Science.gov

Sample records for affect cell wall

  1. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus.

    PubMed

    Swamy, Prashant S; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E; Zhu, Yingying; Peter, Gary F; Hahn, Michael G; Mansfield, Shawn D; Harding, Scott A; Tsai, Chung-Jui

    2015-10-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis.

  2. Tubulin perturbation leads to unexpected cell wall modifications and affects stomatal behaviour in Populus

    PubMed Central

    Swamy, Prashant S.; Hu, Hao; Pattathil, Sivakumar; Maloney, Victoria J.; Xiao, Hui; Xue, Liang-Jiao; Chung, Jeng-Der; Johnson, Virgil E.; Zhu, Yingying; Peter, Gary F.; Hahn, Michael G.; Mansfield, Shawn D.; Harding, Scott A.; Tsai, Chung-Jui

    2015-01-01

    Cortical microtubules are integral to plant morphogenesis, cell wall synthesis, and stomatal behaviour, presumably by governing cellulose microfibril orientation. Genetic manipulation of tubulins often leads to abnormal plant development, making it difficult to probe additional roles of cortical microtubules in cell wall biogenesis. Here, it is shown that expressing post-translational C-terminal modification mimics of α-tubulin altered cell wall characteristics and guard cell dynamics in transgenic Populus tremula x alba that otherwise appear normal. 35S promoter-driven transgene expression was high in leaves but unusually low in xylem, suggesting high levels of tubulin transgene expression were not tolerated in wood-forming tissues during regeneration of transformants. Cellulose, hemicellulose, and lignin contents were unaffected in transgenic wood, but expression of cell wall-modifying enzymes, and extractability of lignin-bound pectin and xylan polysaccharides were increased in developing xylem. The results suggest that pectin and xylan polysaccharides deposited early during cell wall biogenesis are more sensitive to subtle tubulin perturbation than cellulose and matrix polysaccharides deposited later. Tubulin perturbation also affected guard cell behaviour, delaying drought-induced stomatal closure as well as light-induced stomatal opening in leaves. Pectins have been shown to confer cell wall flexibility critical for reversible stomatal movement, and results presented here are consistent with microtubule involvement in this process. Taken together, the data show the value of growth-compatible tubulin perturbations for discerning microtubule functions, and add to the growing body of evidence for microtubule involvement in non-cellulosic polysaccharide assembly during cell wall biogenesis. PMID:26246616

  3. Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition1[W

    PubMed Central

    Nahirñak, Vanesa; Almasia, Natalia Inés; Fernandez, Paula Virginia; Hopp, Horacio Esteban; Estevez, José Manuel; Carrari, Fernando; Vazquez-Rovere, Cecilia

    2012-01-01

    Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense. PMID:22080603

  4. Constitutive Expressor of Pathogenesis-Related Genes5 affects cell wall biogenesis and trichome development

    PubMed Central

    Brininstool, Ginger; Kasili, Remmy; Simmons, L Alice; Kirik, Viktor; Hülskamp, Martin; Larkin, John C

    2008-01-01

    Background The Arabidopsis thaliana CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene has been previously implicated in disease resistance, cell proliferation, cell death, and sugar sensing, and encodes a putative membrane protein of unknown biochemical function. Trichome development is also affected in cpr5 plants, which have leaf trichomes that are reduced in size and branch number. Results In the work presented here, the role of CPR5 in trichome development was examined. Trichomes on cpr5 mutants had reduced birefringence, suggesting a difference in cell wall structure between cpr5 and wild-type trichomes. Consistent with this, leaf cell walls of cpr5 plants contained significantly less paracrystalline cellulose and had an altered wall carbohydrate composition. We also found that the effects of cpr5 on trichome size and endoreplication of trichome nuclear DNA were epistatic to the effects of mutations in triptychon (try) or overexpression of GLABRA3, indicating that these trichome developmental regulators are dependant on CPR5 function for their effects on trichome expansion and endoreplication. Conclusion Our results suggest that CPR5 is unlikely to be a specific regulator of pathogen response pathways or senescence, but rather functions either in cell wall biogenesis or in multiple cell signaling or transcription response pathways. PMID:18485217

  5. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana

    PubMed Central

    2013-01-01

    Background Second-generation biofuels are generally produced from the polysaccharides in the lignocellulosic plant biomass, mainly cellulose. However, because cellulose is embedded in a matrix of other polysaccharides and lignin, its hydrolysis into the fermentable glucose is hampered. The senesced inflorescence stems of a set of 20 Arabidopsis thaliana mutants in 10 different genes of the lignin biosynthetic pathway were analyzed for cell wall composition and saccharification yield. Saccharification models were built to elucidate which cell wall parameters played a role in cell wall recalcitrance. Results Although lignin is a key polymer providing the strength necessary for the plant’s ability to grow upward, a reduction in lignin content down to 64% of the wild-type level in Arabidopsis was tolerated without any obvious growth penalty. In contrast to common perception, we found that a reduction in lignin was not compensated for by an increase in cellulose, but rather by an increase in matrix polysaccharides. In most lignin mutants, the saccharification yield was improved by up to 88% cellulose conversion for the cinnamoyl-coenzyme A reductase1 mutants under pretreatment conditions, whereas the wild-type cellulose conversion only reached 18%. The saccharification models and Pearson correlation matrix revealed that the lignin content was the main factor determining the saccharification yield. However, also lignin composition, matrix polysaccharide content and composition, and, especially, the xylose, galactose, and arabinose contents influenced the saccharification yield. Strikingly, cellulose content did not significantly affect saccharification yield. Conclusions Although the lignin content had the main effect on saccharification, also other cell wall factors could be engineered to potentially increase the cell wall processability, such as the galactose content. Our results contribute to a better understanding of the effect of lignin perturbations on plant cell

  6. The novel herbicide oxaziclomefone inhibits cell expansion in maize cell cultures without affecting turgor pressure or wall acidification.

    PubMed

    O'Looney, Nichola; Fry, Stephen C

    2005-11-01

    Oxaziclomefone [OAC; IUPAC name 3-(1-(3,5-dichlorophenyl)-1-methylethyl)-3,4-dihydro-6-methyl-5-phenyl-2H-1,3-oxazin-4-one] is a new herbicide that inhibits cell expansion in grass roots. Its effects on cell cultures and mode of action were unknown. In principle, cell expansion could be inhibited by a decrease in either turgor pressure or wall extensibility. Cell expansion was estimated as settled cell volume; cell division was estimated by cell counting. Membrane permeability to water was measured by a novel method involving simultaneous assay of the efflux of (3)H(2)O and [(14)C]mannitol from a 'bed' of cultured cells. Osmotic potential was measured by depression of freezing point. OAC inhibited cell expansion in cultures of maize (Zea mays), spinach (Spinacia oleracea) and rose (Rosa sp.), with an ID(50) of 5, 30 and 250 nm, respectively. In maize cultures, OAC did not affect cell division for the first 40 h. It did not affect the osmotic potential of cell sap or culture medium, nor did it impede water transport across cell membranes. It did not affect cells' ability to acidify the apoplast (medium), which may be necessary for 'acid growth'. As OAC did not diminish turgor pressure, its ability to inhibit cell expansion must depend on changes in wall extensibility. It could be a valuable tool for studies on cell expansion.

  7. Loss of cell wall alpha(1–3) glucan affects Cryptococcus neoformans from ultrastructure to virulence

    PubMed Central

    Reese, Amy J.; Yoneda, Aki; Breger, Julia A.; Beauvais, Anne; Liu, Hong; Griffith, Cara L.; Bose, Indrani; Kim, Myoung-Ju; Skau, Colleen; Yang, Sarah; Sefko, Julianne A.; Osumi, Masako; Latge, Jean-Paul; Mylonakis, Eleftherios; Doering, Tamara L.

    2007-01-01

    SUMMARY Yeast cell walls are critical for maintaining cell integrity, particularly in the face of challenges such as growth in mammalian hosts. The pathogenic fungus Cryptococcus neoformans additionally anchors its polysaccharide capsule to the cell surface via α(1–3) glucan in the wall. Cryptococcal cells disrupted in their alpha glucan synthase gene were sensitive to stresses, including temperature, and showed difficulty dividing. These cells lacked surface capsule, although they continued to shed capsule material into the environment. Electron microscopy showed that the alpha glucan that is usually localized to the outer portion of the cell wall was absent, the outer region of the wall was highly disorganized, and the inner region was hypertrophic. Analysis of cell wall composition demonstrated complete loss of alpha glucan accompanied by a compensatory increase in chitin/chitosan and a redistribution of beta glucan between cell wall fractions. The mutants were unable to grow in a mouse model of infection, but caused death in nematodes. These studies integrate morphological and biochemical investigations of the role of alpha glucan in the cryptococcal cell wall. PMID:17244196

  8. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice.

    PubMed

    Zhang, Jing; Zou, Weihua; Li, Ying; Feng, Yongqing; Zhang, Hui; Wu, Zhiliang; Tu, Yuanyuan; Wang, Yanting; Cai, Xiwen; Peng, Liangcai

    2015-10-01

    Rice is a typical silicon-accumulating crop with enormous biomass residues for biofuels. Silica is a cell wall component, but its effect on the plant cell wall and biomass production remains largely unknown. In this study, a systems biology approach was performed using 42 distinct rice cell wall mutants. We found that silica levels are significantly positively correlated with three major wall polymers, indicating that silica is associated with the cell wall network. Silicon-supplied hydroculture analysis demonstrated that silica distinctively affects cell wall composition and major wall polymer features, including cellulose crystallinity (CrI), arabinose substitution degree (reverse Xyl/Ara) of xylans, and sinapyl alcohol (S) proportion in three typical rice mutants. Notably, the silicon supplement exhibited dual effects on biomass enzymatic digestibility in the mutant and wild type (NPB) after pre-treatments with 1% NaOH and 1% H2SO4. In addition, silicon supply largely enhanced plant height, mechanical strength and straw biomass production, suggesting that silica rescues mutant growth defects. Hence, this study provides potential approaches for silicon applications in biomass process and bioenergy rice breeding.

  9. Silica distinctively affects cell wall features and lignocellulosic saccharification with large enhancement on biomass production in rice.

    PubMed

    Zhang, Jing; Zou, Weihua; Li, Ying; Feng, Yongqing; Zhang, Hui; Wu, Zhiliang; Tu, Yuanyuan; Wang, Yanting; Cai, Xiwen; Peng, Liangcai

    2015-10-01

    Rice is a typical silicon-accumulating crop with enormous biomass residues for biofuels. Silica is a cell wall component, but its effect on the plant cell wall and biomass production remains largely unknown. In this study, a systems biology approach was performed using 42 distinct rice cell wall mutants. We found that silica levels are significantly positively correlated with three major wall polymers, indicating that silica is associated with the cell wall network. Silicon-supplied hydroculture analysis demonstrated that silica distinctively affects cell wall composition and major wall polymer features, including cellulose crystallinity (CrI), arabinose substitution degree (reverse Xyl/Ara) of xylans, and sinapyl alcohol (S) proportion in three typical rice mutants. Notably, the silicon supplement exhibited dual effects on biomass enzymatic digestibility in the mutant and wild type (NPB) after pre-treatments with 1% NaOH and 1% H2SO4. In addition, silicon supply largely enhanced plant height, mechanical strength and straw biomass production, suggesting that silica rescues mutant growth defects. Hence, this study provides potential approaches for silicon applications in biomass process and bioenergy rice breeding. PMID:26398793

  10. An ethanolamine kinase Eki1 affects radial growth and cell wall integrity in Trichoderma reesei.

    PubMed

    He, Ronglin; Guo, Wei; Zhang, Dongyuan

    2015-09-01

    Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1.82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The functions of eki genes that encode ethanolamine kinase have been intensively studied in mammalian cells, fruit flies and yeast. However, the role of the eki gene has not yet been characterized in filamentous fungi. In this study, Treki1, an ortholog of Saccharomyces cerevisiae EKI1, was identified and functionally characterized using a target gene deletion strategy in Trichoderma reesei. A Treki deletion mutant was less sensitive to cell wall stressors calcofluor white and Congo red and released fewer protoplasts during cell wall digestion than the parent strain QM9414. Further transcription analysis showed that the expression levels of five genes that encode chitin synthases were drastically increased in the ΔTreki1 mutant. The chitin content was also increased in the null mutant of Treki1 comparing to the parent strain. In addition, the ΔTreki1 mutant exhibited defects in radial growth, conidiation and the accumulation of ethanolamine. The results indicate that Treki1 plays a key role in growth and development and in the maintenance of cell wall integrity in T. reesei.

  11. An ethanolamine kinase Eki1 affects radial growth and cell wall integrity in Trichoderma reesei.

    PubMed

    He, Ronglin; Guo, Wei; Zhang, Dongyuan

    2015-09-01

    Ethanolamine kinase (ATP:ethanolamine O-phosphotransferase, EC 2.7.1.82) catalyzes the committed step of phosphatidylethanolamine synthesis via the CDP-ethanolamine pathway. The functions of eki genes that encode ethanolamine kinase have been intensively studied in mammalian cells, fruit flies and yeast. However, the role of the eki gene has not yet been characterized in filamentous fungi. In this study, Treki1, an ortholog of Saccharomyces cerevisiae EKI1, was identified and functionally characterized using a target gene deletion strategy in Trichoderma reesei. A Treki deletion mutant was less sensitive to cell wall stressors calcofluor white and Congo red and released fewer protoplasts during cell wall digestion than the parent strain QM9414. Further transcription analysis showed that the expression levels of five genes that encode chitin synthases were drastically increased in the ΔTreki1 mutant. The chitin content was also increased in the null mutant of Treki1 comparing to the parent strain. In addition, the ΔTreki1 mutant exhibited defects in radial growth, conidiation and the accumulation of ethanolamine. The results indicate that Treki1 plays a key role in growth and development and in the maintenance of cell wall integrity in T. reesei. PMID:26293912

  12. Compositional changes in 'Bartlett' pear ( Pyrus communis L.) cell wall polysaccharides as affected by sunlight conditions.

    PubMed

    Raffo, María D; Ponce, Nora M A; Sozzi, Gabriel O; Vicente, Ariel R; Stortz, Carlos A

    2011-11-23

    Preharvest conditions can have a great impact on fruit quality attributes and postharvest responses. Firmness is an important quality attribute in pear, and excessive softening increases susceptibility to bruising and decay, thus limiting fruit postharvest life. Textural characteristics of fruits are determined at least in part by cell wall structure and disassembly. Few studies have analyzed the influence of fruit preharvest environment in softening, cell wall composition, and degradation. In the current work 'Bartlett' pears grown either facing the sun (S) or in the shade (H) were harvested and stored for 13 days at 20 °C. An evaluation of fruit soluble solids, acidity, color, starch degradation, firmness, cell wall yield, pectin and matrix glycan solubilization, depolymerization, and monosaccharide composition was carried out. Sun-exposed pears showed more advanced color development and similar levels of starch degradation, sugars, and acids than shaded fruit. Sunlight-grown pears were at harvest firmer than shade-grown pears. Both fruit groups softened during storage at 20 °C, but even after ripening, sun-exposed pears remained firmer. Sunlight exposure did not have a great impact on pectin molecular weight. Instead, at harvest a higher proportion of water-solubilized uronic acids and alkali-solubilized neutral sugars and a larger mean molecular size of tightly bound glycans was found in sun-exposed pears. During ripening cell wall catabolism took place in both sun- and shade-grown pears, but pectin solubilization was clearly delayed in sun-exposed fruit. This was associated with decreased removal of RG I-arabinan side chains rather than with reduced depolymerization.

  13. Verticillium longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis thaliana

    PubMed Central

    Floerl, Saskia; Majcherczyk, Andrzej; Possienke, Mareike; Feussner, Kirstin; Tappe, Hella; Gatz, Christiane; Feussner, Ivo; Kües, Ursula; Polle, Andrea

    2012-01-01

    Verticillium longisporum (VL) is one of the most devastating diseases in important oil crops from the family of Brassicaceae. The fungus resides for much time of its life cycle in the extracellular fluid of the vascular system, where it cannot be controlled by conventional fungicides. To obtain insights into the biology of VL-plant interaction in the apoplast, the secretome consisting of the extracellular proteome and metabolome as well as cell wall properties were studied in the model Brassicaceae, Arabidopsis thaliana. VL infection resulted in increased production of cell wall material with an altered composition of carbohydrate polymers and increased lignification. The abundance of several hundred soluble metabolites changed in the apoplast of VL-infected plants including signalling and defence compounds such as glycosides of salicylic acid, lignans and dihydroxybenzoic acid as well as oxylipins. The extracellular proteome of healthy leaves was enriched in antifungal proteins. VL caused specific increases in six apoplast proteins (three peroxidases PRX52, PRX34, P37, serine carboxypeptidase SCPL20, α-galactosidase AGAL2 and a germin-like protein GLP3), which have functions in defence and cell wall modification. The abundance of a lectin-like, chitin-inducible protein (CILLP) was reduced. Since the transcript levels of most of the induced proteins were not elevated until late infection time points (>20 dpi), whereas those of CILLP and GLP3 were reduced at earlier time points, our results may suggest that VL enhances its virulence by rapid down-regulation and delay of induction of plant defence genes. PMID:22363647

  14. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    SciTech Connect

    Ding, Shi-You

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  15. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration.

    PubMed

    Chebli, Youssef; Pujol, Lauranne; Shojaeifard, Anahid; Brouwer, Iman; van Loon, Jack J W A; Geitmann, Anja

    2013-01-01

    Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions. PMID:23516452

  16. Cell wall assembly and intracellular trafficking in plant cells are directly affected by changes in the magnitude of gravitational acceleration.

    PubMed

    Chebli, Youssef; Pujol, Lauranne; Shojaeifard, Anahid; Brouwer, Iman; van Loon, Jack J W A; Geitmann, Anja

    2013-01-01

    Plants are able to sense the magnitude and direction of gravity. This capacity is thought to reside in selected cell types within the plant body that are equipped with specialized organelles called statoliths. However, most plant cells do not possess statoliths, yet they respond to changes in gravitational acceleration. To understand the effect of gravity on the metabolism and cellular functioning of non-specialized plant cells, we investigated a rapidly growing plant cell devoid of known statoliths and without gravitropic behavior, the pollen tube. The effects of hyper-gravity and omnidirectional exposure to gravity on intracellular trafficking and on cell wall assembly were assessed in Camellia pollen tubes, a model system with highly reproducible growth behavior in vitro. Using an epi-fluorescence microscope mounted on the Large Diameter Centrifuge at the European Space Agency, we were able to demonstrate that vesicular trafficking is reduced under hyper-gravity conditions. Immuno-cytochemistry confirmed that both in hyper and omnidirectional gravity conditions, the characteristic spatial profiles of cellulose and callose distribution in the pollen tube wall were altered, in accordance with a dose-dependent effect on pollen tube diameter. Our findings suggest that in response to gravity induced stress, the pollen tube responds by modifying cell wall assembly to compensate for the altered mechanical load. The effect was reversible within few minutes demonstrating that the pollen tube is able to quickly adapt to changing stress conditions.

  17. Eukaryotic-Type Ser/Thr Protein Kinase Mediated Phosphorylation of Mycobacterial Phosphodiesterase Affects its Localization to the Cell Wall.

    PubMed

    Malhotra, Neha; Chakraborti, Pradip K

    2016-01-01

    Phosphodiesterase enzymes, involved in cAMP hydrolysis reaction, are present throughout phylogeny and their phosphorylation mediated regulation remains elusive in prokaryotes. In this context, we focused on this enzyme from Mycobacterium tuberculosis. The gene encoded by Rv0805 was PCR amplified and expressed as a histidine-tagged protein (mPDE) utilizing Escherichia coli based expression system. In kinase assays, upon incubation with mycobacterial Clade I eukaryotic-type Ser/Thr kinases (PknA, PknB, and PknL), Ni-NTA purified mPDE protein exhibited transphosphorylation ability albeit with varying degree. When mPDE was co-expressed one at a time with these kinases in E. coli, it was also recognized by an anti-phosphothreonine antibody, which further indicates its phosphorylating ability. Mass spectrometric analysis identified Thr-309 of mPDE as a phosphosite. In concordance with this observation, anti-phosphothreonine antibody marginally recognized mPDE-T309A mutant protein; however, such alteration did not affect the enzymatic activity. Interestingly, mPDE expressed in Mycobacterium smegmatis yielded a phosphorylated protein that preferentially localized to cell wall. In contrast, mPDE-T309A, the phosphoablative variant of mPDE, did not show such behavior. On the other hand, phosphomimics of mPDE (T309D or T309E), exhibited similar cell wall anchorage as was observed with the wild-type. Thus, our results provide credence to the fact that eukaryotic-type Ser/Thr kinase mediated phosphorylation of mPDE renders negative charge to the protein, promoting its localization on cell wall. Furthermore, multiple sequence alignment revealed that Thr-309 is conserved among mPDE orthologs of M. tuberculosis complex, which presumably emphasizes evolutionary significance of phosphorylation at this residue.

  18. Eukaryotic-Type Ser/Thr Protein Kinase Mediated Phosphorylation of Mycobacterial Phosphodiesterase Affects its Localization to the Cell Wall

    PubMed Central

    Malhotra, Neha; Chakraborti, Pradip K.

    2016-01-01

    Phosphodiesterase enzymes, involved in cAMP hydrolysis reaction, are present throughout phylogeny and their phosphorylation mediated regulation remains elusive in prokaryotes. In this context, we focused on this enzyme from Mycobacterium tuberculosis. The gene encoded by Rv0805 was PCR amplified and expressed as a histidine-tagged protein (mPDE) utilizing Escherichia coli based expression system. In kinase assays, upon incubation with mycobacterial Clade I eukaryotic-type Ser/Thr kinases (PknA, PknB, and PknL), Ni-NTA purified mPDE protein exhibited transphosphorylation ability albeit with varying degree. When mPDE was co-expressed one at a time with these kinases in E. coli, it was also recognized by an anti-phosphothreonine antibody, which further indicates its phosphorylating ability. Mass spectrometric analysis identified Thr-309 of mPDE as a phosphosite. In concordance with this observation, anti-phosphothreonine antibody marginally recognized mPDE-T309A mutant protein; however, such alteration did not affect the enzymatic activity. Interestingly, mPDE expressed in Mycobacterium smegmatis yielded a phosphorylated protein that preferentially localized to cell wall. In contrast, mPDE-T309A, the phosphoablative variant of mPDE, did not show such behavior. On the other hand, phosphomimics of mPDE (T309D or T309E), exhibited similar cell wall anchorage as was observed with the wild-type. Thus, our results provide credence to the fact that eukaryotic-type Ser/Thr kinase mediated phosphorylation of mPDE renders negative charge to the protein, promoting its localization on cell wall. Furthermore, multiple sequence alignment revealed that Thr-309 is conserved among mPDE orthologs of M. tuberculosis complex, which presumably emphasizes evolutionary significance of phosphorylation at this residue. PMID:26904001

  19. Cell wall integrity

    PubMed Central

    Pogorelko, Gennady; Lionetti, Vincenzo; Bellincampi, Daniela; Zabotina, Olga

    2013-01-01

    The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways. PMID:23857352

  20. The Lamportian cell wall

    SciTech Connect

    Keiliszewski, M.; Lamport, D. )

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  1. Arabidopsis NMD3 Is Required for Nuclear Export of 60S Ribosomal Subunits and Affects Secondary Cell Wall Thickening

    PubMed Central

    Chen, Mei-Qin; Zhang, Ai-Hong; Zhang, Quan; Zhang, Bao-Cai; Nan, Jie; Li, Xia; Liu, Na; Qu, Hong; Lu, Cong-Ming; Sudmorgen; Zhou, Yi-Hua; Xu, Zhi-Hong; Bai, Shu-Nong

    2012-01-01

    NMD3 is required for nuclear export of the 60S ribosomal subunit in yeast and vertebrate cells, but no corresponding function of NMD3 has been reported in plants. Here we report that Arabidopsis thaliana NMD3 (AtNMD3) showed a similar function in the nuclear export of the 60S ribosomal subunit. Interference with AtNMD3 function by overexpressing a truncated dominant negative form of the protein lacking the nuclear export signal sequence caused retainment of the 60S ribosomal subunits in the nuclei. More interestingly, the transgenic Arabidopsis with dominant negative interference of AtNMD3 function showed a striking failure of secondary cell wall thickening, consistent with the altered expression of related genes and composition of cell wall components. Observation of a significant decrease of rough endoplasmic reticulum (RER) in the differentiating interfascicular fiber cells of the transgenic plant stems suggested a link between the defective nuclear export of 60S ribosomal subunits and the abnormal formation of the secondary cell wall. These findings not only clarified the evolutionary conservation of NMD3 functions in the nuclear export of 60S ribosomal subunits in yeast, animals and plants, but also revealed a new facet of the regulatory mechanism underlying secondary cell wall thickening in Arabidopsis. This new facet is that the nuclear export of 60S ribosomal subunits and the formation of RER may play regulatory roles in coordinating protein synthesis in cytoplasm and transcription in nuclei. PMID:22558264

  2. Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco

    PubMed Central

    2011-01-01

    Background Polygalacturonase-inhibiting proteins (PGIPs) directly limit the effective ingress of fungal pathogens by inhibiting cell wall-degrading endopolygalacturonases (ePGs). Transgenic tobacco plants over-expressing grapevine (Vitis vinifera) Vvpgip1 have previously been shown to be resistant to Botrytis infection. In this study we characterized two of these PGIP over-expressing lines with known resistance phenotypes by gene expression and hormone profiling in the absence of pathogen infection. Results Global gene expression was performed by a cross-species microarray approach using a potato cDNA microarray. The degree of potential cross-hybridization between probes was modeled by a novel computational workflow designed in-house. Probe annotations were updated by predicting probe-to-transcript hybridizations and combining information derived from other plant species. Comparing uninfected Vvpgip1-overexpressing lines to wild-type (WT), 318 probes showed significant change in expression. Functional groups of genes involved in metabolism and associated to the cell wall were identified and consequent cell wall analysis revealed increased lignin-levels in the transgenic lines, but no major differences in cell wall-derived polysaccharides. GO enrichment analysis also identified genes responsive to auxin, which was supported by elevated indole-acetic acid (IAA) levels in the transgenic lines. Finally, a down-regulation of xyloglucan endotransglycosylase/hydrolases (XTHs), which are important in cell wall remodeling, was linked to a decrease in total XTH activity. Conclusions This evaluation of PGIP over-expressing plants performed under pathogen-free conditions to exclude the classical PGIP-ePG inhibition interaction indicates additional roles for PGIPs beyond the inhibition of ePGs. PMID:22078230

  3. Accumulation of N-Acetylglucosamine Oligomers in the Plant Cell Wall Affects Plant Architecture in a Dose-Dependent and Conditional Manner1[W][OPEN

    PubMed Central

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-01-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane. PMID:24664205

  4. Accumulation of N-acetylglucosamine oligomers in the plant cell wall affects plant architecture in a dose-dependent and conditional manner.

    PubMed

    Vanholme, Bartel; Vanholme, Ruben; Turumtay, Halbay; Goeminne, Geert; Cesarino, Igor; Goubet, Florence; Morreel, Kris; Rencoret, Jorge; Bulone, Vincent; Hooijmaijers, Cortwa; De Rycke, Riet; Gheysen, Godelieve; Ralph, John; De Block, Marc; Meulewaeter, Frank; Boerjan, Wout

    2014-05-01

    To study the effect of short N-acetylglucosamine (GlcNAc) oligosaccharides on the physiology of plants, N-ACETYLGLUCOSAMINYLTRANSFERASE (NodC) of Azorhizobium caulinodans was expressed in Arabidopsis (Arabidopsis thaliana). The corresponding enzyme catalyzes the polymerization of GlcNAc and, accordingly, β-1,4-GlcNAc oligomers accumulated in the plant. A phenotype characterized by difficulties in developing an inflorescence stem was visible when plants were grown for several weeks under short-day conditions before transfer to long-day conditions. In addition, a positive correlation between the oligomer concentration and the penetrance of the phenotype was demonstrated. Although NodC overexpression lines produced less cell wall compared with wild-type plants under nonpermissive conditions, no indications were found for changes in the amount of the major cell wall polymers. The effect on the cell wall was reflected at the transcriptome level. In addition to genes encoding cell wall-modifying enzymes, a whole set of genes encoding membrane-coupled receptor-like kinases were differentially expressed upon GlcNAc accumulation, many of which encoded proteins with an extracellular Domain of Unknown Function26. Although stress-related genes were also differentially expressed, the observed response differed from that of a classical chitin response. This is in line with the fact that the produced chitin oligomers were too small to activate the chitin receptor-mediated signal cascade. Based on our observations, we propose a model in which the oligosaccharides modify the architecture of the cell wall by acting as competitors in carbohydrate-carbohydrate or carbohydrate-protein interactions, thereby affecting noncovalent interactions in the cell wall or at the interface between the cell wall and the plasma membrane.

  5. Nitrate reductase-mediated NO production enhances Cd accumulation in Panax notoginseng roots by affecting root cell wall properties.

    PubMed

    Kan, Qi; Wu, Wenwei; Yu, Wenqian; Zhang, Jiarong; Xu, Jin; Rengel, Zed; Chen, Limei; Cui, Xiuming; Chen, Qi

    2016-04-01

    Panax notoginseng (Burk) F. H. Chen is a traditional medicinal herb in China. However, the high capacity of its roots to accumulate cadmium (Cd) poses a potential risk to human health. Although there is some evidence for the involvement of nitric oxide (NO) in mediating Cd toxicity, the origin of Cd-induced NO and its function in plant responses to Cd remain unknown. In this study, we examined NO synthesis and its role in Cd accumulation in P. notoginseng roots. Cd-induced NO production was significantly decreased by application of the nitrate reductase inhibitor tungstate but not the nitric oxide synthase inhibitor L-NAME (N(G)-methyl-l-arginine acetate), indicating that nitrate reductase is the major contributor to Cd-induced NO production in P. notoginseng roots. Under conditions of Cd stress, sodium nitroprusside (SNP, an NO donor) increased Cd accumulation in root cell walls but decreased Cd translocation to the shoot. In contrast, the NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) and tungstate both significantly decreased NO-increased Cd retention in root cell walls. The amounts of hemicellulose 1 and pectin, together with pectin methylesterase activity, were increased with the addition of SNP but were decreased by cPTIO and tungstate. Furthermore, increases or decreases in hemicellulose 1 and pectin contents as well as pectin methylesterase activity fit well with the increased or decreased retention of Cd in the cell walls of P. notoginseng roots. The results suggest that nitrate reductase-mediated NO production enhances Cd retention in P. notoginseng roots by modulating the properties of the cell wall.

  6. Bacterial Cell Wall Components

    NASA Astrophysics Data System (ADS)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  7. Addition of Phenylboronic Acid to Malus domestica Pollen Tubes Alters Calcium Dynamics, Disrupts Actin Filaments and Affects Cell Wall Architecture.

    PubMed

    Fang, Kefeng; Gao, Sai; Zhang, Weiwei; Xing, Yu; Cao, Qingqin; Qin, Ling

    2016-01-01

    A key role of boron in plants is to cross-link the cell wall pectic polysaccharide rhamnogalacturonan-II (RG-II) through borate diester linkages. Phenylboronic acid (PBA) can form the same reversible ester bonds but cannot cross-link two molecules, so can be used as an antagonist to study the function of boron. This study aimed to evaluate the effect of PBA on apple (Malus domestica) pollen tube growth and the underlying regulatory mechanism. We observed that PBA caused an inhibition of pollen germination, tube growth and led to pollen tube morphological abnormalities. Fluorescent labeling, coupled with a scanning ion-selective electrode technique, revealed that PBA induced an increase in extracellular Ca2+ influx, thereby elevating the cytosolic Ca2+ concentration [Ca2+]c and disrupting the [Ca2+]c gradient, which is critical for pollen tube growth. Moreover the organization of actin filaments was severely perturbed by the PBA treatment. Immunolocalization studies and fluorescent labeling, together with Fourier-transform infrared analysis (FTIR) suggested that PBA caused an increase in the abundance of callose, de-esterified pectins and arabinogalactan proteins (AGPs) at the tip. However, it had no effect on the deposition of the wall polymers cellulose. These effects are similar to those of boron deficiency in roots and other organs, indicating that PBA can induce boron deficiency symptoms. The results provide new insights into the roles of boron in pollen tube development, which likely include regulating [Ca2+]c and the formation of the actin cytoskeleton, in addition to the synthesis and assembly of cell wall components. PMID:26886907

  8. Addition of Phenylboronic Acid to Malus domestica Pollen Tubes Alters Calcium Dynamics, Disrupts Actin Filaments and Affects Cell Wall Architecture.

    PubMed

    Fang, Kefeng; Gao, Sai; Zhang, Weiwei; Xing, Yu; Cao, Qingqin; Qin, Ling

    2016-01-01

    A key role of boron in plants is to cross-link the cell wall pectic polysaccharide rhamnogalacturonan-II (RG-II) through borate diester linkages. Phenylboronic acid (PBA) can form the same reversible ester bonds but cannot cross-link two molecules, so can be used as an antagonist to study the function of boron. This study aimed to evaluate the effect of PBA on apple (Malus domestica) pollen tube growth and the underlying regulatory mechanism. We observed that PBA caused an inhibition of pollen germination, tube growth and led to pollen tube morphological abnormalities. Fluorescent labeling, coupled with a scanning ion-selective electrode technique, revealed that PBA induced an increase in extracellular Ca2+ influx, thereby elevating the cytosolic Ca2+ concentration [Ca2+]c and disrupting the [Ca2+]c gradient, which is critical for pollen tube growth. Moreover the organization of actin filaments was severely perturbed by the PBA treatment. Immunolocalization studies and fluorescent labeling, together with Fourier-transform infrared analysis (FTIR) suggested that PBA caused an increase in the abundance of callose, de-esterified pectins and arabinogalactan proteins (AGPs) at the tip. However, it had no effect on the deposition of the wall polymers cellulose. These effects are similar to those of boron deficiency in roots and other organs, indicating that PBA can induce boron deficiency symptoms. The results provide new insights into the roles of boron in pollen tube development, which likely include regulating [Ca2+]c and the formation of the actin cytoskeleton, in addition to the synthesis and assembly of cell wall components.

  9. Addition of Phenylboronic Acid to Malus domestica Pollen Tubes Alters Calcium Dynamics, Disrupts Actin Filaments and Affects Cell Wall Architecture

    PubMed Central

    Fang, Kefeng; Gao, Sai; Zhang, Weiwei; Xing, Yu; Cao, Qingqin; Qin, Ling

    2016-01-01

    A key role of boron in plants is to cross-link the cell wall pectic polysaccharide rhamnogalacturonan-II (RG-II) through borate diester linkages. Phenylboronic acid (PBA) can form the same reversible ester bonds but cannot cross-link two molecules, so can be used as an antagonist to study the function of boron. This study aimed to evaluate the effect of PBA on apple (Malus domestica) pollen tube growth and the underlying regulatory mechanism. We observed that PBA caused an inhibition of pollen germination, tube growth and led to pollen tube morphological abnormalities. Fluorescent labeling, coupled with a scanning ion-selective electrode technique, revealed that PBA induced an increase in extracellular Ca2+ influx, thereby elevating the cytosolic Ca2+ concentration [Ca2+]c and disrupting the [Ca2+]c gradient, which is critical for pollen tube growth. Moreover the organization of actin filaments was severely perturbed by the PBA treatment. Immunolocalization studies and fluorescent labeling, together with Fourier-transform infrared analysis (FTIR) suggested that PBA caused an increase in the abundance of callose, de-esterified pectins and arabinogalactan proteins (AGPs) at the tip. However, it had no effect on the deposition of the wall polymers cellulose. These effects are similar to those of boron deficiency in roots and other organs, indicating that PBA can induce boron deficiency symptoms. The results provide new insights into the roles of boron in pollen tube development, which likely include regulating [Ca2+]c and the formation of the actin cytoskeleton, in addition to the synthesis and assembly of cell wall components. PMID:26886907

  10. SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes

    PubMed Central

    Edgar, Rebecca J.; Chen, Jing; Kant, Sashi; Rechkina, Elena; Rush, Jeffrey S.; Forsberg, Lennart S.; Jaehrig, Bernhard; Azadi, Parastoo; Tchesnokova, Veronika; Sokurenko, Evgeni V.; Zhu, Haining; Korotkov, Konstantin V.; Pancholi, Vijay; Korotkova, Natalia

    2016-01-01

    Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme. PMID:27790410

  11. Polyamines in cell walls of chlorococcalean microalgae.

    PubMed

    Burczyk, Jan; Zych, Maria; Ioannidis, Nikolaos E; Kotzabasis, Kiriakos

    2014-01-01

    Biotechnology of microalgae represents a very attractive alternative as a source of energy and substances of high value when compared with plant cultivation. Cell walls of green microalgae have an extraordinary chemical and mechanical resistance and may impede some steps in the biotechnological/industrial exploitation of algae. The aim of the present contribution was to check the presence of polyamines in the cell walls of chlorococcalean green microalgae. Polyamines are nitrogenous compounds synthesized normally in cells and may affect the properties of the cell wall. Our work included strains either forming or not forming the polymer algaenan, allowing us to conclude that algaenan is not a prerequisite for the presence of polyamines in the cell walls. Polyamines were detected in isolated cell walls of Scenedesmus obliquus, Chlorella fusca, Chlorella saccharophila, and Chlorella vulgaris. Their concentration in isolated cell walls ranged between 0.4 and 8.4 nmol/mg dry weight. PMID:24772826

  12. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis.

    PubMed

    Sun, Xiang; Gong, Si-Ying; Nie, Xiao-Ying; Li, Yang; Li, Wen; Huang, Geng-Qing; Li, Xue-Bao

    2015-07-01

    Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.

  13. Do plant cell walls have a code?

    PubMed

    Tavares, Eveline Q P; Buckeridge, Marcos S

    2015-12-01

    A code is a set of rules that establish correspondence between two worlds, signs (consisting of encrypted information) and meaning (of the decrypted message). A third element, the adaptor, connects both worlds, assigning meaning to a code. We propose that a Glycomic Code exists in plant cell walls where signs are represented by monosaccharides and phenylpropanoids and meaning is cell wall architecture with its highly complex association of polymers. Cell wall biosynthetic mechanisms, structure, architecture and properties are addressed according to Code Biology perspective, focusing on how they oppose to cell wall deconstruction. Cell wall hydrolysis is mainly focused as a mechanism of decryption of the Glycomic Code. Evidence for encoded information in cell wall polymers fine structure is highlighted and the implications of the existence of the Glycomic Code are discussed. Aspects related to fine structure are responsible for polysaccharide packing and polymer-polymer interactions, affecting the final cell wall architecture. The question whether polymers assembly within a wall display similar properties as other biological macromolecules (i.e. proteins, DNA, histones) is addressed, i.e. do they display a code?

  14. Cell Wall Heterogeneity in Root Development of Arabidopsis

    PubMed Central

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  15. Cell Wall Heterogeneity in Root Development of Arabidopsis.

    PubMed

    Somssich, Marc; Khan, Ghazanfar Abbas; Persson, Staffan

    2016-01-01

    Plant cell walls provide stability and protection to plant cells. During growth and development the composition of cell walls changes, but provides enough strength to withstand the turgor of the cells. Hence, cell walls are highly flexible and diverse in nature. These characteristics are important during root growth, as plant roots consist of radial patterns of cells that have diverse functions and that are at different developmental stages along the growth axis. Young stem cell daughters undergo a series of rapid cell divisions, during which new cell walls are formed that are highly dynamic, and that support rapid anisotropic cell expansion. Once the cells have differentiated, the walls of specific cell types need to comply with and support different cell functions. For example, a newly formed root hair needs to be able to break through the surrounding soil, while endodermal cells modify their walls at distinct positions to form Casparian strips between them. Hence, the cell walls are modified and rebuilt while cells transit through different developmental stages. In addition, the cell walls of roots readjust to their environment to support growth and to maximize nutrient uptake. Many of these modifications are likely driven by different developmental and stress signaling pathways. However, our understanding of how such pathways affect cell wall modifications and what enzymes are involved remain largely unknown. In this review we aim to compile data linking cell wall content and re-modeling to developmental stages of root cells, and dissect how root cell walls respond to certain environmental changes. PMID:27582757

  16. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  17. Plant cell walls to ethanol.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  18. GmEXPB2, a Cell Wall β-Expansin, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development.

    PubMed

    Li, Xinxin; Zhao, Jing; Tan, Zhiyuan; Zeng, Rensen; Liao, Hong

    2015-12-01

    Nodulation is an essential process for biological nitrogen (N2) fixation in legumes, but its regulation remains poorly understood. Here, a β-expansin gene, GmEXPB2, was found to be critical for soybean (Glycine max) nodulation. GmEXPB2 was preferentially expressed at the early stage of nodule development. β-Glucuronidase staining further showed that GmEXPB2 was mainly localized to the nodule vascular trace and nodule vascular bundles, as well as nodule cortical and parenchyma cells, suggesting that GmEXPB2 might be involved in cell wall modification and extension during nodule formation and development. Overexpression of GmEXPB2 dramatically modified soybean root architecture, increasing the size and number of cortical cells in the root meristematic and elongation zones and expanding root hair density and size of the root hair zone. Confocal microscopy with green fluorescent protein-labeled rhizobium USDA110 cells showed that the infection events were significantly enhanced in the GmEXPB2-overexpressing lines. Moreover, nodule primordium development was earlier in overexpressing lines compared with wild-type plants. Thereby, overexpression of GmEXPB2 in either transgenic soybean hairy roots or whole plants resulted in increased nodule number, nodule mass, and nitrogenase activity and thus elevated plant N and phosphorus content as well as biomass. In contrast, suppression of GmEXPB2 in soybean transgenic composite plants led to smaller infected cells and thus reduced number of big nodules, nodule mass, and nitrogenase activity, thereby inhibiting soybean growth. Taken together, we conclude that GmEXPB2 critically affects soybean nodulation through modifying root architecture and promoting nodule formation and development and subsequently impacts biological N2 fixation and growth of soybean.

  19. GmEXPB2, a Cell Wall β-Expansin, Affects Soybean Nodulation through Modifying Root Architecture and Promoting Nodule Formation and Development1[OPEN

    PubMed Central

    Li, Xinxin; Zhao, Jing; Tan, Zhiyuan; Liao, Hong

    2015-01-01

    Nodulation is an essential process for biological nitrogen (N2) fixation in legumes, but its regulation remains poorly understood. Here, a β-expansin gene, GmEXPB2, was found to be critical for soybean (Glycine max) nodulation. GmEXPB2 was preferentially expressed at the early stage of nodule development. β-Glucuronidase staining further showed that GmEXPB2 was mainly localized to the nodule vascular trace and nodule vascular bundles, as well as nodule cortical and parenchyma cells, suggesting that GmEXPB2 might be involved in cell wall modification and extension during nodule formation and development. Overexpression of GmEXPB2 dramatically modified soybean root architecture, increasing the size and number of cortical cells in the root meristematic and elongation zones and expanding root hair density and size of the root hair zone. Confocal microscopy with green fluorescent protein-labeled rhizobium USDA110 cells showed that the infection events were significantly enhanced in the GmEXPB2-overexpressing lines. Moreover, nodule primordium development was earlier in overexpressing lines compared with wild-type plants. Thereby, overexpression of GmEXPB2 in either transgenic soybean hairy roots or whole plants resulted in increased nodule number, nodule mass, and nitrogenase activity and thus elevated plant N and phosphorus content as well as biomass. In contrast, suppression of GmEXPB2 in soybean transgenic composite plants led to smaller infected cells and thus reduced number of big nodules, nodule mass, and nitrogenase activity, thereby inhibiting soybean growth. Taken together, we conclude that GmEXPB2 critically affects soybean nodulation through modifying root architecture and promoting nodule formation and development and subsequently impacts biological N2 fixation and growth of soybean. PMID:26432877

  20. Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls.

    PubMed

    Wang, Guifeng; Gao, Yan; Wang, Jinjun; Yang, Liwei; Song, Rentao; Li, Xiaorong; Shi, Jisen

    2011-05-01

    Expansins are unique plant cell wall proteins that possess the ability to induce immediately cell wall extension in vitro and cell expansion in vivo. To investigate the biological functions of expansins that are abundant in wood-forming tissues, we cloned two expansin genes from the differentiating xylem of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook). Phylogenetic reconstruction indicated that they belong to α-expansin (EXPA), named ClEXPA1 and ClEXPA2. Expression pattern analysis demonstrated that they are preferentially expressed in the cambium region. Overexpression of ClEXPA1 and ClEXPA2 in tobacco plants yielded pleiotropic phenotypes of plant height, stem diameter, leaf number and seed pod. The height and diameter growth of the 35S(pro) :ClEXPA1 and 35S(pro) :ClEXPA2 transgenic plants were increased drastically, exhibiting an enlargement of pith parenchyma cell size. Isolated cell walls of ClEXPA1 and ClEXPA2 overexpressors contained 30%-50% higher cellulose contents than the wild type, accompanied by a thickening of the cell walls in the xylem region. Both ClEXPA1 and ClEXPA2 are involved in plant growth and development, with a partially functional overlap. Expansins are not only able to induce cell expansion in different tissues/organs in vivo, but they also can act as a potential activator during secondary wall formation by directly or indirectly affecting cellulose metabolism, probably in a cell type-dependent manner.

  1. ZmXTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in Arabidopsis thaliana.

    PubMed

    Genovesi, Valeria; Fornalé, Silvia; Fry, Stephen C; Ruel, Katia; Ferrer, Pau; Encina, Antonio; Sonbol, Fathi-Mohamed; Bosch, Josep; Puigdomènech, Pere; Rigau, Joan; Caparrós-Ruiz, David

    2008-01-01

    Xyloglucan endotransglucosylase/hydrolases (XTHs; EC 2.4.1.207 and/or EC 3.2.1.151) are enzymes involved in the modification of cell wall structure by cleaving and, often, also re-joining xyloglucan molecules in primary plant cell walls. Using a pool of antibodies raised against an enriched cell wall protein fraction, a new XTH cDNA in maize, ZmXTH1, has been isolated from a cDNA expression library obtained from the elongation zone of the maize root. The predicted protein has a putative N-terminal signal peptide and possesses the typical domains of this enzyme family, such as a catalytic domain that is homologous to that of Bacillus macerans beta-glucanase, a putative N-glycosylation motif, and four cysteine residues in the central and C terminal regions of the ZmXTH1 protein. Phylogenetic analysis of ZmXTH1 reveals that it belongs to subgroup 4, so far only reported from Poaceae monocot species. ZmXTH1 has been expressed in Pichia pastoris (a methylotrophic yeast) and the recombinant enzyme showed xyloglucan endotransglucosylase but not xyloglucan endohydrolase activity, representing the first enzyme belonging to subgroup 4 characterized in maize so far. Expression data indicate that ZmXTH1 is expressed in elongating tissues, modulated by culture conditions, and induced by gibberellins. Transient expression assays in onion cells reveal that ZmXTH1 is directed to the cell wall, although weakly bound. Finally, Arabidopsis thaliana plants expressing ZmXTH1 show slightly increased xyloglucan endohydrolase activity and alterations in the cell wall structure and composition. PMID:18316315

  2. Spaceflight affects postnatal development of the aortic wall in rats.

    PubMed

    Katsuda, Shin-ichiro; Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; O-ishi, Hirotaka; Katahira, Kiyoaki; Nagayama, Tadanori; Miyamoto, Yukako; Hasegawa, Masamitsu; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi

    2014-01-01

    We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713

  3. Spaceflight Affects Postnatal Development of the Aortic Wall in Rats

    PubMed Central

    Yamasaki, Masao; Waki, Hidefumi; Miyake, Masao; Nagayama, Tadanori; Miyamoto, Yukako; Wago, Haruyuki; Okouchi, Toshiyasu; Shimizu, Tsuyoshi

    2014-01-01

    We investigated effect of microgravity environment during spaceflight on postnatal development of the rheological properties of the aorta in rats. The neonate rats were randomly divided at 7 days of age into the spaceflight, asynchronous ground control, and vivarium control groups (8 pups for one dam). The spaceflight group rats at 9 days of age were exposed to microgravity environment for 16 days. A longitudinal wall strip of the proximal descending thoracic aorta was subjected to stress-strain and stress-relaxation tests. Wall tensile force was significantly smaller in the spaceflight group than in the two control groups, whereas there were no significant differences in wall stress or incremental elastic modulus at each strain among the three groups. Wall thickness and number of smooth muscle fibers were significantly smaller in the spaceflight group than in the two control groups, but there were no significant differences in amounts of either the elastin or collagen fibers among the three groups. The decreased thickness was mainly caused by the decreased number of smooth muscle cells. Plastic deformation was observed only in the spaceflight group in the stress-strain test. A microgravity environment during spaceflight could affect postnatal development of the morphological and rheological properties of the aorta. PMID:25210713

  4. Back wall solar cell

    NASA Technical Reports Server (NTRS)

    Brandhorst, H. W., Jr. (Inventor)

    1978-01-01

    A solar cell is disclosed which comprises a first semiconductor material of one conductivity type with one face having the same conductivity type but more heavily doped to form a field region arranged to receive the radiant energy to be converted to electrical energy, and a layer of a second semiconductor material, preferably highly doped, of opposite conductivity type on the first semiconductor material adjacent the first semiconductor material at an interface remote from the heavily doped field region. Instead of the opposite conductivity layer, a metallic Schottky diode layer may be used, in which case no additional back contact is needed. A contact such as a gridded contact, previous to the radiant energy may be applied to the heavily doped field region of the more heavily doped, same conductivity material for its contact.

  5. Gating of Cl- currents in protoplasts from the marine alga Valonia utricularis depends on the transmembrane Cl- gradient and is affected by enzymatic cell wall degradation.

    PubMed

    Binder, K-A; Wegner, L H; Heidecker, M; Zimmermann, U

    2003-02-01

    The electrical properties of protoplasts of the turgor pressure-regulating giant marine alga Valonia utricularis were investigated by using the patch-clamp technique. In the whole-cell configuration, large inward currents were elicited by negative-going voltage pulses. The time-dependent component was predominantly carried by Cl-, as revealed by 'tail current' analysis. When experiments were performed on protoplasts directly after mechanical release from the 'mother cell', small outward currents were additionally observed at membrane voltages more positive than ECl-. These outward currents disappeared to a large extent after treatment of the protoplasts with a mixture of cell wall-degrading enzymes. Plots of the chord conductance versus the clamped membrane voltage revealed that enzymatic treatment affected the gating properties. By fitting Boltzmann distributions to the data, a midpoint potential of + 5 +/- 5 mV (n = 7) was obtained in symmetrical Cl- solutions for mechanically released protoplasts. In contrast, protoplasts treated additionally with enzymes exhibited a midpoint potential of -13 +/- 5 mV (n = 8). By varying the external and internal Cl- concentration, gating was also shown to depend on the Cl- gradient across the plasmalemma both in enzymatically treated and untreated protoplasts. Plotting of the midpoint potential against the Nernst potential of Cl- rendered a slope less than 1 (0.70 and 0.64, respectively) indicating that gating did not strictly depend on the electrochemical Cl- gradient. The voltage- and Cl--dependence as well as inhibition experiments with 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) suggested that the Cl- conductance of the membrane is dominated by the Valonia Anion Channel 1 (VAC1) described by Heidecker, M., Wegner, L.H., Zimmermann, U. 1999: A patch-clamp study of ion channels in proto-plasts prepared from the marine alga Valonia utricularis. J. Membrane Biol. 172:235-247. The relevance of the findings for

  6. Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall

    PubMed Central

    De Caroli, Monica; Lenucci, Marcello S.; Manualdi, Francesca; Dalessandro, Giuseppe; De Lorenzo, Giulia; Piro, Gabriella

    2015-01-01

    The plant endomembrane system is massively involved in the synthesis, transport and secretion of cell wall polysaccharides and proteins; however, the molecular mechanisms underlying trafficking toward the apoplast are largely unknown. Besides constitutive, the existence of a regulated secretory pathway has been proposed. A polygalacturonase inhibitor protein (PGIP2), known to move as soluble cargo and reach the cell wall through a mechanism distinguishable from default, was dissected in its main functional domains (A, B, C, D), and C sub-fragments (C1–10), to identify signals essential for its regulated targeting. The secretion patterns of the fluorescent chimeras obtained by fusing different PGIP2 domains to the green fluorescent protein (GFP) were analyzed. PGIP2 N-terminal and leucine-rich repeat domains (B and C, respectively) seem to operate as holding/releasing signals, respectively, during PGIP2 transit through the Golgi. The B domain slows down PGIP2 secretion by transiently interacting with Golgi membranes. Its depletion leads, in fact, to the secretion via default (Sp2-susceptible) of the ACD-GFP chimera faster than PGIP2. Depending on its length (at least the first 5 leucine-rich repeats are required), the C domain modulates B interaction with Golgi membranes allowing the release of chimeras and their extracellular secretion through a Sp2 independent pathway. The addition of the vacuolar sorting determinant Chi to PGIP2 diverts the path of the protein from cell wall to vacuole, suggesting that C domain is a releasing rather than a cell wall sorting signal. PMID:26379688

  7. Molecular dissection of Phaseolus vulgaris polygalacturonase-inhibiting protein 2 reveals the presence of hold/release domains affecting protein trafficking toward the cell wall.

