 9L, F98, or C6 glioma cells in combination with endothelial cells intracranially to caudate/putamen or subcutaneously to flank. Implanted endothelial cells were identified by β-galactosidase histochemistry or by polymerase chain reaction in all tumors up to 35 days postimplantation, the latest time examined. Implanted endothelial cells appeared to cooperate in tumor vessel formation and expressed the brain-specific endothelial glucose transporter type 1 as identified by immunohistochemistry. The proliferation of implanted endothelial cells was supported by their increased number within tumors between postimplantation days 14 and 21 (P = 0.015) and by their expression of the proliferation antigen Ki67. These findings establish that genetically modified endothelial cells can be stably engrafted to growing gliomas and suggest that endothelial cell implantation may provide a means of delivering therapeutic genes to brain neoplasms and other solid tumors. In addition, endothelial implantation to brain may be useful for defining mechanisms of brain-specific endothelial differentiation.

  20. Evidence for improved survival in postsymptomatic stem cell-transplanted patients with Krabbe's disease.

    PubMed

    Langan, Thomas J; Barcykowski, Amy L; Dare, Jonathan; Pannullo, Erin C; Muscarella, Leah; Carter, Randy L

    2016-11-01

    Krabbe's disease (KD) is a severe neurodegenerative disorder affecting white matter in the brain and peripheral nerves. Transplantation of hematopoietic stem cells (HSCT), although not curative, has been shown to extend survival and alleviate neurodevelopmental symptoms when treatment precedes the onset of symptoms. Existing evidence, although not tested statistically, seems clearly to show that postsymptomatic transplantation does not improve neurodevelopmental outcomes. The impact of postsymptomatic HSCT treatment on survival, however, is an open question. This study uses a KD registry to examine the effect of HSCT on survival of symptomatic KD patients. Sixteen transplanted patients were matched by age of onset to 68 nontransplanted patients. The potential confounding effect of age of onset was, therefore, avoided. To quantify the effect of HSCT over time, we used Cox regression analysis, and we observed a sustained and nearly 2.2-fold risk of death from KD in patients who were not transplanted relative to those who were transplanted (one-tailed P = 0.0365; 95% lower bound = 1.07). The improvement of survival resulting from HSCT did not appear to depend on the age of symptom onset. Thus, these results establish a long-term, quantitative benefit of HSCT even in patients who are already experiencing symptoms. They also provide a benchmark for improved survival that can be used for potential new treatments for KD. © 2016 Wiley Periodicals, Inc. PMID:27638603

  1. Cell death and survival signalling in the cardiovascular system.

    PubMed

    Tucka, Joanna; Bennett, Martin; Littlewood, Trevor

    2012-01-01

    The loss of cells is an important factor in many diseases, including those of the cardiovascular system. Whereas apoptosis is an essential process in development and tissue homeostasis, its occurrence is often associated with various pathologies. Apoptosis of neurons that fail to make appropriate connections is essential for the selection of correct neural signalling in the developing embryo, but its appearance in adults is often associated with neurodegenerative disease. Similarly, in the cardiovascular system, remodeling of the mammalian outflow tract during the transition from a single to dual series circulation with four chambers is accompanied by a precise pattern of cell death, but apoptosis of cardiomyocytes contributes to ischemia-reperfusion injury in the heart. In many cases, it is unclear whether apoptosis represents a causative association or merely a consequence of the disease itself. There are many excellent reviews on cell death in the cardiovascular system (1-5); in this review we outline the critical signalling pathways that promote the survival of cardiovascular cells, and their relevance to both physiological cell death and disease.

  2. Physical parameters affecting living cells in space

    NASA Astrophysics Data System (ADS)

    Langbein, Dieter

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.

  3. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells

    PubMed Central

    Jean, Elise; Laoudj-Chenivesse, Dalila; Notarnicola, Cécile; Rouger, Karl; Serratrice, Nicolas; Bonnieu, Anne; Gay, Stéphanie; Bacou, Francis; Duret, Cédric; Carnac, Gilles

    2011-01-01

    Abstract Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties, we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR, a fluorescent substrate for ALDH, and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56+ fraction in those cells, but, we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly, ALDH activity and Aldh1a1 expression levels were very low in mouse, rat, rabbit and non-human primate myoblasts. Using different approaches, from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde, an inhibitor of class I ALDH, to cell fractionation by flow cytometry using the ALDEFLUOR assay, we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H2O2)-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity, as a purification strategy, could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage. PMID:19840193

  4. Factors Affecting Pathogen Survival in Finished Dairy Compost with Different Particle Sizes Under Greenhouse Conditions.

    PubMed

    Diao, Junshu; Chen, Zhao; Gong, Chao; Jiang, Xiuping

    2015-09-01

    This study investigated the survival of Escherichia coli O157:H7 and Salmonella Typhimurium in finished dairy compost with different particle sizes during storage as affected by moisture content and temperature under greenhouse conditions. The mixture of E. coli O157:H7 and S. Typhimurium strains was inoculated into the finished composts with moisture contents of 20, 30, and 40%, separately. The finished compost samples were then sieved into 3 different particle sizes (>1000, 500-1000, and <500 μm) and stored under greenhouse conditions. For compost samples with moisture contents of 20 and 30%, the average Salmonella reductions in compost samples with particle sizes of >1000, 500-1000, and <500 μm were 2.15, 2.27, and 2.47 log colony-forming units (CFU) g(-1) within 5 days of storage in summer, respectively, as compared with 1.60, 2.03, and 2.26 log CFU g(-1) in late fall, respectively, and 2.61, 3.33, and 3.67 log CFU g(-1) in winter, respectively. The average E. coli O157:H7 reductions in compost samples with particle sizes of >1000, 500-1000, and <500 μm were 1.98, 2.30, and 2.54 log CFU g(-1) within 5 days of storage in summer, respectively, as compared with 1.70, 2.56, and 2.90 log CFU g(-1) in winter, respectively. Our results revealed that both Salmonella and E. coli O157:H7 in compost samples with larger particle size survived better than those with smaller particle sizes, and the initial rapid moisture loss in compost may contribute to the fast inactivation of pathogens in the finished compost. For the same season, the pathogens in the compost samples with the same particle size survived much better at the initial moisture content of 20% compared to 40%. PMID:26153914

  5. Abdominally implanted satellite transmitters affect reproduction and survival rather than migration of large shorebirds

    USGS Publications Warehouse

    Hooijmeijer, Jos C. E. W.; Gill, Robert E.; Mulcahy, Daniel M.; Tibbitts, T. Lee; Kentie, Rosemarie; Gerritsen, Gerrit J.; Bruinzeel, Leo W.; Tijssen, David C.; Harwood, Christopher M.; Piersma, Theunis

    2014-01-01

    Satellite telemetry has become a common technique to investigate avian life-histories, but whether such tagging will affect fitness is a critical unknown. In this study, we evaluate multi-year effects of implanted transmitters on migratory timing and reproductive performance in shorebirds. Shorebirds increasingly are recognized as good models in ecology and evolution. That many of them are of conservation concern adds to the research responsibilities. In May 2009, we captured 56 female Black-tailed Godwits Limosa limosa limosa during late incubation in The Netherlands. Of these, 15 birds were equipped with 26-g satellite transmitters with a percutaneous antenna (7.8 % ± 0.2 SD of body mass), surgically implanted in the coelom. We compared immediate nest survival, timing of migration, subsequent nest site fidelity and reproductive behaviour including egg laying with those of the remaining birds, a comparison group of 41 females. We found no effects on immediate nest survival. Fledging success and subsequent southward and northward migration patterns of the implanted birds conformed to the expectations, and arrival time on the breeding grounds in 2010–2012 did not differ from the comparison group. Compared with the comparison group, in the year after implantation, implanted birds were equally faithful to the nest site and showed equal territorial behaviour, but a paucity of behaviours indicating nests or clutches. In the 3 years after implantation, the yearly apparent survival of implanted birds was 16 % points lower. Despite intense searching, we found only three eggs of two implanted birds; all were deformed. A similarly deformed egg was reported in a similarly implanted Whimbrel Numenius phaeopus returning to breed in central Alaska. The presence in the body cavity of an object slightly smaller than a normal egg may thus lead to egg malformation and, likely, reduced egg viability. That the use of implanted satellite transmitters in these large shorebirds

  6. Application of Cox and Parametric Survival Models to Assess Social Determinants of Health Affecting Three-Year Survival of Breast Cancer Patients.

    PubMed

    Mohseny, Maryam; Amanpour, Farzaneh; Mosavi-Jarrahi, Alireza; Jafari, Hossein; Moradi-Joo, Mohammad; Davoudi Monfared, Esmat

    2016-01-01

    Breast cancer is one of the most common causes of cancer mortality in Iran. Social determinants of health are among the key factors affecting the pathogenesis of diseases. This cross-sectional study aimed to determine the social determinants of breast cancer survival time with parametric and semi-parametric regression models. It was conducted on male and female patients diagnosed with breast cancer presenting to the Cancer Research Center of Shohada-E-Tajrish Hospital from 2006 to 2010. The Cox proportional hazard model and parametric models including the Weibull, log normal and log-logistic models were applied to determine the social determinants of survival time of breast cancer patients. The Akaike information criterion (AIC) was used to assess the best fit. Statistical analysis was performed with STATA (version 11) software. This study was performed on 797 breast cancer patients, aged 25-93 years with a mean age of 54.7 (±11.9) years. In both semi-parametric and parametric models, the three-year survival was related to level of education and municipal district of residence (P<0.05). The AIC suggested that log normal distribution was the best fit for the three-year survival time of breast cancer patients. Social determinants of health such as level of education and municipal district of residence affect the survival of breast cancer cases. Future studies must focus on the effect of childhood social class on the survival times of cancers, which have hitherto only been paid limited attention. PMID:27165244

  7. Picropodophyllin inhibits proliferation and survival of diffuse large B-cell lymphoma cells.

    PubMed

    Strömberg, Thomas; Feng, Xiaoying; Delforoush, Maryam; Berglund, Mattias; Lin, Yingbo; Axelson, Magnus; Larsson, Olle; Georgii-Hemming, Patrik; Lennartsson, Johan; Enblad, Gunilla

    2015-07-01

    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma in adults. Although chemotherapy in combination with anti-CD20 antibodies results in a cure rate of 60-70 %, novel treatment approaches are warranted for the remaining patients. The insulin-like growth factor-1 receptor (IGF-1R) and its principal ligands IGF-1 and IGF-2 have been suggested to play pivotal roles in different cancers. However, in DLBCL the importance of this system is less well understood. To assess whether interference with IGF-1R-mediated signaling may represent a therapeutic option for this malignancy, we used a panel of eight DLBCL cell lines together with primary tumor cells derived from lymph nodes in four DLBCL patients. The cells were treated with the cyclolignan picropodophyllin (PPP), a small molecule compound initially described to selectively inhibit the IGF-1R. PPP dose-dependently inhibited proliferation/survival in all cell lines and primary cell preparations. In parallel experiments, the IGF-1R inhibitor NVP-AEW541 and the microtubule-destabilizing compounds podophyllotoxin (PPT) and colchicine were demonstrated to also inhibit growth of the cell lines. Linear regression analysis showed that the responses of the cell lines to PPP correlated with their responses to the microtubule inhibitors PPT and colchicine, but not with the response to NVP-AEW541 or the expression level of surface IGF-1R. Analysis of cell cycle phase distribution revealed that treatment with PPP for only 1 h induced a clear accumulation of cells in the G2/M-phase with a corresponding depletion of the G0/G1-phase. Interestingly, these cell cycle effects could be closely mimicked by using PPT or colchicine. Treatment with PPP led to increased apoptotic cell death in the SU-DHL-6 and U-2932 cell lines, whereas the DB and U-2940 did not undergo apoptosis. However, the DB cells were still killed by PPP, suggesting another mode of cell death for this cell line. The U-2940 cells responded to PPP mainly by

  8. Soil moisture and fungi affect seed survival in California grassland annual plants.

    PubMed

    Mordecai, Erin A

    2012-01-01

    Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival.

  9. Soil Moisture and Fungi Affect Seed Survival in California Grassland Annual Plants

    PubMed Central

    Mordecai, Erin A.

    2012-01-01

    Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival. PMID:22720037

  10. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  11. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells.

    PubMed

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y J; Thomson, James; Slukvin, Igor

    2015-11-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin(-)CD34(+) cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  12. Crypt stem cell survival in the mouse intestinal epithelium is regulated by prostaglandins synthesized through cyclooxygenase-1.

    PubMed Central

    Cohn, S M; Schloemann, S; Tessner, T; Seibert, K; Stenson, W F

    1997-01-01

    Prostaglandins (PGs) are important mediators of epithelial integrity and function in the gastrointestinal tract. Relatively little is known, however, about the mechanism by which PGs affect stem cells in the intestine during normal epithelial turnover, or during wound repair. PGs are synthesized from arachidonate by either of two cyclooxygenases, cyclooxygenase-1 (Cox-1) or cyclooxygenase-2 (Cox-2), which are present in a wide variety of mamalian cells. Cox-1 is thought to be a constitutively expressed enzyme, and the expression of Cox-2 is inducible by cytokines or other stimuli in a variety of cell types. We investigated the role of PGs in mouse intestinal stem cell survival and proliferation following radiation injury. The number of surviving crypt stem cells was determined 3.5 d after irradiation by the microcolony assay. Radiation injury induced a dose-dependent decrease in the number of surviving crypts. Indomethacin, an inhibitor of Cox-1 and Cox-2, further reduced the number of surviving crypts in irradiated mice. The indomethacin dose response for inhibition of PGE2 production and reduction of crypt survival were similar. DimethylPGE2 reversed the indomethacin-induced decrease in crypt survival. Selective Cox-2 inhibitors had no effect on crypt survival. PGE2, Cox-1 mRNA, and Cox-1 protein levels all increase in the 3 d after irradiation. Immunohistochemistry for Cox-1 demonstrated localization in epithelial cells of the crypt in the unirradiated mouse, and in the regenerating crypt epithelium in the irradiated mouse. We conclude that radiation injury results in increased Cox-1 levels in crypt stem cells and their progeny, and that PGE2 produced through Cox-1 promotes crypt stem cell survival and proliferation. PMID:9077547

  13. NAC, Tiron and Trolox Impair Survival of Cell Cultures Containing Glioblastoma Tumorigenic Initiating Cells by Inhibition of Cell Cycle Progression

    PubMed Central

    Stigliani, Sara; Carra, Elisa; Monteghirfo, Stefano; Longo, Luca; Daga, Antonio; Dono, Mariella; Zupo, Simona; Giaretti, Walter; Castagnola, Patrizio

    2014-01-01

    Reactive oxygen species (ROS) are metabolism by-products that may act as signaling molecules to sustain tumor growth. Antioxidants have been used to impair cancer cell survival. Our goal was to determine the mechanisms involved in the response to antioxidants of a human cell culture (PT4) containing glioblastoma (GBM) tumorigenic initiating cells (TICs). ROS production in the absence or presence of N-acetyl-L-cysteine (NAC), tiron, and trolox was evaluated by flow cytometry (FCM). The effects of these antioxidants on cell survival and apoptosis were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay (MTT) and FCM. The biological processes modulated by these drugs were determined by oligonucleotide microarray gene expression profiling. Our results showed that NAC, tiron and trolox impaired PT4 cell survival, had minor effects on ROS levels and caused wide deregulation of cell cycle genes. Furthermore, tiron and trolox caused inhibition of cell survival in two additional cell cultures containing TICs, FO-1 and MM1, established from a melanoma and a mesothelioma patient, respectively. NAC, instead, impaired survival of the MM1 cells but not of the FO-1 cells. However, when used in combination, NAC enhanced the inhibitory effect of PLX4032 (BRAF V600E inhibitor) and Gefitinib (EGFR inhibitor), on FO-1 and PT4 cell survival. Collectively, NAC, tiron and trolox modulated gene expression and impaired the growth of cultures containing TICs primarily by inhibiting cell cycle progression. PMID:24587218

  14. Romidepsin targets multiple survival signaling pathways in malignant T cells

    PubMed Central

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies. PMID:26473529

  15. Romidepsin targets multiple survival signaling pathways in malignant T cells.

    PubMed

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-10-16

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies.

  16. MORTALITY DURING TREATMENT: FACTORS AFFECTING THE SURVIVAL OF OILED, REHABILITATED COMMON MURRES (URIA AALGE).

    PubMed

    Duerr, Rebecca S; Ziccardi, Michael H; Massey, J Gregory

    2016-07-01

    After major oil spills, hundreds to thousands of live stranded birds enter rehabilitative care. To target aspects of rehabilitative efforts for improvement and to evaluate which initial physical examination and biomedical parameters most effectively predict survival to release, medical records were examined from 913 Common Murres ( Uria aalge ; COMUs) oiled during the November 2001-January 2003 oil spill associated with the sunken S.S. Jacob Luckenbach off San Francisco, California, US. Results showed that 52% of all deaths occurred during the first 2 days of treatment. Birds stranding closest to the wreck had greater amounts of oil on their bodies than birds stranding farther away. More heavily oiled birds were in better clinical condition than birds with lesser amounts of oil, as shown by higher body mass (BM), packed cell volumes (PCV), total plasma protein (TP), and higher survival proportions. Additionally, BM, PCV, TP, and body temperature were positively correlated. For comparison, medical records from all nonoiled COMUs admitted for rehabilitation at the same facility during 2007-09 (n=468) were examined, and these variables were also found to be positively correlated. Oiled birds with BM under 750 g had approximately 5% lower PCV than BM-matched nonoiled COMUs. More heavily oiled COMUs may be in better condition than less oiled birds because heavily oiled birds must beach themselves immediately to avoid drowning and hypothermia, whereas lightly oiled birds may postpone beaching until exhausted due to extreme body catabolism. The strong relationship of PCV to BM regardless of oiling provides evidence that anemia commonly encountered in oiled seabirds may be a sequela to overall loss of body condition rather than solely due to toxic effects of oiling. Clinical information garnered in this study provides guidance for triage decisions during oil spills. PMID:27187030

  17. Multifaceted role of prohibitin in cell survival and apoptosis.

    PubMed

    Peng, Ya-Ting; Chen, Ping; Ouyang, Ruo-Yun; Song, Lei

    2015-09-01

    Human eukaryotic prohibitin (prohibitin-1 and prohibitin-2) is a membrane protein with different cellular localizations. It is involved in multiple cellular functions, including energy metabolism, proliferation, apoptosis, and senescence. The subcellular localization of prohibitin may determine its functions. Membrane prohibitin regulate the cellular signaling of membrane transport, nuclear prohibitin control transcription activation and the cell cycle, and mitochondrial prohibitin complex stabilize the mitochondrial genome and modulate mitochondrial dynamics, mitochondrial morphology, mitochondrial biogenesis, and the mitochondrial intrinsic apoptotic pathway. Moreover, prohibitin can translocates into the nucleus or the mitochondria under apoptotic signals and the subcellular shuttling of prohibitin is necessary for apoptosis process. Apoptosis is the process of programmed cell death that is important for the maintenance of normal physiological functions. Consequently, any alteration in the content, post-transcriptional modification (i.e. phosphorylation) or the nuclear or mitochondrial translocation of prohibitin may influence cell fate. Understanding the mechanisms of the expression and regulation of prohibitin may be useful for future research. This review provides an overview of the multifaceted and essential roles played by prohibitin in the regulation of cell survival and apoptosis.

  18. Leukemia cell microvesicles promote survival in umbilical cord blood hematopoietic stem cells

    PubMed Central

    Razmkhah, Farnaz; Soleimani, Masoud; Mehrabani, Davood; Karimi, Mohammad Hossein; Kafi-abad, Sedigheh Amini

    2015-01-01

    Microvesicles can transfer their contents, proteins and RNA, to target cells and thereby transform them. This may induce apoptosis or survival depending on cell origin and the target cell. In this study, we investigate the effect of leukemic cell microvesicles on umbilical cord blood hematopoietic stem cells to seek evidence of apoptosis or cell survival. Microvesicles were isolated from both healthy donor bone marrow samples and Jurkat cells by ultra-centrifugation and were added to hematopoietic stem cells sorted from umbilical cord blood samples by magnetic associated cell sorting (MACS) technique. After 7 days, cell count, cell viability, flow cytometry analysis for hematopoietic stem cell markers and qPCR for P53 gene expression were performed. The results showed higher cell number, higher cell viability rate and lower P53 gene expression in leukemia group in comparison with normal and control groups. Also, CD34 expression as the most important hematopoietic stem cell marker, did not change during the treatment and lineage differentiation was not observed. In conclusion, this study showed anti-apoptotic effect of leukemia cell derived microvesicles on umbilical cord blood hematopoietic stem cells. PMID:26862318

  19. Reduction of cardiac cell death after helium postconditioning in rats: transcriptional analysis of cell death and survival pathways.

    PubMed

    Oei, Gezina T M L; Heger, Michal; van Golen, Rowan F; Alles, Lindy K; Flick, Moritz; van der Wal, Allard C; van Gulik, Thomas M; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2015-01-20

    Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways.

  20. Reduction of Cardiac Cell Death after Helium Postconditioning in Rats: Transcriptional Analysis of Cell Death and Survival Pathways

    PubMed Central

    Oei, Gezina TML; Heger, Michal; van Golen, Rowan F; Alles, Lindy K; Flick, Moritz; van der Wal, Allard C; van Gulik, Thomas M; Hollmann, Markus W; Preckel, Benedikt; Weber, Nina C

    2014-01-01

    Helium, a noble gas, has been used safely in humans. In animal models of regional myocardial ischemia/reperfusion (I/R) it was shown that helium conditioning reduces infarct size. Currently, it is not known how helium exerts its cytoprotective effects and which cell death/survival pathways are affected. The objective of this study, therefore, was to investigate the cell protective effects of helium postconditioning by PCR array analysis of genes involved in necrosis, apoptosis and autophagy. Male rats were subjected to 25 min of ischemia and 5, 15 or 30 min of reperfusion. Semiquantitative histological analysis revealed that 15 min of helium postconditioning reduced the extent of I/R-induced cell damage. This effect was not observed after 5 and 30 min of helium postconditioning. Analysis of the differential expression of genes showed that 15 min of helium postconditioning mainly caused upregulation of genes involved in autophagy and inhibition of apoptosis versus I/R alone. The results suggest that the cytoprotective effects of helium inhalation may be caused by a switch from pro-cell-death signaling to activation of cell survival mechanisms, which appears to affect a wide range of pathways. PMID:25171109

  1. R-ETODOLAC DECREASES BETA-CATENIN LEVELS ALONG WITH SURVIVAL AND PROLIFERATION OF HEPATOMA CELLS

    PubMed Central

    Behari, Jaideep; Zeng, Gang; Otruba, Wade; Thompson, Michael; Muller, Peggy; Micsenyi, Amanda; Sekhon, Sandeep S.; Leoni, Lorenzo; Monga, Satdarshan P. S.

    2007-01-01

    Background Inhibition of hepatoma cells by cyclooxygenase (COX)-2 dependent and independent mechanisms has been shown previously. Here, we examine the effect of Celecoxib, a COX-2-inhibitor and R-Etodolac, an enantiomer of the nonsteroidal anti-inflammatory drug Etodolac, which lacks COX-inhibitory activity, on the Wnt/β-catenin pathway and human hepatoma cells. Methods Hep3B and HepG2 cell lines were treated with Celecoxib or R-Etodolac, and examined for viability, DNA synthesis, Wnt/β-catenin pathway components, and downstream target gene expression. Results Celecoxib at high doses affected β-catenin protein by inducing its degradation via GSK3β and APC along with diminished tumor cell proliferation and survival. R-Etodolac at physiological doses caused decrease in total and activated β-catenin protein secondary to decrease in its gene expression and post-translationally through GSK3β activation. In addition, increased β-catenin-E-cadherin was also observed at the membrane. An associated inhibition of β-catenin-dependent Tcf reporter activity, decreased levels of downstream target gene products glutamine synthetase and cyclin-D1, and decreased proliferation and survival of hepatoma cells was evident. Conclusion The antitumor effects of Celecoxib (at high concentrations) and R-Etodolac (at physiological doses) on HCC cells were accompanied by the down-regulation of β-catenin demonstrating a useful therapeutic strategy in hepatocellular cancer. PMID:17275129

  2. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia

    PubMed Central

    Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique

    2016-01-01

    Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux. PMID:27759041

  3. Cell populations can use aneuploidy to survive telomerase insufficiency

    PubMed Central

    Millet, Caroline; Ausiannikava, Darya; Le Bihan, Thierry; Granneman, Sander; Makovets, Svetlana

    2015-01-01

    Telomerase maintains ends of eukaryotic chromosomes, telomeres. Telomerase loss results in replicative senescence and a switch to recombination-dependent telomere maintenance. Telomerase insufficiency in humans leads to telomere syndromes associated with premature ageing and cancer predisposition. Here we use yeast to show that the survival of telomerase insufficiency differs from the survival of telomerase loss and occurs through aneuploidy. In yeast grown at elevated temperatures, telomerase activity becomes limiting: haploid cell populations senesce and generate aneuploid survivors—near diploids monosomic for chromosome VIII. This aneuploidy results in increased levels of the telomerase components TLC1, Est1 and Est3, and is accompanied by decreased abundance of ribosomal proteins. We propose that aneuploidy suppresses telomerase insufficiency through redistribution of cellular resources away from ribosome synthesis towards production of telomerase components and other non-ribosomal proteins. The aneuploidy-induced re-balance of the proteome via modulation of ribosome biogenesis may be a general adaptive response to overcome functional insufficiencies. PMID:26489519

  4. Targeting survival pathways in chronic myeloid leukaemia stem cells

    PubMed Central

    Sinclair, A; Latif, A L; Holyoake, T L

    2013-01-01

    Chronic myeloid leukaemia (CML) is a clonal myeloproliferative disorder characterized by the presence of a fusion oncogene BCR-ABL, which encodes a protein with constitutive TK activity. The implementation of tyrosine kinase inhibitors (TKIs) marked a major advance in CML therapy; however, there are problems with current treatment. For example, relapse occurs when these drugs are discontinued in the majority of patients who have achieved a complete molecular response on TKI and these agents are less effective in patients with mutations in the BCR-ABL kinase domain. Importantly, TKI can effectively target proliferating mature cells, but do not eradicate quiescent leukaemic stem cells (LSCs), therefore allowing disease persistence despite treatment. It is essential that alternative strategies are used to target the LSC population. BCR-ABL activation is responsible for the modulation of different signalling pathways, which allows the LSC fraction to evade cell death. Several pathways have been shown to be modulated by BCR-ABL, including PI3K/AKT/mTOR, JAK-STAT and autophagy signalling pathways. Targeting components of these survival pathways, alone or in combination with TKI, therefore represents an attractive potential therapeutic approach for targeting the LSC. However, many pathways are also active in normal stem cells. Therefore, potential targets must be validated to effectively eradicate CML stem cells while sparing normal counterparts. This review summarizes the main pathways modulated in CML stem cells, the recent developments and the use of novel drugs to target components in these pathways which may be used to target the LSC population. Linked Articles This article is part of a themed section on Emerging Therapeutic Aspects in Oncology. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.169.issue-8 PMID:23517124

  5. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease.

    PubMed

    Nichols, Tracy A; Spraker, Terry R; Gidlewski, Thomas; Cummings, Bruce; Hill, Dana; Kong, Qingzhong; Balachandran, Aru; VerCauteren, Kurt C; Zabel, Mark D

    2016-05-01

    Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer, elk and moose. The disease is an ongoing and expanding problem in both wild and captive North American cervid populations and is difficult to control in part due to the extreme environmental persistence of prions, which can transmit disease years after initial contamination. The role of exogenous factors in CWD transmission and progression is largely unexplored. In an effort to understand the influence of environmental and dietary constituents on CWD, we collected and analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through modulating inflammation in the brain.

  6. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease

    PubMed Central

    Nichols, Tracy A.; Spraker, Terry R.; Gidlewski, Thomas; Cummings, Bruce; Hill, Dana; Kong, Qingzhong; Balachandran, Aru; VerCauteren, Kurt C.; Zabel, Mark D.

    2016-01-01

    ABSTRACT Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer, elk and moose. The disease is an ongoing and expanding problem in both wild and captive North American cervid populations and is difficult to control in part due to the extreme environmental persistence of prions, which can transmit disease years after initial contamination. The role of exogenous factors in CWD transmission and progression is largely unexplored. In an effort to understand the influence of environmental and dietary constituents on CWD, we collected and analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through modulating inflammation in the brain. PMID:27216881

  7. Analysis of factors affecting hemorrhagic diathesis and overall survival in patients with acute promyelocytic leukemia

    PubMed Central

    Lee, Ho Jin; Kim, Dong Hyun; Lee, Seul; Koh, Myeong Seok; Kim, So Yeon; Lee, Ji Hyun; Lee, Suee; Oh, Sung Yong; Han, Jin Yeong; Kim, Hyo-Jin; Kim, Sung-Hyun

    2015-01-01

    Background/Aims: This study investigated whether patients with acute promyelocytic leukemia (APL) truly fulfill the diagnostic criteria of overt disseminated intravascular coagulation (DIC), as proposed by the International Society on Thrombosis and Haemostasis (ISTH) and the Korean Society on Thrombosis and Hemostasis (KSTH), and analyzed which component of the criteria most contributes to bleeding diathesis. Methods: A single-center retrospective analysis was conducted on newly diagnosed APL patients between January 1995 and May 2012. Results: A total of 46 newly diagnosed APL patients were analyzed. Of these, 27 patients (58.7%) showed initial bleeding. The median number of points per patient fulfilling the diagnostic criteria of overt DIC by the ISTH and the KSTH was 5 (range, 1 to 7) and 3 (range, 1 to 4), respectively. At diagnosis of APL, 22 patients (47.8%) fulfilled the overt DIC diagnostic criteria by either the ISTH or KSTH. In multivariate analysis of the ISTH or KSTH diagnostic criteria for overt DIC, the initial fibrinogen level was the only statistically significant factor associated with initial bleeding (p = 0.035), but it was not associated with overall survival (OS). Conclusions: Initial fibrinogen level is associated with initial presentation of bleeding of APL patients, but does not affect OS. PMID:26552464

  8. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease.

    PubMed

    Nichols, Tracy A; Spraker, Terry R; Gidlewski, Thomas; Cummings, Bruce; Hill, Dana; Kong, Qingzhong; Balachandran, Aru; VerCauteren, Kurt C; Zabel, Mark D

    2016-05-01

    Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer, elk and moose. The disease is an ongoing and expanding problem in both wild and captive North American cervid populations and is difficult to control in part due to the extreme environmental persistence of prions, which can transmit disease years after initial contamination. The role of exogenous factors in CWD transmission and progression is largely unexplored. In an effort to understand the influence of environmental and dietary constituents on CWD, we collected and analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through modulating inflammation in the brain. PMID:27216881

  9. Bone Matrix Osteonectin Limits Prostate Cancer Cell Growth and Survival

    PubMed Central

    Kapinas, Kristina; Lowther, Katie M.; Kessler, Catherine B.; Tilbury, Karissa; Lieberman, Jay R.; Tirnauer, Jennifer S.; Campagnola, Paul; Delany, Anne M.

    2012-01-01

    There is considerable interest in understanding prostate cancer metastasis to bone and the interaction of these cells with the bone microenvironment. Osteonectin/SPARC/BM-40 is a collagen binding matricellular protein that is enriched in bone. Its expression is increased in prostate cancer metastases, and it stimulates the migration of prostate carcinoma cells. However, the presence of osteonectin in cancer cells and the stroma may limit prostate tumor development and progression. To determine how bone matrix osteonectin affects the behavior of prostate cancer cells, we modeled prostate cancer cell-bone interactions using the human prostate cancer cell line PC-3, and mineralized matrices synthesized by wild type and osteonectin-null osteoblasts in vitro. We developed this in vitro system because the structural complexity of collagen matrices in vivo is not mimicked by reconstituted collagen scaffolds or by more complex substrates, like basement membrane extracts. Second harmonic generation imaging demonstrated that the wild type matrices had thick collagen fibers organized into longitudinal bundles, whereas osteonectin-null matrices had thinner fibers in random networks. Importantly, a mouse model of prostate cancer metastases to bone showed a collagen fiber phenotype similar to the wild type matrix synthesized in vitro. When PC-3 cells were grown on the wild type matrices, they displayed decreased cell proliferation, increased cell spreading, and decreased resistance to radiation-induced cell death, compared to cells grown on osteonectin-null matrix. Our data support the idea that osteonectin can suppress prostate cancer pathogenesis, expanding this concept to the microenvironment of skeletal metastases. PMID:22525512

  10. Relation of CD30 expression to survival and morphology in large cell B cell lymphomas.

    PubMed Central

    Noorduyn, L A; de Bruin, P C; van Heerde, P; van de Sandt, M M; Ossenkoppele, G J; Meijer, C J

    1994-01-01

    AIMS--To investigate whether CD30 expression is correlated with anaplastic morphology, and whether this correlated with a better survival in large cell B cell lymphomas, as has been described for T cell lymphomas. METHODS--CD30 expression was investigated using frozen sections in a series of 146 large cell B cell lymphomas. Clinical data and follow up information were collected from 25 lymphomas with strong CD30 expression, 30 lymphomas with partial CD30 expression, and a control group of 25 lymphomas which did not express CD30. RESULTS--Morphological distinction between anaplastic and non-anaplastic tumours was difficult. Of the cases with an anaplastic morphology, 50% were CD30 positive, as were 24% of the polymorphic centroblastic B cell lymphomas. Only 65% of the morphologically non-anaplastic tumours were completely CD30 negative. There was no difference in survival among patients with lymphomas expressing CD30 and those that did not. Patients with morphologically anaplastic B cell lymphomas did not differ in their survivals from those with other high grade B cell lymphomas. Clinical stage at presentation was the only variable that was significantly associated with survival. CONCLUSIONS--CD30 expression occurs frequently in large cell B cell lymphomas and is poorly related to anaplastic morphology. Morphological distinction between anaplastic and non-anaplastic tumours is difficult. In contrast to T cell lymphomas, CD30 positive B cell lymphomas do not show a relatively favourable clinical course. The results presented here raise serious doubts as to whether large cell B cell lymphoma, based on the expression of CD30 or anaplastic morphology, can really be termed a separate entity. Images PMID:8132806

  11. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    PubMed

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues.

  12. Survival and growth of acid-adapted and unadapted Salmonella in and on raw tomatoes as affected by variety, stage of ripeness, and storage temperature.

    PubMed

    Beuchat, Larry R; Mann, David A

    2008-08-01

    Consumption of raw round and Roma tomatoes has been associated with outbreaks of salmonellosis. A study was done to determine whether survival and growth of Salmonella in and on tomatoes is affected by variety of tomato, stage of ripeness, and storage temperature. The influence of acid adaptation of cells and site of inoculation on survival and growth was studied. Salmonella grew in stem scar and pulp tissues of round, Roma, and grape tomatoes stored at 12 and 21 degrees C but not in those tomatoes stored at 4 degrees C. Survival and growth was largely unaffected by variety and stage of ripeness at the time of inoculation. The pathogen did not grow on the skin of grape tomatoes stored at 4, 12, and 21 degrees C. Survival and growth of Salmonella inoculated into stem scar and pulp tissues of round and Roma tomatoes were unaffected by exposure of cells to an acidic (pH 4.75) environment before inoculation. Results emphasize the importance of preventing contamination of tomatoes with Salmonella at all stages of ripeness, regardless of variety or previous exposure of cells to an acidic environment.

  13. Factors affecting winter survival of female mallards in the lower Mississippi alluvial valley

    USGS Publications Warehouse

    Davis, B.E.; Afton, A.D.; Cox, R.R.

    2011-01-01

    The lower Mississippi Alluvial Valley (hereafter LMAV) provides winter habitat for approximately 40% of the Mississippi Flyway's Mallard (Anas platyrhynhcos) population; information on winter survival rates of female Mallards in the LMAV is restricted to data collected prior to implementation of the North American Waterfowl Management Plan. To estimate recent survival and cause-specific mortality rates in the LMAV, 174 radio-marked female Mallards were tracked for a total of 11,912 exposure days. Survival varied by time periods defined by hunting seasons, and females with lower body condition (size adjusted body mass) at time of capture had reduced probability of survival. Female survival was less and the duration of our tracking period was greater than those in previous studies of similarly marked females in the LMAV; the product-limit survival estimate (??????SE) through the entire tracking period (136 days) was 0.54 ??0.10. Cause-specific mortality rates were 0.18 ??0.04 and 0.34 ??0.12 for hunting and other sources of mortality, respectively; the estimated mortality rate from other sources (including those from avian, mammalian, or unknown sources) was higher than mortality from non-hunting sources reported in previous studies of Mallards in the LMAV. Models that incorporate winter survival estimates as a factor in Mallard population growth rates should be adjusted for these reduced winter survival estimates.

  14. Factors affecting infiltration and survival of Salmonella on in-shell pecans and pecan nutmeats.

    PubMed

    Beuchat, Larry R; Mann, David A

    2010-07-01

    A study was done to determine the infiltration and survival characteristics of Salmonella in pecans. The rate of infiltration of water into in-shell nuts varied among six varieties evaluated and was significantly (alpha = 0.05) affected by the extent of shell damage. The rate of infiltration at -20 or 4 degrees C was lower than the rate of infiltration into nuts at 21 or 37 degrees C when nuts were immersed in water at 21 degrees C. In-shell nuts immersed in a suspension of Salmonella (8.66 or 2.82 log CFU/ml) for 1 h contained populations of 6.94 to 6.99 and 1.85 to 1.95 log CFU/g, respectively. Salmonella that infiltrated in-shell nuts reached the kernel and remained viable after drying and during subsequent storage at 4 degrees C. Initially high (5.78 log CFU/g) and low (1.53 log CFU/g) populations of Salmonella did not significantly decrease in in-shell pecans stored at -20 and 4 degrees C for 78 weeks (18 months). Significant reductions of 2.49 and 3.29 log CFU/g occurred in in-shell nuts stored for 78 weeks at 21 and 37 degrees C, respectively. High (6.16 log CFU/g) and low (2.56 log CFU/g) populations on pecan halves and high (7.13 log CFU/g) and low (4.71 log CFU/g) populations on medium pieces stored for 52 weeks at -20 and 4 degrees C decreased slightly, but not always significantly. Significant reductions occurred on nutmeats stored for 52 weeks at 21 and 37 degrees C, but the pathogen was detectable, regardless of the initial inoculum level. Results emphasize the importance of applying process treatments that will inactivate Salmonella. PMID:20615338

  15. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    PubMed Central

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-01-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy, or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. While the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane. PMID:24531236

  16. High-density lipoprotein, mitochondrial dysfunction and cell survival mechanisms.

    PubMed

    White, C Roger; Giordano, Samantha; Anantharamaiah, G M

    2016-09-01

    Ischemic injury is associated with acute myocardial infarction, percutaneous coronary intervention, coronary artery bypass grafting and open heart surgery. The timely re-establishment of blood flow is critical in order to minimize cardiac complications. Reperfusion after a prolonged ischemic period, however, can induce severe cardiomyocyte dysfunction with mitochondria serving as a major target of ischemia/reperfusion (I/R) injury. An increase in the formation of reactive oxygen species (ROS) induces damage to mitochondrial respiratory complexes leading to uncoupling of oxidative phosphorylation. Mitochondrial membrane perturbations also contribute to calcium overload, opening of the mitochondrial permeability transition pore (mPTP) and the release of apoptotic mediators into the cytoplasm. Clinical and experimental studies show that ischemic preconditioning (ICPRE) and postconditioning (ICPOST) attenuate mitochondrial injury and improve cardiac function in the context of I/R injury. This is achieved by the activation of two principal cell survival cascades: 1) the Reperfusion Injury Salvage Kinase (RISK) pathway; and 2) the Survivor Activating Factor Enhancement (SAFE) pathway. Recent data suggest that high density lipoprotein (HDL) mimics the effects of conditioning protocols and attenuates myocardial I/R injury via activation of the RISK and SAFE signaling cascades. In this review, we discuss the roles of apolipoproteinA-I (apoA-I), the major protein constituent of HDL, and sphingosine 1-phosphate (S1P), a lysosphingolipid associated with small, dense HDL particles as mediators of cardiomyocyte survival. Both apoA-I and S1P exert an infarct-sparing effect by preventing ROS-dependent injury and inhibiting the opening of the mPTP. PMID:27150975

  17. The lens controls cell survival in the retina: Evidence from the blind cavefish Astyanax.

    PubMed

    Strickler, Allen G; Yamamoto, Yoshiyuki; Jeffery, William R

    2007-11-15

    The lens influences retinal growth and differentiation during vertebrate eye development but the mechanisms are not understood. The role of the lens in retinal growth and development was studied in the teleost Astyanax mexicanus, which has eyed surface-dwelling (surface fish) and blind cave-dwelling (cavefish) forms. A lens and laminated retina initially develop in cavefish embryos, but the lens dies by apoptosis. The cavefish retina is subsequently disorganized, apoptotic cells appear, the photoreceptor layer degenerates, and retinal growth is arrested. We show here by PCNA, BrdU, and TUNEL labeling that cell proliferation continues in the adult cavefish retina but the newly born cells are removed by apoptosis. Surface fish to cavefish lens transplantation, which restores retinal growth and rod cell differentiation, abolished apoptosis in the retina but not in the RPE. Surface fish lens deletion did not cause apoptosis in the surface fish retina or affect RPE differentiation. Neither lens transplantation in cavefish nor lens deletion in surface fish affected retinal cell proliferation. We conclude that the lens acts in concert with another optic component, possibly the RPE, to promote retinal cell survival. Accordingly, deficiency in both optic structures may lead to eye degeneration in cavefish.

