Science.gov

Sample records for affect channel activity

  1. Analysis of factors influencing moxibustion efficacy by affecting heat-activated transient receptor potential vanilloid channels.

    PubMed

    Jiang, Jinfeng; Wang, Xinjun; Wu, Xiaojing; Yu, Zhi

    2016-04-01

    Moxibustion is an important component part of Traditional Chinese Medicine (TCM). Among differ- ent kinds of moxibustion methods, thermal stimulation seems to be a pivotal impact factor to the theraputic efficacy. Based on its thermal characteristic and treated area-skin, we hypothesize that the thermosensitive TRPV channels may involve in the mechanism of moxibustion. This study, by referring to various experimental and clinical data, analyzes the properties and features of transient receptor potential vanilloid (TRPV) subfamily 1-4 and the impact of moxibustion on these channels. The factors impacting the efficacy of moxibustion treatment were analyzed on three levels: the independent basic factors of moxibustion (temperature, space and time); moxibustion intensity (a compound factor achieved through comprehensive control of the three individual basic factors mentioned above); and moxibustion quantity (the amount of temperature stimulation applied within a certain unit of time, including the total amount of moxibustion treatment). The results from present study show that the effect of moxibustion therapy appears to be determined by the activation of TRPV1-4, mainly TRPV1 and TRPV2. Temperature (the degree of heat stimulation), time and area (how long the treatment lasts and how many TRPV1-4 channels are activated) affect the intensity of moxibustion treatment to form effective moxibustion quantity; this should be considered in clinical moxibustion application.

  2. Analysis of factors influencing moxibustion efficacy by affecting heat-activated transient receptor potential vanilloid channels.

    PubMed

    Jiang, Jinfeng; Wang, Xinjun; Wu, Xiaojing; Yu, Zhi

    2016-04-01

    Moxibustion is an important component part of Traditional Chinese Medicine (TCM). Among differ- ent kinds of moxibustion methods, thermal stimulation seems to be a pivotal impact factor to the theraputic efficacy. Based on its thermal characteristic and treated area-skin, we hypothesize that the thermosensitive TRPV channels may involve in the mechanism of moxibustion. This study, by referring to various experimental and clinical data, analyzes the properties and features of transient receptor potential vanilloid (TRPV) subfamily 1-4 and the impact of moxibustion on these channels. The factors impacting the efficacy of moxibustion treatment were analyzed on three levels: the independent basic factors of moxibustion (temperature, space and time); moxibustion intensity (a compound factor achieved through comprehensive control of the three individual basic factors mentioned above); and moxibustion quantity (the amount of temperature stimulation applied within a certain unit of time, including the total amount of moxibustion treatment). The results from present study show that the effect of moxibustion therapy appears to be determined by the activation of TRPV1-4, mainly TRPV1 and TRPV2. Temperature (the degree of heat stimulation), time and area (how long the treatment lasts and how many TRPV1-4 channels are activated) affect the intensity of moxibustion treatment to form effective moxibustion quantity; this should be considered in clinical moxibustion application. PMID:27400483

  3. Solution structure and alanine scan of a spider toxin that affects the activation of mammalian voltage-gated sodium channels.

    PubMed

    Corzo, Gerardo; Sabo, Jennifer K; Bosmans, Frank; Billen, Bert; Villegas, Elba; Tytgat, Jan; Norton, Raymond S

    2007-02-16

    Magi 5, from the hexathelid spider Macrothele gigas, is a 29-residue polypeptide containing three disulfide bridges. It binds specifically to receptor site 4 on mammalian voltage-gated sodium channels and competes with scorpion beta-toxins, such as Css IV from Centruroides suffusus suffusus. As a consequence, Magi 5 shifts the activation voltage of the mammalian rNav1.2a channel to more hyperpolarized voltages, whereas the insect channel, DmNav1, is not affected. To gain insight into toxin-channel interactions, Magi 5 and 23 analogues were synthesized. The three-dimensional structure of Magi 5 in aqueous solution was determined, and its voltage-gated sodium channel-binding surfaces were mapped onto this structure using data from electrophysiological measurements on a series of Ala-substituted analogues. The structure clearly resembles the inhibitor cystine knot structural motif, although the triple-stranded beta-sheet typically found in that motif is partially distorted in Magi 5. The interactive surface of Magi 5 toward voltage-gated sodium channels resembles in some respects the Janus-faced atracotoxins, with functionally important charged residues on one face of the toxin and hydrophobic residues on the other. Magi 5 also resembles the scorpion beta-toxin Css IV, which has distinct nonpolar and charged surfaces that are critical for channel binding and has a key Glu involved in voltage sensor trapping. These two distinct classes of toxin, with different amino acid sequences and different structures, may utilize similar groups of residues on their surface to achieve the common end of modifying voltage-gated sodium channel function.

  4. Mechanically Activated Ion Channels

    PubMed Central

    Ranade, Sanjeev S.; Syeda, Ruhma; Patapoutian, Ardem

    2015-01-01

    Mechanotransduction, the conversion of physical forces into biochemical signals, is an essential component of numerous physiological processes including not only conscious senses of touch and hearing, but also unconscious senses such as blood pressure regulation. Mechanically activated (MA) ion channels have been proposed as sensors of physical force, but the identity of these channels and an understanding of how mechanical force is transduced has remained elusive. A number of recent studies on previously known ion channels along with the identification of novel MA ion channels have greatly transformed our understanding of touch and hearing in both vertebrates and invertebrates. Here, we present an updated review of eukaryotic ion channel families that have been implicated in mechanotransduction processes and evaluate the qualifications of the candidate genes according to specified criteria. We then discuss the proposed gating models for MA ion channels and highlight recent structural studies of mechanosensitive potassium channels. PMID:26402601

  5. Dopamine D2 receptor stimulation differentially affects voltage-activated calcium channels in rat pituitary melanotropic cells.

    PubMed

    Keja, J A; Stoof, J C; Kits, K S

    1992-05-01

    1. Whole-cell voltage clamp recordings were made from 141 rat pituitary melanotropic cells in short-term, serum-free, primary culture. The effects of the dopamine D2 receptor agonist, LY 171555, on sodium, potassium and barium currents were investigated. 2. Application of 1 microM-LY 171555 did not affect the inward sodium and outward potassium currents. 3. Application of LY 171555 reversibly inhibited barium currents, with the strongest inhibition on the early inward current. The effect was dose dependent (IC50 = 4 x 10(-8) M), maximal inhibition of the total current was 30% and the LY 171555-induced block (1 microM) was reversibly antagonized by (+/-)sulpiride (4 microM). 4. Using barium-selective saline solutions, different types of barium current (T, N, and two L components) were identified on the basis of their voltage-dependent kinetics. Their relative amplitudes differed between cells. 5. The T-type current activated at potentials positive to -60 mV, reaching peak amplitude between -20 and -10 mV. At -30 mV, this current was inhibited up to 30% by 1 microM-LY 171555. The time constants of activation (10-3 ms) and inactivation (50-20 ms) as well as the voltage dependence of inactivation (potential of half-maximal inactivation (H), -61 mV; slope factor (S), 4.9 mV) were not affected by LY 171555 application. 6. A rapidly inactivating (time constants 100-50 ms), high threshold current component was identified as an N-type current. This current activated at command potentials positive to -30 mV and reached a maximal amplitude at +10 mV. The steady-state inactivation was described by a single Boltzmann equation with H = -65 mV and S = 11.7 mV. Application of 1 microM-LY 171555 completely suppressed this current. 7. The slowly inactivating (time constants > 1500 ms), high-threshold, L-type current displayed the same voltage dependence of activation as the N current. The voltage dependence of inactivation was modelled by the sum of two Boltzmann equations (L1: H1

  6. Sea Anemone Toxins Affecting Potassium Channels

    NASA Astrophysics Data System (ADS)

    Diochot, Sylvie; Lazdunski, Michel

    The great diversity of K+ channels and their wide distribution in many tissues are associated with important functions in cardiac and neuronal excitability that are now better understood thanks to the discovery of animal toxins. During the past few decades, sea anemones have provided a variety of toxins acting on voltage-sensitive sodium and, more recently, potassium channels. Currently there are three major structural groups of sea anemone K+ channel (SAK) toxins that have been characterized. Radioligand binding and electrophysiological experiments revealed that each group contains peptides displaying selective activities for different subfamilies of K+ channels. Short (35-37 amino acids) peptides in the group I display pore blocking effects on Kv1 channels. Molecular interactions of SAK-I toxins, important for activity and binding on Kv1 channels, implicate a spot of three conserved amino acid residues (Ser, Lys, Tyr) surrounded by other less conserved residues. Long (58-59 amino acids) SAK-II peptides display both enzymatic and K+ channel inhibitory activities. Medium size (42-43 amino acid) SAK-III peptides are gating modifiers which interact either with cardiac HERG or Kv3 channels by altering their voltage-dependent properties. SAK-III toxins bind to the S3C region in the outer vestibule of Kv channels. Sea anemones have proven to be a rich source of pharmacological tools, and some of the SAK toxins are now useful drugs for the diagnosis and treatment of autoimmune diseases.

  7. Substitutions at the opening of the Rubisco central solvent channel affect holoenzyme stability and CO2/O 2 specificity but not activation by Rubisco activase.

    PubMed

    Esquivel, M Gloria; Genkov, Todor; Nogueira, Ana S; Salvucci, Michael E; Spreitzer, Robert J

    2013-12-01

    Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) catalyzes the initial step of carbon metabolism in photosynthesis. The holoenzyme comprises eight large subunits, arranged as a tetramer of dimers around a central solvent channel that defines a fourfold axis of symmetry, and eight small subunits, arranged as two tetramers at the poles of the axis. The phylogenetically divergent small-subunit loops between β-strands A and B form the entrance to the solvent channel. In the green alga Chlamydomonas reinhardtii, Ile-58 from each of the four small-subunit βA-βB loops defines the minimal diameter of the channel opening. To understand the role of the central solvent channel in Rubisco function, directed mutagenesis and transformation of Chlamydomonas were employed to replace Ile-58 with Ala, Lys, Glu, Trp, or three Trp residues (I58W3) to close the entrance to the channel. The I58E, I58K, and I58W substitutions caused only small decreases in photosynthetic growth at 25 and 35 °C, whereas I58W3 had a substantial effect at both temperatures. The mutant enzymes had decreased carboxylation rates, but the I58W3 enzyme had decreases in both carboxylation and CO2/O2 specificity. The I58E, I58W, and I58W3 enzymes were inactivated at lower temperatures than wild-type Rubisco, and were degraded at slower rates under oxidative stress. However, these mutant enzymes were activated by Rubisco activase at normal rates, indicating that the structural transition required for carboxylation is not affected by altering the solvent channel opening. Structural dynamics alone may not be responsible for these distant effects on the Rubisco active site.

  8. A mutation in TRPC6 channels abolishes their activation by hypoosmotic stretch but does not affect activation by diacylglycerol or G protein signaling cascades.

    PubMed

    Wilson, Cory; Dryer, Stuart E

    2014-05-01

    Canonical transient receptor potential-6 (TRPC6) channels have been implicated in the pathogenesis of kidney disease and in the regulation of vascular smooth muscle tone, podocyte function, and a variety of processes in other cell types. The question of whether their gating is intrinsically mechanosensitive has been controversial. In this study we have examined activation of two alleles of TRPC6 transiently expressed in CHO-K1 cells: the wild-type human TRPC6 channel, and TRPC6-N143S, an allele originally identified in a family with autosomal dominant familial focal and segmental glomerulosclerosis (FSGS). We observed that both channel variants carried robust cationic currents that could be evoked by application of membrane-permeable analogs of diacylglycerol (DAG) or by the P2Y receptor agonist ATP. The amplitudes and characteristics of currents evoked by the DAG analog or ATP were indistinguishable in cells expressing the two TRPC6 alleles. By contrast, hypoosmotic stretch evoked robust currents in wild-type TRPC6 channels but had no discernible effect on currents in cells expressing TRPC6-N143S, indicating that the mutant form lacks mechanosensitivity. Coexpression of TRPC6-N143S with wild-type TRPC6 or TRPC3 channels did not alter stretch-evoked responses compared with when TRPC3 channels were expressed by themselves, indicating that TRPC6-N143S does not function as a dominant-negative. These data indicate that mechanical activation and activation evoked by DAG or ATP occur through fundamentally distinct biophysical mechanisms, and they provide support for the hypothesis that protein complexes containing wild-type TRPC6 subunits can be intrinsically mechanosensitive. PMID:24598806

  9. A mutation in TRPC6 channels abolishes their activation by hypoosmotic stretch but does not affect activation by diacylglycerol or G protein signaling cascades.

    PubMed

    Wilson, Cory; Dryer, Stuart E

    2014-05-01

    Canonical transient receptor potential-6 (TRPC6) channels have been implicated in the pathogenesis of kidney disease and in the regulation of vascular smooth muscle tone, podocyte function, and a variety of processes in other cell types. The question of whether their gating is intrinsically mechanosensitive has been controversial. In this study we have examined activation of two alleles of TRPC6 transiently expressed in CHO-K1 cells: the wild-type human TRPC6 channel, and TRPC6-N143S, an allele originally identified in a family with autosomal dominant familial focal and segmental glomerulosclerosis (FSGS). We observed that both channel variants carried robust cationic currents that could be evoked by application of membrane-permeable analogs of diacylglycerol (DAG) or by the P2Y receptor agonist ATP. The amplitudes and characteristics of currents evoked by the DAG analog or ATP were indistinguishable in cells expressing the two TRPC6 alleles. By contrast, hypoosmotic stretch evoked robust currents in wild-type TRPC6 channels but had no discernible effect on currents in cells expressing TRPC6-N143S, indicating that the mutant form lacks mechanosensitivity. Coexpression of TRPC6-N143S with wild-type TRPC6 or TRPC3 channels did not alter stretch-evoked responses compared with when TRPC3 channels were expressed by themselves, indicating that TRPC6-N143S does not function as a dominant-negative. These data indicate that mechanical activation and activation evoked by DAG or ATP occur through fundamentally distinct biophysical mechanisms, and they provide support for the hypothesis that protein complexes containing wild-type TRPC6 subunits can be intrinsically mechanosensitive.

  10. Fe2O3 nanoparticles suppress Kv1.3 channels via affecting the redox activity of Kvβ2 subunit in Jurkat T cells

    NASA Astrophysics Data System (ADS)

    Yan, Li; Liu, Xiao; Liu, Wei-Xia; Tan, Xiao-Qiu; Xiong, Fei; Gu, Ning; Hao, Wei; Gao, Xue; Cao, Ji-Min

    2015-12-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are promising nanomaterials in medical practice due to their special magnetic characteristics and nanoscale size. However, their potential impacts on immune cells are not well documented. This study aims to investigate the effects of Fe2O3 nanoparticles (Fe2O3-NPs) on the electrophysiology of Kv1.3 channels in Jurkat T cells. Using the whole-cell patch-clamp technique, we demonstrate that incubation of Jurkat cells with Fe2O3-NPs dose- and time-dependently decreased the current density and shifted the steady-state inactivation curve and the recovery curve of Kv1.3 channels to a rightward direction. Fe2O3-NPs increased the NADP level but decreased the NADPH level of Jurkat cells. Direct induction of NADPH into the cytosole of Jurkat cells via the pipette abolished the rightward shift of the inactivation curve. In addition, transmission electron microscopy showed that Fe2O3-NPs could be endocytosed by Jurkat cells with relatively low speed and capacity. Fe2O3-NPs did not significantly affect the viability of Jurkat cells, but suppressed the expressions of certain cytokines (TNFα, IFNγ and IL-2) and interferon responsive genes (IRF-1 and PIM-1), and the time courses of Fe2O3-NPs endocytosis and effects on the expressions of cytokines and interferon responsive genes were compatible. We conclude that Fe2O3-NPs can be endocytosed by Jurkat cells and act intracellularly. Fe2O3-NPs decrease the current density and delay the inactivation and recovery kinetics of Kv1.3 channels in Jurkat cells by oxidizing NADPH and therefore disrupting the redox activity of the Kvβ2 auxiliary subunit, and as a result, lead to changes of the Kv1.3 channel function. These results suggest that iron oxide nanoparticles may affect T cell function by disturbing the activity of Kv1.3 channels. Further, the suppressing effects of Fe2O3-NPs on the expressions of certain inflammatory cytokines and interferon responsive genes suggest that iron

  11. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling.

    PubMed

    Moore, Carlene; Cevikbas, Ferda; Pasolli, H Amalia; Chen, Yong; Kong, Wei; Kempkes, Cordula; Parekh, Puja; Lee, Suk Hee; Kontchou, Nelly-Ange; Yeh, Iwei; Ye, Iwei; Jokerst, Nan Marie; Fuchs, Elaine; Steinhoff, Martin; Liedtke, Wolfgang B

    2013-08-20

    At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.

  12. REST levels affect the functional expression of voltage dependent calcium channels and the migratory activity in immortalized GnRH neurons.

    PubMed

    Antoniotti, Susanna; Ruffinatti, Federico Alessandro; Torriano, Simona; Luganini, Anna; D'Alessandro, Rosalba; Lovisolo, Davide

    2016-08-26

    The repressor element-1 silencing transcription factor (REST) has emerged as a key controller of neuronal differentiation and has been shown to play a critical role in the expression of the neuronal phenotype; however, much has still to be learned about its role at specific developmental stages and about the functional targets affected. Among these targets, calcium signaling mechanisms are critically dependent on the developmental stage and their full expression is a hallmark of the mature, functional neuron. We have analyzed the role played by REST in GN11 cells, an immortalized cell line derived from gonadotropin hormone releasing hormone (GnRH) neurons at an early developmental stage, electrically non-excitable and with a strong migratory activity. We show for the first time that functional voltage-dependent calcium channels are expressed in wild type GN11 cells; down-regulation of REST by a silencing approach shifts these cells towards a more differentiated phenotype, increasing the functional expression of P/Q-type channels and reducing their migratory potential. PMID:27349310

  13. Coumestrol decreases intestinal alkaline phosphatase activity in post-delivery mice but does not affect vitamin D receptor and calcium channels in post-delivery and neonatal mice.

    PubMed

    Kirihata, Yuka; Kawarabayashi, Tetsu; Imanishi, Satoshi; Sugimoto, Miki; Kume, Shin-Ichi

    2008-02-01

    In this study, we investigated the effects of administration of coumestrol during pregnancy on calcium (Ca) metabolism in post-delivery maternal and neonatal mice. From 6.5 to 16.5 days post coitus (dpc), pregnant females were administered daily doses of coumestrol (200 microg/kg body weight/day). One day after parturition, blood samples and the kidneys, liver, jejunum and duodenum were obtained from each of maternal mouse, and blood samples and the kidneys and liver were obtained from neonatal mice. Coumestrol did not have any significant effect on the Ca and inorganic phosphorus concentrations in the sera of the maternal and neonatal mice. No notable effects of coumestrol were observed in relation to Vitamin D receptor expression in the maternal and neonatal mice by immunohistochemical analysis. Coumestrol did not affect the Vitamin D receptor and epithelial calcium channel and 2 mRNA levels in any of the organs investigated. Enzyme histochemical analysis showed that coumestrol decreased intestinal alkaline phosphatase activity in the maternal jejunum and duodenum. In the duodenum, coumestrol decreased expression of intestinal alkaline phosphatase, c-fos and vascular endothelial growth factor at the mRNA level. However, we did not observe any significant effects of coumestrol on the expression of these genes. In conclusion, coumestrol decreased intestinal alkaline phosphatase activity in the small intestines of maternal mice at the level used in the present study, and the mechanisms underlying this effect are different for the jejunum and duodenum. PMID:18160770

  14. Is microrheometry affected by channel deformation?

    PubMed

    Del Giudice, Francesco; Greco, Francesco; Netti, Paolo Antonio; Maffettone, Pier Luca

    2016-07-01

    Microrheometry is very important for exploring rheological behaviours of several systems when conventional techniques fail. Microrheometrical measurements are usually carried out in microfluidic devices made of Poly(dimethylsiloxane) (PDMS). Although PDMS is a very cheap material, it is also very easy to deform. In particular, a liquid flowing in a PDMS device, in some circumstances, can effectively deform the microchannel, thus altering the flow conditions. The measure of the fluid relaxation time might be performed through viscoelasticity induced particle migration in microfluidics devices. If the channel walls are deformed by the flow, the resulting measured value of the relaxation time could be not reliable. In this work, we study the effect of channel deformation on particle migration in square-shaped microchannel. Experiments are carried out in several PolyEthylene Oxyde solutions flowing in two devices made of PDMS and Poly(methylmethacrylate) (PMMA). The relevance of wall rigidity on particle migration is investigated, and the corresponding importance of wall rigidity on the determination of the relaxation time of the suspending liquid is examined. PMID:27098237

  15. Traveling ion channel density waves affected by a conservation law.

    PubMed

    Peter, Ronny; Zimmermann, Walter

    2006-07-01

    A model of mobile, charged ion channels embedded in a biomembrane is investigated. The ion channels fluctuate between an opened and a closed state according to a simple two-state reaction scheme whereas the total number of ion channels is a conserved quantity. Local transport mechanisms suggest that the ion channel densities are governed by electrodiffusionlike equations that have to be supplemented by a cable-type equation describing the dynamics of the transmembrane voltage. It is shown that the homogeneous distribution of ion channels may become unstable to either a stationary or an oscillatory instability. The nonlinear behavior immediately above threshold of an oscillatory bifurcation occurring at finite wave number is analyzed in terms of amplitude equations. Due to the conservation law imposed on ion channels, large-scale modes couple to the finite-wave-number instability and have thus to be included in the asymptotic analysis near the onset of pattern formation. A modified Ginzburg-Landau equation extended by long-wavelength stationary excitations is established, and it is highlighted how the global conservation law affects the stability of traveling ion channel density waves.