    PubMed

    De Caroli, Monica; Lenucci, Marcello S; Manualdi, Francesca; Dalessandro, Giuseppe; De Lorenzo, Giulia; Piro, Gabriella

    2015-01-01

    The plant endomembrane system is massively involved in the synthesis, transport and secretion of cell wall polysaccharides and proteins; however, the molecular mechanisms underlying trafficking toward the apoplast are largely unknown. Besides constitutive, the existence of a regulated secretory pathway has been proposed. A polygalacturonase inhibitor protein (PGIP2), known to move as soluble cargo and reach the cell wall through a mechanism distinguishable from default, was dissected in its main functional domains (A, B, C, D), and C sub-fragments (C1-10), to identify signals essential for its regulated targeting. The secretion patterns of the fluorescent chimeras obtained by fusing different PGIP2 domains to the green fluorescent protein (GFP) were analyzed. PGIP2 N-terminal and leucine-rich repeat domains (B and C, respectively) seem to operate as holding/releasing signals, respectively, during PGIP2 transit through the Golgi. The B domain slows down PGIP2 secretion by transiently interacting with Golgi membranes. Its depletion leads, in fact, to the secretion via default (Sp2-susceptible) of the ACD-GFP chimera faster than PGIP2. Depending on its length (at least the first 5 leucine-rich repeats are required), the C domain modulates B interaction with Golgi membranes allowing the release of chimeras and their extracellular secretion through a Sp2 independent pathway. The addition of the vacuolar sorting determinant Chi to PGIP2 diverts the path of the protein from cell wall to vacuole, suggesting that C domain is a releasing rather than a cell wall sorting signal.

  8. Comparative proteomic analyses reveal that Gnt2-mediated N-glycosylation affects cell wall glycans and protein content in Fusarium oxysporum.

    PubMed

    Lopez-Fernandez, Loida; Roncero, M Isabel G; Prieto, Alicia; Ruiz-Roldan, Carmen

    2015-10-14

    Protein N-glycosylation is a ubiquitous post-translational modification that contributes to appropriate protein folding, stability, functionality and localization. N-glycosylation has been identified as an important process for morphogenesis and virulence in several fungal pathogens including Fusarium oxysporum. Here we conducted comparative chemical and proteome-based analyses to better understand the physiological changes associated with protein hypo-N-glycosylation in F. oxysporum N-glycosyltransferase Gnt2-deficient mutant. The results suggest that lack of functional Gnt2 alters the size of galactofuranose chains in cell wall glycans, resulting in polysaccharides with a broad range of polymerization degrees and differential protein glycosylation patterns. Functional Gnt2 is necessary for normal conidium size and morphology and wild-type hyphal fusion rates. Hypo-N-glycosylation in ∆gnt2 mutant results in enhanced oxidative stress resistance and reduced levels of proteins involved in cell wall organization, biogenesis and remodelling. Deletion of gnt2 gene led to accumulation of trafficking vesicles at hyphal tips, reduced secretion of extracellular proteins related to detoxification of antifungal compounds and degradation of plant cell walls, and lowered extracellular polygalacturonase activity. Altogether, the results confirm that Gnt2-mediated N-glycosylation plays a crucial role in morphogenesis and virulence, and demonstrate that Gnt2 is essential for protein function, transport and relative abundance in F. oxysporum. PMID:26254006

  9. Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers.

    PubMed

    Gerber, Lorenz; Zhang, Bo; Roach, Melissa; Rende, Umut; Gorzsás, András; Kumar, Manoj; Burgert, Ingo; Niittylä, Totte; Sundberg, Björn

    2014-09-01

    The biosynthesis of wood in aspen (Populus) depends on the metabolism of sucrose, which is the main transported form of carbon from source tissues. The largest fraction of the wood biomass is cellulose, which is synthesized from UDP-glucose. Sucrose synthase (SUS) has been proposed previously to interact directly with cellulose synthase complexes and specifically supply UDP-glucose for cellulose biosynthesis. To investigate the role of SUS in wood biosynthesis, we characterized transgenic lines of hybrid aspen with strongly reduced SUS activity in developing wood. No dramatic growth phenotypes in glasshouse-grown trees were observed, but chemical fingerprinting with pyrolysis-GC/MS, together with micromechanical analysis, showed notable changes in chemistry and ultrastructure of the wood in the transgenic lines. Wet chemical analysis showed that the dry weight percentage composition of wood polymers was not changed significantly. However, a decrease in wood density was observed and, consequently, the content of lignin, hemicellulose and cellulose was decreased per wood volume. The decrease in density was explained by a looser structure of fibre cell walls as shown by increased wall shrinkage on drying. The results show that SUS is not essential for cellulose biosynthesis, but plays a role in defining the total carbon incorporation to wood cell walls.

  10. Catalysts of plant cell wall loosening

    PubMed Central

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity PMID:26918182

  11. Single-walled carbon nanotubes induce cell death and transcription of TNF-α in macrophages without affecting nitric oxide production.

    PubMed

    Kim, Kyong Hoon; Yeon, Seung-min; Kim, Hyun Gyung; Lee, Hwanbum; Kim, Sun Kyung; Han, Seung Hyun; Min, Kyung-Jin; Byun, Youngjoo; Lee, Eun Hee; Lee, Kenneth Sung; Yuk, Soon Hong; Ha, Un-Hwan; Jung, Yong Woo

    2014-02-01

    Single-walled carbon nanotubes (SWCNTs) are potent nanomaterials that have diverse shapes and features. The utilization of these molecules for drug delivery is being investigated; thus, it is important to determine whether they alter immune responses against pathogens. In this study, we show that macrophages treated with a mixture of lipopolysaccharide and SWCNTs produced normal levels of nitric oxide and inducible nitric oxide synthase mRNA. However, these treatments induced cell death, presumably via necrosis. In addition, treating cells with SWCNTs induced the expression of tumor necrosis factor-α mRNA, a potent pro-inflammatory cytokine. These results suggest that SWCNTs may influence immune responses, which could result in unexpected effects following their administration for the purpose of drug delivery.

  12. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides).

    PubMed

    Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław

    2015-07-01

    The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development.

  13. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides).

    PubMed

    Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław

    2015-07-01

    The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development. PMID:24943986

  14. Moss cell walls: structure and biosynthesis

    PubMed Central

    Roberts, Alison W.; Roberts, Eric M.; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperms encode the same families of cell wall glycosyl transferases, yet, in many cases these families have diversified independently in each lineage. Our understanding of land plant evolution could be enhanced by more complete knowledge of the relationships among glycosyl transferase functional diversification, cell wall structural and biochemical specialization, and the roles of cell walls in plant adaptation. As a foundation for these studies, we review the features of P. patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis. PMID:22833752

  15. Secondary cell walls: biosynthesis and manipulation.

    PubMed

    Kumar, Manoj; Campbell, Liam; Turner, Simon

    2016-01-01

    Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood.

  16. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  17. Structural Studies of Complex Carbohydrates of Plant Cell Walls

    SciTech Connect

    Darvill, Alan; Hahn, Michael G.; O'Neill, Malcolm A.; York, William S.

    2015-02-17

    Most of the solar energy captured by land plants is converted into the polysaccharides (cellulose, hemicellulose, and pectin) that are the predominant components of the cell wall. These walls, which account for the bulk of plant biomass, have numerous roles in the growth and development of plants. Moreover, these walls have a major impact on human life as they are a renewable source of biomass, a source of diverse commercially useful polymers, a major component of wood, and a source of nutrition for humans and livestock. Thus, understanding the molecular mechanisms that lead to wall assembly and how cell walls and their component polysaccharides contribute to plant growth and development is essential to improve and extend the productivity and value of plant materials. The proposed research will develop and apply advanced analytical and immunological techniques to study specific changes in the structures and interactions of the hemicellulosic and pectic polysaccharides that occur during differentiation and in response to genetic modification and chemical treatments that affect wall biosynthesis. These new techniques will make it possible to accurately characterize minute amounts of cell wall polysaccharides so that subtle changes in structure that occur in individual cell types can be identified and correlated to the physiological or developmental state of the plant. Successful implementation of this research will reveal fundamental relationships between polysaccharide structure, cell wall architecture, and cell wall functions.

  18. Plant cell walls to ethanol.

    PubMed

    Jordan, Douglas B; Bowman, Michael J; Braker, Jay D; Dien, Bruce S; Hector, Ronald E; Lee, Charles C; Mertens, Jeffrey A; Wagschal, Kurt

    2012-03-01

    Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae). PMID:22329798

  19. Plant cell walls to ethanol.

    PubMed

    Jordan, Douglas B; Bowman, Michael J; Braker, Jay D; Dien, Bruce S; Hector, Ronald E; Lee, Charles C; Mertens, Jeffrey A; Wagschal, Kurt

    2012-03-01

    Conversion of plant cell walls to ethanol constitutes second generation bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation and separation. Ultimately, it is desirable to combine as many of the biochemical steps as possible in a single organism to achieve CBP (consolidated bioprocessing). A commercially ready CBP organism is currently unreported. Production of second generation bioethanol is hindered by economics, particularly in the cost of pretreatment (including waste management and solvent recovery), the cost of saccharification enzymes (particularly exocellulases and endocellulases displaying kcat ~1 s-1 on crystalline cellulose), and the inefficiency of co-fermentation of 5- and 6-carbon monosaccharides (owing in part to redox cofactor imbalances in Saccharomyces cerevisiae).

  20. Natural Paradigms of Plant Cell Wall Degradation

    SciTech Connect

    Wei, H.; Xu, Q.; Taylor, L. E.; Baker, J. O.; Tucker, M. P.; Ding, S. Y.

    2009-01-01

    Natural processes of recycling carbon from plant cell walls are slow but very efficient, generally involving microbial communities and their secreted enzymes. Efficient combinations of microbial communities and enzymes act in a sequential and synergistic manner to degrade plant cell walls. Recent understanding of plant cell wall ultra-structure, as well as the carbon metabolism, ATP production, and ecology of participating microbial communities, and the biochemical properties of their cellulolytic enzymes have led to new perspectives on saccharification of biomass. Microbial communities are dynamic functions of the chemical and structural compositions of plant cell wall components. The primitive 'multicellularity' exhibited by certain cellulolytic microorganisms may play a role in facilitating cell-cell communication and cell-plant cell wall-substrate interaction.

  1. Structure of Plant Cell Walls

    PubMed Central

    Weinstein, Larry; Albersheim, Peter

    1979-01-01

    Wild type Bacillus subtilis, when grown on beet araban, secretes into its culture medium an endo-arabanase and two arabinosidases. An alternate procedure to one previously described (Kaji A, T Saheki 1975 Biochim Biophys Acta 410: 354-360) has been developed for the purification of the endo-arabanase. The purified endo-arabanase is shown to be homogeneous by sodium dodecyl sulfate-urea disc gel electrophoresis (molecular weight ≃ 32,000) and by isoelectric focusing (pI = 9.3). The endo-arabanase, acting on a branched araban substrate, has maximal activity at pH 6.0 and preferentially cleaves 5-linked arabinosyl residues. One of the arabinosidases (molecular weight ≃ 65,000, pI = 5.3) has been purified to the point that it contains only one quantitatively minor contaminant, as shown by sodium dodecyl sulfate-urea disc gel electrophoresis and isoelectric focusing. The purified arabinosidase, acting on p-nitrophenyl-α-l-arabinofuranoside, has maximal activity at pH 6.5, and, when acting on a branched araban substrate, preferentially attacks nonreducing terminal arabinosyl residues linked to the 2 or 3 position of other arabinosyl residues. Neither of the two purified enzymes is capable of hydrolyzing a variety of carbohydrate substrates which lack arabinosidic linkages. The purified endo-arabinase is shown to be capable of releasing arabinosyl oligomers from the walls of suspension-cultured sycamore cells, thereby suggesting its usefulness as a probe in studying the structure of the araban component of primary cell walls. PMID:16660741

  2. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  3. Morphogenesis of the Fission Yeast Cell through Cell Wall Expansion.

    PubMed

    Atilgan, Erdinc; Magidson, Valentin; Khodjakov, Alexey; Chang, Fred

    2015-08-17

    The shape of walled cells such as fungi, bacteria, and plants are determined by the cell wall. Models for cell morphogenesis postulate that the effects of turgor pressure and mechanical properties of the cell wall can explain the shapes of these diverse cell types. However, in general, these models await validation through quantitative experiments. Fission yeast Schizosaccharomyces pombe are rod-shaped cells that grow by tip extension and then divide medially through formation of a cell wall septum. Upon cell separation after cytokinesis, the new cell ends adopt a rounded morphology. Here, we show that this shape is generated by a very simple mechanical-based mechanism in which turgor pressure inflates the elastic cell wall in the absence of cell growth. This process is independent of actin and new cell wall synthesis. To model this morphological change, we first estimate the mechanical properties of the cell wall using several approaches. The lateral cell wall behaves as an isotropic elastic material with a Young's modulus of 50 ± 10 MPa inflated by a turgor pressure estimated to be 1.5 ± 0.2 MPa. Based upon these parameters, we develop a quantitative mechanical-based model for new end formation that reveals that the cell wall at the new end expands into its characteristic rounded shape in part because it is softer than the mature lateral wall. These studies provide a simple example of how turgor pressure expands the elastic cell wall to generate a particular cell shape.

  4. The cell walls of Chara aspera Willd. (Charophyta) vegetative cells.

    PubMed

    Nyberg, H; Saranpää, P

    1989-01-01

    The ultrastructure of the vegetative cell walls of the charophyte Chara aspera Willd was studied with TEM. Thallus cells, rhizoid bulbil and rhizoidal node cells were investigated. The internodal cells transverse walls contained plasmodesmata. The longitudinal walls of the internodal cells were uniform, fibrillar, with two thin structurally distinct layers with different structure facing the cytoplasm. The outermost layers of internodal, cortical and rhizoid bulbil cells were composed of randomly orientated fibrils. The longitudinal walls of the cortical cells were helicoidal in structure. In the rhizoid bulbil cell walls, six different layers could be distinguished, but their occurrence seemed to depend on the fixation, staining and cutting procedures. A middle lamella and osmophilic deposits were found in the wall between rhizoidal node cells. The cytoplasmic structure of the internodal and cortical cells was not found to differ from other species of Chara. Charasomes were observed only in cortical cells.

  5. Modification of cell wall polysaccharides during retting of cassava roots.

    PubMed

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products. PMID:27451197

  6. Modification of cell wall polysaccharides during retting of cassava roots.

    PubMed

    Ngolong Ngea, Guillaume Legrand; Guillon, Fabienne; Essia Ngang, Jean Justin; Bonnin, Estelle; Bouchet, Brigitte; Saulnier, Luc

    2016-12-15

    Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-β-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products.

  7. Polyphosphorylated fungal cell wall glycopeptides

    SciTech Connect

    Bonetti, S.J.; Black, B.; Gander, J.E.

    1987-05-01

    Penicillium charlesii secretes a 65 kDa peptidophosphogalactomannan (pPGM) containing 10 phosphodiester residues and 10 galactofuranosyl-containing galactin chains attached to a linear mannan; the polysaccharides is attached to a 3 kDa seryl- and threonyl-rich peptide. The authors have now isolated and partially characterized a form of pPGM released from mycelia of P. charlesii treated at 50/sup 0/C for 15, 30, 60 or 120 min. Two- to 3-fold more pPGM was released by heat treatment than is secreted. Crude pPGM, released by heat, was fractionated on DE-52 and was fractionated into two major fractions on the basis of its difference in negative charge. /sup 1/H-decoupled /sup 13/C NMR spectroscopy of these two fractions provided spectra very similar to that of secreted pPGM previously reported from this laboratory. /sup 1/H-decoupled /sup 31/P NMR showed major signals at 1.47, and 0.22 ppm and minor signals at 1.32, 1.15, 1.00, 0.91 and 0.76 ppm. These signals are upfield from phosphomonoesters and are in the region observed for (6-O-phosphorylcholine)- and (6-O-phosphorylethanolamine)-..cap alpha..-D-mannopyranosyl residues which are 0.22 and 0.90 ppm, respectively. These polymers contain 30 phosphodiester residues per molecule of 70 kDa mass compared with 10 phosphodiesters in secreted pPGM. Acid phosphatase and alkaline protease were the only lytic enzymes released by heat treatment. The evidence suggests that much of the pPGM is derived from cell walls; and that the polysaccharide is highly phosphorylated.

  8. Cell wall, cytoskeleton, and cell expansion in higher plants.

    PubMed

    Bashline, Logan; Lei, Lei; Li, Shundai; Gu, Ying

    2014-04-01

    To accommodate two seemingly contradictory biological roles in plant physiology, providing both the rigid structural support of plant cells and the adjustable elasticity needed for cell expansion, the composition of the plant cell wall has evolved to become an intricate network of cellulosic, hemicellulosic, and pectic polysaccharides and protein. Due to its complexity, many aspects of the cell wall influence plant cell expansion, and many new and insightful observations and technologies are forthcoming. The biosynthesis of cell wall polymers and the roles of the variety of proteins involved in polysaccharide synthesis continue to be characterized. The interactions within the cell wall polymer network and the modification of these interactions provide insight into how the plant cell wall provides its dual function. The complex cell wall architecture is controlled and organized in part by the dynamic intracellular cytoskeleton and by diverse trafficking pathways of the cell wall polymers and cell wall-related machinery. Meanwhile, the cell wall is continually influenced by hormonal and integrity sensing stimuli that are perceived by the cell. These many processes cooperate to construct, maintain, and manipulate the intricate plant cell wall--an essential structure for the sustaining of the plant stature, growth, and life.

  9. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  10. Molecular regulation of plant cell wall extensibility.

    PubMed

    Cosgrove, D J

    1998-05-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized. PMID:11540640

  11. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  12. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  13. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  14. Radiation Power Affected by Current and Wall Radius in Water Cooled Vortex Wall-stabilized Arc

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Nakamura, Takaya; Yanagi, Kentaro; Yamamoto, Shinji

    2015-11-01

    The arc lighting to obtain the environment to evacuate, save the life, keep the safety and be comfortable are focus on. The lack of radiation intensity and color rendering is problem because of inappropriate energy balance. Some researchers have researched the arc lamp mixed with metal vapor for improvement of color rendering spectrum. The metal vapor can emit the high intense radiation. In addition, the radiation is derived from the high temperature medium. Because the arc temperature can be controlled by current and arc radius, the radiation can be controlled by the current and arc radius. This research elucidates the radiation power affected by the current and wall radius in wall-stabilized arc of water-cooled vortex type. As a result, the radiation power increases with increasing the square of current / square of wall radius because of the temperature distribution which is derived from the current density at the simulation.

  15. Role of cell wall deconstructing enzymes in the proanthocyanidin-cell wall adsorption-desorption phenomena.

    PubMed

    Castro-López, Liliana del Rocío; Gómez-Plaza, Encarna; Ortega-Regules, Ana; Lozada, Daniel; Bautista-Ortín, Ana Belén

    2016-04-01

    The transference of proanthocyanidins from grapes to wine is quite low. This could be due, among other causes, to proanthocyanidins being bound to grape cell wall polysaccharides, which are present in high concentrations in the must. Therefore, the effective extraction of proanthocyanidins from grapes will depend on the ability to disrupt these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the behavior of proanthocyanidin-cell wall interactions when commercial maceration enzymes are present in the solution. The results showed that cell wall polysaccharides adsorbed a high amount of proanthocyanidins and only a limited quantity of proanthocyanidins could be desorbed from the cell walls after washing with a model solution. The presence of enzymes in the solution reduced the proanthocyanidin-cell wall interaction, probably through the elimination of pectins from the cell wall network.

  16. Chromosome and cell wall segregation in Streptococcus faecium ATCC 9790

    SciTech Connect

    Higgins, M.L.; Glaser, D.; Dicker, D.T.; Zito, E.T.

    1989-01-01

    Segregation was studied by measuring the positions of autoradiographic grain clusters in chains formed from single cells containing on average less than one radiolabeled chromosome strand. The degree to which chromosomal and cell wall material cosegregated was quantified by using the methods of S. Cooper and M. Weinberger, dividing the number of chains labeled at the middle. This analysis indicated that in contrast to chromosomal segregation in Escherichia coli and, in some studies, to that in gram-positive rods, chromosomal segregation in Streptococcus faecium was slightly nonrandom and did not vary with growth rate. Results were not significantly affected by strand exchange. In contrast, labeled cell wall segregated predominantly nonrandomly.

  17. Structure of Plant Cell Walls 1

    PubMed Central

    Ishii, Tadashi; Thomas, Jerry; Darvill, Alan; Albersheim, Peter

    1989-01-01

    Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ∼4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells. PMID:16666559

  18. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    PubMed Central

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  19. Identification of Novel Cell Wall Components

    SciTech Connect

    Michelle Momany

    2009-10-26

    Our DOE Biosciences-funded work focused on the fungal cell wall and morphogenesis. We are especially interested in how new cell wall material is targeted to appropriate areas for polar (asymmetric) growth. Polar growth is the only way that filamentous fungi explore the environment to find suitable substrates to degrade. Work funded by this grant has resulted in a total of twenty peer-reviewed publications. In work funded by this grant, we identified nine Aspergillus nidulans temperature-sensitive (ts) mutants that fail to send out a germ tube and show a swollen cell phenotype at restrictive temperature, the swo mutants. In other organisms, a swollen cell phenotype is often associated with misdirected growth or weakened cell walls. Our work shows that several of the A. nidulans swo mutants have defects in the establishment and maintenance of polarity. Cloning of several swo genes by complementation also showed that secondary modification of proteins seems is important in polarity. We also investigated cell wall biosynthesis and branching based on leads in literature from other organisms and found that branching and nuclear division are tied and that the cell wall reorganizes during development. In our most recent work we have focused on gene expression during the shift from isotropic to polar growth. Surprisingly we found that genes previously thought to be involved only in spore formation are important in early vegetative growth as well.

  20. Modes of deformation of walled cells.

    PubMed

    Dumais, Jacques

    2013-11-01

    The bewildering morphological diversity found in cells is one of the starkest illustrations of life's ability to self-organize. Yet the morphogenetic mechanisms that produce the multifarious shapes of cells are still poorly understood. The shared similarities between the walled cells of prokaryotes, many protists, fungi, and plants make these groups particularly appealing to begin investigating how morphological diversity is generated at the cell level. In this review, I attempt a first classification of the different modes of surface deformation used by walled cells. Five modes of deformation were identified: inextensional bending, equi-area shear, elastic stretching, processive intussusception, and chemorheological growth. The two most restrictive modes-inextensional and equi-area deformations-are embodied in the exine of pollen grains and the wall-like pellicle of euglenoids, respectively. For these modes, it is possible to express the deformed geometry of the cell explicitly in terms of the undeformed geometry and other easily observable geometrical parameters. The greatest morphogenetic power is reached with the processive intussusception and chemorheological growth mechanisms that underlie the expansive growth of walled cells. A comparison of these two growth mechanisms suggests a possible way to tackle the complexity behind wall growth.

  1. Planctomycetes do possess a peptidoglycan cell wall

    PubMed Central

    Jeske, Olga; Schüler, Margarete; Schumann, Peter; Schneider, Alexander; Boedeker, Christian; Jogler, Mareike; Bollschweiler, Daniel; Rohde, Manfred; Mayer, Christoph; Engelhardt, Harald; Spring, Stefan; Jogler, Christian

    2015-01-01

    Most bacteria contain a peptidoglycan (PG) cell wall, which is critical for maintenance of shape and important for cell division. In contrast, Planctomycetes have been proposed to produce a proteinaceous cell wall devoid of PG. The apparent absence of PG has been used as an argument for the putative planctomycetal ancestry of all bacterial lineages. Here we show, employing multiple bioinformatic methods, that planctomycetal genomes encode proteins required for PG synthesis. Furthermore, we biochemically demonstrate the presence of the sugar and the peptide components of PG in Planctomycetes. In addition, light and electron microscopic experiments reveal planctomycetal PG sacculi that are susceptible to lysozyme treatment. Finally, cryo-electron tomography demonstrates that Planctomycetes possess a typical PG cell wall and that their cellular architecture is thus more similar to that of other Gram-negative bacteria. Our findings shed new light on the cellular architecture and cell division of the maverick Planctomycetes. PMID:25964217

  2. The Structure of Plant Cell Walls

    PubMed Central

    Bauer, Wolfgang D.; Talmadge, Kenneth W.; Keegstra, Kenneth; Albersheim, Peter

    1973-01-01

    The molecular structure, chemical properties, and biological function of the xyloglucan polysaccharide isolated from cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells are described. The sycamore wall xyloglucan is compared to the extracellular xyloglucan secreted by suspension-cultured sycamore cells into their culture medium and is also compared to the seed “amyloid” xyloglucans. Xyloglucan—or fragments of xyloglucan—and acidic fragments of the pectic polysaccharides are released from endopolygalacturonase-pretreated sycamore walls by treatment of these walls with 8 m urea, endoglucanase, or 0.5 n NaOH. Some of the xyloglucan thus released is found to cochromatograph with the acidic pectic fragments on diethylaminoethyl Sephadex. The chemical or enzymic treatments required for the release of xyloglucan from the walls and the cochromatography of xyloglucan with the acidic pectic fragments indicate that xyloglucan is covalently linked to the pectic polysaccharides and is noncovalently bound to the cellulose fibrils of the sycamore cell wall. The molecular structure of sycamore xyloglucan was characterized by methylation analysis of the oligosaccharides obtained by endoglucanase treatment of the polymer. The structure of the polymer is based on a repeating heptasaccharide unit which consists of 4 residues of β-1-4-linked glucose and 3 residues of terminal xylose. A single xylose residue is glycosidically linked to carbon 6 of 3 of the glucosyl residues. PMID:16658281

  3. Simulated microgravity inhibits cell wall regeneration of Penicillium decumbens protoplasts

    NASA Astrophysics Data System (ADS)

    Zhao, C.; Sun, Y.; Yi, Z. C.; Rong, L.; Zhuang, F. Y.; Fan, Y. B.

    2010-09-01

    This work compares cell wall regeneration from protoplasts of the fungus Penicillium decumbens under rotary culture (simulated microgravity) and stationary cultures. Using an optimized lytic enzyme mixture, protoplasts were successfully released with a yield of 5.3 × 10 5 cells/mL. Under simulated microgravity conditions, the protoplast regeneration efficiency was 33.8%, lower than 44.9% under stationary conditions. Laser scanning confocal microscopy gave direct evidence for reduced formation of polysaccharides under simulated conditions. Scanning electron microscopy showed the delayed process of cell wall regeneration by simulated microgravity. The delayed regeneration of P. decumbens cell wall under simulated microgravity was likely caused by the inhibition of polysaccharide synthesis. This research contributes to the understanding of how gravitational loads affect morphological and physiological processes of fungi.

  4. Cell Wall Alterations in the Arabidopsis emb30 Mutant

    PubMed Central

    Shevell, Diane E.; Kunkel, Tim; Chua, Nam-Hai

    2000-01-01

    The Arabidopsis EMB30 gene is essential for controlling the polarity of cell growth and for normal cell adhesion during seedling development. In this article, we show that emb30 mutations also affect the growth of undifferentiated plant cells and adult tissues. EMB30 possesses a Sec7 domain and, based on similarities to other proteins, presumably functions in the secretory pathway. The plant cell wall depends on the secretory pathway to deliver its complex polysaccharides. We show that emb30 mutants have a cell wall defect that sometimes allows material to be deposited into the interstitial space between cells instead of being restricted to cell corners. In addition, pectin, a complex polysaccharide important for cell adhesion, appears to be abnormally localized in emb30 plants. In contrast, localization of epitopes associated with xyloglucan or arabinogalactan was similar in wild-type and emb30 tissues, and the localization of a marker molecule to vacuoles appeared normal. Therefore, emb30 mutations do not cause a general defect in the secretory pathway. Together, these results suggest that emb30 mutations result in an abnormal cell wall, which in turn may account for the defects in cell adhesion and polar cell growth control observed in the mutants. PMID:11090208

  5. Saccharomyces cerevisiae structural cell wall mannoprotein.

    PubMed

    Frevert, J; Ballou, C E

    1985-01-29

    A novel mannoprotein fraction with an average molecular weight of 180 000 has been isolated from Saccharomyces cerevisiae mnn9 mutant cell wall that was solubilized by beta-glucanase digestion. The same material could be extracted from purified wall fragments with 1% sodium dodecyl sulfate. The protein component, 12% by weight, is rich in proline, whereas the carbohydrate, mainly mannose, is about evenly distributed between asparagine and hydroxyamino acids. Endoglucosaminidase H digestion of the isolated mannoprotein reduced its average molecular weight to 150 000, but the mannoprotein, while still embedded in the cell wall, was inaccessible to the enzyme. Biosynthesis and translocation of the mannoprotein were investigated by following incorporation of [3H]proline into this fraction. In the presence of tunicamycin, both mnn9 and wild-type X2180 cells made a mannoprotein fraction with an average molecular weight of 140 000, whereas in the absence of the glycosylation inhibitor, the mnn9 mutant made material with a molecular weight of 180 000 and the mannoprotein made by wild-type cells was too large to penetrate the polyacrylamide gel. Although the cell wall mannoprotein was resistant to heat and proteolytic enzymes, attempts to isolate the carbohydrate-free component failed to yield any characteristic peptide material. PMID:3888262

  6. Roles of membrane trafficking in plant cell wall dynamics

    PubMed Central

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall. PMID:26539200

  7. Reconstitution of a Secondary Cell Wall in a Secondary Cell Wall-Deficient Arabidopsis Mutant

    PubMed Central

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-01-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals. PMID:25535195

  8. Reconstitution of a secondary cell wall in a secondary cell wall-deficient Arabidopsis mutant.

    PubMed

    Sakamoto, Shingo; Mitsuda, Nobutaka

    2015-02-01

    The secondary cell wall constitutes a rigid frame of cells in plant tissues where rigidity is required. Deposition of the secondary cell wall in fiber cells contributes to the production of wood in woody plants. The secondary cell wall is assembled through co-operative activities of many enzymes, and their gene expression is precisely regulated by a pyramidal cascade of transcription factors. Deposition of a transmuted secondary cell wall in empty fiber cells by expressing selected gene(s) in this cascade has not been attempted previously. In this proof-of-concept study, we expressed chimeric activators of 24 transcription factors that are preferentially expressed in the stem, in empty fiber cells of the Arabidopsis nst1-1 nst3-1 double mutant, which lacks a secondary cell wall in fiber cells, under the control of the NST3 promoter. The chimeric activators of MYB46, SND2 and ANAC075, as well as NST3, reconstituted a secondary cell wall with different characteristics from those of the wild type in terms of its composition. The transgenic lines expressing the SND2 or ANAC075 chimeric activator showed increased glucose and xylose, and lower lignin content, whereas the transgenic line expressing the MYB46 chimeric activator showed increased mannose content. The expression profile of downstream genes in each transgenic line was also different from that of the wild type. This study proposed a new screening strategy to identify factors of secondary wall formation and also suggested the potential of the artificially reconstituted secondary cell walls as a novel raw material for production of bioethanol and other chemicals.

  9. Examination and Disruption of the Yeast Cell Wall.

    PubMed

    Okada, Hiroki; Kono, Keiko; Neiman, Aaron M; Ohya, Yoshikazu

    2016-01-01

    The cell wall of Saccharomyces cerevisiae is a complicated extracellular organelle. Although the barrier may seem like a technical nuisance for researchers studying intracellular biomolecules or conditions, the rigid wall is an essential aspect of the yeast cell. Without it, yeast cells are unable to proliferate or carry out their life cycle. The chemical composition of the cell wall and the biosynthetic pathways and signal transduction mechanisms involved in cell wall remodeling have been studied extensively, but many unanswered questions remain. This introduction describes techniques for investigating abnormalities in the cell and spore walls and performing cell wall disruption. PMID:27480724

  10. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.

  11. Characterization of the Sclerotinia sclerotiorum cell wall proteome.

    PubMed

    Liu, Longzhou; Free, Stephen J

    2016-08-01

    We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)-anchored cell wall proteins and 30 non-GPI-anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes. PMID:26661933

  12. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.

  13. Wood Contains a Cell-Wall Structural Protein

    NASA Astrophysics Data System (ADS)

    Bao, Wuli; O'Malley, David M.; Sederoff, Ronald R.

    1992-07-01

    A pine extensin-like protein (PELP) has been localized in metabolically active cells of differentiating xylem and in mature wood of loblolly pine (Pinus taeda L.). This proline-rich glycosylated protein was purified from cell walls of differentiating xylem by differential solubility and gel electrophoresis. Polyclonal rabbit antibodies were raised against the deglycosylated purified protein (dPELP) and purified antibody was used for immunolocalization. Immunogold and alkaline phosphatase secondary antibody staining both show antigen in secondary cell walls of earlywood and less staining in latewood. Immunoassays of milled dry wood were developed and used to show increased availability of antigen after hydrogen fluoride or cellulase treatment and decreased antigen after chlorite treatment. The specificity of the antigen-antibody reaction was confirmed by competition assays and by preadsorption of antibody to the purified protein. We propose that extensin-like protein is present in xylem cell walls during lignification and that the protein remains as a structural component of cell walls in wood for many years after xylogenesis. We suggest that such structural proteins play important roles in the differentiation of xylem and thereby could affect the properties of wood.

  14. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption.

    PubMed

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  15. Effect of Yeast Cell Morphology, Cell Wall Physical Structure and Chemical Composition on Patulin Adsorption

    PubMed Central

    Luo, Ying; Wang, Jianguo; Liu, Bin; Wang, Zhouli; Yuan, Yahong; Yue, Tianli

    2015-01-01

    The capability of yeast to adsorb patulin in fruit juice can aid in substantially reducing the patulin toxic effect on human health. This study aimed to investigate the capability of yeast cell morphology and cell wall internal structure and composition to adsorb patulin. To compare different yeast cell morphologies, cell wall internal structure and composition, scanning electron microscope, transmission electron microscope and ion chromatography were used. The results indicated that patulin adsorption capability of yeast was influenced by cell surface areas, volume, and cell wall thickness, as well as 1,3-β-glucan content. Among these factors, cell wall thickness and 1,3-β-glucan content serve significant functions. The investigation revealed that patulin adsorption capability was mainly affected by the three-dimensional network structure of the cell wall composed of 1,3-β-glucan. Finally, patulin adsorption in commercial kiwi fruit juice was investigated, and the results indicated that yeast cells could adsorb patulin from commercial kiwi fruit juice efficiently. This study can potentially simulate in vitro cell walls to enhance patulin adsorption capability and successfully apply to fruit juice industry. PMID:26295574

  16. Measuring in vitro extensibility of growing plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility.

  17. Measuring in-vitro extensibility of growth plant cell walls

    SciTech Connect

    Cosgrove, Daniel

    2011-01-01

    This article summarizes the theory and practical aspects of measuring cell wall properties by four different extensometer techniques and how the results of these methods relate to the concept and ideal measurement of cell wall extensibility in the context of cell growth. These in vivo techniques are particularly useful for studies of the molecular basis of cell wall extension. Measurements of breaking strength, elastic compliance, and plastic compliance may be informative about changes in cell wall structure, whereas measurements of wall stress relaxation and creep are sensitive to both changes in wall structure and wall-loosening processes, such as those mediated by expansins and some lytic enzymes. A combination of methods is needed to obtain a broader view of cell wall behavior and properties connected with the concept of cell wall extensibility.

  18. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences.

    PubMed

    Xiao, Chaowen; Anderson, Charles T

    2016-09-01

    In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis. PMID:27611066

  19. Interconnections between cell wall polymers, wall mechanics, and cortical microtubules: Teasing out causes and consequences.

    PubMed

    Xiao, Chaowen; Anderson, Charles T

    2016-09-01

    In plants, cell wall components including cellulose, hemicelluloses, and pectins interact with each other to form complex extracellular network structures that control cell growth and maintain cell shape. However, it is still not clear exactly how different wall polymers interact, how the conformations and interactions of cell wall polymers relate to wall mechanics, and how these factors impinge on intracellular structures such as the cortical microtubule cytoskeleton. Here, based on studies of Arabidopsis thaliana xxt1 xxt2 mutants, which lack detectable xyloglucan in their walls and display aberrant wall mechanics, altered cellulose patterning and biosynthesis, and reduced cortical microtubule stability, we discuss the potential relationships between cell wall biosynthesis, wall mechanics, and cytoskeletal dynamics in an effort to better understand their roles in controlling plant growth and morphogenesis.

  20. Celery (Apium graveolens) parenchyma cell walls: cell walls with minimal xyloglucan.

    PubMed

    Thimm, Julian C.; Burritt, David J.; Sims, Ian M.; Newman, Roger H.; Ducker, William A.; Melton, Laurence D.

    2002-10-01

    The primary walls of celery (Apium graveolens L.) parenchyma cells were isolated and their polysaccharide components characterized by glycosyl linkage analysis, cross-polarization magic-angle spinning solid-state 13C nuclear magnetic resonance (CP/MAS 13C NMR) and X-ray diffraction. Glycosyl linkage analysis showed that the cell walls consisted of mainly cellulose (43 mol%) and pectic polysaccharides (51 mol%), comprising rhamnogalacturonan (28 mol%), arabinan (12 mol%) and galactan (11 mol%). The amounts of xyloglucan (2 mol%) and xylan (2 mol%) detected in the cell walls were strikingly low. The small amount of xyloglucan present means that it cannot coat the cellulose microfibrils. Solid-state 13C NMR signals were consistent with the constituents identified by glycosyl linkage analysis and allowed the walls to be divided into three domains, based on the rigidity of the polymers. Cellulose (rigid) and rhamnogalacturonan (semi-mobile) polymers responded to the CP/MAS 13C NMR pulse sequence and were distinguished by differences in proton spin relaxation time constants. The arabinans, the most mobile polymers, responded to single-pulse excitation (SPE), but not CP/MAS 13C NMR. From solid-state 13C NMR of the cell walls the diameter of the crystalline cellulose microfibrils was determined to be approximately 3 nm while X-ray diffraction of the cell walls gave a value for the diameter of approximately 2 nm.

  1. Food applications of bacterial cell wall hydrolases.

    PubMed

    Callewaert, Lien; Walmagh, Maarten; Michiels, Chris W; Lavigne, Rob

    2011-04-01

    Bacterial cell wall hydrolases (BCWHs) display a remarkable structural and functional diversity that offers perspectives for novel food applications, reaching beyond those of the archetype BCWH and established biopreservative hen egg white lysozyme. Insights in BCWHs from bacteriophages to animals have provided concepts for tailoring BCWHs to target specific pathogens or spoilage bacteria, or, conversely, to expand their working range to Gram-negative bacteria. Genetically modified foods expressing BCWHs in situ showed successful, but face regulatory and ethical concerns. An interesting spin-off development is the use of cell wall binding domains of bacteriophage BCWHs for detection and removal of foodborne pathogens. Besides for improving food safety or stability, BCWHs may also find use as functional food ingredients with specific health effects.

  2. Revealing the structural and functional diversity of plant cell walls.

    PubMed

    Knox, J Paul

    2008-06-01

    The extensive knowledge of the chemistry of isolated cell wall polymers, and that relating to the identification and partial annotation of gene families involved in their synthesis and modification, is not yet matched by a sophisticated understanding of the occurrence of the polymers within cell walls of the diverse cell types within a growing organ. Currently, the main sets of tools that are used to determine cell-type-specific configurations of cell wall polymers and aspects of cell wall microstructures are antibodies, carbohydrate-binding modules (CBMs) and microspectroscopies. As these tools are applied we see that cell wall polymers are extensively developmentally regulated and that there is a range of structurally distinct primary and secondary cell walls within organs and across species. The challenge now is to document cell wall structures in relation to diverse cell biological events and to integrate this knowledge with the emerging understanding of polymer functions.

  3. Wall relaxation and the driving forces for cell expansive growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1987-01-01

    When water uptake by growing cells is prevented, the turgor pressure and the tensile stress in the cell wall are reduced by continued wall loosening. This process, termed in vivo stress relaxation, provides a new way to study the dynamics of wall loosening and to measure the wall yield threshold and the physiological wall extensibility. Stress relaxation experiments indicate that wall stress supplies the mechanical driving force for wall yielding. Cell expansion also requires water absorption. The driving force for water uptake during growth is created by wall relaxation, which lowers the water potential of the expanding cells. New techniques for measuring this driving force show that it is smaller than believed previously; in elongating stems it is only 0.3 to 0.5 bar. This means that the hydraulic resistance of the water transport pathway is small and that rate of cell expansion is controlled primarily by wall loosening and yielding.

  4. Cell wall of Fusarium sulphureum; I. Chemical composition of the hyphal wall.

    PubMed

    Barran, L R; Schneider, E F; Wood, P J; Madhosingh, C; Miller, R W

    1975-05-01

    The hyphae wall of Fusarium sulphureum Schlect. (Isolate 1) was isolated and purified. Electron microscopy studies showed that the isolated cell wall consisted of two distinct layers, an outer electron dense layer and a broader electron transparent inner layer. Chemical analysis revealed that the cell wall contained 66% carbohydrate, 7.3% protein, 5.5% lipid and 1.8% ash. The major cell wall component N-acetylglucosamine (39%) was shown by X-ray diffraction analysis to be present as chitin. Glucose constituted 14% of the cell wall, while mannose, galactose, and glucuronic acid, accounted for 15% of the cell wall. Glucuronic acid appears to be predominantly linked to galactose in the intact wall.

  5. The Structure of Plant Cell Walls

    PubMed Central

    Talmadge, Kenneth W.; Keegstra, Kenneth; Bauer, Wolfgang D.; Albersheim, Peter

    1973-01-01

    This is the first in a series of papers dealing with the structure of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus). These studies have been made possible by the availability of purified hydrolytic enzymes and by recent improvements in the techniques of methylation analysis. These techniques have permitted us to identify and quantitate the macromolecular components of sycamore cell walls. These walls are composed of 10% arabinan, 2% 3,6-linked arabinogalactan, 23% cellulose, 9% oligo-arabinosides (attached to hydroxyproline), 8% 4-linked galactan, 10% hydroxyproline-rich protein, 16% rhamnogalacturonan, and 21% xyloglucan. The structures of the pectic polymers (the neutral arabinan, the neutral galactan, and the acidic rhamnogalacturonan) were obtained, in part, by methylation analysis of fragments of these polymers which were released from the sycamore walls by the action of a highly purified endopolygalacturonase. The data suggest a branched arabinan and a linear 4-linked galactan occurring as side chains on the rhamnogalacturonan. Small amounts or pieces of a xyloglucan, the wall hemicellulose, appear to be covalently linked to some of the galactan chains. Thus, the galactan appears to serve as a bridge between the xyloglucan and rhamnogalacturonan components of the wall. The rhamnogalacturonan consists of an α-(1 → 4)-linked galacturonan chain which is interspersed with 2-linked rhamnosyl residues. The rhamnosyl residues are not randomly distributed in the chain but probably occur in units of rhamnosyl- (1 → 4)-galacturonosyl- (1 → 2)-rhamnosyl. This sequence appears to alternate with a homogalacturonan sequence containing approximately 8 residues of 4-linked galacturonic acid. About half of the rhamnosyl residues are branched, having a substituent attached to carbon 4. This is likely to be the site of attachment of the 4-linked galactan. The hydroxyprolyl oligo-arabinosides of the hydroxyproline-rich glycoprotein

  6. Beyond growth: novel functions for bacterial cell wall hydrolases.

    PubMed

    Wyckoff, Timna J; Taylor, Jennifer A; Salama, Nina R

    2012-11-01

    The peptidoglycan cell wall maintains turgor pressure and cell shape of most bacteria. Cell wall hydrolases are essential, together with synthases, for growth and daughter cell separation. Recent work in diverse organisms has uncovered new cell wall hydrolases that act autonomously or on neighboring cells to modulate invasion of prey cells, cell shape, innate immune detection, intercellular communication, and competitor lysis. The hydrolases involved in these processes catalyze the cleavage of bonds throughout the sugar and peptide moities of peptidoglycan. Phenotypes associated with these diverse hydrolases reveal new functions of the bacterial cell wall beyond growth and division.

  7. Monoclonal antibodies against plant cell wall polysaccharides

    SciTech Connect

    Hahn, M.G.; Bucheli, E.; Darvill, A.; Albersheim, P. )

    1989-04-01

    Monoclonal antibodies (McAbs) are useful tools to probe the structure of plant cell wall polysaccharides and to localize these polysaccharides in plant cells and tissues. Murine McAbs were generated against the pectic polysaccharide, rhamnogalacturonan I (RG-I), isolated from suspension-cultured sycamore cells. The McAbs that were obtained were grouped into three classes based upon their reactivities with a variety of plant polysaccharides and membrane glycoproteins. Eleven McAbs (Class I) recognize epitope(s) that appear to be immunodominant and are found in RG-I from sycamore and maize, citrus pectin, polygalacturonic acid, and membrane glycoproteins from suspension-cultured cells of sycamore, maize, tobacco, parsley, and soybean. A second group of five McAbs (Class II) recognize epitope(s) present in sycamore RG-I, but do not bind to any of the other polysaccharides or glycoproteins recognized by Class I. Lastly, one McAb (Class III) reacts with sycamore RG-I, sycamore and tamarind xyloglucan, and sycamore and rice glucuronoarabinoxylan, but does not bind to maize RG-I, polygalacturonic acid or the plant membrane glycoproteins recognized by Class I. McAbs in Classes II and III are likely to be useful in studies of the structure, biosynthesis and localization of plant cell wall polysaccharides.

  8. Plant cell wall proteomics: the leadership of Arabidopsis thaliana

    PubMed Central

    Albenne, Cécile; Canut, Hervé; Jamet, Elisabeth

    2013-01-01

    Plant cell wall proteins (CWPs) progressively emerged as crucial components of cell walls although present in minor amounts. Cell wall polysaccharides such as pectins, hemicelluloses, and cellulose represent more than 90% of primary cell wall mass, whereas hemicelluloses, cellulose, and lignins are the main components of lignified secondary walls. All these polymers provide mechanical properties to cell walls, participate in cell shape and prevent water loss in aerial organs. However, cell walls need to be modified and customized during plant development and in response to environmental cues, thus contributing to plant adaptation. CWPs play essential roles in all these physiological processes and particularly in the dynamics of cell walls, which requires organization and rearrangements of polysaccharides as well as cell-to-cell communication. In the last 10 years, plant cell wall proteomics has greatly contributed to a wider knowledge of CWPs. This update will deal with (i) a survey of plant cell wall proteomics studies with a focus on Arabidopsis thaliana; (ii) the main protein families identified and the still missing peptides; (iii) the persistent issue of the non-canonical CWPs; (iv) the present challenges to overcome technological bottlenecks; and (v) the perspectives beyond cell wall proteomics to understand CWP functions. PMID:23641247

  9. Biomass digestibility is predominantly affected by three factors of wall polymer features distinctive in wheat accessions and rice mutants

    PubMed Central

    2013-01-01

    Background Wheat and rice are important food crops with enormous biomass residues for biofuels. However, lignocellulosic recalcitrance becomes a crucial factor on biomass process. Plant cell walls greatly determine biomass recalcitrance, thus it is essential to identify their key factors on lignocellulose saccharification. Despite it has been reported about cell wall factors on biomass digestions, little is known in wheat and rice. In this study, we analyzed nine typical pairs of wheat and rice samples that exhibited distinct cell wall compositions, and identified three major factors of wall polymer features that affected biomass digestibility. Results Based on cell wall compositions, ten wheat accessions and three rice mutants were classified into three distinct groups each with three typical pairs. In terms of group I that displayed single wall polymer alternations in wheat, we found that three wall polymer levels (cellulose, hemicelluloses and lignin) each had a negative effect on biomass digestibility at similar rates under pretreatments of NaOH and H2SO4 with three concentrations. However, analysis of six pairs of wheat and rice samples in groups II and III that each exhibited a similar cell wall composition, indicated that three wall polymer levels were not the major factors on biomass saccharification. Furthermore, in-depth detection of the wall polymer features distinctive in rice mutants, demonstrated that biomass digestibility was remarkably affected either negatively by cellulose crystallinity (CrI) of raw biomass materials, or positively by both Ara substitution degree of non-KOH-extractable hemicelluloses (reverse Xyl/Ara) and p-coumaryl alcohol relative proportion of KOH-extractable lignin (H/G). Correlation analysis indicated that Ara substitution degree and H/G ratio negatively affected cellulose crystallinity for high biomass enzymatic digestion. It was also suggested to determine whether Ara and H monomer have an interlinking with cellulose chains

  10. Roles and regulation of plant cell walls surrounding plasmodesmata.

    PubMed

    Knox, J Paul; Benitez-Alfonso, Yoselin

    2014-12-01

    In plants, the intercellular transport of simple and complex molecules can occur symplastically through plasmodesmata. These are membranous channels embedded in cell walls that connect neighbouring cells. The properties of the cell walls surrounding plasmodesmata determine their transport capacity and permeability. These cell wall micro-domains are enriched in callose and have a characteristic pectin distribution. Cell wall modifications, leading to changes in plasmodesmata structure, have been reported to occur during development and in response to environmental signals. Cell wall remodelling enzymes target plasmodesmata to rapidly control intercellular communication in situ. Here we describe current knowledge on the composition of cell walls at plasmodesmata sites and on the proteins and signals that modify cell walls to regulate plasmodesmata aperture.

  11. Compounds active against cell walls of medically important fungi.

    PubMed Central

    Hector, R F

    1993-01-01

    A number of substances that directly or indirectly affect the cell walls of fungi have been identified. Those that actively interfere with the synthesis or degradation of polysaccharide components share the property of being produced by soil microbes as secondary metabolites. Compounds specifically interfering with chitin or beta-glucan synthesis have proven effective in studies of preclinical models of mycoses, though they appear to have a restricted spectrum of coverage. Semisynthetic derivatives of some of the natural products have offered improvements in activity, toxicology, or pharmacokinetic behavior. Compounds which act on the cell wall indirectly or by a secondary mechanism of action, such as the azoles, act against diverse fungi but are usually fungistatic in nature. Overall, these compounds are attractive candidates for further development. PMID:8457977

  12. Cell wall sorting of lipoproteins in Staphylococcus aureus.

    PubMed Central

    Navarre, W W; Daefler, S; Schneewind, O

    1996-01-01

    Many surface proteins are thought to be anchored to the cell wall of gram-positive organisms via their C termini, while the N-terminal domains of these molecules are displayed on the bacterial surface. Cell wall anchoring of surface proteins in Staphylococcus aureus requires both an N-terminal leader peptide and a C-terminal cell wall sorting signal. By fusing the cell wall sorting of protein A to the C terminus of staphylococcal beta-lactamase, we demonstrate here that lipoproteins can also be anchored to the cell wall of S. aureus. The topology of cell wall-anchored beta-lactamase is reminiscent of that described for Braun's murein lipoprotein in that the N terminus of the polypeptide chain is membrane anchored whereas the C-terminal end is tethered to the bacterial cell wall. PMID:8550464

  13. Cell Wall Loosening in the Fungus, Phycomyces blakesleeanus

    PubMed Central

    Ortega, Joseph K. E.; Truong, Jason T.; Munoz, Cindy M.; Ramirez, David G.

    2015-01-01

    A considerable amount of research has been conducted to determine how cell walls are loosened to produce irreversible wall deformation and expansive growth in plant and algal cells. The same cannot be said about fungal cells. Almost nothing is known about how fungal cells loosen their walls to produce irreversible wall deformation and expansive growth. In this study, anoxia is used to chemically isolate the wall from the protoplasm of the sporangiophores of Phycomyces blakesleeanus. The experimental results provide direct evidence of the existence of chemistry within the fungal wall that is responsible for wall loosening, irreversible wall deformation and elongation growth. In addition, constant-tension extension experiments are conducted on frozen-thawed sporangiophore walls to obtain insight into the wall chemistry and wall loosening mechanism. It is found that a decrease in pH to 4.6 produces creep extension in the frozen-thawed sporangiophore wall that is similar, but not identical, to that found in frozen-thawed higher plant cell walls. Experimental results from frozen-thawed and boiled sporangiophore walls suggest that protein activity may be involved in the creep extension. PMID:27135318

  14. Cell wall-associated kinases and pectin perception.

    PubMed

    Kohorn, Bruce D

    2016-01-01

    The pectin matrix of the angiosperm cell wall is regulated in both synthesis and modification and greatly influences the direction and extent of cell growth. Pathogens, herbivory and mechanical stresses all influence this pectin matrix and consequently plant form and function. The cell wall-associated kinases (WAKs) bind to pectin and regulate cell expansion or stress responses depending upon the state of the pectin. This review explores the WAKs in the context of cell wall biology and signal transduction pathways.