  18. IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival

    PubMed Central

    Wainwright, Derek A.; Balyasnikova, Irina V.; Chang, Alan L.; Ahmed, Atique U.; Moon, Kyung-Sub; Auffinger, Brenda; Tobias, Alex L.; Han, Yu; Lesniak, Maciej S.

    2012-01-01

    Purpose Glioblastoma multiforme (GBM) is an aggressive adult brain tumor with a poor prognosis. One hallmark of GBM is the accumulation of immunosuppressive and tumor-promoting CD4+FoxP3+GITR+ regulatory T cells (Tregs). Here, we investigated the role of indoleamine 2,3 dioxygenase (IDO) in brain tumors and the impact on Treg recruitment. Experimental Design To determine the clinical relevance of IDO expression in brain tumors, we first correlated patient survival to the level of IDO expression from resected glioma specimens. We also used novel orthotopic and transgenic models of glioma to study how IDO affects Tregs. The impact of tumor-derived and peripheral IDO expression on Treg recruitment, GITR expression and long-term survival was determined. Results Downregulated IDO expression in glioma predicted a significantly better prognosis in patients. Co-incidently, both IDO -competent and -deficient mice showed a survival advantage bearing IDO-deficient brain tumors, when compared to IDO-competent brain tumors. Moreover, IDO-deficiency was associated with a significant decrease in brain-resident Tregs, both in orthotopic and transgenic mouse glioma models. IDO-deficiency was also associated with lower GITR expression levels on Tregs. Interestingly, the long-term survival advantage conferred by IDO-deficiency was lost in T cell-deficient mice. Conclusions These clinical and pre-clinical data confirm that IDO expression increases the recruitment of immunosuppressive Tregs which leads to tumor outgrowth. In contrast, IDO deficiency decreases Treg recruitment and enhances T cell-mediated tumor rejection. Thus, the data suggest a critical role for IDO-mediated immunosuppression in glioma and supports the continued investigation of IDO-Treg interactions in the context of brain tumors. PMID:22932670

  19. Survival of Mycobacterium avium subsp. paratuberculosis in bovine monocyte-derived macrophages is not affected by host infection status but depends on the infecting bacterial genotype.

    PubMed

    Gollnick, Nicole S; Mitchell, Rebecca M; Baumgart, Martin; Janagama, Harish K; Sreevatsan, Srinand; Schukken, Ynte H

    2007-12-15

    In this study we investigated the ability of different Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) strains to survive in bovine monocyte-derived macrophages (MDMs) of cows naturally infected with M. paratuberculosis and control cows. We tested the hypotheses that infection status of cows affects macrophage killing ability and that survival of M. paratuberculosis in macrophages is dependent on the strain. Peripheral blood mononuclear cells (PBMC) were obtained from Johne's disease-positive (n=3) and age and stage of lactation matched Johne's disease-negative (n=3) multiparious cows. Following differentiation, MDMs were challenged in vitro with four M. paratuberculosis strains of different host specificity (cattle and sheep). Two hours and 2, 4, and 7 days after infection, ingestion, and intracellular survival of M. paratuberculosis strains were determined by fluorescence microscopy. There was no effect of the origin of MDMs (Johne's disease-positive or control animals) on phagocytosis, survival of bacteria, or macrophage survival. In contrast, important strain differences were observed. These findings suggest that some M. paratuberculosis strains interfere more successfully than others with the ability of macrophages to kill intracellular pathogens which may make it important to include strain typing when designing control programs.

  20. Does ethnicity affect survival following colorectal cancer? A prospective, cohort study using Iranian cancer registry

    PubMed Central

    Ahmadi, Ali; Hashemi Nazari, Seyed Saeed; Mobasheri, Mahmoud

    2014-01-01

    Background: The present study compared the differences between survivals of patients with colorectal cancer according to their ethnicity adjusted for other predictors of survival. Methods: In this prospective cohort study patients were followed up from definite diagnosis of colorectal cancer to death. Totally, 2431 person-year follow-ups were undertaken for 1127 colorectal cancer patients once every six months. The data were analyzed by stata software using bivariate analysis, multivariate analysis, and Cox regression. Results: The age at diagnosis was significantly different between men and women (p<0.03). 61.2% were male and the rest were female. Most patients were Fars (51.2%), followed by Turciks (21.5%), Kurds (8.2%), and 7.5% Lurs. Of the patients, 75% had a survival of more than 2.72 years, 50% a survival of 5.83 years, and 25% longer than 13.1 years after diagnosis. Risk ratio was significantly different among ethnics (p<0.05). The variables of ethnicity, being non married, tumor grade, family history of cancer, and smoking were considered as determinants of the patients’ survival in Cox regression model. The median survival time in Fars, Kurds, Lurs, Turks and other ethnics was 5.83, 2.44, 5.49, and 8.52 years, respectively. Conclusion: Ethnicity and access to healthcare are predictors of survival of patients with colorectal cancer which may define priorities in controlling cancer and implementing interventional and prevention plans. PMID:25664284

  1. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF.

    PubMed

    Polacchini, Alessio; Albani, Clara; Baj, Gabriele; Colliva, Andrea; Carpinelli, Patrizia; Tongiorgi, Enrico

    2016-07-15

    Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5'UTR exons 1, 2c, 4 or 6 and 3'UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3'UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism.

  2. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF.

    PubMed

    Polacchini, Alessio; Albani, Clara; Baj, Gabriele; Colliva, Andrea; Carpinelli, Patrizia; Tongiorgi, Enrico

    2016-01-01

    Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5'UTR exons 1, 2c, 4 or 6 and 3'UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3'UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism. PMID:27256407

  3. Combined cisplatin and aurora inhibitor treatment increase neuroblastoma cell death but surviving cells overproduce BDNF

    PubMed Central

    Polacchini, Alessio; Albani, Clara; Baj, Gabriele; Colliva, Andrea; Carpinelli, Patrizia

    2016-01-01

    ABSTRACT Drug-resistance to chemotherapics in aggressive neuroblastoma (NB) is characterized by enhanced cell survival mediated by TrkB and its ligand, brain-derived neurotrophic factor (BDNF); thus reduction in BDNF levels represent a promising strategy to overcome drug-resistance, but how chemotherapics regulate BDNF is unknown. Here, cisplatin treatment in SK-N-BE neuroblastoma upregulated multiple BDNF transcripts, except exons 5 and 8 variants. Cisplatin increased BDNF mRNA and protein, and enhanced translation of a firefly reporter gene flanked by BDNF 5′UTR exons 1, 2c, 4 or 6 and 3′UTR-long. To block BDNF translation we focused on aurora kinases inhibitors which are proposed as new chemotherapeutics. NB cell survival after 24 h treatment was 43% with cisplatin, and 22% by cisplatin+aurora kinase inhibitor PHA-680632, while the aurora kinases inhibitor alone was less effective; however the combined treatment induced a paradoxical increase of BDNF in surviving cells with strong translational activation of exon6-3′UTR-long transcript, while translation of BDNF transcripts 1, 2C and 4 was suppressed. In conclusion, combined cisplatin and aurora kinase inhibitor treatment increases cell death, but induces BDNF overproduction in surviving cells through an aurora kinase-independent mechanism. PMID:27256407

  4. M2 receptor activation inhibits cell cycle progression and survival in human glioblastoma cells.

    PubMed

    Ferretti, Michela; Fabbiano, Cinzia; Di Bari, Maria; Conte, Claudia; Castigli, Emilia; Sciaccaluga, Miriam; Ponti, Donatella; Ruggieri, Paola; Raco, Antonino; Ricordy, Ruggero; Calogero, Antonella; Tata, Ada Maria

    2013-04-01

    Muscarinic receptors, expressed in several primary and metastatic tumours, appear to be implicated in their growth and propagation. In this work we have demonstrated that M2 muscarinic receptors are expressed in glioblastoma human specimens and in glioblastoma cell lines. Moreover, we have characterized the effects of the M2 agonist arecaidine on cell growth and survival both in two different glioblastoma cell lines (U251MG and U87MG) and in primary cultures obtained from different human biopsies. Cell growth analysis has demonstrated that the M2 agonist arecaidine strongly decreased cell proliferation in both glioma cell lines and primary cultures. This effect was dose and time dependent. FACS analysis has confirmed cell cycle arrest at G1/S and at G2/M phase in U87 cells and U251 respectively. Cell viability analysis has also shown that arecaidine induced severe apoptosis, especially in U251 cells. Chemosensitivity assays have, moreover, shown arecaidine and temozolomide similar effects on glioma cell lines, although IC50 value for arecaidine was significantly lower than temozolomide. In conclusion, we report for the first time that M2 receptor activation has a relevant role in the inhibition of glioma cell growth and survival, suggesting that M2 may be a new interesting therapeutic target to investigate for glioblastoma therapy.

  5. Affect on survival per increase in each millimeter of tumor depth in tongue cancer.

    PubMed

    Gokavarapu, Sandhya; Ahmed, Murtaza; Parvataneni, Nagendra; Raju, K V V N; Chander, Ravi; Chandrasekhara Rao S, L M

    2015-03-01

    The critical tumor depth at which the risk of occult metastasis increases in tongue cancer has been demonstrated as ≥4-5 mm. Conventional T staging might not be an accurate predictor for survival in situations wherein infiltrative growth pattern is easily overlooked. Thus risk of death associated with increase in tumor depth per millimeter might be useful to understand patient's disease status during follow up. Historical cohorts of patients with pT1N0 and pT2N0 primary squamous cell carcinoma of tongue treated between January 2010 and December 2011 were selected and analyzed in univariate and multivariate cox-regression model to indicate the risk of death associated with an increase in each millimeter of tumor depth. The median period of follow up was 34 months. Total 67 patients fulfilled the above mentioned criteria, among them 11 patients died by the end of study period. The mean (SD) age of the patients studied was 49.7 (12.7) years and their age ranged from 21 to 74 years. Among these 66 % (n = 44) were males. In the univariate log-rank test, margin status (p = 0.016), t-stage (p = 0.018) and increased tumor depth (p < 0.0001) were risk factors for occurrence of death. When adjusted for other risk factors in the multivariate cox-regression model, per one unit increase of tumor depth (mm) there was 1.07 (95 % CI 0.95, 1.21) units increased risk of death. Depth of tumor with increase in each millimeter in tongue cancer appears to be associated with risk of death irrespective of regional lymphatic spread.

  6. Substrate properties affect collective cell motion

    NASA Astrophysics Data System (ADS)

    Pegoraro, Adrian; Guo, Ming; Ehrlicher, Allen; Weitz, David

    2013-03-01

    When cells move collectively, cooperative motion, which is characterized by long range correlations in cell movement, is necessary for migration. This collective cell motion is influenced by cell-cell interactions as well as by cell-substrate coupling. Furthermore, on soft substrates it is possible for cells to mechanically couple over long distances through the substrate itself. By changing the properties of the substrate, it is possible to decouple some of these contributions and better understand the role they play in collective cell motion. We vary both the substrate stiffness and adhesion protein concentration and find changes in the collective cell motion of the cells despite only small differences in total cell density and average cell size in the confluent layers. We test these changes on polyacrylamide and PDMS substrates as well as on structured substrates made of PDMS posts that prevent mechanical coupling through the substrate while still allowing stiffness to be varied.

  7. Human clusterin gene expression is confined to surviving cells during in vitro programmed cell death.

    PubMed Central

    French, L E; Wohlwend, A; Sappino, A P; Tschopp, J; Schifferli, J A

    1994-01-01

    Clusterin is a serum glycoprotein endowed with cell aggregating, complement inhibitory, and lipid binding properties, and is also considered as a specific marker of dying cells, its expression being increased in various tissues undergoing programmed cell death (PCD). However, no study has so far directly shown that cells expressing clusterin in these tissues are actually apoptotic as defined by morphological and biochemical criteria. We have studied cellular clusterin gene expression in vitro using three different models of PCD: (a) ultraviolet B (UV-B) irradiation of human U937, HeLa, and A431 cell lines, (b) in vitro aging of human peripheral blood neutrophils (PMNs), and (c) dexamethasone-induced cell death of the human lymphoblastoid cell line CEM-C7. In all three models, the classical morphological and biochemical features of PCD observed did not correlate with an increase, but with either a marked decrease or an absence of clusterin gene expression as assessed by Northern blot analysis. In situ hybridization of U937 and A431 cells after UV-B irradiation revealed, in addition, that only morphologically normal cells that are surviving continue to express the clusterin gene. Our results demonstrate that in the human myeloid, lymphoid, and epithelial cell types studied, clusterin gene expression is not a prerequisite to their death by apoptosis. In addition, and most interestingly, in situ hybridization of U937 and A431 cells revealed that only surviving cells express the clusterin gene after the induction of PCD, thus providing novel evidence suggesting that clusterin may be associated with cell survival within tissues regressing as a consequence of PCD. Images PMID:8113419

  8. Human Olfactory Mucosa Multipotent Mesenchymal Stromal Cells Promote Survival, Proliferation, and Differentiation of Human Hematopoietic Cells

    PubMed Central

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda

    2012-01-01

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit–granulocyte/macrophage (CFU-GM) progenitors and CD34+ cells were found, at 43 days of co-culture. Reverse transcriptase–polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines. PMID:22471939

  9. Human olfactory mucosa multipotent mesenchymal stromal cells promote survival, proliferation, and differentiation of human hematopoietic cells.

    PubMed

    Diaz-Solano, Dylana; Wittig, Olga; Ayala-Grosso, Carlos; Pieruzzini, Rosalinda; Cardier, Jose E

    2012-11-20

    Multipotent mesenchymal stromal cells (MSCs) from the human olfactory mucosa (OM) are cells that have been proposed as a niche for neural progenitors. OM-MSCs share phenotypic and functional properties with bone marrow (BM) MSCs, which constitute fundamental components of the hematopoietic niche. In this work, we investigated whether human OM-MSCs may promote the survival, proliferation, and differentiation of human hematopoietic stem cells (HSCs). For this purpose, human bone marrow cells (BMCs) were co-cultured with OM-MSCs in the absence of exogenous cytokines. At different intervals, nonadherent cells (NACs) were harvested from BMC/OM-MSC co-cultures, and examined for the expression of blood cell markers by flow cytometry. OM-MSCs supported the survival (cell viability >90%) and proliferation of BMCs, after 54 days of co-culture. At 20 days of co-culture, flow cytometric and microscopic analyses showed a high percentage (73%) of cells expressing the pan-leukocyte marker CD45, and the presence of cells of myeloid origin, including polymorphonuclear leukocytes, monocytes, basophils, eosinophils, erythroid cells, and megakaryocytes. Likewise, T (CD3), B (CD19), and NK (CD56/CD16) cells were detected in the NAC fraction. Colony-forming unit-granulocyte/macrophage (CFU-GM) progenitors and CD34(+) cells were found, at 43 days of co-culture. Reverse transcriptase-polymerase chain reaction (RT-PCR) studies showed that OM-MSCs constitutively express early and late-acting hematopoietic cytokines (i.e., stem cell factor [SCF] and granulocyte- macrophage colony-stimulating factor [GM-CSF]). These results constitute the first evidence that OM-MSCs may provide an in vitro microenvironment for HSCs. The capacity of OM-MSCs to support the survival and differentiation of HSCs may be related with the capacity of OM-MSCs to produce hematopoietic cytokines.

  10. Factors affecting nest survival of Henslow's Sparrows (Ammodramus henslowii) in southern Indiana

    USGS Publications Warehouse

    Crimmins, Shawn M.; McKann, Patrick C.; Robb, Joseph R.; Lewis, Jason P.; Vanosdol, Teresa; Walker, Benjamin A.; Williams, Perry J.; Thogmartin, Wayne E.

    2016-01-01

    Populations of Henslow’s Sparrows have declined dramatically in recent decades, coinciding with widespread loss of native grassland habitat. Prescribed burning is a primary tool for maintaining grassland patches, but its effects on nest survival of Henslow’s Sparrows remains largely unknown, especially in conjunction with other factors. We monitored 135 nests of Henslow’s Sparrows at Big Oaks National Wildlife Refuge in southern Indiana from 1998–2001 in an effort to understand factors influencing nest survival, including prescribed burning of habitat. We used a mixed-effects implementation of the logistic exposure model to predict daily nest survival in an information theoretic framework. We found that daily survival declined near the onset of hatching and increased with the height of standing dead vegetation, although this relationship was weak. We found only nominal support to suggest that time since burn influenced nest survival. Overall, nest age was the most important factor in estimating daily nest survival rates. Our daily survival estimate from our marginal model (0.937) was similar to that derived from the Mayfield method (0.944) suggesting that our results are comparable to previous studies using the Mayfield approach. Our results indicate that frequent burning to limit woody encroachment into grassland habitats might benefit Henslow’s Sparrow, but that a variety of factors ultimately influence daily nest survival. However, we note that burning too frequently can also limit occupancy by Henslow’s Sparrows. We suggest that additional research is needed to determine the population-level consequences of habitat alteration and if other extrinsic factors influence demographics of Henslow’s Sparrows.

  11. 3D matrix-based cell cultures: Automated analysis of tumor cell survival and proliferation

    PubMed Central

    EKE, IRIS; HEHLGANS, STEPHANIE; SANDFORT, VEIT; CORDES, NILS

    2016-01-01

    Three-dimensional ex vivo cell cultures mimic physiological in vivo growth conditions thereby significantly contributing to our understanding of tumor cell growth and survival, therapy resistance and identification of novel potent cancer targets. In the present study, we describe advanced three-dimensional cell culture methodology for investigating cellular survival and proliferation in human carcinoma cells after cancer therapy including molecular therapeutics. Single cells are embedded into laminin-rich extracellular matrix and can be treated with cytotoxic drugs, ionizing or UV radiation or any other substance of interest when consolidated and approximating in vivo morphology. Subsequently, cells are allowed to grow for automated determination of clonogenic survival (colony number) or proliferation (colony size). The entire protocol of 3D cell plating takes ~1 h working time and pursues for ~7 days before evaluation. This newly developed method broadens the spectrum of exploration of malignant tumors and other diseases and enables the obtainment of more reliable data on cancer treatment efficacy. PMID:26549537

  12. The use of contrast media in deceased kidney donors does not affect initial graft function or graft survival.

    PubMed

    Vigneau, C; Fulgencio, J-P; Godier, A; Chalem, Y; El Metaoua, S; Rondeau, E; Tuppin, P; Bonnet, F

    2006-09-01

    Patients receiving cadaveric kidney transplants often experience delayed graft function. As iodinated contrast media injection (ICMI), necessary for cerebral angiography, which is often used to diagnose brain death, can be nephrotoxic, we compared renal function recovery (RFR) and 1-year and long-term graft survival according to the method used to diagnose brain death. Data from 9921 cadaveric kidneys, transplanted between 1 January 1998 and 31 December 2003, were retrieved from the French National Registry for organ donation. We defined RFR as the number of days for the recipient to reach a plasma creatinine less than 250 mumol/l, and/or a 24-h urine output greater than 1000 ml. RFR and 1-year and long-term graft survival were compared between four different donor groups (according to ICMI and diabetes mellitus). A total of 41.5% of deceased donors received ICMI before organ procurement and 1.95% of them were diabetic. History of ICMI or diabetes in the donor did not influence RFR or 1-year graft survival. Long-term graft survival was decreased in the group of patients transplanted with a diabetic graft as compared to patients transplanted with a non-diabetic graft (P=0.001). History of ICMI in the donor did not affect long-term graft survival in the non-diabetic donor group (P=0.2); however, in the diabetic group, ICMI tended to decrease long-term graft survival (P=0.056). ICMI did not affect RFR or graft survival in non-diabetic deceased donors. However, its use in diabetic deceased donors requires further study.

  13. Sarcopenia Does Not Affect Survival or Outcomes in Soft-Tissue Sarcoma.

    PubMed

    Wilson, Robert J; Alamanda, Vignesh K; Hartley, Katherine G; Mesko, Nathan W; Halpern, Jennifer L; Schwartz, Herbert S; Holt, Ginger E

    2015-01-01

    Background and Objective. Sarcopenia is associated with decreased survival and increased complications in carcinoma patients. We hypothesized that sarcopenic soft-tissue sarcoma (STS) patients would have decreased survival, increased incidence of wound complications, and increased length of postresection hospital stay (LOS). Methods. A retrospective, single-center review of 137 patients treated surgically for STS was conducted. Sarcopenia was assessed by measuring the cross-sectional area of bilateral psoas muscles (total psoas muscle area, TPA) at the level of the third lumbar vertebrae on a pretreatment axial computed tomography scan. TPA was then adjusted for height (cm(2)/m(2)). The association between height-adjusted TPA and survival was assessed using Cox proportional hazard model. A logistical model was used to assess the association between height-adjusted TPA and wound complications. A linear model was used to assess the association between height-adjusted TPA and LOS. Results. Height-adjusted TPA was not an independent predictor of overall survival (p = 0.746). Patient age (p = 0.02) and tumor size (p = 0.009) and grade (p = 0.001) were independent predictors of overall survival. Height-adjusted TPA was not a predictor of increased hospital LOS (p = 0.66), greater incidence of postoperative infection (p = 0.56), or other wound complications (p = 0.14). Conclusions. Sarcopenia does not appear to impact overall survival, LOS, or wound complications in patients with STS.

  14. Impact of Neoadjuvant Radiation on Survival in Stage III Non-Small-Cell Lung Cancer

    SciTech Connect

    Koshy, Matthew; Goloubeva, Olga; Suntharalingam, Mohan

    2011-04-01

    Purpose: The role of surgery in Stage III non-small-cell lung cancer (NSCLC) is controversial. This study was undertaken to assess the impact of neoadjuvant radiation therapy for Stage III NSCLC. Methods and Materials: This was a retrospective study from the Surveillance, Epidemiology, and End Results (SEER) database that included patients who were 18 years and older with NSCLC classified as Stage III and who underwent definitive therapy from 1988 to 2004. Patients were characterized by type of treatment received. Survival functions were estimated by the Kaplan-Meier method, and Cox regression model was used to analyze trends in overall (OS) and cause-specific survival (CSS). Results: A total of 48,131 patients were selected, with a median follow-up of 10 months (range, 0-203 months). By type of treatment, the 3-year OS was 10% with radiation therapy (RT), 37% with surgery (S), 34% with surgery and postoperative radiation (S-RT), and 45% with neoadjuvant radiation followed by surgery (Neo-RT) (p = 0.0001). Multivariable Cox model identified sex, race, laterality, T stage, N stage, and type of treatment as factors affecting survival. Estimated hazard ratios (HR) adjusted for other variables in regression model showed the types of treatment: S (HR, 1.3; 95% confidence interval [CI], 1.2-1.4), S-RT (HR, 1.2; 95% CI, 1.1-1.3), and RT (HR, 2.3; 95% CI, 2.15-2.53) were associated with significantly worse overall survival when compared with Neo-RT (p = 0.0001). Conclusion: This population based study demonstrates that patients with Stage III NSCLC receiving Neo-RT had significantly improved overall survival when compared with other treatment groups.

  15. Functional SNP in stem of mir-146a affects Her2 status and breast cancer survival.

    PubMed

    Meshkat, Mahboobeh; Tanha, Hamzeh Mesrian; Naeini, Marjan Mojtabavi; Ghaedi, Kamran; Sanati, Mohammad H; Meshkat, Marzieh; Bagheri, Fatemeh

    2016-07-01

    In-silico investigation suggested a common variant within stem of miR-146a-5p precursor (rs2910164, n.60C>G) associated with breast cancer (BC) phenotypes. Our aim was computationally predicting possible targets of miR-146a-5p and probable rs2910164 mechanism of action in expression of phenotypes in BC. Additionally, a case-control study was designated to examine experimentally the correlation of mir-146a rs2910164 variant and BC phenotypes. In this study, 152 BC subjects and healthy controls were genotyped using RFLP-PCR. Allelic and genotypic association and Armitage's trend tests were run to investigate the correlation between the alleles and genotypes and expressed phenotypes of BC. Bioinformatics analyses introduce regulatory function of miR-146a-5p in numerous signaling pathways and impact of allele substitution upon mir-146a stem-loop stability. Logistic regression data represented the C allele of rs2910164 (OR = 4.00, p= 0.0037) as the risk allele and associated with Her2-positive phenotype. In a similar vein, data revealed the correlation of the C allele and cancer death less than two years in BC patients (OR = 2.65, p= 0.0217). Ultimately, unconditional logistical regression models suggested log-additive model for inheritance manner of rs2910164 in either Her2 status or BC survival (OR = 5.64, p= 0.0025 and OR = 3.13, p= 0.019, respectively). Using bioinformatics connected association of Her2 status to altered function of miR-146a-5p in regulation of focal adhesion and Ras pathway. Furthermore, computations inferred the association between death phenotype and studied SNP upon specific target genes of miR-146a-5p involved in focal adhesion, EGF receptor, Ras, ErbB, interleukin, Toll-like receptor, NGF, angiogenesis, and p53 feedback loops 2 signaling pathways. These verdicts may enhance our perceptions of how mir-146a rs2910164 affect expressed phenotypes in BC, and might have potential implications to develop BC treatment in future. PMID:27434289

  16. Exposure to Cerium Dioxide Nanoparticles Differently Affect Swimming Performance and Survival in Two Daphnid Species

    PubMed Central

    Artells, Ester; Issartel, Julien; Auffan, Mélanie; Borschneck, Daniel; Thill, Antoine; Tella, Marie; Brousset, Lenka; Rose, Jérôme; Bottero, Jean-Yves; Thiéry, Alain

    2013-01-01

    The CeO2 NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO2 NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L−1 CeO2 exposures for 48 h. Acute toxicity bioassays were performed to determine EC50 of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO2 NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO2 NPs than D. pulex, showing 48-h EC50 of 0.26 mg.L−1 and 91.79 mg.L−1, respectively. Both species interacted with CeO2 NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO2 NPs for both species. A 48-h exposure to 1 mg.L−1 induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L−1 and 100 mg.L−1) than the one of D. pulex. These interspecific toxic effects of CeO2 NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO2 aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO2 NPs exposure in daphnids are discussed. PMID:23977004

  17. The caveolin-1 connection to cell death and survival.

    PubMed

    Quest, A F G; Lobos-González, L; Nuñez, S; Sanhueza, C; Fernández, J-G; Aguirre, A; Rodríguez, D; Leyton, L; Torres, V

    2013-02-01

    Caveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer.

  18. The caveolin-1 connection to cell death and survival.

    PubMed

    Quest, A F G; Lobos-González, L; Nuñez, S; Sanhueza, C; Fernández, J-G; Aguirre, A; Rodríguez, D; Leyton, L; Torres, V

    2013-02-01

    Caveolins are a family of membrane proteins required for the formation of small plasma membrane invaginations called caveolae that are implicated in cellular trafficking processes. In addition to this structural role, these scaffolding proteins modulate numerous intracellular signaling pathways; often via direct interaction with specific binding partners. Caveolin-1 is particularly well-studied in this respect and has been attributed a large variety of functions. Thus, Caveolin-1 also represents the best-characterized isoform of this family with respect to its participation in cancer. Rather strikingly, available evidence indicates that Caveolin-1 belongs to a select group of proteins that function, depending on the cellular settings, both as tumor suppressor and promoter of cellular traits commonly associated with enhanced malignant behavior, such as metastasis and multi-drug resistance. The mechanisms underlying such ambiguity in Caveolin-1 function constitute an area of great interest. Here, we will focus on discussing how Caveolin-1 modulates cell death and survival pathways and how this may contribute to a better understanding of the ambiguous role this protein plays in cancer. PMID:23228128

  19. Role for protein geranylgeranylation in adult T-cell leukemia cell survival

    SciTech Connect

    Nonaka, Mizuho; Uota, Shin; Saitoh, Yasunori; Takahashi, Mayumi; Sugimoto, Haruyo; Amet, Tohti; Arai, Ayako; Miura, Osamu; Yamamoto, Naoki; Yamaoka, Shoji

    2009-01-15

    Adult T-cell leukemia (ATL) is a fatal lymphoproliferative disease that develops in human T-cell leukemia virus type I (HTLV-I)-infected individuals. Despite the accumulating knowledge of the molecular biology of HTLV-I-infected cells, effective therapeutic strategies remain to be established. Recent reports showed that the hydroxyl-3-methylglutaryl (HMG)-CoA reductase inhibitor statins have anti-proliferative and apoptotic effects on certain tumor cells through inhibition of protein prenylation. Here, we report that statins hinder the survival of ATL cells and induce apoptotic cell death. Inhibition of protein geranylgeranylation is responsible for these effects, since simultaneous treatment with isoprenoid precursors, geranylgeranyl pyrophosphate or farnesyl pyrophosphate, but not a cholesterol precursor squalene, restored the viability of ATL cells. Simvastatin inhibited geranylgeranylation of small GTPases Rab5B and Rac1 in ATL cells, and a geranylgeranyl transferase inhibitor GGTI-298 reduced ATL cell viability more efficiently than a farnesyl transferase inhibitor FTI-277. These results not only unveil an important role for protein geranylgeranylation in ATL cell survival, but also implicate therapeutic potentials of statins in the treatment of ATL.

  20. Burial Depth and Stolon Internode Length Independently Affect Survival of Small Clonal Fragments

    PubMed Central

    Dong, Bi-Cheng; Liu, Rui-Hua; Zhang, Qian; Li, Hong-Li; Zhang, Ming-Xiang; Lei, Guang-Chun; Yu, Fei-Hai

    2011-01-01

    Disturbance can fragment plant clones into different sizes and unstabilize soils to different degrees, so that clonal fragments of different sizes can be buried in soils at different depths. As a short-term storage organ, solon internode may help fragmented clones of stoloniferous plants to withstand deeper burial in soils. We address (1) whether burial in soils decreases survival and growth of small clonal fragments, and (2) whether increasing internode length increases survival and growth of small fragments under burial. We conducted an experiment with the stoloniferous, invasive herb Alternanthera philoxeroides, in which single-node fragments with stolon internode of 0, 2, 4 and 8 cm were buried in soils at 0, 2, 4 and 8 cm depth, respectively. Increasing burial depth significantly reduced survival of the A. philoxeroides plants and increased root to shoot ratio and total stolon length, but did not change growth measures. Increasing internode length significantly increased survival and growth measures, but there was no interaction effect with burial depth on any traits measured. These results indicate that reserves stored in stolon internodes can contribute to the fitness of the A. philoxeroides plants subject to disturbance. Although burial reduced the regeneration capacity of the A. philoxeroides plants, the species may maintain the fitness by changing biomass allocation and stolon length once it survived the burial. Such responses may play an important role for A. philoxeroides in establishment and invasiveness in frequently disturbed habitats. PMID:21912652

  1. Demography of forest birds in Panama: How do transients affect estimates of survival rates?

    USGS Publications Warehouse

    Brawn, J.D.; Karr, J.R.; Nichols, J.D.; Robinson, W.D.; Adams, N.J.; Slotow, R.H.

    1999-01-01

    Estimates of annual survival rates of neotropical birds have proven controversial. Traditionally, tropical birds were thought to have high survival rates for their size, but analyses of a multispecies assemblage from Panama by Karr et al. (1990) provided a counterexample to that view. One criticism of that study has been that the estimates were biased by transient birds captured only once as they passed through the area being sampled. New models that formally adjust for transient individuals have been developed since 1990. Preliminary analyses indicate that these models are indeed useful in modelling the data from Panama. Nonetheless, there is considerable interspecific variation and overall estimates of annual survival rates for understorey birds in Panama remain lower than those from other studies in the Neotropics and well below the rates long assumed for tropical birds (i.e. > 0.80). Therefore, tropical birds may not have systematically higher survival rates than temperate-zone species. Variation in survival rates among tropical species suggests that theory based on a simple tradeoff between clutch size and longevity is inadequate. The demographic traits of birds in the tropics (and elsewhere) vary within and among species according to some combination of historical and ongoing ecological factors. Understanding these processes is the challenge for future work.

  2. Inhibition of ER stress–associated IRE-1/XBP-1 pathway reduces leukemic cell survival

    PubMed Central

    Tang, Chih-Hang Anthony; Ranatunga, Sujeewa; Kriss, Crystina L.; Cubitt, Christopher L.; Tao, Jianguo; Pinilla-Ibarz, Javier A.; Del Valle, Juan R.; Hu, Chih-Chi Andrew

    2014-01-01

    Activation of the ER stress response is associated with malignant progression of B cell chronic lymphocytic leukemia (CLL). We developed a murine CLL model that lacks the ER stress–associated transcription factor XBP-1 in B cells and found that XBP-1 deficiency decelerates malignant progression of CLL-associated disease. XBP-1 deficiency resulted in acquisition of phenotypes that are disadvantageous for leukemic cell survival, including compromised BCR signaling capability and increased surface expression of sphingosine-1-phosphate receptor 1 (S1P1). Because XBP-1 expression requires the RNase activity of the ER transmembrane receptor IRE-1, we developed a potent IRE-1 RNase inhibitor through chemical synthesis and modified the structure to facilitate entry into cells to target the IRE-1/XBP-1 pathway. Treatment of CLL cells with this inhibitor (B-I09) mimicked XBP-1 deficiency, including upregulation of IRE-1 expression and compromised BCR signaling. Moreover, B-I09 treatment did not affect the transport of secretory and integral membrane-bound proteins. Administration of B-I09 to CLL tumor–bearing mice suppressed leukemic progression by inducing apoptosis and did not cause systemic toxicity. Additionally, B-I09 and ibrutinib, an FDA-approved BTK inhibitor, synergized to induce apoptosis in B cell leukemia, lymphoma, and multiple myeloma. These data indicate that targeting XBP-1 has potential as a treatment strategy, not only for multiple myeloma, but also for mature B cell leukemia and lymphoma. PMID:24812669

  3. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis.

    PubMed

    Gao, Lei; Li, Dantong; Ma, Ke; Zhang, Wenjuan; Xu, Tao; Fu, Cong; Jing, Changbin; Jia, Xiaoe; Wu, Shuang; Sun, Xin; Dong, Mei; Deng, Min; Chen, Yi; Zhu, Wenge; Peng, Jinrong; Wan, Fengyi; Zhou, Yi; Zon, Leonard I; Pan, Weijun

    2015-07-01

    In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion.

  4. TopBP1 Governs Hematopoietic Stem/Progenitor Cells Survival in Zebrafish Definitive Hematopoiesis

    PubMed Central

    Gao, Lei; Li, Dantong; Ma, Ke; Zhang, Wenjuan; Xu, Tao; Fu, Cong; Jing, Changbin; Jia, Xiaoe; Wu, Shuang; Sun, Xin; Dong, Mei; Deng, Min; Chen, Yi; Zhu, Wenge; Peng, Jinrong; Wan, Fengyi; Zhou, Yi; Zon, Leonard I.; Pan, Weijun

    2015-01-01

    In vertebrate definitive hematopoiesis, nascent hematopoietic stem/progenitor cells (HSPCs) migrate to and reside in proliferative hematopoietic microenvironment for transitory expansion. In this process, well-established DNA damage response pathways are vital to resolve the replication stress, which is deleterious for genome stability and cell survival. However, the detailed mechanism on the response and repair of the replication stress-induced DNA damage during hematopoietic progenitor expansion remains elusive. Here we report that a novel zebrafish mutantcas003 with nonsense mutation in topbp1 gene encoding topoisomerase II β binding protein 1 (TopBP1) exhibits severe definitive hematopoiesis failure. Homozygous topbp1cas003 mutants manifest reduced number of HSPCs during definitive hematopoietic cell expansion, without affecting the formation and migration of HSPCs. Moreover, HSPCs in the caudal hematopoietic tissue (an equivalent of the fetal liver in mammals) in topbp1cas003 mutant embryos are more sensitive to hydroxyurea (HU) treatment. Mechanistically, subcellular mislocalization of TopBP1cas003 protein results in ATR/Chk1 activation failure and DNA damage accumulation in HSPCs, and eventually induces the p53-dependent apoptosis of HSPCs. Collectively, this study demonstrates a novel and vital role of TopBP1 in the maintenance of HSPCs genome integrity and survival during hematopoietic progenitor expansion. PMID:26131719

  5. The modulatory effects of connexin 43 on cell death/survival beyond cell coupling.

    PubMed

    Rodríguez-Sinovas, Antonio; Cabestrero, Alberto; López, Diego; Torre, Iratxe; Morente, Miriam; Abellán, Arancha; Miró, Elisabet; Ruiz-Meana, Marisol; García-Dorado, David

    2007-01-01

    Connexins form a diverse and ubiquitous family of integral membrane proteins. Characteristically, connexins are assembled into intercellular channels that aggregate into discrete cell-cell contact areas termed gap junctions (GJ), allowing intercellular chemical communication, and are essential for propagation of electrical impulses in excitable tissues, including, prominently, myocardium, where connexin 43 (Cx43) is the most important isoform. Previous studies have shown that GJ-mediated communication has an important role in the cellular response to stress or ischemia. However, recent evidence suggests that connexins, and in particular Cx43, may have additional effects that may be important in cell death and survival by mechanisms independent of cell to cell communication. Connexin hemichannels, located at the plasma membrane, may be important in paracrine signaling that could influence intracellular calcium and cell survival by releasing intracellular mediators as ATP, NAD(+), or glutamate. In addition, recent studies have shown the presence of connexins in cell structures other than the plasma membrane, including the cell nucleus, where it has been suggested that Cx43 influences cell growth and differentiation. In addition, translocation of Cx43 to mitochondria appears to be important for certain forms of cardioprotection. These findings open a new field of research of previously unsuspected roles of Cx43 intracellular signaling.

  6. Factors affecting the survival of patients with oesophageal carcinoma under radiotherapy in the north of Iran

    PubMed Central

    Hajian-Tilaki, K O

    2001-01-01

    Factors relevant to the survival of patients with oesophageal cancer under radiotherapy have been studied in northern Iran where its incidence is high. We conducted an analytical study using a historical cohort and information from the medical charts of patients with oesophageal cancer. Out of 523 patients referred to the Shahid Rajaii radiotherapy centre in Babolsar from 1992 to 1996, we followed 230 patients for whom an address was available in 1998. The frequency of prognostic factors among those not contacted was very similar to those included in the study. The data were analysed using survival analysis by the nonparametric method of Kaplan Meier and the Cox regression model to determine risk ratios (RR) of prognostic factors. Survival rates were 42% at 1 year, 21% at 2 years, and 8% at 5 years after diagnosis. Patients aged 50–64 were found to have poorer survival compared with those less than 50 (RR = 1.73, P = 0.03); the risk ratio for ages f = 65 was 1.88 (P = 0.03). Females had significantly better survival than males (RR = 0.71, P = 0.02). For each 100 rads dose of radiotherapy, the risk ratio was significantly decreased by 1% (RR = 0.99, P = 0.05); for each session of radiotherapy, the risk ratio was significantly decreased by 4% (RR = 0.96, P = 0.0001); for each square centimetre size of surface under radiotherapy, the risk ratio significantly increased (RR = 1.002, P = 0.04). We did not observe a significant difference on survival by histology, anatomical location of tumours, or type of treatment (P > 0.05). Prognosis is extremely poor. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11742486

  7. Extremes of urine osmolality - Lack of effect on red blood cell survival

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Fleming, J. E.