  16. Target Promiscuity and Heterogeneous Effects of Tarantula Venom Peptides Affecting Na+ and K+ Ion Channels*

    PubMed Central

    Redaelli, Elisa; Cassulini, Rita Restano; Silva, Deyanira Fuentes; Clement, Herlinda; Schiavon, Emanuele; Zamudio, Fernando Z.; Odell, George; Arcangeli, Annarosa; Clare, Jeffrey J.; Alagón, Alejandro; de la Vega, Ricardo C. Rodríguez; Possani, Lourival D.; Wanke, Enzo

    2010-01-01

    Venom-derived peptide modulators of ion channel gating are regarded as essential tools for understanding the molecular motions that occur during the opening and closing of ion channels. In this study, we present the characterization of five spider toxins on 12 human voltage-gated ion channels, following observations about the target promiscuity of some spider toxins and the ongoing revision of their “canonical” gating-modifying mode of action. The peptides were purified de novo from the venom of Grammostola rosea tarantulas, and their sequences were confirmed by Edman degradation and mass spectrometry analysis. Their effects on seven tetrodotoxin-sensitive Na+ channels, the three human ether-à-go-go (hERG)-related K+ channels, and two human Shaker-related K+ channels were extensively characterized by electrophysiological techniques. All the peptides inhibited ion conduction through all the Na+ channels tested, although with distinctive patterns. The peptides also affected the three pharmaceutically relevant hERG isoforms differently. At higher concentrations, all peptides also modified the gating of the Na+ channels by shifting the activation to more positive potentials, whereas more complex effects were recorded on hERG channels. No effects were evident on the two Shaker-related K+ channels at concentrations well above the IC50 value for the affected channels. Given the sequence diversity of the tested peptides, we propose that tarantula toxins should be considered both as multimode and target-promiscuous ion channel modulators; both features should not be ignored when extracting mechanistic interpretations about ion channel gating. Our observations could also aid in future structure-function studies and might help the development of novel ion channel-specific drugs. PMID:19955179

  17. Oxidative Stress and Maxi Calcium-Activated Potassium (BK) Channels

    PubMed Central

    Hermann, Anton; Sitdikova, Guzel F.; Weiger, Thomas M.

    2015-01-01

    All cells contain ion channels in their outer (plasma) and inner (organelle) membranes. Ion channels, similar to other proteins, are targets of oxidative impact, which modulates ion fluxes across membranes. Subsequently, these ion currents affect electrical excitability, such as action potential discharge (in neurons, muscle, and receptor cells), alteration of the membrane resting potential, synaptic transmission, hormone secretion, muscle contraction or coordination of the cell cycle. In this chapter we summarize effects of oxidative stress and redox mechanisms on some ion channels, in particular on maxi calcium-activated potassium (BK) channels which play an outstanding role in a plethora of physiological and pathophysiological functions in almost all cells and tissues. We first elaborate on some general features of ion channel structure and function and then summarize effects of oxidative alterations of ion channels and their functional consequences. PMID:26287261

  18. BK channels: multiple sensors, one activation gate.

    PubMed

    Yang, Huanghe; Zhang, Guohui; Cui, Jianmin

    2015-01-01

    Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca(2+) activated BK channels, a K(+) channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate.

  19. BK channels: multiple sensors, one activation gate

    PubMed Central

    Yang, Huanghe; Zhang, Guohui; Cui, Jianmin

    2015-01-01

    Ion transport across cell membranes is essential to cell communication and signaling. Passive ion transport is mediated by ion channels, membrane proteins that create ion conducting pores across cell membrane to allow ion flux down electrochemical gradient. Under physiological conditions, majority of ion channel pores are not constitutively open. Instead, structural region(s) within these pores breaks the continuity of the aqueous ion pathway, thereby serves as activation gate(s) to control ions flow in and out. To achieve spatially and temporally regulated ion flux in cells, many ion channels have evolved sensors to detect various environmental stimuli or the metabolic states of the cell and trigger global conformational changes, thereby dynamically operate the opening and closing of their activation gate. The sensors of ion channels can be broadly categorized as chemical sensors and physical sensors to respond to chemical (such as neural transmitters, nucleotides and ions) and physical (such as voltage, mechanical force and temperature) signals, respectively. With the rapidly growing structural and functional information of different types of ion channels, it is now critical to understand how ion channel sensors dynamically control their gates at molecular and atomic level. The voltage and Ca2+ activated BK channels, a K+ channel with an electrical sensor and multiple chemical sensors, provide a unique model system for us to understand how physical and chemical energy synergistically operate its activation gate. PMID:25705194

  20. TRPC channel activation by extracellular thioredoxin

    PubMed Central

    Xu, Shang-Zhong; Sukumar, Piruthivi; Zeng, Fanning; Li, Jing; Jairaman, Amit; English, Anne; Naylor, Jacqueline; Ciurtin, Coziana; Majeed, Yasser; Milligan, Carol J; Bahnasi, Yahya M; AL-Shawaf, Eman; Porter, Karen E; Jiang, Lin-Hua; Emery, Paul; Sivaprasadarao, Asipu; Beech, David J

    2009-01-01

    Mammalian homologues of Drosophila melanogaster transient receptor potential (TRP) are a large family of multimeric cation channels that act, or putatively act, as sensors of one or more chemical factor1,2. Major research objectives are the identification of endogenous activators and the determination of cellular and tissue functions of these novel channels. Here we show activation of TRPC5 homomultimeric and TRPC5-TRPC1 heteromultimeric channels3-5 by extracellular reduced thioredoxin acting by breaking a disulphide bridge in the predicted extracellular loop adjacent to the ion-selectivity filter of TRPC5. Thioredoxin is an endogenous redox protein with established intracellular functions, but it is also secreted and its extracellular targets are largely unknown6-9. Particularly high extracellular concentrations of thioredoxin are apparent in rheumatoid arthritis8,10-12, an inflammatory joint disease disabling millions of people world-wide13. We show that TRPC5 and TRPC1 are expressed in secretory fibroblast-like synoviocytes from patients with rheumatoid arthritis, endogenous TRPC5-TRPC1 channels of the cells are activated by reduced thioredoxin, and blockade of the channels enhances secretory activity and prevents suppression of secretion by thioredoxin. The data suggest a novel ion channel activation mechanism that couples extracellular thioredoxin to cell function. PMID:18172497

  1. Peptide neurotoxins that affect voltage-gated calcium channels: a close-up on ω-agatoxins.

    PubMed

    Pringos, Emilie; Vignes, Michel; Martinez, Jean; Rolland, Valerie

    2011-01-01

    Peptide neurotoxins found in animal venoms have gained great interest in the field of neurotransmission. As they are high affinity ligands for calcium, potassium and sodium channels, they have become useful tools for studying channel structure and activity. Peptide neurotoxins represent the clinical potential of ion-channel modulators across several therapeutic fields, especially in developing new strategies for treatment of ion channel-related diseases. The aim of this review is to overview the latest updates in the domain of peptide neurotoxins that affect voltage-gated calcium channels, with a special focus on ω-agatoxins.

  2. Active channel for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the active, wetted channel as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The wetted channel boundary is equivalent to the extent of water observed during a 2-yr high flow event.

  3. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides.

    PubMed

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-02-10

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor phosphatidylinositol 4-phosphate [PI(4)P] from the plasma membrane through Ca(2+)-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 and PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin.

  4. Channeling Children's Energy through Vocabulary Activities

    ERIC Educational Resources Information Center

    Schindler, Andrea

    2006-01-01

    In this article, the author shares vocabulary development activities for young learners. These activities channel students' energy and make learning more effective and fun. The author stresses the importance of giving young learners a good language-learning experience, and the challenges of teaching young learners who are not literate in their L1.…

  5. Language Development Activities through the Auditory Channel.

    ERIC Educational Resources Information Center

    Fitzmaurice, Peggy, Comp.; And Others

    Presented primarily for use with educable mentally retarded and learning disabled children are approximately 100 activities for language development through the auditory channel. Activities are grouped under the following three areas: receptive skills (auditory decoding, auditory memory, and auditory discrimination); expressive skills (auditory…

  6. Heterogeneity of Calcium Channel/cAMP-Dependent Transcriptional Activation.

    PubMed

    Kobrinsky, Evgeny

    2015-01-01

    The major function of the voltage-gated calcium channels is to provide the Ca(2+) flux into the cell. L-type voltage-gated calcium channels (Cav1) serve as voltage sensors that couple membrane depolarization to many intracellular processes. Electrical activity in excitable cells affects gene expression through signaling pathways involved in the excitation-transcription (E-T) coupling. E-T coupling starts with activation of the Cav1 channel and results in initiation of the cAMP-response element binding protein (CREB)-dependent transcription. In this review we discuss the new quantitative approaches to measuring E-T signaling events. We describe the use of wavelet transform to detect heterogeneity of transcriptional activation in nuclei. Furthermore, we discuss the properties of discovered microdomains of nuclear signaling associated with the E-T coupling and the basis of the frequency-dependent transcriptional regulation.

  7. Activation and inhibition of TMEM16A calcium-activated chloride channels.

    PubMed

    Ni, Yu-Li; Kuan, Ai-Seon; Chen, Tsung-Yu

    2014-01-01

    Calcium-activated chloride channels (CaCC) encoded by family members of transmembrane proteins of unknown function 16 (TMEM16) have recently been intensely studied for functional properties as well as their physiological roles as chloride channels in various tissues. One technical hurdle in studying these channels is the well-known channel rundown that frequently impairs the precision of electrophysiological measurements for the channels. Using experimental protocols that employ fast-solution exchange, we circumvented the problem of channel rundown by normalizing the Ca(2+)-induced current to the maximally-activated current obtained within a time period in which the channel rundown was negligible. We characterized the activation of the TMEM16A-encoded CaCC (also called ANO1) by Ca(2+), Sr(2+), and Ba(2+), and discovered that Mg(2+) competes with Ca(2+) in binding to the divalent-cation binding site without activating the channel. We also studied the permeability of the ANO1 pore for various anions and found that the anion occupancy in the pore-as revealed by the permeability ratios of these anions-appeared to be inversely correlated with the apparent affinity of the ANO1 inhibition by niflumic acid (NFA). On the other hand, the NFA inhibition was neither affected by the degree of the channel activation nor influenced by the types of divalent cations used for the channel activation. These results suggest that the NFA inhibition of ANO1 is likely mediated by altering the pore function but not through changing the channel gating. Our study provides a precise characterization of ANO1 and documents factors that can affect divalent cation activation and NFA inhibition of ANO1.

  8. Cilostazol induces vasodilation through the activation of Ca(2+)-activated K(+) channels in aortic smooth muscle.

    PubMed

    Li, Hongliang; Hong, Da Hye; Son, Youn Kyoung; Na, Sung Hun; Jung, Won-Kyo; Bae, Young Min; Seo, Eun Young; Kim, Sung Joon; Choi, Il-Whan; Park, Won Sun

    2015-07-01

    We investigated the vasorelaxant effect of cilostazol and related signaling pathways in phenylephrine (Phe)-induced pre-contracted aortic rings. Cilostazol induced vasorelaxation in a concentration-dependent manner when aortic rings were pre-contracted with Phe. Application of the voltage-dependent K(+) (Kv) channel inhibitor 4-AP, the ATP-sensitive K(+) (K(ATP)) channel inhibitor glibenclamide, and the inwardly rectifying K(+) (Kir) channel inhibitor Ba(2+) did not alter the vasorelaxant effect of cilostazol; however, pre- and post-treatment with the big-conductance Ca(2+)-activated K(+) (BK(Ca)) channel inhibitor paxilline inhibited the vasorelaxant effect of cilostazol. This vasorelaxant effect of cilostazol was reduced in the presence of an adenylyl cyclase or a protein kinase A (PKA) inhibitor, but not a protein kinase G inhibitor. Inside-out single channel recordings revealed that cilostazol induced the activation of BK(Ca) channel activity. The vasorelaxant effect of cilostazol was not affected by removal of the endothelium. In addition, application of a nitric oxide synthase inhibitor and a small-conductance Ca(2+)-activated K(+) (SK(Ca)) channel inhibitor did not affect cilostazol-induced vasorelaxation. We conclude that cilostazol induced vasorelaxation of the aorta through activation of BK(Ca) channel via a PKA-dependent signaling mechanism independent of endothelium.

  9. Tyrosine-rich Conopeptides Affect Voltage-gated K+ Channels*

    PubMed Central

    Imperial, Julita S.; Chen, Ping; Sporning, Annett; Terlau, Heinrich; Daly, Norelle L.; Craik, David J.; Alewood, Paul F.; Olivera, Baldomero M.

    2008-01-01

    Two venom peptides, CPY-Pl1 (EU000528) and CPY-Fe1 (EU000529), characterized from the vermivorous marine snails Conus planorbis and Conus ferrugineus, define a new class of conopeptides, the conopeptide Y (CPY) family. The peptides have no disulfide cross-links and are 30 amino acids long; the high content of tyrosine is unprecedented for any native gene product. The CPY peptides were chemically synthesized and shown to be biologically active upon injection into both mice and Caenorhabditis elegans; activity on mammalian Kv1 channel isoforms was demonstrated using an oocyte heterologous expression system, and selectivity for Kv1.6 was found. NMR spectroscopy revealed that the peptides were unstructured in aqueous solution; however, a helical region including residues 12–18 for one peptide, CPY-Pl1, formed in trifluoroethanol buffer. Clones obtained from cDNA of both species encoded prepropeptide precursors that shared a unique signal sequence, indicating that these peptides are encoded by a novel gene family. This is the first report of tyrosine-rich bioactive peptides in Conus venom. PMID:18505731

  10. Targeting the Channel Activity of Viroporins.

    PubMed

    To, Janet; Surya, Wahyu; Torres, Jaume

    2016-01-01

    Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.

  11. Sodium channel activation mechanisms. Insights from deuterium oxide substitution

    SciTech Connect

    Alicata, D.A.; Rayner, M.D.; Starkus, J.G. )

    1990-04-01

    Schauf and Bullock, using Myxicola giant axons, demonstrated that solvent substitution with deuterium oxide (D2O) significantly affects both sodium channel activation and inactivation kinetics without corresponding changes in gating current or tail current rates. They concluded that (a) no significant component of gating current derives from the final channel opening step, and (b) channels must deactivate (during tail currents) by a different pathway from that used in channel opening. By contrast, Oxford found in squid axons that when a depolarizing pulse is interrupted by a brief (approximately 100 microseconds) return to holding potential, subsequent reactivation (secondary activation) is very rapid and shows almost monoexponential kinetics. Increasing the interpulse interval resulted in secondary activation rate returning towards control, sigmoid (primary activation) kinetics. He concluded that channels open and close (deactivate) via the same pathway. We have repeated both sets of observations in crayfish axons, confirming the results obtained in both previous studies, despite the apparently contradictory conclusions reached by these authors. On the other hand, we find that secondary activation after a brief interpulse interval (50 microseconds) is insensitive to D2O, although reactivation after longer interpulse intervals (approximately 400 microseconds) returns towards a D2O sensitivity similar to that of primary activation. We conclude that D2O-sensitive primary activation and D2O-insensitive tail current deactivation involve separate pathways. However, D2O-insensitive secondary activation involves reversal of the D2O-insensitive deactivation step. These conclusions are consistent with parallel gate models, provided that one gating particle has a substantially reduced effective valence.

  12. Hydrogen peroxide affects ion channels in lily pollen grain protoplasts.

    PubMed

    Breygina, M A; Abramochkin, D V; Maksimov, N M; Yermakov, I P

    2016-09-01

    Ion homeostasis plays a central role in polarisation and polar growth. In several cell types ion channels are controlled by reactive oxygen species (ROS). One of the most important cells in the plant life cycle is the male gametophyte, which grows under the tight control of both ion fluxes and ROS balance. The precise relationship between these two factors in pollen tubes has not been completely elucidated, and in pollen grains it has never been studied to date. In the present study we used a simple model - protoplasts obtained from lily pollen grains at the early germination stage - to reveal the effect of H2 O2 on cation fluxes crucial for pollen germination. Here we present direct evidence for two ROS-sensitive currents on the pollen grain plasma membrane: the hyperpolarisation-activated calcium current, which is strongly enhanced by H2 O2 , and the outward potassium current, which is modestly enhanced by H2 O2 . We used low concentrations of H2 O2 that do not cause an intracellular oxidative burst and do not damage cells, as demonstrated with fluorescent staining. PMID:27115728

  13. Synthetic modulators of TRP channel activity.

    PubMed

    Harteneck, Christian; Klose, Chihab; Krautwurst, Dietmar

    2011-01-01

    In humans, 27 TRP channels from 6 related families contribute to a broad spectrum of cellular functions, such as thermo-, pressure-, volume-, pain- and chemosensation. Pain and inflammation-inducing compounds represent potent plant and animal defense mechanisms explaining the great variety of the naturally occurring, TRPV1-, TRPM8-, and TRPA1-activating ligands. The discovery of the first vanilloid receptor (TRPV1) and its involvement in nociception triggered the euphoria and the hope in novel therapeutic strategies treating pain, and this clear-cut indication inspired the development of TRPV1-selective ligands. On the other hand the nescience in the physiological role and putative clinical indication hampered the development of a selective drug in the case of the other TRP channels. Therefore, currently only a handful of mostly un-selective blocker is available to target TRP channels. Nevertheless, there is an ongoing quest for new, natural or synthetic ligands and modulators. In this chapter, we will give an overview on available broad-range blocker, as well as first TRP channel-selective compounds. PMID:21290290

  14. Epithelial sodium channel modulates platelet collagen activation.

    PubMed

    Cerecedo, Doris; Martínez-Vieyra, Ivette; Alonso-Rangel, Lea; Benítez-Cardoza, Claudia; Ortega, Arturo

    2014-03-01

    Activated platelets adhere to the exposed subendothelial extracellular matrix and undergo a rapid cytoskeletal rearrangement resulting in shape change and release of their intracellular dense and alpha granule contents to avoid hemorrhage. A central step in this process is the elevation of the intracellular Ca(2+) concentration through its release from intracellular stores and on throughout its influx from the extracellular space. The Epithelial sodium channel (ENaC) is a highly selective Na(+) channel involved in mechanosensation, nociception, fluid volume homeostasis, and control of arterial blood pressure. The present study describes the expression, distribution, and participation of ENaC in platelet migration and granule secretion using pharmacological inhibition with amiloride. Our biochemical and confocal analysis in suspended and adhered platelets suggests that ENaC is associated with Intermediate filaments (IF) and with Dystrophin-associated proteins (DAP) via α-syntrophin and β-dystroglycan. Migration assays, quantification of soluble P-selectin, and serotonin release suggest that ENaC is dispensable for migration and alpha and dense granule secretion, whereas Na(+) influx through this channel is fundamental for platelet collagen activation.