  15. Cortical microtubule rearrangements and cell wall patterning

    PubMed Central

    Oda, Yoshihisa

    2015-01-01

    Plant cortical microtubules, which form a highly ordered array beneath the plasma membrane, play essential roles in determining cell shape and function by directing the arrangement of cellulosic and non-cellulosic compounds on the cell surface. Interphase transverse arrays of cortical microtubules self-organize through their dynamic instability and inter-microtubule interactions, and by branch-form microtubule nucleation and severing. Recent studies revealed that distinct spatial signals including ROP GTPase, cellular geometry, and mechanical stress regulate the behavior of cortical microtubules at the subcellular and supercellular levels, giving rise to dramatic rearrangements in the cortical microtubule array in response to internal and external cues. Increasing evidence indicates that negative regulators of microtubules also contribute to the rearrangement of the cortical microtubule array. In this review, I summarize recent insights into how the rearrangement of the cortical microtubule array leads to proper, flexible cell wall patterning. PMID:25904930

  16. Cell Wall Invertase in Tobacco Crown Gall Cells 1

    PubMed Central

    Weil, Marion; Rausch, Thomas

    1990-01-01

    The cell wall invertase from an Agrobacterium tumefaciens-transformed Nicotiana tabacum cell line (SR1-C58) was purified. The heterogeneously glycosylated enzyme has the following properties: Mr 63,000, pH optimum at 4.7, Km sucrose 0.6 millimolar (at pH 4.7), pl 9.5. Enzyme activity is inhibited by micromolar concentrations of HgCl2 but is insensitive to H2O2, N-ethylmaleimide and dithiothreitol. Upon transfer of transformed cells from the stationary phase to fresh medium, a cycloheximide- and tunicamycin-sensitive de novo formation of cell wall invertase is demonstrated in the absence or presence of sucrose. While in an auxin mutant (lacking gene 1;SR1-3845) 1 micromolar 1-naphthaleneacetic acid led to a further increased activity, the wild-type transformed cell line (SR1-C58) responded with a decreased activity compared to the control. An analysis of cell wall invertase in and around tumors initiated with Agrobacterium tumefaciens (strain C58) on Nicotiana tabacum stem and Kalanchoë daigremontiana leaves revealed gradients of activity. The results indicate that the auxin-stimulated cell wall invertase is essential for the establishment of the tumor sink. Images Figure 1 PMID:16667892

  17. (Hydroxyproline-rich glycoproteins of the plant cell wall)

    SciTech Connect

    Varner, J.E.

    1990-01-01

    We are studying the chemistry and architecture of plant cells walls, the extracellular matrices that taken together shape the plant and provide mechanical support for the plant. Cell walls are dynamic structures that regulate, or are the site of, many physiological processes, in addition to being the cells' first line of defense against invading pathogens. In the past year we have examined the role of the cell wall enzyme ascorbic acid oxidase as related to the structure of the wall and its possible interactions with hydroxyproline-rich glycoproteins of the wall.

  18. Plant and algal cell walls: diversity and functionality

    PubMed Central

    Popper, Zoë A.; Ralet, Marie-Christine; Domozych, David S.

    2014-01-01

    Background Although plants and many algae (e.g. the Phaeophyceae, brown, and Rhodophyceae, red) are only very distantly related they are united in their possession of carbohydrate-rich cell walls, which are of integral importance being involved in many physiological processes. Furthermore, wall components have applications within food, fuel, pharmaceuticals, fibres (e.g. for textiles and paper) and building materials and have long been an active topic of research. As shown in the 27 papers in this Special Issue, as the major deposit of photosynthetically fixed carbon, and therefore energy investment, cell walls are of undisputed importance to the organisms that possess them, the photosynthetic eukaryotes (plants and algae). The complexities of cell wall components along with their interactions with the biotic and abiotic environment are becoming increasingly revealed. Scope The importance of plant and algal cell walls and their individual components to the function and survival of the organism, and for a number of industrial applications, are illustrated by the breadth of topics covered in this issue, which includes papers concentrating on various plants and algae, developmental stages, organs, cell wall components, and techniques. Although we acknowledge that there are many alternative ways in which the papers could be categorized (and many would fit within several topics), we have organized them as follows: (1) cell wall biosynthesis and remodelling, (2) cell wall diversity, and (3) application of new technologies to cell walls. Finally, we will consider future directions within plant cell wall research. Expansion of the industrial uses of cell walls and potentially novel uses of cell wall components are both avenues likely to direct future research activities. Fundamentally, it is the continued progression from characterization (structure, metabolism, properties and localization) of individual cell wall components through to defining their roles in almost every

  19. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. PMID:27107260

  20. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    PubMed

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation.

  1. Enzymes and other agents that enhance cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1999-01-01

    Polysaccharides and proteins are secreted to the inner surface of the growing cell wall, where they assemble into a network that is mechanically strong, yet remains extensible until the cells cease growth. This review focuses on the agents that directly or indirectly enhance the extensibility properties of growing walls. The properties of expansins, endoglucanases, and xyloglucan transglycosylases are reviewed and their postulated roles in modulating wall extensibility are evaluated. A summary model for wall extension is presented, in which expansin is a primary agent of wall extension, whereas endoglucanases, xyloglucan endotransglycosylase, and other enzymes that alter wall structure act secondarily to modulate expansin action.

  2. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions.

    PubMed

    Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground.

  3. Plant cell wall dynamics and wall-related susceptibility in plant–pathogen interactions

    PubMed Central

    Bellincampi, Daniela; Cervone, Felice; Lionetti, Vincenzo

    2014-01-01

    The cell wall is a dynamic structure that often determines the outcome of the interactions between plants and pathogens. It is a barrier that pathogens need to breach to colonize the plant tissue. While fungal necrotrophs extensively destroy the integrity of the cell wall through the combined action of degrading enzymes, biotrophic fungi require a more localized and controlled degradation of the cell wall in order to keep the host cells alive and utilize their feeding structures. Also bacteria and nematodes need to degrade the plant cell wall at a certain stage of their infection process, to obtain nutrients for their growth. Plants have developed a system for sensing pathogens and monitoring the cell wall integrity, upon which they activate defense responses that lead to a dynamic cell wall remodeling required to prevent the disease. Pathogens, on the other hand, may exploit the host cell wall metabolism to support the infection. We review here the strategies utilized by both plants and pathogens to prevail in the cell wall battleground. PMID:24904623

  4. Disruption of cell walls for enhanced lipid recovery

    DOEpatents

    Knoshaug, Eric P; Donohoe, Bryon S; Gerken, Henri; Laurens, Lieve; Van Wychen, Stefanie Rose

    2015-03-24

    Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.

  5. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes.

    PubMed

    Cosgrove, Daniel J

    2016-01-01

    The advent of user-friendly instruments for measuring force/deflection curves of plant surfaces at high spatial resolution has resulted in a recent outpouring of reports of the 'Young's modulus' of plant cell walls. The stimulus for these mechanical measurements comes from biomechanical models of morphogenesis of meristems and other tissues, as well as single cells, in which cell wall stress feeds back to regulate microtubule organization, auxin transport, cellulose deposition, and future growth directionality. In this article I review the differences between elastic modulus and wall extensibility in the context of cell growth. Some of the inherent complexities, assumptions, and potential pitfalls in the interpretation of indentation force/deflection curves are discussed. Reported values of elastic moduli from surface indentation measurements appear to be 10- to >1000-fold smaller than realistic tensile elastic moduli in the plane of plant cell walls. Potential reasons for this disparity are discussed, but further work is needed to make sense of the huge range in reported values. The significance of wall stress relaxation for growth is reviewed and connected to recent advances and remaining enigmas in our concepts of how cellulose, hemicellulose, and pectins are assembled to make an extensible cell wall. A comparison of the loosening action of α-expansin and Cel12A endoglucanase is used to illustrate two different ways in which cell walls may be made more extensible and the divergent effects on wall mechanics.

  6. Modulation of Alternaria infectoria Cell Wall Chitin and Glucan Synthesis by Cell Wall Synthase Inhibitors

    PubMed Central

    Fernandes, Chantal; Anjos, Jorge; Walker, Louise A.; Silva, Branca M. A.; Cortes, Luísa; Mota, Marta; Munro, Carol A.; Gow, Neil A. R.

    2014-01-01

    The present work reports the effects of caspofungin, a β-1,3-glucan synthase inhibitor, and nikkomycin Z, an inhibitor of chitin synthases, on two strains of Alternaria infectoria, a melanized fungus involved in opportunistic human infections and respiratory allergies. One of the strains tested, IMF006, bore phenotypic traits that conferred advantages in resisting antifungal treatment. First, the resting cell wall chitin content was higher and in response to caspofungin, the chitin level remained constant. In the other strain, IMF001, the chitin content increased upon caspofungin treatment to values similar to basal IMF006 levels. Moreover, upon caspofungin treatment, the FKS1 gene was upregulated in IMF006 and downregulated in IMF001. In addition, the resting β-glucan content was also different in both strains, with higher levels in IMF001 than in IMF006. However, this did not provide any advantage with respect to echinocandin resistance. We identified eight different chitin synthase genes and studied relative gene expression when the fungus was exposed to the antifungals under study. In both strains, exposure to caspofungin and nikkomycin Z led to modulation of the expression of class V and VII chitin synthase genes, suggesting its importance in the robustness of A. infectoria. The pattern of A. infectoria phagocytosis and activation of murine macrophages by spores was not affected by caspofungin. Monotherapy with nikkomycin Z and caspofungin provided only fungistatic inhibition, while a combination of both led to fungal cell lysis, revealing a strong synergistic action between the chitin synthase inhibitor and the β-glucan synthase inhibitor against this fungus. PMID:24614372

  7. Evolution and diversity of green plant cell walls.

    PubMed

    Popper, Zoë A

    2008-06-01

    Plant cells are surrounded by a dynamic cell wall that performs many essential biological roles, including regulation of cell expansion, the control of tissue cohesion, ion-exchange and defence against microbes. Recent evidence shows that the suite of polysaccharides and wall proteins from which the plant cell wall is composed shows variation between monophyletic plant taxa. This is likely to have been generated during the evolution of plant groups in response to environmental stress. Understanding the natural variation and diversity that exists between cell walls from different taxa is key to facilitating their future exploitation and manipulation, for example by increasing lignocellulosic content or reducing its recalcitrance for use in biofuel generation.

  8. Non-invasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy.

    PubMed

    Sun, Lan; Singh, Seema; Joo, Michael; Vega-Sanchez, Miguel; Ronald, Pamela; Simmons, Blake A; Adams, Paul; Auer, Manfred

    2016-01-01

    Cellulose microfibrils represent the major scaffold of plant cell walls. Different packing and orientation of the microfibrils at the microscopic scale determines the macroscopic properties of cell walls and thus affect their functions with a profound effect on plant survival. We developed a polarized Raman microspectroscopic method to determine cellulose microfibril orientation within rice plant cell walls. Employing an array of point measurements as well as area imaging and subsequent Matlab-assisted data processing, we were able to characterize the distribution of cellulose microfibril orientation in terms of director angle and anisotropy magnitude. Using this approach we detected differences between wild type rice plants and the rice brittle culm mutant, which shows a more disordered cellulose microfibril arrangement, and differences between different tissues of a wild type rice plant. This novel non-invasive Raman imaging approach allows for quantitative assessment of cellulose fiber orientation in cell walls of herbaceous plants, an important advancement in cell wall characterization.

  9. Two endogenous proteins that induce cell wall extension in plants

    NASA Technical Reports Server (NTRS)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  10. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    PubMed

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function.

  11. Multidimensional solid-state NMR spectroscopy of plant cell walls.

    PubMed

    Wang, Tuo; Phyo, Pyae; Hong, Mei

    2016-09-01

    Plant biomass has become an important source of bio-renewable energy in modern society. The molecular structure of plant cell walls is difficult to characterize by most atomic-resolution techniques due to the insoluble and disordered nature of the cell wall. Solid-state NMR (SSNMR) spectroscopy is uniquely suited for studying native hydrated plant cell walls at the molecular level with chemical resolution. Significant progress has been made in the last five years to elucidate the molecular structures and interactions of cellulose and matrix polysaccharides in plant cell walls. These studies have focused on primary cell walls of growing plants in both the dicotyledonous and grass families, as represented by the model plants Arabidopsis thaliana, Brachypodium distachyon, and Zea mays. To date, these SSNMR results have shown that 1) cellulose, hemicellulose, and pectins form a single network in the primary cell wall; 2) in dicot cell walls, the protein expansin targets the hemicellulose-enriched region of the cellulose microfibril for its wall-loosening function; and 3) primary wall cellulose has polymorphic structures that are distinct from the microbial cellulose structures. This article summarizes these key findings, and points out future directions of investigation to advance our fundamental understanding of plant cell wall structure and function. PMID:27552739

  12. Impregnation of softwood cell walls with melamine-formaldehyde resin.

    PubMed

    Gindl, W; Zargar-Yaghubi, F; Wimmer, R

    2003-05-01

    Melamine-formaldehyde (MF) resin impregnation has shown considerable potential to improve a number of wood properties, such as surface hardness and weathering resistance. In this study, selected factors influencing the uptake of MF resin into the cell wall of softwood were studied. Using UV-microspectroscopy, it could be shown that water soluble MF diffused well into the secondary cell wall and the middle lamella. Concentrations as high as 24% (v/v) were achieved after an impregnation of 20 h. High cell wall moisture content, high water content of the resin used for impregnation, and low extractive content are factors which are favourable for MF resin uptake into the cell wall. For dry cell walls, solvent exchange drying improved resin uptake to a similar extent, as was the case when cell walls were soaked in water.

  13. Impregnation of softwood cell walls with melamine-formaldehyde resin.

    PubMed

    Gindl, W; Zargar-Yaghubi, F; Wimmer, R

    2003-05-01

    Melamine-formaldehyde (MF) resin impregnation has shown considerable potential to improve a number of wood properties, such as surface hardness and weathering resistance. In this study, selected factors influencing the uptake of MF resin into the cell wall of softwood were studied. Using UV-microspectroscopy, it could be shown that water soluble MF diffused well into the secondary cell wall and the middle lamella. Concentrations as high as 24% (v/v) were achieved after an impregnation of 20 h. High cell wall moisture content, high water content of the resin used for impregnation, and low extractive content are factors which are favourable for MF resin uptake into the cell wall. For dry cell walls, solvent exchange drying improved resin uptake to a similar extent, as was the case when cell walls were soaked in water. PMID:12507874

  14. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR.

    PubMed

    Romaniuk, Joseph A H; Cegelski, Lynette

    2015-10-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms.

  15. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR

    PubMed Central

    Romaniuk, Joseph A. H.; Cegelski, Lynette

    2015-01-01

    The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms. PMID:26370936

  16. (The structure of pectins from cotton suspension culture cell walls)

    SciTech Connect

    Mort, A.

    1990-01-01

    We have made progress on several projects to do with determining the structure of pectins. These include: (1) Devising a new sensitive method to determine the degree of methyl esterification (DOM) of pectins; (2) solubilization of all of RGI from cotton cell walls; (3) solubilization of RGII from cotton cell walls; (4) characterization of xyloglucan from cotton cell walls; and (5) investigation giving an indication of a cross-link between extension and pectin.

  17. An arabidopsis gene regulatory network for secondary cell wall synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  18. Pectate chemistry links cell expansion to wall deposition in Chara corallina.

    PubMed

    Proseus, Timothy E; Boyer, John S

    2012-11-01

    Pectate (polygalacturonic acid) acts as a chelator to bind calcium and form cross-links that hold adjacent pectate polymers and thus plant cell walls together. When under tension from turgor pressure in the cell, the cross-links appear to distort and weaken. New pectate supplied by the cytoplasm is undistorted and removes wall calcium preferentially from the weakened bonds, loosening the wall and accelerating cell expansion. The new pectate now containing the removed calcium can bind to the wall, strengthening it and linking expansion to wall deposition. But new calcium needs to be added as well to replenish the calcium lost from the vacated wall pectate.  A recent report demonstrated that growth was disrupted if new calcium was unavailable.  The present addendum highlights this conclusion by reviewing an experiment from before the chelation chemistry was understood. Using cell wall labeling, a direct link appeared between wall expansion and wall deposition. Together, these experiments support the concept that newly supplied pectate has growth activity on its way to deposition in the wall. Growth rate is thus controlled by signals affecting the rate of pectate release. After release, the coordination of expansion and deposition arises naturally from chelation chemistry when polymers are under tension from turgor pressure. 

  19. Cell wall degradation in the autolysis of filamentous fungi.

    PubMed

    Perez-Leblic, M I; Reyes, F; Martinez, M J; Lahoz, R

    1982-12-27

    A systematic study on autolysis of the cell walls of fungi has been made on Neurospora crassa, Botrytis cinerea, Polystictus versicolor, Aspergillus nidulans, Schizophyllum commune, Aspergillus niger, and Mucor mucedo. During autolysis each fungus produces the necessary lytic enzymes for its autodegradation. From autolyzed cultures of each fungus enzymatic precipitates were obtained. The degree of lysis of the cell walls, obtained from non-autolyzed mycelia, was studied by incubating these cell walls with and without a supply of their own lytic enzymes. The degree of lysis increased with the incubation time and generally was higher with a supply of lytic enzymes. Cell walls from mycelia of different ages were obtained. A higher degree of lysis was always found, in young cell walls than in older cell walls, when exogenous lytic enzymes were present. In all the fungi studied, there is lysis of the cell walls during autolysis. This is confirmed by the change of the cell wall structure as well as by the degree of lysis reached by the cell wall and the release of substances, principally glucose and N-acetylglucosamine in the medium.

  20. Secondary cell walls: biosynthesis, patterned deposition and transcriptional regulation.

    PubMed

    Zhong, Ruiqin; Ye, Zheng-Hua

    2015-02-01

    Secondary walls are mainly composed of cellulose, hemicelluloses (xylan and glucomannan) and lignin, and are deposited in some specialized cells, such as tracheary elements, fibers and other sclerenchymatous cells. Secondary walls provide strength to these cells, which lend mechanical support and protection to the plant body and, in the case of tracheary elements, enable them to function as conduits for transporting water. Formation of secondary walls is a complex process that requires the co-ordinated expression of secondary wall biosynthetic genes, biosynthesis and targeted secretion of secondary wall components, and patterned deposition and assembly of secondary walls. Here, we provide a comprehensive review of genes involved in secondary wall biosynthesis and deposition. Most of the genes involved in the biosynthesis of secondary wall components, including cellulose, xylan, glucomannan and lignin, have been identified and their co-ordinated activation has been shown to be mediated by a transcriptional network encompassing the secondary wall NAC and MYB master switches and their downstream transcription factors. It has been demonstrated that cortical microtubules and microtubule-associated proteins play important roles in the targeted secretion of cellulose synthase complexes, the oriented deposition of cellulose microfibrils and the patterned deposition of secondary walls. Further investigation of many secondary wall-associated genes with unknown functions will provide new insights into the mechanisms controlling the formation of secondary walls that constitute the bulk of plant biomass.

  1. Stiff mutant genes of phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate.

    PubMed

    Ortega, Joseph K E; Munoz, Cindy M; Blakley, Scott E; Truong, Jason T; Ortega, Elena L

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). "Stiff" mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the "growth zone." Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (-) and C216 geo- (-). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell wall.

  2. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls. PMID:26450210

  3. Visualization of cellulose synthases in Arabidopsis secondary cell walls.

    PubMed

    Watanabe, Y; Meents, M J; McDonnell, L M; Barkwill, S; Sampathkumar, A; Cartwright, H N; Demura, T; Ehrhardt, D W; Samuels, A L; Mansfield, S D

    2015-10-01

    Cellulose biosynthesis in plant secondary cell walls forms the basis of vascular development in land plants, with xylem tissues constituting the vast majority of terrestrial biomass. We used plant lines that contained an inducible master transcription factor controlling xylem cell fate to quantitatively image fluorescently tagged cellulose synthase enzymes during cellulose deposition in living protoxylem cells. The formation of secondary cell wall thickenings was associated with a redistribution and enrichment of CESA7-containing cellulose synthase complexes (CSCs) into narrow membrane domains. The velocities of secondary cell wall-specific CSCs were faster than those of primary cell wall CSCs during abundant cellulose production. Dynamic intracellular of endomembranes, in combination with increased velocity and high density of CSCs, enables cellulose to be synthesized rapidly in secondary cell walls.

  4. Cell wall structure and biogenesis in Aspergillus species.

    PubMed

    Yoshimi, Akira; Miyazawa, Ken; Abe, Keietsu

    2016-09-01

    Aspergillus species are among the most important filamentous fungi from the viewpoints of industry, pathogenesis, and mycotoxin production. Fungal cells are exposed to a variety of environmental stimuli, including changes in osmolality, temperature, and pH, which create stresses that primarily act on fungal cell walls. In addition, fungal cell walls are the first interactions with host cells in either human or plants. Thus, understanding cell wall structure and the mechanism of their biogenesis is important for the industrial, medical, and agricultural fields. Here, we provide a systematic review of fungal cell wall structure and recent findings regarding the cell wall integrity signaling pathways in aspergilli. This accumulated knowledge will be useful for understanding and improving the use of industrial aspergilli fermentation processes as well as treatments for some fungal infections.

  5. Unicellular Algal Growth: A Biomechanical Approach to Cell Wall Dynamics

    NASA Astrophysics Data System (ADS)

    Kam, Royce; Levine, Herbert

    1997-11-01

    We model a growing cell in a calcium solution as an elastic shell on short time scales. The turgor pressure and elastic properties (Young's modulus, thickness) of the cell wall determine a stressed cell shape. Enzyme-mediated relaxation of the unstressed toward the stressed configuration results in a slow (plastic) deformation of the cell. The cell wall thickness is then modulated by calcium-mediated fusion of material and elongation. We analyze small perturbations to a circular cell and find an instability related to modulations of the wall thickness, leading to growth rates which peak at a finite wave number.

  6. Preparation of Cell Wall Antigens of Staphylococcus aureus

    PubMed Central

    Kowalski, J. J.; Tipper, Donald J.; Berman, David T.

    1970-01-01

    Cell walls were prepared from Staphylococcus aureus strains Copenhagen and 263 by high-speed mixing in the presence of glass beads followed by differential centrifugation. Insoluble peptidoglycan complexes were derived from cell walls by extraction of teichoic acid with 10% trichloroacetic acid. Intact teichoic acid was prepared from each strain by digestion of cell walls with lysostaphin and isolated by column chromatography. Soluble glycopeptide (peptidoglycan in which only the glycan has been fragmented) and the stable complex of teichoic acid with glycopeptide were prepared by digestion of cell walls with Chalaropsis B endo-N-acetylmuramidase and were separated by column chromatography. Amino acid and amino sugar contents of walls and subunits of walls were comparable to those reported by others. Images PMID:16557799

  7. Screening and characterization of plant cell walls using carbohydrate microarrays.

    PubMed

    Sørensen, Iben; Willats, William G T

    2011-01-01

    Plant cells are surrounded by cell walls built largely from complex carbohydrates. The primary walls of growing plant cells consist of interdependent networks of three polysaccharide classes: cellulose, cross-linking glycans (also known as hemicelluloses), and pectins. Cellulose microfibrils are tethered together by cross-linking glycans, and this assembly forms the major load-bearing component of primary walls, which is infiltrated with pectic polymers. In the secondary walls of woody tissues, pectins are much reduced and walls are reinforced with the phenolic polymer lignin. Plant cell walls are essential for plant life and also have numerous industrial applications, ranging from wood to nutraceuticals. Enhancing our knowledge of cell wall biology and the effective use of cell wall materials is dependent to a large extent on being able to analyse their fine structures. We have developed a suite of techniques based on microarrays probed with monoclonal antibodies with specificity for cell wall components, and here we present practical protocols for this type of analysis.

  8. Ultrastructural localization of capsules, cell wall polysaccharide, cell wall proteins, and F antigen in pneumococci.

    PubMed Central

    Skov Sørensen, U B; Blom, J; Birch-Andersen, A; Henrichsen, J

    1988-01-01

    The localization of pneumococcal capsular and cell wall antigens was examined by immunoelectron microscopy. C polysaccharide (C-Ps), a common component of all pneumococci, was uniformly distributed on both the inside and outside of the cell walls. The thickness of the C-Ps varied with the strain. Encapsulated strains were covered by varied amounts of capsular polysaccharide concealing the C-Ps of the bacteria so as to render it inaccessible to anti-C-Ps antibodies. In addition to C-Ps, protein antigens were demonstrable on the surface of nonencapsulated pneumococci. The proteins were not masked by the C-Ps layer. An extra layer on the cell walls was conspicuous on electron micrographs of both rough and encapsulated pneumococci. The nature of this extra layer has not been disclosed. F antigen, another common antigen of pneumococci, was uniformly distributed on the surface of the plasma membranes. During the course of the experimental work a reproducible method of gold labeling immunoglobulins was developed. Images PMID:3397179

  9. Genes and plant cell walls: a difficult relationship.

    PubMed

    Wojtaszek, P

    2000-08-01

    Chemical information, carried by genes, is one of several types of information important for the functioning of cells and organisms. While genes govern the two-dimensional flow of information, the cell walls are at the basis of a structural, three-dimensional framework of plant form and growth. Recent data show the walls to be a cellular 'organelle' undergoing dynamic changes in response to a plethora of stimuli. In this review, an integrated approach, rooted in the organismal perspective, is taken to consider the role of cell walls in the biology of plants. First, the complexity of molecular and biochemical events leading to the biosynthesis of wall components is described within the framework of its spatial cellular organisation, and the major regulatory check-points are characterised. Second, cell walls form a structural and functional continuum within the whole plant and thus could be defined in relation to the protoplasts that produce them and in relation to the plant itself. Model systems of suspension-cultured cells are used to reveal the existence of a bidirectional exchange of information between the protoplast and its walls. The 'plasticity' of plant cell reactions, seen in defence responses or in changes in wall composition, to e.g. stress, plant growth regulators or chemical agents as well as the role of cell walls and/or wall components in somatic embryogenesis are also discussed. Third, being a continuum within the plant body, the walls fulfil vital functions in plant growth and development. The examples characterised include the determination of cellular polarity and the plane of cell division, cytokinesis, and the role of plasmodesmata in cell-to-cell communication and the formation of functional symplastic domains. Fourth, the exocellular control of morphogenetic processes is described and the potential of cell walls as determinants or reservoirs of positional information is indicated. Particular emphasis is put on the (bio)chemical signals coming

  10. Assembly and enlargement of the primary cell wall in plants

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1997-01-01

    Growing plant cells are shaped by an extensible wall that is a complex amalgam of cellulose microfibrils bonded noncovalently to a matrix of hemicelluloses, pectins, and structural proteins. Cellulose is synthesized by complexes in the plasma membrane and is extruded as a self-assembling microfibril, whereas the matrix polymers are secreted by the Golgi apparatus and become integrated into the wall network by poorly understood mechanisms. The growing wall is under high tensile stress from cell turgor and is able to enlarge by a combination of stress relaxation and polymer creep. A pH-dependent mechanism of wall loosening, known as acid growth, is characteristic of growing walls and is mediated by a group of unusual wall proteins called expansins. Expansins appear to disrupt the noncovalent bonding of matrix hemicelluloses to the microfibril, thereby allowing the wall to yield to the mechanical forces generated by cell turgor. Other wall enzymes, such as (1-->4) beta-glucanases and pectinases, may make the wall more responsive to expansin-mediated wall creep whereas pectin methylesterases and peroxidases may alter the wall so as to make it resistant to expansin-mediated creep.

  11. Endo-β-1,4-glucanases impact plant cell wall development by influencing cellulose crystallization.

    PubMed

    Glass, Magdalena; Barkwill, Sarah; Unda, Faride; Mansfield, Shawn D

    2015-04-01

    Cell walls are vital to the normal growth and development of plants as they protect the protoplast and provide rigidity to the stem. Here, two poplar and Arabidopsis orthologous endoglucanases, which have been proposed to play a role in secondary cell wall development, were examined. The class B endoglucanases, PtGH9B5 and AtGH9B5, are secreted enzymes that have a predicted glycosylphosphatidylinositol anchor, while the class C endoglucanases, PtGH9C2 and AtGH9C2, are also predicted to be secreted but instead contain a carbohydrate-binding module. The poplar endoglucanases were expressed in Arabidopsis using both a 35S promoter and the Arabidopsis secondary cell wall-specific CesA8 promoter. Additionally, Arabidopsis t-DNA insertion lines and an RNAi construct was created to downregulate AtGH9C2 in Arabidopsis. All of the plant lines were examined for changes in cell morphology and patterning, growth and development, cell wall crystallinity, microfibril angle, and proportion of cell wall carbohydrates. Misregulation of PtGH9B5/AtGH9B5 resulted in changes in xylose content, while misregulation of PtGH9C2/AtGH9C2 resulted in changes in crystallinity, which was inversely correlated with changes in plant height and rosette diameter. Together, these results suggest that these endoglucanases affect secondary cell wall development by contributing to the cell wall crystallization process.

  12. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    PubMed Central

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  13. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation.

    PubMed

    Yoshida, Kouki; Sakamoto, Shingo; Kawai, Tetsushi; Kobayashi, Yoshinori; Sato, Kazuhito; Ichinose, Yasunori; Yaoi, Katsuro; Akiyoshi-Endo, Miho; Sato, Hiroko; Takamizo, Tadashi; Ohme-Takagi, Masaru; Mitsuda, Nobutaka

    2013-01-01

    Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs) can regulate secondary wall formation in rice (Oryza sativa) and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S) has very low transcriptional activation ability, but the longer protein (OsSWN2L) and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions) due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications. PMID:24098302

  14. 7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. ENGINE TEST CELL BUILDING INTERIOR. WALL MAP IN CENTRAL BASEMENT OFFICE AREA. LOOKING SOUTHWEST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA

  15. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    NASA Technical Reports Server (NTRS)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  16. On-off switches for secondary cell wall biosynthesis.

    PubMed

    Wang, Huan-Zhong; Dixon, Richard A

    2012-03-01

    Secondary cell walls provide plants with rigidity and strength to support their body weight and ensure water and nutrient transport. They also provide textiles, timber, and potentially second-generation biofuels for human use. Genes responsible for synthesis of the different cell wall components, namely cellulose, hemicelluloses, and lignin, are coordinately expressed and under transcriptional regulation. In the past several years, cell wall-related NAC and MYB transcription factors have been intensively investigated in different species and shown to be master switches of secondary cell wall biosynthesis. Positive and negative regulators, which function upstream of NAC master switches, have also been identified in different plant tissues. Further elucidation of the regulatory mechanisms of cell wall synthesis will facilitate the engineering of plant feedstocks suitable for biofuel production. PMID:22138968

  17. Signaling role of oligogalacturonides derived during cell wall degradation

    PubMed Central

    Vallarino, José G.; Osorio, Sonia

    2012-01-01

    In addition to the role of the cell wall as a physical barrier against pathogens, some of its constituents, such as pectin-derived oligogalacturonides (OGAs) are essential components to trigger signaling pathways that induce rapid defense responses. Many pathogens directly penetrate the cell wall to access water and nutrients of the plant protoplast, and a rigid cell wall can fend off pathogen attack by forming an impenetrable physical barrier. Thus, cell wall integrity sensing is one mechanism by which plants may detect pathogen attack. Moreover, when the plant-pathogen interaction occurred, OGAs released during cell wall modification can trigger plant defense (e.g., production of reactive oxygen species, production of anti-microbial metabolites and synthesis of pathogenesis-related proteins). This review documents and discusses studies suggesting that OGAs play a dual signaling role during pathogen attack by inducing defense responses and plant architecture adjustment. PMID:22918501

  18. Methods for degrading or converting plant cell wall polysaccharides

    DOEpatents

    Berka, Randy; Cherry, Joel

    2008-08-19

    The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products. The present invention also relates to methods for producing an organic substance, comprising: (a) saccharifying plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into saccharified material; (b) fermenting the saccharified material of step (a) with one or more fermenting microoganisms; and (c) recovering the organic substance from the fermentation.

  19. Collenchyma: a versatile mechanical tissue with dynamic cell walls

    PubMed Central

    Leroux, Olivier

    2012-01-01

    Background Collenchyma has remained in the shadow of commercially exploited mechanical tissues such as wood and fibres, and therefore has received little attention since it was first described. However, collenchyma is highly dynamic, especially compared with sclerenchyma. It is the main supporting tissue of growing organs with walls thickening during and after elongation. In older organs, collenchyma may become more rigid due to changes in cell wall composition or may undergo sclerification through lignification of newly deposited cell wall material. While much is known about the systematic and organographic distribution of collenchyma, there is rather less information regarding the molecular architecture and properties of its cell walls. Scope and conclusions This review summarizes several aspects that have not previously been extensively discussed including the origin of the term ‘collenchyma’ and the history of its typology. As the cell walls of collenchyma largely determine the dynamic characteristics of this tissue, I summarize the current state of knowledge regarding their structure and molecular composition. Unfortunately, to date, detailed studies specifically focusing on collenchyma cell walls have not been undertaken. However, generating a more detailed understanding of the structural and compositional modifications associated with the transition from plastic to elastic collenchyma cell wall properties is likely to provide significant insights into how specific configurations of cell wall polymers result in specific functional properties. This approach, focusing on architecture and functional properties, is likely to provide improved clarity on the controversial definition of collenchyma. PMID:22933416

  20. MECHANISM OF CELL WALL PENETRATION BY VIRUSES

    PubMed Central

    Puck, Theodore T.; Lee, Howard H.

    1954-01-01

    Treatment of radioactively labelled host cells with T1 or T2 bacteriophages induces a leakage of cellular P and S into the medium. Evidence is presented showing that this increased cell permeability is not the result of complete lysis of a small fraction of the cells, but rather is made up of contributions from all or most of the infected population. This leakage of cellular constituents exhibits the following characteristics: (a) Infection of a cell with a single virus suffices to evoke the reaction; (b) Increasing the multiplicity up to 7 to 8 virus particles per cell does not affect the extent of leakage produced; (c) Some leakage does occur at 0°C., but much less than at 37°C.; (d) Infection by T1 virus results in a smaller amount of leakage than in the case of T2, but the pattern of response to varying virus multiplicity is the same; (e) The P resulting from such leakage contains no DNA and chemically resembles that which elutes in smaller amounts from uninfected cells; (f) At 37°C. the virus-induced leakage reaction appears within a matter of seconds, and usually decreases after 2 to 3 minutes; (g) The reaction is inhibited by 0.025 M Mg++. Theoretical considerations are presented suggesting the place of this reaction in the sequence of events constituting the virus penetration reaction; its relationship to the phenomenon of lysis-from-without; and its resemblance to the leakage reaction produced by electrostatic binding of ionized compounds to cell surfaces. The existence of similar effects in avian-mammalian virus systems is noted. PMID:13163323

  1. Structure of plant cell walls: XIX. Isolation and characterization of wall polysaccharides from suspension-cultured Douglas fir cells

    SciTech Connect

    Thomas, J.R.; McNeil, M.; Darvill, A.G.; Albersheim, P.

    1987-03-01

    The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls from 1.0 M LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-..cap alpha..-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-..cap alpha..-1,4-polygalacturonase-treated walls by treatment with an endo-..beta..-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-..beta..-1,4-glucanase-treated walls by 0.5 N NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 25% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall.

  2. Modification of plant cell wall structure accompanied by enhancement of saccharification efficiency using a chemical, lasalocid sodium

    PubMed Central

    Okubo-Kurihara, Emiko; Ohtani, Misato; Kurihara, Yukio; Kakegawa, Koichi; Kobayashi, Megumi; Nagata, Noriko; Komatsu, Takanori; Kikuchi, Jun; Cutler, Sean; Demura, Taku; Matsui, Minami

    2016-01-01

    The cell wall is one major determinant of plant cell morphology, and is an attractive bioresource. Here, we report a novel strategy to modify plant cell wall property by small molecules. Lasalocid sodium (LS) was isolated by chemical screening to identify molecules that affect the cell morphology of tobacco BY-2 cells. LS treatment led to an increase in cell wall thickness, whilst the quantity and sugar composition of the cell wall remained unchanged in BY-2 cells. The chemical also disordered the cellular arrangement of hypocotyls of Arabidopsis plants, resulting in a decrease in hypocotyl length. LS treatment enhanced enzymatic saccharification efficiency in both BY-2 cells and Arabidopsis plants. Microarray analysis on Arabidopsis showed that exposure to LS upregulated type III peroxidase genes, of which some are involved in lignin biogenesis, and jasmonic acid response genes, and phloroglucinol staining supported the activation of lignification by the LS treatment. As jasmonic acid-mediated lignification is a typical reaction to cell wall damage, it is possible that LS induces cell wall loosening, which can trigger cell wall damage response. Thus, LS is a unique chemical for modification of cell wall and morphology through changes in cell wall architecture. PMID:27694977

  3. Multinet growth in the cell wall of Nitella.

    PubMed

    GREEN, P B

    1960-04-01

    Plant cell walls typically consist of crystalline microfibrils embedded in a non-crystalline matrix. The growing cylindrical Nitella cell wall contains microfibrils predominantly oriented in the transverse direction. The present study has shown that the transversely oriented microfibrils are primarily located toward the inner surface of the wall and that, proceeding outward from the inner surface, the wall contains microfibrils of ever poorer transverse orientation, the fibrils being randomly or axially arranged in the outermost regions of the wall. Because cell expansion is primarily in the axial direction, the texture of the fibrillar elements of the wall can be explained by assuming that new microfibrils of transverse orientation are added only at the inner surface of the wall and that they become passively reoriented to the axial direction during cell elongation. The described structure corresponds to that proposed by Roelofsen and Houwink for cells showing "multi-net growth." The demonstration of a continuous gradient of microfibrillar arrangement and its partial quantitative description was accomplished by the analysis, with the polarized light and interference microscopes, of wedge-like torn edges of developing cell walls which were 1 micron or less in optical thickness.

  4. Architecture and Biosynthesis of the Saccharomyces cerevisiae Cell Wall

    PubMed Central

    Orlean, Peter

    2012-01-01

    The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins. PMID:23135325

  5. The plant cell wall: a dynamic barrier against pathogen invasion.

    PubMed

    Underwood, William

    2012-01-01

    Prospective plant pathogens must overcome the physical barrier presented by the plant cell wall. In addition to being a preformed, passive barrier limiting access of pathogens to plant cells, the cell wall is actively remodeled and reinforced specifically at discrete sites of interaction with potentially pathogenic microbes. Active reinforcement of the cell wall through the deposition of cell wall appositions, referred to as papillae, is an early response to perception of numerous categories of pathogens including fungi and bacteria. Rapid deposition of papillae is generally correlated with resistance to fungal pathogens that attempt to penetrate plant cell walls for the establishment of feeding structures. Despite the ubiquity and apparent importance of this early defense response, relatively little is known about the underlying molecular mechanisms and cellular processes involved in the targeting and assembly of papillae. This review summarizes recent advances in our understanding of cell wall-associated defenses induced by pathogen perception as well as the impact of changes in cell wall polymers on interactions with pathogens and highlights significant unanswered questions driving future research in the area.

  6. Early cell-wall modifications of maize cell cultures during habituation to dichlobenil.

    PubMed

    de Castro, María; Largo-Gosens, Asier; Alvarez, Jesús Miguel; García-Angulo, Penélope; Acebes, José Luis

    2014-01-15

    esterification, seemed to be not affected. In conclusion, the early modifications occurring in maize cell walls as a consequence of DCB-habituation involved quantitative and qualitative changes of arabinoxylans, but also other polysaccharides. Thereby some of the changes that took place in the cell walls in order to compensate for the lack of cellulose differed according to the DCB-habituation level, and illustrate the ability of plant cells to adopt appropriate coping strategies depending on the herbicide concentration and length of exposure time.

  7. A Fungal Endoglucanase with Plant Cell Wall Extension Activity1

    PubMed Central

    Yuan, Sheng; Wu, Yajun; Cosgrove, Daniel J.

    2001-01-01

    We have identified a wall hydrolytic enzyme from Trichoderma reesei with potent ability to induce extension of heat-inactivated type I cell walls. It is a small (23-kD) endo-1,4-β-glucanase (Cel12A) belonging to glycoside hydrolase family 12. Extension of heat-inactivated walls from cucumber (Cucumis sativus cv Burpee Pickler) hypocotyls was induced by Cel12A after a distinct lag time and was accompanied by a large increase in wall plasticity and elasticity. Cel12A also increased the rate of stress relaxation of isolated walls at very short times (<200 ms; equivalent to reducing t0, a parameter that estimates the minimum relaxation time). Similar changes in wall plasticity and elasticity were observed in wheat (Triticum aestivum cv Pennmore Winter) coleoptile (type II) walls, which showed only a negligible extension in response to Cel12A treatment. Thus, Cel12A modifies both type I and II walls, but substantial extension is found only in type I walls. Cel12A has strong endo-glucanase activity against xyloglucan and (1→3,1→4)-β-glucan, but did not exhibit endo-xylanase, endo-mannase, or endo-galactanase activities. In terms of kinetics of action and effects on wall rheology, wall loosening by Cel12A differs qualitatively from the action by expansins, which induce wall extension by a non-hydrolytic polymer creep mechanism. The action by Cel12A mimics some of the changes in wall rheology found after auxin-induced growth. The strategy used here to identify Cel12A could be used to identify analogous plant enzymes that cause auxin-induced changes in cell wall rheology. PMID:11553760

  8. Fungal Cell Wall Septation and Cytokinesis Are Inhibited by Bleomycins

    PubMed Central

    Moore, Carol W.; McKoy, Judith; Del Valle, Robert; Armstrong, Donald; Bernard, Edward M.; Katz, Norman; Gordon, Ronald E.

    2003-01-01

    When the essential and distinctive cell walls of either pathogenic or nonpathogenic fungi break, cytoplasmic membranes rupture and fungi die. This fungicidal activity was discovered previously on nonproliferating Saccharomyces cerevisiae cells treated briefly with the oxidative tool and anticancer drug family of bleomycins. The present studies investigated effects of bleomycin on growing fungal organisms. These included the medically important Aspergillus fumigatus and Cryptococcus neoformans, as well as the emerging human pathogen and fungal model, S. cerevisiae. Bleomycin had its highest potency against A. fumigatus. Scanning electron microscopy and thin-section transmission electron microscopy were used to study morphological growth characteristics. Killing and growth inhibition were also measured. Long, thin, and segmented hyphae were observed when A. fumigatus was grown without bleomycin but were never observed when the mold was grown with the drug. Bleomycin arrested conidial germination, hyphal development, and the progression and completion of cell wall septation. Similarly, the drug inhibited the construction of yeast cell wall septa, preventing cytokinesis and progression in the cell division cycle of S. cerevisiae. Even when cytoplasms of mother and daughter cells separated, septation and cell division did not necessarily occur. Bizarre cell configurations, abnormally thickened cell walls at mother-daughter necks, abnormal polarized growth, large undivided cells, fragmented cells, and empty cell ghosts were also produced. This is the first report of a fungicidal agent that arrests fungal growth and development, septum formation, and cytokinesis and that also preferentially localizes to cell walls and alters isolated cell walls as well as intact cell walls on nongrowing cells. PMID:14506042

  9. Cell wall compounds of red grapes skins and their grape marcs from three different winemaking techniques.

    PubMed

    Apolinar-Valiente, Rafael; Romero-Cascales, Inmaculada; Gómez-Plaza, Encarna; López-Roca, José María; Ros-García, José María

    2015-11-15

    Different winemaking practices are aimed at increasing cell wall degradation to facilitate extraction of valuables molecules into the wine. However, little attention has been paid to the composition of marcs from different cultivars according to the influence of the winemaking procedures. We provide information on skin cell walls from Cabernet Sauvignon, Syrah and Monastrell grapes and examine how different winemaking practices (addition of enzymatic preparation and β-galactosidase separately and dry ice addition) may affect the composition of marc skin cell wall material (CWM). The efficiency of CWM isolation from the grape skin and also its composition is influenced by the cultivar. A similar cultivar influence has been detected on CWM from the marc, being the differences also due to the enological technique. Our results help to increase our knowledge on the degradation of cell walls during vinification, while providing a valuable guideline to upgrade the value of these by-products. PMID:25977002

  10. Cell wall compounds of red grapes skins and their grape marcs from three different winemaking techniques.

    PubMed

    Apolinar-Valiente, Rafael; Romero-Cascales, Inmaculada; Gómez-Plaza, Encarna; López-Roca, José María; Ros-García, José María

    2015-11-15

    Different winemaking practices are aimed at increasing cell wall degradation to facilitate extraction of valuables molecules into the wine. However, little attention has been paid to the composition of marcs from different cultivars according to the influence of the winemaking procedures. We provide information on skin cell walls from Cabernet Sauvignon, Syrah and Monastrell grapes and examine how different winemaking practices (addition of enzymatic preparation and β-galactosidase separately and dry ice addition) may affect the composition of marc skin cell wall material (CWM). The efficiency of CWM isolation from the grape skin and also its composition is influenced by the cultivar. A similar cultivar influence has been detected on CWM from the marc, being the differences also due to the enological technique. Our results help to increase our knowledge on the degradation of cell walls during vinification, while providing a valuable guideline to upgrade the value of these by-products.

  11. A proteomic and genetic analysis of the Neurospora crassa conidia cell wall proteins identifies two glycosyl hydrolases involved in cell wall remodeling.

    PubMed

    Ao, Jie; Aldabbous, Mash'el; Notaro, Marysa J; Lojacono, Mark; Free, Stephen J

    2016-09-01

    A proteomic analysis of the conidial cell wall identified 35 cell wall proteins. A comparison with the proteome of the vegetative hyphae showed that 16 cell wall proteins were shared, and that these shared cell wall proteins were cell wall biosynthetic proteins or cell wall structural proteins. Deletion mutants for 34 of the genes were analyzed for phenotypes indicative of conidial cell wall defects. Mutants for two cell wall glycosyl hydrolases, the CGL-1 β-1,3-glucanase (NCU07523) and the NAG-1 exochitinase (NCU10852), were found to have a conidial separation phenotype. These two enzymes function in remodeling the cell wall between adjacent conidia to facilitate conidia formation and dissemination. Using promoter::RFP and promoter::GFP constructs, we demonstrated that the promoters for 15 of the conidia-specific cell wall genes, including cgl-1 and nag-1, provided for conidia-specific gene expression or for a significant increase in their expression during conidiation.

  12. Dynamic microtubules and the texture of plant cell walls.

    PubMed

    Lloyd, Clive

    2011-01-01

    The relationship between microtubules and cell-wall texture has had a fitful history in which progress in one area has not been matched by progress in the other. For example, the idea that wall texture arises entirely from self-assembly, independently of microtubules, originated with electron microscopic analyses of fixed cells that gave no clue to the ability of microtubules to reorganize. Since then, live-cell studies have established the surprising dynamicity of plant microtubules involving collisions, changes in angle, parallelization, and rotation of microtubule tracks. Combined with proof that cellulose synthases do track along shifting microtubules, this offers more realistic models for the dynamic influence of microtubules on wall texture than could have been imagined in the electron microscopic era-the era from which most ideas on wall texture originate. This review revisits the classical literature on wall organization from the vantage point of current knowledge of microtubule dynamics.

  13. Plant expansins: diversity and interactions with plant cell walls.

    PubMed

    Cosgrove, Daniel J

    2015-06-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable or even understandable ways.

  14. Plant expansins: diversity and interactions with plant cell walls

    PubMed Central

    Cosgrove, Daniel J.

    2015-01-01

    Expansins were discovered two decades ago as cell wall proteins that mediate acid-induced growth by catalyzing loosening of plant cell walls without lysis of wall polymers. In the interim our understanding of expansins has gotten more complex through bioinformatic analysis of expansin distribution and evolution, as well as through expression analysis, dissection of the upstream transcription factors regulating expression, and identification of additional classes of expansin by sequence and structural similarities. Molecular analyses of expansins from bacteria have identified residues essential for wall loosening activity and clarified the bifunctional nature of expansin binding to complex cell walls. Transgenic modulation of expansin expression modifies growth and stress physiology of plants, but not always in predictable and even understandable ways. PMID:26057089

  15. Measurement of pectin methylation in plant cell walls

    SciTech Connect

    McFeeters, R.F.; Armstrong, S.A.

    1984-01-01

    A procedure was developed to measure the degree of pectin methylation in small samples of isolated cell walls from nonlignified plant tissues or pectin solutions. Galacturonic acid was determined colorimetrically with the 3,5-dimethylphenol reagent. Methylation was measured by base hydrolysis of galacturonic acid methyl esters, followed by gas chromatographic determination of released methanol. Estimates of the precision of analysis of pectin and cell wall samples were made. The coefficient of variation for estimates of the pectin esterification in cell walls isolated from 10-g samples of cucumber tissue ranged from 7.7 to 13.2%.

  16. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  17. Cell Wall Metabolism in Response to Abiotic Stress

    PubMed Central

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  18. Cell Wall Metabolism in Response to Abiotic Stress.

    PubMed

    Le Gall, Hyacinthe; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-02-16

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions.

  19. An Arabidopsis Gene Regulatory Network for Secondary Cell Wall Synthesis

    PubMed Central

    Taylor-Teeples, M; Lin, L; de Lucas, M; Turco, G; Toal, TW; Gaudinier, A; Young, NF; Trabucco, GM; Veling, MT; Lamothe, R; Handakumbura, PP; Xiong, G; Wang, C; Corwin, J; Tsoukalas, A; Zhang, L; Ware, D; Pauly, M; Kliebenstein, DJ; Dehesh, K; Tagkopoulos, I; Breton, G; Pruneda-Paz, JL; Ahnert, SE; Kay, SA; Hazen, SP; Brady, SM

    2014-01-01

    Summary The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. Here, we present a protein-DNA network between Arabidopsis transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. These interactions will serve as a foundation for understanding the regulation of a complex, integral plant component. PMID:25533953

  20. On the growth of walled cells: From shells to vesicles.

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-03-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi and yeast cells. They are modeled as elastic shells inflated by a liquid. Cell growth is driven by fluid pressure and is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  1. Growth of Walled Cells: From Shells to Vesicles

    NASA Astrophysics Data System (ADS)

    Boudaoud, Arezki

    2003-07-01

    The growth of isolated walled cells is investigated. Examples of such cells range from bacteria to giant algae, and include cochlear hair, plant root hair, fungi, and yeast cells. They are modeled as elastic shells containing a liquid. Cell growth is driven by fluid pressure and is is similar to a plastic deformation of the wall. The requirement of mechanical equilibrium leads to two new scaling laws for cell size that are in quantitative agreement with the compiled biological data. Given these results, possible shapes for growing cells are computed by analogy with those of vesicle membranes.

  2. Structural characteristics of developing Nitella internodal cell walls.

    PubMed

    GREEN, P B

    1958-09-25

    The Nilella intermodal cell is formed by a division of the segment cell, the latter being a direct derivative of the shoot apical cell. The internodal cell is remarkable in that it elongates from an initial length of about 20 microns to a mature length of about 60 millimeters. The structures of the apical and segment cells, and the internodal cells in all stages of development were examined with the techniques of interference, polarization, and electron microscopy. The apical and segment cells were found to be isotropic. The upper part of the segment cell, destined to form a node, shows a curious pitted structure that was characteristic of certain node structures. The lower part of the segment cell, destined to become an internodal cell, shows a vague transverse arrangement of fibrils at the inner wall surface. The internodal cells, from the time they are first formed, show negative birefringence and a transverse arrangement of microfibrils at the inner wall surface. The elongation of the internodal cell is characterized by a rise, dip, and rise in both the optical thickness and retardation of the cell wall. The dip in both these variables coincides with the attainment of the maximum relative elongation rate. After the cessation of elongation, wall deposition continues, but the fibrils at .the inner surface of the wall are now seen to occur in fields of nearly parallel microfibrils. These fields, with varying fibrillar directions, may partly overlap each other or may merge with one another. Unlike the growing wall, this wall which is deposited after the end of elongation is isotropic.