    1980-01-01

    Rats were allowed a third of normal water intake for 20 days, and food consumption decreased. The reticulocyte count indicated a suppression of erythropoiesis. Urine osmolality increased from 2,000 mosmol/kg to 3,390 mosmol/kg. Random hemolysis and senescence of a cohort of red blood cell (RBC) previously labeled with (2-(C-14)) glycine was monitored via the production of (C-14)O. Neither hemolysis nor senescence was affected. Following water restriction, the polydipsic rats generated a hypotonic urine. Urine osmolality decreased to 1,300 mosmol/kg for at least 6 days; a reticulocytosis occurred, but RBC survival was unaffected. These results contradict those previously reported, which suggest that RBC survival is influenced by the osmotic stress imposed on the RBC by extremes of urine tonicity. This discrepancy, it is concluded, is due to differences in the methods employed for measuring RBC survival. The random-labeling technique employed previously assumes a steady state between RBC production and destruction. The cohort-labeling technique used here measures hemolysis and senescence independent of changes in RBC production, which is known to be depressed by fasting.

  8. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  9. Survival and neurite growth of chick embryo spinal cord cells in serum-free culture.

    PubMed

    Tanaka, H; Obata, K

    1982-07-01

    Cell survival and neurite growth were investigated in serum-free spinal cord cell cultures on polyornithine coating (PORN). Cells were obtained from 6- or 7-day-old chick embryos. Isolated spinal cord cells required promoting factors for their survival and neurite growth. The survival-promoting factors were initially present in spinal cord cells. High density cultures, co-cultures with spinal cord explants, and spinal cord extract promoted survival of isolated spinal cord cells in MEM with no additives. Other tissue extracts (brain, liver, heart and skeletal muscle), serum, and serum-free conditioned medium (SF-CM) of muscle or glioma C6 cells also promoted survival. The active substances in the brain extract and SF-CM were shown to be protein and were separated into 3 fractions (approximately molecular weight 150,000, 70,000, 40,000) by gel filtration chromatography. Survival and neurite growth were suggested to be promoted by different factors because: (1) survival was promoted by both tissue extract and SF-CM, but neurite growth was promoted only by SF-CM; (2) the neurite growth-stimulating activity of SF-CM was lost following dialysis and heat (100 degrees C, 2 min) treatment; however, the survival-promoting activity was not. It was also suggested that spinal cord cells produce neurite growth promoting factors, but did not initially contain these factors.

  10. Method of freezing living cells and tissues with improved subsequent survival

    DOEpatents

    Senkan, Selim M.; Hirsch, Gerald P.

    1980-01-01

    This invention relates to an improved method for freezing red blood cells, ther living cells, or tissues with improved subsequent survival, wherein constant-volume freezing is utilized that results in significantly improved survival compared with constant-pressure freezing; optimization is attainable through the use of different vessel geometries, cooling baths and warming baths, and sample concentrations.

  11. Survival and neurite growth of chick embryo spinal cord cells in serum-free culture.

    PubMed

    Tanaka, H; Obata, K

    1982-07-01

    Cell survival and neurite growth were investigated in serum-free spinal cord cell cultures on polyornithine coating (PORN). Cells were obtained from 6- or 7-day-old chick embryos. Isolated spinal cord cells required promoting factors for their survival and neurite growth. The survival-promoting factors were initially present in spinal cord cells. High density cultures, co-cultures with spinal cord explants, and spinal cord extract promoted survival of isolated spinal cord cells in MEM with no additives. Other tissue extracts (brain, liver, heart and skeletal muscle), serum, and serum-free conditioned medium (SF-CM) of muscle or glioma C6 cells also promoted survival. The active substances in the brain extract and SF-CM were shown to be protein and were separated into 3 fractions (approximately molecular weight 150,000, 70,000, 40,000) by gel filtration chromatography. Survival and neurite growth were suggested to be promoted by different factors because: (1) survival was promoted by both tissue extract and SF-CM, but neurite growth was promoted only by SF-CM; (2) the neurite growth-stimulating activity of SF-CM was lost following dialysis and heat (100 degrees C, 2 min) treatment; however, the survival-promoting activity was not. It was also suggested that spinal cord cells produce neurite growth promoting factors, but did not initially contain these factors. PMID:7104764

  12. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster.

    PubMed

    Krams, Indrikis; Eichler Inwood, Sarah; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M; Butler, David M; Luoto, Severi; Krama, Tatjana

    2016-01-01

    Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus), and the percentage of carbon (C) and nitrogen (N) content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C), a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures. PMID:27602281

  13. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster.

    PubMed

    Krams, Indrikis; Eichler Inwood, Sarah; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M; Butler, David M; Luoto, Severi; Krama, Tatjana

    2016-01-01

    Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus), and the percentage of carbon (C) and nitrogen (N) content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C), a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures.

  14. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster

    PubMed Central

    Eichler Inwood, Sarah; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M.; Butler, David M.; Luoto, Severi; Krama, Tatjana

    2016-01-01

    Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus), and the percentage of carbon (C) and nitrogen (N) content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C), a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures.

  15. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster

    PubMed Central

    Eichler Inwood, Sarah; Trakimas, Giedrius; Krams, Ronalds; Burghardt, Gordon M.; Butler, David M.; Luoto, Severi; Krama, Tatjana

    2016-01-01

    Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus), and the percentage of carbon (C) and nitrogen (N) content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C), a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures. PMID:27602281

  16. Tumor infiltration by Tbet+ effector T cells and CD20+ B cells is associated with survival in gastric cancer patients

    PubMed Central

    Hennequin, Audrey; Derangère, Valentin; Boidot, Romain; Apetoh, Lionel; Vincent, Julie; Orry, David; Fraisse, Jean; Causeret, Sylvain; Martin, François; Arnould, Laurent; Beltjens, Françoise; Ghiringhelli, François; Ladoire, Sylvain

    2016-01-01

    Tumor-infiltrating T and B lymphocytes could have the potential to affect cancer prognosis. The objective of this study was to investigate the prognostic significance of tumor infiltration by CD8 and CD4 T cells, and B lymphocytes in patients with localized gastric cancer. In a retrospective cohort of 82 patients with localized gastric cancer and treated by surgery we quantitatively assessed by immunohistochemistry on surgical specimen, immune infiltrates of IL-17+, CD8+, Foxp3+, Tbet+ T cells and CD20+ B cells both in the tumor core and at the invasive margin via immunohistochemical analyses of surgical specimens. We observed that CD8+ and IL17+ T-cell densities were not significantly associated with gastric cancer prognosis. In contrast, high infiltration of Tbet+ T cells, high numbers of CD20+ B-cell follicles, and low infiltration of Foxp3+ T cells, were associated with better relapse-free survival. Interestingly, treatment with neoadjuvant chemotherapy or histological tumor type (diffuse versus intestinal) did not influence type and density of immune infiltrates or their prognostic value. Immunohistochemical analysis of the gastric cancer stromal microenvironment revealed organized T and B cell aggregates, with strong structural analogies to normal secondary lymphoid organs and which could be considered as tertiary lymphoid structures. Using transcriptomic data from an independent cohort of 365 localized gastric cancer, we confirmed that a coordinated Th1, and B cell stromal gene signature is associated with better outcome. Altogether, these data suggest that tumor infiltration by B and Th1 T cells could affect gastric cancer prognosis and may be used to better define the outcome of patients with localized gastric cancer. PMID:27057426

  17. Mate loss affects survival but not breeding in black brant geese

    USGS Publications Warehouse

    Nicolai, Christopher A.; Sedinger, James S.; Ward, David H.; Boyd, W. Sean

    2012-01-01

    For birds maintaining long-term monogamous relationships, mate loss might be expected to reduce fitness, either through reduced survival or reduced future reproductive investment. We used harvest of male brant during regular sport hunting seasons as an experimental removal to examine effects of mate loss on fitness of female black brant (Branta bernicla nigricans; hereafter brant). We used the Barker model in program MARK to examine effects of mate loss on annual survival, reporting rate, and permanent emigration. Survival rates decreased from 0.847 ± 0.004 for females who did not lose their mates to 0.690 ± 0.072 for birds who lost mates. Seber ring reporting rate for females that lost their mates were 2 times higher than those that did not lose mates, 0.12 ± 0.086 and 0.06 ± 0.006, respectively, indicating that mate loss increased vulnerability to harvest and possibly other forms of predation. We found little support for effects of mate loss on fidelity to breeding site and consequently on breeding. Our results indicate substantial fitness costs to females associated with mate loss, but that females who survived and were able to form new pair bonds may have been higher quality than the average female in the population.

  18. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival

    PubMed Central

    Zhong, Wenbin; Yi, Qing; Xu, Bing; Li, Shiqian; Wang, Tong; Liu, Fupei; Zhu, Biying; Hoffmann, Peter R.; Ji, Guangju; Lei, Pingsheng; Li, Guoping; Li, Jiwei; Li, Jian; Olkkonen, Vesa M.; Yan, Daoguang

    2016-01-01

    Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca2+ release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment. PMID:27581363

  19. ORP4L is essential for T-cell acute lymphoblastic leukemia cell survival.

    PubMed

    Zhong, Wenbin; Yi, Qing; Xu, Bing; Li, Shiqian; Wang, Tong; Liu, Fupei; Zhu, Biying; Hoffmann, Peter R; Ji, Guangju; Lei, Pingsheng; Li, Guoping; Li, Jiwei; Li, Jian; Olkkonen, Vesa M; Yan, Daoguang

    2016-01-01

    Metabolic pathways are reprogrammed in cancer to support cell survival. Here, we report that T-cell acute lymphoblastic leukemia (T-ALL) cells are characterized by increased oxidative phosphorylation and robust ATP production. We demonstrate that ORP4L is expressed in T-ALL but not normal T-cells and its abundance is proportional to cellular ATP. ORP4L acts as an adaptor/scaffold assembling CD3ɛ, Gαq/11 and PLCβ3 into a complex that activates PLCβ3. PLCβ3 catalyzes IP3 production in T-ALL as opposed to PLCγ1 in normal T-cells. Up-regulation of ORP4L thus results in a switch in the enzyme responsible for IP3-induced endoplasmic reticulum Ca(2+) release and oxidative phosphorylation. ORP4L knockdown results in suboptimal bioenergetics, cell death and abrogation of T-ALL engraftment in vivo. In summary, we uncovered a signalling pathway operating specifically in T-ALL cells in which ORP4L mediates G protein-coupled ligand-induced PLCβ3 activation, resulting in an increase of mitochondrial respiration for cell survival. Targeting ORP4L might represent a promising approach for T-ALL treatment. PMID:27581363

  20. Multi-scale habitat selection affects offspring survival in a precocial species.

    PubMed

    Bloom, P M; Clark, R G; Howerter, D W; Armstrong, L M

    2013-12-01

    In theory, habitat preferences should be adaptive. Accordingly, fitness is often assumed to be greater in preferred habitats; however, this assumption is rarely tested and, when it is, the results are often equivocal. Habitat preferences may not directly convey fitness advantages if animals are constrained by tradeoffs with other selective pressures like predation or food availability. We address unresolved questions about the survival consequences of habitat choices made during brood-rearing in a precocial species with exclusive maternal care (mallard Anas platyrhynchos, n = 582 radio-marked females on 27 sites over 8 years). We directly linked duckling survival with habitat selection patterns at two spatial scales using logistic regression and model selection techniques. At the landscape scale (55-80 km(2)), females that demonstrated stronger selection of areas with more cover type 4 wetlands and greater total cover type 3 wetland area (wetlands with large expanses of open water surrounded by either a narrow or wide peripheral band of vegetation, respectively) had lower duckling survival rates than did females that demonstrated weaker selection of these habitats. At finer scales (0.32-7.16 km(2)), females selected brood-rearing areas with a greater proportion of wetland habitat with no consequences for duckling survival. However, females that avoided woody perennial habitats composed of trees and shrubs fledged more ducklings. The relationship between habitat selection and survival depended on both spatial scale and habitats considered. Females did not consistently select brood-rearing habitats that conferred the greatest benefits, an unexpected finding, although one that has also been reported in other recent studies of breeding birds.

  1. The Survival of Engrafted Neural Stem Cells Within Hyaluronic Acid Hydrogels

    PubMed Central

    Liang, Yajie; Walczak, Piotr; Bulte, Jeff W.M.

    2013-01-01

    Successful cell-based therapy of neurological disorders is highly dependent on the survival of transplanted stem cells, with the overall graft survival of naked, unprotected cells in general remaining poor. We investigated the use of an injectable hyaluronic acid (HA) hydrogel for enhancement of survival of transplanted mouse C17.2 cells, human neural progenitor cells (ReNcells), and human glial-restricted precursors (GRPs). The gelation properties of the HA hydrogel were first characterized and optimized for intracerebral injection, resulting in a 25 min delayed-injection after mixing of the hydrogel components. Using bioluminescence imaging (BLI) as a non-invasive readout of cell survival, we found that the hydrogel can protect xenografted cells as evidenced by the prolonged survival of C17.2 cells implanted in immunocompetent rats (p<0.01 at day 12). The survival of human ReNcells and human GRPs implanted in the brain of immunocompetent or immunodeficient mice was also significantly improved after hydrogel scaffolding (ReNcells, p<0.05 at day 5; GRPs, p<0.05 at day 7). However, an inflammatory response could be noted two weeks after injection of hydrogel into immunocompetent mice brains. We conclude that hydrogel scaffolding increases the survival of engrafted neural stem cells, justifying further optimization of hydrogel compositions. PMID:23623429

  2. Tetrandrine suppresses human glioma growth by inhibiting cell survival, proliferation and tumour angiogenesis through attenuating STAT3 phosphorylation.

    PubMed

    Ma, Ji-wei; Zhang, Yong; Li, Ru; Ye, Jie-cheng; Li, Hai-ying; Zhang, Yi-kai; Ma, Zheng-lai; Li, Jin-ying; Zhong, Xue-yun; Yang, Xuesong

    2015-10-01

    Tetrandrine (Tet), a bisbenzylisoquinoline alkaloid, has been reported to possess anti-tumour activity. However, its effects on human glioma remain unknown. In this study, we demonstrated that Tet inhibited human glioma cell growth in vitro and in vivo. It has been hypothesised that Tet inhibits glioma growth by affecting glioma cell survival, proliferation and vasculature in and around the xenograft tumour in the chick CAM model and signal transducer and activator of transcription 3 (STAT3) mediated these activities. Therefore, we conducted a detailed analysis of the inhibitory effects of Tet on cell survival using a TUNEL assay and flow cytometric analysis; on cell proliferation based on the expression of proliferating cell nuclear antigen; and on angiogenesis using a CAM anti-angiogenesis assay. We used western blotting to investigate the role of STAT3 on the anti-glioma activities of Tet. The results revealed that Tet inhibited survival and proliferation in human glioma cells, impaired tumour angiogenesis and decreased the expression of phosphorylated STAT3 and its downstream proteins. In sum, our data indicate that STAT3 is involved in Tet-induced the regression of glioma growth by activating tumour cell apoptosis, inhibiting glioma cell proliferation and inhibiting angiogenesis. PMID:26086859

  3. Predator functional response and prey survival: direct and indirect interactions affecting a marked prey population.

    PubMed

    Miller, David A; Grand, James B; Fondell, Thomas F; Anthony, Michael

    2006-01-01

    1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to

  4. Predator functional response and prey survival: Direct and indirect interactions affecting a marked prey population

    USGS Publications Warehouse

    Miller, David A.; Grand, J.B.; Fondell, T.F.; Anthony, M.

    2006-01-01

    1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to

  5. Winter fawn survival in black-tailed deer populations affected by hair loss syndrome.

    PubMed

    Bender, Louis C; Hall, P Briggs

    2004-07-01

    Overwinter fawn mortality associated with hair loss syndrome (HLS) is anecdotally thought to be important in declines of Columbian black-tailed deer (Odocoileus hemionus columbianus) populations in Washington and Oregon (USA). We determined prevalence of HLS in black-tailed deer, September and April fawn:doe ratios, and minimum overwinter survival rates of fawns for selected game management units (GMUs) in western Washington from 1999 to 2001. Prevalence of HLS ranged from 6% to 74% in fawns and 4% to 33% in does. Minimum fawn survival ranged from 0.56 to 0.83 and was unrelated to prevalence of HLS in either does (r=0.005, P=0.991) or fawns (r=-0.215, P=0.608). The prevalence of HLS in either does or fawns was also unrelated to either fall fawn:doe ratios (HLS does: r=-0.132, P=0.779; HLS fawns: r=0.130, P=0.760) or spring fawn:doe ratios (HLS does: r=-0.173, P=0.711; HLS fawns: r=-0.020, P=0.963). However, the prevalence of HLS in does and fawns was strongly related (r=0.942, P=0.002), and GMUs with high prevalence of HLS had lower deer population densities (fawns: r=-0.752, P=0.031; does: r=-0.813, P=0.026). Increased overwinter mortality of fawns because of HLS was not supported by our data. Decreased production of fawns, increased summer mortality of fawns, or both were seen in six of eight study GMU-year combinations. Observed rates of productivity and minimum fawn survival were inadequate to maintain population size in five of eight study GMU-year combinations, assuming an annual doe survival rate of 0.75. The influence of deer condition and population health on adult survival, fawn production, preweaning fawn survival, parasitism, and prevalence of HLS in both fawns and adults need to be clarified to identify what factors are limiting black-tailed deer productivity.

  6. Cell Cycle Arrest and Cell Survival Induce Reverse Trends of Cardiolipin Remodeling

    PubMed Central

    Chao, Yu-Jen; Chang, Wan-Hsin; Ting, Hsiu-Chi; Chao, Wei-Ting; Hsu, Yuan-Hao Howard

    2014-01-01

    Cell survival from the arrested state can be a cause of the cancer recurrence. Transition from the arrest state to the growth state is highly regulated by mitochondrial activity, which is related to the lipid compositions of the mitochondrial membrane. Cardiolipin is a critical phospholipid for the mitochondrial integrity and functions. We examined the changes of cardiolipin species by LC-MS in the transition between cell cycle arrest and cell reviving in HT1080 fibrosarcoma cells. We have identified 41 cardiolipin species by MS/MS and semi-quantitated them to analyze the detailed changes of cardiolipin species. The mass spectra of cardiolipin with the same carbon number form an envelope, and the C64, C66, C68, C70 C72 and C74 envelopes in HT1080 cells show a normal distribution in the full scan mass spectrum. The cardiolipin quantity in a cell decreases while entering the cell cycle arrest, but maintains at a similar level through cell survival. While cells awakening from the arrested state and preparing itself for replication, the groups with short acyl chains, such as C64, C66 and C68 show a decrease of cardiolipin percentage, but the groups with long acyl chains, such as C70 and C72 display an increase of cardiolipin percentage. Interestingly, the trends of the cardiolipin species changes during the arresting state are completely opposite to cell growing state. Our results indicate that the cardiolipin species shift from the short chain to long chain cardiolipin during the transition from cell cycle arrest to cell progression. PMID:25422939

  7. Analytic considerations and axiomatic approaches to the concept cell death and cell survival functions in biology and cancer treatment.

    PubMed

    Gkigkitzis, Ioannis; Haranas, Ioannis; Austerlitz, Carlos

    2015-01-01

    This study contains a discussion on the connection between current mathematical and biological modeling systems in response to the main research need for the development of a new mathematical theory for study of cell survival after medical treatment and cell biological behavior in general. This is a discussion of suggested future research directions and relations with interdisciplinary science. In an effort to establish the foundations for a possible framework that may be adopted to study and analyze the process of cell survival during treatment, we investigate the organic connection among an axiomatic system foundation, a predator-prey rate equation, and information theoretic signal processing. A new set theoretic approach is also introduced through the definition of cell survival units or cell survival units indicating the use of "proper classes" according to the Zermelo-Fraenkel set theory and the axiom of choice, as the mathematics appropriate for the development of biological theory of cell survival.

  8. T cell-dependent survival of CD20+ and CD20- plasma cells in human secondary lymphoid tissue.

    PubMed

    Withers, David R; Fiorini, Claudia; Fischer, Randy T; Ettinger, Rachel; Lipsky, Peter E; Grammer, Amrie C

    2007-06-01

    The signals mediating human plasma cell survival in vivo, particularly within secondary lymphoid tissue, are unclear. Human tonsils grafted into immunodeficient mice were therefore used to delineate the mechanisms promoting the survival of plasma cells. Tonsillar plasma cells were maintained within the grafts and the majority were nonproliferating, indicating a long-lived phenotype. A significant depletion of graft plasma cells was observed after anti-CD20 treatment, consistent with the expression of CD20 by most of the cells. Moreover, anti-CD52 treatment caused the complete loss of all graft lymphocytes, including plasma cells. Unexpectedly, anti-CD3, but not anti-CD154, treatment caused the complete loss of plasma cells, indicating an essential role for T cells, but not CD40-CD154 interactions in plasma cell survival. The in vitro coculture of purified tonsillar plasma cells and T cells revealed a T-cell survival signal requiring cell contact. Furthermore, immunofluorescence studies detected a close association between human plasma cells and T cells in vivo. These data reveal that human tonsil contains long-lived plasma cells, the majority of which express CD20 and can be deleted with anti-CD20 therapy. In addition, an important role for contact-dependent interactions with T cells in human plasma cell survival within secondary lymphoid tissue was identified.

  9. Propolis augments apoptosis induced by butyrate via targeting cell survival pathways.

    PubMed

    Drago, Eric; Bordonaro, Michael; Lee, Seon; Atamna, Wafa; Lazarova, Darina L

    2013-01-01

    Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC), and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling) may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors.

  10. PD-1 is a regulator of virus-specific CD8+ T cell survival in HIV infection

    PubMed Central

    Petrovas, Constantinos; Casazza, Joseph P.; Brenchley, Jason M.; Price, David A.; Gostick, Emma; Adams, William C.; Precopio, Melissa L.; Schacker, Timothy; Roederer, Mario; Douek, Daniel C.; Koup, Richard A.

    2006-01-01

    Here, we report on the expression of programmed death (PD)-1 on human virus-specific CD8+ T cells and the effect of manipulating signaling through PD-1 on the survival, proliferation, and cytokine function of these cells. PD-1 expression was found to be low on naive CD8+ T cells and increased on memory CD8+ T cells according to antigen specificity. Memory CD8+ T cells specific for poorly controlled chronic persistent virus (HIV) more frequently expressed PD-1 than memory CD8+ T cells specific for well-controlled persistent virus (cytomegalovirus) or acute (vaccinia) viruses. PD-1 expression was independent of maturational markers on memory CD8+ T cells and was not directly associated with an inability to produce cytokines. Importantly, the level of PD-1 surface expression was the primary determinant of apoptosis sensitivity of virus-specific CD8+ T cells. Manipulation of PD-1 led to changes in the ability of the cells to survive and expand, which, over several days, affected the number of cells expressing cytokines. Therefore, PD-1 is a major regulator of apoptosis that can impact the frequency of antiviral T cells in chronic infections such as HIV, and could be manipulated to improve HIV-specific CD8+ T cell numbers, but possibly not all functions in vivo. PMID:16954372

  11. Hydrogel Microwell Arrays Allow the Assessment of Protease-Associated Enhancement of Cancer Cell Aggregation and Survival

    PubMed Central

    Loessner, Daniela; Kobel, Stefan; Clements, Judith A.; Lutolf, Matthias P.; Hutmacher, Dietmar W.

    2013-01-01

    Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D), integrin-dependent cell-cell and cell-extracellular matrix (ECM) interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.

  12. Prognostic factors for long term survival in patients with advanced non-small cell lung cancer

    PubMed Central

    Moumtzi, Despoina; Lampaki, Sofia; Porpodis, Konstantinos; Lagoudi, Kalliopi; Hohenforst-Schmidt, Wolfgang; Pataka, Athanasia; Tsiouda, Theodora; Zissimopoulos, Athanasios; Lazaridis, George; Karavasilis, Vasilis; Timotheadou, Helen; Barbetakis, Nikolaos; Pavlidis, Pavlos; Kontakiotis, Theodoros; Zarogoulidis, Konstantinos

    2016-01-01

    Background Non-small cell lung cancer (NSCLC) represents 85% of all lung cancers. It is estimated that 60% of patients with NSCLC at time of diagnosis have advanced disease. The aim of this study was to investigate clinical and demographic prognostic factors of long term survival in patients with unresectable NSCLC. Methods We retrospectively reviewed data of 1,156 patients with NSCLC stage IIIB or IV who survived more than 60 days from the time of diagnosis and treated from August 1987 until March 2013 in the Oncology Department of Pulmonary Clinic of the General Hospital Papanikolaou. Initially univariate analysis using the log-rank test was conducted and then multivariate analysis using the proportional hazards model of Cox. Also Kaplan Meier curves were used to describe the distribution of survival times of patients. The level of significance was set at 0.05. Results The mean age at diagnosis was 62 years. About 11.9% of patients were women and 88.1% were male. The majority of cases were adenocarcinomas (42.2%), followed squamous (33%) and finally the large cell (6%). Unlike men, most common histological type among women was adenocarcinoma rather than squamous (63% vs. 10.9%). In univariate analysis statistically significant factors in the progression free survival (PFS) and overall survival (OS) were: weight loss ≥5%, histological type, line 1 drugs, line 1 combination, line 1 cycles and radio lung. Specifically radio lung gives clear survival benefit in the PFS and OS in stage IIIB (P=0.002) and IV (P<0.001). On the other hand, the number of distant metastases in stage IV patients did not affect OS, neither PFS. In addition patients who received platinum and taxane had better PFS (P=0.001) and OS (P<0.001) than those who received platinum without taxane. Also the third drug administration proved futile, since survival (682.06±34.9) (P=0.023) and PFS (434.93±26.93) (P=0.012) of patients who received less than three drugs was significantly larger. Finally

  13. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    PubMed

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-01

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells.

  14. PDK1 regulates VDJ recombination, cell-cycle exit and survival during B-cell development.

    PubMed

    Venigalla, Ram K C; McGuire, Victoria A; Clarke, Rosemary; Patterson-Kane, Janet C; Najafov, Ayaz; Toth, Rachel; McCarthy, Pierre C; Simeons, Frederick; Stojanovski, Laste; Arthur, J Simon C

    2013-04-01

    Phosphoinositide-dependent kinase-1 (PDK1) controls the activation of a subset of AGC kinases. Using a conditional knockout of PDK1 in haematopoietic cells, we demonstrate that PDK1 is essential for B cell development. B-cell progenitors lacking PDK1 arrested at the transition of pro-B to pre-B cells, due to a cell autonomous defect. Loss of PDK1 decreased the expression of the IgH chain in pro-B cells due to impaired recombination of the IgH distal variable segments, a process coordinated by the transcription factor Pax5. The expression of Pax5 in pre-B cells was decreased in PDK1 knockouts, which correlated with reduced expression of the Pax5 target genes IRF4, IRF8 and Aiolos. As a result, Ccnd3 is upregulated in PDK1 knockout pre-B cells and they have an impaired ability to undergo cell-cycle arrest, a necessary event for Ig light chain rearrangement. Instead, these cells underwent apoptosis that correlated with diminished expression of the pro-survival gene Bcl2A1. Reintroduction of both Pax5 and Bcl2A1 together into PDK1 knockout pro-B cells restored their ability to differentiate in vitro into mature B cells. PMID:23463102

  15. Factors affecting route selection and survival of steelhead kelts at Snake River dams in 2012 and 2013

    SciTech Connect

    Harnish, Ryan A.; Colotelo, Alison H. A.; Li, Xinya; Fu, Tao; Ham, Kenneth D.; Deng, Zhiqun; Green, Ethan D.

    2015-03-31

    In 2012 and 2013, Pacific Northwest National Laboratory (PNNL) conducted a study that summarized the passage route proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged kelts. Kelts were also tagged with passive integrated transponder tags to monitor passage through juvenile bypass systems (JBS) and detect returning fish. The current study evaluated data collected in 2012 and 2013 to identify environmental, temporal, operational, individual, and behavioral variables that were related to forebay residence time, route of passage, and survival of steelhead kelts at FCRPS dams on the Snake River. Multiple approaches, including 3-D tracking, bivariate and multivariable regression modeling, and decision tree analyses were used to identify the environmental, temporal, operational, individual, and behavioral variables that had the greatest effect on forebay residence time, route of passage, and route-specific and overall dam passage survival probabilities for tagged kelts at Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams. In general, kelt behavior and discharge appeared to work independently to affect forebay residence times. Kelt behavior, primarily approach location, migration depth, and “searching” activities in the forebay, was found to have the greatest influence on their route of passage. The condition of kelts was the single most important factor affecting their survival. The information gathered in this study may be used by dam operators and fisheries managers to identify potential management actions to improve in-river survival of kelts or collection methods for kelt reconditioning programs to aid

  16. The Role of Bcl-xL in Mouse RPE Cell Survival

    PubMed Central

    Medearis, Sarah; Han, Ian C.; Huang, Jessica K.; Yang, Ping

    2011-01-01

    Purpose. Retinal pigment epithelial (RPE) cell survival plays a critical role in normal physiology and in retinal diseases, such as age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). We have previously demonstrated that Bcl-xL is an important cell survival protein in human RPE (hRPE) cells. Herein, we determined the role of Bcl-xL as a survival protein in mouse RPE (mRPE) cells. Methods. Survival factor gene expression and Bcl-xL protein distribution were determined using qRT-PCR and immunohistochemistry, respectively. Cultured mRPE cells were transfected with two modified 2′-O-methoxyethoxy antisense oligonucleotides (ASOs): Bcl-xL–mismatched control and Bcl-xL–specific. Bcl-xL protein levels were analyzed using Western blot. To determine the effects of survival factor regulation in mRPE cells, cultured cells were treated for 24 hours with mouse TNF-α, human IL-1β, and human TNF-α. Results. Bcl-xL was the most highly expressed survival factor in both mouse eyecup and cultured mRPE cells, whereas Bax was the most highly expressed antisurvival factor. Bcl-xL was expressed in the RPE layer, and the distribution among the retinal layers was similar to that observed in human eyecups. IL-1β and TNF-α had minimal effect on Bcl-xL and Bax expression and strongly upregulated Traf-1. Transfection with Bcl-xL–specific ASO resulted in markedly diminished Bcl-xL gene expression, Bcl-xL protein levels, and cell number. Conclusions. Bcl-xL is the most highly expressed survival gene in mRPE cells and is essential for mRPE cell survival. Our data suggest that mouse tissue is an appropriate model for investigations of RPE survival factor genes. PMID:21724914

  17. Warming affects hatching time and early season survival of eastern tent caterpillars.

    PubMed

    Abarca, Mariana; Lill, John T

    2015-11-01

    Climate change is disrupting species interactions by altering the timing of phenological events such as budburst for plants and hatching for insects. We combined field observations with laboratory manipulations to investigate the consequences of climate warming on the phenology and performance of the eastern tent caterpillar (Malacosoma americanum). We evaluated the effects of warmer winter and spring regimes on caterpillar hatching patterns and starvation endurance, traits likely to be under selection in populations experiencing phenological asynchrony, using individuals from two different populations (Washington, DC, and Roswell, GA). We also quantified the proximate and extended fitness effects of early food deprivation and recorded spring phenology of local caterpillars and their host plants. In addition, we conducted laboratory assays to determine if caterpillars are using plant chemical cues to fine-tune their hatching times. Warmer winter temperatures induced earlier hatching and caterpillars from GA survived starvation for periods that were 30% longer than caterpillars from DC. Warmer spring regimes reduced the starvation endurance of caterpillars overwintering in the wild but not in the laboratory. Early starvation dramatically reduced hatchling survival; however, surviving caterpillars did not show detrimental effects on pupal mass or development time. In the field, hatching preceded budburst in both 2013 and 2014 and the period of optimal foliage quality was 2 weeks shorter in 2013. Hatching time was unaffected by exposure to plant volatiles. Overall, we found that warmer temperatures can trigger late-season asynchrony by accelerating plant phenology and caterpillars from different populations exhibit differential abilities to cope with environmental unreliability.

  18. Does the use of vaginal-implant transmitters affect neonate survival rate of white-tailed deer Odocoileus virginianus?

    USGS Publications Warehouse

    Swanson, C.C.; Jenks, J.A.; DePerno, C.S.; Klaver, R.W.; Osborn, R.G.; Tardiff, J.A.

    2008-01-01

    We compared survival of neonate white-tailed deer Odocoileus virginianus captured using vaginal-implant transmitters (VITs) and traditional ground searches to determine if capture method affects neonate survival. During winter 2003, 14 adult female radio-collared deer were fitted with VITs to aid in the spring capture of neonates; neonates were captured using VITs (N = 14) and traditional ground searches (N = 7). Of the VITs, seven (50%) resulted in the location of birth sites and the capture of 14 neonates. However, seven (50%) VITs were prematurely expelled prior to parturition. Predation accounted for seven neonate mortalities, and of these, five were neonates captured using VITs. During summer 2003, survival for neonates captured using VITs one. two, and three months post capture was 0.76 (SE = 0.05; N = 14). 0.64 (SE = 0.07; N = 11) and 0.64 (SE = 0.08; N = 9), respectively. Neonate survival one, two and three months post capture for neonates captured using ground searches was 0.71 (SE = 0.11 N = 7), 0.71 (SE = 0.15; N = 5) and 0.71 (SE = 0.15; N = 5), respectively. Although 71% of neonates that died were captured <24 hours after birth using VITs, survival did not differ between capture methods. Therefore, use of VITs to capture neonate white-tailed deer did not influence neonate survival. VITs enabled us to capture neonates in dense habitats which would have been difficult to locate using traditional ground searches. ?? Wildlife Biology (2008).

  19. Factors affecting settling, survival, and viability of black bears reintroduced to Felsenthal National Wildlife Refuge, Arkansas

    USGS Publications Warehouse

    Wear, B.J.; Eastridge, R.; Clark, J.D.

    2005-01-01

    We used radiotelemetry and population modeling techniques to examine factors related to population establishment of black bears (Ursus americanus) reintroduced to Felsenthal National Wildlife Refuge (NWR), Arkansas. Our objectives were to determine whether settling (i.e., establishment of a home range at or near the release site), survival, recruitment, and population viability were related to age class of reintroduced bears, presence of cubs, time since release, or number of translocated animals. We removed 23 adult female black bears with 56 cubs from their winter dens at White River NWR and transported them 160 km to man-made den structures at Felsenthal NWR during spring 2000–2002. Total movement and average circuity of adult females decreased from 1 month, 6 months, and 1 year post-emergence (F2,14 =19.7, P < 0.001 and F2,14 =5.76, P=0.015, respectively). Mean first-year post-release survival of adult female bears was 0.624 (SE = 0.110, SEinterannual = 0.144), and the survival rate of their cubs was 0.750 (SE = 0.088, SEinterannual = 0.109). The homing rate (i.e., the proportion of bears that returned to White River NWR) was 13%. Annual survival for female bears that remained at the release site and survived >1-year post-release increased to 0.909 (SE = 0.097, SEinterannual=0.067; Z=3.5, P < 0.001). Based on stochastic population growth simulations, the average annual growth rate (λ) was 1.093 (SD = 0.053) and the probability of extinction with no additional stockings ranged from 0.56-1.30%. The bear population at Felsenthal NWR is at or above the number after which extinction risk declines dramatically, although additional releases of bears could significantly decrease time to population reestablishment. Poaching accounted for at least 3 of the 8 adult mortalities that we documented; illegal kills could be a significant impediment to population re-establishment at Felsenthal NWR should poaching rates escalate.

  20. Enhanced endogenous type I interferon cell-driven survival and inhibition of spontaneous apoptosis by Riluzole

    SciTech Connect

    Achour, Ammar

    2009-03-30

    Highly active antiretroviral therapy (HAART), although effective in improving the survival of HIV-1-infected individuals, has not been able to reconstitute the adaptive immune response. We have described the use of novel chemical agents to restore T-cell survival/proliferation by inducing cytokine production. Due to its cationic amphiphilic structure, these molecules appear to enhance immune restoration. In this study, we investigated the action of Riluzole (2-amino-6-trifuromethoxybenzothiazole) in HIV-1 infection. Riluzole is able to increase (effective dose from 1 to 1000 nM) the cell-survival of T cells from HIV-1-infected patients and inhibit spontaneous apoptosis. The immunomodulatory effect of riluzole-sensitized cells was ascribed to endogenous type I interferon (IFN) derived from monocytes. Riluzole might be used for restoring the cell survival of immunocompromised patients and eliminating latent infected cells upon HIV-1 reactivation.

  1. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival.

    PubMed

    Jacque, Emilie; Schweighoffer, Edina; Tybulewicz, Victor L J; Ley, Steven C

    2015-06-01

    B cell activating factor (BAFF) stimulation of the BAFF receptor (BAFF-R) is essential for the homeostatic survival of mature B cells. Earlier in vitro experiments with inhibitors that block MEK 1 and 2 suggested that activation of ERK 1 and 2 MAP kinases is required for BAFF-R to promote B cell survival. However, these inhibitors are now known to also inhibit MEK5, which activates the related MAP kinase ERK5. In the present study, we demonstrated that BAFF-induced B cell survival was actually independent of ERK1/2 activation but required ERK5 activation. Consistent with this, we showed that conditional deletion of ERK5 in B cells led to a pronounced global reduction in mature B2 B cell numbers, which correlated with impaired survival of ERK5-deficient B cells after BAFF stimulation. ERK5 was required for optimal BAFF up-regulation of Mcl1 and Bcl2a1, which are prosurvival members of the Bcl-2 family. However, ERK5 deficiency did not alter BAFF activation of the PI3-kinase-Akt or NF-κB signaling pathways, which are also important for BAFF to promote mature B cell survival. Our study reveals a critical role for the MEK5-ERK5 MAP kinase signaling pathway in BAFF-induced mature B cell survival and homeostatic maintenance of B2 cell numbers.

  2. Survival of salmonella transformed to express green fluorescent protein on Italian parsley as affected by processing and storage.

    PubMed

    Duffy, E A; Cisneros-Zevallos, L; Castillo, A; Pillai, S D; Ricke, S C; Acuff, G R

    2005-04-01

    To study the effect of processing and storage parameters on the survival of Salmonella on fresh Italian parsley, parsley bunches were dipped for 3 or 15 min in suspensions that were preequilibrated to 5, 25, or 35 degrees C and inoculated with Salmonella transformed to express enhanced green fluorescent protein. Loosely attached and/or associated, strongly attached and/or associated, and internalized and/or entrapped Salmonella cells were enumerated over 0, 1, and 7 days of storage at 25 degrees C and over 0, 1, 7, 14, and 30 days of storage at 4 degrees C using surface-plating procedures. Leaf sections obtained from samples after 0, 1, and 7 days of storage were examined using confocal scanning laser microscopy. Temperature of the dip suspension had little effect on the attachment and survival of Salmonella cells on parsley. Regardless of the temperature or duration of dip, Salmonella was internalized. Immersion for longer times resulted in higher numbers of attached and internalized cells. Microscopic observations supported these results and revealed Salmonella cells near the stomata and within cracks in the cuticle. Storage temperature had the greatest impact on the survival of Salmonella cells on parsley. When stored at 25 degrees C, parsley had a shelf life of 7 days, and Salmonella populations significantly increased over the 7 days of storage. For parsley stored at 4 degrees C, numbers of Salmonella cells decreased over days 0, 1, and 7. After 7 days of storage, there were no viable internalized Salmonella cells detected. Storage temperature represents an important control point for the safety of fresh parsley.