  15. Iron status of channel catfish Ictalurus punctatus affected by channel catfish anemia and response to parenteral iron

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Originally reported in 1983, channel catfish anemia (CCA), also ‘white lip’ or ‘no blood,’ is a major idiopathic disease affecting commercial production in the Mississippi Delta region of the USA. Affected individuals are characterized by lethargy, anorexia, extreme pallor, and packed cell volumes o...

  16. Calcium-Activated Potassium Channels: Potential Target for Cardiovascular Diseases.

    PubMed

    Dong, De-Li; Bai, Yun-Long; Cai, Ben-Zhi

    2016-01-01

    Ca(2+)-activated K(+) channels (KCa) are classified into three subtypes: big conductance (BKCa), intermediate conductance (IKCa), and small conductance (SKCa) KCa channels. The three types of KCa channels have distinct physiological or pathological functions in cardiovascular system. BKCa channels are mainly expressed in vascular smooth muscle cells (VSMCs) and inner mitochondrial membrane of cardiomyocytes, activation of BKCa channels in these locations results in vasodilation and cardioprotection against cardiac ischemia. IKCa channels are expressed in VSMCs, endothelial cells, and cardiac fibroblasts and involved in vascular smooth muscle proliferation, migration, vessel dilation, and cardiac fibrosis. SKCa channels are widely expressed in nervous and cardiovascular system, and activation of SKCa channels mainly contributes membrane hyperpolarization. In this chapter, we summarize the physiological and pathological roles of the three types of KCa channels in cardiovascular system and put forward the possibility of KCa channels as potential target for cardiovascular diseases.

  17. Chemical activation of the mechanotransduction channel Piezo1

    PubMed Central

    Syeda, Ruhma; Xu, Jie; Dubin, Adrienne E; Coste, Bertrand; Mathur, Jayanti; Huynh, Truc; Matzen, Jason; Lao, Jianmin; Tully, David C; Engels, Ingo H; Petrassi, H Michael; Schumacher, Andrew M; Montal, Mauricio; Bandell, Michael; Patapoutian, Ardem

    2015-01-01

    Piezo ion channels are activated by various types of mechanical stimuli and function as biological pressure sensors in both vertebrates and invertebrates. To date, mechanical stimuli are the only means to activate Piezo ion channels and whether other modes of activation exist is not known. In this study, we screened ∼3.25 million compounds using a cell-based fluorescence assay and identified a synthetic small molecule we termed Yoda1 that acts as an agonist for both human and mouse Piezo1. Functional studies in cells revealed that Yoda1 affects the sensitivity and the inactivation kinetics of mechanically induced responses. Characterization of Yoda1 in artificial droplet lipid bilayers showed that Yoda1 activates purified Piezo1 channels in the absence of other cellular components. Our studies demonstrate that Piezo1 is amenable to chemical activation and raise the possibility that endogenous Piezo1 agonists might exist. Yoda1 will serve as a key tool compound to study Piezo1 regulation and function. DOI: http://dx.doi.org/10.7554/eLife.07369.001 PMID:26001275

  18. Golgi Anti-apoptotic Proteins Are Highly Conserved Ion Channels That Affect Apoptosis and Cell Migration*

    PubMed Central

    Carrara, Guia; Saraiva, Nuno; Parsons, Maddy; Byrne, Bernadette; Prole, David L.; Taylor, Colin W.; Smith, Geoffrey L.

    2015-01-01

    Golgi anti-apoptotic proteins (GAAPs) are multitransmembrane proteins that are expressed in the Golgi apparatus and are able to homo-oligomerize. They are highly conserved throughout eukaryotes and are present in some prokaryotes and orthopoxviruses. Within eukaryotes, GAAPs regulate the Ca2+ content of intracellular stores, inhibit apoptosis, and promote cell adhesion and migration. Data presented here demonstrate that purified viral GAAPs (vGAAPs) and human Bax inhibitor 1 form ion channels and that vGAAP from camelpox virus is selective for cations. Mutagenesis of vGAAP, including some residues conserved in the recently solved structure of a related bacterial protein, BsYetJ, altered the conductance (E207Q and D219N) and ion selectivity (E207Q) of the channel. Mutation of residue Glu-207 or -178 reduced the effects of GAAP on cell migration and adhesion without affecting protection from apoptosis. In contrast, mutation of Asp-219 abrogated the anti-apoptotic activity of GAAP but not its effects on cell migration and adhesion. These results demonstrate that GAAPs are ion channels and define residues that contribute to the ion-conducting pore and affect apoptosis, cell adhesion, and migration independently. PMID:25713081

  19. Roscovitine inhibits CaV3.1 (T-type) channels by preferentially affecting closed-state inactivation.

    PubMed

    Yarotskyy, Viktor; Elmslie, Keith S

    2012-02-01

    T-type calcium channels (Ca(V)3) play an important role in many physiological and pathological processes, including cancerogenesis. Ca(V)3 channel blockers have been proposed as potential cancer treatments. Roscovitine, a trisubstituted purine, is a cyclin-dependent kinase (CDK) inhibitor that is currently undergoing phase II clinical trials as an anticancer drug and has been shown to affect calcium and potassium channel activity. Here, we investigate the effect of roscovitine on Ca(V)3.1 channels. Ca(V)3.1 channels were transiently expressed in human embryonic kidney 293 cells, and currents were recorded by using the whole-cell patch-clamp technique. Roscovitine blocks Ca(V)3.1 channels with higher affinity for depolarized cells (EC₅₀ of 10 μM), which is associated with a negative shift in the voltage dependence of closed-state inactivation. Enhanced inactivation is mediated by roscovitine-induced acceleration of closed-state inactivation and slowed recovery from inactivation. Small effects of roscovitine were also observed on T-channel deactivation and open-state inactivation, but neither could explain the inhibitory effect. Roscovitine inhibits Ca(V)3.1 channels within the therapeutic range (10-50 μM) in part by stabilizing the closed-inactivated state. The ability of roscovitine to block multiple mediators of proliferation, including CDKs and Ca(V)3.1 channels, may facilitate its anticancer properties. PMID:22088954

  20. The activity of the TRP-like channel depends on its expression system

    PubMed Central

    Lev, Shaya; Katz, Ben; Minke, Baruch

    2012-01-01

    The Drosophila light activated TRP and TRPL channels have been a model for TRPC channel gating. Several gating mechanisms have been proposed following experiments conducted on photoreceptor and tissue cultured cells. However, conclusive evidence for any mechanism is still lacking. Here, we show that the Drosophila TRPL channel expressed in tissue cultured cells is constitutively active in S2 cells but is silent in HEK cells. Modulations of TRPL channel activity in different expression system by pharmacology or specific enzymes, which change the lipid content of the plasma membrane, resulted in conflicting effects. These findings demonstrate the difficulty in elucidating TRPC gating, as channel behavior is expression system dependent. However, clues on the gating mechanism may arise from understanding how different expression systems affect TRPC channel activation. PMID:22627924

  1. Copper and protons directly activate the zinc-activated channel.

    PubMed

    Trattnig, Sarah M; Gasiorek, Agnes; Deeb, Tarek Z; Ortiz, Eydith J Comenencia; Moss, Stephen J; Jensen, Anders A; Davies, Paul A

    2016-03-01

    The zinc-activated channel (ZAC) is a cationic ion channel belonging to the superfamily of Cys-loop receptors, which consists of pentameric ligand-gated ion channels. ZAC is the least understood member of this family so in the present study we sought to characterize the properties of this channel further. We demonstrate that not only zinc (Zn(2+)) but also copper (Cu(2+)) and protons (H(+)) are agonists of ZAC, displaying potencies and efficacies in the rank orders of H(+)>Cu(2+)>Zn(2+) and H(+)>Zn(2+)>Cu(2+), respectively. The responses elicited by Zn(2+), Cu(2+) and H(+) through ZAC are all characterized by low degrees of desensitization. In contrast, currents evoked by high concentrations of the three agonists comprise distinctly different activation and decay components, with transitions to and from an open state being significantly faster for H(+) than for the two metal ions. The permeabilities of ZAC for Na(+) and K(+) relative to Cs(+) are indistinguishable, whereas replacing all of extracellular Na(+) and K(+) with the divalent cations Ca(2+) or Mg(2+) results in complete elimination of Zn(2+)-activated currents at both negative and positive holding potentials. This indicates that ZAC is non-selectively permeable to monovalent cations, whereas Ca(2+) and Mg(2+) inhibit the channel. In conclusion, this is the first report of a Cys-loop receptor being gated by Zn(2+), Cu(2+) and H(+). ZAC could be an important mediator of some of the wide range of physiological functions regulated by or involving Zn(2+), Cu(2+) and H(+).

  2. Ion channels activated by light in Limulus ventral photoreceptors

    PubMed Central

    1986-01-01

    The light-activated conductance of Limulus ventral photoreceptors was studied using the patch-clamp technique. Channels (40 pS) were observed whose probability of opening was greatly increased by light. In some cells the latency of channel activation was nearly the same as that of the macroscopic response, while in other cells the channel latency was much greater. Like the macroscopic conductance, channel activity was reduced by light adaptation but enhanced by the intracellular injection of the calcium chelator EGTA. The latter observation indicates that channel activation was not a secondary result of the light-induced rise in intracellular calcium. A two-microelectrode voltage-clamp method was used to measure the voltage dependence of the light-activated macroscopic conductance. It was found that this conductance is constant over a wide voltage range more negative than zero, but it increases markedly at positive voltages. The single channel currents measured over this same voltage range show that the single channel conductance is independent of voltage, but that channel gating properties are dependent on voltage. Both the mean channel open time and the opening rate increase at positive voltages. These properties change in a manner consistent with the voltage dependence of the macroscopic conductance. The broad range of similarities between the macroscopic and single channel currents supports the conclusion that the 40-pS channel that we have observed is the principal channel underlying the response to light in these photoreceptors. PMID:2419481

  3. Proteolytic cleavage in the S1-S2 linker of the Kv1.5 channel does not affect channel function.

    PubMed

    Hogan-Cann, Andrew; Li, Wentao; Guo, Jun; Yang, Tonghua; Zhang, Shetuan

    2016-06-01

    Kv1.5 channels mediate the ultra-rapidly activating delayed rectifier potassium current (IKur), which is important for atrial repolarization. It has been shown that cell-surface Kv1.5 channels are sensitive to cleavage by the extracellular serine protease, proteinase K (PK). Here, we investigated the effects of extracellular proteolytic digestion on the function of Kv1.5 channels stably expressed in HEK 293 cells. Our data demonstrate that PK treatment cleaved mature membrane-bound (75kDa) Kv1.5 channels at a single locus in the S1-S2 linker, producing 42-kDa N-terminal fragments and 33-kDa C-terminal fragments. Interestingly, such PK treatment did not affect the Kv1.5 current (IKv1.5) recorded using the whole-cell patch clamp technique. Analysis of cell-surface proteins isolated using biotinylation indicated that the PK-generated N- and C-terminal fragments were both present in the plasma membrane. Co-immunoprecipitation (co-IP) experiments indicated that the N- and C-terminal fragments are no longer associated after cleavage. Furthermore, following PK digestion, the N- and C-fragments degraded at different rates. PK is frequently used as a tool to analyze cell-surface localization of membrane proteins, and cleavage of cell-surface channels has been shown to abolish channel function (e.g. hERG). Our data, for the first time, demonstrate that cleavage of cell-surface channels assessed by Western blot analysis does not necessarily correlate with an elimination of the channel activities. PMID:26874203

  4. Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels

    PubMed Central

    Proks, Peter; Puljung, Michael C.; Vedovato, Natascia; Sachse, Gregor; Mulvaney, Rachel; Ashcroft, Frances M.

    2016-01-01

    KATP channels act as key regulators of electrical excitability by coupling metabolic cues—mainly intracellular adenine nucleotide concentrations—to cellular potassium ion efflux. However, their study has been hindered by their rapid loss of activity in excised membrane patches (rundown), and by a second phenomenon, the decline of activation by Mg-nucleotides (DAMN). Degradation of PI(4,5)P2 and other phosphoinositides is the strongest candidate for the molecular cause of rundown. Broad evidence indicates that most other determinants of rundown (e.g. phosphorylation, intracellular calcium, channel mutations that affect rundown) also act by influencing KATP channel regulation by phosphoinositides. Unfortunately, experimental conditions that reproducibly prevent rundown have remained elusive, necessitating post hoc data compensation. Rundown is clearly distinct from DAMN. While the former is associated with pore-forming Kir6.2 subunits, DAMN is generally a slower process involving the regulatory sulfonylurea receptor (SUR) subunits. We speculate that it arises when SUR subunits enter non-physiological conformational states associated with the loss of SUR nucleotide-binding domain dimerization following prolonged exposure to nucleotide-free conditions. This review presents new information on both rundown and DAMN, summarizes our current understanding of these processes and considers their physiological roles. This article is part of the themed issue ‘Evolution brings Ca2+ and ATP together to control life and death’. PMID:27377720

  5. γ-Band deficiency and abnormal thalamocortical activity in P/Q-type channel mutant mice

    PubMed Central

    Llinás, Rodolfo R.; Choi, Soonwook; Urbano, Francisco J.; Shin, Hee-Sup

    2007-01-01

    Thalamocortical in vivo and in vitro function was studied in mice lacking P/Q-type calcium channels (CaV2.1), in which N-type calcium channels (CaV2.2) supported central synaptic transmission. Unexpectedly, in vitro patch recordings from thalamic neurons demonstrated no γ-band subthreshold oscillation, and voltage-sensitive dye imaging demonstrated an absence of cortical γ-band-dependent columnar activation involving cortical inhibitory interneuron activity. In vivo electroencephalogram recordings showed persistent absence status and a dramatic reduction of γ-band activity. Pharmacological block of T-type calcium channels (CaV3), although not noticeably affecting normal control animals, left the knockout mice in a coma-like state. Hence, although N-type calcium channels can rescue P/Q-dependent synaptic transmission, P/Q calcium channels are essential in the generation of γ-band activity and resultant cognitive function. PMID:17968008

  6. Modelling the changing interactions between riparian forests, stream channel dynamics and fish habitat in mountainous watersheds affected by wildfire (Invited)

    NASA Astrophysics Data System (ADS)

    Eaton, B. C.; Davidson, S. L.

    2013-12-01

    Stream networks in the Pacific Northwest are particularly good examples of fluvial systems that are controlled by a range of biophysical interactions. Forests adjacent to such streams reinforce the channel banks, thereby affecting the channel shape, bed material transport capacity and degree of lateral activity. They also supply wood to the stream, which interacts with the channel by storing and releasing sediment, and by altering the frequency and character of pools, bars and riffles. Where wood is small enough to be transported by the stream but large enough to span the channel at some locations, jams can form that alter the channel pattern by triggering avulsions around the jams. These biophysical interactions strongly influence the quantity and quality of the physical habitat available for certain species of fish, particularly salmonids. Furthermore, they are strongly scale dependent, and the interactions (and thus habitat) characteristic of smaller channels are quite different from those typical in larger ones. These channels are also influenced (to varying degrees, depending on their scale) by disturbances to the riparian forest such as wildfire. We have developed a stochastic model to investigate how wood, sediment transport and habitat character interact across a range of channel scales (Fig. 1). The model is based on physical representations of the wood input and movement processes, and empirical relations from a set of flume experiments relating wood size and orientation to sediment accumulation, and we use it to run Monte Carlo simulations that describe the distribution of possible channel states for channels of different scale. We also use the model to investigate the response to and recovery from (in terms of physical habitat) disturbance by wildfire.

  7. Cumulative Activation of Voltage-Dependent KVS-1 Potassium Channels

    PubMed Central

    Rojas, Patricio; Garst-Orozco, Jonathan; Baban, Beravan; de Santiago-Castillo, Jose Antonio; Covarrubias, Manuel; Salkoff, Lawrence

    2008-01-01

    In this study, we reveal the existence of a novel use-dependent phenomenon in potassium channels, which we refer to as cumulative activation (CA). CA consists of an increase in current amplitude in response to repetitive depolarizing step pulses to the same potential. CA persists for up to 20 s and is similar to a phenomenon called “voltage-dependent facilitation” observed in some calcium channels. The KVS-1 K+ channel, which exhibits CA, is a rapidly activating and inactivating voltage-dependent potassium channel expressed in chemosensory and other neurons of Caenorhabditis elegans. It is unusual in being most closely related to the Shab (Kv2) family of potassium channels, which typically behave like delayed rectifier K+ channels in other species. The magnitude of CA depends on the frequency, voltage, and duration of the depolarizing step pulse. CA also radically changes the activation and inactivation kinetics of the channel, suggesting that the channel may undergo a physical modification in a use-dependent manner; thus, a model that closely simulates the behavior of the channel postulates the existence of two populations of channels, unmodified and modified. Use-dependent changes in the behavior of potassium channels, such as CA observed in KVS-1, could be involved in functional mechanisms of cellular plasticity such as synaptic depression that represent the cellular basis of learning and memory. PMID:18199775

  8. Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations.

    PubMed

    Cui, Yuanyuan; Yang, Fan; Cao, Xu; Yarov-Yarovoy, Vladimir; Wang, KeWei; Zheng, Jie

    2012-04-01

    The capsaicin receptor transient receptor potential vanilloid (TRPV)1 is a highly heat-sensitive ion channel. Although chemical activation and heat activation of TRPV1 elicit similar pungent, painful sensation, the molecular mechanism underlying synergistic activation remains mysterious. In particular, where the temperature sensor is located and whether heat and capsaicin share a common activation pathway are debated. To address these fundamental issues, we searched for channel mutations that selectively affected one form of activation. We found that deletion of the first 10 amino acids of the pore turret significantly reduced the heat response amplitude and shifted the heat activation threshold, whereas capsaicin activation remained unchanged. Removing larger portions of the turret disrupted channel function. Introducing an artificial sequence to replace the deleted region restored sensitive capsaicin activation in these nonfunctional channels. The heat activation, however, remained significantly impaired, with the current exhibiting diminishing heat sensitivity to a level indistinguishable from that of a voltage-gated potassium channel, Kv7.4. Our results demonstrate that heat and capsaicin activation of TRPV1 are structurally and mechanistically distinct processes, and the pore turret is an indispensible channel structure involved in the heat activation process but is not part of the capsaicin activation pathway. Synergistic effect of heat and capsaicin on TRPV1 activation may originate from convergence of the two pathways on a common activation gate.

  9. Mechanisms of Activation of Voltage-Gated Potassium Channels

    PubMed Central

    Grizel, A. V.; Glukhov, G. S.; Sokolova, O. S.

    2014-01-01

    Voltage-gated potassium ion channels (Kv) play an important role in a variety of cellular processes, including the functioning of excitable cells, regulation of apoptosis, cell growth and differentiation, the release of neurotransmitters and hormones, maintenance of cardiac activity, etc. Failure in the functioning of Kv channels leads to severe genetic disorders and the development of tumors, including malignant ones. Understanding the mechanisms underlying Kv channels functioning is a key factor in determining the cause of the diseases associated with mutations in the channels, and in the search for new drugs. The mechanism of activation of the channels is a topic of ongoing debate, and a consensus on the issue has not yet been reached. This review discusses the key stages in studying the mechanisms of functioning of Kv channels and describes the basic models of their activation known to date. PMID:25558391

  10. Allosterism and Structure in Thermally Activated Transient Receptor Potential Channels.

    PubMed

    Diaz-Franulic, Ignacio; Poblete, Horacio; Miño-Galaz, Germán; González, Carlos; Latorre, Ramón

    2016-07-01

    The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domain, increasing the probability of finding the channel in its ion conductive conformation. In this review we first discuss the allosteric coupling between the temperature and voltage sensor modules and the pore domain, and then discuss the thermodynamic foundations of thermo-TRP channel activation. We provide a structural overview of the molecular determinants of temperature sensing. We also posit an anisotropic thermal diffusion model that may explain the large temperature sensitivity of TRP channels. Additionally, we examine the effect of several ligands on TRP channel function and the evidence regarding their mechanisms of action. PMID:27297398

  11. Critical residues of the Caenorhabditis elegans unc-2 voltage-gated calcium channel that affect behavioral and physiological properties.