  3. Up against the wall: is yeast cell wall integrity ensured by mechanosensing in plasma membrane microdomains?

    PubMed

    Kock, Christian; Dufrêne, Yves F; Heinisch, Jürgen J

    2015-02-01

    Yeast cell wall integrity (CWI) signaling serves as a model of the regulation of fungal cell wall synthesis and provides the basis for the development of antifungal drugs. A set of five membrane-spanning sensors (Wsc1 to Wsc3, Mid2, and Mtl1) detect cell surface stress and commence the signaling pathway upon perturbations of either the cell wall structure or the plasma membrane. We here summarize the latest advances in the structure/function relationship primarily of the Wsc1 sensor and critically review the evidence that it acts as a mechanosensor. The relevance and physiological significance of the information obtained for the function of the other CWI sensors, as well as expected future developments, are discussed.

  4. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    PubMed Central

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369

  5. Changes of myoid and endothelial cells in the peritubular wall during contraction of the seminiferous tubule.

    PubMed

    Losinno, Antonella D; Sorrivas, Viviana; Ezquer, Marcelo; Ezquer, Fernando; López, Luis A; Morales, Alfonsina

    2016-08-01

    The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis.

  6. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters.

    PubMed

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  7. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    PubMed Central

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  8. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters.

    PubMed

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure.

  9. A formin-nucleated actin aster concentrates cell wall hydrolases for cell fusion in fission yeast

    PubMed Central

    Dudin, Omaya; Bendezú, Felipe O.; Groux, Raphael; Laroche, Thierry; Seitz, Arne

    2015-01-01

    Cell–cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure—the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion. PMID:25825517

  10. Plant cell wall characterization using scanning probe microscopy techniques

    PubMed Central

    Yarbrough, John M; Himmel, Michael E; Ding, Shi-You

    2009-01-01

    Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses, pectins, and lignins; this explains, in part, the recalcitrance of biomass to deconstruction. The chemical and structural characteristics of these plant cell wall constituents remain largely unknown today. Scanning probe microscopy techniques, particularly atomic force microscopy and its application in characterizing plant cell wall structure, are reviewed here. We also further discuss future developments based on scanning probe microscopy techniques that combine linear and nonlinear optical techniques to characterize plant cell wall nanometer-scale structures, specifically apertureless near-field scanning optical microscopy and coherent anti-Stokes Raman scattering microscopy. PMID:19703302

  11. A versatile strategy for grafting polymers to wood cell walls.

    PubMed

    Keplinger, T; Cabane, E; Chanana, M; Hass, P; Merk, V; Gierlinger, N; Burgert, I

    2015-01-01

    The hierarchical structure of wood is composed of a cellulose skeleton of high structural order at various length scales. At the nanoscale and microscale the specific structural features of the cells and cell walls result in a lightweight structure with an anisotropic material profile of excellent mechanical performance. By being able to specifically functionalize wood at the level of cell and cell walls one can insert new properties and inevitably upscale them along the intrinsic hierarchical structure, to a level of large-scale engineering materials applications. For this purpose, however, precise control of the spatial distribution of the modifying substances in the complex wood structure is needed. Here we demonstrate a method to insert methacryl groups into wood cell walls using two different chemistry routes. By using these methacryl groups as the anchor points for grafting, various polymers can be inserted into the wood structure. Strikingly, depending on the methacryl precursor, the spatial distribution of the polymer differs strongly. As a proof of concept we grafted polystyrene as a model compound in the second modification step. In the case of methacryloyl chloride the polymer was located mainly at the interface between the cell lumina and the cell wall covering the inner surface of the cells and being traceable up to 2-3 μm in the cell wall, whereas in the case of methacrylic anhydride the polymer was located inside the whole cell wall. Scanning electron microscopy, Fourier transform infrared spectroscopy and especially Raman spectroscopy were used for an in-depth analysis of the modified wood at the cell wall level.

  12. Vascular wall progenitor cells in health and disease.

    PubMed

    Psaltis, Peter J; Simari, Robert D

    2015-04-10

    The vasculature plays an indispensible role in organ development and maintenance of tissue homeostasis, such that disturbances to it impact greatly on developmental and postnatal health. Although cell turnover in healthy blood vessels is low, it increases considerably under pathological conditions. The principle sources for this phenomenon have long been considered to be the recruitment of cells from the peripheral circulation and the re-entry of mature cells in the vessel wall back into cell cycle. However, recent discoveries have also uncovered the presence of a range of multipotent and lineage-restricted progenitor cells in the mural layers of postnatal blood vessels, possessing high proliferative capacity and potential to generate endothelial, smooth muscle, hematopoietic or mesenchymal cell progeny. In particular, the tunica adventitia has emerged as a progenitor-rich compartment with niche-like characteristics that support and regulate vascular wall progenitor cells. Preliminary data indicate the involvement of some of these vascular wall progenitor cells in vascular disease states, adding weight to the notion that the adventitia is integral to vascular wall pathogenesis, and raising potential implications for clinical therapies. This review discusses the current body of evidence for the existence of vascular wall progenitor cell subpopulations from development to adulthood and addresses the gains made and significant challenges that lie ahead in trying to accurately delineate their identities, origins, regulatory pathways, and relevance to normal vascular structure and function, as well as disease.

  13. Reduced Wall Acetylation Proteins Play Vital and Distinct Roles in Cell Wall O-Acetylation in Arabidopsis1[C][W][OPEN

    PubMed Central

    Manabe, Yuzuki; Verhertbruggen, Yves; Gille, Sascha; Harholt, Jesper; Chong, Sun-Li; Pawar, Prashant Mohan-Anupama; Mellerowicz, Ewa J.; Tenkanen, Maija; Cheng, Kun; Pauly, Markus; Scheller, Henrik Vibe

    2013-01-01

    The Reduced Wall Acetylation (RWA) proteins are involved in cell wall acetylation in plants. Previously, we described a single mutant, rwa2, which has about 20% lower level of O-acetylation in leaf cell walls and no obvious growth or developmental phenotype. In this study, we generated double, triple, and quadruple loss-of-function mutants of all four members of the RWA family in Arabidopsis (Arabidopsis thaliana). In contrast to rwa2, the triple and quadruple rwa mutants display severe growth phenotypes revealing the importance of wall acetylation for plant growth and development. The quadruple rwa mutant can be completely complemented with the RWA2 protein expressed under 35S promoter, indicating the functional redundancy of the RWA proteins. Nevertheless, the degree of acetylation of xylan, (gluco)mannan, and xyloglucan as well as overall cell wall acetylation is affected differently in different combinations of triple mutants, suggesting their diversity in substrate preference. The overall degree of wall acetylation in the rwa quadruple mutant was reduced by 63% compared with the wild type, and histochemical analysis of the rwa quadruple mutant stem indicates defects in cell differentiation of cell types with secondary cell walls. PMID:24019426

  14. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    PubMed Central

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-01-01

    abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported. PMID:27446114

  15. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability.

    PubMed

    Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P

    2016-01-01

    abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.

  16. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability

    DOE PAGES

    Pattathil, Sivakumar; Ingwers, Miles W.; Victoriano, Olivia L.; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O.; Aubrey, Doug P.

    2016-06-24

    glycomic analyses, that abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported.« less

  17. Cell Wall Ultrastructure of Stem Wood, Roots, and Needles of a Conifer Varies in Response to Moisture Availability.

    PubMed

    Pattathil, Sivakumar; Ingwers, Miles W; Victoriano, Olivia L; Kandemkavil, Sindhu; McGuire, Mary Anne; Teskey, Robert O; Aubrey, Doug P

    2016-01-01

    abiotic stress affects cell wall ultrastructure. This study is also unique in that glycome profiling of pine needles has never before been reported. PMID:27446114

  18. Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood.

    PubMed

    Derba-Maceluch, Marta; Awano, Tatsuya; Takahashi, Junko; Lucenius, Jessica; Ratke, Christine; Kontro, Inkeri; Busse-Wicher, Marta; Kosik, Ondrej; Tanaka, Ryo; Winzéll, Anders; Kallas, Åsa; Leśniewska, Joanna; Berthold, Fredrik; Immerzeel, Peter; Teeri, Tuula T; Ezcurra, Ines; Dupree, Paul; Serimaa, Ritva; Mellerowicz, Ewa J

    2015-01-01

    Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.

  19. The Permeability of Plant Cell Walls as Measured by Gel Filtration Chromatography

    NASA Astrophysics Data System (ADS)

    Tepeer, Mark; Taylor, Iain E. P.

    1981-08-01

    The permeability of plant cell walls to macromolecules may limit the ability of enzymes to alter the biochemical and physical properties of the wall. Proteins of molecular weight up to 60,000 can permeate a substantial portion of the cell wall. Measurements of wall permeability in which cells are exposed to hypertonic solutions of macromolecules may seriously underestimate wall permeability.

  20. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall

    PubMed Central

    Scholz, Matthew J.; Weiss, Taylor L.; Jinkerson, Robert E.; Jing, Jia; Roth, Robyn; Goodenough, Ursula; Posewitz, Matthew C.

    2014-01-01

    Marine algae of the genus Nannochloropsis are promising producers of biofuel precursors and nutraceuticals and are also harvested commercially for aquaculture feed. We have used quick-freeze, deep-etch electron microscopy, Fourier transform infrared spectroscopy, and carbohydrate analyses to characterize the architecture of the Nannochloropsis gaditana (strain CCMP 526) cell wall, whose recalcitrance presents a significant barrier to biocommodity extraction. The data indicate a bilayer structure consisting of a cellulosic inner wall (∼75% of the mass balance) protected by an outer hydrophobic algaenan layer. Cellulase treatment of walls purified after cell lysis generates highly enriched algaenan preparations without using the harsh chemical treatments typically used in algaenan isolation and characterization. Nannochloropsis algaenan was determined to comprise long, straight-chain, saturated aliphatics with ether cross-links, which closely resembles the cutan of vascular plants. Chemical identification of >85% of the isolated cell wall mass is detailed, and genome analysis is used to identify candidate biosynthetic enzymes. PMID:25239976

  1. Role of the plant cell wall in gravity resistance.

    PubMed

    Hoson, Takayuki; Wakabayashi, Kazuyuki

    2015-04-01

    Gravity resistance, mechanical resistance to the gravitational force, is a principal graviresponse in plants, comparable to gravitropism. The cell wall is responsible for the final step of gravity resistance. The gravity signal increases the rigidity of the cell wall via the accumulation of its constituents, polymerization of certain matrix polysaccharides due to the suppression of breakdown, stimulation of cross-link formation, and modifications to the wall environment, in a wide range of situations from microgravity in space to hypergravity. Plants thus develop a tough body to resist the gravitational force via an increase in cell wall rigidity and the modification of growth anisotropy. The development of gravity resistance mechanisms has played an important role in the acquisition of responses to various mechanical stresses and the evolution of land plants.

  2. Ferulic acid is esterified to glucuronoarabinoxylans in pineapple cell walls.

    PubMed

    Smith, B G; Harris, P J

    2001-03-01

    The ester-linkage of ferulic acid (mainly E) to polysaccharides in primary cell walls of pineapple fruit (Ananas comosus) (Bromeliaceae) was investigated by treating a cell-wall preparation with 'Driselase' which contains a mixture of endo- and exo-glycanases, but no hydroxycinnamoyl esterase activity. The most abundant feruloyl oligosaccharide released was O-[5-O-(E-feruloyl)-alpha-L-arabinofuranosyl](1-->3)-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose (FAXX). This indicated that the ferulic acid is ester-linked to glucuronoarabinoxylans in the same way as in the primary walls of grasses and cereals (Poaceae). Glucuronoarabinoxylans are the major non-cellulosic polysaccharides in the pineapple cell walls.

  3. Live cell imaging of the cytoskeleton and cell wall enzymes in plant cells.

    PubMed

    Sampathkumar, Arun; Wightman, Raymond

    2015-01-01

    The use of live imaging techniques to visualize the dynamic changes and interactions within plant cells has given us detailed information on the function and organization of the cytoskeleton and cell wall associated proteins. This information has grown with the constant improvement in imaging hardware and molecular tools. In this chapter, we describe the procedure for the preparation and live visualization of fluorescent protein fusions associated with the cytoskeleton and the cell wall in Arabidopsis. PMID:25408450

  4. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells.

  5. A model for cell wall dissolution in mating yeast cells: polarized secretion and restricted diffusion of cell wall remodeling enzymes induces local dissolution.

    PubMed

    Huberman, Lori B; Murray, Andrew W

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  6. A Model for Cell Wall Dissolution in Mating Yeast Cells: Polarized Secretion and Restricted Diffusion of Cell Wall Remodeling Enzymes Induces Local Dissolution

    PubMed Central

    Huberman, Lori B.; Murray, Andrew W.

    2014-01-01

    Mating of the budding yeast, Saccharomyces cerevisiae, occurs when two haploid cells of opposite mating types signal using reciprocal pheromones and receptors, grow towards each other, and fuse to form a single diploid cell. To fuse, both cells dissolve their cell walls at the point of contact. This event must be carefully controlled because the osmotic pressure differential between the cytoplasm and extracellular environment causes cells with unprotected plasma membranes to lyse. If the cell wall-degrading enzymes diffuse through the cell wall, their concentration would rise when two cells touched each other, such as when two pheromone-stimulated cells adhere to each other via mating agglutinins. At the surfaces that touch, the enzymes must diffuse laterally through the wall before they can escape into the medium, increasing the time the enzymes spend in the cell wall, and thus raising their concentration at the point of attachment and restricting cell wall dissolution to points where cells touch each other. We tested this hypothesis by studying pheromone treated cells confined between two solid, impermeable surfaces. This confinement increases the frequency of pheromone-induced cell death, and this effect is diminished by reducing the osmotic pressure difference across the cell wall or by deleting putative cell wall glucanases and other genes necessary for efficient cell wall fusion. Our results support the model that pheromone-induced cell death is the result of a contact-driven increase in the local concentration of cell wall remodeling enzymes and suggest that this process plays an important role in regulating cell wall dissolution and fusion in mating cells. PMID:25329559

  7. Determining the polysaccharide composition of plant cell walls.

    PubMed

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis. PMID:22864200

  8. Determining the polysaccharide composition of plant cell walls.

    PubMed

    Pettolino, Filomena A; Walsh, Cherie; Fincher, Geoffrey B; Bacic, Antony

    2012-09-01

    The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography-mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis.

  9. Production Model Press for the Preparation of Bacterial Cell Walls

    PubMed Central

    Perrine, T. D.; Ribi, E.; Maki, W.; Miller, B.; Oertli, E.

    1962-01-01

    A modification of the apparatus previously described permits the preparation of cell walls in quantity. This consists of a heavy duty, double-acting hydraulic press with motor-driven pump, and a superstrength alloy steel pressure cell which is corrosion resistant. Liquid cooling of the jet is substituted for the previously used gas cooling to minimize aerosol formation and to facilitate subsequent treatment of the products. The device produces cell walls of excellent quality in good yield. The pressure cell has been used satisfactorily up to about 60,000 psi. Design details are given. Images FIG. 1 FIG. 2 FIG. 6 PMID:14485524

  10. Electron microscopy of Staphylococcus aureus cell wall lysis.

    PubMed

    Virgilio, R; González, C; Muñoz, N; Mendoza, S

    1966-05-01

    Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.

  11. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper.

  12. Another brick in the cell wall: biosynthesis dependent growth model.

    PubMed

    Barbacci, Adelin; Lahaye, Marc; Magnenet, Vincent

    2013-01-01

    Expansive growth of plant cell is conditioned by the cell wall ability to extend irreversibly. This process is possible if (i) a tensile stress is developed in the cell wall due to the coupling effect between turgor pressure and the modulation of its mechanical properties through enzymatic and physicochemical reactions and if (ii) new cell wall elements can be synthesized and assembled to the existing wall. In other words, expansive growth is the result of coupling effects between mechanical, thermal and chemical energy. To have a better understanding of this process, models must describe the interplay between physical or mechanical variable with biological events. In this paper we propose a general unified and theoretical framework to model growth in function of energy forms and their coupling. This framework is based on irreversible thermodynamics. It is then applied to model growth of the internodal cell of Chara corallina modulated by changes in pressure and temperature. The results describe accurately cell growth in term of length increment but also in term of cell pectate biosynthesis and incorporation to the expanding wall. Moreover, the classical growth model based on Lockhart's equation such as the one proposed by Ortega, appears as a particular and restrictive case of the more general growth equation developed in this paper. PMID:24066142

  13. Detection of Cell Wall Chemical Variation in Zea Mays Mutants Using Near-Infrared Spectroscopy

    SciTech Connect

    Buyck, N.; Thomas, S.

    2001-01-01

    Corn stover is regarded as the prime candidate feedstock material for commercial biomass conversion in the United States. Variations in chemical composition of Zea mays cell walls can affect biomass conversion process yields and economics. Mutant lines were constructed by activating a Mu transposon system. The cell wall chemical composition of 48 mutant families was characterized using near-infrared (NIR) spectroscopy. NIR data were analyzed using a multivariate statistical analysis technique called Principal Component Analysis (PCA). PCA of the NIR data from 349 maize leaf samples reveals 57 individuals as outliers on one or more of six Principal Components (PCs) at the 95% confidence interval. Of these, 19 individuals from 16 families are outliers on either PC3 (9% of the variation) or PC6 (1% of the variation), the two PCs that contain information about cell wall polymers. Those individuals for which altered cell wall chemistry is confirmed with wet chemical analysis will then be subjected to fermentation analysis to determine whether or not biomass conversion process kinetics, yields and/or economics are significantly affected. Those mutants that provide indications for a decrease in process cost will be pursued further to identify the gene(s) responsible for the observed changes in cell wall composition and associated changes in process economics. These genes will eventually be incorporated into maize breeding programs directed at the development of a truly dual use crop.

  14. A widespread family of bacterial cell wall assembly proteins

    PubMed Central

    Kawai, Yoshikazu; Marles-Wright, Jon; Cleverley, Robert M; Emmins, Robyn; Ishikawa, Shu; Kuwano, Masayoshi; Heinz, Nadja; Bui, Nhat Khai; Hoyland, Christopher N; Ogasawara, Naotake; Lewis, Richard J; Vollmer, Waldemar; Daniel, Richard A; Errington, Jeff

    2011-01-01

    Teichoic acids and acidic capsular polysaccharides are major anionic cell wall polymers (APs) in many bacteria, with various critical cell functions, including maintenance of cell shape and structural integrity, charge and cation homeostasis, and multiple aspects of pathogenesis. We have identified the widespread LytR–Cps2A–Psr (LCP) protein family, of previously unknown function, as novel enzymes required for AP synthesis. Structural and biochemical analysis of several LCP proteins suggest that they carry out the final step of transferring APs from their lipid-linked precursor to cell wall peptidoglycan (PG). In Bacillus subtilis, LCP proteins are found in association with the MreB cytoskeleton, suggesting that MreB proteins coordinate the insertion of the major polymers, PG and AP, into the cell wall. PMID:21964069

  15. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect

    Straessle, R.; Pétremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140 °C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  16. Characterization of rhamnogalacturonan I from cotton suspension culture cell walls

    SciTech Connect

    Not Available

    1991-01-01

    Progress has been made on the project of determining the structure of pectins. From recent progress, a covalent crosslink between rhamnogalacturonan I (RGI) and xyloglucan was hypothesized and a structure for RGI was proposed. The development of a method to determine the distribution of methyl esterification with pectins also progressed. The degree of methyl esterification of cotton cotyledon cell walls was compared to that of cotton suspension cultures. Cotyledon wall were found to have {approximately}55% of the galacturonic acid esterified whereas suspension culture wall were only about 14% methyl esterified. 10 refs. (SM)

  17. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    PubMed

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation. PMID:27563844

  18. Co-delivery of cell-wall-forming enzymes in the same vesicle for coordinated fungal cell wall formation.

    PubMed

    Schuster, Martin; Martin-Urdiroz, Magdalena; Higuchi, Yujiro; Hacker, Christian; Kilaru, Sreedhar; Gurr, Sarah J; Steinberg, Gero

    2016-01-01

    Fungal cells are surrounded by an extracellular cell wall. This complex matrix of proteins and polysaccharides protects against adverse stresses and determines the shape of fungal cells. The polysaccharides of the fungal wall include 1,3-β-glucan and chitin, which are synthesized by membrane-bound synthases at the growing cell tip. A hallmark of filamentous fungi is the class V chitin synthase, which carries a myosin-motor domain. In the corn smut fungus Ustilago maydis, the myosin-chitin synthase Mcs1 moves to the plasma membrane in secretory vesicles, being delivered by kinesin-1 and myosin-5. The myosin domain of Mcs1 enhances polar secretion by tethering vesicles at the site of exocytosis. It remains elusive, however, how other cell-wall-forming enzymes are delivered and how their activity is coordinated post secretion. Here, we show that the U. maydis class VII chitin synthase and 1,3-β-glucan synthase travel in Mcs1-containing vesicles, and that their apical secretion depends on Mcs1. Once in the plasma membrane, anchorage requires enzyme activity, which suggests co-synthesis of chitin and 1,3-β-glucan polysaccharides at sites of exocytosis. Thus, delivery of cell-wall-forming enzymes in Mcs1 vesicles ensures local foci of fungal cell wall formation.

  19. Molecular Rigidity in Dry and Hydrated Onion Cell Walls.

    PubMed

    Ha, M. A.; Apperley, D. C.; Jarvis, M. C.

    1997-10-01

    Solid-state nuclear magnetic resonance relaxation experiments can provide information on the rigidity of individual molecules within a complex structure such as a cell wall, and thus show how each polymer can potentially contribute to the rigidity of the whole structure. We measured the proton magnetic relaxation parameters T2 (spin-spin) and T1p (spin-lattice) through the 13C-nuclear magnetic resonance spectra of dry and hydrated cell walls from onion (Allium cepa L.) bulbs. Dry cell walls behaved as rigid solids. The form of their T2 decay curves varied on a continuum between Gaussian, as in crystalline solids, and exponential, as in more mobile materials. The degree of molecular mobility that could be inferred from the T2 and T1p decay patterns was consistent with a crystalline state for cellulose and a glassy state for dry pectins. The theory of composite materials may be applied to explain the rigidity of dry onion cell walls in terms of their components. Hydration made little difference to the rigidity of cellulose and most of the xyloglucan shared this rigidity, but the pectic fraction became much more mobile. Therefore, the cellulose/xyloglucan microfibrils behaved as solid rods, and the most significant physical distinction within the hydrated cell wall was between the microfibrils and the predominantly pectic matrix. A minor xyloglucan fraction was much more mobile than the microfibrils and probably corresponded to cross-links between them. Away from the microfibrils, pectins expanded upon hydration into a nonhomogeneous, but much softer, almost-liquid gel. These data are consistent with a model for the stress-bearing hydrated cell wall in which pectins provide limited stiffness across the thickness of the wall, whereas the cross-linked microfibril network provides much greater rigidity in other directions.

  20. Molecular Rigidity in Dry and Hydrated Onion Cell Walls.

    PubMed

    Ha, M. A.; Apperley, D. C.; Jarvis, M. C.

    1997-10-01

    Solid-state nuclear magnetic resonance relaxation experiments can provide information on the rigidity of individual molecules within a complex structure such as a cell wall, and thus show how each polymer can potentially contribute to the rigidity of the whole structure. We measured the proton magnetic relaxation parameters T2 (spin-spin) and T1p (spin-lattice) through the 13C-nuclear magnetic resonance spectra of dry and hydrated cell walls from onion (Allium cepa L.) bulbs. Dry cell walls behaved as rigid solids. The form of their T2 decay curves varied on a continuum between Gaussian, as in crystalline solids, and exponential, as in more mobile materials. The degree of molecular mobility that could be inferred from the T2 and T1p decay patterns was consistent with a crystalline state for cellulose and a glassy state for dry pectins. The theory of composite materials may be applied to explain the rigidity of dry onion cell walls in terms of their components. Hydration made little difference to the rigidity of cellulose and most of the xyloglucan shared this rigidity, but the pectic fraction became much more mobile. Therefore, the cellulose/xyloglucan microfibrils behaved as solid rods, and the most significant physical distinction within the hydrated cell wall was between the microfibrils and the predominantly pectic matrix. A minor xyloglucan fraction was much more mobile than the microfibrils and probably corresponded to cross-links between them. Away from the microfibrils, pectins expanded upon hydration into a nonhomogeneous, but much softer, almost-liquid gel. These data are consistent with a model for the stress-bearing hydrated cell wall in which pectins provide limited stiffness across the thickness of the wall, whereas the cross-linked microfibril network provides much greater rigidity in other directions. PMID:12223827

  1. Force and compliance: rethinking morphogenesis in walled cells.

    PubMed

    Harold, Franklin M

    2002-12-01

    In the turgid cells of plants, protists, fungi, and bacteria, walls resist swelling; they also confer shape on the cell. These two functions are not unrelated: cell physiologists have generally agreed that morphogenesis turns on the deformation of existing wall and the deposition of new wall, while turgor pressure produces the work of expansion. In 1990, I summed up consensus in a phrase: "localized compliance with the global force of turgor pressure." My purpose here is to survey the impact of recent discoveries on the traditional conceptual framework. Topics include the recognition of a cytoskeleton in bacteria; the tide of information and insight about budding in yeast; the role of the Spitzenkörper in hyphal extension; calcium ions and actin dynamics in shaping a tip; and the interplay of protons, expansins and cellulose fibrils in cells of higher plants.

  2. 15. View of interior, north wall of hot cell featuring ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. View of interior, north wall of hot cell featuring radioactive materials containment box, facing east - Nevada Test Site, Reactor Maintenance & Disassembly Complex, Junior Hot Cell, Jackass Flats, Area 25, South of intersection of Roads F & G, Mercury, Nye County, NV

  3. Brachypodium distachyon grain: characterization of endosperm cell walls.

    PubMed

    Guillon, Fabienne; Bouchet, Brigitte; Jamme, Frédéric; Robert, Paul; Quéméner, Bernard; Barron, Cécile; Larré, Colette; Dumas, Paul; Saulnier, Luc

    2011-01-01

    The wild grass Brachypodium distachyon has been proposed as an alternative model species for temperate cereals. The present paper reports on the characterization of B. distachyon grain, placing emphasis on endosperm cell walls. Brachypodium distachyon is notable for its high cell wall polysaccharide content that accounts for ∼52% (w/w) of the endosperm in comparison with 2-7% (w/w) in other cereals. Starch, the typical storage polysaccharide, is low [<10% (w/w)] in the endosperm where the main polysaccharide is (1-3) (1-4)-β-glucan [40% (w/w) of the endosperm], which in all likelihood plays a role as a storage compound. In addition to (1-3) (1-4)-β-glucan, endosperm cells contain cellulose and xylan in significant amounts. Interestingly, the ratio of ferulic acid to arabinoxylan is higher in B. distachyon grain than in other investigated cereals. Feruloylated arabinoxylan is mainly found in the middle lamella and cell junction zones of the storage endosperm, suggesting a potential role in cell-cell adhesion. The present results indicate that B. distachyon grains contain all the cell wall polysaccharides encountered in other cereal grains. Thus, due to its fully sequenced genome, its short life cycle, and the genetic tools available for mutagenesis/transformation, B. distachyon is a good model to investigate cell wall polysaccharide synthesis and function in cereal grains.

  4. 47. ARAI. Interior view of operating wall of hot cell ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. ARA-I. Interior view of operating wall of hot cell in ARA-626. Note stands for operators at viewing windows. Manipulators with hand grips extend cables and other controls into hot cell through ducts above windows. Ineel photo no. 81-27. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID

  5. Membrane-wall attachments in plasmolysed plant cells.

    PubMed

    Lang, I; Barton, D A; Overall, R L

    2004-12-01

    Field emission scanning electron microscopy of plasmolysed Tradescantia virginiana leaf epidermal cells gave novel insights into the three-dimensional architecture of Hechtian strands, Hechtian reticulum, and the inner surface of the cell wall without the need for extraction. At high magnification, we observed fibres that pin the plasma membrane to the cell wall after plasmolysis. Treatment with cellulase caused these connecting fibres to be lost and the pinned out plasma membrane of the Hechtian reticulum to disintegrate into vesicles with diameters of 100-250 nm. This suggests that the fibres may be cellulose. After 4 h of plasmolysis, a fibrous meshwork that labelled with anti-callose antibodies was observed within the space between the plasmolysed protoplast and the cell wall by field emission scanning electron microscopy. Interestingly, macerase-pectinase treatment resulted in the loss of this meshwork, suggesting that it was stabilised by pectins. We suggest that cellulose microfibrils extending from strands of the Hechtian reticulum and entwining into the cell wall matrix act as anchors for the plasma membrane as it moves away from the wall during plasmolysis.

  6. Purification and characterization of a soybean cell wall protein

    SciTech Connect

    San Francisco, S.; Tierney, M.L. )

    1989-04-01

    Plant cell wall composition is thought to reflect cellular responses to developmental and environmental signals. We have purified a 33 kDa protein from cell wall extracts of soybean seedlings which is most abundant in extracts from the hook region of the hypocotyl and is rich in proline and hydroxypyroline. In vivo {sup 3}H-proline labelling of hypocotyl tissues indicates that the hook tissue is the predominant site for synthesis of this protein. In unwounded hook, label is incorporated into a 33 kDa protein, while in wounded hook this and additional proteins rich in proline are synthesized. Similarly treated cell wall extracts analyzed by Western blot analysis, using a polyclonal antibody raised against this 33kD protein, showed that the 33 kDa protein is most abundant in cell wall extracts from the hook region of unwounded seedlings and does not increase upon wounding. An immunologically related 35kD protein is also apparent in extracts from wounded hooks and appears to co-migrate with one of the labelled proteins extractable from this tissue. These data indicate that there are two related, proline-rich cell wall proteins in the hook region of soybean seedlings, one of which (33 kDa) is prominent during seedling development and another (35 kDa) which is wound inducible.

  7. Parasites and health affect multiple sexual signals in male common wall lizards, Podarcis muralis

    NASA Astrophysics Data System (ADS)

    Martín, José; Amo, Luisa; López, Pilar

    2008-04-01

    Multiple advertising sexual traits may either advertise different characteristics of male condition or be redundant to reinforce reliability of signals. Research has focused on multiple visual traits. However, in animals that use different multiple additional sensory systems, such as chemoreception, different types of traits might have evolved to signal similar characteristics of a male quality using different sensory channels. We examined whether ventral coloration and chemicals in femoral gland secretions of male common wall lizards, Podarcis muralis, are affected by their health state (blood-parasite load and cell-mediated immune response). Our results indicated that less parasitized lizards had brighter and more yellowish ventral colorations and also femoral secretions with higher proportions of two esters of octadecenoic acid. In addition, lizards with a greater immune response had more saturated coloration and secretions with higher proportions of octadecenoic acid methyl ester. We suggest that these signals would be reliable because only healthier males seemed able to allocate more carotenoids to coloration and presumably costly chemicals to secretions. The use of multiple sensory channels may provide more opportunities to signal a male quality under different circumstances, but also may reinforce the reliability of the signal when both types of traits may be perceived simultaneously.

  8. Structure, function, and biosynthesis of plant cell walls: proceedings of the seventh annual symposium in botany

    SciTech Connect

    Dugger, W.M.; Bartnicki-Garcia, S.

    1984-01-01

    Papers in the following areas were included in these symposium proceedings: (1) cell wall chemistry and biosynthesis; (2) cell wall hydrolysis and associated physiology; (3) cellular events associated with cell wall biosynthesis; and (4) interactions of plant cell walls with pathogens and related responses. Papers have been individually abstracted for the data base. (ACR)

  9. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells.

    PubMed

    Bauer, W D; Talmadge, K W; Keegstra, K; Albersheim, P

    1973-01-01

    The molecular structure, chemical properties, and biological function of the xyloglucan polysaccharide isolated from cell walls of suspension-cultured sycamore (Acer pseudoplatanus) cells are described. The sycamore wall xyloglucan is compared to the extracellular xyloglucan secreted by suspension-cultured sycamore cells into their culture medium and is also compared to the seed "amyloid" xyloglucans.Xyloglucan-or fragments of xyloglucan-and acidic fragments of the pectic polysaccharides are released from endopolygalacturonase-pretreated sycamore walls by treatment of these walls with 8 m urea, endoglucanase, or 0.5 n NaOH. Some of the xyloglucan thus released is found to cochromatograph with the acidic pectic fragments on diethylaminoethyl Sephadex. The chemical or enzymic treatments required for the release of xyloglucan from the walls and the cochromatography of xyloglucan with the acidic pectic fragments indicate that xyloglucan is covalently linked to the pectic polysaccharides and is noncovalently bound to the cellulose fibrils of the sycamore cell wall.The molecular structure of sycamore xyloglucan was characterized by methylation analysis of the oligosaccharides obtained by endoglucanase treatment of the polymer. The structure of the polymer is based on a repeating heptasaccharide unit which consists of 4 residues of beta-1-4-linked glucose and 3 residues of terminal xylose. A single xylose residue is glycosidically linked to carbon 6 of 3 of the glucosyl residues.

  10. The pattern of cell wall deterioration in lignocellulose fibers throughout enzymatic cellulose hydrolysis.

    PubMed

    Li, Xinping; Clarke, Kimberley; Li, Kecheng; Chen, Aicheng

    2012-01-01

    Cell wall deterioration throughout enzymatic hydrolysis of cellulosic biomass is greatly affected by the chemical composition and the ultrastructure of the fiber cell wall. The resulting pattern of cell wall deterioration will reveal information on cellulose activity throughout enzymatic hydrolysis. This study investigates the progression and morphological changes in lignocellulose fibers throughout enzymatic hydrolysis, using (transmission electron microscopy) TEM and field emission scanning electron microscopy (FE-SEM). Softwood thermo-mechanical pulp (STMP) and softwood bleached kraft pulp (SBKP), lignocellulose substrates containing almost all the original fiber composition, and with lignin and some hemicellulose removed, respectively, was compared for morphology changes throughout hydrolysis. The difference of conversion between STMP and SBKP after 48 h of enzymatic hydrolysis is 11 and 88%, respectively. TEM images revealed an even fiber cell wall cross section density, with uneven middle lamella coverage in STMP fibers. SKBP fibers exhibited some spaces between cell wall and lamella layers due to the removal of lignin and some hemicellulose. After 1 h hydrolysis in SBKP fibers, there were more changes in the fiber cross-sectional area than after 10 h hydrolysis in STMP fibers. Cell wall degradation was uneven, and originated in accessible cellulose throughout the fiber cell wall. FE-SEM images illustrated more morphology changes in SBKP fibers than STMP fibers. Enzymatic action of STMP fiber resulted in a smoother fiber surface, along with fiber peeling and the formation of ribbon-disjunction layers. SBKP fibers exhibited structural changes such as fiber erosion, fiber cutting, and fiber splitting throughout enzymatic hydrolysis.

  11. Divergent selection for ester-linked diferulates in maize pith stalk tissues. Effects on cell wall composition and degradability.

    PubMed

    Barros-Rios, Jaime; Malvar, Rosa A; Jung, Hans-Joachim G; Bunzel, Mirko; Santiago, Rogelio

    2012-11-01

    Cross-linking of grass cell wall components through diferulates (DFAs) has a marked impact on cell wall properties. However, results of genetic selection for DFA concentration have not been reported for any grass species. We report here the results of direct selection for ester-linked DFA concentration in maize stalk pith tissues and the associated changes in cell wall composition and biodegradability. After two cycles of divergent selection, maize populations selected for higher total DFA (DFAT) content (CHs) had 16% higher DFAT concentrations than populations selected for lower DFAT content (CLs). These significant DFA concentration gains suggest that DFA deposition in maize pith parenchyma cell walls is a highly heritable trait that is genetically regulated and can be modified trough conventional breeding. Maize populations selected for higher DFAT had 13% less glucose and 10% lower total cell wall concentration than CLs, suggesting that increased cross-linking of feruloylated arabinoxylans results in repacking of the matrix and possibly in thinner and firmer cell walls. Divergent selection affected esterified DFAT and monomeric ferulate ether cross link concentrations differently, supporting the hypothesis that the biosynthesis of these cell wall components are separately regulated. As expected, a more higher DFA ester cross-coupled arabinoxylan network had an effect on rumen cell wall degradability (CLs showed 12% higher 24-h total polysaccharide degradability than CHs). Interestingly, 8-8-coupled DFAs, previously associated with cell wall strength, were the best predictors of pith cell wall degradability (negative impact). Thus, further research on the involvement of these specific DFA regioisomers in limiting cell wall biodegradability is encouraged. PMID:22938993

  12. Serologic Response to Cell Wall Mannoproteins and Proteins of Candida albicans

    PubMed Central

    Martínez, José P.; Gil, M. Luisa; López-Ribot, José L.; Chaffin, W. LaJean

    1998-01-01

    The cell wall of Candida albicans not only is the structure in which many biological functions essential for the fungal cells reside but also is a significant source of candidal antigens. The major cell wall components that elicit a response from the host immune system are proteins and glycoproteins, the latter being predominantly mannoproteins. Both the carbohydrate and protein moieties are able to trigger immune responses. Although cell-mediated immunity is often considered to be the most important line of defense against candidiasis, cell wall protein and glycoprotein components also elicit a potent humoral response from the host that may include some protective antibodies. Proteins and glycoproteins exposed at the most external layers of the wall structure are involved in several types of interactions of fungal cells with the exocellular environment. Thus, coating of fungal cells with host antibodies has the potential to influence profoundly the host-parasite interaction by affecting antibody-mediated functions such as opsonin-enhanced phagocytosis and blocking the binding activity of fungal adhesins for host ligands. In this review, the various members of the protein and glycoprotein fraction of the C. albicans cell wall that elicit an antibody response in vivo are examined. Although a number of proteins have been shown to stimulate an antibody response, for some of these species the response is not universal. On the other hand, some of the studies demonstrate that certain cell wall antigens and anti-cell wall antibodies may be the basis for developing specific and sensitive serologic tests for the diagnosis of candidasis, particularly the disseminated form. In addition, recent studies have focused on the potential for antibodies to cell wall protein determinants to protect the host against infection. Hence, a better understanding of the humoral response to cell wall antigens of C. albicans may provide the basis for the development of (i) effective procedures

  13. Cell growth pattern and wall microfibrillar arrangement: experiments with nitella.

    PubMed

    Gertel, E T; Green, P B

    1977-08-01

    In cylindrical cells growing throughout their length, over-all transverse reinforcement of the wall by microfibrils is believed to be required for cell elongation. The multinet theory states that in such cells microfibrils are deposited at the inner surface of the wall with transverse orientation and are then passively reoriented toward the longitudinal direction by the predominant longitudinal strain (surface expension). In the present study young Nitella cells were physically forced to grow in highly abnormal patterns: in length only, in girth only, or with localized suppression of growth. Subsequent gradients of microfibrillar arrangement within the wall cross-section were measured with polarized light and interference microscopes. The novel wall structures produced were in all cases explainable by passive reorientation, i.e. by the multinet theory. The study also showed that orientation of synthesis remains insensitive to several of the physical manipulations that strongly influence the passive behavior of wall microfibrils. Only the localized complete suppression of surface growth led to the deposition of nontransverse cellulose. These results suggest that the presence of strain is needed for continued oriented synthesis, but that the directional aspect of strain is not an "instructional" agent continuously guiding the orientation of synthesis, once this orientation has been established.

  14. Cell wall integrity signalling in human pathogenic fungi.

    PubMed

    Dichtl, Karl; Samantaray, Sweta; Wagener, Johannes

    2016-09-01

    Fungi are surrounded by a rigid structure, the fungal cell wall. Its plasticity and composition depend on active regulation of the underlying biosynthesis and restructuring processes. This involves specialised signalling pathways that control gene expression and activities of biosynthetic enzymes. The cell wall integrity (CWI) pathway is the central signalling cascade required for the adaptation to a wide spectrum of cell wall perturbing conditions, including heat, oxidative stress and antifungals. In the recent years, great efforts were made to analyse the CWI pathway of diverse fungi. It turned out that the CWI signalling cascade is mostly conserved in the fungal kingdom. In this review, we summarise as well as compare the current knowledge on the canonical CWI pathway in the human pathogenic fungi Candida albicans, Candida glabrata, Aspergillus fumigatus and Cryptococcus neoformans. Understanding the differences and similarities in the stress responses of these organisms could become a key to improving existing or developing new antifungal therapies. PMID:27155139

  15. Freezing stresses and hydration of isolated cell walls.

    PubMed

    Yoon, Yonghyeon; Pope, Jim; Wolfe, Joe

    2003-06-01

    The hydration of the cell walls of the giant alga Chara australis was measured as a function of temperature using quantitative deuterium nuclear magnetic resonance (NMR) of samples hydrated with D2O. At temperatures 23-5K below freezing, the hydration ratio (the ratio of mass of unfrozen water in microscopic phases in the cell wall to the dry mass) increases slowly with increasing temperature from about 0.2 to 0.4. It then rises rapidly with temperature in the few Kelvin below the freezing temperature. The linewidth of the NMR signal varies approximately linearly with the reciprocal of the hydration ratio, and with the freezing point depression or water potential. These empirical relations may be useful in estimating cell wall water contents in heterogeneous samples.

  16. A new method for extraction of pectin from cell walls

    SciTech Connect

    Maness, N.O.; Mort, A.J. )

    1991-05-01

    Pectin is often extracted from plant tissues using the Ca{sup ++} chelators ethylenediamine tetraacetate (EDTA) or cyclohexane-trans-1,2 diamine tetraacetate (CDTA). While these chelators are effective in solubilizing pectin, even after extensive dialysis against distilled water, EDTA or CDTA remains associated with the pectin. The authors have found that if 500 mM imidazole buffer, pH 7.0 is substituted for 50 mM CDTA, pH 6.5, and for equivalent extraction periods, an equivalent amount of pectin with the same sugar composition is extracted. But, the imidazole buffer can be dialyzed away completely into distilled water. Their alternative procedure for extraction of pectin from cell walls will be presented. Utilization of the procedure for extraction of whole cell walls or cell walls pretreated with liquid hydrogen fluoride is discussed.

  17. Transcriptional wiring of cell wall-related genes in Arabidopsis.

    PubMed

    Mutwil, Marek; Ruprecht, Colin; Giorgi, Federico M; Bringmann, Martin; Usadel, Björn; Persson, Staffan

    2009-09-01

    Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the corresponding proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of analyses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.

  18. Wall Teichoic Acids Restrict Access of Bacteriophage Endolysin Ply118, Ply511, and PlyP40 Cell Wall Binding Domains to the Listeria monocytogenes Peptidoglycan

    PubMed Central

    Eugster, Marcel R.

    2012-01-01

    The C-terminal cell wall binding domains (CBDs) of phage endolysins direct the enzymes to their binding ligands on the bacterial cell wall with high affinity and specificity. The Listeria monocytogenes Ply118, Ply511, and PlyP40 endolysins feature related CBDs which recognize the directly cross-linked peptidoglycan backbone structure of Listeria. However, decoration with fluorescently labeled CBDs primarily occurs at the poles and septal regions of the rod-shaped cells. To elucidate the potential role of secondary cell wall-associated carbohydrates such as the abundant wall teichoic acid (WTA) on this phenomenon, we investigated CBD binding using L. monocytogenes serovar 1/2 and 4 cells deficient in WTA. Mutants were obtained by deletion of two redundant tagO homologues, whose products catalyze synthesis of the WTA linkage unit. While inactivation of either tagO1 (EGDe lmo0959) or tagO2 (EGDe lmo2519) alone did not affect WTA content, removal of both alleles following conditional complementation yielded WTA-deficient Listeria cells. Substitution of tagO from an isopropyl-β-d-thiogalactopyranoside-inducible single-copy integration vector restored the original phenotype. Although WTA-deficient cells are viable, they featured severe growth inhibition and an unusual coccoid morphology. In contrast to CBDs from other Listeria phage endolysins which directly utilize WTA as binding ligand, the data presented here show that WTAs are not required for attachment of CBD118, CBD511, and CBDP40. Instead, lack of the cell wall polymers enables unrestricted spatial access of CBDs to the cell wall surface, indicating that the abundant WTA can negatively regulate sidewall localization of the cell wall binding domains. PMID:23002226

  19. Particle Trajectories in Rotating Wall Cell Culture Devices

    NASA Technical Reports Server (NTRS)

    Ramachandran N.; Downey, J. P.

    1999-01-01

    Cell cultures are extremely important to the medical community since such cultures provide an opportunity to perform research on human tissue without the concerns inherent in experiments on individual humans. Development of cells in cultures has been found to be greatly influenced by the conditions of the culture. Much work has focused on the effect of the motions of cells in the culture relative to the solution. Recently rotating wall vessels have been used with success in achieving improved cellular cultures. Speculation and limited research have focused on the low shear environment and the ability of rotating vessels to keep cells suspended in solution rather than floating or sedimenting as the primary reasons for the improved cellular cultures using these devices. It is widely believed that the cultures obtained using a rotating wall vessel simulates to some degree the effect of microgravity on cultures. It has also been speculated that the microgravity environment may provide the ideal acceleration environment for culturing of cellular tissues due to the nearly negligible levels of sedimentation and shear possible. This work predicts particle trajectories of cells in rotating wall vessels of cylindrical and annular design consistent with the estimated properties of typical cellular cultures. Estimates of the shear encountered by cells in solution and the interactions with walls are studied. Comparisons of potential experiments in ground and microgravity environments are performed.

  20. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-01

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components.

  1. Interactions of Condensed Tannins with Saccharomyces cerevisiae Yeast Cells and Cell Walls: Tannin Location by Microscopy.

    PubMed

    Mekoue Nguela, Julie; Vernhet, Aude; Sieczkowski, Nathalie; Brillouet, Jean-Marc

    2015-09-01

    Interactions between grape tannins/red wine polyphenols and yeast cells/cell walls was previously studied within the framework of red wine aging and the use of yeast-derived products as an alternative to aging on lees. Results evidenced a quite different behavior between whole cells (biomass grown to elaborate yeast-derived products, inactivated yeast, and yeast inactivated after autolysis) and yeast cell walls (obtained from mechanical disruption of the biomass). Briefly, whole cells exhibited a high capacity to irreversibly adsorb grape and wine tannins, whereas only weak interactions were observed for cell walls. This last point was quite unexpected considering the literature and called into question the real role of cell walls in yeasts' ability to fix tannins. In the present work, tannin location after interactions between grape and wine tannins and yeast cells and cell walls was studied by means of transmission electron microscopy, light epifluorescence, and confocal microscopy. Microscopy observations evidenced that if tannins interact with cell walls, and especially cell wall mannoproteins, they also diffuse freely through the walls of dead cells to interact with their plasma membrane and cytoplasmic components. PMID:26223789

  2. Anammox Planctomycetes have a peptidoglycan cell wall

    PubMed Central

    van Teeseling, Muriel C.F.; Mesman, Rob J.; Kuru, Erkin; Espaillat, Akbar; Cava, Felipe; Brun, Yves V.; VanNieuwenhze, Michael S.; Kartal, Boran; van Niftrik, Laura

    2015-01-01

    Planctomycetes are intriguing microorganisms that apparently lack peptidoglycan, a structure that controls the shape and integrity of almost all bacterial cells. Therefore, the planctomycetal cell envelope is considered exceptional and their cell plan uniquely compartmentalized. Anaerobic ammonium-oxidizing (anammox) Planctomycetes play a key role in the global nitrogen cycle by releasing fixed nitrogen back to the atmosphere as N2. Here using a complementary array of state-of-the-art techniques including continuous culturing, cryo-transmission electron microscopy, peptidoglycan-specific probes and muropeptide analysis, we show that the anammox bacterium Kuenenia stuttgartiensis contains peptidoglycan. On the basis of the thickness, composition and location of peptidoglycan in K. stuttgartiensis, we propose to redefine Planctomycetes as Gram-negative bacteria. Our results demonstrate that Planctomycetes are not an exception to the universal presence of peptidoglycan in bacteria. PMID:25962786

  3. A model of cell wall expansion based on thermodynamics of polymer networks

    NASA Technical Reports Server (NTRS)

    Veytsman, B. A.; Cosgrove, D. J.

    1998-01-01

    A theory of cell wall extension is proposed. It is shown that macroscopic properties of cell walls can be explained through the microscopic properties of interpenetrating networks of cellulose and hemicellulose. The qualitative conclusions of the theory agree with the existing experimental data. The dependence of the cell wall yield threshold on the secretion of the wall components is discussed.

  4. Extracellular proteases modify cell wall turnover in Bacillus subtilis.

    PubMed Central

    Jolliffe, L K; Doyle, R J; Streips, U N

    1980-01-01

    The rate of turnover of peptidoglycan in exponentially growing cultures of Bacillus subtilis was observed to be sensitive to extracellular protease. In protease-deficient mutants the rates of cell wall turnover were greater than that of wild-type strain 168, whereas hyperprotease-producing strains exhibited decreased rates of peptidoglycan turnover. The rate of peptidogylcan turnover in a protease-deficient strain was decreased when the mutant was grown in the presence of a hyperprotease-producing strain. The addition of phenylmethylsulfonyl fluoride, a serine protease inhibitor, to cultures of hyperprotease-producing strains increased their rates of cell wall turnover. Isolated cell walls of all protease mutants contained autolysin levels equal to or greater than that of wild-type strain 168. The presence of filaments, or cells with incomplete septa, was observed in hyperprotease-producing strains or when a protease-deficient strain was grown in the presence of subtilisin. The results suggest that the turnover of cell walls in B. subtilis may be regulated by extracellular proteases. Images PMID:6102558

  5. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry.

    PubMed

    Ji, Liangliang; Chen, Wei; Bi, Jun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang; Alvarez, Pedro J

    2010-12-01

    Carbon nanotubes have shown great potential as effective adsorbents for hydrophobic organic contaminants in water treatment. The present study investigated the influence of aqueous solution chemistry on the adsorption of tetracycline to carbon nanotubes. Specifically, the effects of ionic strength (NaCl and CaCl(2) ) and presence of Cu(2+) ion (7.5 mg/L) or dissolved soil or coal humic acids (50 mg/L) on adsorption of tetracycline to single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), and nonporous pure graphite as a model of the graphite surface were systematically estimated. The presence of humic acids suppressed tetracycline adsorption on graphite and MWNT prominently, with stronger effects observed on graphite, but only slightly affected tetracycline adsorption on SWNT. The relatively large humic acid components could not readily access the small interstitial spaces of SWNT and thus were less competitive with tetracycline adsorption. The presence of Cu(2+) ion increased tetracycline adsorption to both SWNT and MWNT through the mechanism of cation bridging, with much larger effects observed on MWNT. This was probably because when compared with the Cu(2+) ions complexed on the surface of SWNT, those on the surface of MWNT having larger mesoporous interstices were more accessible to the relatively bulky tetracycline molecule. Increasing the ionic strength from 10 mM to 100 mM decreased tetracycline adsorption on both SWNT and MWNT, which was attributed to electronic shielding of the negatively charged surface sites. These results show that aqueous solution chemistry is important to tetracycline adsorption on carbon nanotubes.

  6. The transcription factor Rap1p is required for tolerance to cell-wall perturbing agents and for cell-wall maintenance in Saccharomyces cerevisiae.

    PubMed

    Azad, Gajendra Kumar; Singh, Vikash; Baranwal, Shivani; Thakare, Mayur Jankiram; Tomar, Raghuvir S

    2015-01-01

    Yeast repressor activator protein (Rap1p) is involved in genomic stability and transcriptional regulation. We explored the function of Rap1p in yeast physiology using Rap1p truncation mutants. Our results revealed that the N-terminal truncation of Rap1p (Rap1ΔN) leads to hypersensitivity towards elevated temperature and cell-wall perturbing agents. Cell wall analysis showed an increase in the chitin and glucan content in Rap1ΔN cells as compared with wild type cells. Accordingly, mutant cells had a twofold thicker cell wall, as observed by electron microscopy. Furthermore, Rap1ΔN cells had increased levels of phosphorylated Slt2p, a MAP kinase of the cell wall integrity pathway. Mutant cells also had elevated levels of cell wall integrity response transcripts. Taken together, our findings suggest a connection between Rap1p and cell wall homeostasis.

  7. Hydrodynamic forces on a wall-bound leukocyte in small vessels due to red cells

    NASA Astrophysics Data System (ADS)

    Isfahani, Amir H. G.; Freund, Jonathan B.