  3. Development of Approaches to Improve Cell Survival in Myoblast Transfer Therapy

    PubMed Central

    Qu, Zhuqing; Balkir, Levent; van Deutekom, Judith C.T.; Robbins, Paul D.; Pruchnic, Ryan; Huard, Johnny

    1998-01-01

    Myoblast transplantation has been extensively studied as a gene complementation approach for genetic diseases such as Duchenne Muscular Dystrophy. This approach has been found capable of delivering dystrophin, the product missing in Duchenne Muscular Dystrophy muscle, and leading to an increase of strength in the dystrophic muscle. This approach, however, has been hindered by numerous limitations, including immunological problems, and low spread and poor survival of the injected myoblasts. We have investigated whether antiinflammatory treatment and use of different populations of skeletal muscle–derived cells may circumvent the poor survival of the injected myoblasts after implantation. We have observed that different populations of muscle-derived cells can be isolated from skeletal muscle based on their desmin immunoreactivity and differentiation capacity. Moreover, these cells acted differently when injected into muscle: 95% of the injected cells in some populations died within 48 h, while others richer in desmin-positive cells survived entirely. Since pure myoblasts obtained from isolated myofibers and myoblast cell lines also displayed a poor survival rate of the injected cells, we have concluded that the differential survival of the populations of muscle-derived cells is not only attributable to their content in desmin-positive cells. We have observed that the origin of the myogenic cells may influence their survival in the injected muscle. Finally, we have observed that myoblasts genetically engineered to express an inhibitor of the inflammatory cytokine, IL-1, can improve the survival rate of the injected myoblasts. Our results suggest that selection of specific muscle-derived cell populations or the control of inflammation can be used as an approach to improve cell survival after both myoblast transplantation and the myoblast-mediated ex vivo gene transfer approach. PMID:9732286

  4. Autophagy as a Survival Mechanism for Squamous Cell Carcinoma Cells in Endonuclease G-Mediated Apoptosis

    PubMed Central

    Masui, Atsushi; Hamada, Masakazu; Kameyama, Hiroyasu; Wakabayashi, Ken; Takasu, Ayako; Imai, Tomoaki; Iwai, Soichi; Yura, Yoshiaki

    2016-01-01

    Safingol, L- threo-dihydrosphingosine, induces cell death in human oral squamous cell carcinoma (SCC) cells through an endonuclease G (endoG) -mediated pathway. We herein determined whether safingol induced apoptosis and autophagy in oral SCC cells. Safingol induced apoptotic cell death in oral SCC cells in a dose-dependent manner. In safingol-treated cells, microtubule-associated protein 1 light chain 3 (LC3)-I was changed to LC3-II and the cytoplasmic expression of LC3, amount of acidic vesicular organelles (AVOs) stained by acridine orange and autophagic vacuoles were increased, indicating the occurrence of autophagy. An inhibitor of autophagy, 3-methyladenine (3-MA), enhanced the suppressive effects of safingol on cell viability, and this was accompanied by an increase in the number of apoptotic cells and extent of nuclear fragmentation. The nuclear translocation of endoG was minimal at a low concentration of safingol, but markedly increased when combined with 3-MA. The suppressive effects of safingol and 3-MA on cell viability were reduced in endoG siRNA- transfected cells. The scavenging of reactive oxygen species (ROS) prevented cell death induced by the combinational treatment, whereas a pretreatment with a pan-caspase inhibitor z-VAD-fmk did not. These results indicated that safingol induced apoptosis and autophagy in SCC cells and that the suppression of autophagy by 3-MA enhanced apoptosis. Autophagy supports cell survival, but not cell death in the SCC cell system in which apoptosis occurs in an endoG-mediated manner. PMID:27658240

  5. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp.

    PubMed

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  6. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp.

    PubMed

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  7. Plant Quantity Affects Development and Survival of a Gregarious Insect Herbivore and Its Endoparasitoid Wasp

    PubMed Central

    Fei, Minghui; Gols, Rieta; Zhu, Feng; Harvey, Jeffrey A.

    2016-01-01

    Virtually all studies of plant-herbivore-natural enemy interactions focus on plant quality as the major constraint on development and survival. However, for many gregarious feeding insect herbivores that feed on small or ephemeral plants, the quantity of resources is much more limiting, yet this area has received virtually no attention. Here, in both lab and semi-field experiments using tents containing variably sized clusters of food plants, we studied the effects of periodic food deprivation in a tri-trophic system where quantitative constraints are profoundly important on insect performance. The large cabbage white Pieris brassicae, is a specialist herbivore of relatively small wild brassicaceous plants that grow in variable densities, with black mustard (Brassica nigra) being one of the most important. Larvae of P. brassicae are in turn attacked by a specialist endoparasitoid wasp, Cotesia glomerata. Increasing the length of food deprivation of newly molted final instar caterpillars significantly decreased herbivore and parasitoid survival and biomass, but shortened their development time. Moreover, the ability of caterpillars to recover when provided with food again was correlated with the length of the food deprivation period. In outdoor tents with natural vegetation, we created conditions similar to those faced by P. brassicae in nature by manipulating plant density. Low densities of B. nigra lead to potential starvation of P. brassicae broods and their parasitoids, replicating nutritional conditions of the lab experiments. The ability of both unparasitized and parasitized caterpillars to find corner plants was similar but decreased with central plant density. Survival of both the herbivore and parasitoid increased with plant density and was higher for unparasitized than for parasitized caterpillars. Our results, in comparison with previous studies, reveal that quantitative constraints are far more important that qualitative constraints on the performance of

  8. Warming affects hatching time and early season survival of eastern tent caterpillars.

    PubMed

    Abarca, Mariana; Lill, John T

    2015-11-01

    Climate change is disrupting species interactions by altering the timing of phenological events such as budburst for plants and hatching for insects. We combined field observations with laboratory manipulations to investigate the consequences of climate warming on the phenology and performance of the eastern tent caterpillar (Malacosoma americanum). We evaluated the effects of warmer winter and spring regimes on caterpillar hatching patterns and starvation endurance, traits likely to be under selection in populations experiencing phenological asynchrony, using individuals from two different populations (Washington, DC, and Roswell, GA). We also quantified the proximate and extended fitness effects of early food deprivation and recorded spring phenology of local caterpillars and their host plants. In addition, we conducted laboratory assays to determine if caterpillars are using plant chemical cues to fine-tune their hatching times. Warmer winter temperatures induced earlier hatching and caterpillars from GA survived starvation for periods that were 30% longer than caterpillars from DC. Warmer spring regimes reduced the starvation endurance of caterpillars overwintering in the wild but not in the laboratory. Early starvation dramatically reduced hatchling survival; however, surviving caterpillars did not show detrimental effects on pupal mass or development time. In the field, hatching preceded budburst in both 2013 and 2014 and the period of optimal foliage quality was 2 weeks shorter in 2013. Hatching time was unaffected by exposure to plant volatiles. Overall, we found that warmer temperatures can trigger late-season asynchrony by accelerating plant phenology and caterpillars from different populations exhibit differential abilities to cope with environmental unreliability. PMID:26093630

  9. Factors affecting the survival, fertilization, and embryonic development of mouse oocytes after vitrification using glass capillaries.

    PubMed

    Tan, Xiuwen; Song, Enliang; Liu, Xiaomu; You, Wei; Wan, Fachun

    2009-09-01

    Cryopreservation of mammalian oocytes is an important way to provide a steady source of materials for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. However, oocytes cryopreservation has not been common used, as there still are some problems waiting to be solved on the repeatability, safety, and validity. Then, it is necessary to investigate the damage occurred from vitrification and find a way to avoid or repair it. In this study, mouse mature oocytes were firstly pretreated in different equilibrium media, such as 5% ethylene glycol (EG) + 5% dimethyl sulfoxide (DMSO), 10% EG + 10% DMSO, and 15% EG + 15% DMSO in TCM199 supplemented with 20% fetal calf serum (FCS), for 1, 3, and 5 min, respectively, and then oocytes were transferred into vitrification solution (20% EG, 20% DMSO, 0.3 M sucrose, and 20% FCS in TCM199, M2, Dulbecco's phosphate buffered saline, and 0.9% saline medium, respectively) and immediately loaded into glass capillaries to be plunged into liquid nitrogen. After storage from 1 h to 1 wk, they were diluted in stepwise sucrose solutions. The surviving oocytes were stained for cortical granule, meiotic spindles, and chromosomes. Oocytes without treatments were used as controls. The results showed that oocytes pretreated in 5% EG +5% DMSO group for 3-5 min or in 10% EG + 10% DMSO group for 1-3 min were better than other treatments. Oocytes vitrified in TCM199 as basic medium showed higher survival and better subsequent embryonic development than other groups. When the concentration of FCS in vitrification solution reduced below 15%, the rates of survival, fertilization, and developing to blastocyst declined dramatically. The inner diameter (0.6 mm) of glass capillaries and amount of vitrification solution (1-3 microl) achieved more rapid cooling and warming and so reduce the injury to oocytes. Cropreservation led to the exocytosis of cortical granule of oocytes (about 10%) and serious disturbance of

  10. Factors affecting the survival, fertilization, and embryonic development of mouse oocytes after vitrification using glass capillaries.

    PubMed

    Tan, Xiuwen; Song, Enliang; Liu, Xiaomu; You, Wei; Wan, Fachun

    2009-09-01

    Cryopreservation of mammalian oocytes is an important way to provide a steady source of materials for research and practice of parthenogenetic activation, in vitro fertilization, and nuclear transfer. However, oocytes cryopreservation has not been common used, as there still are some problems waiting to be solved on the repeatability, safety, and validity. Then, it is necessary to investigate the damage occurred from vitrification and find a way to avoid or repair it. In this study, mouse mature oocytes were firstly pretreated in different equilibrium media, such as 5% ethylene glycol (EG) + 5% dimethyl sulfoxide (DMSO), 10% EG + 10% DMSO, and 15% EG + 15% DMSO in TCM199 supplemented with 20% fetal calf serum (FCS), for 1, 3, and 5 min, respectively, and then oocytes were transferred into vitrification solution (20% EG, 20% DMSO, 0.3 M sucrose, and 20% FCS in TCM199, M2, Dulbecco's phosphate buffered saline, and 0.9% saline medium, respectively) and immediately loaded into glass capillaries to be plunged into liquid nitrogen. After storage from 1 h to 1 wk, they were diluted in stepwise sucrose solutions. The surviving oocytes were stained for cortical granule, meiotic spindles, and chromosomes. Oocytes without treatments were used as controls. The results showed that oocytes pretreated in 5% EG +5% DMSO group for 3-5 min or in 10% EG + 10% DMSO group for 1-3 min were better than other treatments. Oocytes vitrified in TCM199 as basic medium showed higher survival and better subsequent embryonic development than other groups. When the concentration of FCS in vitrification solution reduced below 15%, the rates of survival, fertilization, and developing to blastocyst declined dramatically. The inner diameter (0.6 mm) of glass capillaries and amount of vitrification solution (1-3 microl) achieved more rapid cooling and warming and so reduce the injury to oocytes. Cropreservation led to the exocytosis of cortical granule of oocytes (about 10%) and serious disturbance of

  11. Heat shock and cold shock treatments affect the survival of Listeria monocytogenes and Salmonella Typhimurium exposed to disinfectants.

    PubMed

    Lin, Meng-Hsuan; Chiang, Ming-Lun; Pan, Chorng-Liang; Chou, Cheng-Chun

    2012-04-01

    The foodborne pathogens Listeria monocytogenes and Salmonella Typhimurium were subjected to heat shock at 48°C for 10 and 30 min, respectively, and then cold shocked at 15°C for 3 h. The effect of these shocks on the viability of test organisms exposed to chlorine dioxide and quaternary ammonium compounds was then determined. After exposure to the disinfectants, the viable population of each test organism, regardless of heat shock or cold shock treatment, decreased as the exposure period was extended. Both heat shock and cold shock treatments reduced the susceptibility of L. monocytogenes to both disinfectants at 25°C. However, for Salmonella Typhimurium, exposure to the chlorine dioxide disinfectant or quaternary ammonium compounds at 25°C significantly reduced (P < 0.05) survival of heat-shocked cells but significantly increased (P < 0.05) survival of cold-shocked cells compared with control cells. Survival of both L. monocytogenes and Salmonella Typhimurium generally was reduced after exposure to disinfectants at 40°C compared with 25°C.

  12. Out-of-Field Cell Survival Following Exposure to Intensity-Modulated Radiation Fields

    SciTech Connect

    Butterworth, Karl T.; McGarry, Conor K.; Trainor, Colman; O'Sullivan, Joe M.; Hounsell, Alan R.; Prise, Kevin M.

    2011-04-01

    Purpose: To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication. Methods and Materials: Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator. Results: Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the {alpha}-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response. Conclusions: These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.

  13. Survival analysis of factors affecting incidence risk of Salmonella Dublin in Danish dairy herds during a 7-year surveillance period.

    PubMed

    Nielsen, Liza Rosenbaum; Dohoo, Ian

    2012-12-01

    A national surveillance programme for Salmonella Dublin, based on regular bulk-tank milk antibody screening and movements of cattle, was initiated in Denmark in 2002. From 2002 to end of 2009 the prevalence of test-positive dairy herds was reduced from 26% to 10%. However, new infections and spread of S. Dublin between herds continued to occur. The objective of this study was to investigate factors affecting incidence risk of S. Dublin infection in Danish dairy herds between 2003 and 2009. Herds were considered at risk when they had been test-negative for at least four consecutive year-quarters (YQs), either at the start of the study period or after recovery from infection. Survival analysis was performed on a dataset including 6931 dairy herds with 118,969 YQs at risk, in which 1523 failures (new infection events) occurred. Predictors obtained from register data were tested in a multivariable, proportional hazard model allowing for recurrence within herds. During October to December the hazard of failures was higher (hazard ratio HR=3.4, P=0.0005) than the rest of the year. Accounting for the delay in bulk-tank milk antibody responses to S. Dublin infection, this indicates that introduction of bacteria was most frequent between July and October. Purchase from test-positive cattle herds within the previous 6 months was associated with higher hazard of failures (HR=2.5, P<0.0001) compared to no purchase and purchase from test-negative herds. Increasing local prevalence, herd size and bulk-tank milk somatic cell counts were also associated with increasing hazard of failures. The effect of prior infection was time-dependent; the hazard of failures was reduced following a logarithmic decline with increasing time at risk. The hazard was markedly higher in herds with prior infections the first year after becoming at risk again, and then approached the hazard in herds without known prior infections 2-3 years after becoming test-negative. This showed that herds with prior

  14. Track-event theory of cell survival with second-order repair.

    PubMed

    Besserer, Jürgen; Schneider, Uwe

    2015-05-01

    When fractionation schemes for hypofractionation and stereotactic body radiotherapy are considered, a reliable cell survival model at high dose is needed for calculating doses of similar biological effectiveness. In this work, a simple model for cell survival which is valid also at high dose is developed from Poisson statistics. It is assumed that a cell is killed by an event that is defined by two double-strand breaks on the same or different chromosomes. Two different mechanisms can produce events. A one-track event is always represented by two simultaneous double-strand breaks. A two-track event results in one double-strand break. Therefore, at least two two-track events on the same or different chromosomes are necessary to produce an event. It is assumed that two double-strand breaks can be repaired with a certain repair probability. Both the one-track events and the two-track events are statistically independent. From the stochastic nature of cell killing which is described by the Poisson distribution, the cell survival probability was derived. The model was fitted to experimental data. It was shown that a solution based on Poisson statistics exists for cell survival. It exhibits exponential cell survival at high dose and a finite gradient of cell survival at vanishing dose, which is in agreement with experimental cell studies. The model fits the experimental data as well as the LQ model and is based on two free parameters. It was shown that cell survival can be described with a simple analytical formula on the basis of Poisson statistics. This solution represents in the limit of large dose the typical exponential behavior and predicts cell survival as well as the LQ model.

  15. Association between genetic variations in tumor necrosis factor receptor genes and survival of patients with T-cell lymphoma

    PubMed Central

    Zhai, Kan; Chang, Jiang; Wu, Chen; Lu, Ning; Huang, Li-Ming; Zhang, Tong-Wen; Yu, Dian-Ke; Tan, Wen; Lin, Dong-Xin

    2012-01-01

    The prognosis of T-cell lymphoma (TCL) has been shown to be associated with the clinical characteristics of patients. However, there is little knowledge of whether genetic variations also affect the prognosis of TCL. This study investigated the associations between single nucleotide polymorphisms (SNPs) in tumor necrosis factor receptor superfamily (TNFRSF) genes and the survival of patients with TCL. A total of 38 tag SNPs in 18 TNFRSF genes were genotyped using Sequenom platform in 150 patients with TCL. Kaplan-Meier survival estimates were plotted and significance was assessed using log-rank tests. Cox proportional hazard models were used to analyze each of these 38 SNPs with adjustment for covariates that might influence patient survival, including sex and international prognostic Index score. Hazard ratios (HRs) and their 95% confidence intervals (CIs) were calculated. Among the 38 SNPs tested, 3 were significantly associated with the survival of patients with TCL. These SNPs were located at LTβR (rs3759333C>T) and TNFRSF17 (rs2017662C>T and rs2071336C>T). The 5-year survival rates were significantly different among patients carrying different genotypes and the HRs for death between the different genotypes ranged from 0.45 to 2.46. These findings suggest that the SNPs in TNFRSF genes might be important determinants for the survival of TCL patients. PMID:22640629

  16. Sialylation Facilitates the Maturation of Mammalian Sperm and Affects Its Survival in Female Uterus.

    PubMed

    Ma, Xue; Pan, Qian; Feng, Ying; Choudhury, Biswa P; Ma, Qianhong; Gagneux, Pascal; Ma, Fang

    2016-06-01

    Establishment of adequate levels of sialylation is crucial for sperm survival and function after insemination; however, the mechanism for the addition of the sperm sialome has not been identified. Here, we report evidence for several different mechanisms that contribute to the establishment of the mature sperm sialome. Directly quantifying the source of the nucleotide sugar CMP-beta-N-acetylneuraminic acid in epididymal fluid indicates that transsialylation occurs in the upper epididymis. Western blots for the low-molecular-mass sialoglycoprotein (around 20-50 kDa) in C57BL/6 mice epididymal fluid reflect that additional sialome could be obtained by glycosylphosphatidylinositol-anchored sialoglycopeptide incorporation during epididymal transit in the caput of the epididymis. Additionally, we found that in Cmah (CMP-N-acetylneuraminic acid hydroxylase)-/- transgenic mice, epididymal sperm obtained sialylated-CD52 from seminal vesicle fluid (SVF). Finally, we used Gfp (green fluorescent protein)+/+ mouse sperm to test the role of sialylation on sperm for protection from female leukocyte attack. There is very low phagocytosis of the epididymal sperm when compared to that of sperm coincubated with SVF. Treating sperm with Arthrobacter ureafaciens sialidase (AUS) increased phagocytosis even further. Our results highlight the different mechanisms of increasing sialylation, which lead to the formation of the mature sperm sialome, as well as reveal the sialome's function in sperm survival within the female genital tract.

  17. Resistance to essential oils affects survival of Salmonella enterica serovars in growing and harvested basil.

    PubMed

    Kisluk, Guy; Kalily, Emmanuel; Yaron, Sima

    2013-10-01

    The number of outbreaks of food-borne illness associated with consumption of fresh products has increased. A recent and noteworthy outbreak occurred in 2007. Basil contaminated with Salmonella enterica serovar Senftenberg was the source of this outbreak. Since basil produces high levels of antibacterial compounds the aim of this study was to investigate if the emerging outbreak reflects ecological changes that occurred as a result of development of resistance to ingredients of the basil oil. We irrigated basil plants with contaminated water containing two Salmonella serovars, Typhimurium and Senftenberg, and showed that Salmonella can survive on the basil plants for at least 100 days. S. Senftenberg counts in the phyllosphere were significantly higher than S. Typhimurium, moreover, S. Senftenberg was able to grow on stored harvested basil leaves. Susceptibility experiments demonstrated that S. Senftenberg is more resistant to basil oil and to its antimicrobial constituents: linalool, estragole and eugenol. This may indicate that S. Senftenberg had adapted to the basil environment by developing resistance to the basil oil. The emergence of resistant pathogens has a significant potential to change the ecology, and opens the way for pathogens to survive in new niches in the environment such as basil and other plants. PMID:23648052

  18. Nestlings' carotenoid feather ornament affects parental allocation strategy and reduces maternal survival.

    PubMed

    Griggio, M; Morosinotto, C; Pilastro, A

    2009-10-01

    In some birds, feather ornaments are expressed in nestlings well before sexual maturation, possibly in response to parental favouritism towards high-quality offspring. In species with synchronous hatching, in which nestling ornaments may vary more among than within broods, parents may use this information to adjust their parental allocation to the current brood accordingly. We tested this hypothesis in the rock sparrow, in which a sexually selected yellow feather ornament is also expressed in nestlings. We experimentally enlarged nestlings' breast patch in a group of broods and sham-manipulated another group of control broods. Nestlings with enlarged ornament were fed more frequently and defended more actively from a dummy predator than their control counterparts. Mothers from the enlarged group were more likely to lay a second clutch and showed a reduced survival to the next breeding season. These results provide one of the first evidences of differential parental allocation among different broods based directly on nestlings' ornamentation, and the first, to our knowledge, to show a reduction in maternal survival. PMID:19694895

  19. Structural complexity of the environment affects the survival of alternative male reproductive tactics.

    PubMed

    Lukasik, Piotr; Radwan, Jacek; Tomkins, Joseph L

    2006-02-01

    Alternative reproductive tactics in males are often associated with divergent phenotypes expressed as phenotypically plastic threshold traits. The evolution of threshold traits in these species has been modeled under the conditional evolutionarily stable strategy (ESS). Both strategic and genetic models predict that perturbations to the fitness trade-off between the male morphs will lead to a shift in the ESS switch point of the threshold. So far, demographic factors that influence the competitive ability of male morphs have been investigated and related to intraspecific population variation in male dimorphic thresholds. Here we reveal evidence for the theoretical prediction that abiotic features of the environment, in particular its structural complexity, are likely to influence the ESS threshold. In the male dimorphic mite Sancassania berlesei, we monitored the survival of aggressive fighter males and their benign scrambler counterparts in populations that differed in structural complexity. We found that, consistent with our prediction, the complex habitat favored fighter males, enabling them to kill a greater number of rival scramblers. We found no effect of habitat complexity on the survival of fighter males. These results demonstrate how abiotic as well as biotic aspects of the environment can be important in determining the frequencies of males adopting alternative tactics in different species or populations.

  20. NF-YC in glioma cell proliferation and tumor growth and its role as an independent predictor of patient survival.

    PubMed

    Cui, Hua; Zhang, Mingkun; Wang, Yanxia; Wang, Yong

    2016-09-19

    Gliomas are tumors affecting the central nervous system and affecting approximately 7/10,000 people with the median survival of only 14.6 months. As such, there is a need to uncover and explore alternative targets and pathways of gliomagenesis as well as a need to develop early and effective predictive markers of the disease. In this study we utilized a wide range of patient glioma sections to assess the characteristic expression of NF-YC and investigate whether NF-YC could serve as an independent predictor of patient survival. Additionally, an in vitro glioma model of manipulated NF-YC was used to investigate NF-YC's role in the glioma growth process and ultimately validated in an animal model of tumor growth. Here, we present evidence of the NF-YC subunit of the NF-Y transcription factor complex as an independent prognostic maker for glioma patient survival. We also describe that NF-YC is positively correlated with a universal marker of cellular proliferation. Mechanistic investigation into the role of NF-YC in gliomagenesis showed that NF-YC plays a role in cell cycle progression through the inhibition of the cyclin-dependent kinase inhibitor p21. Finally, NF-YC plays a role in the epithelial-mesenchymal transition preceding metastasis. We propose a novel target of glioma cell proliferation, growth and metastasis. Additionally, we identify NF-YC as a novel and independent predictor of patient survival to be subsequently trialed. PMID:27495011

  1. Chronic activation of the kinase IKKβ impairs T cell function and survival

    PubMed Central

    Krishna, Sruti; Xie, Danli; Gorentla, Balachandra; Shin, Jinwook; Gao, Jimin; Zhong, Xiao-Ping

    2012-01-01

    Activation of the transcription factor NF-κB is critical for cytokine production and T cell survival after T cell receptor (TCR) engagement. The effects of persistent NF-κB activity on T cell function and survival are poorly understood. In this study, using a murine model that expresses a constitutively active form of inhibitor of κB kinase β(caIKKβ) in a T-cell specific manner, we demonstrate that chronic IKKβ signaling promotes T cell apoptosis, attenuates responsiveness to TCR-mediated stimulation in vitro, and impairs T cell responses to bacterial infection in vivo. CaIKKβ T cells showed increased FasL expression and caspase-8 activation, and blocking Fas/FasL interactions enhanced cell survival. T cell unresponsiveness was associated with defects in TCR proximal signaling, and elevated levels of Blimp1, a transcriptional repressor that promotes T cell exhaustion. CaIKKβ T cells also showed a defect in IL-2 production, and addition of exogenous IL-2 enhanced their survival and proliferation. Conditional deletion of Blimp1 partially rescued sensitivity of caIKKβ T cells to TCR triggering. Furthermore, adoptively transferred caIKKβ T cells showed diminished expansion and increased contraction in response to infection with Listeria monocytogenes expressing a cognate antigen. Despite their functional defects, caIKKβ T cells readily produced pro-inflammatory cytokines and mice developed autoimmunity. In contrast to NF-κB's critical role in T cell activation and survival, our study demonstrates that persistent IKK-NF-κB signaling is sufficient to impair both T cell function and survival. PMID:22753932

  2. Regulatory T cell expressed MyD88 is critical for prolongation of allograft survival.

    PubMed

    Borges, Christopher M; Reichenbach, Dawn K; Kim, Beom Seok; Misra, Aditya; Blazar, Bruce R; Turka, Laurence A

    2016-08-01

    MyD88 signaling directly promotes T-cell survival and is required for optimal T-cell responses to pathogens. To examine the role of T-cell-intrinsic MyD88 signals in transplantation, we studied mice with targeted T-cell-specific MyD88 deletion. Contrary to expectations, we found that these mice were relatively resistant to prolongation of graft survival with anti-CD154 plus rapamycin in a class II-mismatched system. To specifically examine the role of MyD88 in Tregs, we created a Treg-specific MyD88-deficient mouse. Transplant studies in these animals replicated the findings observed with a global T-cell MyD88 knockout. Surprisingly, given the role of MyD88 in conventional T-cell survival, we found no defect in the survival of MyD88-deficient Tregs in vitro or in the transplant recipients and also observed intact cell homing and expression of Treg effector molecules. MyD88-deficient Tregs also fail to protect allogeneic bone marrow transplant recipients from chronic graft-versus-host disease, confirming the observations of defective regulation seen in a solid organ transplant system. Together, our data define MyD88 as having a divergent requirement for cell survival in non-Tregs and Tregs, and a yet-to-be defined survival-independent requirement for Treg function during the response to alloantigen.

  3. WISP 1 is an important survival factor in human mesenchymal stromal cells.

    PubMed

    Schlegelmilch, Katrin; Keller, Alexander; Zehe, Viola; Hondke, Sylvia; Schilling, Tatjana; Jakob, Franz; Klein-Hitpass, Ludger; Schütze, Norbert

    2014-11-10

    WNT-induced secreted protein 1 (WISP1/CCN4), a member of the CCN protein family, acts as a downstream factor of the canonical WNT signaling pathway. Its expression is known to affect proliferation and differentiation of human mesenchymal stromal cells (hMSCs), which are fundamental for the development and maintenance of the musculoskeletal system. Whereas a dysregulated, excessive expression of WISP1 often reflects its oncogenic potential via the inhibition of apoptosis, our study emphasizes the importance of WISP1 signaling for the survival of primary human cells. We have established the efficient and specific down-regulation of endogenous WISP1 transcripts by gene silencing in hMSCs and observed cell death as a consequence of WISP1 deficiency. This was confirmed by Annexin V staining for apoptotic cells. DNA microarray analyses of WISP1 down-regulated versus control samples revealed several clusters of differentially expressed genes important for apoptosis induction such as TNF-related apoptosis-inducing ligand 1 (TRAIL) and the corresponding apoptosis-inducing receptors TRAIL-R1 and -R2. An increased expression of TRAIL and its receptors TRAIL-R1 and -R2 in WISP1-deficient hMSCs was confirmed by immunocytofluorescence. Accordingly, WISP1 deficiency is likely to cause TRAIL-induced apoptosis. This is an important novel finding, which suggests that WISP1 is indispensable for the protection of healthy hMSCs against TRAIL-induced apoptosis.

  4. Antiapoptotic protein Lifeguard is required for survival and maintenance of Purkinje and granular cells.

    PubMed

    Hurtado de Mendoza, Tatiana; Perez-Garcia, Carlos G; Kroll, Todd T; Hoong, Nien H; O'Leary, Dennis D M; Verma, Inder M

    2011-10-11

    Lifeguard (LFG) is an inhibitor of Fas-mediated cell death and is highly expressed in the cerebellum. We investigated the biological role of LFG in the cerebellum in vivo, using mice with reduced LFG expression generated by shRNA lentiviral transgenesis (shLFG mice) as well as LFG null mice. We found that LFG plays a role in cerebellar development by affecting cerebellar size, internal granular layer (IGL) thickness, and Purkinje cell (PC) development. All these features are more severe in early developmental stages and show substantial recovery overtime, providing a remarkable example of cerebellar plasticity. In adult mice, LFG plays a role in PC maintenance shown by reduced cellular density and abnormal morphology with increased active caspase 8 and caspase 3 immunostaining in shLFG and knockout (KO) PCs. We studied the mechanism of action of LFG as an inhibitor of the Fas pathway and provided evidence of the neuroprotective role of LFG in cerebellar granule neurons (CGNs) and PCs in an organotypic cerebellar culture system. Biochemical analysis of the Fas pathway revealed that LFG inhibits Fas-mediated cell death by interfering with caspase 8 activation. This result is supported by the increased number of active caspase 8-positive PCs in adult mice lacking LFG. These data demonstrate that LFG is required for proper development and survival of granular and Purkinje cells and suggest LFG may play a role in cerebellar disorders.

  5. How community size affects survival chances in cyclic competition games that microorganisms play

    NASA Astrophysics Data System (ADS)

    Müller, Ana Paula O.; Gallas, Jason A. C.

    2010-11-01

    Cyclic competition is a mechanism underlying biodiversity in nature and the competition between large numbers of interacting individuals under multifaceted environmental conditions. It is commonly modeled with the popular children’s rock-paper-scissors game. Here we probe cyclic competition systematically in a community of three strains of bacteria Escherichia coli. Recent experiments and simulations indicated the resistant strain of E. coli to win the competition. Other data, however, predicted the sensitive strain to be the final winner. We find a generic feature of cyclic competition that solves this puzzle: community size plays a decisive role in selecting the surviving competitor. Size-dependent effects arise from an easily detectable “period of quasiextinction” and may be tested in experiments. We briefly indicate how.

  6. Survival and iono-regulatory performance in Atlantic salmon smolts is not affected by atrazine exposure.

    PubMed

    Matsumoto, Jacquie; Hosmer, Alan J; Van Der Kraak, Glen

    2010-09-01

    This study was conducted to determine the potential effects of atrazine exposure on survival and physiological performance in Atlantic salmon (Salmo salar) during the period of smoltification. This study involved two separate experiments in which juvenile Atlantic salmon were exposed to atrazine for a four day period in freshwater after which the fish were transferred to 50% seawater for two days and then to 100% seawater for five more days. The nominal concentrations of atrazine tested (1, 10 and 100 microg/L) were representative of and exceeded the levels measured in the North American freshwater environment. After seven days in seawater, fish were weighed, bled for the determination of plasma electrolyte levels, euthanized and samples collected for the determination of gonadosomatic index, muscle water content and gill Na+/K+-ATPase activity. Measured atrazine concentrations during the freshwater exposure period were 76-99% of nominal levels. There were no mortalities attributed to atrazine exposure. There were also no statistically significant differences in body weight, plasma sodium, potassium, magnesium and chloride levels, muscle water content or gill Na+/K+-ATPase activity between control and atrazine treated fish. Measurement of testis and ovary weights showed that there were no treatment effects on relative gonad size in male or female fish. These studies have shown that short term exposure to atrazine during the freshwater phase of their lifecycle had no effects on subsequent survival, body weight, relative gonad size or various measures of iono-regulatory performance in juvenile Atlantic salmon upon transfer to seawater. The concentrations of atrazine tested exceed those likely to be experienced in the natural aquatic environment suggesting that short term exposure to atrazine does not pose a risk to Atlantic salmon during the period of smoltification.

  7. Autophagy in response to photodynamic therapy: cell survival vs. cell death

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Xue, Liang-yan; Chiu, Song-mao; Joseph, Sheeba

    2009-02-01

    Autophagy (or more properly, macroautophagy) is a pathway whereby damaged organelles or other cell components are encased in a double membrane, the autophagosome, which fuses with lysosomes for digestion by lysosomal hydrolases. This process can promote cell survival by removing damaged organelles, but when damage is extensive, it can also be a mechanism of cell death. Similar to the Kessel and Agostinis laboratories, we have reported the vigorous induction of autophagy by PDT; this was found in human breast cancer MCF-7 cells whether or not they were able to efficiently induce apoptosis. One way to evaluate the role of autophagy in PDT-treated cells is to silence one of the essential genes in the pathway. Kessel and Reiners silenced the Atg7 gene of murine leukemia L1210 cells using inhibitory RNA and found sensitization to PDT-induced cell death at a low dose of PDT, implying that autophagy is protective when PDT damage is modest. We have examined the role of autophagy in an epithelium-derived cancer cell by comparing parental and Atg7-silenced MCF-7 cells to varying doses of PDT with the phthalocyanine photosensitizer Pc 4. In contrast to L1210 cells, autophagy-deficient MCF-7 cells were more resistant to the lethal effects of PDT, as judged by clonogenic assays. A possible explanation for the difference in outcome for L1210 vs. MCF-7 cells is the greatly reduced ability of the latter to undergo apoptosis, a deficiency that may convert autophagy into a cell-death process even at low PDT doses. Experiments to investigate the mechanism(s) responsible are in process.

  8. How does cancer cell metabolism affect tumor migration and invasion?

    PubMed

    Han, Tianyu; Kang, De; Ji, Daokun; Wang, Xiaoyu; Zhan, Weihua; Fu, Minggui; Xin, Hong-Bo; Wang, Jian-Bin

    2013-01-01

    Cancer metastasis is the major cause of cancer-associated death. Accordingly, identification of the regulatory mechanisms that control whether or not tumor cells become "directed walkers" is a crucial issue of cancer research. The deregulation of cell migration during cancer progression determines the capacity of tumor cells to escape from the primary tumors and invade adjacent tissues to finally form metastases. The ability to switch from a predominantly oxidative metabolism to glycolysis and the production of lactate even when oxygen is plentiful is a key characteristic of cancer cells. This metabolic switch, known as the Warburg effect, was first described in 1920s, and affected not only tumor cell growth but also tumor cell migration. In this review, we will focus on the recent studies on how cancer cell metabolism affects tumor cell migration and invasion. Understanding the new aspects on molecular mechanisms and signaling pathways controlling tumor cell migration is critical for development of therapeutic strategies for cancer patients.

  9. Stat3 Signaling Promotes Survival And Maintenance Of Medullary Thymic Epithelial Cells.

    PubMed

    Lomada, Dakshayani; Jain, Manju; Bolner, Michelle; Reeh, Kaitlin A G; Kang, Rhea; Reddy, Madhava C; DiGiovanni, John; Richie, Ellen R

    2016-01-01

    Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis. PMID:26789196

  10. Stat3 Signaling Promotes Survival And Maintenance Of Medullary Thymic Epithelial Cells

    PubMed Central

    Bolner, Michelle; Reeh, Kaitlin A. G.; Kang, Rhea; Reddy, Madhava C.; DiGiovanni, John; Richie, Ellen R.

    2016-01-01

    Medullary thymic epithelial cells (mTECs) are essential for establishing central tolerance by expressing a diverse array of self-peptides that delete autoreactive thymocytes and/or divert thymocytes into the regulatory T cell lineage. Activation of the NFκB signaling pathway in mTEC precursors is indispensable for mTEC maturation and proliferation resulting in proper medullary region formation. Here we show that the Stat3-mediated signaling pathway also plays a key role in mTEC development and homeostasis. Expression of a constitutively active Stat3 transgene targeted to the mTEC compartment increases mTEC cellularity and bypasses the requirement for signals from positively selected thymocytes to drive medullary region formation. Conversely, conditional deletion of Stat3 disrupts medullary region architecture and reduces the number of mTECs. Stat3 signaling does not affect mTEC proliferation, but rather promotes survival of immature MHCIIloCD80lo mTEC precursors. In contrast to striking alterations in the mTEC compartment, neither enforced expression nor deletion of Stat3 affects cTEC cellularity or organization. These results demonstrate that in addition to the NFkB pathway, Stat3-mediated signals play an essential role in regulating mTEC cellularity and medullary region homeostasis. PMID:26789196

  11. Chronic alcohol consumption inhibits melanoma growth but decreases the survival of mice immunized with tumor cell lysate and boosted with α-galactosylceramide

    PubMed Central

    Zhang, Faya; Zhu, Zhaohui; Meadows, Gary G.; Zhang, Hui

    2015-01-01

    Alcohol consumption increases the incidence of multiple types of cancer. However, how chronic alcohol consumption affects tumor progression and host survival remains largely unexplored. Using a mouse B16BL6 melanoma model, we studied the effects of chronic alcohol consumption on s.c. tumor growth, iNKT cell antitumor immune response, and host survival. The results indicate that although chronic alcohol consumption inhibits melanoma growth, this does not translate into increased host survival. Immunizing mice with a melanoma cell lysate does not significantly increase the median survival of water-drinking, melanoma-bearing mice, but significantly increases the median survival of alcohol-consuming, melanoma-bearing mice. Even though survival is extended in the alcohol-consuming mice after immunization, the mean survival is not different from the immunized mice in the water-drinking group. Immunization with tumor cell lysate combined with α-galatosylceramide activation of iNKT cells significantly increases host survival of both groups of melanoma-bearing mice compared to their respective non-immunized counterparts; however, the median survival of the alcohol-consuming group is significantly lower than that of the water-drinking group. Alcohol consumption increases NKT cells in the thymus and blood and skews NKT cell cytokine profile from Th1 dominant to Th2 dominant in the tumor-bearing mice. In summary, these results indicate that chronic alcohol consumption activates the immune system, which leads to the inhibition of s.c. melanoma growth and enhances the immune response to immunization with melanoma lysate. With tumor progression, alcohol consumption accelerates iNKT cell dysfunction and compromises antitumor immunity, which leads to decreased survival of melanoma-bearing mice. PMID:26118634

  12. A stochastic model of cell survival for high-Z nanoparticle radiotherapy

    SciTech Connect

    Zygmanski, Piotr; Tsiamas, Panagiotis; Ngwa, Wil; Berbeco, Ross; Makrigiorgos, Mike; Hoegele, Wolfgang; Cifter, Fulya; Sajo, Erno

    2013-02-15

    Purpose: The authors present a stochastic framework for the assessment of cell survival in gold nanoparticle radiotherapy. Methods: The authors derive the equations for the effective macroscopic dose enhancement for a population of cells with nonideal distribution of gold nanoparticles (GNP), allowing different number of GNP per cell and different distances with respect to the cellular target. They use the mixed Poisson distribution formalism to model the impact of the aforementioned physical factors on the effective dose enhancement. Results: The authors show relatively large differences in the estimation of cell survival arising from using approximated formulae. They predict degeneration of the cell killing capacity due to different number of GNP per cell and different distances with respect to the cellular target. Conclusions: The presented stochastic framework can be used in interpretation of experimental cell survival or tumor control probability studies.

  13. Restoring KLF5 in esophageal squamous cell cancer cells activates the JNK pathway leading to apoptosis and reduced cell survival.

    PubMed

    Tarapore, Rohinton S; Yang, Yizeng; Katz, Jonathan P

    2013-05-01

    Esophageal cancer is the eighth most common cancer in the world and has an extremely dismal prognosis, with a 5-year survival of less than 20%. Current treatment options are limited, and thus identifying new molecular targets and pathways is critical to derive novel therapies. Worldwide, more than 90% of esophageal cancers are esophageal squamous cell cancer (ESCC). Previously, we identified that Krüppel-like factor 5 (KLF5), a key transcriptional regulator normally expressed in esophageal squamous epithelial cells, is lost in human ESCC. To examine the effects of restoring KLF5 in ESCC, we transduced the human ESCC cell lines TE7 and TE15, both of which lack KLF5 expression, with retrovirus to express KLF5 upon doxycycline induction. When KLF5 was induced, ESCC cells demonstrated increased apoptosis and decreased viability, with up-regulation of the proapoptotic factor BAX. Interestingly, c-Jun N-terminal kinase (JNK) signaling, an important upstream mediator of proapoptotic pathways including BAX, was also activated following KLF5 induction. KLF5 activation of JNK signaling was mediated by KLF5 transactivation of two key upstream regulators of the JNK pathway, ASK1 and MKK4, and inhibition of JNK blocked apoptosis and normalized cell survival following KLF5 induction. Thus, restoring KLF5 in ESCC cells promotes apoptosis and decreases cell survival in a JNK-dependent manner, providing a potential therapeutic target for human ESCC.