    PubMed

    Mathews, Eleanor A; García, Esperanza; Santi, Celia M; Mullen, Gregory P; Thacker, Colin; Moerman, Donald G; Snutch, Terrance P

    2003-07-23

    The Caenorhabditis elegans unc-2 gene encodes a voltage-gated calcium channel alpha1 subunit structurally related to mammalian dihydropyridine-insensitive high-threshold channels. In the present paper we describe the characterization of seven alleles of unc-2. Using an unc-2 promoter-tagged green fluorescent protein construct, we show that unc-2 is primarily expressed in motor neurons, several subsets of sensory neurons, and the HSN and VC neurons that control egg laying. Examination of behavioral phenotypes, including defecation, thrashing, and sensitivities to aldicarb and nicotine suggests that UNC-2 acts presynaptically to mediate both cholinergic and GABAergic neurotransmission. Sequence analysis of the unc-2 alleles shows that e55, ra605, ra606, ra609, and ra610 all are predicted to prematurely terminate and greatly reduce or eliminate unc-2 function. In contrast, the ra612 and ra614 alleles are missense mutations resulting in the substitution of highly conserved residues in the C terminus and the domain IVS4-IVS5 linker, respectively. Heterologous expression of a rat brain P/Q-type channel containing the ra612 mutation shows that the glycine to arginine substitution affects a variety of channel characteristics, including the voltage dependence of activation, steady-state inactivation, as well as channel kinetics. Overall, our findings suggest that UNC-2 plays a pivotal role in mediating a number of physiological processes in the nematode and also defines a number of critical residues important for calcium channel function in vivo. PMID:12878695

  12. Mechanism of activation of the prokaryotic channel ELIC by propylamine: a single-channel study.

    PubMed

    Marabelli, Alessandro; Lape, Remigijus; Sivilotti, Lucia

    2015-01-01

    Prokaryotic channels, such as Erwinia chrysanthemi ligand-gated ion channel (ELIC) and Gloeobacter violaceus ligand-gated ion channel, give key structural information for the pentameric ligand-gated ion channel family, which includes nicotinic acetylcholine receptors. ELIC, a cationic channel from E. chrysanthemi, is particularly suitable for single-channel recording because of its high conductance. Here, we report on the kinetic properties of ELIC channels expressed in human embryonic kidney 293 cells. Single-channel currents elicited by the full agonist propylamine (0.5-50 mM) in outside-out patches at -60 mV were analyzed by direct maximum likelihood fitting of kinetic schemes to the idealized data. Several mechanisms were tested, and their adequacy was judged by comparing the predictions of the best fit obtained with the observable features of the experimental data. These included open-/shut-time distributions and the time course of macroscopic propylamine-activated currents elicited by fast theta-tube applications (50-600 ms, 1-50 mM, -100 mV). Related eukaryotic channels, such as glycine and nicotinic receptors, when fully liganded open with high efficacy to a single open state, reached via a preopening intermediate. The simplest adequate description of their activation, the "Flip" model, assumes a concerted transition to a single intermediate state at high agonist concentration. In contrast, ELIC open-time distributions at saturating propylamine showed multiple components. Thus, more than one open state must be accessible to the fully liganded channel. The "Primed" model allows opening from multiple fully liganded intermediates. The best fits of this type of model showed that ELIC maximum open probability (99%) is reached when at least two and probably three molecules of agonist have bound to the channel. The overall efficacy with which the fully liganded channel opens was ∼ 102 (∼ 20 for α1β glycine channels). The microscopic affinity for the agonist

  13. Tremorgenic indole alkaloids potently inhibit smooth muscle high-conductance calcium-activated potassium channels.

    PubMed

    Knaus, H G; McManus, O B; Lee, S H; Schmalhofer, W A; Garcia-Calvo, M; Helms, L M; Sanchez, M; Giangiacomo, K; Reuben, J P; Smith, A B

    1994-05-17

    Tremorgenic indole alkaloids produce neurological disorders (e.g., staggers syndromes) in ruminants. The mode of action of these fungal mycotoxins is not understood but may be related to their known effects on neurotransmitter release. To determine whether these effects could be due to inhibition of K+ channels, the interaction of various indole diterpenes with high-conductance Ca(2+)-activated K+ (maxi-K) channels was examined. Paspalitrem A, paspalitrem C, aflatrem, penitrem A, and paspalinine inhibit binding of [125I]charybdotoxin (ChTX) to maxi-K channels in bovine aortic smooth muscle sarcolemmal membranes. In contrast, three structurally related compounds, paxilline, verruculogen, and paspalicine, enhanced toxin binding. As predicted from the binding studies, covalent incorporation of [125I]ChTX into the 31-kDa subunit of the maxi-K channel was blocked by compounds that inhibit [125I]ChTX binding and enhanced by compounds that stimulate [125I]ChTX binding. Modulation of [125I]ChTX binding was due to allosteric mechanisms. Despite their different effects on binding of [125I]ChTX to maxi-K channels, all compounds potently inhibited maxi-K channels in electrophysiological experiments. Other types of voltage-dependent or Ca(2+)-activated K+ channels examined were not affected. Chemical modifications of paxilline indicate a defined structure-activity relationship for channel inhibition. Paspalicine, a deshydroxy analog of paspalinine lacking tremorgenic activity, also potently blocked maxi-K channels. Taken together, these data suggest that indole diterpenes are the most potent nonpeptidyl inhibitors of maxi-K channels identified to date. Some of their pharmacological properties could be explained by inhibition of maxi-K channels, although tremorgenicity may be unrelated to channel block. PMID:7514038

  14. Serine protease activation of near-silent epithelial Na+ channels.

    PubMed

    Caldwell, Ray A; Boucher, Richard C; Stutts, M Jackson

    2004-01-01

    The regulation of epithelial Na+ channel (ENaC) function is critical for normal salt and water balance. This regulation is achieved through cell surface insertion/retrieval of channels, by changes in channel open probability (Po), or through a combination of these processes. Epithelium-derived serine proteases, including channel activating protease (CAP) and prostasin, regulate epithelial Na+ transport, but the molecular mechanism is unknown. We tested the hypothesis that extracellular serine proteases activate a near-silent ENaC population resident in the plasma membrane. Single-channel events were recorded in outside-out patches from fibroblasts (NIH/3T3) stably expressing rat alpha-, beta-, and gamma-subunits (rENaC), before and during exposure to trypsin, a serine protease homologous to CAP and prostasin. Under baseline conditions, near-silent patches were defined as having rENaC activity (NPo) < 0.03, where N is the number of channels. Within 1-5 min of 3 microg/ml bath trypsin superfusion, NPo increased approximately 66-fold (n = 7). In patches observed to contain a single functional channel, trypsin increased Po from 0.02 +/- 0.01 to 0.57 +/- 0.03 (n = 3, mean +/- SE), resulting from the combination of an increased channel open time and decreased channel closed time. Catalytic activity was required for activation of near-silent ENaC. Channel conductance and the Na+/Li+ current ratio with trypsin were similar to control values. Modulation of ENaC Po by endogenous epithelial serine proteases is a potentially important regulator of epithelial Na+ transport, distinct from the regulation achieved by hormone-induced plasma membrane insertion of channels. PMID:12967915

  15. Slack, Slick, and Sodium-Activated Potassium Channels

    PubMed Central

    Kaczmarek, Leonard K.

    2013-01-01

    The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of nonselective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function. PMID:24319675

  16. SLO2 Channels Are Inhibited by All Divalent Cations That Activate SLO1 K+ Channels.

    PubMed

    Budelli, Gonzalo; Sun, Qi; Ferreira, Juan; Butler, Alice; Santi, Celia M; Salkoff, Lawrence

    2016-04-01

    Two members of the family of high conductance K(+)channels SLO1 and SLO2 are both activated by intracellular cations. However, SLO1 is activated by Ca(2+)and other divalent cations, while SLO2 (Slack or SLO2.2 from rat) is activated by Na(+) Curiously though, we found that SLO2.2 is inhibited by all divalent cations that activate SLO1, with Zn(2+)being the most effective inhibitor with an IC50of ∼8 μmin contrast to Mg(2+), the least effective, with an IC50of ∼ 1.5 mm Our results suggest that divalent cations are not SLO2 pore blockers, but rather inhibit channel activity by an allosteric modification of channel gating. By site-directed mutagenesis we show that a histidine residue (His-347) downstream of S6 reduces inhibition by divalent cations. An analogous His residue present in some CNG channels is an inhibitory cation binding site. To investigate whether inhibition by divalent cations is conserved in an invertebrate SLO2 channel we cloned the SLO2 channel fromDrosophila(dSLO2) and compared its properties to those of rat SLO2.2. We found that, like rat SLO2.2, dSLO2 was also activated by Na(+)and inhibited by divalent cations. Inhibition of SLO2 channels in mammals andDrosophilaby divalent cations that have second messenger functions may reflect the physiological regulation of these channels by one or more of these ions.

  17. Open-channel block by internally applied amines inhibits activation gate closure in batrachotoxin-activated sodium channels.

    PubMed Central

    Zamponi, G W; French, R J

    1994-01-01

    We have studied the action of several pore-blocking amines on voltage-dependent activation gating of batrachotoxin(BTX)-activated sodium channels, from bovine heart and rat skeletal muscle, incorporated into planar lipid bilayers. Although structurally simpler, the compounds studied show general structural features and channel-inhibiting actions that resemble those of lidocaine. When applied to the cytoplasmic end of the channel, these compounds cause a rapid, voltage-dependent, open-channel block seen as a reduction in apparent single-channel amplitude (companion paper). Internal application of phenylpropanolamine, phenylethylamine, phenylmethylamine, and diethylamine, as well as causing open-channel block, reduces the probability of channel closure, producing a shift of the steady-state activation curve toward more hyperpolarizing potentials. These gating effects were observed for both cardiac and skeletal muscle channels and were not evoked by addition of equimolar N-Methyl-D-Glucamine, suggesting a specific interaction of the blockers with the channel rather than a surface charge effect. Kinetic analysis of phenylpropanolamine action on skeletal muscle channels indicated that phenylpropanolamine reduced the closed probability via two separate mechanisms. First, mean closed durations were slightly abbreviated in its presence. Second, and more important, the frequency of the gating closures was reduced. This action was correlated with the degree, and the voltage dependence, of open-channel block, suggesting that the activation gate cannot close while the pore is occluded by the blocker. Such a mechanism might underlie the previously reported immobilization of gating charge associated with local anesthetic block of unmodified sodium channels. PMID:7811914

  18. Tonic PKA Activity Regulates SK Channel Nanoclustering and Somatodendritic Distribution.

    PubMed

    Abiraman, Krithika; Sah, Megha; Walikonis, Randall S; Lykotrafitis, George; Tzingounis, Anastasios V

    2016-06-01

    Small-conductance calcium-activated potassium (SK) channels mediate a potassium conductance in the brain and are involved in synaptic plasticity, learning, and memory. SK channels show a distinct subcellular localization that is crucial for their neuronal functions. However, the mechanisms that control this spatial distribution are unknown. We imaged SK channels labeled with fluorophore-tagged apamin and monitored SK channel nanoclustering at the single molecule level by combining atomic force microscopy and toxin (i.e., apamin) pharmacology. Using these two complementary approaches, we found that native SK channel distribution in pyramidal neurons, across the somatodendritic domain, depends on ongoing cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) levels, strongly limiting SK channel expression at the pyramidal neuron soma. Furthermore, tonic cAMP-PKA levels also controlled whether SK channels were expressed in nanodomains as single entities or as a group of multiple channels. Our study reveals a new level of regulation of SK channels by cAMP-PKA and suggests that ion channel topography and nanoclustering might be under the control of second messenger cascades. PMID:27107637

  19. Small Conductance Ca2+-Activated K+ Channels and Cardiac Arrhythmias

    PubMed Central

    Zhang, Xiao-Dong; Lieu, Deborah K.; Chiamvimonvat, Nipavan

    2015-01-01

    Small conductance Ca2+-activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, SK channel as a possible novel therapeutic target in atrial arrhythmias and up-regulation of SK channels in heart failure (HF) in animal models and human HF. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both anti-arrhythmic and proarrhythmic. This contemporary review will provide an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and to serve as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic target in the treatment of atrial fibrillation and the possible pro-arrhythmic effects merit further considerations and investigations. PMID:25956967

  20. Active Affective Learning for Accelerated Schools.

    ERIC Educational Resources Information Center

    Richardson, Robert B.

    This paper provides the groundwork for Active Affective Learning and teaching adapted to the needs of the disadvantaged, at-risk students served by the Accelerated Schools Movement. One of the "golden rules" for the practice of Accelerated Learning, according to psychiatrist Georgi Lozanov, has been to maintain an "up-beat" classroom presentation…

  1. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC

    PubMed Central

    Jeon, Daejong; Kim, Sangwoo; Chetana, Mattu; Jo, Daewoong; Ruley, H Earl; Lin, Shih-Yao; Rabah, Dania; Kinet, Jean-Pierre; Shin, Hee-Sup

    2010-01-01

    Fear can be acquired vicariously through social observation of others suffering from aversive stimuli. We found that mice (observers) developed freezing behavior by observing other mice (demonstrators) receive repetitive foot shocks. Observers had higher fear responses when demonstrators were socially related to themselves, such as siblings or mating partners. Inactivation of anterior cingulate cortex (ACC) and parafascicular or mediodorsal thalamic nuclei, which comprise the medial pain system representing pain affection, substantially impaired this observational fear learning, whereas inactivation of sensory thalamic nuclei had no effect. The ACC neuronal activities were increased and synchronized with those of the lateral amygdala at theta rhythm frequency during this learning. Furthermore, an ACC-limited deletion of Cav1.2 Ca2+ channels in mice impaired observational fear learning and reduced behavioral pain responses. These results demonstrate the functional involvement of the affective pain system and Cav1.2 channels of the ACC in observational social fear. PMID:20190743

  2. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC.

    PubMed

    Jeon, Daejong; Kim, Sangwoo; Chetana, Mattu; Jo, Daewoong; Ruley, H Earl; Lin, Shih-Yao; Rabah, Dania; Kinet, Jean-Pierre; Shin, Hee-Sup

    2010-04-01

    Fear can be acquired vicariously through social observation of others suffering from aversive stimuli. We found that mice (observers) developed freezing behavior by observing other mice (demonstrators) receive repetitive foot shocks. Observers had higher fear responses when demonstrators were socially related to themselves, such as siblings or mating partners. Inactivation of anterior cingulate cortex (ACC) and parafascicular or mediodorsal thalamic nuclei, which comprise the medial pain system representing pain affection, substantially impaired this observational fear learning, whereas inactivation of sensory thalamic nuclei had no effect. The ACC neuronal activities were increased and synchronized with those of the lateral amygdala at theta rhythm frequency during this learning. Furthermore, an ACC-limited deletion of Ca(v)1.2 Ca(2+) channels in mice impaired observational fear learning and reduced behavioral pain responses. These results demonstrate the functional involvement of the affective pain system and Ca(v)1.2 channels of the ACC in observational social fear.

  3. Calcium-activated potassium channels in the endothelium of intact rat aorta.

    PubMed Central

    Marchenko, S M; Sage, S O

    1996-01-01

    1. Single K+ channel currents and membrane potential were recorded in the endothelium of excised intact rat aorta. 2. Two types of K+ channel were found in excised patches, KCh and KAp. With Na+ and K+ as the main external and internal cations, outward conductances were 6.7 pS (KCh) and 2.8 pS (KAp). In symmetric 150 mM K+, the inward conductances were 18 and 9.1 pS. 3. Activation by Ca2+ was concentration dependent. KCh channels were activated by [Ca2+] > 0.1 microM and KAp by [Ca2+] > 0.5 microM. 4. Apamin at concentrations > 1 nM inhibited KAp Channels. Block was complete at 10 nM. KAp channels were insensitive to charybdotoxin. KCh channels were inhibited by charybdotoxin at concentrations > 50 nM, but were insensitive to apamin. 5. d-Tubocurarine (dTC) evoked flickering activity of KAp channels at concentrations > 5 microM and complete block at 100 microM. At these doses, dTC did not affect KCh channels, but at concentrations > 1 mM it decreased the single channel amplitude. 6. Hyperpolarization evoked by acetylcholine was unaffected by apamin or dTC at low concentrations ( < or = 100 microM), but inhibited by high concentrations of charybdotoxin ( > 50 nM) or dTC ( > 1 mM). 7. These data suggest that KCh channels are novel Ca(2+)-activated K+ channels responsible for the ACh-evoked hyperpolarization in the endothelium of rat aorta. PMID:8730582

  4. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea.

    PubMed

    Jiang, Yu; Yu, Bo; Yang, Hong; Ma, Tonghui

    2016-01-01

    Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl(-) current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl(-) currents in mouse colonic epithelia but did not affect cytoplasmic Ca(2+) concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K(+) channel activity without affecting Na(+)/K(+)-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K(+) channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  5. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea

    PubMed Central

    Jiang, Yu; Yu, Bo; Yang, Hong; Ma, Tonghui

    2016-01-01

    Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl- current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl- currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K+ channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea. PMID:27601995

  6. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea.

    PubMed

    Jiang, Yu; Yu, Bo; Yang, Hong; Ma, Tonghui

    2016-01-01

    Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl(-) current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl(-) currents in mouse colonic epithelia but did not affect cytoplasmic Ca(2+) concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K(+) channel activity without affecting Na(+)/K(+)-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K(+) channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea. PMID:27601995

  7. Shikonin Inhibits Intestinal Calcium-Activated Chloride Channels and Prevents Rotaviral Diarrhea

    PubMed Central

    Jiang, Yu; Yu, Bo; Yang, Hong; Ma, Tonghui

    2016-01-01

    Secretory diarrhea remains a global health burden and causes major mortality in children. There have been some focuses on antidiarrheal therapies that may reduce fluid losses and intestinal motility in diarrheal diseases. In the present study, we identified shikonin as an inhibitor of TMEM16A chloride channel activity using cell-based fluorescent-quenching assay. The IC50 value of shikonin was 6.5 μM. Short-circuit current measurements demonstrated that shikonin inhibited Eact-induced Cl- current in a dose-dependent manner, with IC50 value of 1.5 μM. Short-circuit current measurement showed that shikonin exhibited inhibitory effect against CCh-induced Cl- currents in mouse colonic epithelia but did not affect cytoplasmic Ca2+ concentration as well as the other major enterocyte chloride channel conductance regulator. Characterization study found that shikonin inhibited basolateral K+ channel activity without affecting Na+/K+-ATPase activities. In vivo studies revealed that shikonin significantly delayed intestinal motility in mice and reduced stool water content in a neonatal mice model of rotaviral diarrhea without affecting the viral infection process in vivo. Taken together, the results suggested that shikonin inhibited enterocyte calcium-activated chloride channels, the inhibitory effect was partially through inhbition of basolateral K+ channel activity, and shikonin could be a lead compound in the treatment of rotaviral secretory diarrhea.