    2010-11-01

    As part of the inflammation response, white blood cells (leukocytes) bind to the vessel wall before they transmigrate across the endothelium. The interactions between the wall-adhered leukocyte and flowing red blood cells (erythrocytes) play a critical role in this process. We provide a quantitative investigation of the forces exerted on a wall-bound leukocyte using a simulation tool that is based on a fast O(N N) boundary integral formulation. This permits simulations of red cells that are both realistically flexible and can approach to very close separation distances. The elastic membranes deform substantially but strongly resist surface dilatation. The no-slip condition is enforced both on the leukocyte and the round vessel walls. Vessel diameters from 10 to 20 microns are studied. At these scales the cellular-particulate nature of blood significantly affects the magnitude of the forces that the leukocyte experiences. For a tube hematocrit (cell volume fraction) of 25% and a spherical protrusion with a diameter 0.75 times that of the tube, the average forces are increased by about 40% and the local forces by more than 100% relative to those expected for a blood model homogenized by its effective viscosity. For a constant pressure gradient, the wall-bound leukocyte causes a blockage in the vessel. Different contact angles for the leukocyte as well as different mechanical properties for the erythrocytes are examined.

  8. O-Acetylation of Plant Cell Wall Polysaccharides

    PubMed Central

    Gille, Sascha; Pauly, Markus

    2011-01-01

    Plant cell walls are composed of structurally diverse polymers, many of which are O-acetylated. How plants O-acetylate wall polymers and what its function is remained elusive until recently, when two protein families were identified in the model plant Arabidopsis that are involved in the O-acetylation of wall polysaccharides – the reduced wall acetylation (RWA) and the trichome birefringence-like (TBL) proteins. This review discusses the role of these two protein families in polysaccharide O-acetylation and outlines the differences and similarities of polymer acetylation mechanisms in plants, fungi, bacteria, and mammals. Members of the TBL protein family had been shown to impact pathogen resistance, freezing tolerance, and cellulose biosynthesis. The connection of TBLs to polysaccharide O-acetylation thus gives crucial leads into the biological function of wall polymer O-acetylation. From a biotechnological point understanding the O-acetylation mechanism is important as acetyl-substituents inhibit the enzymatic degradation of wall polymers and released acetate can be a potent inhibitor in microbial fermentations, thus impacting the economic viability of, e.g., lignocellulosic based biofuel production. PMID:22639638

  9. Cell wall structure and function in lactic acid bacteria

    PubMed Central

    2014-01-01

    The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts. PMID:25186919

  10. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells.

    PubMed

    Deng, Yi; Sun, Mingzhai; Shaevitz, Joshua W

    2011-10-01

    We study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E=23±8  MPa and 49±20  MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3  kPa.

  11. Direct Measurement of Cell Wall Stress Stiffening and Turgor Pressure in Live Bacterial Cells

    NASA Astrophysics Data System (ADS)

    Deng, Yi; Sun, Mingzhai; Shaevitz, Joshua W.

    2011-10-01

    We study intact and bulging Escherichia coli cells using atomic force microscopy to separate the contributions of the cell wall and turgor pressure to the overall cell stiffness. We find strong evidence of power-law stress stiffening in the E. coli cell wall, with an exponent of 1.22±0.12, such that the wall is significantly stiffer in intact cells (E=23±8MPa and 49±20MPa in the axial and circumferential directions) than in unpressurized sacculi. These measurements also indicate that the turgor pressure in living cells E. coli is 29±3kPa.

  12. Changes of myoid and endothelial cells in the peritubular wall during contraction of the seminiferous tubule.

    PubMed

    Losinno, Antonella D; Sorrivas, Viviana; Ezquer, Marcelo; Ezquer, Fernando; López, Luis A; Morales, Alfonsina

    2016-08-01

    The wall of the seminiferous tubule in rodents consists of an inner layer of myoid cells covered by an outer layer of endothelial cells. Myoid cells are a type of smooth muscle cell containing α-actin filaments arranged in two independent layers that contract when stimulated by endothelin-1. The irregular surface relief of the tubular wall is often considered a hallmark of contraction induced by a variety of stimuli. We examine morphological changes of the rat seminiferous tubule wall during contraction by a combination of light, confocal, transmission and scanning electron microscopy. During ET-1-induced contraction, myoid cells changed from a flat to a conical shape, but their actin filaments remained in independent layers. As a consequence of myoid cell contraction, the basement membrane became wavy, orientation of collagen fibers in the extracellular matrix was altered and the endothelial cell layer became folded. To observe the basement of the myoid cell cone, the endothelial cell monolayer was removed by collagenase digestion prior to SEM study. In contracted tubules, it is possible to distinguish cell relief: myoid cells have large folds on the external surface oriented parallel to the tubular axis, whereas endothelial cells have numerous cytoplasmic projections facing the interstitium. The myoid cell cytoskeleton is unusual in that the actin filaments are arranged in two orthogonal layers, which adopt differing shapes during contraction with myoid cells becoming cone-shaped. This arrangement impacts on other components of the seminiferous tubule wall and affects the propulsion of the tubular contents to the rete testis. PMID:26987820

  13. Influence of the Cell Wall on Intracellular Delivery to Algal Cells by Electroporation and Sonication

    PubMed Central

    Azencott, Harold R.; Peter, Gary F.; Prausnitz, Mark R.

    2007-01-01

    To assess the cell wall’s role as a barrier to intracellular delivery, wild-type Chlamydomonas reinhardtii algal cells and mutant cells lacking a cell wall were exposed to electroporation or sonication. Flow cytometry determined intracellular uptake of calcein and bovine serum albumin (BSA) and loss of cell viability as functions of electroporation transmembrane potential and acoustic energy. Electroporation of wild-type cells increased calcein uptake with increasing transmembrane potential, but delivered much less BSA. Electroporation of wall-deficient cells had similar effects on calcein uptake, but increased BSA uptake as much as 7.5-fold relative to wild-type cells, which indicated that the cell wall was a significant barrier to BSA delivery during electroporation. Sonication of wild-type cells caused calcein and BSA uptake at similar levels. This suggests that the cell wall barrier to BSA delivery can be overcome by sonication. Increased electroporation transmembrane potential or acoustic energy also caused increased loss of cell viability, where wall-deficient cells were especially susceptible to lysis. Overall, we believe this is the first study to compare the effects of electroporation and sonication in a direct fashion in any cell type. Specifically, these findings suggest that electroporation primarily transports molecules across the plasma membrane, because its mechanism is specific to lipid bilayer disruption, whereas sonication transports molecules across both the plasma membrane and cell wall, because it non-specifically disrupts cell-surface barriers. PMID:17602827

  14. Gene-dose dependent control of seed mass by endosperm-specific Miniature1 (Mn1)-encoded cell wall invertase (CWI), which also affects embryo mass and embryo sugar physiology.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mn1 locus is a major determinant of sink strength of developing seeds through its control of both sink size, i.e., cell size and cell number, and sink activity via sucrose hydrolysis and the release of hexoses essential for energy and signaling functions. Hexoses are also essential for the devel...

  15. Medicago truncatula as a Model for Dicot Cell Wall Development

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strong interest in renewable energy has promoted an upsurge of research on plant cell wall traits that influence the availability of lignocellulosic-derived sugars for fermentation in production of biofuels. We have initiated a genome-wide transcript profiling study using the model legume Medicago t...

  16. Roles of cell wall peroxidases in plant development.

    PubMed

    Francoz, Edith; Ranocha, Philippe; Nguyen-Kim, Huan; Jamet, Elisabeth; Burlat, Vincent; Dunand, Christophe

    2015-04-01

    Class III peroxidases (CIII Prxs) are plant specific proteins. Based on in silico prediction and experimental evidence, they are mainly considered as cell wall localized proteins. Thanks to their dual hydroxylic and peroxidative cycles, they can produce ROS as well as oxidize cell wall aromatic compounds within proteins and phenolics that are either free or linked to polysaccharides. Thus, they are tightly associated to cell wall loosening and stiffening. They are members of large multigenic families, mostly due to an elevated rate of gene duplication in higher plants, resulting in a high risk of functional redundancy between them. However, proteomic and (micro)transcriptomic analyses have shown that CIII Prx expression profiles are highly specific. Based on these omic analyses, several reverse genetic studies have demonstrated the importance of the spatio-temporal regulation of their expression and ability to interact with cell wall microdomains in order to achieve specific activity in vivo. Each CIII Prx isoform could have specific functions in muro and this could explain the conservation of a high number of genes in plant genomes.

  17. Polymer mobility in cell walls of cucumber hypocotyls

    NASA Technical Reports Server (NTRS)

    Fenwick, K. M.; Apperley, D. C.; Cosgrove, D. J.; Jarvis, M. C.

    1999-01-01

    Cell walls were prepared from the growing region of cucumber (Cucumis sativus) hypocotyls and examined by solid-state 13C NMR spectroscopy, in both enzymically active and inactivated states. The rigidity of individual polymer segments within the hydrated cell walls was assessed from the proton magnetic relaxation parameter, T2, and from the kinetics of cross-polarisation from 1H to 13C. The microfibrils, including most of the xyloglucan in the cell wall, as well as cellulose, behaved as very rigid solids. A minor xyloglucan fraction, which may correspond to cross-links between microfibrils, shared a lower level of rigidity with some of the pectic galacturonan. Other pectins, including most of the galactan side-chain residues of rhamnogalacturonan I, were much more mobile and behaved in a manner intermediate between the solid and liquid states. The only difference observed between the enzymically active and inactive cell walls, was the loss of a highly mobile, methyl-esterified galacturonan fraction, as the result of pectinesterase activity.

  18. Imaging of plant cell walls by confocal Raman microscopy.

    PubMed

    Gierlinger, Notburga; Keplinger, Tobias; Harrington, Michael

    2012-09-01

    Raman imaging of plant cell walls represents a nondestructive technique that can provide insights into chemical composition in context with structure at the micrometer level (<0.5 μm). The major steps of the experimental procedure are described: sample preparation (embedding and microcutting), setting the mapping parameters, and finally the calculation of chemical images on the basis of the acquired Raman spectra. Every Raman image is based on thousands of spectra, each being a spatially resolved molecular 'fingerprint' of the cell wall. Multiple components are analyzed within the native cell walls, and insights into polymer composition as well as the orientation of the cellulose microfibrils can be gained. The most labor-intensive step of this process is often the sample preparation, as the imaging approach requires a flat surface of the plant tissue with intact cell walls. After finishing the map (acquisition time is ∼10 min to 10 h, depending on the size of the region of interest and scanning parameters), many possibilities exist for the analysis of spectral data and image generation.

  19. Determination of carbohydrate profile in sugarbeet (Beta vulgaris) cell walls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarbeet germplasms USH20, C869, EL55, EL54 were used, and different tissues at different developmental stages were sampled, including dry seeds, germinating seedlings, developing leaves, mature leaves, petioles, hypocotyls, mature roots, flowering stems and inflorescences. Cell Wall Composition An...

  20. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis.

    PubMed

    Boutte, Cara C; Baer, Christina E; Papavinasasundaram, Kadamba; Liu, Weiru; Chase, Michael R; Meniche, Xavier; Fortune, Sarah M; Sassetti, Christopher M; Ioerger, Thomas R; Rubin, Eric J

    2016-01-01

    Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance. PMID:27304077

  1. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    PubMed

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure.

  2. Hetero-oligomeric cell wall channels (porins) of Nocardia farcinica.

    PubMed

    Kläckta, Christian; Knörzer, Philipp; Riess, Franziska; Benz, Roland

    2011-06-01

    The cell wall of Nocardia farcinica contains a cation-selective cell wall channel, which may be responsible for the limited permeability of the cell wall of N. farcinica for negatively charged antibiotics. Based on partial sequencing of the protein responsible for channel formation derived from N. farcinica ATTC 3318 we were able to identify the corresponding genes (nfa15890 and nfa15900) within the known genome of N. farcinica IFM 10152. The corresponding genes of N. farcinica ATTC 3318 were separately expressed in the Escherichia coli BL21DE3Omp8 strain and the N-terminal His10-tagged proteins were purified to homogeneity using immobilized metal affinity chromatography. The pure proteins were designated NfpANHis and NfpBNHis, for N. farcinica porin A and N. farcinica porin B. The two proteins were checked separately for channel formation in lipid bilayers. Our results clearly indicate that the proteins NfpANHis and NfpBNHis expressed in E. coli could only together form a channel in lipid bilayer membranes. This means that the cell wall channel of N. farcinica is formed by a heterooligomer. NfpA and NfpB form together a channel that may structurally be related to MspA of Mycobacterium smegmatis based on amino acid comparison and renaturation procedure. PMID:21092733

  3. A cytoplasmic peptidoglycan amidase homologue controls mycobacterial cell wall synthesis

    PubMed Central

    Boutte, Cara C; Baer, Christina E; Papavinasasundaram, Kadamba; Liu, Weiru; Chase, Michael R; Meniche, Xavier; Fortune, Sarah M; Sassetti, Christopher M; Ioerger, Thomas R; Rubin, Eric J

    2016-01-01

    Regulation of cell wall assembly is essential for bacterial survival and contributes to pathogenesis and antibiotic tolerance in Mycobacterium tuberculosis (Mtb). However, little is known about how the cell wall is regulated in stress. We found that CwlM, a protein homologous to peptidoglycan amidases, coordinates peptidoglycan synthesis with nutrient availability. Surprisingly, CwlM is sequestered from peptidoglycan (PG) by localization in the cytoplasm, and its enzymatic function is not essential. Rather, CwlM is phosphorylated and associates with MurA, the first enzyme in PG precursor synthesis. Phosphorylated CwlM activates MurA ~30 fold. CwlM is dephosphorylated in starvation, resulting in lower MurA activity, decreased cell wall metabolism, and increased tolerance to multiple antibiotics. A phylogenetic analysis of cwlM implies that localization in the cytoplasm drove the evolution of this factor. We describe a system that controls cell wall metabolism in response to starvation, and show that this regulation contributes to antibiotic tolerance. DOI: http://dx.doi.org/10.7554/eLife.14590.001 PMID:27304077

  4. Biosynthesis and assembly of cell wall polysaccharides in cereal grasses

    SciTech Connect

    Carpita, N.C.

    1991-04-01

    We have just completed the second year of a three-year project entitled Biosynthesis assembly of cell wall polysaccharides in cereal grasses.'' We made significant progress on two aspects of cell wall synthesis in grasses and greatly refined gas-liquid and high- performance liquid chromatographic techniques necessary to identify the products of synthesis in vitro and in vivo. First, Dr. David Gibeaut, a post-doctoral associate, devised a convenient procedure for the enrichment of Golgi membranes by flotation centrifugation following initial downward rate-zonal separation. Based on comparison of the IDPase marker enzyme, flotation centrifugation enriched the Golgi apparatus almost 7-fold after the initial downward separation. This system is now used in our studies of the synthesis in vitro of the mixed-linkage {beta}-D-glucan. Second, Gibeaut and I have devised a simple technique to feed radioactive sugars into intact growing seedlings and follow incorporation of radioactivity into and turnover from specific cell wall polysaccharides. The project has also provided a few spin-off projects that have been productive as well. First, in collaboration with the group of Prof. Peter Kaufman, University of Michigan, we examined changes in cell wall structure concomitant with reaction to gravistimulation in the gravisensing oat pulvinus. Second, Dr. Gibeaut developed a simple clean-up procedure for partially methylated alditol derivatives to remove a large amount of undesirable interfering compounds that confound separation of the derivatives by gas-liquid chromatography. 5 refs.

  5. Technological Implications of Modifying the Extent of Cell Wall-Proanthocyanidin Interactions Using Enzymes

    PubMed Central

    Bautista-Ortín, Ana Belén; Ben Abdallah, Rim; Castro-López, Liliana del Rocío; Jiménez-Martínez, María Dolores; Gómez-Plaza, Encarna

    2016-01-01

    The transference and reactivity of proanthocyanidins is an important issue that affects the technological processing of some fruits, such as grapes and apples. These processes are affected by proanthocyanidins bound to cell wall polysaccharides, which are present in high concentrations during the processing of the fruits. Therefore, the effective extraction of proanthocyanidins from fruits to their juices or derived products will depend on the ability to manage these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the role of pure hydrolytic enzymes (polygalacturonase and cellulose) and a commercial enzyme containing these two activities on the extent of proanthocyanidin-cell wall interactions. The results showed that the modification promoted by enzymes reduced the amount of proanthocyanidins adsorbed to cell walls since they contributed to the degradation and release of the cell wall polysaccharides, which diffused into the model solution. Some of these released polysaccharides also presented some reactivity towards the proanthocyanidins present in a model solution. PMID:26797601

  6. Technological Implications of Modifying the Extent of Cell Wall-Proanthocyanidin Interactions Using Enzymes.

    PubMed

    Bautista-Ortín, Ana Belén; Ben Abdallah, Rim; Castro-López, Liliana Del Rocío; Jiménez-Martínez, María Dolores; Gómez-Plaza, Encarna

    2016-01-18

    The transference and reactivity of proanthocyanidins is an important issue that affects the technological processing of some fruits, such as grapes and apples. These processes are affected by proanthocyanidins bound to cell wall polysaccharides, which are present in high concentrations during the processing of the fruits. Therefore, the effective extraction of proanthocyanidins from fruits to their juices or derived products will depend on the ability to manage these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the role of pure hydrolytic enzymes (polygalacturonase and cellulose) and a commercial enzyme containing these two activities on the extent of proanthocyanidin-cell wall interactions. The results showed that the modification promoted by enzymes reduced the amount of proanthocyanidins adsorbed to cell walls since they contributed to the degradation and release of the cell wall polysaccharides, which diffused into the model solution. Some of these released polysaccharides also presented some reactivity towards the proanthocyanidins present in a model solution.

  7. Chitin in Diatoms and Its Association with the Cell Wall ▿ †

    PubMed Central

    Durkin, Colleen A.; Mock, Thomas; Armbrust, E. Virginia

    2009-01-01

    Chitin is a globally abundant polymer widely distributed throughout eukaryotes that has been well characterized in only a few lineages. Diatoms are members of the eukaryotic lineage of stramenopiles. Of the hundreds of diatom genera, two produce long fibers of chitin that extrude through their cell walls of silica. We identify and describe here genes encoding putative chitin synthases in a variety of additional diatom genera, indicating that the ability to produce chitin is more widespread and likely plays a more central role in diatom biology than previously considered. Diatom chitin synthases fall into four phylogenetic clades. Protein domain predictions and differential gene expression patterns provide evidence that chitin synthases have multiple functions within a diatom cell. Thalassiosira pseudonana possesses six genes encoding three types of chitin synthases. Transcript abundance of the gene encoding one of these chitin synthase types increases when cells resume division after short-term silicic acid starvation and during short-term limitation by silicic acid or iron, two nutrient conditions connected in the environment and known to affect the cell wall. During long-term silicic acid starvation transcript abundance of this gene and one additional chitin synthase gene increased at the same time a chitin-binding lectin localized to the girdle band region of the cell wall. Together, these results suggest that the ability to produce chitin is more widespread in diatoms than previously thought and that a subset of the chitin produced by diatoms is associated with the cell wall. PMID:19429777

  8. Nanoscopic cell-wall architecture of an immunogenic ligand in Candida albicans during antifungal drug treatment

    PubMed Central

    Lin, Jia; Wester, Michael J.; Graus, Matthew S.; Lidke, Keith A.; Neumann, Aaron K.

    2016-01-01

    The cell wall of Candida albicans is composed largely of polysaccharides. Here we focus on β-glucan, an immunogenic cell-wall polysaccharide whose surface exposure is often restricted, or “masked,” from immune recognition by Dectin-1 on dendritic cells (DCs) and other innate immune cells. Previous research suggested that the physical presentation geometry of β-glucan might determine whether it can be recognized by Dectin-1. We used direct stochastic optical reconstruction microscopy to explore the fine structure of β-glucan exposed on C. albicans cell walls before and after treatment with the antimycotic drug caspofungin, which alters glucan exposure. Most surface-accessible glucan on C. albicans yeast and hyphae is limited to isolated Dectin-1–binding sites. Caspofungin-induced unmasking caused approximately fourfold to sevenfold increase in total glucan exposure, accompanied by increased phagocytosis efficiency of DCs for unmasked yeasts. Nanoscopic imaging of caspofungin-unmasked C. albicans cell walls revealed that the increase in glucan exposure is due to increased density of glucan exposures and increased multiglucan exposure sizes. These findings reveal that glucan exhibits significant nanostructure, which is a previously unknown physical component of the host–Candida interaction that might change during antifungal chemotherapy and affect innate immune activation. PMID:26792838

  9. Molecular deformation mechanisms of the wood cell wall material.

    PubMed

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood.

  10. Assembling of the Mycobacterium tuberculosis Cell Wall Core.

    PubMed

    Grzegorzewicz, Anna E; de Sousa-d'Auria, Célia; McNeil, Michael R; Huc-Claustre, Emilie; Jones, Victoria; Petit, Cécile; Angala, Shiva Kumar; Zemanová, Júlia; Wang, Qinglan; Belardinelli, Juan Manuel; Gao, Qian; Ishizaki, Yoshimasa; Mikušová, Katarína; Brennan, Patrick J; Ronning, Donald R; Chami, Mohamed; Houssin, Christine; Jackson, Mary

    2016-09-01

    The unique cell wall of mycobacteria is essential to their viability and the target of many clinically used anti-tuberculosis drugs and inhibitors under development. Despite intensive efforts to identify the ligase(s) responsible for the covalent attachment of the two major heteropolysaccharides of the mycobacterial cell wall, arabinogalactan (AG) and peptidoglycan (PG), the enzyme or enzymes responsible have remained elusive. We here report on the identification of the two enzymes of Mycobacterium tuberculosis, CpsA1 (Rv3267) and CpsA2 (Rv3484), responsible for this function. CpsA1 and CpsA2 belong to the widespread LytR-Cps2A-Psr (LCP) family of enzymes that has been shown to catalyze a variety of glycopolymer transfer reactions in Gram-positive bacteria, including the attachment of wall teichoic acids to PG. Although individual cpsA1 and cpsA2 knock-outs of M. tuberculosis were readily obtained, the combined inactivation of both genes appears to be lethal. In the closely related microorganism Corynebacterium glutamicum, the ortholog of cpsA1 is the only gene involved in this function, and its conditional knockdown leads to dramatic changes in the cell wall composition and morphology of the bacteria due to extensive shedding of cell wall material in the culture medium as a result of defective attachment of AG to PG. This work marks an important step in our understanding of the biogenesis of the unique cell envelope of mycobacteria and opens new opportunities for drug development.

  11. Structure of Plant Cell Walls: XI. GLUCURONOARABINOXYLAN, A SECOND HEMICELLULOSE IN THE PRIMARY CELL WALLS OF SUSPENSION-CULTURED SYCAMORE CELLS.

    PubMed

    Darvill, J E; McNeil, M; Darvill, A G; Albersheim, P

    1980-12-01

    The isolation, purification, and partial characterization of a glucuronoarabinoxylan, a previously unobserved component of the primary cell walls of dicotyledonous plants, are described. The glucuronoarabinoxylan constitutes approximately 5% of the primary walls of suspension-cultured sycamore cells. This glucuronoarabinoxylan possesses many of the structural characteristics of analogous polysaccharides that have been isolated from the primary and secondary cell walls of monocots as well as from the secondary cell walls of dicots. The glucuronoarabinoxylan of primary dicot cell walls has a linear beta-1,4-linked d-xylopyranosyl backbone with both neutral and acidic sidechains attached at intervals along its length. The acidic sidechains are terminated with glucuronosyl or 4-O-methyl glucuronosyl residues, whereas the neutral sidechains are composed of arabinosyl and/or xylosyl residues.

  12. Cell-Wall Polysaccharides of Developing Flax Plants.

    PubMed Central

    Gorshkova, T. A.; Wyatt, S. E.; Salnikov, V. V.; Gibeaut, D. M.; Ibragimov, M. R.; Lozovaya, V. V.; Carpita, N. C.

    1996-01-01

    Flax (Linum usitatissimum L.) fibers originate from procambial cells of the protophloem and develop in cortical bundles that encircle the vascular cylinder. We determined the polysaccharide composition of the cell walls from various organs of the developing flax plant, from fiber-rich strips peeled from the stem, and from the xylem. Ammonium oxalate-soluble polysaccharides from all tissues contained 5-linked arabinans with low degrees of branching, rhamnogalacturonans, and polygalacturonic acid. The fiber-rich peels contained, in addition, substantial amounts of a buffer-soluble, 4-linked galactan branched at the 0-2 and 0-3 positions with nonreducing terminal-galactosyl units. The cross-linking glycans from all tissues were (fucogalacto)xyloglucan, typical of type-I cell walls, xylans containing (1->)-[beta]-D-xylosyl units branched exclusively at the xylosyl O-2 with t-(4-O-methyl)-glucosyluronic acid units, and (galacto)glucomannans. Tissues containing predominantly primary cell wall contained a larger proportion of xyloglucan. The xylem cells were composed of about 60% 4-xylans, 32% cellulose, and small amounts of pectin and the other cross-linking polysaccharides. The noncellulosic polysaccharides of flax exhibit an uncommonly low degree of branching compared to similar polysaccharides from other flowering plants. Although the relative abundance of the various noncellulosic polysaccharides varies widely among the different cell types, the linkage structure and degree of branching of several of the noncellulosic polysaccharides are invariant. PMID:12226214

  13. Post-synthetic modification of plant cell walls by expression of microbial hydrolases in the apoplast.

    PubMed

    Pogorelko, Gennady; Fursova, Oksana; Lin, Ming; Pyle, Eric; Jass, Johanna; Zabotina, Olga A

    2011-11-01

    The systematic creation of defined cell wall modifications in the model plant Arabidopsis thaliana by expression of microbial hydrolases with known specific activities is a promising approach to examine the impacts of cell wall composition and structure on both plant fitness and cell wall recalcitrance. Moreover, this approach allows the direct evaluation in living plants of hydrolase specificity, which can differ from in vitro specificity. To express genes encoding microbial hydrolases in A. thaliana, and target the hydrolases to the apoplast compartment, we constructed an expression cassette composed of the Cauliflower Mosaic Virus 35S RNA promoter, the A. thaliana β-expansin signal peptide, and the fluorescent marker protein YFP. Using this construct we successfully introduced into Colombia-0 plants three Aspergillus nidulans hydrolases, β-xylosidase/α-arabinosidase, feruloyl esterase, acetylxylan esterase, and a Xanthomonas oryzae putative a-L: -arabinofuranosidase. Fusion with YFP permitted quick and easy screening of transformants, detection of apoplastic localization, and protein size confirmation. Compared to wild-type Col-0, all transgenic lines showed a significant increase in the corresponding hydrolytic activity in the apoplast and changes in cell wall composition. Examination of hydrolytic activity in the transgenic plants also showed, for the first time, that the X. oryzae gene indeed encoded an enzyme with α-L: -arabinofuranosidase activity. None of the transgenic plants showed a visible phenotype; however, the induced compositional changes increased the degradability of biomass from plants expressing feruloyl esterase and β-xylosidase/α-arabinosidase. Our results demonstrate the viability of creating a set of transgenic A. thaliana plants with modified cell walls to use as a toolset for investigation of how cell wall composition contributes to recalcitrance and affects plant fitness.

  14. Critical roles for lipomannan and lipoarabinomannan in cell wall integrity of mycobacteria and pathogenesis of tuberculosis.

    PubMed

    Fukuda, Takeshi; Matsumura, Takayuki; Ato, Manabu; Hamasaki, Maho; Nishiuchi, Yukiko; Murakami, Yoshiko; Maeda, Yusuke; Yoshimori, Tamotsu; Matsumoto, Sohkichi; Kobayashi, Kazuo; Kinoshita, Taroh; Morita, Yasu S

    2013-02-19

    Lipomannan (LM) and lipoarabinomannan (LAM) are mycobacterial glycolipids containing a long mannose polymer. While they are implicated in immune modulations, the significance of LM and LAM as structural components of the mycobacterial cell wall remains unknown. We have previously reported that a branch-forming mannosyltransferase plays a critical role in controlling the sizes of LM and LAM and that deletion or overexpression of this enzyme results in gross changes in LM/LAM structures. Here, we show that such changes in LM/LAM structures have a significant impact on the cell wall integrity of mycobacteria. In Mycobacterium smegmatis, structural defects in LM and LAM resulted in loss of acid-fast staining, increased sensitivity to β-lactam antibiotics, and faster killing by THP-1 macrophages. Furthermore, equivalent Mycobacterium tuberculosis mutants became more sensitive to β-lactams, and one mutant showed attenuated virulence in mice. Our results revealed previously unknown structural roles for LM and LAM and further demonstrated that they are important for the pathogenesis of tuberculosis. IMPORTANCE Tuberculosis (TB) is a global burden, affecting millions of people worldwide. Mycobacterium tuberculosis is a causative agent of TB, and understanding the biology of M. tuberculosis is essential for tackling this devastating disease. The cell wall of M. tuberculosis is highly impermeable and plays a protective role in establishing infection. Among the cell wall components, LM and LAM are major glycolipids found in all Mycobacterium species, show various immunomodulatory activities, and have been thought to play roles in TB pathogenesis. However, the roles of LM and LAM as integral parts of the cell wall structure have not been elucidated. Here we show that LM and LAM play critical roles in the integrity of mycobacterial cell wall and the pathogenesis of TB. These findings will now allow us to seek the possibility that the LM/LAM biosynthetic pathway is a

  15. Nucleated assembly of Chlamydomonas and Volvox cell walls.

    PubMed

    Adair, W S; Steinmetz, S A; Mattson, D M; Goodenough, U W; Heuser, J E

    1987-11-01

    The Chlamydomonas reinhardtii cell wall is made up of hydroxyproline-rich glycoproteins, arranged in five distinct layers. The W6 (crystalline) layer contains three major glycoproteins (GP1, GP2, GP3), selectively extractable with chaotropic agents, that self-assemble into crystals in vitro. A system to study W6 assembly in a quantitative fashion was developed that employs perchlorate-extracted Chlamydomonas cells as nucleating agents. Wall reconstitution by biotinylated W6 monomers was monitored by FITC-streptavidin fluorescence and quick-freeze/deep-etch electron microscopy. Optimal reconstitution was obtained at monomer concentrations (0.2-0.3 mg/ml) well below those required for nonnucleated assembly. Assembly occurred from multiple nucleation sites, and faithfully reflected the structure of the intact W6 layer. Specificity of nucleated assembly was demonstrated using two cell-wall mutants (cw-2 and cw-15); neither served as a substrate for assembly of wild-type monomers. In addition, W6 sublayers were assembled from purified components: GP2 and GP3 coassembled to form the inner (W6A) sublayer; this then served as a substrate for self-assembly of GP1 into the outer (W6B) sublayer. Finally, evolutionary relationships between C. reinhardtii and two additional members of the Volvocales (Chlamydomonas eugametos and Volvox carteri) were explored by performing interspecific reconstitutions. Hybrid walls were obtained between C. reinhardtii and Volvox but not with C. eugametos, confirming taxonomic assignments based on structural criteria. PMID:3680387

  16. Crushing Strength of Aluminum Honeycomb with Thinning Cell Wall

    NASA Astrophysics Data System (ADS)

    Ogasawara, Nagahisa; Chiba, Norimasa; Kobayashi, Eiji; Kikuchi, Yuji

    To evaluate the crash safety of automobiles, various collision tests are performed by the auto industry. In the offset frontal collision test and the side collision test, the target is an aluminum honeycomb material which has thinning cell walls. In this study, based on the analyses of the shock absorption mechanism, a new crushing strength formula is proposed. First, load-displacement curves obtained from compression tests in quasi-static condition showed an almost linear relation between a thinning rate of cell walls and a crushing strength. Second, based on Wierzbicki's theory, a new formula was proposed, which can estimate a crushing strength of a honeycomb material with thinning wall. In addition, a correcting equation which considered an elastic deformation was also proposed. Third, parametric analyses were carried out with a FE model which can simulate a delamination between cell walls. The results obtained from the theory and FEM almost corresponded to each other for a wide range of the thinning rate. Fourth, impact tests were carried out, in which the weight was dropped freely at the speed used for the automobile tests. Those results almost agreed well with the sum of the theoretical crush strength and the inside air pressure.

  17. Engineering of plant cell walls for enhanced biofuel production.

    PubMed

    Loqué, Dominique; Scheller, Henrik V; Pauly, Markus

    2015-06-01

    The biomass of plants consists predominately of cell walls, a sophisticated composite material composed of various polymer networks including numerous polysaccharides and the polyphenol lignin. In order to utilize this renewable, highly abundant resource for the production of commodity chemicals such as biofuels, major hurdles have to be surpassed to reach economical viability. Recently, major advances in the basic understanding of the synthesis of the various wall polymers and its regulation has enabled strategies to alter the qualitative composition of wall materials. Such emerging strategies include a reduction/alteration of the lignin network to enhance polysaccharide accessibility, reduction of polymer derived processing inhibitors, and increases in polysaccharides with a high hexose/pentose ratio.

  18. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells

    PubMed Central

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays. PMID:25717323

  19. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    PubMed

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  20. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves.

    PubMed

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-05-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  1. Single Cell Wall Nonlinear Mechanics Revealed by a Multiscale Analysis of AFM Force-Indentation Curves

    PubMed Central

    Digiuni, Simona; Berne-Dedieu, Annik; Martinez-Torres, Cristina; Szecsi, Judit; Bendahmane, Mohammed; Arneodo, Alain; Argoul, Françoise

    2015-01-01

    Individual plant cells are rather complex mechanical objects. Despite the fact that their wall mechanical strength may be weakened by comparison with their original tissue template, they nevertheless retain some generic properties of the mother tissue, namely the viscoelasticity and the shape of their walls, which are driven by their internal hydrostatic turgor pressure. This viscoelastic behavior, which affects the power-law response of these cells when indented by an atomic force cantilever with a pyramidal tip, is also very sensitive to the culture media. To our knowledge, we develop here an original analyzing method, based on a multiscale decomposition of force-indentation curves, that reveals and quantifies for the first time the nonlinearity of the mechanical response of living single plant cells upon mechanical deformation. Further comparing the nonlinear strain responses of these isolated cells in three different media, we reveal an alteration of their linear bending elastic regime in both hyper- and hypotonic conditions. PMID:25954881

  2. Messenger Functions of the Bacterial Cell Wall-derived Muropeptides

    PubMed Central

    Boudreau, Marc A.; Fisher, Jed. F.; Mobashery, Shahriar

    2012-01-01

    Bacterial muropeptides are soluble peptidoglycan structures central to recycling of the bacterial cell wall, and messengers in diverse cell-signaling events. Bacteria sense muropeptides as signals that antibiotics targeting cell-wall biosynthesis are present, and eukaryotes detect muropeptides during the innate immune response to bacterial infection. This review summarizes the roles of bacterial muropeptides as messengers, with a special emphasis on bacterial muropeptide structures and the relationship of structure to the biochemical events that the muropeptides elicit. Muropeptide sensing and recycling in both Gram-positive and Gram-negative bacteria is discussed, followed by muropeptide sensing by eukaryotes as a crucial event to the innate immune response of insects (via peptidoglycan-recognition proteins) and mammals (through Nod-like receptors) to bacterial invasion. PMID:22409164

  3. Resistance to antibiotics targeted to the bacterial cell wall

    PubMed Central

    Nikolaidis, I; Favini-Stabile, S; Dessen, A

    2014-01-01

    Peptidoglycan is the main component of the bacterial cell wall. It is a complex, three-dimensional mesh that surrounds the entire cell and is composed of strands of alternating glycan units crosslinked by short peptides. Its biosynthetic machinery has been, for the past five decades, a preferred target for the discovery of antibacterials. Synthesis of the peptidoglycan occurs sequentially within three cellular compartments (cytoplasm, membrane, and periplasm), and inhibitors of proteins that catalyze each stage have been identified, although not all are applicable for clinical use. A number of these antimicrobials, however, have been rendered inactive by resistance mechanisms. The employment of structural biology techniques has been instrumental in the understanding of such processes, as well as the development of strategies to overcome them. This review provides an overview of resistance mechanisms developed toward antibiotics that target bacterial cell wall precursors and its biosynthetic machinery. Strategies toward the development of novel inhibitors that could overcome resistance are also discussed. PMID:24375653

  4. Pectin and the role of the physical properties of the cell wall in pollen tube growth of Solanum chacoense.

    PubMed

    Parre, Elodie; Geitmann, Anja

    2005-02-01

    The cell wall is one of the structural key players regulating pollen tube growth, since plant cell expansion depends on an interplay between intracellular driving forces and the controlled yielding of the cell wall. Pectin is the main cell wall component at the growing pollen tube apex. We therefore assessed its role in pollen tube growth and cytomechanics using the enzymes pectinase and pectin methyl esterase (PME). Pectinase activity was able to stimulate pollen germination and tube growth at moderate concentrations whereas higher concentrations caused apical swelling or bursting in Solanum chacoense Bitt. pollen tubes. This is consistent with a modification of the physical properties of the cell wall affecting its extensibility and thus the growth rate, as well as its capacity to withstand turgor. To prove that the enzyme-induced effects were due to the altered cell wall mechanics, we subjected pollen tubes to micro-indentation experiments. We observed that cellular stiffness was reduced and visco-elasticity increased in the presence of pectinase. These are the first mechanical data that confirm the influence of the amount of pectins in the pollen tube cell wall on the physical parameters characterizing overall cellular architecture. Cytomechanical data were also obtained to analyze the role of the degree of pectin methyl-esterification, which is known to exhibit a gradient along the pollen tube axis. This feature has frequently been suggested to result in a gradient of the physical properties characterizing the cell wall and our data provide, for the first time, mechanical support for this concept. The gradient in cell wall composition from apical esterified to distal de-esterified pectins seems to be correlated with an increase in the degree of cell wall rigidity and a decrease of visco-elasticity. Our mechanical approach provides new insights concerning the mechanics of pollen tube growth and the architecture of living plant cells.

  5. Regulation of cell wall synthesis by the clathrin light chain is essential for viability in Schizosaccharomyces pombe.

    PubMed

    de León, Nagore; Sharifmoghadam, Mohammad Reza; Hoya, Marta; Curto, M-Ángeles; Doncel, Cristina; Valdivieso, M-Henar

    2013-01-01

    The regulation of cell wall synthesis by the clathrin light chain has been addressed. Schizosaccharomyces pombe clc1Δ mutant was inviable in the absence of osmotic stabilization; when grown in sorbitol-supplemented medium clc1Δ cells grew slowly, formed aggregates, and had strong defects in morphology. Additionally, clc1Δ cells exhibited an altered cell wall composition. A mutant that allowed modulating the amount of Clc1p was created to analyze in more detail the dependence of cell wall synthesis on clathrin. A 40% reduction in the amount of Clc1p did not affect acid phosphatase secretion and bulk lipid internalization. Under these conditions, β(1,3)glucan synthase activity and cell wall synthesis were reduced. Also, the delivery of glucan synthases to the cell surface, and the secretion of the Eng1p glucanase were defective. These results suggest that the defects in the cell wall observed in the conditional mutant were due to a defective secretion of enzymes involved in the synthesis/remodelling of this structure, rather than to their endocytosis. Our results show that a reduction in the amount of clathrin that has minor effects on general vesicle trafficking has a strong impact on cell wall synthesis, and suggest that this is the reason for the lethality of clc1Δ cells in the absence of osmotic stabilization. PMID:23977061

  6. Identification of Cell Wall Synthesis Regulatory Genes Controlling Biomass Characteristics and Yield in Rice (Oryza Sativa)

    SciTech Connect

    Peng, Zhaohua PEng; Ronald, Palmela; Wang, Guo-Liang

    2013-04-26

    This project aims to identify the regulatory genes of rice cell wall synthesis pathways using a cell wall removal and regeneration system. We completed the gene expression profiling studies following the time course from cell wall removal to cell wall regeneration in rice suspension cells. We also completed, total proteome, nuclear subproteome and histone modification studies following the course from cell wall removal and cell wall regeneration process. A large number of differentially expressed regulatory genes and proteins were identified. Meanwhile, we generated RNAi and over-expression transgenic rice for 45 genes with at least 10 independent transgenic lines for each gene. In addition, we ordered T-DNA and transposon insertion mutants for 60 genes from Korea, Japan, and France and characterized the mutants. Overall, we have mutants and transgenic lines for over 90 genes, exceeded our proposed goal of generating mutants for 50 genes. Interesting Discoveries a) Cell wall re-synthesis in protoplasts may involve a novel cell wall synthesis mechanism. The synthesis of the primary cell wall is initiated in late cytokinesis with further modification during cell expansion. Phragmoplast plays an essential role in cell wall synthesis. It services as a scaffold for building the cell plate and formation of a new cell wall. Only one phragmoplast and one new cell wall is produced for each dividing cell. When the cell wall was removed enzymatically, we found that cell wall re-synthesis started from multiple locations simultaneously, suggesting that a novel mechanism is involved in cell wall re-synthesis. This observation raised many interesting questions, such as how the starting sites of cell wall synthesis are determined, whether phragmoplast and cell plate like structures are involved in cell wall re-synthesis, and more importantly whether the same set of enzymes and apparatus are used in cell wall re-synthesis as during cytokinesis. Given that many known cell wall

  7. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.

    PubMed

    Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio

    2015-04-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment. PMID:25735403

  8. Ectopic lignification in primary cellulose-deficient cell walls of maize cell suspension cultures.

    PubMed

    Mélida, Hugo; Largo-Gosens, Asier; Novo-Uzal, Esther; Santiago, Rogelio; Pomar, Federico; García, Pedro; García-Angulo, Penélope; Acebes, José Luis; Álvarez, Jesús; Encina, Antonio

    2015-04-01

    Maize (Zea mays L.) suspension-cultured cells with up to 70% less cellulose were obtained by stepwise habituation to dichlobenil (DCB), a cellulose biosynthesis inhibitor. Cellulose deficiency was accompanied by marked changes in cell wall matrix polysaccharides and phenolics as revealed by Fourier transform infrared (FTIR) spectroscopy. Cell wall compositional analysis indicated that the cellulose-deficient cell walls showed an enhancement of highly branched and cross-linked arabinoxylans, as well as an increased content in ferulic acid, diferulates and p-coumaric acid, and the presence of a polymer that stained positive for phloroglucinol. In accordance with this, cellulose-deficient cell walls showed a fivefold increase in Klason-type lignin. Thioacidolysis/GC-MS analysis of cellulose-deficient cell walls indicated the presence of a lignin-like polymer with a Syringyl/Guaiacyl ratio of 1.45, which differed from the sensu stricto stress-related lignin that arose in response to short-term DCB-treatments. Gene expression analysis of these cells indicated an overexpression of genes specific for the biosynthesis of monolignol units of lignin. A study of stress signaling pathways revealed an overexpression of some of the jasmonate signaling pathway genes, which might trigger ectopic lignification in response to cell wall integrity disruptions. In summary, the structural plasticity of primary cell walls is proven, since a lignification process is possible in response to cellulose impoverishment.

  9. Penium margaritaceum as a model organism for cell wall analysis of expanding plant cells.

    PubMed

    Rydahl, Maja G; Fangel, Jonatan U; Mikkelsen, Maria Dalgaard; Johansen, I Elisabeth; Andreas, Amanda; Harholt, Jesper; Ulvskov, Peter; Jørgensen, Bodil; Domozych, David S; Willats, William G T

    2015-01-01

    The growth of a plant cell encompasses a complex set of subcellular components interacting in a highly coordinated fashion. Ultimately, these activities create specific cell wall structural domains that regulate the prime force of expansion, internally generated turgor pressure. The precise organization of the polymeric networks of the cell wall around the protoplast also contributes to the direction of growth, the shape of the cell, and the proper positioning of the cell in a tissue. In essence, plant cell expansion represents the foundation of development. Most studies of plant cell expansion have focused primarily upon late divergent multicellular land plants and specialized cell types (e.g., pollen tubes, root hairs). Here, we describe a unicellular green alga, Penium margaritaceum (Penium), which can serve as a valuable model organism for understanding cell expansion and the underlying mechanics of the cell wall in a single plant cell.

  10. Viscoelastic properties of cell walls of single living plant cells determined by dynamic nanoindentation.

    PubMed

    Hayot, Céline M; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A

    2012-04-01

    Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall.

  11. Chemical modification of the surfaces of bacterial cell walls.

    PubMed

    Neihof, R A; Echols, W H

    1978-01-01

    The surfaces of the isolated cell walls of four bacterial species were studied by microelectrophoresis following chemical treatments intended to remove specific charged groups. Acid-base titrations of the walls were used to assess specificity and extent of the modifications. Carboxyl groups were specifically and completely modified by activation with a water-soluble carbodiimide and subsequent reaction with a nucleophile, such as glycinamide, to give an uncharged pH-stable product. Aqueous media and mild reaction conditions make the method suitable for modifying carboxyl groups on cell surfaces too labile to withstand the harsh conditions required for conventional esterification reactions. Use of the carbodiimide-mediated reaction for discharging carboxyl groups, along with fluorodinitrobenzene for discharging amino groups and extraction procedures for removing constituents carrying phosphoester groups (teichoic acids), made it possible to obtain information about the spatial arrangement of charged groups on the wall surfaces. Removal of the exterior negative charge dominating wall surfaces allowed underlying amino groups to become electrokinetically effective and, in the case of E. coli, also revealed a lipophilic region with an affinity for a cationic surfactant.

  12. Cell Wall Architecture of the Elongating Maize Coleoptile1

    PubMed Central

    Carpita, Nicholas C.; Defernez, Marianne; Findlay, Kim; Wells, Brian; Shoue, Douglas A.; Catchpole, Gareth; Wilson, Reginald H.; McCann, Maureen C.

    2001-01-01

    The primary walls of grasses are composed of cellulose microfibrils, glucuronoarabinoxylans (GAXs), and mixed-linkage β-glucans, together with smaller amounts of xyloglucans, glucomannans, pectins, and a network of polyphenolic substances. Chemical imaging by Fourier transform infrared microspectroscopy revealed large differences in the distributions of many chemical species between different tissues of the maize (Zea mays) coleoptile. This was confirmed by chemical analyses of isolated outer epidermal tissues compared with mesophyll-enriched preparations. Glucomannans and esterified uronic acids were more abundant in the epidermis, whereas β-glucans were more abundant in the mesophyll cells. The localization of β-glucan was confirmed by immunocytochemistry in the electron microscope and quantitative biochemical assays. We used field emission scanning electron microscopy, infrared microspectroscopy, and biochemical characterization of sequentially extracted polymers to further characterize the cell wall architecture of the epidermis. Oxidation of the phenolic network followed by dilute NaOH extraction widened the pores of the wall substantially and permitted observation by scanning electron microscopy of up to six distinct microfibrillar lamellae. Sequential chemical extraction of specific polysaccharides together with enzymic digestion of β-glucans allowed us to distinguish two distinct domains in the grass primary wall. First, a β-glucan-enriched domain, coextensive with GAXs of low degrees of arabinosyl substitution and glucomannans, is tightly associated around microfibrils. Second, a GAX that is more highly substituted with arabinosyl residues and additional glucomannan provides an interstitial domain that interconnects the β-glucan-coated microfibrils. Implications for current models that attempt to explain the biochemical and biophysical mechanism of wall loosening during cell growth are discussed. PMID:11598229

  13. (Rapid regulatory control of plant cell expansion and wall relaxation)

    SciTech Connect

    Cosgrove, D.J.

    1990-01-01

    This section presents a brief overview of accomplishments related to this project in the past 3-year period. Our work has focused on the basic mechanisms of plant cell expansion, particularly on the interrelations of water and solute transport with cell wall relaxation and expansion. To study these processes, we have developed new methods and used these methods to analyze the dynamic behavior of growth processes and to examine how various agents (GA, drought, light, genetic lesions) alter the growth machinery of the cell.

  14. Orbital wall infarction in child with sickle cell disease.

    PubMed

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment. PMID:26790559

  15. Orbital wall infarction in child with sickle cell disease.

    PubMed

    Janssens, C; Claeys, L; Maes, P; Boiy, T; Wojciechowski, M

    2015-12-01

    We present the case of a 17-year-old boy, known with homozygous sickle cell disease, who was admitted because of generalised pain. He developed bilateral periorbital oedema and proptosis, without pain or visual disturbances. In addition to hyperhydration, oxygen and analgesia IV antibiotics were started, to cover a possible osteomyelitis. Patients with sickle cell disease are at risk for vaso-occlusive crises, when the abnormally shaped red blood cells aggregate and block the capillaries. Such a crisis typically presents at a location with high bone marrow activity, as the vertebrae and long bones. At an early age, the bone marrow is still active at other sites, for example the orbital wall, and thus infarction can also occur there. Thus, in young persons with sickle cell disease, it is important to consider orbital wall infarction in the differential diagnosis, since the approach is different from osteomyelitis. If the disease is complicated by an orbital compression syndrome, corticosteroids or surgical intervention may be necessary to preserve the vision. In our patient, an MRI of the orbitae demonstrated periorbital oedema with bone anomalies in the orbital and frontal bones, confirming orbital wall infarction. Ophthalmological examination revealed no signs of pressure on the nervus opticus. The patient recovered gradually with conservative treatment.

  16. Micro-Spectroscopic Imaging of Lignin-Carbohydrate Complexes in Plant Cell Walls and Their Migration During Biomass Pretreatment

    SciTech Connect

    Zeng, Yining; Zhao, Shuai; Wei, Hui; Tucker, Melvin P.; Johnson, David K.; Himmel, Michael E.; Mosier, Nathan S.; Meilan, Richard; Ding, Shi-You

    2015-04-27

    In lignocellulosic biomass, lignin is the second most abundant biopolymer. In plant cell walls, lignin is associated with polysaccharides to form lignin-carbohydrate complexes (LCC). LCC have been considered to be a major factor that negatively affects the process of deconstructing biomass to simple sugars by cellulosic enzymes. Here, we report a micro-spectroscopic approach that combines fluorescence lifetime imaging microscopy and Stimulated Raman Scattering microscopy to probe in situ lignin concentration and conformation at each cell wall layer. This technique does not require extensive sample preparation or any external labels. Using poplar as a feedstock, for example, we observe variation of LCC in untreated tracheid poplar cell walls. The redistribution of LCC at tracheid poplar cell wall layers is also investigated when the chemical linkages between lignin and hemicellulose are cleaved during pretreatment. Our study would provide new insights into further improvement of the biomass pretreatment process.

  17. Genome-Wide Association Study Reveals the Genetic Basis of Stalk Cell Wall Components in Maize

    PubMed Central

    Hu, Xiaojiao; Liu, Zhifang; Wu, Yujin; Huang, Changling

    2016-01-01

    Lignin, cellulose and hemicellulose are the three main components of the plant cell wall and can impact stalk quality by affecting cell wall structure and strength. In this study, we evaluated the lignin (LIG), cellulose (CEL) and hemicellulose (HC) contents in maize using an association mapping panel that included 368 inbred lines in seven environments. A genome-wide association study using approximately 0.56 million SNPs with a minor allele frequency of 0.05 identified 22, 18 and 24 loci significantly associated with LIG, CEL and HC at P < 1.0×10−4, respectively. The allelic variation of each significant association contributed 4 to 7% of the phenotypic variation. Candidate genes identified by GWAS mainly encode enzymes involved in cell wall metabolism, transcription factors, protein kinase and protein related to other biological processes. Among the association signals, six candidate genes had pleiotropic effects on lignin and cellulose content. These results provide valuable information for better understanding the genetic basis of stalk cell wall components in maize. PMID:27479588

  18. Lipoteichoic acid from Bacillus subtilis subsp. niger WM: isolation and effects on cell wall autolysis and turnover.

    PubMed Central

    Meyer, P D; Wouters, J T

    1987-01-01

    Lipoteichoic acid (LTA) was extracted by means of hot aqueous phenol from Bacillus subtilis subsp. niger WM cells grown under various conditions in chemostat culture. The extracts were partially purified by nuclease treatment and gel permeation chromatography. Chemical analyses revealed a composition consistent with a polyglycerol phosphate polymer. The influence on autolysis of the LTAs thus obtained was studied with both whole cells and autolysin-containing native walls of B. subtilis subsp. niger WM. Lysis rates of phosphate-limited cells could be reduced to about 40% of the control rate by the addition of LTA, whereas lysis of cells grown under phosphate-sufficient conditions was affected to a much lesser extent. The lysis of native walls prepared from variously grown cells proved to be fairly insensitive to the addition of LTA. The effect of LTA on wall turnover was studied by following the release of radioactively labeled wall material during exponential growth. The most obvious effect of LTA was a lowered first-order rate of release of labeled wall material; calculations according to the model for cell wall turnover in Bacillus spp. formulated by De Boer et al. (W. R. De Boer, F. J. Kruyssen, and J. T. M. Wouters, J. Bacteriol. 145:50-60, 1981) revealed changes in wall geometry and not in turnover rate in the presence of LTA. PMID:3102461

  19. Cell wall bound anionic peroxidases from asparagus byproducts.

    PubMed

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-01

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  20. Cytoplasmic streaming in plant cells: the role of wall slip.