  14. Identification of Survival Genes in Human Glioblastoma Cells by Small Interfering RNA Screening

    PubMed Central

    Thaker, Nikhil G.; Zhang, Fang; McDonald, Peter R.; Shun, Tong Ying; Lewen, Michael D.; Pollack, Ian F.

    2009-01-01

    Target identification and validation remain difficult steps in the drug discovery process, and uncovering the core genes and pathways that are fundamental for cancer cell survival may facilitate this process. Glioblastoma represents a challenging form of cancer for chemotherapy. Therefore, we assayed 16,560 short interfering RNA (siRNA) aimed at identifying which of the 5520 unique therapeutically targetable gene products were important for the survival of human glioblastoma. We analyzed the viability of T98G glioma cells 96 h after siRNA transfection with two orthogonal statistical methods and identified 55 survival genes that encoded proteases, kinases, and transferases. It is noteworthy that 22% (12/55) of the survival genes were constituents of the 20S and 26S proteasome subunits. An expression survey of a panel of glioma cell lines demonstrated expression of the proteasome component PSMB4, and the validity of the proteasome complex as a target for survival inhibition was confirmed in a series of glioma and nonglioma cell lines by pharmacological inhibition and RNA interference. Biological networks were built with the other survival genes using a protein-protein interaction network, which identified clusters of cellular processes, including protein ubiquitination, purine and pyrimidine metabolism, nucleotide excision repair, and NF-κB signaling. The results of this study should broaden our understanding of the core genes and pathways that regulate cell survival; through either small molecule inhibition or RNA interference, we highlight the potential significance of proteasome inhibition. PMID:19783622

  15. The Kupffer Cell Number Affects the Outcome of Living Donor Liver Transplantation from Elderly Donors

    PubMed Central

    Hidaka, Masaaki; Eguchi, Susumu; Takatsuki, Mitsuhisa; Soyama, Akihiko; Ono, Shinichiro; Adachi, Tomohiko; Natsuda, Koji; Kugiyama, Tota; Hara, Takanobu; Okada, Satomi; Imamura, Hajime; Miuma, Satoshi; Miyaaki, Hisamitsu

    2016-01-01

    Background There have been no previous reports how Kupffer cells affect the outcome of living donor liver transplantation (LDLT) with an elderly donor. The aim of this study was to elucidate the influence of Kupffer cells on LDLT. Methods A total of 161 adult recipients underwent LDLT. The graft survival, prognostic factors for survival, and graft failure after LDLT were examined between cases with a young donor (<50, n = 112) and an elderly donor (≥50, N = 49). The Kupffer cells, represented by CD68-positive cell in the graft, were examined in the young and elderly donors. Results In a multivariable analysis, a donor older than 50 years, sepsis, and diabetes mellitus were significant predictors of graft failure after LDLT. The CD68 in younger donors was significantly more expressed than that in elderly donors. The group with a less number of CD68-positive cells in the graft had a significantly poor survival in the elderly donor group and prognostic factor for graft failure. Conclusions The worse outcome of LDLT with elderly donors might be related to the lower number of Kupffer cells in the graft, which can lead to impaired recovery of the liver function and may predispose patients to infectious diseases after LDLT.

  16. Survival of Airborne MS2 Bacteriophage Generated from Human Saliva, Artificial Saliva, and Cell Culture Medium

    PubMed Central

    Kuehn, Thomas H.; Bekele, Aschalew Z.; Mor, Sunil K.; Verma, Harsha; Goyal, Sagar M.; Raynor, Peter C.; Pui, David Y. H.

    2014-01-01

    Laboratory studies of virus aerosols have been criticized for generating airborne viruses from artificial nebulizer suspensions (e.g., cell culture media), which do not mimic the natural release of viruses (e.g., from human saliva). The objectives of this study were to determine the effect of human saliva on the infectivity and survival of airborne virus and to compare it with those of artificial saliva and cell culture medium. A stock of MS2 bacteriophage was diluted in one of three nebulizer suspensions, aerosolized, size selected (100 to 450 nm) using a differential mobility analyzer, and collected onto gelatin filters. Uranine was used as a particle tracer. The resulting particle size distribution was measured using a scanning mobility particle sizer. The amounts of infectious virus, total virus, and fluorescence in the collected samples were determined by infectivity assays, quantitative reverse transcription-PCR (RT-PCR), and spectrofluorometry, respectively. For all nebulizer suspensions, the virus content generally followed a particle volume distribution rather than a number distribution. The survival of airborne MS2 was independent of particle size but was strongly affected by the type of nebulizer suspension. Human saliva was found to be much less protective than cell culture medium (i.e., 3% tryptic soy broth) and artificial saliva. These results indicate the need for caution when extrapolating laboratory results, which often use artificial nebulizer suspensions. To better assess the risk of airborne transmission of viral diseases in real-life situations, the use of natural suspensions such as saliva or respiratory mucus is recommended. PMID:24561592

  17. Physical skill training increases the number of surviving new cells in the adult hippocampus.

    PubMed

    Curlik, Daniel M; Maeng, Lisa Y; Agarwal, Prateek R; Shors, Tracey J

    2013-01-01

    The dentate gyrus is a major site of plasticity in the adult brain, giving rise to thousands of new neurons every day, through the process of adult neurogenesis. Although the majority of these cells die within two weeks of their birth, they can be rescued from death by various forms of learning. Successful acquisition of select types of associative and spatial memories increases the number of these cells that survive. Here, we investigated the possibility that an entirely different form of learning, physical skill learning, could rescue new hippocampal cells from death. To test this possibility, rats were trained with a physically-demanding and technically-difficult version of a rotarod procedure. Acquisition of the physical skill greatly increased the number of new hippocampal cells that survived. The number of surviving cells positively correlated with performance on the task. Only animals that successfully mastered the task retained the cells that would have otherwise died. Animals that failed to learn, and those that did not learn well did not retain any more cells than those that were untrained. Importantly, acute voluntary exercise in activity wheels did not increase the number of surviving cells. These data suggest that acquisition of a physical skill can increase the number of surviving hippocampal cells. Moreover, learning an easier version of the task did not increase cell survival. These results are consistent with previous reports revealing that learning only rescues new neurons from death when acquisition is sufficiently difficult to achieve. Finally, complete hippocampal lesions did not disrupt acquisition of this physical skill. Therefore, physical skill training that does not depend on the hippocampus can effectively increase the number of surviving cells in the adult hippocampus, the vast majority of which become mature neurons.

  18. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells

    PubMed Central

    Krishnamurthy, Sudha; Dong, Zhihong; Vodopyanov, Dmitry; Imai, Atsushi; Helman, Joseph I.; Prince, Mark E.; Wicha, Max S.; Nör, Jacques E.

    2010-01-01

    Recent studies have demonstrated that cancer stem cells play an important role in the pathobiology of head and neck squamous cell carcinomas (HNSCC). However, little is known about functional interactions between head and neck cancer stem-like cells (CSC) and surrounding stromal cells. Here, we used Aldehyde Dehydrogenase activity and CD44 expression to sort putative stem cells from primary human HNSCC. Implantation of 1,000 CSC (ALDH+CD44+Lin−) led to tumors in 13 (out of 15) mice, while 10,000 non-cancer stem cells (NCSC; ALDH−CD44−Lin−) resulted in 2 tumors in 15 mice. These data demonstrated that ALDH and CD44 select a sub-population of cells that are highly tumorigenic. The ability to self-renew was confirmed by the observation that ALDH+CD44+Lin− cells sorted from human HNSCC formed more spheroids (orospheres) in 3-D agarose matrices or ultra-low attachment plates than controls and were serially passaged in vivo. We observed that approximately 80% of the CSC were located in close proximity (within 100-µm radius) of blood vessels in human tumors, suggesting the existence of perivascular niches in HNSCC. In vitro studies demonstrated that endothelial cell-secreted factors promoted self-renewal of CSC, as demonstrated by the upregulation of Bmi-1 expression and the increase in the number of orospheres as compared to controls. Notably, selective ablation of tumor-associated endothelial cells stably transduced with a caspase-based artificial death switch (iCaspase-9) caused a marked reduction in the fraction of CSC in xenograft tumors. Collectively, these findings indicate that endothelial cell-initiated signaling can enhance the survival and self-renewal of head and neck cancer stem cells. PMID:21098716

  19. Human intrahepatic regulatory T cells are functional, require IL‐2 from effector cells for survival, and are susceptible to Fas ligand‐mediated apoptosis

    PubMed Central

    Chen, Yung‐Yi; Jeffery, Hannah C.; Hunter, Stuart; Bhogal, Ricky; Birtwistle, Jane; Braitch, Manjit Kaur; Roberts, Sheree; Ming, Mikaela; Hannah, Jack; Thomas, Clare; Adali, Gupse; Hübscher, Stefan G.; Syn, Wing‐Kin; Afford, Simon; Lalor, Patricia F.; Adams, David H.

    2016-01-01

    Regulatory T cells (Treg) suppress T effector cell proliferation and maintain immune homeostasis. Autoimmune liver diseases persist despite high frequencies of Treg in the liver, suggesting that the local hepatic microenvironment might affect Treg stability, survival, and function. We hypothesized that interactions between Treg and endothelial cells during recruitment and then with epithelial cells within the liver affect Treg stability, survival, and function. To model this, we explored the function of Treg after migration through human hepatic sinusoidal‐endothelium (postendothelial migrated Treg [PEM Treg]) and the effect of subsequent interactions with cholangiocytes and local proinflammatory cytokines on survival and stability of Treg. Our findings suggest that the intrahepatic microenvironment is highly enriched with proinflammatory cytokines but deficient in the Treg survival cytokine interleukin (IL)‐2. Migration through endothelium into a model mimicking the inflamed liver microenvironment did not affect Treg stability; however, functional capacity was reduced. Furthermore, the addition of exogenous IL‐2 enhanced PEM Treg phosphorylated STAT5 signaling compared with PEMCD8. CD4 and CD8 T cells are the main source of IL‐2 in the inflamed liver. Liver‐infiltrating Treg reside close to bile ducts and coculture with cholangiocytes or their supernatants induced preferential apoptosis of Treg compared with CD8 effector cells. Treg from diseased livers expressed high levels of CD95, and their apoptosis was inhibited by IL‐2 or blockade of CD95. Conclusion: Recruitment through endothelium does not impair Treg stability, but a proinflammatory microenvironment deficient in IL‐2 leads to impaired function and increased susceptibility of Treg to epithelial cell‐induced Fas‐mediated apoptosis. These results provide a mechanism to explain Treg dysfunction in inflamed tissues and suggest that IL‐2 supplementation, particularly if used in conjunction

  20. Lysophosphatidic acid enhances survival of human CD34+ cells in ischemic conditions

    PubMed Central

    Kostic, Ivana; Fidalgo-Carvalho, Isabel; Aday, Sezin; Vazão, Helena; Carvalheiro, Tiago; Grãos, Mário; Duarte, António; Cardoso, Carla; Gonçalves, Lino; Carvalho, Lina; Paiva, Artur; Ferreira, Lino

    2015-01-01

    Several clinical trials are exploring therapeutic effect of human CD34+ cells in ischemic diseases, including myocardial infarction. Unfortunately, most of the cells die few days after delivery. Herein we show that lysophosphatidic acid (LPA)-treated human umbilical cord blood-derived CD34+ cells cultured under hypoxic and serum-deprived conditions present 2.2-fold and 1.3-fold higher survival relatively to non-treated cells and prostaglandin E2-treated cells, respectively. The pro-survival effect of LPA is concentration- and time-dependent and it is mediated by the activation of peroxisome proliferator-activator receptor γ (PPARγ) and downstream, by the activation of pro-survival ERK and Akt signaling pathways and the inhibition of mitochondrial apoptotic pathway. In hypoxia and serum-deprived culture conditions, LPA induces CD34+ cell proliferation without maintaining the their undifferentiating state, and enhances IL-8, IL-6 and G-CSF secretion during the first 12 h compared to non-treated cells. LPA-treated CD34+ cells delivered in fibrin gels have enhanced survival and improved cardiac fractional shortening at 2 weeks on rat infarcted hearts as compared to hearts treated with placebo. We have developed a new platform to enhance the survival of CD34+ cells using a natural and cost-effective ligand and demonstrated its utility in the preservation of the functionality of the heart after infarction. PMID:26553339

  1. Cell Survival and Apoptosis Signaling as Therapeutic Target for Cancer: Marine Bioactive Compounds

    PubMed Central

    Kalimuthu, Senthilkumar; Se-Kwon, Kim

    2013-01-01

    Inhibition of apoptosis leads to activation of cell survival factors (e.g., AKT) causes continuous cell proliferation in cancer. Apoptosis, the major form of cellular suicide, is central to various physiological processes and the maintenance of homeostasis in multicellular organisms. A number of discoveries have clarified the molecular mechanism of apoptosis, thus clarifying the link between apoptosis and cell survival factors, which has a therapeutic outcome. Induction of apoptosis and inhibition of cell survival by anticancer agents has been shown to correlate with tumor response. Cellular damage induces growth arrest and tumor suppression by inducing apoptosis, necrosis and senescence; the mechanism of cell death depends on the magnitude of DNA damage following exposure to various anticancer agents. Apoptosis is mainly regulated by cell survival and proliferating signaling molecules. As a new therapeutic strategy, alternative types of cell death might be exploited to control and eradicate cancer cells. This review discusses the signaling of apoptosis and cell survival, as well as the potential contribution of marine bioactive compounds, suggesting that new therapeutic strategies might follow. PMID:23348928

  2. HSP70 mediates survival in apoptotic cells-Boolean network prediction and experimental validation.

    PubMed

    Vasaikar, Suhas V; Ghosh, Sourish; Narain, Priyam; Basu, Anirban; Gomes, James

    2015-01-01

    Neuronal stress or injury results in the activation of proteins, which regulate the balance between survival and apoptosis. However, the complex mechanism of cell signaling involving cell death and survival, activated in response to cellular stress is not yet completely understood. To bring more clarity about these mechanisms, a Boolean network was constructed that represented the apoptotic pathway in neuronal cells. FasL and neurotrophic growth factor (NGF) were considered as inputs in the absence and presence of heat shock proteins known to shift the balance toward survival by rescuing pro-apoptotic cells. The probabilities of survival, DNA repair and apoptosis as cellular fates, in the presence of either the growth factor or FasL, revealed a survival bias encoded in the network. Boolean predictions tested by measuring the mRNA level of caspase-3, caspase-8, and BAX in neuronal Neuro2a (N2a) cell line with NGF and FasL as external input, showed positive correlation with the observed experimental results for survival and apoptotic states. It was observed that HSP70 contributed more toward rescuing cells from apoptosis in comparison to HSP27, HSP40, and HSP90. Overexpression of HSP70 in N2a transfected cells showed reversal of cellular fate from FasL-induced apoptosis to survival. Further, the pro-survival role of the proteins BCL2, IAP, cFLIP, and NFκB determined by vertex perturbation analysis was experimentally validated through protein inhibition experiments using EM20-25, Embelin and Wedelolactone, which resulted in 1.27-, 1.26-, and 1.46-fold increase in apoptosis of N2a cells. The existence of a one-to-one correspondence between cellular fates and attractor states shows that Boolean networks may be employed with confidence in qualitative analytical studies of biological networks.

  3. Factors affecting feeding behavior and survival of juvenile lake trout in the Great Lakes

    USGS Publications Warehouse

    Savino, Jacqueline F.; Henry, Mary G.; Kincaid, Harold L.

    1993-01-01

    We explored the importance of experience with feeding on live prey, of cataracts, of strain, and of maternally transferred contaminants for the feeding rate and predator avoidance behavior of young lake trout Salvelinus namaycush. Hatchery-reared and feral juvenile lake trout were tested separately as predators on lake trout fry in tanks with artificial cobble reefs. Feral fish captured more prey per day and more prey per strike than did hatchery lake trout. The predatory performance of hatchery and feral fish did not improve significantly with experience. Feeding rates did not differ between lake trout with unilateral cataracts and normal-eyed fish, but significantly diminished for lake trout with bilateral cataracts. Neither strain nor contaminant background affected the ability of fry to feed or to avoid predators. Of the factors studied, previous experience with live food under natural conditions (i.e., the experience of feral fish) was the most important factor affecting feeding behavior of young lake trout.

  4. Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy.

    PubMed

    Hao, Le Thi; Duy, Phan Q; Jontes, James D; Beattie, Christine E

    2015-01-15

    Low levels of the survival motor neuron protein (SMN) cause the disease spinal muscular atrophy. A primary characteristic of this disease is motoneuron dysfunction and paralysis. Understanding why motoneurons are affected by low levels of SMN will lend insight into this disease and to motoneuron biology in general. Motoneurons in zebrafish smn mutants develop abnormally; however, it is unclear where Smn is needed for motoneuron development since it is a ubiquitously expressed protein. We have addressed this issue by expressing human SMN in motoneurons in zebrafish maternal-zygotic (mz) smn mutants. First, we demonstrate that SMN is present in axons, but only during the period of robust motor axon outgrowth. We also conclusively demonstrate that SMN acts cell autonomously in motoneurons for proper motoneuron development. This includes the formation of both axonal and dendritic branches. Analysis of the peripheral nervous system revealed that Schwann cells and dorsal root ganglia (DRG) neurons developed abnormally in mz-smn mutants. Schwann cells did not wrap axons tightly and had expanded nodes of Ranvier. The majority of DRG neurons had abnormally short peripheral axons and later many of them failed to divide and died. Expressing SMN just in motoneurons rescued both of these cell types showing that their failure to develop was secondary to the developmental defects in motoneurons. Driving SMN just in motoneurons did not increase survival of the animal, suggesting that SMN is needed for motoneuron development and motor circuitry, but that SMN in other cells types factors into survival.

  5. Impact of Treatment Modalities on Survival of Patients With Locoregional Esophageal Squamous-Cell Carcinoma in Taiwan.

    PubMed

    Chen, Hui-Shan; Hung, Wei-Heng; Ko, Jiunn-Liang; Hsu, Po-Kuei; Liu, Chia-Chuan; Wu, Shiao-Chi; Lin, Ching-Hsiung; Wang, Bing-Yen

    2016-03-01

    The optimal treatment modality for locoregional esophageal squamous-cell carcinoma (ESCC) is still undetermined. This study investigated the treatment modalities affecting survival of patients with ESCC in Taiwan.Data on 6202 patients who underwent treatment for locoregional esophageal squamous-cell carcinoma during 2008 to 2012 in Taiwan were collected from the Taiwan Cancer Registry. Patients were stratified by clinical stage. The major treatment approaches included definitive chemoradiotherapy, preoperative chemoradiation followed by esophagectomy, esophagectomy followed by adjuvant therapy, and esophagectomy alone. The impact of different treatment modalities on overall survival was analyzed.The majority of patients had stage III disease (n = 4091; 65.96%), followed by stage II (n = 1582, 25.51%) and stage I cancer (n = 529, 8.53%). The 3-year overall survival rates were 60.65% for patients with stage I disease, 36.21% for those with stage II cancer, and 21.39% for patients with stage III carcinoma. Surgery alone was associated with significantly better overall survival than the other treatment modalities for patients with stage I disease (P = 0.029) and was associated with significantly worse overall survival for patients with stage III cancer (P < 0.001). There was no survival risk difference among the different treatment methods for patients with clinical stage II disease.Multimodality treatment is recommended for patients with stage II-III esophageal squamous-cell carcinoma. Patients with clinical stage I disease can be treated with esophagectomy without preoperative therapy. PMID:26962818

  6. Stanniocalcin 2 enhances mesenchymal stem cell survival by suppressing oxidative stress.

    PubMed

    Kim, Pyung-Hwan; Na, Sang-Su; Lee, Bomnaerin; Kim, Joo-Hyun; Cho, Je-Yoel

    2015-12-01

    To overcome the disadvantages of stem cell-based cell therapy like low cell survival at the disease site, we used stanniocalcin 2 (STC2), a family of secreted glycoprotein hormones that function to inhibit apoptosis and oxidative damage and to induce proliferation. STC2 gene was transfected into two kinds of stem cells to prolong cell survival and protect the cells from the damage by oxidative stress. The stem cells expressing STC2 exhibited increased cell viability and improved cell survival as well as elevated expression of the pluripotency and self-renewal markers (Oct4 and Nanog) under sub-lethal oxidative conditions. Up-regulation of CDK2 and CDK4 and down-regulation of cell cycle inhibitors p16 and p21 were observed after the delivery of STC2. Furthermore, STC2 transduction activated pAKT and pERK 1/2 signal pathways. Taken together, the STC2 can be used to enhance cell survival and maintain long-term stemness in therapeutic use of stem cells.

  7. Bit-1 mediates integrin-dependent cell survival through activation of the NFkappaB pathway.

    PubMed

    Griffiths, Genevieve S; Grundl, Melanie; Leychenko, Anna; Reiter, Silke; Young-Robbins, Shirley S; Sulzmaier, Florian J; Caliva, Maisel J; Ramos, Joe W; Matter, Michelle L

    2011-04-22

    Loss of properly regulated cell death and cell survival pathways can contribute to the development of cancer and cancer metastasis. Cell survival signals are modulated by many different receptors, including integrins. Bit-1 is an effector of anoikis (cell death due to loss of attachment) in suspended cells. The anoikis function of Bit-1 can be counteracted by integrin-mediated cell attachment. Here, we explored integrin regulation of Bit-1 in adherent cells. We show that knockdown of endogenous Bit-1 in adherent cells decreased cell survival and re-expression of Bit-1 abrogated this effect. Furthermore, reduction of Bit-1 promoted both staurosporine and serum-deprivation induced apoptosis. Indeed knockdown of Bit-1 in these cells led to increased apoptosis as determined by caspase-3 activation and positive TUNEL staining. Bit-1 expression protected cells from apoptosis by increasing phospho-IκB levels and subsequently bcl-2 gene transcription. Protection from apoptosis under serum-free conditions correlated with bcl-2 transcription and Bcl-2 protein expression. Finally, Bit-1-mediated regulation of bcl-2 was dependent on focal adhesion kinase, PI3K, and AKT. Thus, we have elucidated an integrin-controlled pathway in which Bit-1 is, in part, responsible for the survival effects of cell-ECM interactions.

  8. Expression of CD39 on Activated T Cells Impairs their Survival in Older Individuals.

    PubMed

    Fang, Fengqin; Yu, Mingcan; Cavanagh, Mary M; Hutter Saunders, Jessica; Qi, Qian; Ye, Zhongde; Le Saux, Sabine; Sultan, William; Turgano, Emerson; Dekker, Cornelia L; Tian, Lu; Weyand, Cornelia M; Goronzy, Jörg J

    2016-02-01

    In an immune response, CD4(+) T cells expand into effector T cells and then contract to survive as long-lived memory cells. To identify age-associated defects in memory cell formation, we profiled activated CD4(+) T cells and found an increased induction of the ATPase CD39 with age. CD39(+) CD4(+) T cells resembled effector T cells with signs of metabolic stress and high susceptibility to undergo apoptosis. Pharmacological inhibition of ATPase activity dampened effector cell differentiation and improved survival, suggesting that CD39 activity influences T cell fate. Individuals carrying a low-expressing CD39 variant responded better to vaccination with an increase in vaccine-specific memory T cells. Increased inducibility of CD39 after activation may contribute to the impaired vaccine response with age. PMID:26832412

  9. Can cyanobacterial biomass applied to soil affect survival and reproduction of springtail Folsomia candida?

    PubMed

    Lána, Jan; Hofman, Jakub; Bláha, Luděk

    2011-05-01

    Biomass of cyanobacterial water blooms including cyanobacterial toxins may enter soils, for example, when harvested water bloom is directly applied as an organic fertilizer or when water with massive cyanobacterial biomass is used for irrigation. In spite of this, no information is available about the potential effects on soil arthropods. The objective of this pilot study was to evaluate the effects of water bloom biomass sampled in five different fresh water lakes on the soil dwelling arthropod, springtail Folsomia candida (Collembola). These samples contained different dominant species of cyanobacteria and varied significantly in microcystin content (21-3662 μg/g dw biomass). No adverse effects on survival or reproduction were observed for any tested sample at concentration up to 4 g dw biomass/kg dw soil. Despite the known hazardous properties of water blooms in aquatic ecosystems, our pilot results suggest that cyanobacterial biomass might have no significant impact on arthropods in soil. It remains a question, if this is due to low bioavailability of cyanobacterial toxins in soil. PMID:21176962

  10. Maternally derived carotenoid pigments affect offspring survival, sex ratio, and sexual attractiveness in a colorful songbird

    NASA Astrophysics Data System (ADS)

    McGraw, K. J.; Adkins-Regan, E.; Parker, R. S.

    2005-08-01

    In egg-laying animals, mothers can influence the development of their offspring via the suite of biochemicals they incorporate into the nourishing yolk (e.g. lipids, hormones). However, the long-lasting fitness consequences of this early nutritional environment have often proved elusive. Here, we show that the colorful carotenoid pigments that female zebra finches ( Taeniopygia guttata) deposit into egg yolks influence embryonic and nestling survival, the sex ratio of fledged offspring, and the eventual ornamental coloration displayed by their offspring as adults. Mothers experimentally supplemented with dietary carotenoids prior to egg-laying incorporated more carotenoids into eggs, which, due to the antioxidant activity of carotenoids, rendered their embryos less susceptible to free-radical attack during development. These eggs were subsequently more likely to hatch, fledge offspring, produce more sons than daughters, and produce sons who exhibited more brightly colored carotenoid-based beak pigmentation. Provisioned mothers also acquired more colorful beaks, which directly predicted levels of carotenoids found in eggs, thus indicating that these pigments may function not only as physiological ‘damage-protectants’ in adults and offspring but also as morphological signals of maternal reproductive capabilities.

  11. Cell surface lactate receptor GPR81 is crucial for cancer cell survival.

    PubMed

    Roland, Christina L; Arumugam, Thiruvengadam; Deng, Defeng; Liu, Shi He; Philip, Bincy; Gomez, Sobeyda; Burns, William R; Ramachandran, Vijaya; Wang, Huamin; Cruz-Monserrate, Zobeida; Logsdon, Craig D

    2014-09-15

    The mechanisms that allow cancer cells to adapt to the typical tumor microenvironment of low oxygen and glucose and high lactate are not well understood. GPR81 is a lactate receptor recently identified in adipose and muscle cells that has not been investigated in cancer. In the current study, we examined GPR81 expression and function in cancer cells. We found that GPR81 was present in colon, breast, lung, hepatocellular, salivary gland, cervical, and pancreatic carcinoma cell lines. Examination of tumors resected from patients with pancreatic cancer indicated that 94% (148 of 158) expressed high levels of GPR81. Functionally, we observed that the reduction of GPR81 levels using shRNA-mediated silencing had little effect on pancreatic cancer cells cultured in high glucose, but led to the rapid death of cancer cells cultured in conditions of low glucose supplemented with lactate. We also observed that lactate addition to culture media induced the expression of genes involved in lactate metabolism, including monocarboxylase transporters in control, but not in GPR81-silenced cells. In vivo, GPR81 expression levels correlated with the rate of pancreatic cancer tumor growth and metastasis. Cells in which GPR81 was silenced showed a dramatic decrease in growth and metastasis. Implantation of cancer cells in vivo was also observed to lead to greatly elevated levels of GPR81. These data support that GPR81 is important for cancer cell regulation of lactate transport mechanisms. Furthermore, lactate transport is important for the survival of cancer cells in the tumor microenvironment. Cancer Res; 74(18); 5301-10. ©2014 AACR.

  12. Cell surface lactate receptor GPR81 is crucial for cancer cell survival

    PubMed Central

    Roland, Christina L.; Arumugam, Thiruvengadam; Deng, Defeng; Liu, Shi He; Philip, Bincy; Gomez, Sobeyda; Burns, William R.; Ramachandran, Vijaya; Wang, Huamin; Cruz-Monserrate, Zobeida; Logsdon, Craig D.

    2014-01-01

    The mechanisms which allow cancer cells to adapt to the typical tumor microenvironment of low oxygen and glucose and high lactate are not well understood. GPR81 is a lactate receptor recently identified in adipose and muscle cells that has not been investigated in cancer. In the current study, we examined GPR81 expression and function in cancer cells. We found that GPR81 was present in colon, breast, lung, hepatocellular, salivary gland, cervical and pancreatic carcinoma cell lines. Examination of tumors resected from pancreatic cancer patients indicated that 94% (148/158) expressed high levels of GPR81. Functionally, we observed that the reduction of GPR81 levels using shRNA mediated silencing had little effect on pancreatic cancer cells cultured in high glucose, but led to the rapid death of cancer cells cultured in conditions of low glucose supplemented with lactate. We also observed that lactate addition to culture media induced the expression of genes involved in lactate metabolism including monocarboxylase transporters in control, but not in GPR81 silenced cells. In vivo, GPR81 expression levels correlated with the rate of pancreatic cancer tumor growth and metastasis. Cells in which GPR81 was silenced showed a dramatic decrease in growth and metastasis. Implantation of cancer cells in vivo was also observed to lead to greatly elevate levels of GPR81. These data support that GPR81 is important for cancer cell regulation of lactate transport mechanisms. Furthermore, lactate transport is important for the survival of cancer cells in the tumor microenvironment. PMID:24928781

  13. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy.

    PubMed

    Matsuzawa, Yu; Oshima, Shigeru; Takahara, Masahiro; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Kobayashi, Masanori; Nibe, Yoichi; Nozaki, Kengo; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Ma, Averil; Watanabe, Mamoru

    2015-01-01

    Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells.

  14. TNFAIP3 promotes survival of CD4 T cells by restricting MTOR and promoting autophagy

    PubMed Central

    Matsuzawa, Yu; Oshima, Shigeru; Takahara, Masahiro; Maeyashiki, Chiaki; Nemoto, Yasuhiro; Kobayashi, Masanori; Nibe, Yoichi; Nozaki, Kengo; Nagaishi, Takashi; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Ma, Averil; Watanabe, Mamoru

    2015-01-01

    Autophagy plays important roles in metabolism, differentiation, and survival in T cells. TNFAIP3/A20 is a ubiquitin-editing enzyme that is thought to be a negative regulator of autophagy in cell lines. However, the role of TNFAIP3 in autophagy remains unclear. To determine whether TNFAIP3 regulates autophagy in CD4 T cells, we first analyzed Tnfaip3-deficient naïve CD4 T cells in vitro. We demonstrated that Tnfaip3-deficient CD4 T cells exhibited reduced MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3) puncta formation, increased mitochondrial content, and exaggerated reactive oxygen species (ROS) production. These results indicate that TNFAIP3 promotes autophagy after T cell receptor (TCR) stimulation in CD4 T cells. We then investigated the mechanism by which TNFAIP3 promotes autophagy signaling. We found that TNFAIP3 bound to the MTOR (mechanistic target of rapamycin) complex and that Tnfaip3-deficient cells displayed enhanced ubiquitination of the MTOR complex and MTOR activity. To confirm the effects of enhanced MTOR activity in Tnfaip3-deficient cells, we analyzed cell survival following treatment with Torin1, an MTOR inhibitor. Tnfaip3-deficient CD4 T cells exhibited fewer cell numbers than the control cells in vitro and in vivo. In addition, the impaired survival of Tnfaip3-deficient cells was ameliorated with Torin1 treatment in vitro and in vivo. The effect of Torin1 was abolished by Atg5 deficiency. Thus, enhanced MTOR activity regulates the survival of Tnfaip3-deficient CD4 T cells. Taken together, our findings illustrate that TNFAIP3 restricts MTOR signaling and promotes autophagy, providing new insight into the manner in which MTOR and autophagy regulate survival in CD4 T cells. PMID:26043155

  15. Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells.

    PubMed

    Klesse, L J; Meyers, K A; Marshall, C J; Parada, L F

    1999-03-25

    Nerve growth factor induces differentiation and survival of rat PC12 pheochromocytoma cells. The activation of the erk cascade has been implicated in transducing the multitude of signals induced by NGF. In order to explore the role of this signaling cascade in NGF mediated survival, differentiation and proliferation, we generated recombinant adenoviruses which express the intermediates of the erk cascade in their wild type, dominant negative and constitutively activated forms. We show that differentiation of PC12 cells requires activity of the ras/erk pathway, whereas inhibition of this pathway had no effect on survival or proliferation. Constitutively active forms of ras, raf and mek induced PC12 cell differentiation, while dominant interfering forms inhibited differentiation. Survival of PC12 cells in serum-free medium did not require activity of the ras/erk pathway. Instead, PI3 Kinase signaling was necessary for PC12 cell survival. Interestingly, constitutively activated versions of raf and mek were able to promote survival, but again this was dependent on activation of PI3 Kinase. Therefore, at least two distinct signaling pathways are required in PC12 cells for mediation of NGF functions.

  16. A THEMIS:SHP1 complex promotes T-cell survival.

    PubMed

    Paster, Wolfgang; Bruger, Annika M; Katsch, Kristin; Grégoire, Claude; Roncagalli, Romain; Fu, Guo; Gascoigne, Nicholas R J; Nika, Konstantina; Cohnen, Andre; Feller, Stephan M; Simister, Philip C; Molder, Kelly C; Cordoba, Shaun-Paul; Dushek, Omer; Malissen, Bernard; Acuto, Oreste

    2015-02-01

    THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation. PMID:25535246

  17. A THEMIS:SHP1 complex promotes T-cell survival

    PubMed Central

    Paster, Wolfgang; Bruger, Annika M; Katsch, Kristin; Grégoire, Claude; Roncagalli, Romain; Fu, Guo; Gascoigne, Nicholas RJ; Nika, Konstantina; Cohnen, Andre; Feller, Stephan M; Simister, Philip C; Molder, Kelly C; Cordoba, Shaun-Paul; Dushek, Omer; Malissen, Bernard; Acuto, Oreste

    2015-01-01

    THEMIS is critical for conventional T-cell development, but its precise molecular function remains elusive. Here, we show that THEMIS constitutively associates with the phosphatases SHP1 and SHP2. This complex requires the adapter GRB2, which bridges SHP to THEMIS in a Tyr-phosphorylation-independent fashion. Rather, SHP1 and THEMIS engage with the N-SH3 and C-SH3 domains of GRB2, respectively, a configuration that allows GRB2-SH2 to recruit the complex onto LAT. Consistent with THEMIS-mediated recruitment of SHP to the TCR signalosome, THEMIS knock-down increased TCR-induced CD3-ζ phosphorylation, Erk activation and CD69 expression, but not LCK phosphorylation. This generalized TCR signalling increase led to augmented apoptosis, a phenotype mirrored by SHP1 knock-down. Remarkably, a KI mutation of LCK Ser59, previously suggested to be key in ERK-mediated resistance towards SHP1 negative feedback, did not affect TCR signalling nor ligand discrimination in vivo. Thus, the THEMIS:SHP complex dampens early TCR signalling by a previously unknown molecular mechanism that favours T-cell survival. We discuss possible implications of this mechanism in modulating TCR output signals towards conventional T-cell development and differentiation. PMID:25535246

  18. Nubp1 Is Required for Lung Branching Morphogenesis and Distal Progenitor Cell Survival in Mice

    PubMed Central

    Schnatwinkel, Carsten; Niswander, Lee

    2012-01-01

    The lung is a complex system in biology and medicine alike. Whereas there is a good understanding of the anatomy and histology of the embryonic and adult lung, less is known about the molecular details and the cellular pathways that ultimately orchestrate lung formation and affect its health. From a forward genetic approach to identify novel genes involved in lung formation, we identified a mutated Nubp1 gene, which leads to syndactyly, eye cataract and lung hypoplasia. In the lung, Nubp1 is expressed in progenitor cells of the distal epithelium. Nubp1(m1Nisw) mutants show increased apoptosis accompanied by a loss of the distal progenitor markers Sftpc, Sox9 and Foxp2. In addition, Nubp1 mutation disrupts localization of the polarity protein Par3 and the mitosis relevant protein Numb. Using knock-down studies in lung epithelial cells, we also demonstrate a function of Nubp1 in regulating centrosome dynamics and microtubule organization. Together, Nubp1 represents an essential protein for lung progenitor survival by coordinating vital cellular processes including cell polarity and centrosomal dynamics. PMID:23028652

  19. Nubp1 is required for lung branching morphogenesis and distal progenitor cell survival in mice.

    PubMed

    Schnatwinkel, Carsten; Niswander, Lee

    2012-01-01

    The lung is a complex system in biology and medicine alike. Whereas there is a good understanding of the anatomy and histology of the embryonic and adult lung, less is known about the molecular details and the cellular pathways that ultimately orchestrate lung formation and affect its health. From a forward genetic approach to identify novel genes involved in lung formation, we identified a mutated Nubp1 gene, which leads to syndactyly, eye cataract and lung hypoplasia. In the lung, Nubp1 is expressed in progenitor cells of the distal epithelium. Nubp1(m1Nisw) mutants show increased apoptosis accompanied by a loss of the distal progenitor markers Sftpc, Sox9 and Foxp2. In addition, Nubp1 mutation disrupts localization of the polarity protein Par3 and the mitosis relevant protein Numb. Using knock-down studies in lung epithelial cells, we also demonstrate a function of Nubp1 in regulating centrosome dynamics and microtubule organization. Together, Nubp1 represents an essential protein for lung progenitor survival by coordinating vital cellular processes including cell polarity and centrosomal dynamics.

  20. Survival of weed seeds and animal parasites as affected by anaerobic digestion at meso- and thermophilic conditions.

    PubMed

    Johansen, Anders; Nielsen, Henrik B; Hansen, Christian M; Andreasen, Christian; Carlsgart, Josefine; Hauggard-Nielsen, Henrik; Roepstorff, Allan

    2013-04-01

    Anaerobic digestion of residual materials from animals and crops offers an opportunity to simultaneously produce bioenergy and plant fertilizers at single farms and in farm communities where input substrate materials and resulting digested residues are shared among member farms. A surplus benefit from this practice may be the suppressing of propagules from harmful biological pests like weeds and animal pathogens (e.g. parasites). In the present work, batch experiments were performed, where survival of seeds of seven species of weeds and non-embryonated eggs of the large roundworm of pigs, Ascaris suum, was assessed under conditions similar to biogas plants managed at meso- (37°C) and thermophilic (55°C) conditions. Cattle manure was used as digestion substrate and experimental units were sampled destructively over time. Regarding weed seeds, the effect of thermophilic conditions (55°C) was very clear as complete mortality, irrespective of weed species, was reached after less than 2 days. At mesophilic conditions, seeds of Avena fatua, Sinapsis arvensis, Solidago canadensis had completely lost germination ability, while Brassica napus, Fallopia convolvulus and Amzinckia micrantha still maintained low levels (~1%) of germination ability after 1 week. Chenopodium album was the only weed species which survived 1 week at substantial levels (7%) although after 11 d germination ability was totally lost. Similarly, at 55°C, no Ascaris eggs survived more than 3h of incubation. Incubation at 37°C did not affect egg survival during the first 48 h and it took up to 10 days before total elimination was reached. In general, anaerobic digestion in biogas plants seems an efficient way (thermophilic more efficient than mesophilic) to treat organic farm wastes in a way that suppresses animal parasites and weeds so that the digestates can be applied without risking spread of these pests. PMID:23266071

  1. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results

  2. Skin toxins in coral-associated Gobiodon species (Teleostei: Gobiidae) affect predator preference and prey survival

    PubMed Central

    Gratzer, Barbara; Millesi, Eva; Walzl, Manfred; Herler, Juergen

    2015-01-01

    Predation risk is high for the many small coral reef fishes, requiring successful sheltering or other predator defence mechanisms. Coral-dwelling gobies of the genus Gobiodon live in close association with scleractinian corals of the genus Acropora. Earlier studies indicated that the low movement frequency of adult fishes and the development of skin toxins (crinotoxicity) are predation avoidance mechanisms. Although past experiments showed that predators refuse food prepared with goby skin mucus, direct predator–prey interactions have not been studied. The present study compares the toxicity levels of two crinotoxic coral gobies – Gobiodon histrio, representative of a conspicuously coloured species, and Gobiodon sp.3 with cryptic coloration – using a standard bioassay method. The results show that toxin levels of both species differ significantly shortly after mucus release but become similar over time. Predator preferences were tested experimentally in an aquarium in which the two gobies and a juvenile damselfish Chromis viridis were exposed to the small grouper Epinephelus fasciatus. Video-analysis revealed that although coral gobies are potential prey, E. fasciatus clearly preferred the non-toxic control fish (C. viridis) over Gobiodon. When targeting a goby, the predator did not prefer one species over the other. Contrary to our expectations that toxic gobies are generally avoided, gobies were often captured, but they were expelled quickly, repeatedly and alive. This unusual post-capture avoidance confirms that these gobies have a very good chance of surviving attacks in the field due to their skin toxins. Nonetheless, some gobies were consumed: the coral shelter may therefore also provide additional protection, with toxins protecting them mainly during movement between corals. In summary, chemical deterrence by crinotoxic fishes seems to be far more efficient in predation avoidance than in physical deterrence involving body squamation and/or strong fin

  3. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    PubMed

    Somaiah, Chinnapaka; Kumar, Atul; Mawrie, Darilang; Sharma, Amit; Patil, Suraj Dasharath; Bhattacharyya, Jina; Swaminathan, Rajaram; Jaganathan, Bithiah Grace

    2015-01-01

    Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy.