  8. Indirect activation of the epithelial Na+ channel by trypsin.

    PubMed

    Bengrine, Abderrahmane; Li, Jinqing; Hamm, L Lee; Awayda, Mouhamed S

    2007-09-14

    We tested the hypothesis that the serine protease trypsin can indirectly activate the epithelial Na(+) channel (ENaC). Experiments were carried out in Xenopus oocytes and examined the effects on the channel formed by all three human ENaC subunits and that formed by Xenopus epsilon and human beta and gamma subunits (epsilonbetagammaENaC). Low levels of trypsin (1-10 ng/ml) were without effects on the oocyte endogenous conductances and were specifically used to test the effects on ENaC. Addition of 1 ng/ml trypsin for 60 min stimulated the amiloride-sensitive human ENaC conductance (g(Na)) by approximately 6-fold. This effect on the g(Na) was [Na(+)]-independent, thereby ruling out an interaction with channel feedback inhibition by Na(+). The indirect nature of this activation was confirmed in cell-attached patch clamp experiments with trypsin added to the outside of the pipette. Trypsin was comparatively ineffective at activating epsilonbetagammaENaC, a channel that exhibited a high spontaneous open probability. These observations, in combination with surface binding experiments, indicated that trypsin indirectly activated membrane-resident channels. Activation by trypsin was also dependent on catalytic activity of this protease but was not accompanied by channel subunit proteolysis. Channel activation was dependent on downstream activation of G-proteins and was blocked by G-protein inhibition by injection of guanyl-5'-yl thiophosphate and by pre-stimulation of phospholipase C. These data indicate a receptor-mediated activation of ENaC by trypsin. This trypsin-activated receptor is distinct from that of protease-activated receptor-2, because the response to trypsin was unaffected by protease-activated receptor-2 overexpression or knockdown. PMID:17627947

  9. Chloride dependence of hyperpolarization-activated chloride channel gates.

    PubMed

    Pusch, M; Jordt, S E; Stein, V; Jentsch, T J

    1999-03-01

    1. ClC proteins are a class of voltage-dependent Cl- channels with several members mutated in human diseases. The prototype ClC-0 Torpedo channel is a dimeric protein; each subunit forms a pore that can gate independently from the other one. A common slower gating mechanism acts on both pores simultaneously; slow gating activates ClC-0 at hyperpolarized voltages. The ClC-2 Cl- channel is also activated by hyperpolarization, as are some ClC-1 mutants (e.g. D136G) and wild-type (WT) ClC-1 at certain pH values. 2. We studied the dependence on internal Cl- ([Cl-]i) of the hyperpolarization-activated gates of several ClC channels (WT ClC-0, ClC-0 mutant P522G, ClC-1 mutant D136G and an N-terminal deletion mutant of ClC-2), by patch clamping channels expressed in Xenopus oocytes. 3. With all these channels, reducing [Cl-]i shifted activation to more negative voltages and reduced the maximal activation at most negative voltages. 4. We also investigated the external halide dependence of WT ClC-2 using two-electrode voltage-clamp recording. Reducing external Cl- ([Cl-]o) activated ClC-2 currents. Replacing [Cl-]o by the less permeant Br- reduced channel activity and accelerated deactivation. 5. Gating of the ClC-2 mutant K566Q in normal [Cl-]o resembled that of WT ClC-2 in low [Cl-]o, i.e. channels had a considerable open probability (Po) at resting membrane potential. Substituting external Cl- by Br- or I- led to a decrease in Po. 6. The [Cl-]i dependence of the hyperpolarization-activated gates of various ClC channels suggests a similar gating mechanism, and raises the possibility that the gating charge for the hyperpolarization-activated gate is provided by Cl-. 7. The external halide dependence of hyperpolarization-activated gating of ClC-2 suggests that it is mediated or modulated by anions as in other ClC channels. In contrast to the depolarization-activated fast gates of ClC-0 and ClC-1, the absence of Cl- favours channel opening. Lysine 556 may be important for the

  10. Fear conditioning suppresses large-conductance calcium-activated potassium channels in lateral amygdala neurons.

    PubMed

    Sun, P; Zhang, Q; Zhang, Y; Wang, F; Wang, L; Yamamoto, R; Sugai, T; Kato, N

    2015-01-01

    It was previously shown that depression-like behavior is accompanied with suppression of the large-conductance calcium activated potassium (BK) channel in cingulate cortex pyramidal cells. To test whether BK channels are also involved in fear conditioning, we studied neuronal properties of amygdala principal cells in fear conditioned mice. After behavior, we made brain slices containing the amygdala, the structure critically relevant to fear memory. The resting membrane potential in lateral amygdala (LA) neurons obtained from fear conditioned mice (FC group) was more depolarized than in neurons from naïve controls. The frequencies of spikes evoked by current injections were higher in neurons from FC mice, demonstrating that excitability of LA neurons was elevated by fear conditioning. The depolarization in neurons from FC mice was shown to depend on BK channels by using the BK channel blocker charybdotoxin. Suppression of BK channels in LA neurons from the FC group was further confirmed on the basis of the spike width, since BK channels affect the descending phase of spikes. Spikes were broader in the FC group than those in the naïve control in a manner dependent on BK channels. Consistently, quantitative real-time PCR revealed a decreased expression of BK channel mRNA. The present findings suggest that emotional disorder manifested in the forms of fear conditioning is accompanied with BK channel suppression in the amygdala, the brain structure critical to this emotional disorder.

  11. An anion channel in Arabidopsis hypocotyls activated by blue light

    NASA Technical Reports Server (NTRS)

    Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1996-01-01

    A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.

  12. Do recreational activities affect coastal biodiversity?

    NASA Astrophysics Data System (ADS)

    Riera, Rodrigo; Menci, Cristiano; Sanabria-Fernández, José Antonio; Becerro, Mikel A.

    2016-09-01

    Human activities are largely affecting coastal communities worldwide. Recreational perturbations have been overlooked in comparison to other perturbations, yet they are potential threats to marine biodiversity. They affect coastal communities in different ways, underpinning consistent shifts in fish and invertebrates assemblages. Several sites were sampled subjected to varying effects by recreational fishermen (low and high pressure) and scuba divers (low and high) in an overpopulated Atlantic island. Non-consistent differences in ecological, trophic and functional diversity were found in coastal communities, considering both factors ("diving" and "fishing"). Multivariate analyses only showed significant differences in benthic invertebrates between intensively-dived and non-dived sites. The lack of clear trends may be explained by the depletion of coastal resources in the study area, an extensively-affected island by overfishing.

  13. Ion permeation of AQP6 water channel protein. Single channel recordings after Hg2+ activation.

    PubMed

    Hazama, Akihiro; Kozono, David; Guggino, William B; Agre, Peter; Yasui, Masato

    2002-08-01

    Aquaporin-6 (AQP6) has recently been identified as an intracellular vesicle water channel with anion permeability that is activated by low pH or HgCl2. Here we present direct evidence of AQP6 channel gating using patch clamp techniques. Cell-attached patch recordings of AQP6 expressed in Xenopus laevis oocytes indicated that AQP6 is a gated channel with intermediate conductance (49 picosiemens in 100 mm NaCl) induced by 10 microm HgCl2. Current-voltage relationships were linear, and open probability was fairly constant at any given voltage, indicating that Hg2+-induced AQP6 conductance is voltage-independent. The excised outside-out patch recording revealed rapid activation of AQP6 channels immediately after application of 10 microm HgCl2. Reduction of both Na+ and Cl- concentrations from 100 to 30 mm did not shift the reversal potential of the Hg2+-induced AQP6 current, suggesting that Na+ is as permeable as Cl-. The Na+ permeability of Hg2+-induced AQP6 current was further demonstrated by 22Na+ influx measurements. Site-directed mutagenesis identified Cys-155 and Cys-190 residues as the sites of Hg2+ activation both for water permeability and ion conductance. The Hill coefficient from the concentration-response curve for Hg2+-induced conductance was 1.1 +/- 0.3. These data provide the first evidence of AQP6 channel gating at a single-channel level and suggest that each monomer contains the pore region for ions based on the number of Hg2+-binding sites and the kinetics of Hg2+-activation of the channel. PMID:12034750

  14. Multi-channel fiber photometry for population neuronal activity recording.

    PubMed

    Guo, Qingchun; Zhou, Jingfeng; Feng, Qiru; Lin, Rui; Gong, Hui; Luo, Qingming; Zeng, Shaoqun; Luo, Minmin; Fu, Ling

    2015-10-01

    Fiber photometry has become increasingly popular among neuroscientists as a convenient tool for the recording of genetically defined neuronal population in behaving animals. Here, we report the development of the multi-channel fiber photometry system to simultaneously monitor neural activities in several brain areas of an animal or in different animals. In this system, a galvano-mirror modulates and cyclically couples the excitation light to individual multimode optical fiber bundles. A single photodetector collects excited light and the configuration of fiber bundle assembly and the scanner determines the total channel number. We demonstrated that the system exhibited negligible crosstalk between channels and optical signals could be sampled simultaneously with a sample rate of at least 100 Hz for each channel, which is sufficient for recording calcium signals. Using this system, we successfully recorded GCaMP6 fluorescent signals from the bilateral barrel cortices of a head-restrained mouse in a dual-channel mode, and the orbitofrontal cortices of multiple freely moving mice in a triple-channel mode. The multi-channel fiber photometry system would be a valuable tool for simultaneous recordings of population activities in different brain areas of a given animal and different interacting individuals.

  15. Active Integrated Filters for RF-Photonic Channelizers

    PubMed Central

    Nagdi, Amr El; Liu, Ke; LaFave, Tim P.; Hunt, Louis R.; Ramakrishna, Viswanath; Dabkowski, Mieczyslaw; MacFarlane, Duncan L.; Christensen, Marc P.

    2011-01-01

    A theoretical study of RF-photonic channelizers using four architectures formed by active integrated filters with tunable gains is presented. The integrated filters are enabled by two- and four-port nano-photonic couplers (NPCs). Lossless and three individual manufacturing cases with high transmission, high reflection, and symmetric couplers are assumed in the work. NPCs behavior is dependent upon the phenomenon of frustrated total internal reflection. Experimentally, photonic channelizers are fabricated in one single semiconductor chip on multi-quantum well epitaxial InP wafers using conventional microelectronics processing techniques. A state space modeling approach is used to derive the transfer functions and analyze the stability of these filters. The ability of adapting using the gains is demonstrated. Our simulation results indicate that the characteristic bandpass and notch filter responses of each structure are the basis of channelizer architectures, and optical gain may be used to adjust filter parameters to obtain a desired frequency magnitude response, especially in the range of 1–5 GHz for the chip with a coupler separation of ∼9 mm. Preliminarily, the measurement of spectral response shows enhancement of quality factor by using higher optical gains. The present compact active filters on an InP-based integrated photonic circuit hold the potential for a variety of channelizer applications. Compared to a pure RF channelizer, photonic channelizers may perform both channelization and down-conversion in an optical domain. PMID:22319352

  16. Smooth muscle BK channel activity influences blood pressure independent of vascular tone in mice

    PubMed Central

    Sachse, Gregor; Faulhaber, Jörg; Seniuk, Anika; Ehmke, Heimo; Pongs, Olaf

    2014-01-01

    The large conductance voltage- and Ca2+-activated K+ (BK) channel is an important determinant of vascular tone and contributes to blood pressure regulation. Both activities depend on the ancillary BKβ1 subunit. To determine the significance of smooth muscle BK channel activity for blood pressure regulation, we investigated the potential link between changes in arterial tone and altered blood pressure in BKβ1 knockout (BKβ1−/−) mice from three different genetically defined strains. While vascular tone was consistently increased in all BKβ1−/− mice independent of genetic background, BKβ1−/− strains exhibited increased (strain A), unaltered (strain B) or decreased (strain C) mean arterial blood pressures compared to their corresponding BKβ1+/+ controls. In agreement with previous data on aldosterone regulation by renal/adrenal BK channel function, BKβ1−/− strain A mice have increased plasma aldosterone and increased blood pressure. Consistently, blockade of mineralocorticoid receptors by spironolactone treatment reversibly restored the elevated blood pressure to the BKβ1+/+ strain A level. In contrast, loss of BKβ1 did not affect plasma aldosterone in strain C mice. Smooth muscle-restricted restoration of BKβ1 expression increased blood pressure in BKβ1−/− strain C mice, implying that impaired smooth muscle BK channel activity lowers blood pressure in these animals. We conclude that BK channel activity directly affects vascular tone but influences blood pressure independent of this effect via different pathways. PMID:24687584

  17. LE135, a retinoid acid receptor antagonist, produces pain through direct activation of TRP channels

    PubMed Central

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Yu, Weihua; Hu, Hongzhen

    2014-01-01

    Background and PurposeRetinoids, through their activation of retinoic acid receptors (RARs) and retinoid X receptors, regulate diverse cellular processes, and pharmacological intervention in their actions has been successful in the treatment of skin disorders and cancers. Despite the many beneficial effects, administration of retinoids causes irritating side effects with unknown mechanisms. Here, we demonstrate that LE135 [4-(7,8,9,10-tetrahydro-5,7,7,10,10-pentamethyl-5H-benzo[e]naphtho[2,3-b][1,4]diazepin-13-yl)benzoic acid], a selective antagonist of RARβ, is a potent activator of the capsaicin (TRPV1) and wasabi (TRPA1) receptors, two critical pain-initiating cation channels. Experimental ApproachWe performed to investigate the excitatory effects of LE135 on TRPV1 and TRPA1 channels expressed in HEK293T cells and in dorsal root ganglia neurons with calcium imaging and patch-clamp recordings. We also used site-directed mutagenesis of the channels to determine the structural basis of LE135-induced activation of TRPV1 and TRPA1 channels and behavioural testing to examine if pharmacological inhibition and genetic deletion of the channels affected LE135-evoked pain-related behaviours. Key ResultsLE135 activated both the capsaicin receptor (TRPV1) and the allyl isothiocyanate receptor (TRPA1) heterologously expressed in HEK293T cells and endogenously expressed by sensory nociceptors. Mutations disrupting the capsaicin-binding site attenuated LE135 activation of TRPV1 channels and a single mutation (K170R) eliminated TRPA1 activity evoked by LE135. Intraplantar injection of LE135 evoked pain-related behaviours. Both TRPV1 and TRPA1 channels were involved in LE135-elicited pain-related responses, as shown by pharmacological and genetic ablation studies. Conclusions and ImplicationsThis blocker of retinoid acid signalling also exerted non-genomic effects through activating the pain-initiating TRPV1 and TRPA1 channels. PMID:24308840

  18. Cytogenetic and molecular localization of tipE: A gene affecting sodium channels in Drosophila melanogaster

    SciTech Connect

    Feng, G.; Deak, P.; Hall, L.M.

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new {gamma}-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggests that tipE does not encode a standard sodium channel {alpha}-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation. 55 refs., 4 figs., 2 tabs.

  19. Electrodermal activity analysis during affective haptic elicitation.

    PubMed

    Greco, Alberto; Valenza, Gaetano; Nardelli, Mimma; Bianchi, Matteo; Lanata, Antonio; Scilingo, Enzo Pasquale

    2015-08-01

    This paper investigates how the autonomic nervous system dynamics, quantified through the analysis of the electrodermal activity (EDA), is modulated according to affective haptic stimuli. Specifically, a haptic display able to convey caress-like stimuli is presented to 32 healthy subjects (16 female). Each stimulus is changed according to six combinations of three velocities and two forces levels of two motors stretching a strip of fabric. Subjects were also asked to score each stimulus in terms of arousal (high/low activation) and valence (pleasant/unpleasant), in agreement with the circumplex model of affect. EDA was processed using a deconvolutive method, separating tonic and phasic components. A statistical analysis was performed in order to identify significant differences in EDA features among force and velocity levels, as well as in their valence and arousal scores. Results show that the simulated caress induced by the haptic display significantly affects the EDA. In detail, the phasic component seems to be inversely related to the valence score. This finding is new and promising, since it can be used, e.g., as an additional cue for haptics design. PMID:26737605

  20. Single Channel Activity from Ion Channels in Engineered Tethered Bilayer Membrane Arrays

    NASA Astrophysics Data System (ADS)

    Keizer, Henk; Fine, Daniel; K"{O}Per, Ingo; Anderson, Peter

    2005-11-01

    The demand for rapid in situ detection of chemical and biological analytes at high sensitivity has increased interest in the development of biosensors like the commercially available compact glucose sensor. Engineered membrane bound ion channels are promising biological receptors since they would allow for the stochastic detection of analytes at high sensitivity, they can be mutated to alter sensitivity, and they produce a well-defined read-out that is inherently suitable for digitization. In order to perform stochastic sensing it is necessary to be able to measure the ion currents associated with single ion channel opening and closing events. Although sensors based on supported bilayers containing various pore forming proteins have been described, none of these systems have recorded single channel activity. Here we describe the measurement of stochastic activity from synthetic single ion channels, based on the nicotinic acetylcholine receptor (nAChR) from Torpedo californica, inserted into individual pixels of a microelectrode array device. The limited size of the gold sense pad surface, 100x100 μm, and the electrical stability of the overlying lipid bilayer membrane make each pixel sensitive enough to measure single ion channel currents in the picoampere range.

  1. Effects of antiarrhythmic drugs on the hyperpolarization-activated cyclic nucleotide-gated channel current.

    PubMed

    Tamura, Atsushi; Ogura, Takehiko; Uemura, Hiroko; Reien, Yoshie; Kishimoto, Takashi; Nagai, Toshio; Komuro, Issei; Miyazaki, Masaru; Nakaya, Haruaki

    2009-06-01

    After the report of the Cardiac Arrhythmia Suppression Trial, a tabular framework of the Sicilian Gambit has been proposed to display actions of antiarrhythmic drugs on ion channels and receptors and to provide more rational pharmacotherapy of arrhythmias. However, because effects of antiarrhythmic drugs on If have not been thoroughly examined, we used patch clamp techniques to determine the effects of various antiarrhythmic drugs on the HCN (hyperpolarization-activated cyclic nucleotide-gated) channel currents. HCN4 channels, a dominant isoform of HCN channels in the heart, were expressed in HEK293 cells. Amiodarone and bepridil potently inhibited the HCN4 channel current with IC50 values of 4.5 and 4.9 microM, respectively, which were close to their therapeutic concentrations. The inhibitory effects of quinidine, disopyramide, cibenzoline, lidocaine, mexiletine, aprindine, propafenone, flecainide, propranolol, and verapamil on the HCN4 channel current were weak in their therapeutic concentrations, with IC50 values of 78.3, 249, 46.8, 276, 309, 43.7, 14.3, 1700, 50.5, and 44.9 microM, respectively, suggesting that the inhibitory effects on If would be clinically small. D,L-Sotalol hardly affected the HCN4 channel current. Information about the HCN4-channel effects of many antiarrhythmic drugs may be useful for determining the appropriate drug for treatment of various arrhythmias while minimizing adverse effects. PMID:19498275

  2. Designing Effective Persuasive Systems Utilizing the Power of Entanglement: Communication Channel, Strategy and Affect

    NASA Astrophysics Data System (ADS)

    Li, Haiqing; Chatterjee, Samir

    With rapid advances in information and communication technology, computer-mediated communication (CMC) technologies are utilizing multiple IT platforms such as email, websites, cell-phones/PDAs, social networking sites, and gaming environments. However, no studies have compared the effectiveness of a persuasive system using such alternative channels and various persuasive techniques. Moreover, how affective computing impacts the effectiveness of persuasive systems is not clear. This study proposes (1) persuasive technology channels in combination with persuasive strategies will have different persuasive effectiveness; (2) Adding positive emotion to a message that leads to a better overall user experience could increase persuasive effectiveness. The affective computing or emotion information was added to the experiment using emoticons. The initial results of a pilot study show that computer-mediated communication channels along with various persuasive strategies can affect the persuasive effectiveness to varying degrees. These results also shows that adding a positive emoticon to a message leads to a better user experience which increases the overall persuasive effectiveness of a system.

  3. Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator.