    PubMed

    Wolff, K; Marenduzzo, D; Cates, M E

    2012-06-01

    We present a computer simulation study, via lattice Boltzmann simulations, of a microscopic model for cytoplasmic streaming in algal cells such as those of Chara corallina. We modelled myosin motors tracking along actin lanes as spheres undergoing directed motion along fixed lines. The sphere dimension takes into account the fact that motors drag vesicles or other organelles, and, unlike previous work, we model the boundary close to which the motors move as walls with a finite slip layer. By using realistic parameter values for actin lane and myosin density, as well as for endoplasmic and vacuole viscosity and the slip layer close to the wall, we find that this simplified view, which does not rely on any coupling between motors, cytoplasm and vacuole other than that provided by viscous Stokes flow, is enough to account for the observed magnitude of streaming velocities in intracellular fluid in living plant cells.

  1. Plant cell walls: Protecting the barrier from degradation by microbial enzymes.

    PubMed

    Lagaert, Stijn; Beliën, Tim; Volckaert, Guido

    2009-12-01

    Plant cell walls are predominantly composed of polysaccharides, which are connected in a strong, yet resilient network. They determine the size and shape of plant cells and form the interface between the cell and its often hostile environment. To penetrate the cell wall and thus infect plants, most phytopathogens secrete numerous cell wall degrading enzymes. Conversely, as a first line of defense, plant cell walls contain an array of inhibitors of these enzymes. Scientific knowledge on these inhibitors significantly progressed in the past years and this review is meant to give a comprehensive overview of plant inhibitors against microbial cell wall degrading enzymes and their role in plant protection.

  2. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  3. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis

    PubMed Central

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas

    2016-01-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells. PMID:27605377

  4. Single-molecule imaging reveals modulation of cell wall synthesis dynamics in live bacterial cells

    PubMed Central

    Lee, Timothy K.; Meng, Kevin; Shi, Handuo; Huang, Kerwyn Casey

    2016-01-01

    The peptidoglycan cell wall is an integral organelle critical for bacterial cell shape and stability. Proper cell wall construction requires the interaction of synthesis enzymes and the cytoskeleton, but it is unclear how the activities of individual proteins are coordinated to preserve the morphology and integrity of the cell wall during growth. To elucidate this coordination, we used single-molecule imaging to follow the behaviours of the two major peptidoglycan synthases in live, elongating Escherichia coli cells and after perturbation. We observed heterogeneous localization dynamics of penicillin-binding protein (PBP) 1A, the synthase predominantly associated with cell wall elongation, with individual PBP1A molecules distributed between mobile and immobile populations. Perturbations to PBP1A activity, either directly through antibiotics or indirectly through PBP1A's interaction with its lipoprotein activator or other synthases, shifted the fraction of mobile molecules. Our results suggest that multiple levels of regulation control the activity of enzymes to coordinate peptidoglycan synthesis. PMID:27774981

  5. Dynamics of cell wall elasticity pattern shapes the cell during yeast mating morphogenesis.

    PubMed

    Goldenbogen, Björn; Giese, Wolfgang; Hemmen, Marie; Uhlendorf, Jannis; Herrmann, Andreas; Klipp, Edda

    2016-09-01

    The cell wall defines cell shape and maintains integrity of fungi and plants. When exposed to mating pheromone, Saccharomyces cerevisiae grows a mating projection and alters in morphology from spherical to shmoo form. Although structural and compositional alterations of the cell wall accompany shape transitions, their impact on cell wall elasticity is unknown. In a combined theoretical and experimental approach using finite-element modelling and atomic force microscopy (AFM), we investigated the influence of spatially and temporally varying material properties on mating morphogenesis. Time-resolved elasticity maps of shmooing yeast acquired with AFM in vivo revealed distinct patterns, with soft material at the emerging mating projection and stiff material at the tip. The observed cell wall softening in the protrusion region is necessary for the formation of the characteristic shmoo shape, and results in wider and longer mating projections. The approach is generally applicable to tip-growing fungi and plants cells.

  6. Enzyme Amplified Detection of Microbial Cell Wall Components

    NASA Technical Reports Server (NTRS)

    Wainwright, Norman R.

    2004-01-01

    This proposal is MBL's portion of NASA's Johnson Space Center's Astrobiology Center led by Principal Investigator, Dr. David McKay, entitled: 'Institute for the Study of Biomarkers in Astromaterials.' Dr. Norman Wainwright is the principal investigator at MBL and is responsible for developing methods to detect trace quantities of microbial cell wall chemicals using the enzyme amplification system of Limulus polyphemus and other related methods.

  7. Life behind cell walls: paradigm lost, paradigm regained.

    PubMed

    Lamport, D T

    2001-09-01

    This review of the living cell wall and its protein components is in two parts. The first is anecdotal. A personal account spanning over 40 years research may perhaps be an antidote to one stereotypical view of scientists as detached and humorless. The second part deals with the meaning of function, particularly as it applies to hydroxyproline-rich glycoproteins. Function is a difficult word to define objectively. However, with help from such luminaries as Humpty Dumpty: "A word means what I want it to mean, neither more nor less," and Wittgenstein: "Giving examples of usage ... is the only way to talk about meaning," it is possible to construct a ziggurat representing increasingly complex levels of organization from molecular structure to ecology. Forty years ago I suggested that hydroxyproline-rich structural proteins played a key role in cell wall functioning. But because the bulk of the wall is carbohydrate, there has been an understandable resistance to paradigm change. Expansins, paradoxically, contribute greatly to this resistance because their modus operandi as cell-wall-loosening proteins is based on the idea that they break hydrogen bonds between polysaccharide chains allowing slippage. However, this view is not consistent with the recent discovery [Grobe et al. (1999) Eur. J. Biochem 263: 33-40] that beta-expansins may be proteases, as it implies that the extensin network is not a straightjacket but a substrate for expansin in muro. Such a direct role for extensins in both negative and positive regulation of cell expansion and elongation may constitute a major morphogenetic mechanism operating at all levels of plant growth and development.

  8. Changes in the chemical properties and swelling coefficient of alfalfa root cell walls in the presence of toluene as a toxic agent.

    PubMed

    Sharifi, M; Khoshgoftarmanesh, A H; Hadadzadeh, H

    2016-04-01

    The influence of toluene pollution on the chemical properties and swelling coefficient of root cell walls in alfalfa (Medicago sativa L.) was investigated. Two sets of alfalfa seedlings were selected and one set was treated with 450 mg L(-1) toluene in the nutrient solution under hydroponic culture. Thirty days after treatment with toluene, alfalfa plants were harvested and the root cell walls were isolated. Fourier-transform infrared (FTIR) spectroscopy was carried out for the characterization of the root cell walls composition. The cation exchange capacity (CEC) and the swelling coefficient of the root cell walls (Kcw) were estimated at various pH values. The toluene contamination significantly reduced the mass of the cell wall material in the alfalfa roots. According to the FTIR spectra, the toluene pollution can change the alfalfa root cell wall properties by reducing the cell wall functional groups. These functional groups are probably related to the proteins and polysaccharides in the cell wall. Also, toluene pollution strongly reduced CEC and Kcw of the root cell walls. The results show that the decrease in the active sites of adsorption on the root cell walls as a response to toluene pollution can affect the water flow rate and the mineral nutrients uptake by roots.

  9. Changes in the chemical properties and swelling coefficient of alfalfa root cell walls in the presence of toluene as a toxic agent.

    PubMed

    Sharifi, M; Khoshgoftarmanesh, A H; Hadadzadeh, H

    2016-04-01

    The influence of toluene pollution on the chemical properties and swelling coefficient of root cell walls in alfalfa (Medicago sativa L.) was investigated. Two sets of alfalfa seedlings were selected and one set was treated with 450 mg L(-1) toluene in the nutrient solution under hydroponic culture. Thirty days after treatment with toluene, alfalfa plants were harvested and the root cell walls were isolated. Fourier-transform infrared (FTIR) spectroscopy was carried out for the characterization of the root cell walls composition. The cation exchange capacity (CEC) and the swelling coefficient of the root cell walls (Kcw) were estimated at various pH values. The toluene contamination significantly reduced the mass of the cell wall material in the alfalfa roots. According to the FTIR spectra, the toluene pollution can change the alfalfa root cell wall properties by reducing the cell wall functional groups. These functional groups are probably related to the proteins and polysaccharides in the cell wall. Also, toluene pollution strongly reduced CEC and Kcw of the root cell walls. The results show that the decrease in the active sites of adsorption on the root cell walls as a response to toluene pollution can affect the water flow rate and the mineral nutrients uptake by roots. PMID:26728292

  10. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  11. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli

    PubMed Central

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J.; Kim, Jae-Yean

    2015-01-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins. PMID:26194822

  12. Proteomic Analysis to Identify Tightly-Bound Cell Wall Protein in Rice Calli.

    PubMed

    Cho, Won Kyong; Hyun, Tae Kyung; Kumar, Dhinesh; Rim, Yeonggil; Chen, Xiong Yan; Jo, Yeonhwa; Kim, Suwha; Lee, Keun Woo; Park, Zee-Yong; Lucas, William J; Kim, Jae-Yean

    2015-08-01

    Rice is a model plant widely used for basic and applied research programs. Plant cell wall proteins play key roles in a broad range of biological processes. However, presently, knowledge on the rice cell wall proteome is rudimentary in nature. In the present study, the tightly-bound cell wall proteome of rice callus cultured cells using sequential extraction protocols was developed using mass spectrometry and bioinformatics methods, leading to the identification of 1568 candidate proteins. Based on bioinformatics analyses, 389 classical rice cell wall proteins, possessing a signal peptide, and 334 putative non-classical cell wall proteins, lacking a signal peptide, were identified. By combining previously established rice cell wall protein databases with current data for the classical rice cell wall proteins, a comprehensive rice cell wall proteome, comprised of 496 proteins, was constructed. A comparative analysis of the rice and Arabidopsis cell wall proteomes revealed a high level of homology, suggesting a predominant conservation between monocot and eudicot cell wall proteins. This study importantly increased information on cell wall proteins, which serves for future functional analyses of these identified rice cell wall proteins.

  13. Aspergillus Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides

    PubMed Central

    de Vries, Ronald P.; Visser, Jaap

    2001-01-01

    Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a more and more attractive alternative to chemical and mechanical processes. Over the past 15 years, much progress has been made in elucidating the structural characteristics of these polysaccharides and in characterizing the enzymes involved in their degradation and the genes of biotechnologically relevant microorganisms encoding these enzymes. The members of the fungal genus Aspergillus are commonly used for the production of polysaccharide-degrading enzymes. This genus produces a wide spectrum of cell wall-degrading enzymes, allowing not only complete degradation of the polysaccharides but also tailored modifications by using specific enzymes purified from these fungi. This review summarizes our current knowledge of the cell wall polysaccharide-degrading enzymes from aspergilli and the genes by which they are encoded. PMID:11729262

  14. Lignin variability in plant cell walls: contribution of new models.

    PubMed

    Neutelings, Godfrey

    2011-10-01

    Lignin is a major component of certain plant cell walls. The enzymes and corresponding genes associated with the metabolic pathway leading to the production of this complex phenolic polymer have been studied for many years now and are relatively well characterized. The use of genetically modified model plants (Arabidopsis, tobacco, poplar.) and mutants has contributed greatly to our current understanding of this process. The recent utilisation and/or development of a number of dedicated genomic and transcriptomic tools for other species opens new perspectives for advancing our knowledge of the biological role of this important polymer in less typical situations and/or species. In this context, studies on the formation of hypolignified G-type fibres in angiosperm tension wood, and the natural hypolignification of secondary cell walls in plant bast fibre species such as hemp (Cannabis sativa), flax (Linum usitatissimum) or ramie (Boehmeria nivea) are starting to provide novel information about how plants control secondary cell wall formation. Finally, other biologically interesting species for which few molecular resources currently exist could also represent interesting future models.

  15. Progress toward the tomato fruit cell wall proteome

    PubMed Central

    Ruiz-May, Eliel; Rose, Jocelyn K. C.

    2013-01-01

    The plant cell wall (CW) compartment, or apoplast, is host to a highly dynamic proteome, comprising large numbers of both enzymatic and structural proteins. This reflects its importance as the interface between adjacent cells and the external environment, the presence of numerous extracellular metabolic and signaling pathways, and the complex nature of wall structural assembly and remodeling during cell growth and differentiation. Tomato fruit ontogeny, with its distinct phases of rapid growth and ripening, provides a valuable experimental model system for CW proteomic studies, in that it involves substantial wall assembly, remodeling, and coordinated disassembly. Moreover, diverse populations of secreted proteins must be deployed to resist microbial infection and protect against abiotic stresses. Tomato fruits also provide substantial amounts of biological material, which is a significant advantage for many types of biochemical analyses, and facilitates the detection of lower abundance proteins. In this review, we describe a variety of orthogonal techniques that have been applied to identify CW localized proteins from tomato fruit, including approaches that: target the proteome of the CW and the overlying cuticle; functional “secretome” screens; lectin affinity chromatography; and computational analyses to predict proteins that enter the secretory pathway. Each has its merits and limitations, but collectively they are providing important insights into CW proteome composition and dynamics, as well as some potentially controversial issues, such as the prevalence of non-canonical protein secretion. PMID:23755055

  16. Cell wall proteins in seedling cotyledons of Prosopis chilensis.

    PubMed

    Rodríguez, J G; Cardemil, L

    1994-01-01

    Four cell wall proteins of cotyledons of Prosopis chilensis seedlings were characterized by PAGE and Western analyses using a polyclonal antibody, generated against soybean seed coat extensin. These proteins had M(r)s of 180,000, 126,000, 107,000 and 63,000, as determined by SDS-PAGE. The proteins exhibited a fluorescent positive reaction with dansylhydrazine suggesting that they are glycoproteins; they did not show peroxidase activity. The cell wall proteins were also characterized by their amino acid composition and by their amino-terminal sequence. These analyses revealed that there are two groups of related cell wall proteins in the cotyledons. The first group comprises the proteins of M(r)s 180,000, 126,000, 107,000 which are rich in glutamic acid/glutamine and aspartic acid/asparagine and they have almost identical NH2-terminal sequences. The second group comprises the M(r) 63,000 protein which is rich in proline, glycine, valine and tyrosine, with an NH2-terminal sequence which was very similar to that of soybean proline-rich proteins.

  17. Cell Wall Composition and Biomass Recalcitrance Differences Within a Genotypically Diverse Set of Brachypodium distachyon Inbred Lines.

    PubMed

    Cass, Cynthia L; Lavell, Anastasiya A; Santoro, Nicholas; Foster, Cliff E; Karlen, Steven D; Smith, Rebecca A; Ralph, John; Garvin, David F; Sedbrook, John C

    2016-01-01

    biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. The availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses. PMID:27303415

  18. Cell Wall Composition and Biomass Recalcitrance Differences Within a Genotypically Diverse Set of Brachypodium distachyon Inbred Lines

    PubMed Central

    Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas; Foster, Cliff E.; Karlen, Steven D.; Smith, Rebecca A.; Ralph, John; Garvin, David F.; Sedbrook, John C.

    2016-01-01

    biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. The availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses. PMID:27303415

  19. Calpain-Mediated Positional Information Directs Cell Wall Orientation to Sustain Plant Stem Cell Activity, Growth and Development.

    PubMed

    Liang, Zhe; Brown, Roy C; Fletcher, Jennifer C; Opsahl-Sorteberg, Hilde-Gunn

    2015-09-01

    Eukaryotic development and stem cell control depend on the integration of cell positional sensing with cell cycle control and cell wall positioning, yet few factors that directly link these events are known. The DEFECTIVE KERNEL1 (DEK1) gene encoding the unique plant calpain protein is fundamental for development and growth, being essential to confer and maintain epidermal cell identity that allows development beyond the globular embryo stage. We show that DEK1 expression is highest in the actively dividing cells of seeds, meristems and vasculature. We further show that eliminating Arabidopsis DEK1 function leads to changes in developmental cues from the first zygotic division onward, altered microtubule patterns and misshapen cells, resulting in early embryo abortion. Expression of the embryonic marker genes WOX2, ATML1, PIN4, WUS and STM, related to axis organization, cell identity and meristem functions, is also altered in dek1 embryos. By monitoring cell layer-specific DEK1 down-regulation, we show that L1- and 35S-induced down-regulation mainly affects stem cell functions, causing severe shoot apical meristem phenotypes. These results are consistent with a requirement for DEK1 to direct layer-specific cellular activities and set downstream developmental cues. Our data suggest that DEK1 may anchor cell wall positions and control cell division and differentiation, thereby balancing the plant's requirement to maintain totipotent stem cell reservoirs while simultaneously directing growth and organ formation. A role for DEK1 in regulating microtubule-orchestrated cell wall orientation during cell division can explain its effects on embryonic development, and suggests a more general function for calpains in microtubule organization in eukaryotic cells.

  20. Modeling of thin, back-wall silicon solar cells

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.

    1979-01-01

    The performance of silicon solar cells with p-n junctions on the nonilluminated surface (i.e., upside-down or back-wall cells) was calculated. These structures consisted of a uniformly shaped p-type substrate layer, a p(+)-type field layer on the front (illuminated) surface, and a shallow, n-type junction on the back (nonilluminated) surface. A four-layer solar cell model was used to calculate efficiency, open-circuit voltage, and short-circuit current. The effect on performance of p-layer thickness and resistivity was determined. The diffusion length was varied to simulate the effect of radiation damage. The results show that peak initial efficiencies greater than 15 percent are possible for cell thicknesses or 100 micrometers or less. After 10 years of radiation damage in geosynchronous orbit, thin (25 to 50 micrometers thick) cells made from 10 to 100 ohm cm material show the smallest decrease (approximately 10 percent) in performance.

  1. Localization of Boron in Cell Walls of Squash and Tobacco and Its Association with Pectin (Evidence for a Structural Role of Boron in the Cell Wall).

    PubMed Central

    Hu, H.; Brown, P. H.

    1994-01-01

    B deficiency results in a rapid inhibition of plant growth, and yet the form and function of B in plants remains unclear. In this paper we provide evidence that B is chemically localized and structurally important in the cell wall of plants. The localization and chemical fractionation of B was followed in squash plants (Curcurbita pepo L.) and cultured tobacco cells (Nicotiana tabacum) grown in B-replete or B-deficient medium. As squash plants and cultured tobacco cells became deficient, an increasingly large proportion of cellular B was found to be localized in the cell wall. Cytoplasmic B concentrations were reduced to essentially zero as plants became deficient, whereas cell wall B concentration remained at or above 10 [mu]g B/g cell wall dry weight in all experiments. Chemical and enzymic fractionation studies suggest that the majority of cell B is associated with pectins within the cell wall. Physical analysis of B-deficient tissue indicates that cell wall plastic extensibility is greatly reduced under B deficiency, and anatomical observations indicate that B deficiency impairs normal cell elongation in growing plant tissue. In plants in which B deficiency had inhibited all plant growth, tissues remained green and did not show any additional visible symptoms for at least 1 week with no additional B. This occurred even though cytoplasmic B had been reduced to extremely low levels (<0.2 [mu]g/g). This suggests that B in these species is largely associated with the cell wall and that any cytoplasmic role for B is satisfied by very low concentrations of B. The localization of B in the cell wall, its association with cell wall pectins, and the contingent effects of B on cell wall extensibility suggest that B plays a critical, although poorly defined, role in the cell wall structure of higher plants. PMID:12232235

  2. Evaluating fundamental position-dependent differences in wood cell wall adhesion using nanoindentation

    PubMed Central

    Obersriebnig, Michael; Konnerth, Johannes; Gindl-Altmutter, Wolfgang

    2013-01-01

    Spruce wood specimens were bonded with one-component polyurethane (PUR) and urea-formaldehyde (UF) adhesive, respectively. The adhesion of the adhesives to the wood cell wall was evaluated at two different locations by means of a new micromechanical assay based on nanoindentation. One location tested corresponded to the interface between the adhesive and the natural inner cell wall surface of the secondary cell wall layer 3 (S3), whereas the second location corresponded to the interface between the adhesive and the freshly cut secondary cell wall layer 2 (S2). Overall, a trend towards reduced cell wall adhesion was found for PUR compared to UF. Position-resolved examination revealed excellent adhesion of UF to freshly cut cell walls (S2) but significantly diminished adhesion to the inner cell wall surface (S3). In contrast, PUR showed better adhesion to the inner cell wall surface and less adhesion to freshly cut cell walls. Atomic force microscopy revealed a less polar character for the inner cell wall surface (S3) compared to freshly cut cell walls (S2). It is proposed that differences in the polarity of the used adhesives and the surface chemistry of the two cell wall surfaces examined account for the observed trends. PMID:27570321

  3. Evidence for 'silicon' within the cell walls of suspension-cultured rice cells.

    PubMed

    He, Congwu; Wang, Lijun; Liu, Jian; Liu, Xin; Li, Xiuli; Ma, Jie; Lin, Yongjun; Xu, Fangsen

    2013-11-01

    Despite the ubiquity and beneficial role of silicon (Si) in plant biology, structural and chemical mechanisms operating at the single-cell level have not been extensively studied. To obtain insights regarding the effect of Si on individual cells, we cultivated suspended rice (Oryza sativa) cells in the absence and presence of Si and analyzed single cells using a combination of physical techniques including atomic force microscopy (AFM). Si is naturally present as a constituent of the cell walls, where it is firmly bound to the cell wall matrix rather than occurring within intra- or extracellular silica deposition, as determined by using inductively coupled plasma mass spectrometry (ICP-MS) and X-ray photoelectron spectroscopy (XPS). This species of Si, linked with the cell wall matrix, improves the structural stability of cell walls during their expansion and subsequent cell division. Maintaining cell shape is thereby enhanced, which may be crucial for the function and survival of cells. This study provides further evidence that organosilicon is present in plant cell walls, which broadens our understanding of the chemical nature of 'anomalous Si' in plant biology.

  4. Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls.

    PubMed

    Vega-Sánchez, Miguel E; Loqué, Dominique; Lao, Jeemeng; Catena, Michela; Verhertbruggen, Yves; Herter, Thomas; Yang, Fan; Harholt, Jesper; Ebert, Berit; Baidoo, Edward E K; Keasling, Jay D; Scheller, Henrik V; Heazlewood, Joshua L; Ronald, Pamela C

    2015-09-01

    Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both β-1,3 and β-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.

  5. Influence of sorbitol on protein production and glycosylation and cell wall formation in Trichoderma reesei.

    PubMed

    Górka-Nieć, Wioletta; Perlińska-Lenart, Urszula; Zembek, Patrycja; Palamarczyk, Grażyna; Kruszewska, Joanna S

    2010-10-01

    Sorbitol is often used at 1 mol/liter as an osmotic stabilizer for cultivation of fungi with a fragile cell wall phenotype. On the other hand, at this concentration sorbitol causes an osmotic stress in fungal cells resulting in intensive production of intracellular glycerol. The highly increased consumption of glucose for glycerol synthesis may lead to changes in processes requiring carbohydrate residues. This study provides new information on the consequences of osmotic stress to the cell wall composition, protein production and glycosylation, and cell morphology of Trichoderma reesei. We observed that high osmolarity conditions enhanced biomass production and strongly limited synthesis of cell wall glucans and chitin. Moreover, in these conditions the amount of secreted protein decreased nearly ten-fold and expression of cbh1 and cbh2 genes coding for cellobiohydrolase I and cellobiohydrolase II, the main secretory proteins in T. reesei, was inhibited resulting in a lack of the proteins in the cell and cultivation medium. The activity of DPM synthase, enzyme engaged in both N- and O-glycosylation pathways, was reduced two-fold, suggesting an overall inhibition of protein glycosylation. However, the two modes of glycosylation were affected divergently: O-glycosylation of secreted proteins decreased in the early stages of growth while N-glycosylation significantly increased in the stationary phase.

  6. Cell wall constrains lateral diffusion of plant plasma-membrane proteins

    PubMed Central

    Martinière, Alexandre; Lavagi, Irene; Nageswaran, Gayathri; Rolfe, Daniel J.; Maneta-Peyret, Lilly; Luu, Doan-Trung; Botchway, Stanley W.; Webb, Stephen E. D.; Mongrand, Sebastien; Maurel, Christophe; Martin-Fernandez, Marisa L.; Kleine-Vehn, Jürgen; Friml, Jirí; Moreau, Patrick; Runions, John

    2012-01-01

    A cell membrane can be considered a liquid-phase plane in which lipids and proteins theoretically are free to diffuse. Numerous reports, however, describe retarded diffusion of membrane proteins in animal cells. This anomalous diffusion results from a combination of structuring factors including protein–protein interactions, cytoskeleton corralling, and lipid organization into microdomains. In plant cells, plasma-membrane (PM) proteins have been described as relatively immobile, but the control mechanisms that structure the PM have not been studied. Here, we use fluorescence recovery after photobleaching to estimate mobility of a set of minimal PM proteins. These proteins consist only of a PM-anchoring domain fused to a fluorescent protein, but their mobilities remained limited, as is the case for many full-length proteins. Neither the cytoskeleton nor membrane microdomain structure was involved in constraining the diffusion of these proteins. The cell wall, however, was shown to have a crucial role in immobilizing PM proteins. In addition, by single-molecule fluorescence imaging we confirmed that the pattern of cellulose deposition in the cell wall affects the trajectory and speed of PM protein diffusion. Regulation of PM protein dynamics by the plant cell wall can be interpreted as a mechanism for regulating protein interactions in processes such as trafficking and signal transduction. PMID:22689944

  7. Narrowing of the coherent population trapping resonance under zone pumping in cells with different characteristics of the wall coating

    SciTech Connect

    Kazakov, G A; Litvinov, A N; Matisov, B G

    2012-02-28

    It is shown that when coherent population trapping (CPT) resonance is excited by a narrow laser beam, the presence of elastic collisions with the cell wall significantly affects the line shape of the CPT-resonance. We have constructed a theoretical model, which is based on averaging over the random Ramsey sequences of the atom dwell time in the beam and dark zones and takes into account the probability of elastic bounce of an atom from the wall.

  8. Stress analysis for wall structure in mobile hot cell design

    NASA Astrophysics Data System (ADS)

    Bahrin, Muhammad Hannan; Rahman, Anwar Abdul; Hamzah, Mohd Arif; Mamat, Mohd Rizal; Azman, Azraf; Hasan, Hasni

    2016-01-01

    Malaysian Nuclear Agency is developing a Mobile Hot Cell (MHC) in order to handle and manage Spent High Activity Radioactive Sources (SHARS) such as teletherapy heads and irradiators. At present, there are only two units of MHC in the world, in South Africa and China. Malaysian Mobile Hot cell is developed by Malaysian Nuclear Agency with the assistance of IAEA expert, based on the design of South Africa and China, but with improved features. Stress analysis has been performed on the design in order to fulfil the safety requirement in operation of MHC. This paper discusses the loading analysis effect from the sand to the MHC wall structure.

  9. In situ analysis of cell wall polymers associated with phloem fibre cells in stems of hemp, Cannabis sativa L.

    PubMed

    Blake, Anthony W; Marcus, Susan E; Copeland, James E; Blackburn, Richard S; Knox, J Paul

    2008-06-01

    A study of stem anatomy and the sclerenchyma fibre cells associated with the phloem tissues of hemp (Cannabis sativa L.) plants is of interest for both understanding the formation of secondary cell walls and for the enhancement of fibre utility as industrial fibres and textiles. Using a range of molecular probes for cell wall polysaccharides we have surveyed the presence of cell wall components in stems of hemp in conjunction with an anatomical survey of stem and phloem fibre development. The only polysaccharide detected to occur abundantly throughout the secondary cell walls of phloem fibres was cellulose. Pectic homogalacturonan epitopes were detected in the primary cell walls/intercellular matrices between the phloem fibres although these epitopes were present at a lower level than in the surrounding parenchyma cell walls. Arabinogalactan-protein glycan epitopes displayed a diversity of occurrence in relation to fibre development and the JIM14 epitope was specific to fibre cells, binding to the inner surface of secondary cell walls, throughout development. Xylan epitopes were found to be present in the fibre cells (and xylem secondary cell walls) and absent from adjacent parenchyma cell walls. Analysis of xylan occurrence in the phloem fibre cells of hemp and flax indicated that xylan epitopes were restricted to the primary cell walls of fibre cells and were not present in the secondary cell walls of these cells.

  10. Relationship between pollination and cell wall properties in common fig fruit.

    PubMed

    Trad, Mehdi; Ginies, Christian; Gaaliche, Badii; Renard, Catherine M G C; Mars, Messaoud

    2014-02-01

    Most botanical types in fig Ficus carica require pollination to fulfil their development and ensure quality onset of the fruit. Cell wall behaviour and composition was followed in fig fruit in response to pollination during maturity. Figs, when ripe, soften drastically and lose of their firmness and cell wall cohesion. Pollination increased peel thickness, flesh thickness, fresh weight and dry matter content of the fruit. Alcohol insoluble solids (AIS), more concentrated in the flesh tissue, were not influenced by the lack of pollination. Concentrations in uronic acids were higher in the AIS of the peel than that of the flesh and differences were significant between pollinated and non-pollinated fruits. Pectin polymers in figs were high methylated (DM>50). The methylation degree (DM) increased more with pollination affecting textural properties of the fig receptacle. The major neutral sugars from the AIS were glucose (Glc) from cellulose followed by arabinose (Ara). No significant changes in neutral sugars content could be allocated to pollination. Pollination is essential in fruit enlargement and softening. Minor changes were determined in the cell wall composition of the fruit at maturity. Fertile seeds resulting from pollination may possibly take place in hormonal activity stimulating many related enzymes of the wall matrix depolymerisation in particular polygalacturonase (PG) and pectin methylesterase (PME).

  11. Relationship between pollination and cell wall properties in common fig fruit.

    PubMed

    Trad, Mehdi; Ginies, Christian; Gaaliche, Badii; Renard, Catherine M G C; Mars, Messaoud

    2014-02-01

    Most botanical types in fig Ficus carica require pollination to fulfil their development and ensure quality onset of the fruit. Cell wall behaviour and composition was followed in fig fruit in response to pollination during maturity. Figs, when ripe, soften drastically and lose of their firmness and cell wall cohesion. Pollination increased peel thickness, flesh thickness, fresh weight and dry matter content of the fruit. Alcohol insoluble solids (AIS), more concentrated in the flesh tissue, were not influenced by the lack of pollination. Concentrations in uronic acids were higher in the AIS of the peel than that of the flesh and differences were significant between pollinated and non-pollinated fruits. Pectin polymers in figs were high methylated (DM>50). The methylation degree (DM) increased more with pollination affecting textural properties of the fig receptacle. The major neutral sugars from the AIS were glucose (Glc) from cellulose followed by arabinose (Ara). No significant changes in neutral sugars content could be allocated to pollination. Pollination is essential in fruit enlargement and softening. Minor changes were determined in the cell wall composition of the fruit at maturity. Fertile seeds resulting from pollination may possibly take place in hormonal activity stimulating many related enzymes of the wall matrix depolymerisation in particular polygalacturonase (PG) and pectin methylesterase (PME). PMID:24393459

  12. Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells

    PubMed Central

    Almeida, Fausto; Antoniêto, Amanda Cristina Campos; Pessoni, André Moreira; Monteiro, Valdirene Neves; Alegre-Maller, Ana Claudia Paiva; Pigosso, Laurine Lacerda; Pereira, Maristela; Soares, Célia Maria de Almeida; Roque-Barreira, Maria Cristina

    2016-01-01

    Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM. PMID:27226767

  13. Influence of N-glycans on Expression of Cell Wall Remodeling Related Genes in Paracoccidioides brasiliensis Yeast Cells.

    PubMed

    Almeida, Fausto; Antoniêto, Amanda Cristina Campos; Pessoni, André Moreira; Monteiro, Valdirene Neves; Alegre-Maller, Ana Claudia Paiva; Pigosso, Laurine Lacerda; Pereira, Maristela; Soares, Célia Maria de Almeida; Roque-Barreira, Maria Cristina

    2016-04-01

    Paracoccidioidomycosis is the most prevalent systemic mycosis in Latin America. It is caused by the temperature-dependent dimorphic fungus Paracoccidioides brasiliensis. The P. brasiliensis cell wall is a dynamic outer structure, composed of a network of glycoproteins and polysaccharides, such as chitin, glucan and N-glycosylated proteins. These glycoproteins can interact with the host to affect infection rates, and are known to perform other functions. We inhibited N-linked glycosylation using tunicamycin (TM), and then evaluated the expression of P. brasiliensis genes related to cell wall remodeling. Our results suggest that cell wall synthesis related genes, such as β-1,3-glucanosyltransferase (PbGEL3), 1,3-β-D-glucan synthase (PbFKS1), and α-1,4-amylase (PbAMY), as well as cell wall degrading related genes, such as N-acetyl-β-D-glucosaminidase (PbNAG1), α-1,3-glucanase (PbAGN), and β-1,3-glucanase (PbBGN1 and PbBGN2), have their expression increased by the N-glycosylation inhibition, as detected by qRT-PCR. The observed increases in gene expression levels reveal possible compensatory mechanisms for diminished enzyme activity due to the lack of glycosylation caused by TM.

  14. Effects of multivalent cations on cell wall-associated acid phosphatase activity

    SciTech Connect

    Tu, S.I.; Brouillette, J.N.; Nagahashi, G.; Kumosinski, T.F.

    1988-09-01

    Primary cell walls, free from cytoplasmic contamination were prepared from corn (Zea mays L.) roots and potato (Solanum tuberosum) tubers. After EDTA treatment, the bound acid phosphatase activities were measured in the presence of various multivalent cations. Under the conditions of minimized Donnan effect and at pH 4.2, the bound enzyme activity of potato tuber cell walls (PCW) was stimulated by Cu/sup 2 +/, Mg/sup 2 +/, Za/sup 2 +/, and Mn/sup 2 +/; unaffected by Ba/sup 2 +/, Cd/sup 2 +/, and Pb/sup 2 +/; and inhibited by Al/sup 3 +/. The bound acid phosphatase of PCW was stimulated by a low concentration but inhibited by a higher concentration of Hg/sup 2 +/. On the other hand, in the case of corn root cells walls (CCW), only inhibition of the bound acid phosphatase by Al/sup 3 +/ and Hg/sup 2 +/ was observed. Kinetic analyses revealed that PCW acid phosphatase exhibited a negative cooperativity under all employed experimental conditions except in the presence of Mg/sup 2 +/. In contrast, CCW acid phosphatase showed no cooperative behavior. The presence of Ca/sup 2 +/ significantly reduced the effects of Hg/sup 2 +/ or Al/sup 3 +/, but not Mg/sup 2 +/, to the bound cell wall acid phosphatases. The salt solubilized (free) acid phosphatases from both PCW and CCW were not affected by the presence of tested cations except for Hg/sup 2 +/ or Al/sup 3 +/ which caused a Ca/sup 2 +/-insensitive inhibition of the enzymes. The induced stimulation or inhibition of bound acid phosphatases was quantitatively related to cation binding in the cell wall structure.

  15. Local Nanomechanical Motion of the Cell Wall of Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew E.; Sehati, Sadaf; Gralla, Edith B.; Valentine, Joan S.; Gimzewski, James K.

    2004-08-01

    We demonstrate that the cell wall of living Saccharomyces cerevisiae (baker's yeast) exhibits local temperature-dependent nanomechanical motion at characteristic frequencies. The periodic motions in the range of 0.8 to 1.6 kHz with amplitudes of ~3 nm were measured using the cantilever of an atomic force microscope (AFM). Exposure of the cells to a metabolic inhibitor causes the periodic motion to cease. From the strong frequency dependence on temperature, we derive an activation energy of 58 kJ/mol, which is consistent with the cell's metabolism involving molecular motors such as kinesin, dynein, and myosin. The magnitude of the forces observed (~10 nN) suggests concerted nanomechanical activity is operative in the cell.

  16. Enzymology and molecular biology of cell wall biosynthesis. Progress report

    SciTech Connect

    Ray, P.M.

    1993-03-20

    In order to be able to explore the control of cell wall polysaccharide synthesis at the molecular level, which inter alia might eventually lead to means for useful modification of plant biomass polysaccharide production, the immediate goals of this project are to identify polypeptides responsible for wall polysaccharide synthase activities and to obtain clones of the genes that encode them. We are concentrating on plasma membraneassociated (1,3)-{beta}-glucan synthase (glucan synthase-II or GS-II) and Golgi-associated (1,4)-{beta}-glucan synthase (glucan synthase-I or GS-I), of growing pea stem tissue. Our progress has been much more rapid with respect to GS-II than regarding GS-I.

  17. Cell wall pH and auxin transport velocity

    NASA Technical Reports Server (NTRS)

    Hasenstein, K. H.; Rayle, D.

    1984-01-01

    According to the chemiosmotic polar diffusion hypothesis, auxin pulse velocity and basal secretion should increase with decreasing cell wall pH. Experiments were designed to test this prediction. Avena coleoptile sections were preincubated in either fusicoccin (FC), cycloheximide, pH 4.0, or pH 8.0 buffer and subsequently their polar transport capacities were determined. Relative to controls, FC enhanced auxin (IAA) uptake while CHI and pH 8.0 buffer reduced IAA uptake. Nevertheless, FC reduced IAA pulse velocity while cycloheximide increased velocity. Additional experiments showed that delivery of auxin to receivers is enhanced by increased receiver pH. This phenomenon was overcome by a pretreatment of the tissue with IAA. Our data suggest that while acidic wall pH values facilitate cellular IAA uptake, they do not enhance pulse velocity or basal secretion. These findings are inconsistent with the chemiosmotic hypothesis for auxin transport.

  18. Stipe cell wall architecture varies with the stipe elongation of the mushroom Coprinopsis cinerea.

    PubMed

    Niu, Xin; Liu, Zhonghua; Zhou, Yajun; Wang, Jun; Zhang, Wenming; Yuan, Sheng

    2015-10-01

    A large amount of granular protrusions overlie the outer cell wall surfaces in both elongating and non-elongating stipe regions but overlie the inner cell wall surfaces only in non-elongating stipe regions. Removal of granular protrusions using alkali, amorphous materials overlying on both the inner and outer cell wall surfaces were explored in the non-elongating stipe regions. β-1,3-Glucanase treatment not only removed above those granular protrusions and underlying amorphous materials on the wall surfaces but also removed wall matrices embedding chitin microfibrils on the cell walls of most stipe regions, except for the outer cell wall surfaces of the non-elongating stipe regions where most of the wall matrices remained. The chitin microfibrils were closely and transversely arranged on both the inner and outer cell wall surfaces in the elongating apical stipe region, whereas they were loosely and transversely arranged on the inner cell wall surfaces and further became sparser and even randomly arranged on the outer cell wall surface in the non-elongating stipe regions. We propose that the surface deposition of granular protrusions and amorphous materials and the change of microfibril architecture and wall matrices may cause loss of wall plasticity and cessation of stipe elongation.

  19. Change in wall composition of transfer and aleurone cells during wheat grain development.

    PubMed

    Robert, P; Jamme, F; Barron, C; Bouchet, B; Saulnier, L; Dumas, P; Guillon, F

    2011-02-01

    In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1-3)(1-4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1-3)(1-4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1-3)(1-4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.

  20. Measuring the Mechanical Properties of Plant Cell Walls.

    PubMed

    Vogler, Hannes; Felekis, Dimitrios; Nelson, Bradley J; Grossniklaus, Ueli

    2015-03-25

    The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM) and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM), and its automated successor, real-time CFM (RT-CFM).

  1. Measuring the Mechanical Properties of Plant Cell Walls

    PubMed Central

    Vogler, Hannes; Felekis, Dimitrios; Nelson, Bradley J.; Grossniklaus, Ueli

    2015-01-01

    The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM) and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM), and its automated successor, real-time CFM (RT-CFM). PMID:27135321

  2. Measuring the Mechanical Properties of Plant Cell Walls.

    PubMed

    Vogler, Hannes; Felekis, Dimitrios; Nelson, Bradley J; Grossniklaus, Ueli

    2015-01-01

    The size, shape and stability of a plant depend on the flexibility and integrity of its cell walls, which, at the same time, need to allow cell expansion for growth, while maintaining mechanical stability. Biomechanical studies largely vanished from the focus of plant science with the rapid progress of genetics and molecular biology since the mid-twentieth century. However, the development of more sensitive measurement tools renewed the interest in plant biomechanics in recent years, not only to understand the fundamental concepts of growth and morphogenesis, but also with regard to economically important areas in agriculture, forestry and the paper industry. Recent advances have clearly demonstrated that mechanical forces play a crucial role in cell and organ morphogenesis, which ultimately define plant morphology. In this article, we will briefly review the available methods to determine the mechanical properties of cell walls, such as atomic force microscopy (AFM) and microindentation assays, and discuss their advantages and disadvantages. But we will focus on a novel methodological approach, called cellular force microscopy (CFM), and its automated successor, real-time CFM (RT-CFM). PMID:27135321

  3. [Hydroxyproline: Rich glycoproteins of the plant and cell wall

    SciTech Connect

    Varner, J.E.

    1993-01-01

    Since xylem tissue includes the main cell types which are lignified, we are interested in gene expression of glycine-rich proteins and proline-rich proteins, and other proteins which are involved in secondary cell wall thickening during xylogenesis. Since the main feature of xylogenesis is the deposition of additional wall components, study of the mechanism of xylogenesis will greatly advance our knowledge of the synthesis and assembly of wall macromolecules. We are using the in vitro xylogenesis system from isolated Zinnia mesophyll cells to isolate genes which are specifically expressed during xylogenesis. We have used subtractive hybridization methods to isolate a number of cDNA clones for differentially regulated genes from the cells after hormonal induction. So far, we have partially characterized 18 different cDNA clones from 239 positive clones. These differentially regulated genes can be divided into three sets according to the characteristics of gene expression in the induction medium and the control medium. The first set is induced in both the induction medium and the control medium without hormones. The second set is induced mainly in the induction medium and in the control medium with the addition of NAA alone. Two of thesegenes are exclusively induced by auxin. The third set of genes is induced mainly in the induction medium. Since these genes are not induced by either auxin or cytokinin alone, they may be directly involved in the process of xylogenesis. Our experiments on the localization of H[sub 2]O[sub 2] production reinforce the earlier ideas of others that H[sub 2]O[sub 2] is involved in normal lignification.

  4. Monoclonal antibodies, carbohydrate-binding modules, and the detection of polysaccharides in plant cell walls.

    PubMed

    Hervé, Cécile; Marcus, Susan E; Knox, J Paul

    2011-01-01

    Plant cell walls are diverse composites of complex polysaccharides. Molecular probes such as monoclonal antibodies (MABs) and carbohydrate-binding modules (CBMs) are important tools to detect and dissect cell wall structures in plant materials. We provide an account of methods that can be used to detect cell wall polysaccharide structures (epitopes) in plant materials and also describe treatments that can provide information on the masking of sets of polysaccharides that may prevent detection. These masking -phenomena may indicate potential interactions between sets of cell wall polysaccharides, and methods to uncover them are an important aspect of cell wall immunocytochemistry.

  5. Comparative structure and biomechanics of plant primary and secondary cell walls.

    PubMed

    Cosgrove, Daniel J; Jarvis, Michael C

    2012-01-01

    Recent insights into the physical biology of plant cell walls are reviewed, summarizing the essential differences between primary and secondary cell walls and identifying crucial gaps in our knowledge of their structure and biomechanics. Unexpected parallels are identified between the mechanism of expansion of primary cell walls during growth and the mechanisms by which hydrated wood deforms under external tension. There is a particular need to revise current "cartoons" of plant cell walls to be more consistent with data from diverse approaches and to go beyond summarizing limited aspects of cell walls, serving instead as guides for future experiments and for the application of new techniques.

  6. Comparative structure and biomechanics of plant primary and secondary cell walls

    PubMed Central

    Cosgrove, Daniel J.; Jarvis, Michael C.

    2012-01-01

    Recent insights into the physical biology of plant cell walls are reviewed, summarizing the essential differences between primary and secondary cell walls and identifying crucial gaps in our knowledge of their structure and biomechanics. Unexpected parallels are identified between the mechanism of expansion of primary cell walls during growth and the mechanisms by which hydrated wood deforms under external tension. There is a particular need to revise current “cartoons” of plant cell walls to be more consistent with data from diverse approaches and to go beyond summarizing limited aspects of cell walls, serving instead as guides for future experiments and for the application of new techniques. PMID:22936943

  7. Biomass enzymatic saccharification is determined by the non-KOH-extractable wall polymer features that predominately affect cellulose crystallinity in corn.

    PubMed

    Jia, Jun; Yu, Bin; Wu, Leiming; Wang, Hongwu; Wu, Zhiliang; Li, Ming; Huang, Pengyan; Feng, Shengqiu; Chen, Peng; Zheng, Yonglian; Peng, Liangcai

    2014-01-01

    Corn is a major food crop with enormous biomass residues for biofuel production. Due to cell wall recalcitrance, it becomes essential to identify the key factors of lignocellulose on biomass saccharification. In this study, we examined total 40 corn accessions that displayed a diverse cell wall composition. Correlation analysis showed that cellulose and lignin levels negatively affected biomass digestibility after NaOH pretreatments at p<0.05 & 0.01, but hemicelluloses did not show any significant impact on hexoses yields. Comparative analysis of five standard pairs of corn samples indicated that cellulose and lignin should not be the major factors on biomass saccharification after pretreatments with NaOH and H2SO4 at three concentrations. Notably, despite that the non-KOH-extractable residues covered 12%-23% hemicelluloses and lignin of total biomass, their wall polymer features exhibited the predominant effects on biomass enzymatic hydrolysis including Ara substitution degree of xylan (reverse Xyl/Ara) and S/G ratio of lignin. Furthermore, the non-KOH-extractable polymer features could significantly affect lignocellulose crystallinity at p<0.05, leading to a high biomass digestibility. Hence, this study could suggest an optimal approach for genetic modification of plant cell walls in bioenergy corn.

  8. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression.

    PubMed

    Amaya, Ronny; Pierides, Alexis; Tarbell, John M

    2015-01-01

    Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle - SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4%) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease.

  9. The Interaction between Fluid Wall Shear Stress and Solid Circumferential Strain Affects Endothelial Gene Expression

    PubMed Central

    Amaya, Ronny; Pierides, Alexis; Tarbell, John M.

    2015-01-01

    Endothelial cells lining the walls of blood vessels are exposed simultaneously to wall shear stress (WSS) and circumferential stress (CS) that can be characterized by the temporal phase angle between WSS and CS (stress phase angle – SPA). Regions of the circulation with highly asynchronous hemodynamics (SPA close to -180°) such as coronary arteries are associated with the development of pathological conditions such as atherosclerosis and intimal hyperplasia whereas more synchronous regions (SPA closer to 0°) are spared of disease. The present study evaluates endothelial cell gene expression of 42 atherosclerosis-related genes under asynchronous hemodynamics (SPA=-180 °) and synchronous hemodynamics (SPA=0 °). This study used a novel bioreactor to investigate the cellular response of bovine aortic endothelial cells (BAECS) exposed to a combination of pulsatile WSS and CS at SPA=0 or SPA=-180. Using a PCR array of 42 genes, we determined that BAECS exposed to non-reversing sinusoidal WSS (10±10 dyne/cm2) and CS (4 ± 4 %) over a 7 hour testing period displayed 17 genes that were up regulated by SPA = -180 °, most of them pro-atherogenic, including NFκB and other NFκB target genes. The up regulation of NFκB p50/p105 and p65 by SPA =-180° was confirmed by Western blots and immunofluorescence staining demonstrating the nuclear translocation of NFκB p50/p105 and p65. These data suggest that asynchronous hemodynamics (SPA=-180 °) can elicit proatherogenic responses in endothelial cells compared to synchronous hemodynamics without shear stress reversal, indicating that SPA may be an important parameter characterizing arterial susceptibility to disease. PMID:26147292

  10. Insights into Substrate Specificity of NlpC/P60 Cell Wall Hydrolases Containing Bacterial SH3 Domains

    PubMed Central

    Xu, Qingping; Liu, Xueqian W.; Patin, Delphine; Farr, Carol L.; Grant, Joanna C.; Chiu, Hsiu-Ju; Jaroszewski, Lukasz; Knuth, Mark W.; Godzik, Adam; Lesley, Scott A.; Elsliger, Marc-André; Deacon, Ashley M.

    2015-01-01

    ABSTRACT Bacterial SH3 (SH3b) domains are commonly fused with papain-like Nlp/P60 cell wall hydrolase domains. To understand how the modular architecture of SH3b and NlpC/P60 affects the activity of the catalytic domain, three putative NlpC/P60 cell wall hydrolases were biochemically and structurally characterized. These enzymes all have γ-d-Glu-A2pm (A2pm is diaminopimelic acid) cysteine amidase (or dl-endopeptidase) activities but with different substrate specificities. One enzyme is a cell wall lysin that cleaves peptidoglycan (PG), while the other two are cell wall recycling enzymes that only cleave stem peptides with an N-terminal l-Ala. Their crystal structures revealed a highly conserved structure consisting of two SH3b domains and a C-terminal NlpC/P60 catalytic domain, despite very low sequence identity. Interestingly, loops from the first SH3b domain dock into the ends of the active site groove of the catalytic domain, remodel the substrate binding site, and modulate substrate specificity. Two amino acid differences at the domain interface alter the substrate binding specificity in favor of stem peptides in recycling enzymes, whereas the SH3b domain may extend the peptidoglycan binding surface in the cell wall lysins. Remarkably, the cell wall lysin can be converted into a recycling enzyme with a single mutation. PMID:26374125

  11. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    PubMed

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products.

  12. Physical, functional and structural characterization of the cell wall fractions from baker's yeast Saccharomyces cerevisiae.

    PubMed

    Borchani, Chema; Fonteyn, Fabienne; Jamin, Guilhem; Paquot, Michel; Thonart, Philippe; Blecker, Christophe

    2016-03-01

    The yeast cell wall of Saccharomyces cerevisiae is an important source of β-d-glucan, a glucose homopolymer with many functional, nutritional and human health benefits. In the present study, the yeast cell wall fractionation process involving enzymatic treatments (savinase and lipolase enzymes) affected most of the physical and functional characteristics of extracted fractions. Thus, the fractionation process showed that β-d-glucan fraction F4 had significantly higher swelling power and fat binding capacity compared to other fractions (F1, F2 and F3). It also exhibited a viscosity of 652.12mPas and a high degree of brightness of extracted β-d-glucan fraction. Moreover, the fractionation process seemed to have an effect on structural and thermal properties of extracted fractions. Overall, results showed that yeast β-d-glucan had good potential for use as a prebiotic ingredient in food, as well as medicinal and pharmaceutical products. PMID:26471666

  13. Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of cell wall network structure model

    SciTech Connect

    Yi, Hojae; Puri, Virendra M.

    2012-11-01

    A primary plant cell wall network was computationally modeled using the finite element approach to study the hypothesis of hemicellulose (HC) tethering with the cellulose microfibrils (CMFs) as one of the major load-bearing mechanisms of the growing cell wall. A computational primary cell wall network fragment (10 × 10 μm) comprising typical compositions and properties of CMFs and HC was modeled with well-aligned CMFs. The tethering of HC to CMFs is modeled in accordance with the strength of the hydrogen bonding by implementing a specific load-bearing connection (i.e. the joint element). The introduction of the CMF-HC interaction to the computational cell wall network model is a key to the quantitative examination of the mechanical consequences of cell wall structure models, including the tethering HC model. When the cell wall network models with and without joint elements were compared, the hydrogen bond exhibited a significant contribution to the overall stiffness of the cell wall network fragment. When the cell wall network model was stretched 1% in the transverse direction, the tethering of CMF-HC via hydrogen bonds was not strong enough to maintain its integrity. When the cell wall network model was stretched 1% in the longitudinal direction, the tethering provided comparable strength to maintain its integrity. This substantial anisotropy suggests that the HC tethering with hydrogen bonds alone does not manifest sufficient energy to maintain the integrity of the cell wall during its growth (i.e. other mechanisms are present to ensure the cell wall shape).

  14. How reactive fluids alter fracture walls and affect shale-matrix accessibility

    NASA Astrophysics Data System (ADS)

    Fitts, J. P.; Deng, H.; Peters, C. A.