  4. Collagen Promotes Higher Adhesion, Survival and Proliferation of Mesenchymal Stem Cells.

    PubMed

    Somaiah, Chinnapaka; Kumar, Atul; Mawrie, Darilang; Sharma, Amit; Patil, Suraj Dasharath; Bhattacharyya, Jina; Swaminathan, Rajaram; Jaganathan, Bithiah Grace

    2015-01-01

    Mesenchymal stem cells (MSC) can differentiate into several cell types and are desirable candidates for cell therapy and tissue engineering. However, due to poor cell survival, proliferation and differentiation in the patient, the therapy outcomes have not been satisfactory. Although several studies have been done to understand the conditions that promote proliferation, differentiation and migration of MSC in vitro and in vivo, still there is no clear understanding on the effect of non-cellular bio molecules. Of the many factors that influence the cell behavior, the immediate cell microenvironment plays a major role. In this context, we studied the effect of extracellular matrix (ECM) proteins in controlling cell survival, proliferation, migration and directed MSC differentiation. We found that collagen promoted cell proliferation, cell survival under stress and promoted high cell adhesion to the cell culture surface. Increased osteogenic differentiation accompanied by high active RHOA (Ras homology gene family member A) levels was exhibited by MSC cultured on collagen. In conclusion, our study shows that collagen will be a suitable matrix for large scale production of MSC with high survival rate and to obtain high osteogenic differentiation for therapy. PMID:26661657

  5. Timing of Adjuvant Radioactive Iodine Therapy Does Not Affect Overall Survival in Low- and Intermediate-Risk Papillary Thyroid Carcinoma.

    PubMed

    Suman, Paritosh; Wang, Chi-Hsiung; Moo-Young, Tricia A; Prinz, Richard A; Winchester, David J

    2016-09-01

    There is no consensus regarding the timing of adjuvant radioactive iodine therapy (RAI) therapy in low- and intermediate-risk papillary thyroid carcinoma (PTC). We analyzed the impact of adjuvant RAI on overall survival (OS) in low- and intermediate-risk PTC. The National Cancer Data Base was queried from 2004 to 2011 for pN0M0 PTC patients having near/subtotal or total thyroidectomy and adjuvant RAI. Tumors ≤1 cm with negative margins were low risk while 1.1- to 4-cm tumors with negative margins or ≤1 cm with microscopic margins were termed intermediate risk. RAI in ≤3 months and between 3 and 12 months was termed as early and delayed, respectively. Survival analysis was performed after adjusting for patient and tumor-related variables. There were 7,306 low-risk and 16,609 intermediate-risk patients. Seventeen per cent low-risk and 15 per cent intermediate-risk patients had delayed RAI. Kaplan-Meier analysis did not show a difference in OS for early versus delayed RAI administration in low- (10-year OS 94.5% vs 94%, P = 0.627) or intermediate-risk (10-year OS 95.3% vs 95.9%, P = 0.944) patients. In adjusted survival analysis, RAI timing did not affect OS in all patients (hazard ratios = 0.98, 95% confidence interval = 0.71-1.34, P = 0.887). In conclusion, the timing of postthyroidectomy adjuvant RAI therapy does not affect OS in low- or intermediate-risk PTC. PMID:27670568

  6. Genetic Engineering of Mesenchymal Stem Cells to Induce Their Migration and Survival

    PubMed Central

    Nowakowski, Adam; Walczak, Piotr; Lukomska, Barbara; Janowski, Miroslaw

    2016-01-01

    Mesenchymal stem cells (MSCs) are very attractive for regenerative medicine due to their relatively easy derivation and broad range of differentiation capabilities, either naturally or induced through cell engineering. However, efficient methods of delivery to diseased tissues and the long-term survival of grafted cells still need improvement. Here, we review genetic engineering approaches designed to enhance the migratory capacities of MSCs, as well as extend their survival after transplantation by the modulation of prosurvival approaches, including prevention of senescence and apoptosis. We highlight some of the latest examples that explore these pivotal points, which have great relevance in cell-based therapies. PMID:27242906

  7. High expression of prolactin receptor is associated with cell survival in cervical cancer cells

    PubMed Central

    2013-01-01

    Background The altered expression of prolactin (PRL) and its receptor (PRLR) has been implicated in breast and other types of cancer. There are few studies that have focused on the analysis of PRL/PRLR in cervical cancer where the development of neoplastic lesions is influenced by the variation of the hormonal status. The aim of this study was to evaluate the expression of PRL/PRLR and the effect of PRL treatment on cell proliferation and apoptosis in cervical cancer cell lines. Results High expression of multiple PRLR forms and PRLvariants of 60–80 kDa were observed in cervical cancer cell lines compared with non-tumorigenic keratinocytes evaluated by Western blot, immunofluorecence and real time PCR. Treatment with PRL (200 ng/ml) increased cell proliferation in HeLa cells determined by the MTT assay at day 3 and after 1 day a protective effect against etoposide induced apoptosis in HeLa, SiHa and C-33A cervical cancer cell lines analyzed by the TUNEL assay. Conclusions Our data suggests that PRL/PRLR signaling could act as an important survival factor for cervical cancer. The use of an effective PRL antagonist may provide a better therapeutic intervention in cervical cancer. PMID:24148306

  8. Gene trapping identifies transiently induced survival genes during programmed cell death

    PubMed Central

    Wempe, Frank; Yang, Ji-Yeon; Hammann, Joanna; Melchner, Harald von

    2001-01-01

    Background The existence of a constitutively expressed machinery for death in individual cells has led to the notion that survival factors repress this machinery and, if such factors are unavailable, cells die by default. In many cells, however, mRNA and protein synthesis inhibitors induce apoptosis, suggesting that in some cases transcriptional activity might actually impede cell death. To identify transcriptional mechanisms that interfere with cell death and survival, we combined gene trap mutagenesis with site-specific recombination (Cre/loxP system) to isolate genes from cells undergoing apoptosis by growth factor deprivation. Results From an integration library consisting of approximately 2 × 106 unique proviral integrations obtained by infecting the interleukin-3 (IL-3)-dependent hematopoietic cell line - FLOXIL3 - with U3Cre gene trap virus, we have isolated 125 individual clones that converted to factor independence upon IL-3 withdrawal. Of 102 cellular sequences adjacent to U3Cre integration sites, 17% belonged to known genes, 11% matched single expressed sequence tags (ESTs) or full cDNAs with unknown function and 72% had no match within the public databases. Most of the known genes recovered in this analysis encoded proteins with survival functions. Conclusions We have shown that hematopoietic cells undergoing apoptosis after withdrawal of IL-3 activate survival genes that impede cell death. This results in reduced apoptosis and improved survival of cells treated with a transient apoptotic stimulus. Thus, apoptosis in hematopoietic cells is the end result of a conflict between death and survival signals, rather than a simple death by default. PMID:11516336

  9. Estimation of transfused red cell survival using an enzyme-linked antiglobulin test

    SciTech Connect

    Kickler, T.S.; Smith, B.; Bell, W.; Drew, H.; Baldwin, M.; Ness, P.M.

    1985-09-01

    An enzyme-linked antiglobulin test (ELAT) method was developed to estimate survival of transfused red cells. This procedure is based on a principle analogous to that of the Ashby technique were antigenically distinct red cells are transfused and their survival studied. The authors compared the ELAT survival to the V Chromium method (V Cr) in four patients. Three patients with hypoproliferative anemias showed T 1/2 by ELAT of 17.5, 18, and 17 days versus 18.5, 20, and 19 days by the V Cr method. A fourth patient with traumatic cardiac hemolysis had two studies performed. In this case, the ELAT showed a T 1/2 of 10 and 8.1 days while V Cr T 1/2 values were 11 and 10.5 days. The ELAT method for measuring red cell survival yielded data which agreed closely with the results of the V Cr method. Although V Cr is the accepted method for red cell survival, the ELAT method can be used to estimate transfused red cell survival.

  10. GNAS Gene Variants Affect β-blocker–related Survival after Coronary Artery Bypass Grafting

    PubMed Central

    Ochterbeck, Christoph; Fox, Amanda A.; Shernan, Stanton K.; Collard, Charles D.; Lichtner, Peter

    2014-01-01

    Background Cardiac overexpression of the β-adrenoreceptor (βAR)–coupled stimulatory G-protein subunit Gαs enhances inotropic responses to adrenergic stimulation and improves survival in mice under βAR blockade. The authors recently identified three common haplotypes in the GNAS gene encoding Gαs, with the greatest Gαs protein expression and signal transduction in haplotype *3 carriers and less in haplotype *2 and *1 carriers. The authors tested the hypothesis that these GNAS variants result in altered mortality in patients after coronary artery bypass graft surgery, particularly in those receiving βAR blockade. Methods This prospective analysis included 1,627 European ancestry patients undergoing primary coronary artery bypass graft surgery. Patients were genotyped for two GNAS haplotype tagging single-nucleotide polymorphisms defining three major haplotypes. Up to 5-yr all-cause mortality was estimated using a Cox proportional hazard model; hazard ratios and 95% CIs were calculated while adjusting for demographics, clinical covariates, and the new EuroSCORE II. Results Univariate analysis revealed haplotype-dependent 5-yr mortality rates (*1/*1: 18.9%, *2/*1: 13.7%, *2/*2: 9.3%, *3/*1: 10.6%, *3/*2: 9.1%, and *3/*3: 9.6%; P = 0.0006). After adjustment for other predictors of death, homozygote haplotype *1 carriers showed a doubled risk for death (hazard ratio, 2.2; 95% CI, 1.2 to 3.8; P = 0.006). Considering only patients receiving βAR blockers (n = 1,267), the adjusted risk of death even tripled (hazard ratio, 3.0; 95% CI, 1.5 to 6.1; P = 0.002). Conclusions GNAS haplotypes independently associate with an increased risk of death after primary coronary artery bypass graft surgery. These results are most pronounced in patients receiving βAR blockers, strengthening the rationale for personalized treatment, to decrease medication side effects and improve outcomes. PMID:24755784

  11. Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary parasitoid wasp.

    PubMed

    Harvey, Jeffrey A; Gols, Rieta

    2011-10-01

    The performance of natural enemies, such as parasitoid wasps, is affected by differences in the quality of the host's diet, frequently mediated by species or population-related differences in plant allelochemistry. Here, we compared survival, development time, and body mass in a generalist herbivore, the cabbage moth, Mamestra brassicae, and its solitary endoparasitoid, Microplitis mediator, when reared on two cultivated (CYR and STH) and three wild (KIM, OH, and WIN) populations of cabbage, Brassica oleracea. Plants either were undamaged or induced by feeding of larvae of the cabbage butterfly, Pieris rapae. Development and biomass of M. brassicae and Mi. mediator were similar on both cultivated and one wild cabbage population (KIM), intermediate on the OH population, and significantly lower on the WIN population. Moreover, development was prolonged and biomass was reduced on herbivore-induced plants. However, only the survival of parasitized hosts (and not that of healthy larvae) was affected by induction. Analysis of glucosinolates in leaves of the cabbages revealed higher levels in the wild populations than cultivars, with the highest concentrations in WIN plants. Multivariate statistics revealed a negative correlation between insect performance and total levels of glucosinolates (GS) and levels of 3-butenyl GS. However, GS chemistry could not explain the reduced performance on induced plants since only indole GS concentrations increased in response to herbivory, which did not affect insect performance based on multivariate statistics. This result suggests that, in addition to aliphatic GS, other non-GS chemicals are responsible for the decline in insect performance, and that these chemicals affect the parasitoid more strongly than the host. Remarkably, when developing on WIN plants, the survival of Mi. mediator to adult eclosion was much higher than in its host, M. brassicae. This may be due to the fact that hosts parasitized by Mi. mediator pass through fewer

  12. Four-protein signature accurately predicts lymph node metastasis and survival in oral squamous cell carcinoma.

    PubMed

    Zanaruddin, Sharifah Nurain Syed; Saleh, Amyza; Yang, Yi-Hsin; Hamid, Sharifah; Mustafa, Wan Mahadzir Wan; Khairul Bariah, A A N; Zain, Rosnah Binti; Lau, Shin Hin; Cheong, Sok Ching

    2013-03-01

    The presence of lymph node (LN) metastasis significantly affects the survival of patients with oral squamous cell carcinoma (OSCC). Successful detection and removal of positive LNs are crucial in the treatment of this disease. Current evaluation methods still have their limitations in detecting the presence of tumor cells in the LNs, where up to a third of clinically diagnosed metastasis-negative (N0) patients actually have metastasis-positive LNs in the neck. We developed a molecular signature in the primary tumor that could predict LN metastasis in OSCC. A total of 211 cores from 55 individuals were included in the study. Eleven proteins were evaluated using immunohistochemical analysis in a tissue microarray. Of the 11 biomarkers evaluated using receiver operating curve analysis, epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2/neu), laminin, gamma 2 (LAMC2), and ras homolog family member C (RHOC) were found to be significantly associated with the presence of LN metastasis. Unsupervised hierarchical clustering-demonstrated expression patterns of these 4 proteins could be used to differentiate specimens that have positive LN metastasis from those that are negative for LN metastasis. Collectively, EGFR, HER-2/neu, LAMC2, and RHOC have a specificity of 87.5% and a sensitivity of 70%, with a prognostic accuracy of 83.4% for LN metastasis. We also demonstrated that the LN signature could independently predict disease-specific survival (P = .036). The 4-protein LN signature validated in an independent set of samples strongly suggests that it could reliably distinguish patients with LN metastasis from those who were metastasis-free and therefore could be a prognostic tool for the management of patients with OSCC.

  13. Four-protein signature accurately predicts lymph node metastasis and survival in oral squamous cell carcinoma.

    PubMed

    Zanaruddin, Sharifah Nurain Syed; Saleh, Amyza; Yang, Yi-Hsin; Hamid, Sharifah; Mustafa, Wan Mahadzir Wan; Khairul Bariah, A A N; Zain, Rosnah Binti; Lau, Shin Hin; Cheong, Sok Ching

    2013-03-01

    The presence of lymph node (LN) metastasis significantly affects the survival of patients with oral squamous cell carcinoma (OSCC). Successful detection and removal of positive LNs are crucial in the treatment of this disease. Current evaluation methods still have their limitations in detecting the presence of tumor cells in the LNs, where up to a third of clinically diagnosed metastasis-negative (N0) patients actually have metastasis-positive LNs in the neck. We developed a molecular signature in the primary tumor that could predict LN metastasis in OSCC. A total of 211 cores from 55 individuals were included in the study. Eleven proteins were evaluated using immunohistochemical analysis in a tissue microarray. Of the 11 biomarkers evaluated using receiver operating curve analysis, epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2/neu), laminin, gamma 2 (LAMC2), and ras homolog family member C (RHOC) were found to be significantly associated with the presence of LN metastasis. Unsupervised hierarchical clustering-demonstrated expression patterns of these 4 proteins could be used to differentiate specimens that have positive LN metastasis from those that are negative for LN metastasis. Collectively, EGFR, HER-2/neu, LAMC2, and RHOC have a specificity of 87.5% and a sensitivity of 70%, with a prognostic accuracy of 83.4% for LN metastasis. We also demonstrated that the LN signature could independently predict disease-specific survival (P = .036). The 4-protein LN signature validated in an independent set of samples strongly suggests that it could reliably distinguish patients with LN metastasis from those who were metastasis-free and therefore could be a prognostic tool for the management of patients with OSCC. PMID:23026198

  14. The Effect of Transient Local Anti-inflammatory Treatment on the Survival of Pig Retinal Progenitor Cell Allotransplants

    PubMed Central

    Abud, Murilo; Baranov, Petr; Hicks, Caroline; Patel, Sara; Lieppman, Burke; Regatieri, Caio; Sinden, John; Isaac, David; Avila, Marcos; Young, Michael

    2015-01-01

    Purpose The development of photoreceptor replacement therapy for retinal degenerative disorders requires the identification of the optimal cell source and immunosuppressive regimen in a large animal model. Allotransplants are not acutely rejected in swine subretinal space, although it is not known if survival can be improved with immunosuppression. Here we investigated the survival and integration of expanded pig retinal progenitor cells (pRPCs) in normal recipients with and without transient anti-inflammatory suppression. Methods pRPCs were derived from the neural retina of E60 GFP transgenic pigs, expanded for six passages, characterized, and transplanted into the subretinal space of 12 pigs. Six recipients received a single intravitreal injection of rapamycin and dexamethasone. Results pRPCs expressed the photoreceptor development genes Sox2, Pax6, Lhx2, Crx, Nrl, and Recoverin in vitro. Transplanted cells were identified in 9 out of 12 recipients 4 weeks after the injection. pRPCs integrated primarily into the photoreceptor inner segment layer and outer nuclear layer with single cells present in the inner nuclear layer. Donor cells remained recoverin-positive and acquired rhodopsin. We did not observe any signs of graft proliferation. The immunosuppression did not affect the survival or distribution of grafts. No macrophage infiltration or loss of retinal structure was observed in either group. Conclusions Local immunosuppression with rapamycin and dexamethasone does not improve the outcome of pRPC allotransplantation into the subretinal space. Translational Relevance Survival and integration of pRPC together with the lack of graft proliferation suggests that allogeneic RPC transplantation without transient immunosuppression is a favorable approach for photoreceptor cell replacement. PMID:26425402

  15. Neurotrophic factor GDNF promotes survival of salivary stem cells.

    PubMed

    Xiao, Nan; Lin, Yuan; Cao, Hongbin; Sirjani, Davud; Giaccia, Amato J; Koong, Albert C; Kong, Christina S; Diehn, Maximilian; Le, Quynh-Thu

    2014-08-01

    Stem cell-based regenerative therapy is a promising treatment for head and neck cancer patients that suffer from chronic dry mouth (xerostomia) due to salivary gland injury from radiation therapy. Current xerostomia therapies only provide temporary symptom relief, while permanent restoration of salivary function is not currently feasible. Here, we identified and characterized a stem cell population from adult murine submandibular glands. Of the different cells isolated from the submandibular gland, this specific population, Lin-CD24+c-Kit+Sca1+, possessed the highest capacity for proliferation, self renewal, and differentiation during serial passage in vitro. Serial transplantations of this stem cell population into the submandibular gland of irradiated mice successfully restored saliva secretion and increased the number of functional acini. Gene-expression analysis revealed that glial cell line-derived neurotrophic factor (Gdnf) is highly expressed in Lin-CD24+c-Kit+Sca1+ stem cells. Furthermore, GDNF expression was upregulated upon radiation therapy in submandibular glands of both mice and humans. Administration of GDNF improved saliva production and enriched the number of functional acini in submandibular glands of irradiated animals and enhanced salisphere formation in cultured salivary stem cells, but did not accelerate growth of head and neck cancer cells. These data indicate that modulation of the GDNF pathway may have potential therapeutic benefit for management of radiation-induced xerostomia. PMID:25036711

  16. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Lin, Miao-Sui; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2011-03-01

    Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including transected rat Achilles tendon. This study was designed to investigate the potential mechanism of BPC 157 to enhance healing of injured tendon. The outgrowth of tendon fibroblasts from tendon explants cultured with or without BPC 157 was examined. Results showed that BPC 157 significantly accelerated the outgrowth of tendon explants. Cell proliferation of cultured tendon fibroblasts derived from rat Achilles tendon was not directly affected by BPC 157 as evaluated by MTT assay. However, the survival of BPC 157-treated cells was significantly increased under the H(2)O(2) stress. BPC 157 markedly increased the in vitro migration of tendon fibroblasts in a dose-dependent manner as revealed by transwell filter migration assay. BPC 157 also dose dependently accelerated the spreading of tendon fibroblasts on culture dishes. The F-actin formation as detected by FITC-phalloidin staining was induced in BPC 157-treated fibroblasts. The protein expression and activation of FAK and paxillin were determined by Western blot analysis, and the phosphorylation levels of both FAK and paxillin were dose dependently increased by BPC 157 while the total amounts of protein was unaltered. In conclusion, BPC 157 promotes the ex vivo outgrowth of tendon fibroblasts from tendon explants, cell survival under stress, and the in vitro migration of tendon fibroblasts, which is likely mediated by the activation of the FAK-paxillin pathway. PMID:21030672

  17. Glycogen Synthase Kinase 3 Regulates Cell Death and Survival Signaling in Tumor Cells under Redox Stress1

    PubMed Central

    Venè, Roberta; Cardinali, Barbara; Arena, Giuseppe; Ferrari, Nicoletta; Benelli, Roberto; Minghelli, Simona; Poggi, Alessandro; Noonan, Douglas M.; Albini, Adriana; Tosetti, Francesca

    2014-01-01

    Targeting tumor-specific metabolic adaptations is a promising anticancer strategy when tumor defense mechanisms are restrained. Here, we show that redox-modulating drugs including the retinoid N-(4-hydroxyphenyl)retinamide (4HPR), the synthetic triterpenoid bardoxolone (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid methyl ester), arsenic trioxide (As2O3), and phenylethyl isothiocyanate (PEITC), while affecting tumor cell viability, induce sustained Ser9 phosphorylation of the multifunctional kinase glycogen synthase kinase 3β (GSK3β). The antioxidant N-acetylcysteine decreased GSK3β phosphorylation and poly(ADP-ribose) polymerase cleavage induced by 4HPR, As2O3, and PEITC, implicating oxidative stress in these effects. GSK3β phosphorylation was associated with up-regulation of antioxidant enzymes, in particular heme oxygenase-1 (HO-1), and transient elevation of intracellular glutathione (GSH) in cells surviving acute stress, before occurrence of irreversible damage and death. Genetic inactivation of GSK3β or transfection with the non-phosphorylatable GSK3β-S9A mutant inhibited HO-1 induction under redox stress, while tumor cells resistant to 4HPR exhibited increased GSK3β phosphorylation, HO-1 expression, and GSH levels. The above-listed findings are consistent with a role for sustained GSK3β phosphorylation in a signaling network activating antioxidant effector mechanisms during oxidoreductive stress. These data underlie the importance of combination regimens of antitumor redox drugs with inhibitors of survival signaling to improve control of tumor development and progression and overcome chemoresistance. PMID:25246272

  18. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    PubMed

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  19. Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R.

    PubMed

    Patel, Bhaumik B; Gupta, Deepshika; Elliott, Althea A; Sengupta, Vivek; Yu, Yingjie; Majumdar, Adhip P N

    2010-02-01

    Curcumin (diferuloylmethane), which has no discernible toxicity, inhibits initiation, promotion and progression of carcinogenesis. 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) remains the backbone of colorectal cancer chemotherapeutics, but produces an incomplete response resulting in survival of cells (chemo-surviving cells) that may lead to cancer recurrence. The present investigation was, therefore, undertaken to examine whether addition of curcumin to FOLFOX is a superior therapeutic strategy for chemo-surviving cells. Forty-eight-hour treatment of colon cancer HCT-116 and HT-29 cells with FOLFOX resulted in 60-70% survival, accompanied by a marked activation of insulin like growth factor-1 receptor (IGF-1R) and minor to moderate increase in epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2) as well as v-akt murine thymoma viral oncogene homolog 1 (AKT), cyclooxygenase-2 (COX-2) and cyclin-D1. However, inclusion of curcumin to continued FOLFOX treatment for another 48 h greatly reduced the survival of these cells, accompanied by a concomitant reduction in activation of EGFR, HER-2, IGF-1R and AKT, as well as expression of COX-2 and cyclin-D1. More importantly, EGFR tyrosine kinase inhibitor gefitinib or attenuation of IGF-1R expression by the corresponding si-RNA caused a 30-60% growth inhibition of chemo-surviving HCT-116 cells. However, curcumin alone was found to be more effective than both gefitinib and IGF-1R si-RNA mediated growth inhibition of chemo-surviving HCT-116 cells and addition of FOLFOX to curcumin did not increase the growth inhibitory effect of curcumin. Our data suggest that inclusion of curcumin in conventional chemotherapeutic regimens could be an effective strategy to prevent the emergence of chemoresistant colon cancer cells.

  20. Myelin basic protein cleaves cell adhesion molecule L1 and promotes neuritogenesis and cell survival.

    PubMed

    Lutz, David; Loers, Gabriele; Kleene, Ralf; Oezen, Iris; Kataria, Hardeep; Katagihallimath, Nainesh; Braren, Ingke; Harauz, George; Schachner, Melitta

    2014-05-01

    The cell adhesion molecule L1 is a Lewis(x)-carrying glycoprotein that plays important roles in the developing and adult nervous system. Here we show that myelin basic protein (MBP) binds to L1 in a Lewis(x)-dependent manner. Furthermore, we demonstrate that MBP is released by murine cerebellar neurons as a sumoylated dynamin-containing protein upon L1 stimulation and that this MBP cleaves L1 as a serine protease in the L1 extracellular domain at Arg(687) yielding a transmembrane fragment that promotes neurite outgrowth and neuronal survival in cell culture. L1-induced neurite outgrowth and neuronal survival are reduced in MBP-deficient cerebellar neurons and in wild-type cerebellar neurons in the presence of an MBP antibody or L1 peptide containing the MBP cleavage site. Genetic ablation of MBP in shiverer mice and mutagenesis of the proteolytically active site in MBP or of the MBP cleavage site within L1 as well as serine protease inhibitors and an L1 peptide containing the MBP cleavage site abolish generation of the L1 fragment. Our findings provide evidence for novel functions of MBP in the nervous system. PMID:24671420

  1. Factors affecting growth and survival of the asiatic clam Corbicula sp. under controlled laboratory conditions

    SciTech Connect

    Double, D.D.; Daly, D.S.; Abernethy, C.S.

    1983-04-01

    Growth of Corbicula sp. was determined in relation to food supply, water temperature, and clam size as an aid to researchers conducting chronic effects toxicity studies. Water temperatures for the two 84-day test series were 10, 20, and 30/sup 0/C. Linear models provided good relationships (r/sup 2/ > 0.90) between clam shell length (SL), total weight (TW), and wet/dry tissue weights. Clam growth was minimal during low phytoplankton densities (approx. 300 cells/ml), and all three size groups lost weight at 20 and 30/sup 0/C. Mortality of small clams at 30/sup 0/C was 100% after 71 days. At phytoplankton densities > 1000 cells/ml, overall differences in growth with respect to clam size and temperature were detectable at p < 0.01; growth of all clam groups was greatest at 30/sup 0/C. Small clams exhibited the greatest absolute increase in mean shell length at all test temperatures, and weight gains were similar to those of medium and large clams.

  2. Factors Affecting Route Selection and Survival of Steelhead Kelts at Snake River Dams in 2012 and 2013

    SciTech Connect

    Harnish, Ryan A.; Colotelo, Alison HA; Li, Xinya; Ham, Kenneth D.; Deng, Zhiqun

    2014-12-01

    turbines. The side of the river in which kelts approached the dam and dam operations also affected route of passage. Dam operations and the size and condition of kelts were found to have the greatest effect on route-specific survival probabilities for fish that passed via the spillway at LGS. That is, longer kelts and those in fair condition had a lower probability of survival for fish that passed via the spillway weir. The survival of spillway weir- and deep-spill passed kelts was positively correlated with the percent of the total discharge that passed through turbine unit 4. Too few kelts passed through the traditional spill, JBS, and turbine units to evaluate survival through these routes. The information gathered in this study describes Snake River steelhead kelt passage behavior, rates, and distributions through the FCRPS as well as provide information to biologists and engineers about the dam operations and abiotic conditions that are related to passage and survival of steelhead kelts.

  3. Survival of different cell lines in alginate-agarose microcapsules.

    PubMed

    Orive, G; Hernández, R M; Gascón, A R; Igartua, M; Pedraz, J L

    2003-01-01

    Cell microencapsulation has emerged as a promising therapeutic strategy to treat a wide range of diseases. The optimisation of this technology depends on several critical issues such as the careful selection of the cell line, the controlled manufacture of microcapsules and the suitable adaptation of the construct design to the selected cell line. In this work, we studied the behavior of hybridoma cells once enclosed in solid and liquefied core alginate-agarose beads. Results show that hybridoma cells presented a better growing pattern and improved their viability and antibody production within liquefied beads. However, when these beads were evaluated with a compression resistance study, they were found to be mechanically more fragile than solid ones. To address this problem, we entrapped non-autologous cells (BHK fibroblast and C2C12 myoblast) in solid alginate-agarose beads and observed that they showed an improved growing profile and prolonged their viability up to 70 days in comparison to the 15 days seen for the hybridoma cells.

  4. A Systems-Level Interrogation Identifies Regulators of Drosophila Blood Cell Number and Survival

    PubMed Central

    Makhijani, Kalpana; Alexander, Brandy; Perrimon, Norbert; Brückner, Katja

    2015-01-01

    In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems. PMID:25749252

  5. ILKAP, ILK and PINCH1 control cell survival of p53-wildtype glioblastoma cells after irradiation

    PubMed Central

    Hausmann, Christina; Temme, Achim; Cordes, Nils; Eke, Iris

    2015-01-01

    The prognosis is generally poor for patients suffering from glioblastoma multiforme (GBM) due to radiation and drug resistance. Prosurvival signaling originating from focal adhesion hubs essentially contributes to therapy resistance and tumor aggressiveness. As the underlying molecular mechanisms remain largely elusive, we addressed whether targeting of the focal adhesion proteins particularly interesting new cysteine-histidine-rich 1 (PINCH1), integrin-linked kinase (ILK) and ILK associated phosphatase (ILKAP) modulates GBM cell radioresistance. Intriguingly, PINCH1, ILK and ILKAP depletion sensitized p53-wildtype, but not p53-mutant, GBM cells to radiotherapy. Concomitantly, these cells showed inactivated Glycogen synthase kinase-3β (GSK3β) and reduced proliferation. For PINCH1 and ILKAP knockdown, elevated levels of radiation-induced γH2AX/53BP1-positive foci, as a marker for DNA double strand breaks, were observed. Mechanistically, we identified radiation-induced phosphorylation of DNA protein kinase (DNAPK), an important DNA repair protein, to be dependent on ILKAP. This interaction was fundamental to radiation survival of p53-wildtype GBM cells. Conclusively, our data suggest an essential role of PINCH1, ILK and ILKAP for the radioresistance of p53-wildtype GBM cells and provide evidence for DNAPK functioning as a central mediator of ILKAP signaling. Strategies for targeting focal adhesion proteins in combination with radiotherapy might be a promising approach for patients with GBM. PMID:26460618

  6. Nivolumab versus Cabozantinib: Comparing Overall Survival in Metastatic Renal Cell Carcinoma.

    PubMed

    Wiecek, Witold; Karcher, Helene

    2016-01-01

    Renal-cell carcinoma (RCC) affects over 330,000 new patients every year, of whom 1/3 present with metastatic RCC (mRCC) at diagnosis. Most mRCC patients treated with a first-line agent relapse within 1 year and need second-line therapy. The present study aims to compare overall survival (OS) between nivolumab and cabozantinib from two recent pivotal studies comparing, respectively, each one of the two emerging treatments against everolimus in patients who relapse following first-line treatment. Comparison is traditionally carried out using the Bucher method, which assumes proportional hazard. Since OS curves intersected in one of the pivotal studies, models not assuming proportional hazards were also considered to refine the comparison. Four Bayesian parametric survival network meta-analysis models were implemented on overall survival (OS) data digitized from the Kaplan-Meier curves reported in the studies. Three models allowing hazard ratios (HR) to vary over time were assessed against a fixed-HR model. The Bucher method favored cabozantinib, with a fixed HR for OS vs. nivolumab of 1.09 (95% confidence interval: [0.77, 1.54]). However, all models with time-varying HR showed better fits than the fixed-HR model. The log-logistic model fitted the data best, exhibiting a HR for OS initially favoring cabozantinib, the trend inverting to favor nivolumab after month 5 (95% credible interval <1 from 10 months). The initial probability of cabozantinib conferring superior OS was 54%, falling to 41.5% by month 24. Numerical differences in study-adjusted OS estimates between the two treatments remained small. This study evidences that HR for OS of nivolumab vs. cabozantinib varies over time, favoring cabozantinib in the first months of treatment but nivolumab afterwards, a possible indication that patients with poor prognosis benefit more from cabozantinib in terms of survival, nivolumab benefiting patients with better prognosis. More evidence, including real

  7. Nivolumab versus Cabozantinib: Comparing Overall Survival in Metastatic Renal Cell Carcinoma

    PubMed Central

    Wiecek, Witold; Karcher, Helene

    2016-01-01

    Renal-cell carcinoma (RCC) affects over 330,000 new patients every year, of whom 1/3 present with metastatic RCC (mRCC) at diagnosis. Most mRCC patients treated with a first-line agent relapse within 1 year and need second-line therapy. The present study aims to compare overall survival (OS) between nivolumab and cabozantinib from two recent pivotal studies comparing, respectively, each one of the two emerging treatments against everolimus in patients who relapse following first-line treatment. Comparison is traditionally carried out using the Bucher method, which assumes proportional hazard. Since OS curves intersected in one of the pivotal studies, models not assuming proportional hazards were also considered to refine the comparison. Four Bayesian parametric survival network meta-analysis models were implemented on overall survival (OS) data digitized from the Kaplan-Meier curves reported in the studies. Three models allowing hazard ratios (HR) to vary over time were assessed against a fixed-HR model. The Bucher method favored cabozantinib, with a fixed HR for OS vs. nivolumab of 1.09 (95% confidence interval: [0.77, 1.54]). However, all models with time-varying HR showed better fits than the fixed-HR model. The log-logistic model fitted the data best, exhibiting a HR for OS initially favoring cabozantinib, the trend inverting to favor nivolumab after month 5 (95% credible interval <1 from 10 months). The initial probability of cabozantinib conferring superior OS was 54%, falling to 41.5% by month 24. Numerical differences in study-adjusted OS estimates between the two treatments remained small. This study evidences that HR for OS of nivolumab vs. cabozantinib varies over time, favoring cabozantinib in the first months of treatment but nivolumab afterwards, a possible indication that patients with poor prognosis benefit more from cabozantinib in terms of survival, nivolumab benefiting patients with better prognosis. More evidence, including real

  8. Short communication: Dairy bedding type affects survival of Prototheca in vitro.

    PubMed

    Adhikari, N; Bonaiuto, H E; Lichtenwalner, A B

    2013-01-01

    Protothecae are algal pathogens, capable of causing bovine mastitis, that are unresponsive to treatment; they are believed to have an environmental reservoir. The role of bedding management in control of protothecal mastitis has not been studied. The purpose of this study was to evaluate the growth of either environmental or mastitis-associated Prototheca genotypes in dairy bedding materials that are commonly used in Maine. Prototheca zopfii genotypes 1 and 2 (gt1 and gt2) were inoculated into sterile broth only (control ), kiln-dried spruce shavings, "green" hemlock sawdust, sand, or processed manure-pack beddings with broth, and incubated for 2 d. Fifty microliters of each isolate was then cultured onto plates and the resulting colonies counted at 24 and 48 h postinoculation. Shavings were associated with significantly less total Prototheca growth than other bedding types. Growth of P. zopfii gt1 was significantly higher than that of gt2 in the manure-pack bedding material. Spruce shavings, compared with manure, sand, or sawdust, may be a good bedding type to prevent growth of Prototheca. Based on these in vitro findings, bedding type may affect Prototheca infection of cattle in vivo. PMID:24119794

  9. Short communication: Dairy bedding type affects survival of Prototheca in vitro.

    PubMed

    Adhikari, N; Bonaiuto, H E; Lichtenwalner, A B

    2013-01-01

    Protothecae are algal pathogens, capable of causing bovine mastitis, that are unresponsive to treatment; they are believed to have an environmental reservoir. The role of bedding management in control of protothecal mastitis has not been studied. The purpose of this study was to evaluate the growth of either environmental or mastitis-associated Prototheca genotypes in dairy bedding materials that are commonly used in Maine. Prototheca zopfii genotypes 1 and 2 (gt1 and gt2) were inoculated into sterile broth only (control ), kiln-dried spruce shavings, "green" hemlock sawdust, sand, or processed manure-pack beddings with broth, and incubated for 2 d. Fifty microliters of each isolate was then cultured onto plates and the resulting colonies counted at 24 and 48 h postinoculation. Shavings were associated with significantly less total Prototheca growth than other bedding types. Growth of P. zopfii gt1 was significantly higher than that of gt2 in the manure-pack bedding material. Spruce shavings, compared with manure, sand, or sawdust, may be a good bedding type to prevent growth of Prototheca. Based on these in vitro findings, bedding type may affect Prototheca infection of cattle in vivo.

  10. Pro-death and pro-survival properties of ouabain in U937 lymphoma derived cells

    PubMed Central

    2012-01-01

    Background Epidemiological studies revealed significantly lower mortality rates in cancer patients receiving cardiac glycosides, which turned on interest in the anticancer properties of these drugs. However, cardiac glycosides have also been shown to stimulate cell growth in several cell types. In the present investigation we analyzed the pro-death and pro-survival properties of ouabain in the human lymphoma derived cell line U937. Methods ROS, intracellular Ca++, cell cycle were evaluated by loading the cells with fluorescent probes under cytofluorimetry. Cell counts and evaluation of trypan blue-excluding cells were performed under optic microscope. Protein detection was done by specific antibodies after protein separation from cellular lysates by SDS-PAGE and transfer blot. Results High doses of ouabain cause ROS generation, elevation of [Ca++]i and death of lymphoma derived U937 cells. Lower doses of OUA activate a survival pathway in which plays a role the Na+/Ca++-exchanger (NCX), active in the Ca++ influx mode rather than in the Ca++ efflux mode. Also p38 MAPK plays a pro-survival role. However, the activation of this MAPK does not appear to depend on NCX. Conclusion This investigation shows that the cardiac glycoside OUA is cytotoxic also for the lymphoma derived cell line U937 and that can activate a survival pathway in which are involved NCX and p38 MAPK. These molecules can represent potential targets of combined therapy. PMID:23153195

  11. Repair-dependent cell radiation survival and transformation: an integrated theory.

    PubMed

    Sutherland, John C

    2014-09-01

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete

  12. PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions.

    PubMed

    Wang, X; Wang, G; Shi, Y; Sun, L; Gorczynski, R; Li, Y-J; Xu, Z; Spaner, D E

    2016-01-01

    Expression of the nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) in breast cancer cells is negatively associated with patient survival, but the underlying mechanisms are not clear. High PPARδ protein levels in rat breast adenocarcinomas were found to be associated with increased growth in soft agar and mice. Transgenic expression of PPARδ increased the ability of human breast cancer cell lines to migrate in vitro and form lung metastases in mice. PPARδ also conferred the ability to grow in exhausted tissue culture media and survive in low-glucose and other endoplasmic reticulum stress conditions such as hypoxia. Upregulation of PPARδ by glucocorticoids or synthetic agonists also protected human breast cancer cells from low glucose. Survival in low glucose was related to increased antioxidant defenses mediated in part by catalase and also to late AKT phosphorylation, which is associated with the prolonged glucose-deprivation response. Synthetic antagonists reversed the survival benefits conferred by PPARδ in vitro. These findings suggest that PPARδ conditions breast cancer cells to survive in harsh microenvironmental conditions by reducing oxidative stress and enhancing survival signaling responses. Drugs that target PPARδ may have a role in the treatment of breast cancer. PMID:27270614

  13. PPAR-delta promotes survival of breast cancer cells in harsh metabolic conditions

    PubMed Central

    Wang, X; Wang, G; Shi, Y; Sun, L; Gorczynski, R; Li, Y-J; Xu, Z; Spaner, D E

    2016-01-01

    Expression of the nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) in breast cancer cells is negatively associated with patient survival, but the underlying mechanisms are not clear. High PPARδ protein levels in rat breast adenocarcinomas were found to be associated with increased growth in soft agar and mice. Transgenic expression of PPARδ increased the ability of human breast cancer cell lines to migrate in vitro and form lung metastases in mice. PPARδ also conferred the ability to grow in exhausted tissue culture media and survive in low-glucose and other endoplasmic reticulum stress conditions such as hypoxia. Upregulation of PPARδ by glucocorticoids or synthetic agonists also protected human breast cancer cells from low glucose. Survival in low glucose was related to increased antioxidant defenses mediated in part by catalase and also to late AKT phosphorylation, which is associated with the prolonged glucose-deprivation response. Synthetic antagonists reversed the survival benefits conferred by PPARδ in vitro. These findings suggest that PPARδ conditions breast cancer cells to survive in harsh microenvironmental conditions by reducing oxidative stress and enhancing survival signaling responses. Drugs that target PPARδ may have a role in the treatment of breast cancer. PMID:27270614

  14. The effect of interferon-{beta} on mouse neural progenitor cell survival and differentiation

    SciTech Connect

    Hirsch, Marek; Knight, Julia; Tobita, Mari; Soltys, John; Panitch, Hillel; Mao-Draayer, Yang

    2009-10-16

    Interferon-{beta} (IFN-{beta}) is a mainstay therapy for relapse-remitting multiple sclerosis (MS). However, the direct effects of IFN-{beta} on the central nervous system (CNS) are not well understood. To determine whether IFN-{beta} has direct neuroprotective effects on CNS cells, we treated adult mouse neural progenitor cells (NPCs) in vitro with IFN-{beta} and examined the effects on proliferation, apoptosis, and differentiation. We found that mouse NPCs express high levels of IFN{alpha}/{beta} receptor (IFNAR). In response to IFN-{beta} treatment, no effect was observed on differentiation or proliferation. However, IFN-{beta} treated mouse NPCs demonstrated decreased apoptosis upon growth factor withdrawal. Pathway-specific polymerase chain reaction (PCR) arrays demonstrated that IFN-{beta} treatment upregulated the STAT 1 and 2 signaling pathway, as well as GFRA2, NOD1, Caspases 1 and 12, and TNFSF10. These results suggest that IFN-{beta} can directly affect NPC survival, possibly playing a neuroprotective role in the CNS by modulating neurotrophic factors.