    PubMed Central

    Cooke, J P; Rossitch, E; Andon, N A; Loscalzo, J; Dzau, V J

    1991-01-01

    Flow-mediated vasodilation is endothelium dependent. We hypothesized that flow activates a potassium channel on the endothelium, and that activation of this channel leads to the release of the endogenous nitrovasodilator, nitric oxide. To test this hypothesis, rabbit iliac arteries were perfused at varying flow rates, at a constant pressure of 60 mm Hg. Increments in flow induced proportional increases in vessel diameter, which were abolished by L,N-mono-methylarginine (the antagonist of nitric-oxide synthesis). Barium chloride, depolarizing solutions of potassium, verapamil, calcium-free medium, and antagonists of the KCa channel (charybdotoxin, iberiotoxin) also blocked flow-mediated vasodilation. Conversely, responses to other agonists of endothelium-dependent and independent vasodilation were unaffected by charybdotoxin or iberiotoxin. To confirm that flow activated a specific potassium channel to induce the release of nitric oxide, endothelial cells cultured on micro-carrier beads were added to a flow chamber containing a vascular ring without endothelium. Flow-stimulated endothelial cells released a diffusible vasodilator; the degree of vasorelaxation was dependent upon the flow rate. Relaxation was abrogated by barium, tetraethylammonium ion, or charybdotoxin, but was not affected by apamin, glybenclamide, tetrodotoxin, or ouabain. The data suggest that transmission of a hyperpolarizing current from endothelium to the vascular smooth muscle is not necessary for flow-mediated vasodilation. Flow activates a potassium channel (possibly the KCa channel) on the endothelial cell membrane that leads to the release of nitric oxide. Images PMID:1719029

  4. Mechanosensitive channels are activated by stress in the actin stress fibres, and could be involved in gravity sensing in plants.

    PubMed

    Tatsumi, H; Furuichi, T; Nakano, M; Toyota, M; Hayakawa, K; Sokabe, M; Iida, H

    2014-01-01

    Mechanosensitive (MS) channels are expressed in a variety of cells. The molecular and biophysical mechanism involved in the regulation of MS channel activities is a central interest in basic biology. MS channels are thought to play crucial roles in gravity sensing in plant cells. To date, two mechanisms have been proposed for MS channel activation. One is that tension development in the lipid bilayer directly activates MS channels. The second mechanism proposes that the cytoskeleton is involved in the channel activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. We tested whether tension in the cytoskeleton activates MS channels. Mammalian endothelial cells were microinjected with phalloidin-conjugated beads, which bound to stress fibres, and a traction force to the actin cytoskeleton was applied by dragging the beads with optical tweezers. MS channels were activated when the force was applied, demonstrating that a sub-pN force to the actin filaments activates a single MS channel. Plants may use a similar molecular mechanism in gravity sensing, since the cytoplasmic Ca(2+) concentration increase induced by changes in the gravity vector was attenuated by potential MS channel inhibitors, and by actin-disrupting drugs. These results support the idea that the tension increase in actin filaments by gravity-dependent sedimentation of amyloplasts activates MS Ca(2+) -permeable channels, which can be the molecular mechanism of a Ca(2+) concentration increase through gravistimulation. We review recent progress in the study of tension sensing by actin filaments and MS channels using advanced biophysical methods, and discuss their possible roles in gravisensing.

  5. Kv1.3 potassium channel mediates macrophage migration in atherosclerosis by regulating ERK activity.

    PubMed

    Kan, Xiao-Hong; Gao, Hai-Qing; Ma, Zhi-Yong; Liu, Lin; Ling, Ming-Ying; Wang, Yuan-Yuan

    2016-02-01

    Ion channels expressed in macrophages have been tightly related to atherosclerosis by coupling cellular function. How the voltage-gated potassium channels (Kv) affect macrophage migration remain unknown. The aim of our study is to investigate whether Kv1.3-ERK signaling pathway plays an important role in the process. We explored the expression of Kv1.3 in coronary atherosclerotic heart disease and found Kv1.3 channel was increased in acute coronary syndrome patients. Treatment of RAW264.7 cells with Kv1.3 small interfering RNA, suppressed cell migration. The expression of phosphorylated ERK1/2 also decreased after knockdown of Kv1.3. On the other hand, overexpression of Kv1.3 channel promoted cell migration and ERK1/2 phosphorylation. U-0126, the mitogen-activated protein kinase inhibitors, could reverse macrophage migration induced by Kv1.3 channel overexpression. Downregulation of Kv1.3 channel by siRNA could not further inhibit cell migration when cells were treated with U-0126. It means that ERK is downstream signal of Kv1.3 channel. We concluded that Kv1.3 may stimulate macrophage migration through the activation of ERK.

  6. Selective activation of mechanosensitive ion channels using magnetic particles.

    PubMed

    Hughes, Steven; McBain, Stuart; Dobson, Jon; El Haj, Alicia J

    2008-08-01

    This study reports the preliminary development of a novel magnetic particle-based technique that permits the application of highly localized mechanical forces directly to specific regions of an ion-channel structure. We demonstrate that this approach can be used to directly and selectively activate a mechanosensitive ion channel of interest, namely TREK-1. It is shown that manipulation of particles targeted against the extended extracellular loop region of TREK-1 leads to changes in whole-cell currents consistent with changes in TREK-1 activity. Responses were absent when particles were coated with RGD (Arg-Gly-Asp) peptide or when magnetic fields were applied in the absence of magnetic particles. It is concluded that changes in whole-cell current are the result of direct force application to the extracellular loop region of TREK-1 and thus these results implicate this region of the channel structure in mechano-gating. It is hypothesized that the extended loop region of TREK-1 may act as a tension spring that acts to regulate sensitivity to mechanical forces, in a nature similar to that described for MscL. The development of a technique that permits the direct manipulation of mechanosensitive ion channels in real time without the need for pharmacological drugs has huge potential benefits not only for basic biological research of ion-channel gating mechanisms, but also potentially as a tool for the treatment of human diseases caused by ion-channel dysfunction.

  7. Activation of peripheral KCNQ channels relieves gout pain

    PubMed Central

    Zheng, Yueming; Xu, Haiyan; Zhan, Li; Zhou, Xindi; Chen, Xueqin; Gao, Zhaobing

    2015-01-01

    Abstract Intense inflammatory pain caused by urate crystals in joints and other tissues is a major symptom of gout. Among therapy drugs that lower urate, benzbromarone (BBR), an inhibitor of urate transporters, is widely used because it is well tolerated and highly effective. We demonstrate that BBR is also an activator of voltage-gated KCNQ potassium channels. In cultured recombinant cells, BBR exhibited significant potentiation effects on KCNQ channels comparable to previously reported classical activators. In native dorsal root ganglion neurons, BBR effectively overcame the suppression of KCNQ currents, and the resultant neuronal hyperexcitability caused by inflammatory mediators, such as bradykinin (BK). Benzbromarone consistently attenuates BK-, formalin-, or monosodium urate–induced inflammatory pain in rat and mouse models. Notably, the analgesic effects of BBR are largely mediated through peripheral and not through central KCNQ channels, an observation supported both by pharmacokinetic studies and in vivo experiments. Moreover, multiple residues in the superficial part of the voltage sensing domain of KCNQ channels were identified critical for the potentiation activity of BBR by a molecular determinant investigation. Our data indicate that activation of peripheral KCNQ channels mediates the pain relief effects of BBR, potentially providing a new strategy for the development of more effective therapies for gout. PMID:25735002

  8. Calcium activated potassium channel expression during human iPS cell-derived neurogenesis.

    PubMed

    Linta, Leonhard; Boeckers, Tobias M; Kleger, Alexander; Liebau, Stefan

    2013-07-01

    The family of calcium activated potassium channels of low and intermediate conductance, known as SK channels, consists of four members (SK1-4). These channels are widely expressed throughout the organism and involved in various cellular processes, such as the afterhyperpolarization in excitable cells but also in differentiation processes of various tissues. To date, the role of SK channels in developmental processes has been merely a marginal focus of investigation, although it is well accepted that cell differentiation and maturation affect the expression patterns of certain ion channels. Recently, several studies from our laboratory delineated the influence of SK channel expression and their respective activity on cytoskeletal reorganization in neural and pluripotent stem cells and regulation of cell fate determination toward the cardiac lineage in human and mouse pluripotent stem cells. Herein, we have now analyzed SK channel expression patterns and distribution at various stages of human induced pluripotent stem cell-derived neurogenesis particularly focusing on undifferentiated iPS cells, neural progenitors and mature neurons. All family members could be detected starting at the iPS cell level and were differentially expressed during the subsequent maturation process. Intriguingly, we found obvious discrepancies between mRNA and protein expression pointing toward a complex regulatory mechanism. Inhibition of SK channels with either apamin or clotrimazol did not have any significant effects on the speed or amount of neurogenesis in vitro. The abundance and specific regulation of SK channel expression during iPS cell differentiation indicates distinct roles of these ion channels not only for the cardiac but also for neuronal cell differentiation and in vitro neurogenesis.

  9. Na(+) -Activated K(+) Channels in Rat Supraoptic Neurones.

    PubMed

    Bansal, V; Fisher, T E

    2016-06-01

    The magnocellular neurosecretory cells (MNCs) of the hypothalamus secrete the neurohormones vasopressin and oxytocin. The systemic release of these hormones depends on the rate and pattern of MNC firing and it is therefore important to identify the ion channels that contribute to the electrical behaviour of MNCs. In the present study, we report evidence for the presence of Na(+) -activated K(+) (KN a ) channels in rat MNCs. KN a channels mediate outwardly rectifying K(+) currents activated by the increases in intracellular Na(+) that occur during electrical activity. Although the molecular identity of native KN a channels is unclear, their biophysical properties are consistent with those of expressed Slick (slo 2.1) and Slack (slo 2.2) proteins. Using immunocytochemistry and Western blot experiments, we found that both Slick and Slack proteins are expressed in rat MNCs. Using whole cell voltage clamp techniques on acutely isolated rat MNCs, we found that inhibiting Na(+) influx by the addition of the Na(+) channel blocker tetrodotoxin or the replacement of Na(+) in the external solution with Li(+) caused a significant decrease in sustained outward currents. Furthermore, the evoked outward current density was significantly higher in rat MNCs using patch pipettes containing 60 mm Na(+) than it was when patch pipettes containing 0 mm Na(+) were used. Our data show that functional KN a channels are expressed in rat MNCs. These channels could contribute to the activity-dependent afterhyperpolarisations that have been identified in the MNCs and thereby play a role in the regulation of their electrical behaviour. PMID:27091544

  10. Active Brownian particles escaping a channel in single file.

    PubMed

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  11. Active Brownian particles escaping a channel in single file

    NASA Astrophysics Data System (ADS)

    Locatelli, Emanuele; Baldovin, Fulvio; Orlandini, Enzo; Pierno, Matteo

    2015-02-01

    Active particles may happen to be confined in channels so narrow that they cannot overtake each other (single-file conditions). This interesting situation reveals nontrivial physical features as a consequence of the strong interparticle correlations developed in collective rearrangements. We consider a minimal two-dimensional model for active Brownian particles with the aim of studying the modifications introduced by activity with respect to the classical (passive) single-file picture. Depending on whether their motion is dominated by translational or rotational diffusion, we find that active Brownian particles in single file may arrange into clusters that are continuously merging and splitting (active clusters) or merely reproduce passive-motion paradigms, respectively. We show that activity conveys to self-propelled particles a strategic advantage for trespassing narrow channels against external biases (e.g., the gravitational field).

  12. River Elongation as a Proxy for Lateral Channel Activity

    NASA Astrophysics Data System (ADS)

    Lauer, J. W.

    2009-12-01

    Lateral channel movement is a process that is tightly linked to both channel hydraulics and sediment transport, strongly influences floodplain ecology, and also has great relevance for banktop property owners. The correlation between channel migration rate and channel curvature usually causes meandering river channels to elongate as they migrate laterally. Over the long term, the increase in sinuosity is compensated by a rapid decrease in sinuosity where and when river bends shorten through cutoff processes. However, the elongation for most meander bends in systems free to migrate across wide floodplains often occurs relatively uniformly throughout the system. Consequently, the rate of elongation of individual river bends, integrated across a river reach, offers a simple mechanism for characterizing the reach’s lateral activity. Spatial series of accumulated elongation can also be used to delineate reaches with similar properties. We use aerial imagery pairs to compare rates of lateral channel centerline shifting with channel centerline elongation for reaches many bends long along eight different rivers with widths ranging from 12 to 584 m. Except where bends translate downstream without changing form, elongation rates are closely linked to lateral shifting. In several cases, a change in elongation rate corresponds closely with a change in channel width, discharge, and/or bed material. For reaches free to migrate across a wide, unconfined floodplain and where lateral migration measurements are likely of high quality, the average ratio between the reach average migration rate normalized by channel width and the rate of sinuosity increase (excluding bends that experienced a cutoff between imagery dates) is approximately 5.6. Since elongation rate measurements can be made accurately even from photos that are poorly aligned, the relationship between sinuosity increase and lateral migration potentially provides a means of bypassing time-consuming georeferencing

  13. Detection of single ion channel activity with carbon nanotubes

    PubMed Central

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level. PMID:25778101

  14. Detection of single ion channel activity with carbon nanotubes.

    PubMed

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J

    2015-01-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  15. Detection of single ion channel activity with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Zhou, Weiwei; Wang, Yung Yu; Lim, Tae-Sun; Pham, Ted; Jain, Dheeraj; Burke, Peter J.

    2015-03-01

    Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion channel nanopores using single-walled carbon nanotubes (SWNTs). Two canonical dynamic ion channels (gramicidin A (gA) and alamethicin) and one static biological nanopore (α-hemolysin (α-HL)) were successfully incorporated into supported lipid bilayers (SLBs, an artificial cell membrane), which in turn were interfaced to the carbon nanotubes through a variety of polymer-cushion surface functionalization schemes. The ion channel current directly charges the quantum capacitance of a single nanotube in a network of purified semiconducting nanotubes. This work forms the foundation for a scalable, massively parallel architecture of 1d nanoelectronic devices interrogating electrophysiology at the single ion channel level.

  16. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP.

    PubMed

    DiFrancesco, D; Tortora, P

    1991-05-01

    Cyclic AMP acts as a second messenger in the modulation of several ion channels that are typically controlled by a phosphorylation process. In cardiac pacemaker cells, adrenaline and acetylcholine regulate the hyperpolarization-activated current (if), but in opposite ways; this current is involved in the generation and modulation of pacemaker activity. These actions are mediated by cAMP and underlie control of spontaneous rate by neurotransmitters. Whether the cAMP modulation of if is mediated by channel phosphorylation is, however, still unknown. Here we investigate the action of cAMP on if in excised patches of cardiac pacemaker cells and find that cAMP activates if by a mechanism independent of phosphorylation, involving a direct interaction with the channels at their cytoplasmic side. Cyclic AMP activates if by shifting its activation curve to more positive voltages, in agreement with whole-cell results. This is the first evidence of an ion channel whose gating is dually regulated by voltage and direct cAMP binding.

  17. Evidence for glucagon-like peptide-1 receptor signaling to activate ATP-sensitive potassium channels in pancreatic beta cells.

    PubMed

    Kwon, Hye-Jung; Park, Hyun-Sun; Park, Sung-Hee; Park, Jae-Hyung; Shin, Su-Kyung; Song, Seung Eun; Hwang, Meeyul; Cho, Ho-Chan; Song, Dae-Kyu

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) is a gut peptide that promotes insulin release from pancreatic beta cells. GLP-1 has been shown to confer glucose-insensitive beta cells with glucose sensitivity by modulation of the activity of the ATP-sensitive potassium (KATP) channel. The channel closing effect of GLP-1, interacting with corresponding G-protein-coupled receptors, has been well established; however, to our knowledge, no study has shown whether GLP-1 directly induces activation of beta-cell KATP channels. Here, we aimed to evaluate whether the activation of beta-cell KATP channels by GLP-1 exists and affects intracellular Ca(2+) levels ([Ca(2+)]i). KATP channel activity was measured in isolated rat pancreatic beta cells by whole-cell perforated patch-clamp recordings with a diazoxide-containing pipette solution. Changes in [Ca(2+)]i and the subcellular localization of KATP channels were observed using the calcium-sensitive dye fura-4/AM and anti-Kir6.2 antibodies in INS-1 beta cells, respectively. To eliminate the well-known inhibitory effects of GLP-1 on KATP channel activity, channels were fully inhibited by pretreatment with methyl pyruvate and epigallocatechin-3-gallate. In the pretreated beta cells, GLP-1 and exendin-4 promptly activated the channels, reducing [Ca(2+)]i. The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 blocked the effects of GLP-1 on channel activity. Moreover, phosphatidylinositol-3,4,5-trisphosphate mimicked the effects of GLP-1. These results suggested that beta-cell GLP-1 receptor signaling involved activation of KATP channels via a PI3K-dependent pathway. This alternative mechanism of GLP-1 function may act as a negative feedback pathway, modulating the glucose-dependent GLP-1 inhibition on KATP channel activity. PMID:26655814

  18. Science communication on YouTube: Factors that affect channel and video popularity.

    PubMed

    Welbourne, Dustin J; Grant, Will J

    2016-08-01

    YouTube has become one of the largest websites on the Internet. Among its many genres, both professional and amateur science communicators compete for audience attention. This article provides the first overview of science communication on YouTube and examines content factors that affect the popularity of science communication videos on the site. A content analysis of 390 videos from 39 YouTube channels was conducted. Although professionally generated content is superior in number, user-generated content was significantly more popular. Furthermore, videos that had consistent science communicators were more popular than those without a regular communicator. This study represents an important first step to understand content factors, which increases the channel and video popularity of science communication on YouTube.

  19. The bile acid-sensitive ion channel (BASIC) is activated by alterations of its membrane environment.

    PubMed

    Schmidt, Axel; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Kusch, Jana; Lucas, Susana Dias; Gründer, Stefan; Wiemuth, Dominik

    2014-01-01

    The bile acid-sensitive ion channel (BASIC) is a member of the DEG/ENaC family of ion channels. Channels of this family are characterized by a common structure, their physiological functions and modes of activation, however, are diverse. Rat BASIC is expressed in brain, liver and intestinal tract and activated by bile acids. The physiological function of BASIC and its mechanism of bile acid activation remain a puzzle. Here we addressed the question whether amphiphilic bile acids activate BASIC by directly binding to the channel or indirectly by altering the properties of the surrounding membrane. We show that membrane-active substances other than bile acids also affect the activity of BASIC and that activation by bile acids and other membrane-active substances is non-additive, suggesting that BASIC is sensitive for changes in its membrane environment. Furthermore based on results from chimeras between BASIC and ASIC1a, we show that the extracellular and the transmembrane domains are important for membrane sensitivity.

  20. Chlorotoxin does not inhibit volume-regulated, calcium-activated and cyclic AMP-activated chloride channels.

    PubMed

    Maertens, C; Wei, L; Tytgat, J; Droogmans, G; Nilius, B

    2000-02-01

    It was the aim of this study to look for a high-affinity and selective polypeptide toxin, which could serve as a probe for the volume-regulated anion channel (VRAC) or the calcium-activated chloride channel (CaCC). We have partially purified chlorotoxin, including new and homologous short chain insectotoxins, from the crude venom of Leiurus quinquestriatus quinquestriatus (Lqq) by means of gel filtration chromatography. Material eluting between 280 and 420 min, corresponding to fractions 15-21, was lyophilized and tested on VRAC and CaCC, using the whole-cell patch-clamp technique. We have also tested the commercially available chlorotoxin on VRAC, CaCC, the cystic fibrosis transmembrane conductance regulator (CFTR) and on the glioma specific chloride channel (GCC). VRAC and the correspondent current, I(Cl,swell), was activated in Cultured Pulmonary Artery Endothelial (CPAE) cells by a 25% hypotonic solution. Neither of the fractions 16-21 significantly inhibited I(Cl,swell) (n=4-5). Ca(2+)-activated Cl(-) currents, I(Cl,Ca), activated by loading T84 cells via the patch pipette with 1 microM free Ca(2+), were not inhibited by any of the tested fractions (15-21), (n=2-5). Chlorotoxin (625 nM) did neither effect I(Cl,swell) nor I(Cl,Ca) (n=4-5). The CFTR channel, transiently transfected in COS cells and activated by a cocktail containing IBMX and forskolin, was not affected by 1.2 microM chlorotoxin (n=5). In addition, it did not affect currents through GCC. We conclude that submicromolar concentrations of chlorotoxin do not block volume-regulated, Ca(2+)-activated and CFTR chloride channels and that it can not be classified as a general chloride channel toxin.

  1. Brain Activity, Personality Traits and Affect: Electrocortical Activity in Reaction to Affective Film Stimuli

    NASA Astrophysics Data System (ADS)

    Makvand Hosseini, Sh.; Azad Fallah, P.; Rasoolzadeh Tabatabaei, S. K.; Ghannadyan Ladani, S. H.; Heise, C.