    2014-12-01

    Predictions of mass transfer across fracture boundaries and fluid flow in fracture networks provide fundamental inputs into risk and life cycle assessments of geologic energy technologies including oil and gas extraction, geothermal energy systems and geologic CO2 storage. However, major knowledge gaps exist due to the lack of experimental observations of how reactive fluids alter the pore structures and accessible surface area within fracture boundaries that control the mass transfer of organics, metals and salts, and influence fluid flow within the fracture. To investigate the fracture and rock matrix properties governing fracture boundary alteration, we developed a new flow-through cell that enables time-dependent 2D x-ray imaging of mineral dissolution and/or precipitation at a fracture surface. The parallel plate design provides an idealized fracture geometry to investigate the relationship between flow rate, reaction rate, and mineral spatial heterogeneity and variation. In the flow-cell, a carbonate-rich sample of Eagle Ford shale was reacted with acidified brine. The extent and rate of mineral dissolution were correlated with calcite abundance relative to less soluble silicate minerals. Three-dimensional x-ray tomography of the reacted fracture wall shows how calcite dissolution left behind a porous network of silicate minerals. And while this silicate network essentially preserved the location of the initial fracture wall, the pore network structures within the fracture boundary were dramatically altered, such that the accessible surface area of matrix components increased significantly. In a second set of experiments with a limestone specimen, however, the extent of dissolution and retreat of the fracture wall was not strictly correlated with the occurrence of calcite. Instead, the pattern and extent of dissolution suggested secondary causes such as calcite morphology, the presence of argillaceous minerals and other diagenetic features. Our experiments

  15. Proteomic Analysis of Cell Walls of Two Developmental Stages of Alfalfa Stems

    PubMed Central

    Verdonk, Julian C.; Hatfield, Ronald D.; Sullivan, Michael L.

    2012-01-01

    Cell walls are important for the growth and development of all plants. They are also valuable resources for feed and fiber, and more recently as a potential feedstock for bioenergy production. Cell wall proteins comprise only a fraction of the cell wall, but play important roles in establishing the walls and in the chemical interactions (e.g., crosslinking) of cell wall components. This crosslinking provides structure, but restricts digestibility of cell wall complex carbohydrates, limiting available energy in animal and bioenergy production systems. Manipulation of cell wall proteins could be a strategy to improve digestibility. An analysis of the cell wall proteome of apical alfalfa stems (less mature, more digestible) and basal alfalfa stems (more mature, less digestible) was conducted using a recently developed low-salt/density gradient method for the isolation of cell walls. Walls were subsequently subjected to a modified extraction utilizing EGTA to remove pectins, followed by a LiCl extraction to isolate more tightly bound proteins. Recovered proteins were identified using shotgun proteomics. We identified 272 proteins in the alfalfa stem cell wall proteome, 153 of which had not previously been identified in cell wall proteomic analyses. Nearly 70% of the identified proteins were predicted to be secreted, as would be expected for most cell wall proteins, an improvement over previously published studies using traditional cell wall isolation methods. A comparison of our and several other cell wall proteomic studies indicates little overlap in identified proteins among them, which may be largely due to differences in the tissues used as well as differences in experimental approach. PMID:23248635

  16. Bacterial cell wall-induced arthritis: chemical composition and tissue distribution of four Lactobacillus strains.

    PubMed

    Simelyte, E; Rimpiläinen, M; Lehtonen, L; Zhang, X; Toivanen, P

    2000-06-01

    To study what determines the arthritogenicity of bacterial cell walls, cell wall-induced arthritis in the rat was applied, using four strains of Lactobacillus. Three of the strains used proved to induce chronic arthritis in the rat; all were Lactobacillus casei. The cell wall of Lactobacillus fermentum did not induce chronic arthritis. All arthritogenic bacterial cell walls had the same peptidoglycan structure, whereas that of L. fermentum was different. Likewise, all arthritogenic cell walls were resistant to lysozyme degradation, whereas the L. fermentum cell wall was lysozyme sensitive. Muramic acid was observed in the liver, spleen, and lymph nodes in considerably larger amounts after injection of an arthritogenic L. casei cell wall than following injection of a nonarthritogenic L. fermentum cell wall. The L. casei cell wall also persisted in the tissues longer than the L. fermentum cell wall. The present results, taken together with those published previously, underline the possibility that the chemical structure of peptidoglycan is important in determining the arthritogenicity of the bacterial cell wall. PMID:10816508

  17. Chromatin and Cell Wall Staining of Schizosaccharomyces pombe.

    PubMed

    Hagan, Iain M

    2016-01-01

    Fission yeasts grow by tip extension, maintaining a constant width until they reach a critical size threshold and divide. Division by medial fission-which gives these yeast their name-generates a new end that arises from the site of cytokinesis. The old end, which was produced during the previous cell cycle, initiates progression of the new cell cycle, and in G2, the new end is activated in a process termed new-end takeoff (NETO). In this protocol, the fluorescent stains calcofluor and 4',6-diamidino-2-phenylindole (DAPI) are used to give a rapid and informative assessment of morphogenesis and cell-cycle progression in the fission yeast Schizosaccharomyces pombe Calcofluor reveals the timing of NETO because it stains the birth scars that are generated at new ends by cytokinesis less efficiently than the rest of the cell wall. Intense calcofluor staining of the septum and measurement of cell length are also widely used to identify dividing cells and to gauge the timing of mitotic commitment. Staining nuclei with DAPI identifies mono- and binucleated cells and complements the calcofluor staining procedure to evaluate the stages of the cell cycle and identify mitotic errors. Equally simple DAPI staining procedures reveal chromatin structure in higher resolution, facilitating more accurate staging of mitotic progression and characterization of mitotic errors. PMID:27250942

  18. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata.

    PubMed

    Tanaka, Yutaka; Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  19. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    PubMed Central

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  20. Profiling the Hydrolysis of Isolated Grape Berry Skin Cell Walls by Purified Enzymes.

    PubMed

    Zietsman, Anscha J J; Moore, John P; Fangel, Jonatan U; Willats, William G T; Vivier, Melané A

    2015-09-23

    The unraveling of crushed grapes by maceration enzymes during winemaking is difficult to study because of the complex and rather undefined nature of both the substrate and the enzyme preparations. In this study we simplified both the substrate, by using isolated grape skin cell walls, and the enzyme preparations, by using purified enzymes in buffered conditions, to carefully follow the impact of the individual and combined enzymes on the grape skin cell walls. By using cell wall profiling techniques we could monitor the compositional changes in the grape cell wall polymers due to enzyme activity. Extensive enzymatic hydrolysis, achieved with a preparation of pectinases or pectinases combined with cellulase or hemicellulase enzymes, completely removed or drastically reduced levels of pectin polymers, whereas less extensive hydrolysis only opened up the cell wall structure and allowed extraction of polymers from within the cell wall layers. Synergistic enzyme activity was detectable as well as indications of specific cell wall polymer associations.

  1. Genotype, development and tissue-derived variation of cell-wall properties in the lignocellulosic energy crop Miscanthus

    PubMed Central

    da Costa, Ricardo M. F.; Lee, Scott J.; Allison, Gordon G.; Hazen, Samuel P.; Winters, Ana; Bosch, Maurice

    2014-01-01

    Background and Aims Species and hybrids of the genus Miscanthus contain attributes that make them front-runners among current selections of dedicated bioenergy crops. A key trait for plant biomass conversion to biofuels and biomaterials is cell-wall quality; however, knowledge of cell-wall composition and biology in Miscanthus species is limited. This study presents data on cell-wall compositional changes as a function of development and tissue type across selected genotypes, and considers implications for the development of miscanthus as a sustainable and renewable bioenergy feedstock. Methods Cell-wall biomass was analysed for 25 genotypes, considering different developmental stages and stem vs. leaf compositional variability, by Fourier transform mid-infrared spectroscopy and lignin determination. In addition, a Clostridium phytofermentans bioassay was used to assess cell-wall digestibility and conversion to ethanol. Key Results Important cell-wall compositional differences between miscanthus stem and leaf samples were found to be predominantly associated with structural carbohydrates. Lignin content increased as plants matured and was higher in stem tissues. Although stem lignin concentration correlated inversely with ethanol production, no such correlation was observed for leaves. Leaf tissue contributed significantly to total above-ground biomass at all stages, although the extent of this contribution was genotype-dependent. Conclusions It is hypothesized that divergent carbohydrate compositions and modifications in stem and leaf tissues are major determinants for observed differences in cell-wall quality. The findings indicate that improvement of lignocellulosic feedstocks should encompass tissue-dependent variation as it affects amenability to biological conversion. For gene–trait associations relating to cell-wall quality, the data support the separate examination of leaf and stem composition, as tissue-specific traits may be masked by considering only

  2. Immune activation affects chemical sexual ornaments of male Iberian wall lizards

    NASA Astrophysics Data System (ADS)

    López, Pilar; Gabirot, Marianne; Martín, José

    2009-01-01

    Many animals use chemical signals in sexual selection, but it is not clear how these sexual traits might have evolved to signal honestly male condition. It is possible that there is a trade-off between maintaining the immune system and the elaboration of ornaments. We experimentally challenged the immune system of male Iberian wall lizards, Podarcis hispanica, with a bacterial antigen (lipopolysaccharide), without pathogenic effects, to explore whether the immune activation affected chemical ornaments. Immune activation resulted in decreased proportions of a major chemical in femoral secretions (cholesta-5,7-dien-3-ol = provitamin D3) known to be selected in scent of males by females and which active form (vitamin D) has a variety of important effects on immune system function. This result suggests the existence of a potential trade-off between physiological regulation of the immune system and the allocation of essential nutrients (vitamins) to sexual chemical ornaments in male lizards.

  3. Pneumococcal cell wall phosphorylcholine elicits polyclonal antibody secretion in mice.

    PubMed

    Bach, M A; Beckmann, E; Levitt, D

    1984-07-01

    Immunization of mice with phosphorylcholine (PC)-bearing Staphylococcus pneumoniae Type 2, strain 36a (R36a) results in both a PC-specific and a polyclonal increase in splenic plaque-forming cells. The polyclonal increase was observed in all strains tested, including those bearing an X-linked immune defect resulting in an undetectable anti-PC immune response. The magnitude of the polyclonal response is directly related to the amount of bacterial surface PC as detected by enzyme-linked immunosorbent assay. Congenitally athymic (nude) mice mount an anti-PC plaque-forming cell response after R36a immunization but fail to produce a significant polyclonal response. From our results it appears that PC on the cell wall of a bacterium acts both as a polyclonal activator and a specific antigen, stimulating each by different mechanisms.

  4. Cellulose-hemicellulose interaction in wood secondary cell-wall

    NASA Astrophysics Data System (ADS)

    Zhang, Ning; Li, Shi; Xiong, Liming; Hong, Yu; Chen, Youping

    2015-12-01

    The wood cell wall features a tough and relatively rigid fiber reinforced composite structure. It acts as a pressure vessel, offering protection against mechanical stress. Cellulose microfibrils, hemicellulose and amorphous lignin are the three major components of wood. The structure of secondary cell wall could be imagined as the same as reinforced concrete, in which cellulose microfibrils acts as reinforcing steel bar and hemicellulose-lignin matrices act as the concrete. Therefore, the interface between cellulose and hemicellulose/lignin plays a significant role in determine the mechanical behavior of wood secondary cell wall. To this end, we present a molecular dynamics (MD) simulation study attempting to quantify the strength of the interface between cellulose microfibrils and hemicellulose. Since hemicellulose binds with adjacent cellulose microfibrils in various patterns, the atomistic models of hemicellulose-cellulose composites with three typical binding modes, i.e. bridge, loop and random binding modes are constructed. The effect of the shape of hemicellulose chain on the strength of hemicellulose-cellulose composites under shear loadings is investigated. The contact area as well as hydrogen bonds between cellulose and hemicellulose, together with the covalent bonds in backbone of hemicellulose chain are found to be the controlling parameters which determine the strength of the interfaces in the composite system. For the bridge binding model, the effect of shear loading direction on the strength of the cellulose material is also studied. The obtained results suggest that the shear strength of wood-inspired engineering composites can be optimized through maximizing the formations of the contributing hydrogen bonds between cellulose and hemicellulose.

  5. Ultrastructure of the cell wall of Bacillus polymyxa.

    PubMed

    Nermut, M V; Murray, R G

    1967-06-01

    The macromolecular arrangement on the surface of Bacillus polymyxa was revealed by metal shadowing of whole cells and wall fragments; it consisted of a rectangular array of 70-A globules with a repeating interval of 100 A. The substructure was studied in plan with phosphotungstic acid (pH 6) or uranyl acetate as negative stains of fragments and was studied also in profile with sections of embedded material. Staining of sections of cells fixed with glutaraldehyde showed that layering (approx. 80-A dense, 40-A light, and 120-A dense layers, outermost layer first) could be demonstrated in the cell wall with lead or uranyl acetate, used together or separately. The outer "dense" layer corresponded to the regularly arrayed structure (RS); it was removed by guanidine hydrochloride, sodium lauryl sulfate, cold formamide, and by trypsin. The RS layer (isolated by a hydrogen bond breaking reagent, guanidine hydrochloride) was disrupted by agents such as sodium lauryl sulfate or damaged by 3 m sodium chloride. Qualitative chemical tests, ultraviolet absorption, and removal by trypsin indicated that the structured layer consisted mainly of protein, but exact characterization was not attempted. The globular units making up the layer consisted of a small number of subunits, imperfectly resolved by negative staining. The underlying polysaccharide appeared to be covalently bound to the deepest (probably mucopeptide) layer since it required "hot" formamide for its removal. A survey of species was not made.

  6. A radioimmunoassay for lignin in plant cell walls

    SciTech Connect

    Dawley, R.M.

    1989-01-01

    Lignin detection and determination in herbaceous tissue requires selective, specific assays which are not currently available. A radioimmunoassay (RIA) was developed to study lignin metabolism in these tissues. A {beta}-aryl ether lignin model compound was synthesized, linked to keyhole limpet hemocyanin using a water-soluble carbodiimide, and injected into rabbits. The highest titer of the antiserum obtained was 34 {eta}g/mL of model derivatized BSA. An in vitro system was developed to characterize the RIA. The model compound was linked to amino activated polyacrylamide beads to mimic lignin in the cell walls. {sup 125}I Radiolabelled protein A was used to detect IgG antibody binding. The RIA was shown in the in vitro system to exhibit saturable binding. The amount of antibody bound decreased when the serum was diluted. Immunoelectrophoresis and competitive binding experiments confirmed that both aromatic rings of the lignin model compound had been antigenic. Chlorogenic acid, a phenolic known to be present in plant cells, did not compete for antibody binding. The RIA was used to measure lignin in milled plant samples and barley seedlings. Antiserum binding to wheat cell walls and stressed barley segments was higher than preimmune serum binding. Antibody binding to stressed barley tissue decreased following NaClO{sub 2} delignification. The RIA was found to be less sensitive than expected, so several avenues for improving the method are discussed.

  7. Ultrastructure of the Cell Wall of Bacillus polymyxa

    PubMed Central

    Nermut, M. V.; Murray, R. G. E.

    1967-01-01

    The macromolecular arrangement on the surface of Bacillus polymyxa was revealed by metal shadowing of whole cells and wall fragments; it consisted of a rectangular array of 70-A globules with a repeating interval of 100 A. The substructure was studied in plan with phosphotungstic acid (pH 6) or uranyl acetate as negative stains of fragments and was studied also in profile with sections of embedded material. Staining of sections of cells fixed with glutaraldehyde showed that layering (approx. 80-A dense, 40-A light, and 120-A dense layers, outermost layer first) could be demonstrated in the cell wall with lead or uranyl acetate, used together or separately. The outer “dense” layer corresponded to the regularly arrayed structure (RS); it was removed by guanidine hydrochloride, sodium lauryl sulfate, cold formamide, and by trypsin. The RS layer (isolated by a hydrogen bond breaking reagent, guanidine hydrochloride) was disrupted by agents such as sodium lauryl sulfate or damaged by 3 m sodium chloride. Qualitative chemical tests, ultraviolet absorption, and removal by trypsin indicated that the structured layer consisted mainly of protein, but exact characterization was not attempted. The globular units making up the layer consisted of a small number of subunits, imperfectly resolved by negative staining. The underlying polysaccharide appeared to be covalently bound to the deepest (probably mucopeptide) layer since it required “hot” formamide for its removal. A survey of species was not made. Images PMID:6025307

  8. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    NASA Astrophysics Data System (ADS)

    Alsteens, David; Dupres, Vincent; McEvoy, Kevin; Wildling, Linda; Gruber, Hermann J.; Dufrêne, Yves F.

    2008-09-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls.

  9. Mass Spectrometry for Characterizing Plant Cell Wall Polysaccharides

    PubMed Central

    Bauer, Stefan

    2012-01-01

    Mass spectrometry is a selective and powerful technique to obtain identification and structural information on compounds present in complex mixtures. Since it requires only small sample amount it is an excellent tool for researchers interested in detecting changes in composition of complex carbohydrates of plants. This mini-review gives an overview of common mass spectrometry techniques applied to the analysis of plant cell wall carbohydrates. It presents examples in which mass spectrometry has been used to elucidate the structure of oligosaccharides derived from hemicelluloses and pectins and illustrates how information on sequence, linkages, branching, and modifications are obtained from characteristic fragmentation patterns. PMID:22645587

  10. Theoretical investigation on breaking plant cell wall by laser

    NASA Astrophysics Data System (ADS)

    Chen, Liang-cai; Wang, Jin-ji; Ma, Peng; Zuo, Du-luo; Wang, Xin-bing; Cheng, Zu-hai

    2011-11-01

    The experiment collected some spinach leaves which were irradiated by pulsed CO2 laser with energy 5.6J, 8.0J and 9.5J respectively. Each of them was soaked in three kinds of solvents (water, ethanol, the mixture of ethanol and petroleum ether) respectively. The experiment shows that the ethanol solution which contains the irradiated leaves turn dark green than the ethanol solution which contains the intact leaves and the color of solution with the leaves irradiated by CO2 laser with 9.5J changes the most significantly. Further, selective excitation on the molecular level of the cell wall were used to explain the phenomenon.

  11. Theoretical investigation on breaking plant cell wall by laser

    NASA Astrophysics Data System (ADS)

    Chen, Liang-cai; Wang, Jin-ji; Ma, Peng; Zuo, Du-luo; Wang, Xin-bing; Cheng, Zu-hai

    2012-03-01

    The experiment collected some spinach leaves which were irradiated by pulsed CO2 laser with energy 5.6J, 8.0J and 9.5J respectively. Each of them was soaked in three kinds of solvents (water, ethanol, the mixture of ethanol and petroleum ether) respectively. The experiment shows that the ethanol solution which contains the irradiated leaves turn dark green than the ethanol solution which contains the intact leaves and the color of solution with the leaves irradiated by CO2 laser with 9.5J changes the most significantly. Further, selective excitation on the molecular level of the cell wall were used to explain the phenomenon.

  12. Hydrodynamic forces on a wall-bound leukocyte due to interactions with flowing red cells

    NASA Astrophysics Data System (ADS)

    Isfahani, Amir H. G.; Freund, Jonathan B.

    2011-11-01

    As part of both healthy and pathologically physiological mechanisms sphere-like white blood cells (leukocytes) adhere to the walls of small blood vessels. We use quantitative numerical simulations to compare the forces from flowing red blood cells on a wall-adhered leukocyte to a homogenized model of blood at the same flow conditions. We model the highly flexible red blood cells using a fast O (N log N) boundary integral formulation. These elastic membranes deform substantially but strongly resist surface dilatation. They enclose a higher than plasma viscosity hemoglobin solution. The no-slip condition is enforced on the stationary leukocyte as well as the vessel walls. Vessel diameters of 10 to 20 microns are studied. Different hematocrits, leukocyte shapes, and flow conditions are examined. In vessels comparable to the size of the cells, we show that the particulate character of blood significantly affects the magnitude of the forces that the leukocyte experiences, transiently increasing it well above the homogenized-blood prediction: for example, for a tube hematocrit of 25 % and a spherical protrusion with a diameter 0.75 that of the tube, the average forces are increased by about 40 % and the local forces by more than 100 % relative to those expected for a blood model homogenized by its effective viscosity.

  13. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions.

    PubMed

    Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2015-07-07

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200 °C. The results show very hot and compressed water is needed to make mushrooms mushy.

  14. In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions

    PubMed Central

    Deguchi, Shigeru; Tsujii, Kaoru; Horikoshi, Koki

    2015-01-01

    Recent findings of intact chitin in fossil records suggest surprisingly high recalcitrance of this biopolymer during hydrothermal treatments. We also know in the experience of everyday life that mushroom, cells of which have chitinous cell walls, do not fall apart however long they are simmered. We used in situ optical microscopy to examine chitin and fungal cells with chitinous cell walls during hydrothermal treatments, and obtained direct evidence that they remained undegraded at temperatures well over 200 °C. The results show very hot and compressed water is needed to make mushrooms mushy. PMID:26148792

  15. Heterogeneity in the chemistry, structure and function of plant cell walls.

    PubMed

    Burton, Rachel A; Gidley, Michael J; Fincher, Geoffrey B

    2010-10-01

    Higher plants resist the forces of gravity and powerful lateral forces through the cumulative strength of the walls that surround individual cells. These walls consist mainly of cellulose, noncellulosic polysaccharides and lignin, in proportions that depend upon the specific functions of the cell and its stage of development. Spatially and temporally controlled heterogeneity in the physicochemical properties of wall polysaccharides is observed at the tissue and individual cell levels, and emerging in situ technologies are providing evidence that this heterogeneity also occurs across a single cell wall. We consider the origins of cell wall heterogeneity and identify contributing factors that are inherent in the molecular mechanisms of polysaccharide biosynthesis and are crucial for the changing biological functions of the wall during growth and development. We propose several key questions to be addressed in cell wall biology, together with an alternative two-phase model for the assembly of noncellulosic polysaccharides in plants.

  16. Effects of supercritical carbon dioxide (SC-CO(2)) oil extraction on the cell wall composition of almond fruits.

    PubMed

    Femenia, A; García-Marín, M; Simal, S; Rosselló, C; Blasco, M

    2001-12-01

    Extraction of oil from almond fruits using supercritical carbon dioxide (SC-CO(2)) was carried out at 50 degrees C and 330 bar on three sets of almonds: raw almond seeds, raw almond kernels, and toasted almond seeds. Three different oil extraction percentages were applied on each set ranging from approximately 15 to 16%, from approximately 27 to 33%, and from approximately 49 to 64%. Although no major changes were detected in the fatty acid composition between fresh and partially defatted samples, carbohydrate analysis of partially defatted materials revealed important changes in cell wall polysaccharides from almond tissues. Thus, at low extraction percentages (up to approximately 33%), pectic polysaccharides and hemicellulosic xyloglucans were the main type of polymers affected, suggesting the modification of the cell wall matrix, although without breakage of the walls. Then, as supercritical fluid extraction (SCFE) continues and higher extraction rates are achieved (up to approximately 64%), a major disruption of the cell wall occurred as indicated by the losses of all major types of cell wall polysaccharides, including cellulose. These results suggest that, under the conditions used for oil extraction using SC-CO(2), fatty acid chains are able to exit the cells through nonbroken walls; the modification of the pectin-hemicellulose network might have increased the porosity of the wall. However, as high pressure is being applied, there is a progressive breakage of the cell walls allowing the free transfer of the fatty acid chains from inside the cells. These findings might contribute to providing the basis for the optimization of SCFE procedures based on plant food sources.

  17. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    SciTech Connect

    Yotis, W.W.; Zeb, M.; McNulty, J.; Kirchner, F.; Reilly, C.; Glendenin, L.

    1983-07-01

    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly. The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.

  18. Daughter cell separation is controlled by cytokinetic ring-activated cell wall hydrolysis.

    PubMed

    Uehara, Tsuyoshi; Parzych, Katherine R; Dinh, Thuy; Bernhardt, Thomas G

    2010-04-21

    During bacterial cytokinesis, hydrolytic enzymes are used to split wall material shared by adjacent daughter cells to promote their separation. Precise control over these enzymes is critical to prevent breaches in wall integrity that can cause cell lysis. How these potentially lethal hydrolases are regulated has remained unknown. Here, we investigate the regulation of cell wall turnover at the Escherichia coli division site. We show that two components of the division machinery with LytM domains (EnvC and NlpD) are direct regulators of the cell wall hydrolases (amidases) responsible for cell separation (AmiA, AmiB and AmiC). Using in vitro cell wall cleavage assays, we show that EnvC activates AmiA and AmiB, whereas NlpD activates AmiC. Consistent with these findings, we show that an unregulated EnvC mutant requires functional AmiA or AmiB but not AmiC to induce cell lysis, and that the loss of NlpD phenocopies an AmiC(-) defect. Overall, our results suggest that cellular amidase activity is regulated spatially and temporally by coupling their activation to the assembly of the cytokinetic ring.

  19. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds.

  20. The cell-wall glycoproteins of the green alga Scenedesmus obliquus. The predominant cell-wall polypeptide of Scenedesmus obliquus is related to the cell-wall glycoprotein gp3 of Chlamydomonas reinhardtii.

    PubMed

    Voigt, Jürgen; Stolarczyk, Adam; Zych, Maria; Malec, Przemysław; Burczyk, Jan

    2014-02-01

    The green alga Scenedesmus obliquus contains a multilayered cell wall, ultrastructurally similar to that of Chlamydomonas reinhardtii, although its proportion of hydroxyproline is considerably lower. Therefore, we have investigated the polypeptide composition of the insoluble and the chaotrope-soluble wall fractions of S. obliquus. The polypeptide pattern of the chaotrope-soluble wall fraction was strongly modified by chemical deglycosylation with anhydrous hydrogen fluoride (HF) in pyridine indicating that most of these polypeptides are glycosylated. Polypeptide constituents of the chaotrope-soluble cell-wall fraction with apparent molecular masses of 240, 270, 265, and 135 kDa cross-reacted with a polyclonal antibody raised against the 100 kDa deglycosylation product of the C. reinhardtii cell-wall glycoprotein GP3B. Chemical deglycosylation of the chaotrope-soluble wall fraction resulted in a 135 kDa major polypeptide and a 106 kDa minor component reacting with the same antibody. This antibody recognized specific peptide epitopes of GP3B. When the insoluble wall fraction of S. obliquus was treated with anhydrous HF/pyridine, three polypeptides with apparent molecular masses of 144, 135, and 65 kDa were solubilized, which also occured in the deglycosylated chaotrope-soluble wall fraction. These findings indicate that theses glycoproteins are cross-linked to the insoluble wall fraction via HF-sensitive bonds. PMID:24388513

  1. Penium margaritaceum: A Unicellular Model Organism for Studying Plant Cell Wall Architecture and Dynamics

    PubMed Central

    Domozych, David S.

    2014-01-01

    Penium margaritaceum is a new and valuable unicellular model organism for studying plant cell wall structure and developmental dynamics. This charophyte has a cell wall composition remarkably similar to the primary cell wall of many higher plants and clearly-defined inclusive zones containing specific polymers. Penium has a simple cylindrical phenotype with a distinct region of focused wall synthesis. Specific polymers, particularly pectins, can be identified using monoclonal antibodies raised against polymers of higher plant cell walls. Immunofluorescence-based labeling is easily performed using live cells that subsequently can be returned to culture and monitored. This feature allows for rapid assessment of wall expansion rates and identification of multiple polymer types in the wall microarchitecture during the cell cycle. Cryofixation by means of spray freezing provides excellent transmission electron microscopy imaging of the cell, including its elaborate endomembrane and cytoskeletal systems, both integral to cell wall development. Penium’s fast growth rate allows for convenient microarray screening of various agents that alter wall biosynthesis and metabolism. Finally, recent successful development of transformed cell lines has allowed for non-invasive imaging of proteins in cells and for RNAi reverse genetics that can be used for cell wall biosynthesis studies. PMID:27135519

  2. Loss-of-Function Mutation of REDUCED WALL ACETYLATION2 in Arabidopsis Leads to Reduced Cell Wall Acetylation and Increased Resistance to Botrytis cinerea1[W][OA

    PubMed Central

    Manabe, Yuzuki; Nafisi, Majse; Verhertbruggen, Yves; Orfila, Caroline; Gille, Sascha; Rautengarten, Carsten; Cherk, Candice; Marcus, Susan E.; Somerville, Shauna; Pauly, Markus; Knox, J. Paul; Sakuragi, Yumiko; Scheller, Henrik Vibe

    2011-01-01

    Nearly all polysaccharides in plant cell walls are O-acetylated, including the various pectic polysaccharides and the hemicelluloses xylan, mannan, and xyloglucan. However, the enzymes involved in the polysaccharide acetylation have not been identified. While the role of polysaccharide acetylation in vivo is unclear, it is known to reduce biofuel yield from lignocellulosic biomass by the inhibition of microorganisms used for fermentation. We have analyzed four Arabidopsis (Arabidopsis thaliana) homologs of the protein Cas1p known to be involved in polysaccharide O-acetylation in Cryptococcus neoformans. Loss-of-function mutants in one of the genes, designated REDUCED WALL ACETYLATION2 (RWA2), had decreased levels of acetylated cell wall polymers. Cell wall material isolated from mutant leaves and treated with alkali released about 20% lower amounts of acetic acid when compared with the wild type. The same level of acetate deficiency was found in several pectic polymers and in xyloglucan. Thus, the rwa2 mutations affect different polymers to the same extent. There were no obvious morphological or growth differences observed between the wild type and rwa2 mutants. However, both alleles of rwa2 displayed increased tolerance toward the necrotrophic fungal pathogen Botrytis cinerea. PMID:21212300

  3. Comparisons of methods measuring fiber maturity and fineness of Upland cotton fibers containing different degree of fiber cell wall development.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fiber maturity and fineness are important physical properties of cotton fibers affecting qualities of fibers and yarns. A number of direct and indirect methods are used for measuring fiber maturity and fineness from mature fibers that are thick secondary cell walls composed of almost pure cellulose....

  4. Properties of lead deposits in cell walls of radish (Raphanus sativus) roots.

    PubMed

    Inoue, Hiroshi; Fukuoka, Daisuke; Tatai, Yuri; Kamachi, Hiroyuki; Hayatsu, Manabu; Ono, Manami; Suzuki, Suechika

    2013-01-01

    Various mechanisms are involved in detoxification of heavy metals such as lead (Pb) in plant cells. Most of the Pb taken up by plants accumulates in their roots. However, the detailed properties of Pb complexes in roots remain unclear. We have investigated the properties of Pb deposits in root cell walls of radish (Raphanus sativus L.) seedlings grown on glass beads bed containing Pb pellets, which are the source of Pb-contamination in shooting range soils. Pb deposits were tightly bound to cell walls. Cell wall fragments containing about 50,000 ppm Pb were prepared from the roots. After extracting Pb from the cell wall fragments using HCl, Pb ions were recombined with the Pb-extracted cell wall fragments in a solution containing Pb acetate. When the cell wall fragments were treated with pectinase (E.C. 3.2.1.15) and were chemically modified with 1-ethyl-3-dimethylamino-propylcarboimide, the Pb-rebinding ability of the treated cell wall fragments decreased. When acid-treated cell wall fragments were incubated in a solution containing Pb(2+) and excess amounts of a chelating agent, Pb recombined with the cell wall fragments were measured to estimate the affinity between Pb(2+) and the cell wall fragments. Our data show that Pb(2+) binds to carboxyl groups of cell walls. The source of the carboxyl groups is suggested to be pectic compounds. A stability constant of the Pb-cell wall complex was estimated to be about 10(8). The role of root cell walls in the mechanism underlying heavy metal tolerance was discussed.

  5. Biosynthesis of non-cellulosic polysaccharides of plant cell walls.

    PubMed

    Dhugga, Kanwarpal S

    2012-02-01

    Enzymes that make the polymer backbones of plant cell wall polysaccharides have proven to be recalcitrant to biochemical purification. Availability of mutational genetics and genomic tools paved the way for rapid progress in identifying genes encoding various cell wall glycan synthases. Mutational genetics, the primary tool used in unraveling cellulose biosynthesis, was ineffective in assigning function to any of the hemicellulosic, polymerizing glycan synthases. A combination of comparative genomics and functional expression in a heterologous system allowed identification of various cellulose synthase-like (Csl) sequences as being involved in the formation of β-1,4-mannan, β-1,4-glucan, and mixed-linked glucan. A number of xylose-deficient mutants have led to a variety of genes, none of which thus far possesses the motifs known to be conserved among polymerizing β-glycan synthases. Except for xylan synthase, which appears to be an agglomerate of proteins just like cellulose synthase, Golgi glycan synthases already identified suggest that the catalytic polypeptide by itself is sufficient for enzyme activity, most likely as a homodimer. Several of the Csl genes remain to be assigned a function. The possibility of the involvement of various Csl genes in making more than one product remains.

  6. Chemical Profiling of the Plant Cell Wall through Raman Microspectroscopy

    SciTech Connect

    Han, Ju; Singh, Seema; Sun, Lan; Simmons, Blake; Auer, Manfred; Parvin, Bahram

    2010-03-02

    This paper presents a computational framework for chemical pro.ling of the plant cell wall through the Raman spectroscopy. The system enables query of known spectral signatures and clustering of spectral data based on intrinsic properties. As a result, presence and relative concentration of speci.c chemical bonds can be quanti.ed. The primary contribution of this paper is in representation of raman pro.le in terms of .uorescence background and multiscale peak detection at each grid point (voxel). Such a representation allows ef.cient spatial segmentation based on the coupling between high-level salient properties and low-level symbolic representation at each voxel. The high-level salient properties refer to preferred peaks and their attributes for the entire image. The low-level symbolic representations are based on .uorescence background, spectral peak locations, and their attributes. We present results on a corn stover tissue section that is imaged through Raman microscopy, and the results are consistent with the literature. In addition, automatic clustering indicates several distinct layers of the cell walls with different spectral signatures.

  7. The toughness of secondary cell wall and woody tissue

    PubMed Central

    Lucas, P. W.; Tan, H. T. W.; Cheng, P. Y.

    1997-01-01

    The 'across grain' toughness of 51 woods has been determined on thin wet sections using scissors. The moisture content of sections and the varying sharpness of the scissor blades had little effect on the results. In thin sections (less than 0.6mm), toughness rose linearly with section thickness. The intercept toughness at zero thickness, estimated from regression analysis, was proportional to relative density, consistent with values reported for non-woody plant tissues. Extrapolation of the intercept toughness of these woods and other plant tissues/materials to a relative density of 1.0 predicted a toughness of 3.45kJ m-2 , which we identify with the intrinsic toughness of the cell wall. This quantity appears to predict published results from KIC tests on woods and is related to the propensity for crack deflection. The slope of the relationship between section thickness and toughness, describing the work of plastic buckling of cells, was not proportional to relative density, the lightest (balsa) and heaviest (lignum vitae) woods fracturing with less plastic work than predicted. The size of the plastic zone around the crack tip was estimated to be 0.5mm in size. From this, the hypothetical overall toughness of a thick (greater than 1 mm) block of solid cell wall material was calculated as 39.35 kJ m-2, due to both cell wall resistance (10 per cent) and the plastic buckling of cells (90 per cent). This value successfully predicts the toughness of most commercial woods (of relative densities between 0.2 and 0.8) from 'work area' tests in tension and bending. Though density was the most important factor, both fibre width/fibre length (in hardwoods) and lignin/cellulose ratios were negatively correlated with the work of plastic buckling, after correcting for density. At low densities the work of plastic buckling in the longitudinal radial (LR) direction exceeded that in longitudinal tangential (LT), but the reverse was true for relative densities above 0.25. This could

  8. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation.

    PubMed

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  9. Cell wall proteins of Sporothrix schenckii as immunoprotective agents.

    PubMed

    Alba-Fierro, Carlos A; Pérez-Torres, Armando; López-Romero, Everardo; Cuéllar-Cruz, Mayra; Ruiz-Baca, Estela

    2014-01-01

    Sporothrix schenckii is the etiological agent of sporotrichosis, an endemic subcutaneous mycosis in Latin America. Cell wall (CW) proteins located on the cell surface are inducers of cellular and humoral immune responses, potential candidates for diagnosis purposes and to generate vaccines to prevent fungal infections. This mini-review emphasizes the potential use of S. schenckii CW proteins as protective and therapeutic immune response inducers against sporotrichosis. A number of pathogenic fungi display CW components that have been characterized as inducers of protective cellular and humoral immune responses against the whole pathogen from which they were originally purified. The isolation and characterization of immunodominant protein components of the CW of S. schenckii have become relevant because of their potential in the development of protective and therapeutic immune responses against sporotrichosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).

  10. Rapid regulatory control of plant cell expansion and wall relaxation

    SciTech Connect

    Cosgrove, D.J.

    1991-08-14

    The aim of this project is to elucidate the biophysical and cellular mechanisms that control plant cell expansion. At present we are attempting to characterize the kinetics of the system(s) responsible for regulatory and compensatory behavior of growing cells and tissues. This work is significantly because it indicates that biochemical loosening and biophysical stress relaxation of the wall are part of a feedback loop controlling growth. This report briefly summarizes the efforts and results of the past 12 months. In large part, we have been trying to analyze the nature of growth rate noise,'' i.e. spontaneous and often erratic variations in growth rate. We are obtaining evidence that such noise'' is not random, but rather reveals an underlying growth mechanism with complex dynamics.

  11. Molecular Mechanisms for Vascular Development and Secondary Cell Wall Formation

    PubMed Central

    Yang, Jung Hyun; Wang, Huanzhong

    2016-01-01

    Vascular tissues are important for transporting water and nutrients throughout the plant and as physical support of upright growth. The primary constituents of vascular tissues, xylem, and phloem, are derived from the meristematic vascular procambium and cambium. Xylem cells develop secondary cell walls (SCWs) that form the largest part of plant lignocellulosic biomass that serve as a renewable feedstock for biofuel production. For the last decade, research on vascular development and SCW biosynthesis has seen rapid progress due to the importance of these processes to plant biology and to the biofuel industry. Plant hormones, transcriptional regulators and peptide signaling regulate procambium/cambium proliferation, vascular patterning, and xylem differentiation. Transcriptional regulatory pathways play a pivot role in SCW biosynthesis. Although most of these discoveries are derived from research in Arabidopsis, many genes have shown conserved functions in biofuel feedstock species. Here, we review the recent advances in our understanding of vascular development and SCW formation and discuss potential biotechnological uses. PMID:27047525

  12. Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy.

    PubMed

    Sant'Anna, Celso; Costa, Lilian T; Abud, Yuri; Biancatto, Lucas; Miguens, Flávio Costa; de Souza, Wanderley

    2013-08-01

    Lignocellulosic plant cell wall is considered a potential source for second generation biofuels. The plant cell wall is a highly complex structure mainly composed of cellulose, hemicelluloses, and lignin that form a network of crosslinked fibers. The structural organization of the sugarcane cell wall has not been previously analyzed in detail, and this analysis is a prerequisite for further studies on the recalcitrance and deconstruction of its biomass. In this work, cellulose and lignin localization were investigated by confocal laser scanning microscopy. In addition, the internode sugarcane cell wall structural organization was analyzed by electron microscopy. Internode stem anatomy showed a typical monocot structure consisting of epidermis, hypoderm, and vascular bundles scattered throughout ground parenchyma tissue and surrounded by sclerenchyma fibers. Confocal images of safranin labeled sugarcane showed that lignin distribution was predominant in the vessel elements, cell wall corners (CC), and middle lamella (ML), while cellulose-rich cell walls were randomly distributed in the ML and organized in the other cell wall layers. KMnO4 cytochemistry revealed that lignin was predominantly distributed in secondary cell walls, ML and CC. Cell wall sublayers (S1, S2, and S3) were identified and measured by transmission electron microscopy. Our results provide insights that may help further understanding of sugarcane cell wall organization, which is crucial for the research and technology of plant-based biofuel production. PMID:23733560

  13. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    PubMed

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits. PMID:26566837

  14. Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases.

    PubMed

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2015-05-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocallimastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification.

  15. Destructuring plant biomass: Focus on fungal and extremophilic cell wall hydrolases

    PubMed Central

    Guerriero, Gea; Hausman, Jean-Francois; Strauss, Joseph; Ertan, Haluk; Siddiqui, Khawar Sohail

    2016-01-01

    The use of plant biomass as feedstock for biomaterial and biofuel production is relevant in the current bio-based economy scenario of valorizing renewable resources. Fungi, which degrade complex and recalcitrant plant polymers, secrete different enzymes that hydrolyze plant cell wall polysaccharides. The present review discusses the current research trends on fungal, as well as extremophilic cell wall hydrolases that can withstand extreme physico-chemical conditions required in efficient industrial processes. Secretomes of fungi from the phyla Ascomycota, Basidiomycota, Zygomycota and Neocalli-mastigomycota are presented along with metabolic cues (nutrient sensing, coordination of carbon and nitrogen metabolism) affecting their composition. We conclude the review by suggesting further research avenues focused on the one hand on a comprehensive analysis of the physiology and epigenetics underlying cell wall degrading enzyme production in fungi and on the other hand on the analysis of proteins with unknown function and metagenomics of extremophilic consortia. The current advances in consolidated bioprocessing, altered secretory pathways and creation of designer plants are also examined. Furthermore, recent developments in enhancing the activity, stability and reusability of enzymes based on synergistic, proximity and entropic effects, fusion enzymes, structure-guided recombination between homologous enzymes and magnetic enzymes are considered with a view to improving saccharification. PMID:25804821

  16. Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening.

    PubMed

    Minoia, Silvia; Boualem, Adnane; Marcel, Fabien; Troadec, Christelle; Quemener, Bernard; Cellini, Francesco; Petrozza, Angelo; Vigouroux, Jacqueline; Lahaye, Marc; Carriero, Filomena; Bendahmane, Abdelhafid

    2016-01-01

    Fruit ripening and softening are key traits for many fleshy fruit. Since cell walls play a key role in the softening process, expansins have been investigated to control fruit over ripening and deterioration. In tomato, expression of Expansin 1 gene, SlExp1, during fruit ripening was associated with fruit softening. To engineer tomato plants with long shelf life, we screened for mutant plants impaired in SlExp1 function. Characterization of two induced mutations, Slexp1-6_W211S, and Slexp1-7_Q213Stop, showed that SlExp1 loss of function leads to enhanced fruit firmness and delayed fruit ripening. Analysis of cell wall polysaccharide composition of Slexp1-7_Q213Stop mutant pointed out significant differences for uronic acid, neutral sugar and total sugar contents. Hemicelluloses chemistry analysis by endo-β-1,4-d-glucanase hydrolysis and MALDI-TOF spectrometry revealed that xyloglucan structures were affected in the fruit pericarp of Slexp1-7_Q213Stop mutant. Altogether, these results demonstrated that SlExp1 loss of function mutants yield firmer and late ripening fruits through modification of hemicellulose structure. These SlExp1 mutants represent good tools for breeding long shelf life tomato lines with contrasted fruit texture as well as for the understanding of the cell wall polysaccharide assembly dynamics in fleshy fruits.

  17. Reduction in Young`s modulus of aluminum foams due to cell wall curvature and corrugation

    SciTech Connect

    Sanders, W.; Gibson, L.J.

    1998-12-31

    Measurements of the Young`s modulus and compressive strength of several closed-cell aluminum foams indicate that they are lower than expected from models for foam behavior. Microstructural characterization has revealed that there are a number of defects in the cell structure which may contribute to the reduction in mechanical properties. These include: cell wall curvature, cell wall corrugations, density variations and non-equiaxed cell shape. Finite element analysis of a closed-cell tetrakaidecahedral unit cell with idealized curved or corrugated cell walls indicates that these two types of defects can reduce the Young`s modulus and compressive strength by up to 70%. In this paper the authors report the results of measurements of the curvature of the cell walls and of the amplitude and frequency of corrugations in the cell walls and use simple bounds to estimate the reduction in modulus that they are responsible for.

  18. The connection of cytoskeletal network with plasma membrane and the cell wall

    PubMed Central

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-01-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field. PMID:25693826

  19. Adaptations of higher plant cell walls to water loss: drought vs desiccation.

    PubMed

    Moore, John P; Vicré-Gibouin, Mäite; Farrant, Jill M; Driouich, Azeddine

    2008-10-01

    Water-deficit stress poses unique challenges to plant cells dependent on a hydrostatic skeleton and a polysaccharide-rich cell wall for growth and development. How the plant cell wall is adapted to loss of water is of interest in developing a general understanding of water stress tolerance in plants and of relevance in strategies related to crop improvement. Drought tolerance involves adaptations to growth under reduced water potential and the concomitant restructuring of the cell wall that allow growth processes to occur at lower water contents. Desiccation tolerance, by contrast, is the evolution of cell walls that are capable of losing the majority of cellular water without suffering permanent and irreversible damage to cell wall structure and polymer organization. This minireview highlights common features and differences between these two water-deficit responses observed in plants, emphasizing the role of the cell wall, while suggesting future research avenues that could benefit fundamental understanding in this area.

  20. The connection of cytoskeletal network with plasma membrane and the cell wall.

    PubMed

    Liu, Zengyu; Persson, Staffan; Zhang, Yi

    2015-04-01

    The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.

  1. A cell wall damage response mediated by a sensor kinase/response regulator pair enables beta-lactam tolerance.

    PubMed

    Dörr, Tobias; Alvarez, Laura; Delgado, Fernanda; Davis, Brigid M; Cava, Felipe; Waldor, Matthew K

    2016-01-12

    The bacterial cell wall is critical for maintenance of cell shape and survival. Following exposure to antibiotics that target enzymes required for cell wall synthesis, bacteria typically lyse. Although several cell envelope stress response systems have been well described, there is little knowledge of systems that modulate cell wall synthesis in response to cell wall damage, particularly in Gram-negative bacteria. Here we describe WigK/WigR, a histidine kinase/response regulator pair that enables Vibrio cholerae, the cholera pathogen, to survive exposure to antibiotics targeting cell wall synthesis in vitro and during infection. Unlike wild-type V. cholerae, mutants lacking wigR fail to recover following exposure to cell-wall-acting antibiotics, and they exhibit a drastically increased cell diameter in the absence of such antibiotics. Conversely, overexpression of wigR leads to cell slimming. Overexpression of activated WigR also results in increased expression of the full set of cell wall synthesis genes and to elevated cell wall content. WigKR-dependent expression of cell wall synthesis genes is induced by various cell-wall-acting antibiotics as well as by overexpression of an endogenous cell wall hydrolase. Thus, WigKR appears to monitor cell wall integrity and to enhance the capacity for increased cell wall production in response to damage. Taken together, these findings implicate WigKR as a regulator of cell wall synthesis that controls cell wall homeostasis in response to antibiotics and likely during normal growth as well.

  2. Discovery of Novel Cell Wall-Active Compounds Using PywaC, a Sensitive Reporter of Cell Wall Stress, in the Model Gram-Positive Bacterium Bacillus subtilis

    PubMed Central

    Czarny, T. L.; Perri, A. L.; French, S.

    2014-01-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. PMID:24687489

  3. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion.

    PubMed

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis

    2014-04-01

    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2-4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2-4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone's expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:24717634

  4. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion

    PubMed Central

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis

    2014-01-01

    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone’s expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:24717634

  5. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion

    PubMed Central

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis

    2015-01-01

    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2–4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2–4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone's expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:26042727

  6. Cortical microtubule patterning in roots of Arabidopsis thaliana primary cell wall mutants reveals the bidirectional interplay with cell expansion.

    PubMed

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Daras, Gerasimos; Rigas, Stamatis

    2015-01-01

    Cell elongation requires directional deposition of cellulose microfibrils regulated by transverse cortical microtubules. Microtubules respond differentially to suppression of cell elongation along the developmental zones of Arabidopsis thaliana root apex. Cortical microtubule orientation is particularly affected in the fast elongation zone but not in the meristematic or transition zones of thanatos and pom2-4 cellulose-deficient mutants of Arabidopsis thaliana. Here, we report that a uniform phenotype is established among the primary cell wall mutants, as cortical microtubules of root epidermal cells of rsw1 and prc1 mutants exhibit the same pattern described in thanatos and pom2-4. Whether cortical microtubules assume transverse orientation or not is determined by the demand for cellulose synthesis, according to each root zone's expansion rate. It is suggested that cessation of cell expansion may provide a biophysical signal resulting in microtubule reorientation. PMID:26042727

  7. Cell wall pectic arabinans influence the mechanical properties of Arabidopsis thaliana inflorescence stems and their response to mechanical stress.

    PubMed

    Verhertbruggen, Yves; Marcus, Susan E; Chen, Jianshe; Knox, J Paul

    2013-08-01

    Little is known of the dynamics of plant cell wall matrix polysaccharides in response to the impact of mechanical stress on plant organs. The capacity of the imposition of a mechanical stress (periodic brushing) to reduce the height of the inflorescence stem of Arabidopsis thaliana seedlings has been used to study the role of pectic arabinans in the mechanical properties and stress responsiveness of a plant organ. The arabinan-deficient-1 (arad1) mutation that affects arabinan structures in epidermal cell walls of inflorescence stems is demonstrated to reduce the impact on inflorescence stem heights caused by mechanical stress. The arabinan-deficient-2 (arad2) mutation, that does not have detectable impact on arabinan structures, is also shown to reduce the impact on stem heights caused by mechanical stress. The LM13 linear arabinan epitope is specifically detected in epidermal cell walls of the younger, flexible regions of inflorescence stems and increases in abundance at the base of inflorescence stems in response to an imposed mechanical stress. The strain (percentage deformation) of stem epidermal cells in the double mutant arad1 × arad2 is lower in unbrushed plants than in wild-type plants, but rises to wild-type levels in response to brushing. The study demonstrates the complexity of arabinan structures within plant cell walls and also that their contribution to cell wall mechanical properties is a factor influencing responsiveness to mechanical stress.

  8. Xyloglucan Metabolism Differentially Impacts the Cell Wall Characteristics of the Endosperm and Embryo during Arabidopsis Seed Germination.

    PubMed

    Sechet, Julien; Frey, Anne; Effroy-Cuzzi, Delphine; Berger, Adeline; Perreau, François; Cueff, Gwendal; Charif, Delphine; Rajjou, Loïc; Mouille, Grégory; North, Helen M; Marion-Poll, Annie

    2016-03-01

    Cell wall remodeling is an essential mechanism for the regulation of plant growth and architecture, and xyloglucans (XyGs), the major hemicellulose, are often considered as spacers of cellulose microfibrils during growth. In the seed, the activity of cell wall enzymes plays a critical role in germination by enabling embryo cell expansion leading to radicle protrusion, as well as endosperm weakening prior to its rupture. A screen for Arabidopsis (Arabidopsis thaliana) mutants affected in the hormonal control of germination identified a mutant, xyl1, able to germinate on paclobutrazol, an inhibitor of gibberellin biosynthesis. This mutant also exhibited reduced dormancy and increased resistance to high temperature. The XYL1 locus encodes an α-xylosidase required for XyG maturation through the trimming of Xyl. The xyl1 mutant phenotypes were associated with modifications to endosperm cell wall composition that likely impact on its resistance, as further demonstrated by the restoration of normal germination characteristics by endosperm-specific XYL1 expression. The absence of phenotypes in mutants defective for other glycosidases, which trim Gal or Fuc, suggests that XYL1 plays the major role in this process. Finally, the decreased XyG abundance in hypocotyl longitudinal cell walls of germinating embryos indicates a potential role in cell wall loosening and anisotropic growth together with pectin de-methylesterification.

  9. Fractionation and Structural Characterization of Arabinogalactan-Proteins from the Cell Wall of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1995-01-01

    Arabinogalactan-proteins (AGPs) have been purified from Paul's Scarlet rose (Rosa sp.) cell walls. As estimated by gel permeation chromatography, the apparent molecular masses of the two major cell-wall AGP fractions were 130 and 242 kD. Since the 130-kD AGP had a ratio of arabinose/glucuronic acid that was 12 times higher than that of the 242-kD AGP, the fractions were named cell-wall AGP1 (CW-AGP1) and glucuronogalactan-protein (GGP), respectively. CW-AGP1 and GGP contained predominantly t-arabinofuranosyl residues; 3-linked, 6-linked, and 3,6-branched galactopyranosyl residues; and 4-linked and t-glucuronopyranosyl residues. The 1H-nuclear magnetic resonance spectra of CW-AGP1 and GGP showed that the arabinofuranosyl and galactopyranosyl residues were predominantly in [alpha]- and [beta]-anomeric configuration, respectively, and that GGP contained a few O-acetyl residues. The protein moieties of CW-AGP1 and GGP were both rich in hydroxyproline and alanine but differed in the percentage of various amino acids, including hydroxyproline, alanine, serine, and glycine. Cell-wall AGPs bound to ([beta]-D-glucosyl)3 Yariv phenylglycoside, but the stoichiometry of binding was about 6 times greater in GGP than in other Rosa AGPs. GGP seems to be peculiar to the cell wall, since no similar molecule was found in the culture medium. PMID:12228648

  10. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.