  15. Hemolin triggers cell survival on fibroblasts in response to serum deprivation by inhibition of apoptosis.

    PubMed

    Bosch, Rosemary Viola; Alvarez-Flores, Miryam Paola; Maria, Durvanei Augusto; Chudzinski-Tavassi, Ana Marisa

    2016-08-01

    Fibroblasts are the main cellular component of connective tissues and play important roles in health and disease through the production of collagen, fibronectin and growth factors. Under certain conditions, such as wound healing, fibroblasts intensify their metabolic demand, while the restriction of nutrients affect matrix composition, cell metabolism and behavior. In lepidopterans, wound healing is regulated by ecdysteroid hormones, which upregulate multifunctional proteins such as hemolin. However, the role of hemolin in cell proliferation and wound healing is not clear. rLosac is a recombinant hemolin from the caterpillar Lonomia obliqua whose proliferative and cytoprotective effects on endothelial cells have been described. Here, we show that rLosac induces a marked cell survival effect on fibroblast submitted to serum deprivation, which is observable as early as 24h, as demonstrated through the MTT assay, as well as an increase in migration of human dermal fibroblasts (HDF). No effects on cell proliferation or cell cycle distribution of fibroblasts in normal conditions were observed, suggesting that rLosac induces an effect in stressful conditions such serum deprivation but not when nutrient are sufficient. By flow cytometry, rLosac caused an apparent dose-dependent increase in cells in the S phase of the cell cycle and a significant reduction of cells with fragmented DNA. Furthermore, treatment with rLosac results in a significant decrease in the production of reactive oxygen species and in the loss of mitochondrial membrane potential, indicating that a reduction in oxidative stress is involved in rLosac-mediated cytoprotection. Our results also show an up-regulation of Bcl-2 and a down-regulation of Bax protein levels, inhibition of cytochrome c release and a reduction in caspase-3 levels, all considered critical factors for apoptosis. Moreover, rLosac treatment reduces the morphological changes induced by prolonged serum deprivation including the emergence

  16. The RBE-LET relationship for rodent intestinal crypt cell survival, testes weight loss, and multicellular spheroid cell survival after heavy-ion irradiation

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.

    1992-01-01

    This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.

  17. Experimental investigation on neural cell survival after dielectrophoretic trapping.

    PubMed

    Heida, T; Rutten, W L C; Marani, E

    2002-12-01

    Negative dielectrophoretic forces can effectively be used to trap cortical rat neurons. The creation of dielectrophoretic forces requires electric fields of high non-uniformity. High electric field strengths, however, can cause excessive membrane potentials by which cells may unrecoverably be changed or it may lead to cell death. In a previous study it was found that cells trapped at 3 Vtt/14 MHz did not change morphologically as compared to cells that were not exposed to the electric field. This study investigates the viability of fetal cortical rat neurons after being trapped by negative dielectrophoretic forces at frequencies up to 1 MHz. A planar quadrupole micro-electrode structure was used for the creation of a non-uniform electric field. The sinusoidal input signal was varied in amplitude (3 and 5 Vtt) and frequency (10 kHz-1 MHz). The results presented in this paper show that the viability of dielectrophoretically trapped postnatal cortical rat cells was greatly frequency dependent. To preserve viability frequencies above 100 kHz (at 3 Vtt) or 1 MHz (5 Vtt) must be used.

  18. Sox2 promotes survival of satellite glial cells in vitro

    SciTech Connect

    Koike, Taro Wakabayashi, Taketoshi; Mori, Tetsuji; Hirahara, Yukie; Yamada, Hisao

    2015-08-14

    Sox2 is a transcriptional factor expressed in neural stem cells. It is known that Sox2 regulates cell differentiation, proliferation and survival of the neural stem cells. Our previous study showed that Sox2 is expressed in all satellite glial cells of the adult rat dorsal root ganglion. In this study, to examine the role of Sox2 in satellite glial cells, we establish a satellite glial cell-enriched culture system. Our culture method succeeded in harvesting satellite glial cells with the somata of neurons in the dorsal root ganglion. Using this culture system, Sox2 was downregulated by siRNA against Sox2. The knockdown of Sox2 downregulated ErbB2 and ErbB3 mRNA at 2 and 4 days after siRNA treatment. MAPK phosphorylation, downstream of ErbB, was also inhibited by Sox2 knockdown. Because ErbB2 and ErbB3 are receptors that support the survival of glial cells in the peripheral nervous system, apoptotic cells were also counted. TUNEL-positive cells increased at 5 days after siRNA treatment. These results suggest that Sox2 promotes satellite glial cell survival through the MAPK pathway via ErbB receptors. - Highlights: • We established satellite glial cell culture system. • Function of Sox2 in satellite glial cell was examined using siRNA. • Sox2 knockdown downregulated expression level of ErbB2 and ErbB3 mRNA. • Sox2 knockdown increased apoptotic satellite glial cell. • Sox2 promotes satellite glial cell survival through ErbB signaling.

  19. Programmed cell death in trypanosomatids: is it an altruistic mechanism for survival of the fittest?

    PubMed

    Debrabant, Alain; Nakhasi, Hira

    2003-06-25

    The protozoan parasites Leishmania, Trypanosoma cruzi and Trypanosoma brucei show multiple features consistent with a form of programmed cell death (PCD). Despite some similarities with apoptosis of mammalian cells, PCD in trypanosomatid protozoans appears to be significantly different. In these unicellular organisms, PCD could represent an altruistic mechanism for the selection of cells, from the parasite population, that are fit to be transmitted to the next host. Alternatively, PCD could help in controlling the population of parasites in the host, thereby increasing host survival and favoring parasite transmission, as proposed by Seed and Wenk. Therefore, PCD in trypanosomatid parasites may represent a pathway involved both in survival and propagation of the species.

  20. Factors affecting songbird nest survival in riparian forests in a midwestern agricultural landscape

    USGS Publications Warehouse

    Peak, R.G.; Thompson, F. R.; Shaffer, T.L.

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55-95 m) and three wide (400-530 m) riparian forests with adjacent grassland-shrub buffer strips and in three narrow and three wide riparian forests without adjacent grassland-shrub buffer strips. We predicted that temporal effects would have the most support and that habitat-patch and edge effects would have little support, because nest predation would be great across all sites in the highly fragmented, predominantly agricultural landscape. Interval nest success was 0.404, 0.227, 0.070, and 0.186, respectively, for Gray Catbird (Dumetella carolinensis), Northern Cardinal (Cardinalis cardinalis), Indigo Bunting (Passerina cyanea), and forest interior species pooled (Acadian Flycatcher [Empidonax virescens], Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapillus], and Kentucky Warbler [Oporornis formosus]). The effect of nest stage on nest success had the most support; daily nest success for Gray Catbird and Indigo Bunting were lowest in the laying stage. We found strong support for greater nest success of Gray Catbird in riparian forests with adjacent buffer strips than in riparian forests without adjacent buffer strips. Patch width also occurred in the most-supported model for Gray Catbird, but with very limited support. The null model received the most support for Northern Cardinal. Riparian forests provided breeding habitat for area-sensitive forest species and grassland-shrub nesting species. Buffer strips provided additional breeding habitat for grassland-shrub nesting species. Interval nest success for Indigo Bunting and area-sensitive forest species pooled, however, fell well below the level that is likely necessary to balance juvenile

  1. Factors affecting songbird nest survival in riparian forests in a Midwestern agricultural landscape

    USGS Publications Warehouse

    Peak, R.G.; Thompson, F. R.; Shaffer, T.L.

    2004-01-01

    We investigated factors affecting nest success of songbirds in riparian forest and buffers in northeastern Missouri. We used an information-theoretic approach to determine support for hypotheses concerning effects of nest-site, habitat-patch, edge, and temporal factors on nest success of songbirds in three narrow (55DS95 m) and three wide (400DS530 m) riparian forests with adjacent grasslandDSshrub buffer strips and in three narrow and three wide riparian forests without adjacent grasslandDSshrub buffer strips. We predicted that temporal effects would have the most support and that habitat-patch and edge effects would have little support, because nest predation would be great across all sites in the highly fragmented, predominantly agricultural landscape. Interval nest success was 0.404, 0.227, 0.070, and 0.186, respectively, for Gray Catbird (Dumetella carolinensis), Northern Cardinal (Cardinalis cardinalis), Indigo Bunting (Passerina cyanea), and forest interior species pooled (Acadian Flycatcher [Empidonax virescens], Wood Thrush [Hylocichla mustelina], Ovenbird [Seiurus aurocapillus], and Kentucky Warbler [Oporornis formosus]). The effect of nest stage on nest success had the most support; daily nest success for Gray Catbird and Indigo Bunting were lowest in the laying stage. We found strong support for greater nest success of Gray Catbird in riparian forests with adjacent buffer strips than in riparian forests without adjacent buffer strips. Patch width also occurred in the most supported model for Gray Catbird, but with very limited support. The null model received the most support for Northern Cardinal. Riparian forests provided breeding habitat for areas sensitive forest species and grassland-shrub nesting species. Buffer strips provided additional breeding habitat for grassland-shrub nesting species. Interval nest success for Indigo Bunting and area-sensitive forest species pooled, however, fell well below the level that is likely necessary to balance

  2. Heparan Sulfate Proteoglycans May Promote or Inhibit Cancer Progression by Interacting with Integrins and Affecting Cell Migration

    PubMed Central

    Soares, Mariana A.; Teixeira, Felipe C. O. B.; Fontes, Miguel; Arêas, Ana Lúcia; Leal, Marcelo G.; Pavão, Mauro S. G.; Stelling, Mariana P.

    2015-01-01

    The metastatic disease is one of the main consequences of tumor progression, being responsible for most cancer-related deaths worldwide. This review intends to present and discuss data on the relationship between integrins and heparan sulfate proteoglycans in health and cancer progression. Integrins are a family of cell surface transmembrane receptors, responsible for cell-matrix and cell-cell adhesion. Integrins' main functions include cell adhesion, migration, and survival. Heparan sulfate proteoglycans (HSPGs) are cell surface molecules that play important roles as cell receptors, cofactors, and overall direct or indirect contributors to cell organization. Both molecules can act in conjunction to modulate cell behavior and affect malignancy. In this review, we will discuss the different contexts in which various integrins, such as α5, αV, β1, and β3, interact with HSPGs species, such as syndecans and perlecans, affecting tissue homeostasis. PMID:26558271

  3. Social factors, treatment, and survival in early-stage non-small cell lung cancer.

    PubMed Central

    Greenwald, H P; Polissar, N L; Borgatta, E F; McCorkle, R; Goodman, G

    1998-01-01

    OBJECTIVES: This study assessed the importance of socioeconomic status, race, and likelihood of receiving surgery in explaining mortality among patients with stage-I non-small cell lung cancer. METHODS: Analyses focused on Black and White individuals 75 years of age and younger (n = 5189) diagnosed between 1980 and 1982 with stage-I non-small cell lung cancer in Detroit, San Francisco, and Seattle. The main outcome measure was months of survival after diagnosis. RESULTS: Patients in the highest income decile were 45% more likely to receive surgical treatment and 102% more likely to attain 5-year survival than those in the lowest decile. Whites were 20% more likely to undergo surgery than Blacks and 31% more likely to survive 5 years. Multivariate procedures controlling for age and sex confirmed these observations. CONCLUSIONS: Socioeconomic status and race appear to independently influence likelihood of survival. Failure to receive surgery explains much excess mortality. PMID:9807536

  4. Imprinted survival genes preclude loss of heterozygosity of chromosome 7 in cancer cells.

    PubMed

    Boot, Arnoud; Oosting, Jan; de Miranda, Noel Fcc; Zhang, Yinghui; Corver, Willem E; van de Water, Bob; Morreau, Hans; van Wezel, Tom

    2016-09-01

    The genomes of a wide range of cancers, including colon, breast, and thyroid cancers, frequently show copy number gains of chromosome 7 and rarely show loss of heterozygosity. The molecular basis for this phenomenon is unknown. Strikingly, oncocytic follicular thyroid carcinomas can display an extreme genomic profile, with homozygosity of all chromosomes except for chromosome 7. The observation that homozygosity of chromosome 7 is never observed suggests that retention of heterozygosity is essential for cells. We hypothesized that cell survival genes are genetically imprinted on either of two copies of chromosome 7, which thwarts loss of heterozygosity at this chromosome in cancer cells. By employing a DNA methylation screen and gene expression analysis, we identified six imprinted genes that force retention of heterozygosity on chromosome 7. Subsequent knockdown of gene expression showed that CALCR, COPG2, GRB10, KLF14, MEST, and PEG10 were essential for cancer cell survival, resulting in reduced cell proliferation, G1 -phase arrest, and increased apoptosis. We propose that imprinted cell survival genes provide a genetic basis for retention of chromosome 7 heterozygosity in cancer cells. The monoallelically expressed cell survival genes identified in this study, and the cellular pathways that they are involved in, offer new therapeutic targets for the treatment of tumours showing retention of heterozygosity on chromosome 7. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:27265324

  5. Clinicopathological Features and Prognostic Factors Affecting Survival Outcomes in Isolated Locoregional Recurrence of Breast Cancer: Single-Institutional Series

    PubMed Central

    Kim, Hae Su; Lee, Ji Yun; Lim, Sung Hee; Lee, Jeong Eon; Kim, Seok Won; Nam, Seok Jin; Ahn, Jin Seok; Im, Young-Hyuck; Park, Yeon Hee

    2016-01-01

    Purpose The purpose of this study was to investigate the clinicopathologic features and prognostic factors affecting outcome in patients with isolated locoregional recurrence of breast cancer (ILRR). Methods We retrospectively analyzed the medical records of 104 patients who were diagnosed with ILRR and underwent curative surgery from January 2000 to December 2010 at Samsung Medical Center. Results Among 104 patients, 43 (41%) underwent total mastectomy and 61 (59%) underwent breast-conserving surgery for primary breast cancer. The median time from initial operation to ILRR was 35.7 months (4.5–132.3 months). After diagnosis of ILRR, 45 (43%) patients were treated with mastectomy, 41 (39%) with excision of recurred lesion, and 18 (17%) with node dissection. During a median follow-up of 8.9 years, the 5-year overall survival was 77% and 5-year distant metastasis-free survival (DMFS) was 54%. On multivariate analysis, younger age (< 35 years), higher stage, early onset of elapse (≤ 24 months), lymph node recurrences, and subtype of triple negative breast cancer (TNBC) were found to be independently associated with DMFS. Patients in the no chemotherapy group showed a longer DMFS after surgery for ILRR than those treated with chemotherapy (median 101.5 vs. 48.0 months, p = 0.072) but without statistical significance. Conclusion Our analysis showed that younger age (< 35 years), higher stage, early onset of relapse (≤ 24 months), lymph node recurrence, and subtype of TNBC are the worst prognostic factors for ILRR. PMID:27648567

  6. Androgens affect muscle, motor neuron, and survival in a mouse model of SOD1-related amyotrophic lateral sclerosis.

    PubMed

    Aggarwal, Tanya; Polanco, Maria J; Scaramuzzino, Chiara; Rocchi, Anna; Milioto, Carmelo; Emionite, Laura; Ognio, Emanuela; Sambataro, Fabio; Galbiati, Mariarita; Poletti, Angelo; Pennuto, Maria

    2014-08-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective loss of upper and lower motor neurons and skeletal muscle atrophy. Epidemiologic and experimental evidence suggest the involvement of androgens in ALS pathogenesis, but the mechanism through which androgens modify the ALS phenotype is unknown. Here, we show that androgen ablation by surgical castration extends survival and disease duration of a transgenic mouse model of ALS expressing mutant human SOD1 (hSOD1-G93A). Furthermore, long-term treatment of orchiectomized hSOD1-G93A mice with nandrolone decanoate (ND), an anabolic androgenic steroid, worsened disease manifestations. ND treatment induced muscle fiber hypertrophy but caused motor neuron death. ND negatively affected survival, thereby dissociating skeletal muscle pathology from life span in this ALS mouse model. Interestingly, orchiectomy decreased androgen receptor levels in the spinal cord and muscle, whereas ND treatment had the opposite effect. Notably, stimulation with ND promoted the recruitment of endogenous androgen receptor into biochemical complexes that were insoluble in sodium dodecyl sulfate, a finding consistent with protein aggregation. Overall, our results shed light on the role of androgens as modifiers of ALS pathogenesis via dysregulation of androgen receptor homeostasis.

  7. Monosomy 1p36 uncovers a role for OX40 in survival of activated CD4+ T cells.

    PubMed

    Suhoski, M M; Perez, E E; Heltzer, M L; Laney, A; Shaffer, L G; Saitta, S; Nachman, S; Spinner, N B; June, C H; Orange, J S

    2008-08-01

    Monosomy 1p36 is a subtelomeric deletion syndrome associated with congenital anomalies presumably due to haploinsufficiency of multiple genes. Although immunodeficiency has not been reported, genes encoding costimulatory molecules of the TNF receptor superfamily (TNFRSF) are within 1p36 and may be affected. In one patient with monosomy 1p36, comparative genome hybridization and fluorescence in- situ hybridization confirmed that TNFRSF member OX40 was included within the subtelomeric deletion. T cells from this patient had decreased OX40 expression after stimulation. Specific, ex vivo T cell activation through OX40 revealed enhanced proliferation, and reduced viability of patient CD4+ T cells, providing evidence for the association of monosomy 1p36 with reduced OX40 expression, and decreased OX40-induced T cell survival. These results support a role for OX40 in human immunity, and calls attention to the potential for haploinsufficiency deletions of TNFRSF costimulatory molecules in monosomy 1p36.

  8. Overexpression of FABP3 inhibits human bone marrow derived mesenchymal stem cell proliferation but enhances their survival in hypoxia

    SciTech Connect

    Wang, Suna Zhou, Yifu; Andreyev, Oleg; Hoyt, Robert F.; Singh, Avneesh; Hunt, Timothy; Horvath, Keith A.

    2014-04-15

    Studying the proliferative ability of human bone marrow derived mesenchymal stem cells in hypoxic conditions can help us achieve the effective regeneration of ischemic injured myocardium. Cardiac-type fatty acid binding protein (FABP3) is a specific biomarker of muscle and heart tissue injury. This protein is purported to be involved in early myocardial development, adult myocardial tissue repair and responsible for the modulation of cell growth and proliferation. We have investigated the role of FABP3 in human bone marrow derived mesenchymal stem cells under ischemic conditions. MSCs from 12 donors were cultured either in standard normoxic or modified hypoxic conditions, and the differential expression of FABP3 was tested by quantitative {sup RT}PCR and western blot. We also established stable FABP3 expression in MSCs and searched for variation in cellular proliferation and differentiation bioprocesses affected by hypoxic conditions. We identified: (1) the FABP3 differential expression pattern in the MSCs under hypoxic conditions; (2) over-expression of FABP3 inhibited the growth and proliferation of the MSCs; however, improved their survival in low oxygen environments; (3) the cell growth factors and positive cell cycle regulation genes, such as PCNA, APC, CCNB1, CCNB2 and CDC6 were all down-regulated; while the key negative cell cycle regulation genes TP53, BRCA1, CASP3 and CDKN1A were significantly up-regulated in the cells with FABP3 overexpression. Our data suggested that FABP3 was up-regulated under hypoxia; also negatively regulated the cell metabolic process and the mitotic cell cycle. Overexpression of FABP3 inhibited cell growth and proliferation via negative regulation of the cell cycle and down-regulation of cell growth factors, but enhances cell survival in hypoxic or ischemic conditions. - Highlights: • FABP3 expression pattern was studied in 12 human hypoxic-MSCs. • FABP3 mRNA and proteins are upregulated in the MSCs under hypoxic conditions.

  9. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    SciTech Connect

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  10. Clinical impact of post-progression survival on overall survival in patients with limited-stage disease small cell lung cancer after first-line chemoradiotherapy

    PubMed Central

    Kasahara, Norimitsu; Imai, Hisao; Kaira, Kyoichi; Mori, Keita; Wakuda, Kazushige; Ono, Akira; Taira, Tetsuhiko; Kenmotsu, Hirotsugu; Harada, Hideyuki; Naito, Tateaki; Murakami, Haruyasu; Endo, Masahiro; Nakajima, Takashi; Yamada, Masanobu; Takahashi, Toshiaki

    2015-01-01

    Background The effects of first-line chemoradiotherapy on overall survival (OS) may be confounded by subsequent lines of therapy in patients with limited-stage disease small cell lung cancer (LD-SCLC). Therefore, we aimed to determine the relationships between progression-free survival (PFS), post-progression survival (PPS) and OS after first-line chemoradiotherapy in LD-SCLC patients. Patients and methods. We retrospectively analyzed 71 LD-SCLC patients with performance status (PS) 0–2 who received first-line chemoradiotherapy and had disease recurrence between September 2002 and March 2013 at Shizuoka Cancer Center (Shizuoka, Japan). We determined the correlation between PFS and OS and between PPS and OS at the individual level. In addition, we performed univariate and multivariate analyses to identify significant prognostic factors of PPS. Results OS is more strongly correlated with PPS (Spearman’s r = 0.86, R2 = 0.72, p < 0.05) than PFS (Spearman’s r = 0.46, R2 = 0.38, p < 0.05). In addition, the response to second-line treatments, the presence of distant metastases at recurrence and the number of additional regimens after first-line chemoradiotherapy were significant independent prognostic factors for PPS. Conclusions PPS has more impact on OS than PFS in recurrent LD-SCLC patients with good PS at beginning of the treatment. Moreover, treatments administered after first-line chemoradiotherapy may affect their OS. However, larger multicenter studies are needed to validate these findings. PMID:26834529

  11. Dietary Pectin Increases Intestinal Crypt Stem Cell Survival following Radiation Injury.

    PubMed

    Sureban, Sripathi M; May, Randal; Qu, Dongfeng; Chandrakesan, Parthasarathy; Weygant, Nathaniel; Ali, Naushad; Lightfoot, Stan A; Ding, Kai; Umar, Shahid; Schlosser, Michael J; Houchen, Courtney W

    2015-01-01

    Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy. We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC) marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive properties, whereas its radioprotective property has not been studied. The aim of this study was to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a 6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival respectively. Animals were also subjected to overall survival studies following TBI. In pre-IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin treated mice compared to controls. We also observed increased survival of mice treated with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; prevents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ultimately promotes overall survival. Given the anti-cancer activity of pectin, our data support a potential role for dietary pectin as an agent that can be administered to patients receiving radiation therapy to protect against radiation-induces mucositis.

  12. Dietary Pectin Increases Intestinal Crypt Stem Cell Survival following Radiation Injury

    PubMed Central

    Sureban, Sripathi M.; May, Randal; Qu, Dongfeng; Chandrakesan, Parthasarathy; Weygant, Nathaniel; Ali, Naushad; Lightfoot, Stan A.; Ding, Kai; Umar, Shahid; Schlosser, Michael J.; Houchen, Courtney W.

    2015-01-01

    Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy. We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC) marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive properties, whereas its radioprotective property has not been studied. The aim of this study was to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a 6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival respectively. Animals were also subjected to overall survival studies following TBI. In pre-IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin treated mice compared to controls. We also observed increased survival of mice treated with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; prevents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ultimately promotes overall survival. Given the anti-cancer activity of pectin, our data support a potential role for dietary pectin as an agent that can be administered to patients receiving radiation therapy to protect against radiation-induces mucositis. PMID:26270561

  13. An optimized colony forming assay for low-dose-radiation cell survival measurement

    SciTech Connect

    Zhu J.; Sutherland B.; Hu W.; Ding N.; Ye C.; Usikalu M.; Li S.; Hu B.; Zhou G.

    2011-11-01

    The aim of this study is to develop a simple and reliable method to quantify the cell survival of low-dose irradiations. Two crucial factors were considered, the same number of cells plated in each flask and an appropriate interval between cell plating and irradiation. For the former, we optimized cell harvest with trypsin, diluted cells in one container, and directly seeded cells on the bottom of flasks in a low density before irradiation. Reproducible plating efficiency was obtained. For the latter, we plated cells on the bottom of flasks and then monitored the processing of attachment, cell cycle variations, and the plating efficiency after exposure to 20 cGy of X-rays. The results showed that a period of 4.5 h to 7.5 h after plating was suitable for further treatment. In order to confirm the reliability and feasibility of our method, we also measured the survival curves of these M059K and M059J glioma cell lines by following the optimized protocol and obtained consistent results reported by others with cell sorting system. In conclusion, we successfully developed a reliable and simple way to measure the survival fractions of human cells exposed to low dose irradiation, which might be helpful for the studies on low-dose radiation biology.

  14. Survival features of EBV-stabilized cells from centenarians: morpho-functional and transcriptomic analyses.

    PubMed

    Matarrese, Paola; Tinari, Antonella; Ascione, Barbara; Gambardella, Lucrezia; Remondini, Daniel; Salvioli, Stefano; Tenedini, Elena; Tagliafico, Enrico; Franceschi, Claudio; Malorni, Walter

    2012-12-01

    In the present work, we analyzed the survival features of six different Epstein-Barr virus (EBV)-stabilized lymphoid cell lines obtained from adult subjects and from subjects of more than 95 years. For the first, we found that lymphoid B cells from centenarians were more resistant to apoptosis induction and displayed a more developed lysosomal compartment, the most critical component of phagic machinery, in comparison with lymphoid B cells from adult subjects. In addition, cells from centenarians were capable of engulfing and digesting other cells, i.e., their siblings (even entire cells), whereas lymphoid cells from "control samples", i.e., from adults, did not. This behavior was improved by nutrient deprivation but, strikingly, it was unaffected by the autophagy-modulating drug, rapamycin, an autophagy inducer, and 3-methyladenine, an autophagy inhibitor. Transcriptomic analyses indicated that: (1) aspartyl proteases, (2) cell surface molecules such as integrins and cadherins, and (3) some components of cytoskeletal network could contribute to establish this survival phenotype. Also, Kyoto Encyclopedia of Genes and Genomes pathways such as Wnt signaling pathway, an essential contributor to cell migration and actin cytoskeleton remodeling, appeared as prominent. Although we cannot rule out the possibility that EBV-immortalization could play a role, since we observed this phagic behavior in cells from centenarians but not in those from adults, we hypothesize that it may represent an important survival determinant in cells from centenarians.

  15. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    SciTech Connect

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  16. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment.

    PubMed

    Elkashef, Sara M; Allison, Simon J; Sadiq, Maria; Basheer, Haneen A; Ribeiro Morais, Goreti; Loadman, Paul M; Pors, Klaus; Falconer, Robert A

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  17. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment

    PubMed Central

    Elkashef, Sara M.; Allison, Simon J.; Sadiq, Maria; Basheer, Haneen A.; Ribeiro Morais, Goreti; Loadman, Paul M.; Pors, Klaus; Falconer, Robert A.

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  18. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis.

    PubMed

    Haricharan, S; Li, Y

    2014-01-25

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer.

  19. NMDA receptor-dependent CREB activation in survival of cerebellar granule cells during in vivo and in vitro development.

    PubMed

    Monti, Barbara; Marri, Lucia; Contestabile, Antonio

    2002-10-01

    During both in vivo and in vitro development, cerebellar granule cells depend on the activity of the NMDA glutamate receptor subtype for survival and full differentiation. With the present results, we demonstrate that CREB activation, downstream of the NMDA receptor, is a necessary step to ensure survival of these neurons. The levels of CREB expression and activity increase progressively during the second week of postnatal cerebellar development and the phosphorylated form of CREB is localized selectively to cerebellar granule cells during the critical developmental stages examined. Chronically blocking the NMDA receptor through systemic administration of the competitive antagonist, CGP 39551, during the in vivo critical developmental period, between 7-11 postnatal days, results in increased apoptotic elimination of differentiating granule neurons in the cerebellum [Monti & Contestabile, Eur. J. Neurosci., 12, 3117-3123 (2000)]. We report here that this event is accompanied by a significant decrease of CREB phosphorylation in the cerebellum of treated rat pups. When cerebellar granule neurons are explanted and maintained in dissociated cultures, the levels of CREB phosphorylation increase with differentiation, similar to that which happens during in vivo development. When granule cells are kept in non-trophic conditions, their viability is affected and both CREB phosphorylation and transcriptional activity are decreased significantly. The neuronal viability and the deficiency of CREB activity, are both rescued by the pharmacological activation of the NMDA receptor. These results provide good circumstantial evidence for a functional link between the NMDA receptor and CREB activity in promoting neuronal survival during development.

  20. Modelling circulating tumour cells for personalised survival prediction in metastatic breast cancer.

    PubMed

    Ascolani, Gianluca; Occhipinti, Annalisa; Liò, Pietro

    2015-05-01

    Ductal carcinoma is one of the most common cancers among women, and the main cause of death is the formation of metastases. The development of metastases is caused by cancer cells that migrate from the primary tumour site (the mammary duct) through the blood vessels and extravasating they initiate metastasis. Here, we propose a multi-compartment model which mimics the dynamics of tumoural cells in the mammary duct, in the circulatory system and in the bone. Through a branching process model, we describe the relation between the survival times and the four markers mainly involved in metastatic breast cancer (EPCAM, CD47, CD44 and MET). In particular, the model takes into account the gene expression profile of circulating tumour cells to predict personalised survival probability. We also include the administration of drugs as bisphosphonates, which reduce the formation of circulating tumour cells and their survival in the blood vessels, in order to analyse the dynamic changes induced by the therapy. We analyse the effects of circulating tumour cells on the progression of the disease providing a quantitative measure of the cell driver mutations needed for invading the bone tissue. Our model allows to design intervention scenarios that alter the patient-specific survival probability by modifying the populations of circulating tumour cells and it could be extended to other cancer metastasis dynamics.

  1. Bortezomib inhibits the survival and proliferation of bone marrow stromal cells

    PubMed Central

    Kim, Ha-Yon; Moon, Ji-Young; Ryu, Haewon; Choi, Yoon-Seok; Song, Ik-Chan; Lee, Hyo-Jin; Yun, Hwan-Jung; Kim, Samyong

    2015-01-01

    Background Bortezomib is widely used for the treatment of multiple myeloma. Bone marrow stromal cells (BMSCs) endow myeloma cells with survival and growth advantages. However, the influence of bortezomib on BMSCs is not well elucidated. We examined the effects of bortezomib on the survival and growth of BMSCs in vitro. Methods The effects of bortezomib on the survival and proliferation of the BMSC MS-5 cell line and on BMSCs obtained from healthy individuals (N=4) and newly diagnosed myeloma patients (N=5) were investigated in vitro. Transmembrane cell migration was evaluated using the Transwell system. A short interfering RNA strategy was used to knock down the expression of chemokine (CXC motif) ligand 12 (CXCL12) mRNA. To examine the effects of bortezomib-exposed BMSCs on the migration and localization of myeloma cells, MS-5 monolayers were treated with bortezomib for 24 hr, washed, and then overlaid with human RPMI8226 myeloma cells. Results Bortezomib inhibited BMSC proliferation in a concentration-dependent manner, and induced cellular apoptosis. Bortezomib decreased CXCL12 production by BMSCs. Knockdown of CXCL12 mRNA in BMSCs revealed that CXCL12 served as an autocrine growth factor. Short-term bortezomib treatment of BMSC monolayers reduced the tendency of myeloma cells to locate to positions under the monolayers. Conclusion Bortezomib inhibits the survival and growth of BMSCs via downregulation of CXCL12, which may contribute to the clinical effects of this agent. PMID:26157778

  2. Modelling Circulating Tumour Cells for Personalised Survival Prediction in Metastatic Breast Cancer

    PubMed Central

    2015-01-01

    Ductal carcinoma is one of the most common cancers among women, and the main cause of death is the formation of metastases. The development of metastases is caused by cancer cells that migrate from the primary tumour site (the mammary duct) through the blood vessels and extravasating they initiate metastasis. Here, we propose a multi-compartment model which mimics the dynamics of tumoural cells in the mammary duct, in the circulatory system and in the bone. Through a branching process model, we describe the relation between the survival times and the four markers mainly involved in metastatic breast cancer (EPCAM, CD47, CD44 and MET). In particular, the model takes into account the gene expression profile of circulating tumour cells to predict personalised survival probability. We also include the administration of drugs as bisphosphonates, which reduce the formation of circulating tumour cells and their survival in the blood vessels, in order to analyse the dynamic changes induced by the therapy. We analyse the effects of circulating tumour cells on the progression of the disease providing a quantitative measure of the cell driver mutations needed for invading the bone tissue. Our model allows to design intervention scenarios that alter the patient-specific survival probability by modifying the populations of circulating tumour cells and it could be extended to other cancer metastasis dynamics. PMID:25978366

  3. Survival of thyroid cells: in vivo irradiation and in situ repair

    SciTech Connect

    Mulcahy, R.T.; Gould, M.N.; Clifton, K.H.

    1980-12-01

    The survival of rat thyroid cell irradiated in vivo and removed immediately for transplantation survival assay was compared with results obtained previously for thyroid cells irradiated in vitro and with the survival of thyroid cells irradiated and left in situ for 24 h before transplantation survival assay. The D/sub 0/ for thyroid cells irradiated in vivo and removed immediately for assay is 195 rad; N is 4 and D/sub q/ is 270 rad. These parameters are not significantly different from those obtained when thyroid cells are irradiated in vitro. When these parameters are compared to those of thyroid cells irradiated and left in situ for 24 h, the latter have a greater N and D/sub q/, but there is no significant difference in D/sub 0/. These data provide further evidence for a form of repair of potentially lethal damage which is dependent on the tissue environment (in situ repair, ISR) as previously described for irradiated rat mammary gland cells.

  4. Zebrafish cerebrospinal fluid mediates cell survival through a retinoid signaling pathway

    PubMed Central

    Chang, Jessica T.; Lehtinen, Maria K.

    2015-01-01

    ABSTRACT Cerebrospinal fluid (CSF) includes conserved factors whose function is largely unexplored. To assess the role of CSF during embryonic development, CSF was repeatedly drained from embryonic zebrafish brain ventricles soon after their inflation. Removal of CSF increased cell death in the diencephalon, indicating a survival function. Factors within the CSF are required for neuroepithelial cell survival as injected mouse CSF but not artificial CSF could prevent cell death after CSF depletion. Mass spectrometry analysis of the CSF identified retinol binding protein 4 (Rbp4), which transports retinol, the precursor to retinoic acid (RA). Consistent with a role for Rbp4 in cell survival, inhibition of Rbp4 or RA synthesis increased neuroepithelial cell death. Conversely, ventricle injection of exogenous human RBP4 plus retinol, or RA alone prevented cell death after CSF depletion. Zebrafish rbp4 is highly expressed in the yolk syncytial layer, suggesting Rbp4 protein and retinol/RA precursors can be transported into the CSF from the yolk. In accord with this suggestion, injection of human RBP4 protein into the yolk prevents neuroepithelial cell death in rbp4 loss‐of‐function embryos. Together, these data support the model that Rbp4 and RA precursors are present within the CSF and used for synthesis of RA, which promotes embryonic neuroepithelial survival. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 75–92, 2016 PMID:25980532

  5. Desmin Related Disease: A Matter of Cell Survival Failure

    PubMed Central

    Capetanaki, Yassemi; Papathanasiou, Stamatis; Diokmetzidou, Antigoni; Vatsellas, Giannis; Tsikitis, Mary

    2015-01-01

    Maintenance of the highly organized striated muscle tissue requires a cell-wide dynamic network that through interactions with all vital cell structures, provides an effective mechanochemical integrator of morphology and function, absolutely necessary for intra- and intercellular coordination of all muscle functions. A good candidate for such a system is the desmin intermediate filament cytoskeletal network. Human desmin mutations and post-translational modifications cause disturbance of this network, thus leading to loss of function of both desmin and its binding partners, as well as potential toxic effects of the formed aggregates. Both loss of normal function and gain of toxic function are linked to mitochondrial defects, cardiomyocyte death, muscle degeneration and development of skeletal myopathy and cardiomyopathy. PMID:25680090

  6. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    SciTech Connect

    Utsumi, H.; Elkind, M.M.

    1983-11-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of these cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.

  7. Effect of brefelamide on HGF-induced survival of 1321N1 human astrocytoma cells.

    PubMed

    Honma, Shigeyoshi; Takasaka, Sachina; Ishikawa, Takahiro; Shibuya, Takahiro; Mitazaki, Satoru; Abe, Sumiko; Yoshida, Makoto

    2016-06-01

    Malignant gliomas are characterized by their high level of resistance to chemo- and radiotherapy and new treatment options are urgently required. We previously demonstrated that brefelamide, an aromatic amide isolated from methanol extracts of cellular slime molds Dictyostelium brefeldianum and D. giganteum, had antiproliferative effects on 1321N1 human astrocytoma cells, a model of glioma. In this study, we investigated the mechanisms by which brefelamide inhibited 1321N1 and PC12 rat pheochromocytoma cell proliferation. When cells were cultured in serum-free medium, hepatocyte growth factor (HGF) increased survival of 1321N1 cells but not PC12 cells. HGF receptor, c-MET, was strongly expressed in 1321N1 cells, but not in PC12 cells. Pretreatment of 1321N1 cells with brefelamide inhibited both HGF-induced cell survival and expression of c-MET. Phosphorylation of extracellular signal-regulated kinase (ERK) and AKT was increased by HGF, but these changes were inhibited by brefelamide pretreatment. Moreover, HGF mRNA levels and secretion were reduced by brefelamide. These results suggest that brefelamide reduces survival of 1321N1 cells via multiple effects including suppression of HGF receptor expression and HGF secretion and inhibition of ERK and AKT phosphorylation. PMID:27130674

  8. Novel role for matricellular proteins in the regulation of islet β cell survival: the effect of SPARC on survival, proliferation, and signaling.