    We studied the patterns of activation over the cerebral cortex in reaction to affective film stimuli in four groups of extroverts, introverts, neurotics and emotionally stables. Measures of extraversion and neuroticism were collected and resting EEG was recorded from 40 right handed undergraduate female students (19-23) on one occasion for five 30s periods in baseline condition and in affective states. Mean log-transformed absolute alpha power was extracted from 12 electrode sites and analyzed. Patterns of activation were different in personality groups. Different patterns of asymmetries were observed in personality groups in reaction to affective stimuli. Results were partly consistent with approach and withdrawal model and provided supportive evidence for the role of right frontal asymmetry in negative affects in two groups (introverts and emotionally stables) as well as the role of right central asymmetry (increase on right and decrease on left) in active affective states (anxiety and happiness) in all personality groups. Results were also emphasized on the role of decrease activity relative to baseline in cortical regions (bilaterally in frontal and unilaterally in left parietal and temporal regions) in moderating of positive and negative emotion.

  2. Physiological mechanisms for the modulation of pannexin 1 channel activity

    PubMed Central

    Sandilos, Joanna K; Bayliss, Douglas A

    2012-01-01

    It is widely recognized that ATP, along with other nucleotides, subserves important intercellular signalling processes. Among various nucleotide release mechanisms, the relatively recently identified pannexin 1 (Panx1) channel is gaining prominence by virtue of its ability to support nucleotide permeation and release in a variety of different tissues. Here, we review recent advances in our understanding of the factors that control Panx1 channel activity. By using electrophysiological and biochemical approaches, diverse mechanisms that dynamically regulate Panx1 channel function have been identified in various settings; these include, among others, activation by caspase-mediated channel cleavage in apoptotic immune cells, by G protein-coupled receptors in vascular smooth muscle, by low oxygen tension in erythrocytes and neurons, by high extracellular K+ in various cell types and by stretch/strain in airway epithelia. Delineating the distinct mechanisms of Panx1 modulation that prevail in different physiological contexts provides the possibility that these channels, and ATP release, could ultimately be targeted in a context-dependent manner. PMID:23070703

  3. Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte.

    PubMed

    Huber, Stephan M; Duranton, Christophe; Henke, Guido; Van De Sand, Claudia; Heussler, Volker; Shumilina, Ekaterina; Sandu, Ciprian D; Tanneur, Valerie; Brand, Verena; Kasinathan, Ravi S; Lang, Karl S; Kremsner, Peter G; Hübner, Christian A; Rust, Marco B; Dedek, Karin; Jentsch, Thomas J; Lang, Florian

    2004-10-01

    Intraerythrocytic growth of the human malaria parasite Plasmodium falciparum depends on delivery of nutrients. Moreover, infection challenges cell volume constancy of the host erythrocyte requiring enhanced activity of cell volume regulatory mechanisms. Patch clamp recording demonstrated inwardly and outwardly rectifying anion channels in infected but not in control erythrocytes. The molecular identity of those channels remained elusive. We show here for one channel type that voltage dependence, cell volume sensitivity, and activation by oxidation are identical to ClC-2. Moreover, Western blots and FACS analysis showed protein and functional ClC-2 expression in human erythrocytes and erythrocytes from wild type (Clcn2(+/+)) but not from Clcn2(-/-) mice. Finally, patch clamp recording revealed activation of volume-sensitive inwardly rectifying channels in Plasmodium berghei-infected Clcn2(+/+) but not Clcn2(-/-) erythrocytes. Erythrocytes from infected mice of both genotypes differed in cell volume and inhibition of ClC-2 by ZnCl(2) (1 mm) induced an increase of cell volume only in parasitized Clcn2(+/+) erythrocytes. Lack of ClC-2 did not inhibit P. berghei development in vivo nor substantially affect the mortality of infected mice. In conclusion, activation of host ClC-2 channels participates in the altered permeability of Plasmodium-infected erythrocytes but is not required for intraerythrocytic parasite survival. PMID:15272009

  4. Stretch-Activated Ion Channels: What Are They?

    PubMed Central

    Sachs, Frederick

    2010-01-01

    Mechanosensitive ion channels (MSCs) exist in all cells, but mechanosensitivity is a phenotype not a genotype. Specialized mechanoreceptors such as the hair cells of the cochlea require elaborate mechanical impedance matching to couple the channels to the external stress. In contrast, MSCs in nonspecialized cells appear activated by stress in the bilayer local to the channel—within about three lipids. Local mechanical stress can be produced by far-field tension, amphipaths, phase separations, the cytoskeleton, the extracellular matrix, and the adhesion energy between the membrane and a patch pipette. Understanding MSC function requires understanding the stimulus. PMID:20134028

  5. Lipid bilayer array for simultaneous recording of ion channel activities

    NASA Astrophysics Data System (ADS)

    Hirano-Iwata, Ayumi; Nasu, Tomohiro; Oshima, Azusa; Kimura, Yasuo; Niwano, Michio

    2012-07-01

    This paper describes an array of stable and reduced-solvent bilayer lipid membranes (BLMs) formed in microfabricated silicon chips. BLMs were first vertically formed simultaneously and then turned 90° in order to realize a horizontal BLM array. Since the present BLMs are mechanically stable and robust, the BLMs survive this relatively tough process. Typically, a ˜60% yield in simultaneous BLM formation over 9 sites was obtained. Parallel recordings of gramicidin channel activities from different BLMs were demonstrated. The present system has great potential as a platform of BLM-based high throughput drug screening for ion channel proteins.

  6. Deletion of TRAAK Potassium Channel Affects Brain Metabolism and Protects against Ischemia

    PubMed Central

    Laigle, Christophe; Confort-Gouny, Sylviane; Le Fur, Yann; Cozzone, Patrick J.; Viola, Angèle

    2012-01-01

    Cerebral stroke is a worldwide leading cause of disability. The two-pore domain K+ channels identified as background channels are involved in many functions in brain under physiological and pathological conditions. We addressed the hypothesis that TRAAK, a mechano-gated and lipid-sensitive two-pore domain K+ channel, is involved in the pathophysiology of brain ischemia. We studied the effects of TRAAK deletion on brain morphology and metabolism under physiological conditions, and during temporary focal cerebral ischemia in Traak−/− mice using a combination of in vivo magnetic resonance imaging (MRI) techniques and multinuclear magnetic resonance spectroscopy (MRS) methods. We provide the first in vivo evidence establishing a link between TRAAK and neurometabolism. Under physiological conditions, Traak−/− mice showed a particular metabolic phenotype characterized by higher levels of taurine and myo-inositol than Traak+/+ mice. Upon ischemia, Traak−/− mice had a smaller infarcted volume, with lower contribution of cellular edema than Traak+/+ mice. Moreover, brain microcirculation was less damaged, and brain metabolism and pH were preserved. Our results show that expression of TRAAK strongly influences tissue levels of organic osmolytes. Traak−/− mice resilience to cellular edema under ischemia appears related to their physiologically high levels of myo-inositol and of taurine, an aminoacid involved in the modulation of mitochondrial activity and cell death. The beneficial effects of TRAAK deletion designate this channel as a promising pharmacological target for the treatment against stroke. PMID:23285272

  7. Patterned electrical activity modulates sodium channel expression in sensory neurons.

    PubMed

    Klein, Joshua P; Tendi, Elisabetta A; Dib-Hajj, Sulayman D; Fields, R Douglas; Waxman, Stephen G

    2003-10-15

    Peripheral nerve injury induces changes in the level of gene expression for sodium channels Nav1.3, Nav1.8, and Nav1.9 within dorsal root ganglion (DRG) neurons, which may contribute to the development of hyperexcitability, ectopic neuronal discharge, and neuropathic pain. The mechanism of this change in sodium channel expression is unclear. Decreased availability of neurotrophic factors following axotomy contributes to these changes in gene transcription, but the question of whether changes in intrinsic neuronal activity levels alone can trigger changes in the expression of these sodium channels has not been addressed. We examined the effect of electrical stimulation on the expression of Nav1.3, Nav1.8, and Nav1.9 by using cultured embryonic mouse sensory neurons under conditions in which nerve growth factor (NGF) was not limiting. Expression of Nav1.3 was not significantly changed following stimulation. In contrast, we observed activity-dependent down-regulation of Nav1.8 and Nav1.9 mRNA and protein levels after stimulation, as demonstrated by quantitative polymerase chain reaction and immunocytochemistry. These results show that a change in neuronal activity can alter the expression of sodium channel genes in a subtype-specific manner, via a mechanism independent of NGF withdrawal. PMID:14515348

  8. Computational study of a calcium release-activated calcium channel

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-05-01

    The naturally occurring proteins that form hole in membrane are commonly known as ion channels. They play multiple roles in many important biological processes. Deletion or alteration of these channels often leads to serious problems in the physiological processes as it controls the flow of ions through it. The proper maintenance of the flow of ions, in turn, is required for normal health. Here we have investigated the behavior of a calcium release-activated calcium ion channel with pdb entry 4HKR in Drosophila Melanogaster. The equilibrium energy as well as molecular dynamics simulation is performed first. The protein is subjected to molecular dynamics simulation to find their energy minimized value. Simulation of the protein in the environment of water and ions has given us important results too. The solvation energy is also found using Charmm potential.

  9. Combined single channel and single molecule detection identifies subunit composition of STIM1-activated transient receptor potential canonical (TRPC) channels.

    PubMed

    Asanov, Alexander; Sampieri, Alicia; Moreno, Claudia; Pacheco, Jonathan; Salgado, Alfonso; Sherry, Ryan; Vaca, Luis

    2015-01-01

    Depletion of intracellular calcium ion stores initiates a rapid cascade of events culminating with the activation of the so-called Store-Operated Channels (SOC) at the plasma membrane. Calcium influx via SOC is essential in the initiation of calcium-dependent intracellular signaling and for the refilling of internal calcium stores, ensuring the regeneration of the signaling cascade. In spite of the significance of this evolutionary conserved mechanism, the molecular identity of SOC has been the center of a heated controversy spanning over the last 20 years. Initial studies positioned some members of the transient receptor potential canonical (TRPC) channel superfamily of channels (with the more robust evidence pointing to TRPC1) as a putative SOC. Recent evidence indicates that Stromal Interacting Molecule 1 (STIM1) activates some members from the TRPC family of channels. However, the exact subunit composition of TRPC channels remains undetermined to this date. To identify the subunit composition of STIM1-activated TRPC channels, we developed novel method, which combines single channel electrophysiological measurements based on the patch clamp technique with single molecule fluorescence imaging. We termed this method Single ion Channel Single Molecule Detection technique (SC-SMD). Using SC-SMD method, we have obtained direct evidence of the subunit composition of TRPC channels activated by STIM1. Furthermore, our electrophysiological-imaging SC-SMD method provides evidence at the molecular level of the mechanism by which STIM1 and calmodulin antagonize to modulate TRPC channel activity.

  10. Human activities impact on mountain river channels (case study of Kamchatka peninsula rivers)

    NASA Astrophysics Data System (ADS)

    Ermakova, Aleksandra S.

    2010-05-01

    Human-induced driving factors along with natural environmental changes greatly impact on fluvial regime of rivers. On mountain and semi-mountain territories these processes are developed in the most complicated manner due to man-made activities diversity throughout river basins. Besides these processes are significantly enhanced because of the disastrous natural processes (like volcanic and mud-flow activity) frequent occurrences in mountainous regions. On of the most striking example on the matter is Kamchatka peninsula which is located at the North-West part of Russian Federation. This paper contributes to the study of human activities impact on fluvial systems in this volcanic mountain region. Human effects on rivers directly alter channel morphology and deformations, dynamics of water and sediment movement, aquatic communities or indirectly affect streams by altering the movement of water and sediment into the channel. In case study of Kamchatka peninsula human activities affect fluvial systems through engineering works including construction of bridges, dams and channel diversions and placer mining. These processes are characterized by spatial heterogeneity because of irregular population distribution. Due to specific natural conditions of the peninsula the most populated areas are the valleys of big rivers (rivers Kamchatka, Avacha, Bistraya (Bolshaya), etc) within piedmont and plain regions. These rivers are characterized by very unstable channels. Both with man-made activities this determines wide range of fluvial system changes. Firstly bridges construction leads to island and logjam formation directly near their piers and intensification of channels patterns shifts. Furthermore rivers of the peninsula are distinguished for high water flow velocities and water rate. Incorrect bridge constructions both with significant channel deformations lead to the destructions of the bridges themselves due to intensive bank erosion. Secondly, intensive water flow

  11. Jellyfish and other cnidarian envenomations cause pain by affecting TRPV1 channels

    PubMed Central

    Cuypers, Eva; Yanagihara, Angel; Karlsson, Evert; Tytgat, Jan

    2007-01-01

    Cnidarian envenomations cause a burning-pain sensation of which the underlying mechanisms are unknown. Activation of TRPV1, a non-selective cation channel expressed in nociceptive neurons, leads to cell depolarisation and pain. Here, we show in vitro and in vivo evidence for desensitization-dependent TRPV1 activation in cnidarian envenomations. Cnidarian venom induced a nociceptive reactivity, comparable to capsaicin, in laboratory rats, which could be reduced by the selective TRPV1 antagonist, BCTC. These findings are the first to explain at least part of the symptomology of cnidarian envenomations and provide insights into the design of more effective treatments for this global public health problem. PMID:17010344

  12. Variomics screen identifies the re-entrant loop of the calcium-activated chloride channel ANO1 that facilitates channel activation.

    PubMed

    Bill, Anke; Popa, M Oana; van Diepen, Michiel T; Gutierrez, Abraham; Lilley, Sarah; Velkova, Maria; Acheson, Kathryn; Choudhury, Hedaythul; Renaud, Nicole A; Auld, Douglas S; Gosling, Martin; Groot-Kormelink, Paul J; Gaither, L Alex

    2015-01-01

    The calcium-activated chloride channel ANO1 regulates multiple physiological processes. However, little is known about the mechanism of channel gating and regulation of ANO1 activity. Using a high-throughput, random mutagenesis-based variomics screen, we generated and functionally characterized ∼6000 ANO1 mutants and identified novel mutations that affected channel activity, intracellular trafficking, or localization of ANO1. Mutations such as S741T increased ANO1 calcium sensitivity and rendered ANO1 calcium gating voltage-independent, demonstrating a critical role of the re-entrant loop in coupling calcium and voltage sensitivity of ANO1 and hence in regulating ANO1 activation. Our data present the first unbiased and comprehensive study of the structure-function relationship of ANO1. The novel ANO1 mutants reported have diverse functional characteristics, providing new tools to study ANO1 function in biological systems, paving the path for a better understanding of the function of ANO1 and its role in health and diseases.

  13. Variomics Screen Identifies the Re-entrant Loop of the Calcium-activated Chloride Channel ANO1 That Facilitates Channel Activation*

    PubMed Central

    Bill, Anke; Popa, M. Oana; van Diepen, Michiel T.; Gutierrez, Abraham; Lilley, Sarah; Velkova, Maria; Acheson, Kathryn; Choudhury, Hedaythul; Renaud, Nicole A.; Auld, Douglas S.; Gosling, Martin; Groot-Kormelink, Paul J.; Gaither, L. Alex

    2015-01-01

    The calcium-activated chloride channel ANO1 regulates multiple physiological processes. However, little is known about the mechanism of channel gating and regulation of ANO1 activity. Using a high-throughput, random mutagenesis-based variomics screen, we generated and functionally characterized ∼6000 ANO1 mutants and identified novel mutations that affected channel activity, intracellular trafficking, or localization of ANO1. Mutations such as S741T increased ANO1 calcium sensitivity and rendered ANO1 calcium gating voltage-independent, demonstrating a critical role of the re-entrant loop in coupling calcium and voltage sensitivity of ANO1 and hence in regulating ANO1 activation. Our data present the first unbiased and comprehensive study of the structure-function relationship of ANO1. The novel ANO1 mutants reported have diverse functional characteristics, providing new tools to study ANO1 function in biological systems, paving the path for a better understanding of the function of ANO1 and its role in health and diseases. PMID:25425649

  14. Zinc activates damage-sensing TRPA1 ion channels

    PubMed Central

    Hu, Hongzhen; Bandell, Michael; Petrus, Matt J.; Zhu, Michael X.; Patapoutian, Ardem

    2009-01-01

    Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine-modification. Zinc activates TRPA1 through a novel mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as a major target for the sensory effects of zinc, and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission. PMID:19202543

  15. Multiple types of voltage-dependent Ca2+-activated K+ channels of large conductance in rat brain synaptosomal membranes.

    PubMed Central

    Farley, J.; Rudy, B.

    1988-01-01

    K+-selective ion channels from a mammalian brain synaptosomal membrane preparation were inserted into planar phospholipid bilayers on the tips of patch-clamp pipettes, and single-channel currents were measured. Multiple distinct classes of K+ channels were observed. We have characterized and described the properties of several types of voltage-dependent, Ca2+-activated K+ channels of large single-channel conductance (greater than 50 pS in symmetrical KCl solutions). One class of channels (Type I) has a 200-250-pS single-channel conductance. It is activated by internal calcium concentrations greater than 10(-7) M, and its probability of opening is increased by membrane depolarization. This channel is blocked by 1-3 mM internal concentrations of tetraethylammonium (TEA). These channels are similar to the BK channel described in a variety of tissues. A second novel group of voltage-dependent, Ca2+-activated K+ channels was also studied. These channels were more sensitive to internal calcium, but less sensitive to voltage than the large (Type I) channel. These channels were minimally affected by internal TEA concentrations of 10 mM, but were blocked by a 50 mM concentration. In this class of channels we found a wide range of relatively large unitary channel conductances (65-140 pS). Within this group we have characterized two types (75-80 pS and 120-125 pS) that also differ in gating kinetics. The various types of voltage-dependent, Ca2+-activated K+ channels described here were blocked by charybdotoxin added to the external side of the channel. The activity of these channels was increased by exposure to nanomolar concentrations of the catalytic subunit of cAMP-dependent protein kinase. These results indicate that voltage-dependent, charybdotoxin-sensitive Ca2+-activated K+ channels comprise a class of related, but distinguishable channel types. Although the Ca2+-activated (Type I and II) K+ channels can be distinguished by their single-channel properties, both could

  16. Low affinity block of native and cloned hyperpolarization-activated Ih channels by Ba2+ ions.

    PubMed

    van Welie, Ingrid; Wadman, Wytse J; van Hooft, Johannes A

    2005-01-10

    Ba2+ is commonly used to discriminate two classes of ion currents. The classical inward-rectifying K+ current, I(Kir), is blocked by low millimolar concentrations of Ba2+, whereas the hyperpolarization-activated cation current, I(h), is assumed not to be sensitive to Ba2+. Here we investigated the effects of Ba2+ on I(h) currents recorded from rat hippocampal CA1 pyramidal neurons, and on cloned I(h) channels composed of either HCN1 or HCN2 subunits transiently expressed in Human Embryonic Kidney (HEK) 293 cells. The results show that low millimolar concentrations of Ba2+ reduce the maximal I(h) conductance (IC50 approximately 3-5 mM) in both CA1 pyramidal neurons and in HEK 293 cells without specificity for HCN1 or HCN2 subunits. In addition, Ba2+ decreases the rate of activation and increases the rate of deactivation of I(h) currents. Neither the half-maximal voltage of activation, V(h), nor the reversal potential of the I(h) channels were affected by Ba2+. The combined results suggest that B2+, at concentrations commonly used to block I(Kir) currents, also reduces the conductance of I(h) channels without subunit specificity, and affects the kinetics of I(h) channel gating.