    PubMed

    Li, Meng; Feng, Shengqiu; Wu, Leiming; Li, Ying; Fan, Chunfen; Zhang, Rui; Zou, Weihua; Tu, Yuanyuan; Jing, Hai-Chun; Li, Shizhong; Peng, Liangcai

    2014-09-01

    Sweet sorghum has been regarded as a typical species for rich soluble-sugar and high lignocellulose residues, but their effects on biomass digestibility remain unclear. In this study, we examined total 63 representative sweet sorghum accessions that displayed a varied sugar level at stalk and diverse cell wall composition at bagasse. Correlative analysis showed that both soluble-sugar and dry-bagasse could not significantly affect lignocellulose saccharification under chemical pretreatments. Comparative analyses of five typical pairs of samples indicated that DP of crystalline cellulose and arabinose substitution degree of non-KOH-extractable hemicelluloses distinctively affected lignocellulose crystallinity for high biomass digestibility. By comparison, lignin could not alter lignocellulose crystallinity, but the KOH-extractable G-monomer predominately determined lignin negative impacts on biomass digestions, and the G-levels released from pretreatments significantly inhibited yeast fermentation. The results also suggested potential genetic approaches for enhancing soluble-sugar level and lignocellulose digestibility and reducing ethanol conversion inhibition in sweet sorghum.

  11. The plant cell wall in the feeding sites of cyst nematodes

    PubMed Central

    Bohlmann, Holger; Sobczak, Miroslaw

    2014-01-01

    Plant parasitic cyst nematodes (genera Heterodera and Globodera) are serious pests for many crops. They enter the host roots as migratory second stage juveniles (J2) and migrate intracellularly toward the vascular cylinder using their stylet and a set of cell wall degrading enzymes produced in the pharyngeal glands. They select an initial syncytial cell (ISC) within the vascular cylinder or inner cortex layers to induce the formation of a multicellular feeding site called a syncytium, which is the only source of nutrients for the parasite during its entire life. A syncytium can consist of more than hundred cells whose protoplasts are fused together through local cell wall dissolutions. While the nematode produces a cocktail of cell wall degrading and modifying enzymes during migration through the root, the cell wall degradations occurring during syncytium development are due to the plants own cell wall modifying and degrading proteins. The outer syncytial cell wall thickens to withstand the increasing osmotic pressure inside the syncytium. Furthermore, pronounced cell wall ingrowths can be formed on the outer syncytial wall at the interface with xylem vessels. They increase the surface of the symplast-apoplast interface, thus enhancing nutrient uptake into the syncytium. Processes of cell wall degradation, synthesis and modification in the syncytium are facilitated by a variety of plant proteins and enzymes including expansins, glucanases, pectate lyases and cellulose synthases, which are produced inside the syncytium or in cells surrounding the syncytium. PMID:24678316

  12. Nanoindentation techniques for the cell walls of wood

    NASA Astrophysics Data System (ADS)

    Jakes, Joseph Eugene

    There is a recognized need in forest products research to better understand how the mechanical properties of wood derive from the basic polymer components that make up the wood. For development of new engineered wood products there is the need to understand how chemical additives and adhesives interact with wood polymers and influence properties at the cellular level. To meet these needs I have developed nanoindentation techniques for probing the mechanical properties of the cell walls in wood. There are two, key results of this research. The first is a newly invented structural compliance method for isolating the properties of local regions within materials and excluding artifacts brought about by neighboring edges including free edges and interfaces between dissimilar cell wall layers. The second consists of methods to obtain viscoplastic and viscoelastic data over as wide a range of deformation rate as possible. The broadband nanoindentation creep (BNC) technique assesses the viscoplastic properties over 5 orders of magnitude in deformation rate (-10-4 to 10 s-1). Viscoelastic measurements can be made with unloading times ranging from 0.01 to 100 s, resulting in viscoelastic data that span four orders of magnitude in frequency or inverse time (˜10-3 to 10 s-1). To demonstrate the efficacy of these techniques, experiments are performed on a range of materials including fused silica, silicon, molybdenum, siliconon-insulator layered specimen, poly (methylmetacrylate), polycarbonate, polystyrene, wood cells in loblolly pine (Pinus taeda ), and a polypropylene-wood composite. Finally, the structural compliance method and BNC are combined to explore polymeric methylene diphenyl diisocyanate (pMDI)-wood interactions. The data suggest that pMDI polymerizes in situ to create an interpenetrating polymer network.

  13. Role of calcium in the mechanical strength of soybean hypocotyl cell walls

    SciTech Connect

    Virk, S.S.; Cleland, R.E.

    1986-04-01

    Calcium ions inhibit auxin-induced growth in both dicot stems and coleoptiles. In coleoptiles calcium does not directly stiffen cell walls. The authors have tested here whether calcium might alter the mechanical strength of a dicot cell wall, the soybean hypocotyl. Sections were longitudinally bisected, boiled or frozen-thawed, incubated in solutions and then the mechanical strength was determined with an Instron. The calcium content was also measured. Removal of calcium by EGTA or by acidic buffers such as K-Pi-citrate resulted in a proportional increase in wall extensibility. Addition of calcium, on the other hand, stiffened the walls. These changes were reversible. It was concluded that calcium crosslinks make a significant contribution to the strength of dicot stem cell walls, and that in vivo, removal of calcium from the wall by uptake into the cell could result in wall loosening and thus enhanced growth.

  14. Arabinogalactan protein-rich cell walls, paramural deposits and ergastic globules define the hyaline bodies of rhinanthoid Orobanchaceae haustoria

    PubMed Central

    Pielach, Anna; Leroux, Olivier; Domozych, David S.; Knox, J. Paul; Popper, Zoë A.

    2014-01-01

    Background and Aims Parasitic plants obtain nutrients from their hosts through organs called haustoria. The hyaline body is a specialized parenchymatous tissue occupying the central parts of haustoria in many Orobanchaceae species. The structure and functions of hyaline bodies are poorly understood despite their apparent necessity for the proper functioning of haustoria. Reported here is a cell wall-focused immunohistochemical study of the hyaline bodies of three species from the ecologically important clade of rhinanthoid Orobanchaceae. Methods Haustoria collected from laboratory-grown and field-collected plants of Rhinanthus minor, Odontites vernus and Melampyrum pratense attached to various hosts were immunolabelled for cell wall matrix glycans and glycoproteins using specific monoclonal antibodies (mAbs). Key Results Hyaline body cell wall architecture differed from that of the surrounding parenchyma in all species investigated. Enrichment in arabinogalactan protein (AGP) epitopes labelled with mAbs LM2, JIM8, JIM13, JIM14 and CCRC-M7 was prominent and coincided with reduced labelling of de-esterified homogalacturonan with mAbs JIM5, LM18 and LM19. Furthermore, paramural bodies, intercellular deposits and globular ergastic bodies composed of pectins, xyloglucans, extensins and AGPs were common. In Rhinanthus they were particularly abundant in pairings with legume hosts. Hyaline body cells were not in direct contact with haustorial xylem, which was surrounded by a single layer of paratracheal parenchyma with thickened cell walls abutting the xylem. Conclusions The distinctive anatomy and cell wall architecture indicate hyaline body specialization. Altered proportions of AGPs and pectins may affect the mechanical properties of hyaline body cell walls. This and the association with a transfer-like type of paratracheal parenchyma suggest a role in nutrient translocation. Organelle-rich protoplasts and the presence of exceptionally profuse intra- and intercellular

  15. Identifying cytoplasmic input to the cell wall of growing Chara corallina.

    PubMed

    Proseus, Timothy E; Boyer, John S

    2006-01-01

    Plants enlarge mostly because the walls of certain cells enlarge, with accompanying input of wall constituents and other factors from the cytoplasm. However, the enlargement can occur without input, suggesting an uncertain relationship between cytoplasmic input and plant growth. Therefore, the role of the input was investigated by quantitatively comparing growth in isolated walls (no input) with that in living cells (input occurring). Cell walls were isolated from growing internodes of Chara corallina and filled with pressurized oil to control turgor pressure while elongation was monitored. Turgor pressure in living cells was similarly controlled and monitored by adding/removing cell solution. Temperature was varied in some experiments. At all pressures and temperatures, isolated walls displayed turgor-driven growth indistinguishable in every respect from that in living cells, except the rate decelerated in the isolated walls while the living cells grew rapidly. The growth in the isolated walls was highly responsive to temperature, in contrast to the elastic extension that has been shown to be insensitive to similar temperatures. Consequently, strong intermolecular bonds were responsible for growth and weak bonds for elastic extension. Boiling the walls gave the same results, indicating that enzyme activities were not controlling these bonds. However, pectin added to isolated walls reversed their growth deceleration and returned the rate to that in the living cells. The pectin was similar to that normally produced by the cytoplasm and deposited in the wall, suggesting that continued cytoplasmic input of pectin may play a role in sustaining turgor-driven growth in Chara.

  16. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously.

    PubMed

    Cho, Hongbaek; Wivagg, Carl N; Kapoor, Mrinal; Barry, Zachary; Rohs, Patricia D A; Suh, Hyunsuk; Marto, Jarrod A; Garner, Ethan C; Bernhardt, Thomas G

    2016-01-01

    Multi-protein complexes organized by cytoskeletal proteins are essential for cell wall biogenesis in most bacteria. Current models of the wall assembly mechanism assume that class A penicillin-binding proteins (aPBPs), the targets of penicillin-like drugs, function as the primary cell wall polymerases within these machineries. Here, we use an in vivo cell wall polymerase assay in Escherichia coli combined with measurements of the localization dynamics of synthesis proteins to investigate this hypothesis. We find that aPBP activity is not necessary for glycan polymerization by the cell elongation machinery, as is commonly believed. Instead, our results indicate that cell wall synthesis is mediated by two distinct polymerase systems, shape, elongation, division, sporulation (SEDS)-family proteins working within the cytoskeletal machines and aPBP enzymes functioning outside these complexes. These findings thus necessitate a fundamental change in our conception of the cell wall assembly process in bacteria. PMID:27643381

  17. Reversible swelling of the cell wall of poplar biomass by ionic liquid at room temperature

    PubMed Central

    Lucas, Marcel; Wagner, Greg L.; Nishiyama, Yoshiharu; Hanson, Leif; Samayam, Indira P.; Schall, Constance A.; Langan, Paul; Rector, Kirk D.

    2012-01-01

    Time-resolved autofluorescence, Raman microspectroscopy, and scanning microprobe X-ray diffraction were combined in order to characterize lignocellulosic biomass from poplar trees and how it changes during treatment with the ionic liquid 1-n-ethyl-3-methylimidazolium acetate (EMIMAC) at room temperature. The EMIMAC penetrates the cell wall from the lumen, swelling the cell wall by about a factor of two towards the empty lumen. However, the middle lamella remains unchanged, preventing the cell wall from swelling outwards. During this swelling, most of the cellulose microfibrils are solubi-lized but chain migration is restricted and a small percentage of microfibrils persist. When the EMIMAC is expelled, the cellulose recrystallizes as microfibrils of cellulose I. There is little change in the relative chemical composition of the cell wall after treatment. The action of EMIMAC on the poplar cell wall at room temperature would therefore appear to be a reversible swelling and a reversible decrystallization of the cell wall. PMID:21247757

  18. Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength.

    PubMed

    Silveira, Rodrigo L; Stoyanov, Stanislav R; Gusarov, Sergey; Skaf, Munir S; Kovalenko, Andriy

    2013-12-26

    Efficient conversion of lignocellulosic biomass to second-generation biofuels and valuable chemicals requires decomposition of resilient plant cell wall structure. Cell wall recalcitrance varies among plant species and even phenotypes, depending on the chemical composition of the noncellulosic matrix. Changing the amount and composition of branches attached to the hemicellulose backbone can significantly alter the cell wall strength and microstructure. We address the effect of hemicellulose composition on primary cell wall assembly forces by using the 3D-RISM-KH molecular theory of solvation, which provides statistical-mechanical sampling and molecular picture of hemicellulose arrangement around cellulose. We show that hemicellulose branches of arabinose, glucuronic acid, and especially glucuronate strengthen the primary cell wall by strongly coordinating to hydrogen bond donor sites on the cellulose surface. We reveal molecular forces maintaining the cell wall structure and provide directions for genetic modulation of plants and pretreatment design to render biomass more amenable to processing. PMID:24274712

  19. Relating the mechanics of the primary plant cell wall to morphogenesis.

    PubMed

    Bidhendi, Amir J; Geitmann, Anja

    2016-01-01

    Regulation of the mechanical properties of the cell wall is a key parameter used by plants to control the growth behavior of individual cells and tissues. Modulation of the mechanical properties occurs through the control of the biochemical composition and the degree and nature of interlinking between cell wall polysaccharides. Preferentially oriented cellulose microfibrils restrict cellular expansive growth, but recent evidence suggests that this may not be the trigger for anisotropic growth. Instead, non-uniform softening through the modulation of pectin chemistry may be an initial step that precedes stress-induced stiffening of the wall through cellulose. Here we briefly review the major cell wall polysaccharides and their implication for plant cell wall mechanics that need to be considered in order to study the growth behavior of the primary plant cell wall.

  20. Physical parameters affecting living cells in space

    NASA Astrophysics Data System (ADS)

    Langbein, Dieter

    The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters? If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport? Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception. Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.

  1. A Genomic Approach for the Identification and Classification of Genes Involved in Cell Wall Formation and its Regulation in Saccharomyces Cerevisiae

    PubMed Central

    de Groot, Piet W. J.; Ruiz, Cristina; Vázquez de Aldana, Carlos R.; Dueňas, Encarnación; Cid, Víctor J.; Del Rey, Francisco; Rodríquez-Peña, José M.; Pérez, Pilar; Andel, Annemiek; Caubín, Julio; Arroyo, Javier; García, Juan C.; Gil, Concha; Molina, María; García, Luis J.; Nombela, César

    2001-01-01

    Using a hierarchical approach, 620 non-essential single-gene yeast deletants generated by EUROFAN I were systematically screened for cell-wall-related phenotypes. By analyzing for altered sensitivity to the presence of Calcofluor white or SDS in the growth medium, altered sensitivity to sonication, or abnormal morphology, 145 (23%) mutants showing at least one cell wall-related phenotype were selected. These were screened further to identify genes potentially involved in either the biosynthesis, remodeling or coupling of cell wall macromolecules or genes involved in the overall regulation of cell wall construction and to eliminate those genes with a more general, pleiotropic effect. Ninety percent of the mutants selected from the primary tests showed additional cell wall-related phenotypes. When extrapolated to the entire yeast genome, these data indicate that over 1200 genes may directly or indirectly affect cell wall formation and its regulation. Twenty-one mutants with altered levels of β1,3-glucan synthase activity and five Calcofluor white-resistant mutants with altered levels of chitin synthase activities were found, indicating that the corresponding genes affect β1,3-glucan or chitin synthesis. By selecting for increased levels of specific cell wall components in the growth medium, we identified 13 genes that are possibly implicated in different steps of cell wall assembly. Furthermore, 14 mutants showed a constitutive activation of the cell wall integrity pathway, suggesting that they participate in the modulation of the pathway either directly acting as signaling components or by triggering the Slt2-dependent compensatory mechanism. In conclusion, our screening approach represents a comprehensive functional analysis on a genomic scale of gene products involved in various aspects of fungal cell wall formation. PMID:18628907

  2. Laccases Direct Lignification in the Discrete Secondary Cell Wall Domains of Protoxylem1[W][OPEN

    PubMed Central

    Schuetz, Mathias; Benske, Anika; Smith, Rebecca A.; Watanabe, Yoichiro; Tobimatsu, Yuki; Ralph, John; Demura, Taku; Ellis, Brian; Samuels, A. Lacey

    2014-01-01

    Plants precisely control lignin deposition in spiral or annular secondary cell wall domains during protoxylem tracheary element (TE) development. Because protoxylem TEs function to transport water within rapidly elongating tissues, it is important that lignin deposition is restricted to the secondary cell walls in order to preserve the plasticity of adjacent primary wall domains. The Arabidopsis (Arabidopsis thaliana) inducible VASCULAR NAC DOMAIN7 (VND7) protoxylem TE differentiation system permits the use of mutant backgrounds, fluorescent protein tagging, and high-resolution live-cell imaging of xylem cells during secondary cell wall development. Enzymes synthesizing monolignols, as well as putative monolignol transporters, showed a uniform distribution during protoxylem TE differentiation. By contrast, the oxidative enzymes LACCASE4 (LAC4) and LAC17 were spatially localized to secondary cell walls throughout protoxylem TE differentiation. These data support the hypothesis that precise delivery of oxidative enzymes determines the pattern of cell wall lignification. This view was supported by lac4lac17 mutant analysis demonstrating that laccases are necessary for protoxylem TE lignification. Overexpression studies showed that laccases are sufficient to catalyze ectopic lignin polymerization in primary cell walls when exogenous monolignols are supplied. Our data support a model of protoxylem TE lignification in which monolignols are highly mobile once exported to the cell wall, and in which precise targeting of laccases to secondary cell wall domains directs lignin deposition. PMID:25157028

  3. Area Expansivity Moduli of Regenerating Plant Protoplast Cell Walls Exposed to Shear Flows

    NASA Astrophysics Data System (ADS)

    Fujimura, Yuu; Iino, Masaaki; Watanabe, Ugai

    2005-05-01

    To control the elasticity of the plant cell wall, protoplasts isolated from cultured Catharanthus roseus cells were regenerated in shear flows of 115 s-1 (high shear) and 19.2 s-1 (low shear, as a control). The surface area expansivity modulus and the surface breaking strength of these regenerating protoplasts were measured by a micropipette aspiration technique. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye. High shear exposure for 3 h doubled both the surface area modulus and breaking strength observed under low shear, significantly decreased cell wall synthesis, and roughly quadrupled the moduli of the cell wall. Based on the cell wall synthesis data, we estimated the three-dimensional modulus of the cell wall to be 4.1± 1.2 GPa for the high shear, and 0.35± 0.2 GPa for the low shear condition, using the surface area expansivity modulus divided by the cell wall thickness, which is identical with the Young’s modulus divided by 2(1-σ), where σ is Poisson's ratio. We concluded that high shear exposure considerably strengthens the newly synthesized cell wall.

  4. Starting to Gel: How Arabidopsis Seed Coat Epidermal Cells Produce Specialized Secondary Cell Walls

    PubMed Central

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-01-01

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls. PMID:25658798

  5. Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls.

    PubMed

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-02-04

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls.

  6. Two cationic peroxidases from cell walls of Araucaria araucana seeds.

    PubMed

    Riquelme, A; Cardemil, L

    1995-05-01

    We have previously reported the purification and partial characterization of two cationic peroxidases from the cell walls of seeds and seedlings of the South American conifer, Araucaria araucana. In this work, we have studied the amino acid composition and NH2-terminal sequences of both enzymes. We also compare the data obtained from these analyses with those reported for other plant peroxidases. The two peroxidases are similar in their amino acid compositions. Both are particularly rich in glycine, which comprises more than 30% of the amino acid residues. The content of serine is also high, ca 17%. The two enzymes are different in their content of arginine, alanine, valine, phenylalanine and threonine. Both peroxidases have identical NH2-terminal sequences, indicating that the two proteins are genetically related and probably are isoforms of the same kind of peroxidase. The amino acid composition and NH2-terminal sequence analyses showed marked differences from the cationic peroxidases from turnip and horseradish. PMID:7786490

  7. Single Wall Carbon Nanotube-polymer Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Landi, Brian J.; Gennett, Thomas; Raffaelle, Ryne P.

    2005-01-01

    Investigation of single wall carbon nanotube (SWNT)-polymer solar cells has been conducted towards developing alternative lightweight, flexible devices for space power applications. Photovoltaic devices were constructed with regioregular poly(3-octylthiophene)-(P3OT) and purified, >95% w/w, laser-generated SWNTs. The P3OT composites were deposited on ITO-coated polyethylene terapthalate (PET) and I-V characterization was performed under simulated AM0 illumination. Fabricated devices for the 1.0% w/w SWNT-P3OT composites showed a photoresponse with an open-circuit voltage (V(sub oc)) of 0.98 V and a short-circuit current density (I(sub sc)) of 0.12 mA/sq cm. Optimization of carrier transport within these novel photovoltaic systems is proposed, specifically development of nanostructure-SWNT complexes to enhance exciton dissociation.

  8. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana

    PubMed Central

    Shigeyama, Takuma; Watanabe, Asuka; Tokuchi, Konatsu; Toh, Shigeo; Sakurai, Naoki; Shibuya, Naoto; Kawakami, Naoto

    2016-01-01

    Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression. PMID:27605715

  9. Composition and architecture of the cell walls of grasses and the mechanisms of synthesis of cell wall polysaccharides. Final report for period September 1, 1988 - April 30, 2001

    SciTech Connect

    Carpita, Nicholas C.

    2001-10-18

    This program was devoted toward complete understanding of the polysaccharide structure and architecture of the primary cell walls grasses and cereals, and the biosynthesis of the mixed-linkage beta-glucane, a cellulose interacting polymer that is synthesized uniquely by grass species and close relatives. With these studies as focal point, the support from DOE was instrumental in the development of new analytical means that enabled us to characterize carbohydrate structure, to reveal new features of cell wall dynamics during cell growth, and to apply these techniques in other model organisms. The support by DOE in these basic studies was acknowledged on numerous occasions in review articles covering current knowledge of cell wall structure, architecture, dynamics, biosynthesis, and in all genes related to cell wall biogenesis.

  10. Mechanisms for shaping, orienting, positioning and patterning plant secondary cell walls.

    PubMed

    Pesquet, Edouard; Korolev, Andrey V; Calder, Grant; Lloyd, Clive W

    2011-06-01

    Xylem vessels are cells that develop a specifically ornamented secondary cell wall to ensure their vascular function, conferring both structural strength and impermeability. Further plasticity is given to these vascular cells by a range of different patterns described by their secondary cell walls that-as for the growth of all plant organs-are developmentally regulated. Microtubules and their associated proteins, named MAPs, are essential to define the shape, the orientation, the position and the overall pattern of these secondary cell walls. Key actors in this process are the land-plant specific MAP70 proteins which not only allow the secondary cell wall to be positioned at the cell cortex but also determine the overall pattern described by xylem vessel secondary cell walls

  11. Lead sulfide nanoparticles increase cell wall chitin content and induce apoptosis in Saccharomyces cerevisiae.

    PubMed

    Sun, Meiqing; Yu, Qilin; Hu, Mengyuan; Hao, Zhenwei; Zhang, Chengdong; Li, Mingchun

    2014-05-30

    Although there have been numerous studies on bacterial toxicity, the cytotoxicity of nanoparticles toward fungi remains poorly understood. We investigated the toxicity of various sizes of lead sulfide particles against the important model fungus, Saccharomyces cerevisiae. The smallest particle exerted the highest toxicity, inhibiting cell growth and decreasing cell viability, likely reflecting reduced sedimentation and persistent cell wall attack. In response to cell wall stress, S. cerevisiae showed an increase in the cell wall chitin content and the overexpression of FKS2 and PRM5, two genes of the cell wall integrity signaling pathway. Cell wall stress increased the concentration of intracellular reactive oxygen species, leading to mitochondrial dysfunction and cell apoptosis. The contribution of dissolved lead ions to the overall toxicity was negligible. These findings provide the first demonstration of the physiological protective response of a fungus toward nanoparticles, thereby contributing useful information to the assessment of the environmental impact of metal nanoparticles.

  12. MYB75 Functions in Regulation of Secondary Cell Wall Formation in the Arabidopsis Inflorescence Stem1[W

    PubMed Central

    Bhargava, Apurva; Mansfield, Shawn D.; Hall, Hardy C.; Douglas, Carl J.; Ellis, Brian E.

    2010-01-01

    Deposition of lignified secondary cell walls in plants involves a major commitment of carbon skeletons in both the form of polysaccharides and phenylpropanoid constituents. This process is spatially and temporally regulated by transcription factors, including a number of MYB family transcription factors. MYB75, also called PRODUCTION OF ANTHOCYANIN PIGMENT1, is a known regulator of the anthocyanin branch of the phenylpropanoid pathway in Arabidopsis (Arabidopsis thaliana), but how this regulation might impact other aspects of carbon metabolism is unclear. We established that a loss-of-function mutation in MYB75 (myb75-1) results in increased cell wall thickness in xylary and interfascicular fibers within the inflorescence stem. The total lignin content and S/G ratio of the lignin monomers were also affected. Transcript profiles from the myb75-1 inflorescence stem revealed marked up-regulation in the expression of a suite of genes associated with lignin biosynthesis and cellulose deposition, as well as cell wall modifying proteins and genes involved in photosynthesis and carbon assimilation. These patterns suggest that MYB75 acts as a repressor of the lignin branch of the phenylpropanoid pathway. Since MYB75 physically interacts with another secondary cell wall regulator, the KNOX transcription factor KNAT7, these regulatory proteins may form functional complexes that contribute to the regulation of secondary cell wall deposition in the Arabidopsis inflorescence stem and that integrate the metabolic flux through the lignin, flavonoid, and polysaccharide pathways. PMID:20807862

  13. Plant cell walls throughout evolution: towards a molecular understanding of their design principles.

    PubMed

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-01-01

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche, which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  14. Discovery of Recurrent Sequence Motifs in Saccharomyces cerevisiae Cell Wall Proteins

    PubMed Central

    Coronado, Juan E.; Epstein, Susan L.; Qiu, Wei-Gang; Lipke, Peter N.

    2008-01-01

    This paper describes a procedure for the discovery of recurrent substrings in amino acid sequences of proteins, and its application to fungal cell walls. The evolutionary origins of fungal cell walls are an open biological question. This question can be approached by studies of similarity among the sequences and sub-sequences of fungal wall proteins and by comparison to proteins in animals. We describe here how we have discovered building blocks, represented as recurrent sequence motifs (sub-sequences), within fungal cell wall proteins. These motifs have not been systematically identified before, because the low Shannon entropy of the cell wall sequences has hindered searches for local sequence similarities by sequence alignments. Nonetheless, our new, composition-based scoring matrices for local alignment searches now support statistically valid alignments for such low entropy sequences (Coronado et al. 2006. Euk. Cell 5: 628–637). We have now searched for similarities in a set of 171 known and putative cell wall proteins from baker’s yeast, Saccharomyces cerevisiae. The aligned segments were repeatedly subdivided and catalogued to identify 217 recurrent sequence motifs of length 8 amino acids or greater. 95% of these motifs occur in more than one cell wall protein. The median length of the motifs is 22 amino acid residues, considerably shorter than protein domains. For many cell wall proteins, these motifs collectively account for more than half of their amino acids. The prevalence of these motifs supports the idea of fungal cell wall proteins as assemblies of recurrent building blocks. PMID:19430580

  15. Plant cell walls throughout evolution: towards a molecular understanding of their design principles

    SciTech Connect

    Sarkar, Purbasha; Bosneaga, Elena; Auer, Manfred

    2009-02-16

    Throughout their life, plants typically remain in one location utilizing sunlight for the synthesis of carbohydrates, which serve as their sole source of energy as well as building blocks of a protective extracellular matrix, called the cell wall. During the course of evolution, plants have repeatedly adapted to their respective niche,which is reflected in the changes of their body plan and the specific design of cell walls. Cell walls not only changed throughout evolution but also are constantly remodelled and reconstructed during the development of an individual plant, and in response to environmental stress or pathogen attacks. Carbohydrate-rich cell walls display complex designs, which together with the presence of phenolic polymers constitutes a barrier for microbes, fungi, and animals. Throughout evolution microbes have co-evolved strategies for efficient breakdown of cell walls. Our current understanding of cell walls and their evolutionary changes are limited as our knowledge is mainly derived from biochemical and genetic studies, complemented by a few targeted yet very informative imaging studies. Comprehensive plant cell wall models will aid in the re-design of plant cell walls for the purpose of commercially viable lignocellulosic biofuel production as well as for the timber, textile, and paper industries. Such knowledge will also be of great interest in the context of agriculture and to plant biologists in general. It is expected that detailed plant cell wall models will require integrated correlative multimodal, multiscale imaging and modelling approaches, which are currently underway.

  16. Detecting Cellulase Penetration Into Corn Stover Cell Walls by Immuno-Electron Microscopy

    SciTech Connect

    Donohoe, B. S.; Selig, M. J.; Viamajala, S.; Vinzant, T. B.; Adney, W. S.; Himmel, M. E.

    2009-06-15

    In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild-, moderate- and high-severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme- and polymer-specific antibodies. Low severity dilute-acid pretreatment (20 min at 100 C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120 C) allowed the enzymes to penetrate {approx}20% of the cell wall, and the high severity (20 min pretreatment at 150 C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute-acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high-resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes.

  17. Polygalacturonase-Mediated Solubilization and Depolymerization of Pectic Polymers in Tomato Fruit Cell Walls1

    PubMed Central

    Chun, Jong-Pil; Huber, Donald J.

    1998-01-01

    The hydrolysis of cell wall pectins by tomato (Lycopersicon esculentum) polygalacturonase (PG) in vitro is more extensive than the degradation affecting these polymers during ripening. We examined the hydrolysis of polygalacturonic acid and cell walls by PG isozyme 2 (PG2) under conditions widely adopted in the literature (pH 4.5 and containing Na+) and under conditions approximating the apoplastic environment of tomato fruit (pH 6.0 and K+ as the predominate cation). The pH optima for PG2 in the presence of K+ were 1.5 and 0.5 units higher for the hydrolysis of polygalacturonic acid and cell walls, respectively, compared with activity in the presence of Na+. Increasing K+ concentration stimulated pectin solubilization at pH 4.5 but had little influence at pH 6.0. Pectin depolymerization by PG2 was extensive at pH values from 4.0 to 5.0 and was further enhanced at high K+ levels. Oligomers were abundant products in in vitro reactions at pH 4.0 to 5.0, decreased sharply at pH 5.5, and were negligible at pH 6.0. EDTA stimulated PG-mediated pectin solubilization at pH 6.0 but did not promote oligomer production. Ca2+ suppressed PG-mediated pectin release at pH 4.5 yet had minimal influence on the proportional recovery of oligomers. Extensive pectin breakdown in processed tomato might be explained in part by cation- and low-pH-induced stimulation of PG and other wall-associated enzymes. PMID:9701584

  18. Analysis of Cell Wall Teichoic Acids in Staphylococcus aureus.

    PubMed

    Covas, Gonçalo; Vaz, Filipa; Henriques, Gabriela; Pinho, Mariana G; Filipe, Sérgio R

    2016-01-01

    Most bacterial cells are surrounded by a surface composed mainly of peptidoglycan (PGN), a glycopolymer responsible for ensuring the bacterial shape and a telltale molecule that betrays the presence of bacteria to the host immune system. In Staphylococcus aureus, as in most gram-positive bacteria, peptidoglycan is concealed by covalently linked molecules of wall teichoic acids (WTA)-phosphate rich molecules made of glycerol and ribitol phosphates which may be tailored by different amino acids and sugars.In order to analyze and compare the composition of WTA produced by different S. aureus strains, we describe methods to: (1) quantify the total amount of WTA present at the bacterial cell surface, through the determination of the inorganic phosphate present in phosphodiester linkages of WTA; (2) identify which sugar constituents are present in the assembled WTA molecules, by detecting the monosaccharides, released by acid hydrolysis, through an high-performance anion exchange chromatography analysis coupled with pulsed amperometric detection (HPAEC-PAD) and (3) compare the polymerization degree of WTA found at the cell surface of different S. aureus strains, through their different migration in a polyacrylamide gel electrophoresis (PAGE). PMID:27311674

  19. Wall extensibility: its nature, measurement and relationship to plant cell growth

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Expansive growth of plant cells is controlled principally by processes that loosen the wall and enable it to expand irreversibly. The central role of wall relaxation for cell expansion is reviewed. The most common methods for assessing the extension properties of plant cell walls ( wall extensibility') are described, categorized and assessed critically. What emerges are three fundamentally different approaches which test growing cells for their ability (a) to enlarge at different values of turgor, (b) to induce wall relaxation, and (c) to deform elastically or plastically in response to an applied tensile force. Analogous methods with isolated walls are similarly reviewed. The results of these different assays are related to the nature of plant cell growth and pertinent biophysical theory. I argue that the extensibilities' measured by these assays are fundamentally different from one another and that some are more pertinent to growth than others.

  20. Habituation of Bean (Phaseolus vulgaris) Cell Cultures to Quinclorac and Analysis of the Subsequent Cell Wall Modifications

    PubMed Central

    Alonso-Simón, Ana; García-Angulo, Penélope; Encina, Antonio; Acebes, José Luis; Álvarez, Jesús

    2008-01-01

    Background and Aims The herbicide quinclorac has been reported to inhibit incorporation of glucose both into cellulose and other cell wall polysaccharides. However, further work has failed to detect any apparent effect of this herbicide on the synthesis of the wall. In order to elucidate whether quinclorac elicits the inhibition of cellulose biosynthesis directly, in this study bean cell calli were habituated to grow on lethal concentrations of the herbicide and the modifications in cell wall composition due to the habituation process were analysed. Methods Fourier transform infrared spectroscopy associated with multivariate analysis, cell wall fractionation techniques, biochemical analyses and the immunolocation of different cell wall components with specific monoclonal antibodies were used to characterize the cell walls of quinclorac-habituated cells. Key Results Quinclorac-habituated cells were more irregularly shaped than non-habituated cells and they accumulated an extracellular material, which was more abundant as the level of habituation rose. Habituated cells did not show any decrease in cellulose content, but cell wall fractionation revealed that changes occurred in the distribution and post-depositional modifications of homogalacturonan and rhamnogalacturonan I during the habituation process. Therefore, since the action of quinclorac on the cell wall does not seem to be due to a direct inhibition of any cell wall component, it is suggested that the effect of quinclorac on the cell wall could be due to a side-effect of the herbicide. Conclusions Long-term modifications of the cell wall caused by the habituation of bean cell cultures to quinclorac did not resemble those of bean cells habituated to the well-known cellulose biosynthesis inhibitors dichlobenil or isoxaben. Quinclorac does not seem to act primarily as an inhibitor of cellulose biosynthesis. PMID:18408242

  1. DBIO Best Thesis Award: Mechanics, Dynamics, and Organization of the Bacterial Cytoskeleton and Cell Wall

    NASA Astrophysics Data System (ADS)

    Wang, Siyuan

    2012-02-01

    Bacteria come in a variety of shapes. While the peptidoglycan (PG) cell wall serves as an exoskeleton that defines the static cell shape, the internal bacterial cytoskeleton mediates cell shape by recruiting PG synthesis machinery and thus defining the pattern of cell-wall synthesis. While much is known about the chemistry and biology of the cytoskeleton and cell wall, much of their biophysics, including essential aspects of the functionality, dynamics, and organization, remain unknown. This dissertation aims to elucidate the detailed biophysical mechanisms of cytoskeleton guided wall synthesis. First, I find that the bacterial cytoskeleton MreB contributes nearly as much to the rigidity of an Escherichia coli cell as the cell wall. This conclusion implies that the cytoskeletal polymer MreB applies meaningful force to the cell wall, an idea favored by theoretical modeling of wall growth, and suggests an evolutionary origin of cytoskeleton-governed cell rigidity. Second, I observe that MreB rotates around the long axis of E. coli, and the motion depends on wall synthesis. This is the first discovery of a cell-wall assembly driven molecular motor in bacteria. Third, I prove that both cell-wall synthesis and the PG network have chiral ordering, which is established by the spatial pattern of MreB. This work links the molecular structure of the cytoskeleton and of the cell wall with organismal-scale behavior. Finally, I develop a mathematical model of cytoskeleton-cell membrane interactions, which explains the preferential orientation of different cytoskeleton components in bacteria.

  2. Vesicles between plasma membrane and cell wall prior to visible senescence of Iris and Dendrobium flowers.

    PubMed

    Kamdee, Channatika; Kirasak, Kanjana; Ketsa, Saichol; van Doorn, Wouter G

    2015-09-01

    Cut Iris flowers (Iris x hollandica, cv. Blue Magic) show visible senescence about two days after full opening. Epidermal cells of the outer tepals collapse due to programmed cell death (PCD). Transmission electron microscopy (TEM) showed irregular swelling of the cell walls, starting prior to cell collapse. Compared to cells in flowers that had just opened, wall thickness increased up to tenfold prior to cell death. Fibrils were visible in the swollen walls. After cell death very little of the cell wall remained. Prior to and during visible wall swelling, vesicles (paramural bodies) were observed between the plasma membrane and the cell walls. The vesicles were also found in groups and were accompanied by amorphous substance. They usually showed a single membrane, and had a variety of diameters and electron densities. Cut Dendrobium hybrid cv. Lucky Duan flowers exhibited visible senescence about 14 days after full flower opening. Paramural bodies were also found in Dendrobium tepal epidermis and mesophyll cells, related to wall swelling and degradation. Although alternative explanations are well possible, it is hypothesized that paramural bodies carry enzymes involved in cell wall breakdown. The literature has not yet reported such bodies in association with senescence/PCD.

  3. Nitric oxide affects preimplantation embryonic development in a rotating wall vessel bioreactor simulating microgravity.

    PubMed

    Cao, Yu-jing; Fan, Xun-jun; Shen, Zheng; Ma, Bao-hua; Duan, En-kui

    2007-01-01

    Microgravity was simulated with a rotating wall vessel bioreactor (RWVB) in order to study its effect on pre-implantation embryonic development in mice. Three experimental groups were used: stationary control, rotational control and clinostat rotation. Three experiments were performed as follows. The first experiment showed that compared with the other two (control) groups, embryonic development was significantly retarded after 72 h in the clinostat rotation group. The second experiment showed that more nitric oxide (NO) was produced in the culture medium in the clinostat rotation group after 72 h (P<0.05), and the nitric oxide synthase (NOS) activity in this group was significantly higher than in the controls (P<0.01). In the third experiment, we studied apoptosis in the pre-implantation mouse embryos after 72 h in culture and found that Annexin-V staining was negative in the normal (stationary and rotational control) embryos, but the developmentally retarded (clinostat rotation) embryos showed a strong green fluorescence. These results indicate that microgravity induced developmental retardation and cell apoptosis in the mouse embryos. We presume that these effects are related to the higher concentration of NO in the embryos under microgravity, which have cause cytotoxic consequences.

  4. Traffic monitors at the cell periphery: the role of cell walls during early female reproductive cell differentiation in plants.

    PubMed

    Tucker, Matthew R; Koltunow, Anna M G

    2014-02-01

    The formation of female gametes in plants occurs within the ovule, a floral organ that is also the precursor of the seed. Unlike animals, plants lack a typical germline separated from the soma early in development and rely on positional signals, including phytohormones, mobile mRNAs and sRNAs, to direct diploid somatic precursor cells onto a reproductive program. In addition, signals moving between plant cells must overcome the architectural limitations of a cell wall which surrounds the plasma membrane. Recent studies have addressed the molecular and histological signatures of young ovule cells and indicate that dynamic cell wall changes occur over a short developmental window. These changes in cell wall properties impact signal flow and ovule cell identity, thereby aiding the establishment of boundaries between reproductive and somatic ovule domains.

  5. Changes in levels of cell wall constituents in wheat seedlings grown under continuous hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Wakabayashi, K.; Soga, K.; Kamisaka, S.; Hoson, T.

    Effects of continuous hypergravity stimuli on the amounts and composition of cell wall constituents were investigated in wheat shoots. Hypergravity (300 g) treatment for three days after germination increased the net amount of cell wall polysaccharides such as hemicellulose and cellulose, but reduced the shoot elongation. As a result, the amount of cell wall polysaccharides per unit length of shoot increased under hypergravity. The hemicellulose fraction contained polysaccharides in the middle and low molecular mass range (5 kDa-1 MDa) and increased in response to hypergravity. Also, the amounts of arabinose (Ara) and xylose (Xyl), the major sugar components of the hemicellulose fraction, increased under hypergravity conditions. In addition to wall polysaccharides, hypergravity increased the amounts of cell wall-bound phenolic acids, such as ferulic acid (FA) and diferulic acid (DFA). Furthermore, the activity of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5) was enhanced under hypergravity conditions. These results suggest that continuous hypergravity stimulates the synthesis of cell wall constituents, especially hemicellulosic arabinoxylans and cell wall-bound FA and DFA in wheat shoots. The increased PAL activity may promote the formation of FA and DFA. These changes in cell wall architecture may be involved in making rigid and tough cell walls under hypergravity conditions and thereby contribute to the ability of plant to sustain their structures against gravitational stimuli.

  6. IDENTIFYING GENES CONTROLLING FERULATE CROSS-LINKING FORMATION IN GRASS CELL WALLS

    SciTech Connect

    de O Buanafina, Marcia Maria

    2013-10-16

    DESCRIPTION/ABSTRACT This proposal focuses on cell wall feruloylation and our long term goal is to identify and isolate novel genes controlling feruloylation and to characterize the phenotype of mutants in this pathway, with a spotlight on cell wall properties. Currently, the genes underlying AX feruloylation have not been identified and the isolation of such genes could be of great importance in manipulating ferulates accretion to the wall. Mutation of the feruloyl transferase gene(s) should lead to less ferulates secreted to the cell wall and reduced ferulate cross-linking. Our current research is based on the hypothesis that controlling the level of total feruloylation will have a direct impact on the level of cross-linking and in turn impact biomass utility for forage and biofuel production. Our results/accomplishments for this project so far include: 1. Mutagenised Brachypodium population. We have developed EMS mutagenized populations of model grass species Brachypodium distachyon. EMS populations have been developed from over 28,000 mutagenized seeds generating 5,184 M2 families. A total of 20,793 plants have been screened and 1,233 were originally selected. 2. Selected Brachypodium mutants: Potential mutants on their levels of cell wall ferulates and cell wall AX ? have been selected from 708 M2 families. A total of 303 back-crosses to no-mutagenized parental stock have been done, followed by selfing selected genotypes in order to confirm heritability of traits and to remove extraneous mutations generated by EMS mutagenesis. We are currently growing 12 F5 and F6 populations in order to assess CW composition. If low level of ferulates are confirmed in the candidate lines selected the mutation could be altered in different in one or several kinds of genes such as genes encoding an AX feruloyl transferase; genes encoding the arabinosyl transferase; genes encoding the synthesis of the xylan backbone; genes encoding enzymes of the monolignol pathway affecting FA

  7. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction.

    PubMed

    Gil-Bona, Ana; Reales-Calderon, Jose A; Parra-Giraldo, Claudia M; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a "veil growth," never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.

  8. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host–Cell Interaction

    PubMed Central

    Gil-Bona, Ana; Reales-Calderon, Jose A.; Parra-Giraldo, Claudia M.; Martinez-Lopez, Raquel; Monteoliva, Lucia; Gil, Concha

    2016-01-01

    Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a “veil growth,” never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain. PMID:26870022

  9. Glycoproteins from the cell wall of Phaseolus coccineus.

    PubMed

    O'Neill, M A; Selvendran, R R

    1980-04-01

    1. The use of a modified sodium chlorite/acetic acid delignification procedure for the solubilization of a hydroxyproline-rich glycoprotein fraction from the depectinated cell walls of Phaseolus coccineus is described. 2. The crude glycoprotein was associated with some pectic material; hydroxyproline and serine were the most abundant amino acids, and arabinose, galactose and galacturonic acid the predominant monosaccharides. 3. The bulk of the hydroxyproline is O-glycosidically substituted with tetra- and tri-arabinofuranosides. From methylation analysis the linkages in these arabinosides could be inferred. 4. Ion-exchange chromatography of the crude glycoprotein gave one major and two minor hydroxyproline-rich fractions, with similar amino acid but different monosaccharide composition. 5. In the major fraction, serine appears to be O-glycosidically substituted with a single galactopyranoside residue that can be removed by the action of alpha-galactosidase but not beta-galactosidase. Removal of arabinofuranoside residues by partial acid hydrolysis greatly enhanced the action of alpha-galactosidase. 6. Methylation followed by carboxy reduction with LiAl2H4 has shown the presence of (1 leads to 4)-linked galacturonic acid in the crude glycoprotein fraction but not in the major fraction from the ion-exchange column. Hence the bulk of the pectic material is not associated with the major glycoprotein component. It is suggested that the glycoprotein is held in the wall by phenolic cross-links. 7. Similarities with the glycopeptide moiety of potato lectin provides further evidence for a class of hydroxyproline-rich glycoproteins with common features.

  10. Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers

    PubMed Central

    Chateigner-Boutin, Anne-Laure; Suliman, Muhtadi; Bouchet, Brigitte; Alvarado, Camille; Lollier, Virginie; Rogniaux, Hélène; Guillon, Fabienne; Larré, Colette

    2015-01-01

    Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called ‘the bran’ is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel). PMID:25769308

  11. Polysaccharide composition of unlignified cell walls of pineapple [Ananas comosus (L.) Merr.] fruit.

    PubMed Central

    Smith, B G; Harris, P J

    1995-01-01

    The polysaccharides of cell walls isolated from the fleshy, edible part of the fruit of the monocotyledon pineapple [Ananas comosus (L.) Merr.] (family Bromeliaceae) were analyzed chemically. These cell walls were derived mostly from parenchyma cells and were shown histochemically to be unlignified, but they contained ester-linked ferulic acid. The analyses indicated that the noncellulosic polysaccharide composition of the cell walls was intermediate between that of unlignified cell walls of species of the monocotyledon family Poaceae (grasses and cereals) and that of unlignified cell walls of dicotyledons. Glucuronoarabinoxylans were the major non-cellulosic polysaccharides in the pineapple cell walls. Xyloglucans were also present, together with small amounts of pectic polysaccharides and glucomannans (or galactoglucomannans). The large amounts of glucuronoarabinoxylans and small amounts of pectic polysaccharides resemble the noncellulosic polysaccharide composition of the unlignified cell walls of the Poaceae. However, the absence of (1-->3,1-->4)-beta-glucans, the presence of relatively large amounts of xyloglucans, and the possible structure of the xyloglucans resemble the noncellulosic polysaccharide composition of the unlignified cell walls of dicotyledons. PMID:7770529

  12. Cell wall composition and biomass recalcitrance differences within a genotypically diverse set of Brachypodium distachyon inbred lines

    DOE PAGES

    Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas; Foster, Cliff E.; Karlen, Steven D.; Smith, Rebecca A.; Ralph, John; Garvin, David F.; Sedbrook, John C.

    2016-05-26

    and biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. Lastly, the availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses.« less

  13. The actin-related protein Sac1 is required for morphogenesis and cell wall integrity in Candida albicans.

    PubMed

    Zhang, Bing; Yu, Qilin; Jia, Chang; Wang, Yuzhou; Xiao, Chenpeng; Dong, Yijie; Xu, Ning; Wang, Lei; Li, Mingchun

    2015-08-01

    Candida albicans is a common pathogenic fungus and has aroused widespread attention recently. Actin cytoskeleton, an important player in polarized growth, protein secretion and organization of cell shape, displays irreplaceable role in hyphal development and cell integrity. In this study, we demonstrated a homologue of Saccharomyces cerevisiae Sac1, in C. albicans. It is a potential PIP phosphatase with Sac domain which is related to actin organization, hyphal development, biofilm formation and cell wall integrity. Deletion of SAC1 did not lead to insitiol-auxotroph phenotype in C. albicans, but this gene rescued the growth defect of S. cerevisiae sac1Δ in the insitiol-free medium. Hyphal induction further revealed the deficiency of sac1Δ/Δ in hyphal development and biofilm formation. Fluorescence observation and real time PCR (RT-PCR) analysis suggested both actin and the hyphal cell wall protein Hwp1 were overexpressed and mislocated in this mutant. Furthermore, cell wall integrity (CWI) was largely affected by deletion of SAC1, due to the hypersensitivity to cell wall stress, changed content and distribution of chitin in the mutant. As a result, the virulence of sac1Δ/Δ was seriously attenuated. Taken together, this study provides evidence that Sac1, as a potential PIP phosphatase, is essential for actin organization, hyphal development, CWI and pathogenicity in C. albicans.

  14. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    PubMed Central

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Niño, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sánchez, Miguel E.

    2015-01-01

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion. PMID:26347754

  15. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    SciTech Connect

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; Vega-Sanchez, Miguel E.

    2015-08-18

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

  16. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls

    DOE PAGES

    Smith-Moritz, Andreia M.; Hao, Zhao; Fernández-Nino, Susana G.; Fangel, Jonatan U.; Verhertbruggen, Yves; Holman, Hoi-Ying N.; Willats, William G. T.; Ronald, Pamela C.; Scheller, Henrik V.; Heazlewood, Joshua L.; et al

    2015-08-18

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to testmore » the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Finally, taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.« less

  17. Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls.

    PubMed

    Smith-Moritz, Andreia M; Hao, Zhao; Fernández-Niño, Susana G; Fangel, Jonatan U; Verhertbruggen, Yves; Holman, Hoi-Ying N; Willats, William G T; Ronald, Pamela C; Scheller, Henrik V; Heazlewood, Joshua L; Vega-Sánchez, Miguel E

    2015-01-01

    The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion. PMID:26347754

  18. Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum.

    PubMed

    Domozych, David S; Sørensen, Iben; Sacks, Carly; Brechka, Hannah; Andreas, Amanda; Fangel, Jonatan U; Rose, Jocelyn K C; Willats, William G T; Popper, Zoë A

    2014-02-01

    Application of the dintroaniline compound, oryzalin, which inhibits microtubule formation, to the unicellular green alga Penium margaritaceum caused major perturbations to its cell morphology, such as swelling at the wall expansion zone in the central isthmus region. Cell wall structure was also notably altered, including a thinning of the inner cellulosic wall layer and a major disruption of the homogalacturonan (HG)-rich outer wall layer lattice. Polysaccharide microarray analysis indicated that the oryzalin treatment resulted in an increase in HG abundance in treated cells but a decrease in other cell wall components, specifically the pectin rhamnogalacturonan I (RG-I) and arabinogalactan proteins (AGPs). The ring of microtubules that characterizes the cortical area of the cell isthmus zone was significantly disrupted by oryzalin, as was the extensive peripheral network of actin microfilaments. It is proposed that the disruption of the microtubule network altered cellulose production, the main load-bearing component of the cell wall, which in turn affected the incorporation of HG in the two outer wall layers, suggesting coordinated mechanisms of wall polymer deposition.

  19. Disruption of the microtubule network alters cellulose deposition and causes major changes in pectin distribution in the cell wall of the green alga, Penium margaritaceum

    PubMed Central

    Domozych, David S.

    2014-01-01

    Application of the dintroaniline compound, oryzalin, which inhibits microtubule formation, to the unicellular green alga Penium margaritaceum caused major perturbations to its cell morphology, such as swelling at the wall expansion zone in the central isthmus region. Cell wall structure was also notably altered, including a thinning of the inner cellulosic wall layer and a major disruption of the homogalacturonan (HG)-rich outer wall layer lattice. Polysaccharide microarray analysis indicated that the oryzalin treatment resulted in an increase in HG abundance in treated cells but a decrease in other cell wall components, specifically the pectin rhamnogalacturonan I (RG-I) and arabinogalactan proteins (AGPs). The ring of microtubules that characterizes the cortical area of the cell isthmus zone was significantly disrupted by oryzalin, as was the extensive peripheral network of actin microfilaments. It is proposed that the disruption of the microtubule network altered cellulose production, the main load-bearing component of the cell wall, which in turn affected the incorporation of HG in the two outer wall layers, suggesting coordinated mechanisms of wall polymer deposition. PMID:24285826

  20. Immuno and Affinity Cytochemical Analysis of Cell Wall Composition in the Moss Physcomitrella patens.

    PubMed

    Berry, Elizabeth A; Tran, Mai L; Dimos, Christos S; Budziszek, Michael J; Scavuzzo-Duggan, Tess R; Roberts, Alison W

    2016-01-01

    In contrast to homeohydric vascular plants, mosses employ a poikilohydric strategy for surviving in the dry aerial environment. A detailed understanding of the structure, composition, and development of moss cell walls can contribute to our understanding of not only the evolution of overall cell wall complexity, but also the differences that have evolved in response to selection for different survival strategies. The model moss species Physcomitrella patens has a predominantly haploid lifecycle consisting of protonemal filaments that regenerate from protoplasts and enlarge by tip growth, and leafy gametophores composed of cells that enlarge by diffuse growth and differentiate into several different types. Advantages for genetic studies include methods for efficient targeted gene modification and extensive genomic resources. Immuno and affinity cytochemical labeling were used to examine the distribution of polysaccharides and proteins in regenerated protoplasts, protonemal filaments, rhizoids, and sectioned gametophores of P. patens. The cell wall composition of regenerated protoplasts was also characterized by flow cytometry. Crystalline cellulose was abundant in the cell walls of regenerating protoplasts and protonemal cells that developed on media of high osmolarity, whereas homogalactuonan was detected in the walls of protonemal cells