    PubMed

    Ryall, Claire L; Viloria, Katrina; Lhaf, Fadel; Walker, Anthony J; King, Aileen; Jones, Peter; Mackintosh, David; McNeice, Rosemary; Kocher, Hemant; Flodstrom-Tullberg, Malin; Edling, Charlotte; Hill, Natasha J

    2014-10-31

    Understanding the mechanisms regulating islet growth and survival is critical for developing novel approaches to increasing or sustaining β cell mass in both type 1 and type 2 diabetes patients. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that is important for the regulation of cell growth and adhesion. Increased SPARC can be detected in the serum of type 2 diabetes patients. The aim of this study was to investigate the role of SPARC in the regulation of β cell growth and survival. We show using immunohistochemistry that SPARC is expressed by stromal cells within islets and can be detected in primary mouse islets by Western blot. SPARC is secreted at high levels by pancreatic stellate cells and is regulated by metabolic parameters in these cells, but SPARC expression was not detectable in β cells. In islets, SPARC expression is highest in young mice, and is also elevated in the islets of non-obese diabetic (NOD) mice compared with controls. Purified SPARC inhibits growth factor-induced signaling in both INS-1 β cells and primary mouse islets, and inhibits IGF-1-induced proliferation of INS-1 β cells. Similarly, exogenous SPARC prevents IGF-1-induced survival of primary mouse islet cells. This study identifies the stromal-derived matricellular protein SPARC as a novel regulator of islet survival and β cell growth.

  9. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  10. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival

    PubMed Central

    Tinkum, Kelsey L.; Stemler, Kristina M.; White, Lynn S.; Loza, Andrew J.; Jeter-Jones, Sabrina; Michalski, Basia M.; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S.; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-01-01

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy. PMID:26644583

  11. Cell survival and shuttle vector mutagenesis induced by ultraviolet A and ultraviolet B radiation in a human cell line.

    PubMed

    Robert, C; Muel, B; Benoit, A; Dubertret, L; Sarasin, A; Stary, A

    1996-04-01

    Although it is known that sunlight is carcinogenic,few molecular data are available concerning the mutagenic effects of ultraviolet (UV) B (290-320 nm) and UVA (320-400 nm) radiation in human cells. To analyze the biologic effects of UVA and UVB, we irradiated the 293 human cell line, derived from adenovirus-transformed human embryonic kidney cells, in which we had stably introduced a shuttle vector harboring the lacZ' bacterial gene as the mutagenesis target. Identical cell survival occurred after UVA doses 700-fold higher than UVB. This comparable to the UVA/UVB ratio that reaches the basal cell layer of the skin after sunlight exposure with UVB sunscreen. The frequency of UVA- and UVB- induced mutations increased with the UV dose as cell survival decreased. At cell survival levels greater than 10%, UVA and UVB induced similar frequencies of mutations in the episomal lacZ gene, whereas for cell survival lower than 10%, UVA induced twice as many mutations as UVB. Sequence analysis of 81 independent lacZ mutants (36 UVA- and 45 UVB-induced) revealed specific characteristics for some UV-induced-mutations, particularly for UVB. Mutations at A/T base pairs were induced more frequently by UVA than by UVB. The UVA-induced mutation spectrum that we have observed in human cells may help help to elucidate the mechanism of skin carcinogenesis. PMID:8618011

  12. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    PubMed

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases.

  13. Transplanted microvascular endothelial cells promote oligodendrocyte precursor cell survival in ischemic demyelinating lesions.

    PubMed

    Iijima, Keiya; Kurachi, Masashi; Shibasaki, Koji; Naruse, Masae; Puentes, Sandra; Imai, Hideaki; Yoshimoto, Yuhei; Mikuni, Masahiko; Ishizaki, Yasuki

    2015-11-01

    We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs). These results indicate that MVECs have a survival effect on OPCs, and this effect might contribute to the recovery of the white matter infarct. The conditioned-medium from cultured MVECs reduced apoptosis of cultured OPCs, while the conditioned medium from cultured fibroblasts did not show such effect. These results suggest a possibility that transplanted MVECs increased the number of OPCs through the release of humoral factors that prevent their apoptotic death. Identification of such humoral factors may lead to the new therapeutic strategy against ischemic demyelinating diseases. PMID:26212499

  14. Rheb promotes cancer cell survival through p27Kip1-dependent activation of autophagy.

    PubMed

    Campos, Tania; Ziehe, Javiera; Palma, Mario; Escobar, David; Tapia, Julio C; Pincheira, Roxana; Castro, Ariel F

    2016-02-01

    We previously found that the small GTPase Rheb regulates the cell-cycle inhibitor p27KIP1 (p27) in colon cancer cells by a mTORC1-independent mechanism. However, the biological function of the Rheb/p27 axis in cancer cells remains unknown. Here, we show that siRNA-mediated depletion of Rheb decreases survival of human colon cancer cells under serum deprivation. As autophagy can support cell survival, we analyzed the effect of Rheb on this process by detecting the modification of the autophagy marker protein LC3 by western blot and imunofluorescence. We found that Rheb promotes autophagy in several human cancer cell lines under serum deprivation. Accordingly, blocking autophagy inhibited the pro-survival effect of Rheb in colon cancer cells. We then analyzed whether p27 was involved in the biological effect of Rheb. Depletion of p27 inhibited colon cancer cell survival, and Rheb induction of autophagy. These results suggest that p27 has an essential role in the effect of Rheb in response to serum deprivation. In addition, we demonstrated that the role of p27 in autophagy stands on the N-terminal portion of the protein, where the CDK-inhibitory domain is located. Our results indicate that a Rheb/p27 axis accounts for the activation of autophagy that supports cancer cell survival. Our work therefore highlights a biological function of Rheb and prompts the need for future studies to address whether the mTORC1-independent Rheb/p27 axis could contribute to tumorigenesis and/or resistance to mTOR inhibitors.

  15. A naringenin–tamoxifen combination impairs cell proliferation and survival of MCF-7 breast cancer cells

    SciTech Connect

    Hatkevich, Talia; Ramos, Joseph; Santos-Sanchez, Idalys; Patel, Yashomati M.

    2014-10-01

    Since over 60% of breast cancers are estrogen receptor positive (ER+), many therapies have targeted the ER. The ER is activated by both estrogen binding and phosphorylation. While anti-estrogen therapies, such as tamoxifen (Tam) have been successful they do not target the growth factor promoting phosphorylation of the ER. Other proliferation pathways such as the phosphatidylinositol-3 kinase, (PI3K) and the mitogen-activated protein kinase (MAPK) pathways are activated in breast cancer cells and are associated with poor prognosis. Thus targeting multiple cellular proliferation and survival pathways at the onset of treatment is critical for the development of more effective therapies. The grapefruit flavanone naringenin (Nar) is an inhibitor of both the PI3K and MAPK pathways. Previous studies examining either Nar or Tam used charcoal-stripped serum which removed estrogen as well as other factors. We wanted to use serum containing medium in order to retain all the potential inducers of cell proliferation so as not to exclude any targets of Nar. Here we show that a Nar–Tam combination is more effective than either Tam alone or Nar alone in MCF-7 breast cancer cells. We demonstrate that a Nar–Tam combination impaired cellular proliferation and viability to a greater extent than either component alone in MCF-7 cells. Furthermore, the use of a Nar–Tam combination requires lower concentrations of both compounds to achieve the same effects on proliferation and viability. Nar may function by inhibiting both PI3K and MAPK pathways as well as localizing ERα to the cytoplasm in MCF-7 cells. Our results demonstrate that a Nar–Tam combination induces apoptosis and impairs proliferation signaling to a greater extent than either compound alone. These studies provide critical information for understanding the molecular mechanisms involved in cell proliferation and apoptosis in breast cancer cells. - Highlights: • Nar–Tam impairs cell viability more effectively than

  16. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector.

    PubMed

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.

  17. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice.

    PubMed

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  18. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation.

    PubMed

    Mutschelknaus, Lisa; Peters, Carsten; Winkler, Klaudia; Yentrapalli, Ramesh; Heider, Theresa; Atkinson, Michael John; Moertl, Simone

    2016-01-01

    Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor

  19. Targeted inhibition of {alpha}v{beta}3 integrin with an RNA aptamer impairs endothelial cell growth and survival

    SciTech Connect

    Mi Jing; Zhang Xiuwu; Giangrande, Paloma H.; McNamara, James O.; Nimjee, Shahid M.; Sarraf-Yazdi, Shiva; Sullenger, Bruce A.; Clary, Bryan M. . E-mail: mi001@duke.edu

    2005-12-16

    {alpha}v{beta}3 integrin is a crucial factor involved in a variety of physiological processes, such as cell growth and migration, tumor invasion and metastasis, angiogenesis, and wound healing. {alpha}v{beta}3 integrin exerts its effect by regulating endothelial cell (EC) migration, proliferation, and survival. Inhibiting the function of {alpha}v{beta}3 integrin, therefore, represents a potential anti-cancer, anti-thrombotic, and anti-inflammatory strategy. In this study, we tested an RNA aptamer, Apt-{alpha}v{beta}3 that binds recombinant {alpha}v{beta}3 integrin, for its ability to bind endogenous {alpha}v{beta}3 integrin on the surface of cells in culture and to subsequently affect cellular response. Our data illustrate that Apt-{alpha}v{beta}3 binds {alpha}v{beta}3 integrin expressed on the surface of live HUVECs. This interaction significantly decreases both basal and PDGF-induced cell proliferation as well as inhibition of cell adhesion. Apt-{alpha}v{beta}3 can also reduce PDGF-stimulated tube formation and increase HUVEC apoptosis through inhibition of FAK phosphorylation pathway. Our results demonstrate that by binding to its target, Apt-{alpha}v{beta}3 can efficiently inhibit human EC proliferation and survival, resulting in reduced angiogenesis. It predicts that Apt-{alpha}v{beta}3 could become useful in both tumor imaging and the treatment of tumor growth, atherosclerosis, thrombosis, and inflammation.

  20. AKT/GSK3β signaling pathway is critically involved in human pluripotent stem cell survival

    PubMed Central

    Romorini, Leonardo; Garate, Ximena; Neiman, Gabriel; Luzzani, Carlos; Furmento, Verónica Alejandra; Guberman, Alejandra Sonia; Sevlever, Gustavo Emilio; Scassa, María Elida; Miriuka, Santiago Gabriel

    2016-01-01

    Human embryonic and induced pluripotent stem cells are self-renewing pluripotent stem cells (PSC) that can differentiate into a wide range of specialized cells. Basic fibroblast growth factor is essential for PSC survival, stemness and self-renewal. PI3K/AKT pathway regulates cell viability and apoptosis in many cell types. Although it has been demonstrated that PI3K/AKT activation by bFGF is relevant for PSC stemness maintenance its role on PSC survival remains elusive. In this study we explored the molecular mechanisms involved in the regulation of PSC survival by AKT. We found that inhibition of AKT with three non-structurally related inhibitors (GSK690693, AKT inhibitor VIII and AKT inhibitor IV) decreased cell viability and induced apoptosis. We observed a rapid increase in phosphatidylserine translocation and in the extent of DNA fragmentation after inhibitors addition. Moreover, abrogation of AKT activity led to Caspase-9, Caspase-3, and PARP cleavage. Importantly, we demonstrated by pharmacological inhibition and siRNA knockdown that GSK3β signaling is responsible, at least in part, of the apoptosis triggered by AKT inhibition. Moreover, GSK3β inhibition decreases basal apoptosis rate and promotes PSC proliferation. In conclusion, we demonstrated that AKT activation prevents apoptosis, partly through inhibition of GSK3β, and thus results relevant for PSC survival. PMID:27762303

  1. The survival of cryopreserved human bone marrow stem cells.

    PubMed

    Hill, R S; Mackinder, C A; Postlewaight, B F; Blacklock, H A

    1979-07-01

    Two methods for cryopreservation of bone marrow stem cells were compared using bone marrow obtained from 36 patients. Included in this group were 21 persons with the diagnosis of leukaemia including 14 either with acute myeloid or lymphoblastic leukaemia in remission following intensive remission induction chemotherapy. After freeze-preservation and reconstitution, all marrow samples were tested for nucleated cell (NC) recovery and grown on agar to assess colony forming units (CFUC) and cluster forming units in culture (CluFUc). A slow dilution reconstitution method using freezing media containing AB negative plasma resulted in recovery of 85% of the CFUc activity of fresh marrow. This result was significantly better than the 47% CFUc recovery obtained when freezing media without plasma and a rapid dilution reconstitution technique were used. NC recoveries following slow dilution (51%) and rapid dilution (44%) were not significantly different. CluFUc were disproportionately reduced compared with CFUc although yielding similar results with both methods (26% and 32%). No correlation was found for either method between CFUc and NC recovery or between CFUc and CluFUc recovery in cryopreserved bone marrow. PMID:392422

  2. Contribution of growth and cell cycle checkpoints to radiation survival in Drosophila.

    PubMed

    Jaklevic, Burnley; Uyetake, Lyle; Lemstra, Willy; Chang, Julia; Leary, William; Edwards, Anthony; Vidwans, Smruti; Sibon, Ody; Tin Su, Tin

    2006-12-01

    Cell cycle checkpoints contribute to survival after exposure to ionizing radiation (IR) by arresting the cell cycle and permitting repair. As such, yeast and mammalian cells lacking checkpoints are more sensitive to killing by IR. We reported previously that Drosophila larvae mutant for grp (encoding a homolog of Chk1) survive IR as well as wild type despite being deficient in cell cycle checkpoints. This discrepancy could be due to differences either among species or between unicellular and multicellular systems. Here, we provide evidence that Grapes is needed for survival of Drosophila S2 cells after exposure to similar doses of IR, suggesting that multicellular organisms may utilize checkpoint-independent mechanisms to survive irradiation. The dispensability of checkpoints in multicellular organisms could be due to replacement of damaged cells by regeneration through increased nutritional uptake and compensatory proliferation. In support of this idea, we find that inhibition of nutritional uptake (by starvation or onset of pupariation) or inhibition of growth factor signaling and downstream targets (by mutations in cdk4, chico, or dmyc) reduced the radiation survival of larvae. Further, some of these treatments are more detrimental for grp mutants, suggesting that the need for compensatory proliferation is greater for checkpoint mutants. The difference in survival of grp and wild-type larvae allowed us to screen for small molecules that act as genotype-specific radiation sensitizers in a multicellular context. A pilot screen of a small molecule library from the National Cancer Institute yielded known and approved radio-sensitizing anticancer drugs. Since radiation is a common treatment option for human cancers, we propose that Drosophila may be used as an in vivo screening tool for genotype-specific drugs that enhance the effect of radiation therapy. PMID:17028317

  3. Cells surviving fractional killing by TRAIL exhibit transient but sustainable resistance and inflammatory phenotypes

    PubMed Central

    Flusberg, Deborah A.; Roux, Jérémie; Spencer, Sabrina L.; Sorger, Peter K.

    2013-01-01

    When clonal populations of human cells are exposed to apoptosis-inducing agents, some cells die and others survive. This fractional killing arises not from mutation but from preexisting, stochastic differences in the levels and activities of proteins regulating apoptosis. Here we examine the properties of cells that survive treatment with agonists of two distinct death receptors, tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and anti-FasR antibodies. We find that “survivor” cells are highly resistant to a second ligand dose applied 1 d later. Resistance is reversible, resetting after several days of culture in the absence of death ligand. “Reset” cells appear identical to drug-naive cells with respect to death ligand sensitivity and gene expression profiles. TRAIL survivors are cross-resistant to activators of FasR and vice versa and exhibit an NF-κB–dependent inflammatory phenotype. Remarkably, reversible resistance is induced in the absence of cell death when caspase inhibitors are present and can be sustained for 1 wk or more, also without cell death, by periodic ligand exposure. Thus stochastic differences in cell state can have sustained consequences for sen­sitivity to prodeath ligands and acquisition of proinflammatory phenotypes. The important role played by periodicity in TRAIL exposure for induction of opposing apoptosis and survival mechanisms has implications for the design of optimal therapeutic agents and protocols. PMID:23699397

  4. Variation in wind and piscivorous predator fields affecting the survival of Atlantic salmon, Salmo salar, in the Gulf of Maine

    USGS Publications Warehouse

    Friedland, K.D.; Manning, J.P.; Link, Jason S.; Gilbert, J.R.; Gilbert, A.T.; O'Connell, A.F.

    2012-01-01

    Observations relevant to the North American stock complex of Atlantic salmon, Salmo salar L., suggest that marine mortality is influenced by variation in predation pressure affecting post-smolts during the first months at sea. This hypothesis was tested for Gulf of Maine (GOM) stocks by examining wind pseudostress and the distribution of piscivorous predator fields potentially affecting post-smolts. Marine survival has declined over recent decades with a change in the direction of spring winds, which is likely extending the migration of post-smolts by favouring routes using the western GOM. In addition to changes in spring wind patterns, higher spring sea surface temperatures have been associated with shifting distributions of a range of fish species. The abundance of several pelagic piscivores, which based on their feeding habits may predate on salmon post-smolts, has increased in the areas that serve as migration corridors for post-smolts. In particular, populations of silver hake, Merluccius bilinearis (Mitchell), red hake, Urophycis chuss (Walbaum), and spiny dogfish, Squalus acanthias L., increased in size in the portion of the GOM used by post-smolts. Climate variation and shifting predator distributions in the GOM are consistent with the predator hypothesis of recruitment control suggested for the stock complex.

  5. Effect of single-dose radiation on cell survival and growth hormone secretion by rat anterior pituitary cells

    SciTech Connect

    Hochberg, Z.; Kuten, A.; Hertz, P.; Tatcher, M.; Kedar, A.; Benderly, A.

    1983-06-01

    Cranial irradiation has been shown to impair growth hormone secretion in children. In this study a cell culture of dispersed rat anterior pituitary cells was exposed to single doses of radiation in the range of 100 to 1500 rad. Survival curves were obtained for the different anterior pituitary cell lines, and growth hormone secretion was measured in the tissue culture medium. Both survival and growth hormone secretion curves showed an initial shoulder in the range of 0 to 300 rad, followed by a decline between 300 to 750 rad. It is concluded that growth hormone secreting acidophilic pituicytes are sensitive to radiation at single doses greater than 300 rad.

  6. NOTE: The Hug-Kellerer equation as the universal cell survival curve

    NASA Astrophysics Data System (ADS)

    Ekstrand, Kenneth E.

    2010-05-01

    The Hug-Kellerer (H-K) equation is one of the earliest proposed radiation cell survival curves. We examine this equation in view of the recent perceived need for a universal cell survival curve which would be applicable to single radiation fractions at high doses. We derive relationships between the three parameters of the H-K equation and the parameters α and β of the linear-quadratic equation. Using these relationships we show how the H-K equation can be used to determine single-fraction doses which are equivalent in theory to the dose in a conventional multi-fraction course of radiation therapy.

  7. How to Improve the Survival of Transplanted Mesenchymal Stem Cell in Ischemic Heart?

    PubMed Central

    Li, Liangpeng; Chen, Xiongwen; Wang, Wei Eric; Zeng, Chunyu

    2016-01-01

    Mesenchymal stem cell (MSC) is an intensely studied stem cell type applied for cardiac repair. For decades, the preclinical researches on animal model and clinical trials have suggested that MSC transplantation exerts therapeutic effect on ischemic heart disease. However, there remain major limitations to be overcome, one of which is the very low survival rate after transplantation in heart tissue. Various strategies have been tried to improve the MSC survival, and many of them showed promising results. In this review, we analyzed the studies in recent years to summarize the methods, effects, and mechanisms of the new strategies to address this question. PMID:26681958

  8. Dietary lutein modulates growth and survival genes in prostate cancer cells.

    PubMed

    Rafi, Mohamed M; Kanakasabai, Saravanan; Gokarn, Sarita V; Krueger, Eric G; Bright, John J

    2015-02-01

    Lutein is a carotenoid pigment present in fruits and vegetables that has anti-inflammatory and antitumor properties. In this study, we examined the effect of lutein on proliferation and survival-associated genes in prostate cancer (PC-3) cells. We found that in vitro culture of PC-3 cells with lutein induced mild decrease in proliferation that improved in combination treatment with peroxisome proliferator-activated receptor gamma (PPARγ) agonists and other chemotherapeutic agents. Flow cytometry analyses showed that lutein improved drug-induced cell cycle arrest and apoptosis in prostate cancer. Gene array and quantitative reverse transcription-polymerase chain reaction analyses showed that lutein altered the expression of growth and apoptosis-associated biomarker genes in PC-3 cells. These findings highlight that lutein modulates the expression of growth and survival-associated genes in prostate cancer cells.

  9. Cell Adhesion and Long-Term Survival of Transplanted Mesenchymal Stem Cells: A Prerequisite for Cell Therapy

    PubMed Central

    Lee, Seahyoung; Choi, Eunhyun; Cha, Min-Ji; Hwang, Ki-Chul

    2015-01-01

    The literature provides abundant evidence that mesenchymal stem cells (MSCs) are an attractive resource for therapeutics and have beneficial effects in regenerating injured tissues due to their self-renewal ability and broad differentiation potential. Although the therapeutic potential of MSCs has been proven in both preclinical and clinical studies, several questions have not yet been addressed. A major limitation to the use of MSCs in clinical applications is their poor viability at the site of injury due to the harsh microenvironment and to anoikis driven by the loss of cell adhesion. To improve the survival of the transplanted MSCs, strategies to regulate apoptotic signaling and enhance cell adhesion have been developed, such as pretreatment with cytokines, growth factors, and antiapoptotic molecules, genetic modifications, and hypoxic preconditioning. More appropriate animal models and a greater understanding of the therapeutic mechanisms of MSCs will be required for their successful clinical application. Nevertheless, the development of stem cell therapies using MSCs has the potential to treat degenerative diseases. This review discusses various approaches to improving MSC survival by inhibiting anoikis. PMID:25722795

  10. Control of Homeostasis and Dendritic Cell Survival by the GTPase RhoA.

    PubMed

    Li, Shuai; Dislich, Bastian; Brakebusch, Cord H; Lichtenthaler, Stefan F; Brocker, Thomas

    2015-11-01

    Tissues accommodate defined numbers of dendritic cells (DCs) in highly specific niches where different intrinsic and environmental stimuli control DC life span and numbers. DC homeostasis in tissues is important, because experimental changes in DC numbers influence immunity and tolerance toward various immune catastrophes and inflammation. However, the precise molecular mechanisms regulating DC life span and homeostasis are unclear. We report that the GTPase RhoA controls homeostatic proliferation, cytokinesis, survival, and turnover of cDCs. Deletion of RhoA strongly decreased the numbers of CD11b(-)CD8(+) and CD11b(+)Esam(hi) DC subsets, whereas CD11b(+)Esam(lo) DCs were not affected in conditional RhoA-deficient mice. Proteome analyses revealed a defective prosurvival pathway via PI3K/protein kinase B (Akt1)/Bcl-2-associated death promoter in the absence of RhoA. Taken together, our findings identify RhoA as a central regulator of DC homeostasis, and its deletion decreases DC numbers below critical thresholds for immune protection and homeostasis, causing aberrant compensatory DC proliferation.

  11. Increased Fracture Collapse after Intertrochanteric Fractures Treated by the Dynamic Hip Screw Adversely Affects Walking Ability but Not Survival

    PubMed Central

    Fang, Christian; Gudushauri, Paata; Wong, Tak-Man; Lau, Tak-Wing; Pun, Terence; Leung, Frankie

    2016-01-01

    In osteoporotic hip fractures, fracture collapse is deliberately allowed by commonly used implants to improve dynamic contact and healing. The muscle lever arm is, however, compromised by shortening. We evaluated a cohort of 361 patients with AO/OTA 31.A1 or 31.A2 intertrochanteric fracture treated by the dynamic hip screw (DHS) who had a minimal follow-up of 3 months and an average follow-up of 14.6 months and long term survival data. The amount of fracture collapse and shortening due to sliding of the DHS was determined at the latest follow-up and graded as minimal (<1 cm), moderate (1-2 cm), or severe (>2 cm). With increased severity of collapse, more patients were unable to maintain their premorbid walking function (minimal collapse = 34.2%, moderate = 33.3%, severe = 62.8%, and p = 0.028). Based on ordinal regression of risk factors, increased fracture collapse was significantly and independently related to increasing age (p = 0.037), female sex (p = 0.024), A2 fracture class (p = 0.010), increased operative duration (p = 0.011), poor reduction quality (p = 0.000), and suboptimal tip-apex distance of >25 mm (p = 0.050). Patients who had better outcome in terms of walking function were independently predicted by younger age (p = 0.036), higher MMSE marks (p = 0.000), higher MBI marks (p = 0.010), better premorbid walking status (p = 0.000), less fracture collapse (p = 0.011), and optimal lag screw position in centre-centre or centre-inferior position (p = 0.020). According to Kaplan-Meier analysis, fracture collapse had no association with mortality from 2.4 to 7.6 years after surgery. In conclusion, increased fracture collapse after fixation of geriatric intertrochanteric fractures adversely affected walking but not survival. PMID:26955637

  12. Food restriction affects reproduction and survival of F1 and F2 offspring of Rat-like hamster (Cricetulus triton).

    PubMed

    Liang, Hong; Zhang, Zhibin

    2006-03-30

    Food restriction in parent may have long-term consequence on the reproductive capabilities of the offspring, and these consequences may, in turn, play an important role in population regulation. In this paper, we systematically examined the effect of maternal food restriction on reproduction and survival of maternal individuals, and F1 and F2 offspring of Rat-like hamsters (Cricetulus triton). Food restriction to 75% of that eaten by ad libitum-fed hamsters (75% FR) did not affect the reproductive organs and hormone concentration of maternal females, but 50% FR significantly reduced the size of ovarian organ and estradiol concentration of maternal females. 75% FR significantly reduced the testosterone concentration of maternal males; 50% FR significantly reduced both the size of epididymides and concentration of testosterone of maternal males. 70% FR in maternal females significantly reduced the sizes of reproductive organs and hormone concentrations of both their male and female F1 offspring. FR maternal females also produced significantly more male than female F1 offspring. The sizes of reproductive organs or hormone concentration of F2 males of maternal FR continued to significantly decline, but no such effect was observed in F2 females. However, the number of F2 offspring per F1 female of FR maternal females at birth became significantly smaller and with significantly more males than females. Survival to weaning of F1 and F2 offspring of FR maternal females became significantly smaller during the period from birth to weaning. Thus, the effects of maternal food restriction could be an important mechanism to explain the prolonged low population density that is commonly observed after the population crash of this species.

  13. Assessment of survival of patients with metastatic clear cell renal cell carcinoma after radical cytoreductive nephrectomy versus no surgery: a SEER analysis

    PubMed Central

    Xiao, Wen-Jun; Zhu, Yao; Dai, Bo; Zhang, Hai-Liang; Ye, Ding-Wei

    2015-01-01

    Purposes To examine the factors related to the choice of cytoreductive nephrectomy (CN) for patients with metastatic clear cell renal cell carcinoma (mCCRCC), and compare the population-based survival rates of patients treated with or without surgery in the modern targeted therapy era. Materials and Methods From 2006 to 2009, patients with mCCRCC were identified from SEER database. The factors that affected patients to be submitted to CN were examined and propensity scores for each patient were calculated. Then patients were matched based upon propensity scores. Univariable and multivariable cox regression models were used to compare survival rates of patients treated with or without surgery. Finally, sensitivity analysis for the cox model on a hazard ratio scale was performed. Results Age, race, tumor size, T stage and N stage were associated with nephrectomy univariablely. After the match based upon propensity scores, the 1-, 2-, and 3-year cancer-specific survival rate estimates were 45.1%, 27.9%, and 21.7% for the no-surgery group vs 70.6%, 52.2%, and 41.7% for the surgery group, respectively (hazard ratio 0.42, 95%CI: 0.35-0.52, log-rank P<0.001). In multivariable Cox proportional hazard regression model, race, T stage, N stage and median household income were significantly associated with survival. Sensitivity analysis on a hazard ratio scale indicated that the hazard ratio might be above 1.00 only when the unknown factor had an opposite effect on survival which was 3-fold than CN. Conclusion The results of our study showed that CN significantly improves the survival of patients with metastatic CCRCC even in the targeted therapy era. PMID:26005970

  14. N-methyl-D-aspartate promotes the survival of cerebellar granule cells in culture.

    PubMed

    Balázs, R; Jørgensen, O S; Hack, N

    1988-11-01

    Our previous studies on the survival-promoting influence of elevated concentrations of extracellular K+ ([K+]e) on cultured cerebellar granule cells led to the proposal that depolarization in vitro mimics the effect of the earliest afferent inputs received by the granule cells in vivo. This, in turn, might be mediated through the stimulation of excitatory amino acid receptors, in particular the N-methyl-D-aspartate-preferring subtype gating ion channels which are also permeable to Ca2+. Here we report that N-methyl-D-aspartate indeed has a dramatic effect on the survival in culture of cells derived from dissociated cerebella of 7-8-day-old rats and cultured in media containing 'low' [K+]e (5-15 mM). In addition to the visual inspection of the cultures, the effect of N-methyl-D-aspartate was quantitatively evaluated, using estimates related to the number of viable cells (determination of DNA and of reduction rate of a tetrazolium salt). Furthermore, proteins which are relatively enriched in either nerve cells (neuronal cell adhesion molecule, D3-protein and synaptin) or in glia (glutamine synthetase) were also measured. The findings showed that the rescue of cells by N-methyl-D-aspartate involved primarily nerve cells and that the survival requirement for N-methyl-D-aspartate, as for high K+, developed between 2 and 4 days in vitro. The effect depended on both the concentration of N-methyl-D-aspartate and the degree of depolarization of the cells: both the potency and the efficacy of N-methyl-D-aspartate were increased as [K+]e was raised from 5 to 15 mM, at which range K+ on its own has little if any influence on granule cell survival. These characteristics are consistent with the voltage-dependence of ion conductance through the N-methyl-D-aspartate receptor-linked channel. The most pronounced effect of N-methyl-D-aspartate was obtained in the presence of 15 mM K+, when cell survival approached that obtained in 'control' cultures (grown in 25 mM K

  15. Cell membrane damage is involved in the impaired survival of bone marrow stem cells by oxidized low-density lipoprotein.

    PubMed

    Li, Xin; Xiao, Yuan; Cui, Yuqi; Tan, Tao; Narasimhulu, Chandrakala A; Hao, Hong; Liu, Lingjuan; Zhang, Jia; He, Guanglong; Verfaillie, Catherine M; Lei, Minxiang; Parthasarathy, Sampath; Ma, Jianjie; Zhu, Hua; Liu, Zhenguo

    2014-12-01

    Cell therapy with bone marrow stem cells (BMSCs) remains a viable option for tissue repair and regeneration. A major challenge for cell therapy is the limited cell survival after implantation. This study was to investigate the effect of oxidized low-density lipoprotein (ox-LDL, naturally present in human blood) on BMSC injury and the effect of MG53, a tissue repair protein, for the improvement of stem cell survival. Rat bone marrow multipotent adult progenitor cells (MAPCs) were treated with ox-LDL, which caused significant cell death as reflected by the increased LDH release to the media. Exposure of MAPCs to ox-LDL led to entry of fluorescent dye FM1-43 measured under confocal microscope, suggesting damage to the plasma membrane. Ox-LDL also generated reactive oxygen species (ROS) as measured with electron paramagnetic resonance spectroscopy. While antioxidant N-acetylcysteine completely blocked ROS production from ox-LDL, it failed to prevent ox-LDL-induced cell death. When MAPCs were treated with the recombinant human MG53 protein (rhMG53) ox-LDL induced LDH release and FM1-43 dye entry were significantly reduced. In the presence of rhMG53, the MAPCs showed enhanced cell survival and proliferation. Our data suggest that membrane damage induced by ox-LDL contributed to the impaired survival of MAPCs. rhMG53 treatment protected MAPCs against membrane damage and enhanced their survival which might represent a novel means for improving efficacy for stem cell-based therapy for treatment of diseases, especially in setting of hyperlipidemia.

  16. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    PubMed

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  17. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells.

    PubMed

    Ryan, M C; Lee, K; Miyashita, Y; Carter, W G

    1999-06-14

    Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium. PMID:10366601

  18. Fractionated dose of 35-MEV fast neutrons and hypoxic tumor cell survival curve.

    PubMed

    U, R; Evans, J C; Cavanaugh, P J; Abramson, N; Thompson, T T; Wheless, D M

    1975-06-01

    The determination of the RBE for the MANTA fast neutrons produced by NRL is inprogress, with the model system using tumor cell population kinetic response patterns assayed in vitro after irradiation in vivo. Ascites tumor cells BW-5147 were irradiated with a clinically usable fast neutron beam from the NRL cyclotron, which is produced by accelrating deuterons to 35 MeV and using htem to bombard a thick berylliumtarget. The comparison of dose-effect relationships was made for doses ranging from30 to 1000 rads. The doses required for an isoeffect on BW-5147 hypoxic tumor cell survival and impairment of its reproductive capacity from fast neutron exposure were not different wheither it was given a single dose or the same dose given in three fractions separated by long recovery periods in situ. No intracellular repair of sublethal injury when the dose was given in three fractions, although the hypoxic BWp5147 tumor cells haveno effective reoxygenation or repopulation in this time interval. The RBE for the fast neutron beam is 4 relative to x rays for fractionated doses at the surviving fractionlevel of 0.6-0.7, while the RBE IS 2.5 FOR SINGLE DOSES. However, at a surviving fraction of 0.1, the RBE is 1.9 for single and 2.8 for fractionated doses. Analysis of thedaily cell population rate or mitotic delay between the two types of radiations at a similiar level of survival.

  19. Campylobacter jejuni survival within human epithelial cells is enhanced by the secreted protein CiaI

    PubMed Central

    Buelow, Daelynn R.; Christensen, Jeffrey E.; Neal-McKinney, Jason M.; Konkel, Michael E.

    2011-01-01

    Summary Although it is known that Campylobacter jejuni invade the cells that line the human intestinal tract, the bacterial proteins that enable this pathogen to survive within Campylobacter-containing vacuoles (CCV) have not been identified. Here, we describe the identification and characterization of a protein that we termed CiaI for Campylobacter invasion antigen involved in Intracellular survival. We show that CiaI harbors an amino-terminal type III secretion (T3S) sequence and is secreted from C. jejuni through the flagellar T3S system. In addition, the ciaI mutant was impaired in intracellular survival when compared to a wild-type strain, as judged by the gentamicin-protection assay. Fluorescence microscopy examination of epithelial cells infected with the C. jejuni ciaI mutant revealed that the CCV were more frequently co-localized with Cathepsin D (a lysosomal marker) than the CCV in cells infected with a C. jejuni wild-type strain. Ectopic expression of CiaI-GFP in epithelial cells yielded a punctate phenotype not observed with the other C. jejuni genes, and this phenotype was abolished by mutation of a dileucine motif located in the carboxy-terminus of the protein. Based on the data, we conclude that CiaI contributes to the ability of C. jejuni to survive within epithelial cells. PMID:21435039

  20. Stochastic modeling and experimental analysis of phenotypic switching and survival of cancer cells under stress

    NASA Astrophysics Data System (ADS)

    Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul

    The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.

  1. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity.

    PubMed

    Hamilton, Jennifer R; Sachs, David; Lim, Jean K; Langlois, Ryan A; Palese, Peter; Heaton, Nicholas S

    2016-04-01

    A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.

  2. Inhibition of Bcl-2 or IAP proteins does not provoke mutations in surviving cells.

    PubMed

    Shekhar, Tanmay M; Green, Maja M; Rayner, David M; Miles, Mark A; Cutts, Suzanne M; Hawkins, Christine J

    2015-07-01

    Chemotherapy and radiotherapy can cause permanent damage to the genomes of surviving cells, provoking severe side effects such as second malignancies in some cancer survivors. Drugs that mimic the activity of death ligands, or antagonise pro-survival proteins of the Bcl-2 or IAP families have yielded encouraging results in animal experiments and early phase clinical trials. Because these agents directly engage apoptosis pathways, rather than damaging DNA to indirectly provoke tumour cell death, we reasoned that they may offer another important advantage over conventional therapies: minimisation or elimination of side effects such as second cancers that result from mutation of surviving normal cells. Disappointingly, however, we previously found that concentrations of death receptor agonists like TRAIL that would be present in vivo in clinical settings provoked DNA damage in surviving cells. In this study, we used cell line model systems to investigate the mutagenic capacity of drugs from two other classes of direct apoptosis-inducing agents: the BH3-mimetic ABT-737 and the IAP antagonists LCL161 and AT-406. Encouragingly, our data suggest that IAP antagonists possess negligible genotoxic activity. Doses of ABT-737 that were required to damage DNA stimulated Bax/Bak-independent signalling and exceeded concentrations detected in the plasma of animals treated with this drug. These findings provide hope that cancer patients treated by BH3-mimetics or IAP antagonists may avoid mutation-related illnesses that afflict some cancer survivors treated with conventional DNA-damaging anti-cancer therapies.

  3. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    PubMed Central

    Ballios, Brian G.; Cooke, Michael J.; Donaldson, Laura; Coles, Brenda L.K.; Morshead, Cindi M.; van der Kooy, Derek; Shoichet, Molly S.

    2015-01-01

    Summary The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC) and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC)-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs). The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability. PMID:25981414

  4. CIB1 depletion impairs cell survival and tumor growth in triple-negative breast cancer

    PubMed Central

    Black, Justin L.; Harrell, J. Chuck; Leisner, Tina M.; Fellmeth, Melissa J.; George, Samuel D.; Reinhold, Dominik; Baker, Nicole M.; Jones, Corbin D.; Der, Channing J.; Perou, Charles M.

    2015-01-01

    Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with generally poor prognosis and no available targeted therapies, highlighting a critical unmet need to identify and characterize novel therapeutic targets. We previously demonstrated that CIB1 is necessary for cancer cell survival and proliferation via regulation of two oncogenic signaling pathways, RAF–MEK–ERK and PI3K–AKT. Because these pathways are often upregulated in TNBC, we hypothesized that CIB1 may play a broader role in TNBC cell survival and tumor growth. Methods utilized include inducible RNAi depletion of CIB1 in vitro and in vivo, immunoblotting, clonogenic assay, flow cytometry, RNA-sequencing, bioinformatics analysis, and Kaplan–Meier survival analysis. CIB1 depletion resulted in significant cell death in 8 of 11 TNBC cell lines tested. Analysis of components related to PI3K–AKT and RAF–MEK–ERK signaling revealed that elevated AKT activation status and low PTEN expression were key predictors of sensitivity to CIB1 depletion. Furthermore, CIB1 knockdown caused dramatic shrinkage of MDA-MB-468 xenograft tumors in vivo. RNA sequence analysis also showed that CIB1 depletion in TNBC cells activates gene programs associated with decreased proliferation and increased cell death. CIB1 expression levels per se did not predict TNBC susceptibility to CIB1 depletion, and CIB1 mRNA expression levels did not associate with TNBC patient survival. Our data are consistent with the emerging theory of non-oncogene addiction, where a large subset of TNBCs depend on CIB1 for cell survival and tumor growth, independent of CIB1 expression levels. Our data establish CIB1 as a novel therapeutic target for TNBC. PMID:26105795

  5. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice

    PubMed Central

    Randall, Katrina L.; Chan, Stephanie S.-Y.; Ma, Cindy S.; Fung, Ivan; Mei, Yan; Yabas, Mehmet; Tan, Andy; Arkwright, Peter D.; Al Suwairi, Wafaa; Lugo Reyes, Saul Oswaldo; Yamazaki-Nakashimada, Marco A.; de la Luz Garcia-Cruz, Maria; Smart, Joanne M.; Picard, Capucine; Okada, Satoshi; Jouanguy, Emmanuelle; Casanova, Jean-Laurent; Lambe, Teresa; Cornall, Richard J.; Russell, Sarah; Oliaro, Jane; Tangye, Stuart G.; Bertram, Edward M.

    2011-01-01

    In humans, DOCK8 immunodeficiency syndrome is characterized by severe cutaneous viral infections. Thus, CD8 T cell function may be compromised in the absence of DOCK8. In this study, by analyzing mutant mice and humans, we demonstrate a critical, intrinsic role for DOCK8 in peripheral CD8 T cell survival and function. DOCK8 mutation selectively diminished the abundance of circulating naive CD8 T cells in both species, and in DOCK8-deficient humans, most CD8 T cells displayed an exhausted CD45RA+CCR7− phenotype. Analyses in mice revealed the CD8 T cell abnormalities to be cell autonomous and primarily postthymic. DOCK8 mutant naive CD8 T cells had a shorter lifespan and, upon encounter with antigen on dendritic cells, exhibited poor LFA-1 synaptic polarization and a delay in the first cell division. Although DOCK8 mutant T cells underwent near-normal primary clonal expansion afte