  17. Voltage-dependent drug blockade of L-glutamate activated channels of the crayfish.

    PubMed Central

    Dekin, M S; Edwards, C

    1983-01-01

    The actions of d-tubocurarine (d-TC) and local anaesthetics on the L-glutamate activated channel at the voltage-clamped crayfish neuromuscular junction were studied. The effect of d-TC and local anaesthetics on the dose-response relationship between ionophoretically applied L-glutamate and synaptic current suggested that both acted as non-competitive inhibitors. The amount of inhibition was voltage dependent, and increased as the membrane potential was hyperpolarized. This voltage-dependent block was also manifest in a flattening of the I-V relationship between L-glutamate induced current and membrane potential in the presence of d-TC. However, the reversal potential for the L-glutamate activated channel was not affected; it was about +7 mV in both the presence and absence of d-TC. The neurally evoked excitatory post-synaptic current (e.p.s.c.) was depressed in the presence of these drugs and this effect was also voltage dependent. The time course of the e.p.s.c. was affected, but less so than expected if the L-glutamate activated channel were identical to the channel opened by acetylcholine at the vertebrate neuromuscular junction. Possible reasons for this discrepancy are discussed. PMID:6312026

  18. Atomic basis for therapeutic activation of neuronal potassium channels

    NASA Astrophysics Data System (ADS)

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-09-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.

  19. Atomic basis for therapeutic activation of neuronal potassium channels

    PubMed Central

    Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.

    2015-01-01

    Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2–5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators. PMID:26333338

  20. Structural aspects of calcium-release activated calcium channel function

    PubMed Central

    Stathopulos, Peter B; Ikura, Mitsuhiko

    2013-01-01

    Store-operated calcium (Ca2+) entry is the process by which molecules located on the endo/sarcoplasmic reticulum (ER/SR) respond to decreased luminal Ca2+ levels by signaling Ca2+ release activated Ca2+ channels (CRAC) channels to open on the plasma membrane (PM). This activation of PM CRAC channels provides a sustained cytosolic Ca2+ elevation associated with myriad physiological processes. The identities of the molecules which mediate SOCE include stromal interaction molecules (STIMs), functioning as the ER/SR luminal Ca2+ sensors, and Orai proteins, forming the PM CRAC channels. This review examines the current available high-resolution structural information on these CRAC molecular components with particular focus on the solution structures of the luminal STIM Ca2+ sensing domains, the crystal structures of cytosolic STIM fragments, a closed Orai hexameric crystal structure and a structure of an Orai1 N-terminal fragment in complex with calmodulin. The accessible structural data are discussed in terms of potential mechanisms of action and cohesiveness with functional observations. PMID:24213636

  1. Multi-ion occupancy alters gating in high-conductance, Ca(2+)-activated K+ channels

    PubMed Central

    1991-01-01

    In this study, single-channel recordings of high-conductance Ca(2+)- activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)- blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed- blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening. PMID:2056305

  2. Local postsynaptic voltage-gated sodium channel activation in dendritic spines of olfactory bulb granule cells.

    PubMed

    Bywalez, Wolfgang G; Patirniche, Dinu; Rupprecht, Vanessa; Stemmler, Martin; Herz, Andreas V M; Pálfi, Dénes; Rózsa, Balázs; Egger, Veronica

    2015-02-01

    Neuronal dendritic spines have been speculated to function as independent computational units, yet evidence for active electrical computation in spines is scarce. Here we show that strictly local voltage-gated sodium channel (Nav) activation can occur during excitatory postsynaptic potentials in the spines of olfactory bulb granule cells, which we mimic and detect via combined two-photon uncaging of glutamate and calcium imaging in conjunction with whole-cell recordings. We find that local Nav activation boosts calcium entry into spines through high-voltage-activated calcium channels and accelerates postsynaptic somatic depolarization, without affecting NMDA receptor-mediated signaling. Hence, Nav-mediated boosting promotes rapid output from the reciprocal granule cell spine onto the lateral mitral cell dendrite and thus can speed up recurrent inhibition. This striking example of electrical compartmentalization both adds to the understanding of olfactory network processing and broadens the general view of spine function.

  3. Swell activated chloride channel function in human neutrophils

    SciTech Connect

    Salmon, Michael D.; Ahluwalia, Jatinder

    2009-04-17

    Non-excitable cells such as neutrophil granulocytes are the archetypal inflammatory immune cell involved in critical functions of the innate immune system. The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential. For continuous function of the NADPH oxidase, I{sub e} has to be balanced to preserve electroneutrality, if not; sufficient depolarisation would prevent electrons from leaving the cell and neutrophil function would be abrogated. Subsequently, the depolarisation generated by the neutrophil NADPH oxidase I{sub e} must be counteracted by ion transport. The finding that depolarisation required counter-ions to compensate electron transport was followed by the observation that chloride channels activated by swell can counteract the NADPH oxidase membrane depolarisation. In this mini review, we discuss the research findings that revealed the essential role of swell activated chloride channels in human neutrophil function.

  4. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings

    NASA Technical Reports Server (NTRS)

    Lewis, B. D.; Karlin-Neumann, G.; Davis, R. W.; Spalding, E. P.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.

  5. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings.

    PubMed Central

    Lewis, B D; Karlin-Neumann, G; Davis, R W; Spalding, E P

    1997-01-01

    The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway. PMID:9276950

  6. Fluctuation driven active molecular transport in passive channel proteins

    NASA Astrophysics Data System (ADS)

    Kosztin, Ioan

    2006-03-01

    Living cells interact with their extracellular environment through the cell membrane, which acts as a protective permeability barrier for preserving the internal integrity of the cell. However, cell metabolism requires controlled molecular transport across the cell membrane, a function that is fulfilled by a wide variety of transmembrane proteins, acting as either passive or active transporters. In this talk it is argued that, contrary to the general belief, in active cell membranes passive and spatially asymmetric channel proteins can act as active transporters by consuming energy from nonequilibrium fluctuations fueled by cell metabolism. This assertion is demonstrated in the case of the E. coli aquaglyceroporin GlpF channel protein, whose high resolution crystal structure is manifestly asymmetric. By calculating the glycerol flux through GlpF within the framework of a stochastic model, it is found that, as a result of channel asymmetry, glycerol uptake driven by a concentration gradient is enhanced significantly in the presence of non-equilibrium fluctuations. Furthermore, the enhancement caused by a ratchet-like mechanism is larger for the outward, i.e., from the cytoplasm to the periplasm, flux than for the inward one, suggesting that the same non-equilibrium fluctuations also play an important role in protecting the interior of the cell against poisoning by excess uptake of glycerol. Preliminary data on water and sugar transport through aquaporin and maltoporin channels, respectively, are indicative of the universality of the proposed nonequilibrium-fluctuation-driven active transport mechanism. This work was supported by grants from the Univ. of Missouri Research Board, the Institute for Theoretical Sciences and the Department of Energy (DOE Contract W-7405-ENG-36), and the National Science Foundation (FIBR-0526854).

  7. Allosteric coupling of the inner activation gate to the outer pore of a potassium channel.

    PubMed

    Peters, Christian J; Fedida, David; Accili, Eric A

    2013-10-23

    In potassium channels, functional coupling of the inner and outer pore gates may result from energetic interactions between residues and conformational rearrangements that occur along a structural path between them. Here, we show that conservative mutations of a residue near the inner activation gate of the Shaker potassium channel (I470) modify the rate of C-type inactivation at the outer pore, pointing to this residue as part of a pathway that couples inner gate opening to changes in outer pore structure and reduction of ion flow. Because they remain equally sensitive to rises in extracellular potassium, altered inactivation rates of the mutant channels are not secondary to modified binding of potassium to the outer pore. Conservative mutations of I470 also influence the interaction of the Shaker N-terminus with the inner gate, which separately affects the outer pore.

  8. Modulation of bone remodeling via mechanically activated ion channels

    NASA Technical Reports Server (NTRS)

    Duncan, Randall L. (Principal Investigator)

    1996-01-01

    A critical factor in the maintenance of bone mass is the physical forces imposed upon the skeleton. Removal of these forces, such as in a weightless environment, results in a rapid loss of bone, whereas application of exogenous mechanical strain has been shown to increase bone formation. Numerous flight and ground-based experiments indicate that the osteoblast is the key bone cell influenced by mechanical stimulation. Aside from early transient fluctuations in response to unloading, osteoclast number and activity seem unaffected by removal of strain. However, bone formation is drastically reduced in weightlessness and osteoblasts respond to mechanical strain with an increase in the activity of a number of second messenger pathways resulting in increased anabolic activity. Unfortunately, the mechanism by which the osteoblast converts physical stimuli into a biochemical message, a process we have termed biochemical coupling, remains elusive. Prior to the application of this grant, we had characterized a mechanosensitive, cation nonselective channel (SA-cat) in osteoblast-like osteosarcoma cells that we proposed is the initial signalling mechanism for mechanotransduction. During the execution of this grant, we have made considerable progress to further characterize this channel as well as to determine its role in the osteoblastic response to mechanical strain. To achieve these goals, we combined electrophysiologic techniques with cellular and molecular biology methods to examine the role of these channels in the normal function of the osteoblast in vitro.

  9. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  10. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  11. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  12. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  13. 28 CFR 55.15 - Affected activities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... RIGHTS ACT REGARDING LANGUAGE MINORITY GROUPS Minority Language Materials and Assistance § 55.15 Affected... of applicable language minority groups to be effectively informed of and participate effectively...

  14. Mid1, a Mechanosensitive Calcium Ion Channel, Affects Growth, Development, and Ascospore Discharge in the Filamentous Fungus Gibberella zeae▿

    PubMed Central

    Cavinder, Brad; Hamam, Ahmed; Lew, Roger R.; Trail, Frances

    2011-01-01

    The role of Mid1, a stretch-activated ion channel capable of being permeated by calcium, in ascospore development and forcible discharge from asci was examined in the pathogenic fungus Gibberella zeae (anamorph Fusarium graminearum). The Δmid1 mutants exhibited a >12-fold reduction in ascospore discharge activity and produced predominately abnormal two-celled ascospores with constricted and fragile septae. The vegetative growth rate of the mutants was ∼50% of the wild-type rate, and production of macroconidia was >10-fold lower than in the wild type. To better understand the role of calcium flux, Δmid1 Δcch1 double mutants were also examined, as Cch1, an L-type calcium ion channel, is associated with Mid1 in Saccharomyces cerevisiae. The phenotype of the Δmid1 Δcch1 double mutants was similar to but more severe than the phenotype of the Δmid1 mutants for all categories. Potential and current-voltage measurements were taken in the vegetative hyphae of the Δmid1 and Δcch1 mutants and the wild type, and the measurements for all three strains were remarkably similar, indicating that neither protein contributes significantly to the overall electrical properties of the plasma membrane. Pathogenicity of the Δmid1 and Δmid1Δcch1 mutants on the host (wheat) was not affected by the mutations. Exogenous calcium supplementation partially restored the ascospore discharge and vegetative growth defects for all mutants, but abnormal ascospores were still produced. These results extend the known roles of Mid1 to ascospore development and forcible discharge. However, Neurospora crassa Δmid1 mutants were also examined and did not exhibit defects in ascospore development or in ascospore discharge. In comparison to ion channels in other ascomycetes, Mid1 shows remarkable adaptability of roles, particularly with regard to niche-specific adaptation. PMID:21357477

  15. Stimulation of epithelial sodium channel activity by the sulfonylurea glibenclamide.

    PubMed

    Chrabi, A; Horisberger, J D

    1999-07-01

    The amiloride-sensitive epithelial sodium channel (ENaC) contributes to the regulation of the sodium balance and blood pressure because it mediates a rate-limiting step in sodium transport across the epithelium of the distal nephron. The activity of ENaC is regulated by hormones, such as aldosterone and vasopressin, and by other intracellular or extracellular factors, but the mechanisms of these regulations are not yet well understood. It has been proposed that ENaC may be regulated by an associated ATP-binding cassette protein such as the cystic fibrosis conductance regulator or the K channel-associated sulfonylurea receptor. Glibenclamide, a known inhibitor of sulfonylurea receptor and cystic fibrosis conductance regulator, induced a dose-dependent and reversible stimulation (of the order of 40-50%) of the amiloride-sensitive current in oocytes expressing Xenopus ENaC, with a K1/2 of 45 +/- 5 microM. A similar effect was observed in oocytes expressing human ENaC, but not rat ENaC. Measurements performed with various combinations of rat and Xenopus subunits indicated that several subunits are involved in this effect. Glibenclamide also increased the transepithelial Na transport by the A6 Xenopus kidney cell line. Single-channel current recordings showed a doubling of the number of the open channels when glibenclamide was applied locally to the extracellular surface of the cell membrane. These results support the hypothesis of the existence of an associated ATP-binding cassette-type regulatory protein associated with the epithelial sodium channel. PMID:10381797

  16. Ca(2+)-activated K+ channels in rat thymic lymphocytes: activation by concanavalin A.

    PubMed Central

    Mahaut-Smith, M P; Mason, M J

    1991-01-01

    1. The role of ion channels in the mitogenic response of rat thymic lymphocytes to concanavalin A (ConA) was studied using single-channel patch-clamp recordings and measurements of membrane potential with the fluorescent probe bis-oxonol. 2. ConA (20 micrograms ml-1) evoked a rapid membrane hyperpolarization; Indo-1 measurements indicated a concurrent increase in [Ca2+]i. The hyperpolarization was blocked by cytoplasmic loading with the Ca2+ buffer BAPTA (bis(O-amino-phenoxy)ethane-N,N,N',N'-tetraacetic acid), or charybdotoxin, a component of scorpion venom known to block K+ channels in lymphocytes. 3. Cell-attached patch-clamp recordings showed that both ConA and the Ca2+ ionophore ionomycin activated channels with high selectivity for K+. Two conductance levels were observed -6-7 pS and 17-18 pS-measured as inward chord conductance at 60 mV from reversal potential (Erev) with 140 mM-KCl in the pipette. The current-voltage relationship for the larger channel displayed inward rectification and channel open probability was weakly dependent upon membrane potential. 4. These experiments provide the first direct evidence for mitogen-activated Ca(2+)-gated K+ channels (IK(Ca)) in lymphocytes. This conductance is relatively inactive in unstimulated rat thymocytes but following the intracellular Ca2+ rises induced by ConA, IK(Ca) channels are activated and produce a significant hyperpolarization of the cell potential. PMID:1716678

  17. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels

    PubMed Central

    Spassova, Maria A.; Hewavitharana, Thamara; Xu, Wen; Soboloff, Jonathan; Gill, Donald L.

    2006-01-01

    The TRP family of ion channels transduce an extensive range of chemical and physical signals. TRPC6 is a receptor-activated nonselective cation channel expressed widely in vascular smooth muscle and other cell types. We report here that TRPC6 is also a sensor of mechanically and osmotically induced membrane stretch. Pressure-induced activation of TRPC6 was independent of phospholipase C. The stretch responses were blocked by the tarantula peptide, GsMTx-4, known to specifically inhibit mechanosensitive channels by modifying the external lipid-channel boundary. The GsMTx-4 peptide also blocked the activation of TRPC6 channels by either receptor-induced PLC activation or by direct application of diacylglycerol. The effects of the peptide on both stretch- and diacylglycerol-mediated TRPC6 activation indicate that the mechanical and chemical lipid sensing by the channel has a common molecular mechanism that may involve lateral-lipid tension. The mechanosensing properties of TRPC6 channels highly expressed in smooth muscle cells are likely to play a key role in regulating myogenic tone in vascular tissue. PMID:17056714

  18. An Investigation of How the Channel of Input and Access to Test Questions Affect L2 Listening Test Performance

    ERIC Educational Resources Information Center

    Wagner, Elvis

    2013-01-01

    The use of video technology has become widespread in the teaching and testing of second-language (L2) listening, yet research into how this technology affects the learning and testing process has lagged. The current study investigated how the channel of input (audiovisual vs. audio-only) used on an L2 listening test affected test-taker…

  19. Location of Release Sites and Calcium-Activated Chloride Channels Relative to Calcium Channels at the Photoreceptor Ribbon Synapse

    PubMed Central

    Mercer, A. J.; Rabl, K.; Riccardi, G. E.; Brecha, N. C.; Stella, S. L.

    2011-01-01

    Vesicle release from photoreceptor ribbon synapses is regulated by L-type Ca2+ channels, which are in turn regulated by Cl− moving through calcium-activated chloride [Cl(Ca)] channels. We assessed the proximity of Ca2+ channels to release sites and Cl(Ca) channels in synaptic terminals of salamander photoreceptors by comparing fast (BAPTA) and slow (EGTA) intracellular Ca2+ buffers. BAPTA did not fully block synaptic release, indicating some release sites are <100 nm from Ca2+ channels. Comparing Cl(Ca) currents with predicted Ca2+ diffusion profiles suggested that Cl(Ca) and Ca2+ channels average a few hundred nanometers apart, but the inability of BAPTA to block Cl(Ca) currents completely suggested some channels are much closer together. Diffuse immunolabeling of terminals with an antibody to the putative Cl(Ca) channel TMEM16A supports the idea that Cl(Ca) channels are dispersed throughout the presynaptic terminal, in contrast with clustering of Ca2+ channels near ribbons. Cl(Ca) currents evoked by intracellular calcium ion concentration ([Ca2+]i) elevation through flash photolysis of DM-nitrophen exhibited EC50 values of 556 and 377 nM with Hill slopes of 1.8 and 2.4 in rods and cones, respectively. These relationships were used to estimate average submembrane [Ca2+]i in photoreceptor terminals. Consistent with control of exocytosis by [Ca2+] nanodomains near Ca2+ channels, average submembrane [Ca2+]i remained below the vesicle release threshold (∼400 nM) over much of the physiological voltage range for cones. Positioning Ca2+ channels near release sites may improve fidelity in converting voltage changes to synaptic release. A diffuse distribution of Cl(Ca) channels may allow Ca2+ influx at one site to influence relatively distant Ca2+ channels. PMID:21084687

  20. Regulation of Hyperpolarization-activated Cyclic Nucleotide-gated (HCN) Channel Activity by cCMP*

    PubMed Central

    Zong, Xiangang; Krause, Stefanie; Chen, Cheng-Chang; Krüger, Jens; Gruner, Christian; Cao-Ehlker, Xiaochun; Fenske, Stefanie; Wahl-Schott, Christian; Biel, Martin

    2012-01-01

    Activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is facilitated in vivo by direct binding of the second messenger cAMP. This process plays a fundamental role in the fine-tuning of HCN channel activity and is critical for the modulation of cardiac and neuronal rhythmicity. Here, we identify the pyrimidine cyclic nucleotide cCMP as another regulator of HCN channels. We demonstrate that cCMP shifts the activation curves of two members of the HCN channel family, HCN2 and HCN4, to more depolarized voltages. Moreover, cCMP speeds up activation and slows down deactivation kinetics of these channels. The two other members of the HCN channel family, HCN1 and HCN3, are not sensitive to cCMP. The modulatory effect of cCMP is reversible and requires the presence of a functional cyclic nucleotide-binding domain. We determined an EC50 value of ∼30 μm for cCMP compared with 1 μm for cAMP. Notably, cCMP is a partial agonist of HCN channels, displaying an efficacy of ∼0.6. cCMP increases the frequency of pacemaker potentials from isolated sinoatrial pacemaker cells in the presence of endogenous cAMP concentrations. Electrophysiological recordings indicated that this increase is caused by a depolarizing shift in the activation curve of the native HCN current, which in turn leads to an enhancement of the slope of the diastolic depolarization of sinoatrial node cells. In conclusion, our findings establish cCMP as a gating regulator of HCN channels and indicate that this cyclic nucleotide has to be considered in HCN channel-regulated processes. PMID:22715094

  1. Molecular candidates for cardiac stretch-activated ion channels

    PubMed Central

    Reed, Alistair; Kohl, Peter; Peyronnet, Rémi

    2014-01-01

    The heart is a mechanically-active organ that dynamically senses its own mechanical environment. This environment is constantly changing, on a beat-by-beat basis, with additional modulation by respiratory activity and changes in posture or physical activity, and further overlaid with more slowly occurring physiological (e.g. pregnancy, endurance training) or pathological challenges (e.g. pressure or volume overload). Far from being a simple pump, the heart detects changes in mechanical demand and adjusts its performance accordingly, both via heart rate and stroke volume alteration. Many of the underlying regulatory processes are encoded intracardially, and are thus maintained even in heart transplant recipients. Over the last three decades, molecular substrates of cardiac mechanosensitivity have gained increasing recognition in the scientific and clinical communities. Nonetheless, the processes underlying this phenomenon are still poorly understood. Stretch-activated ion channels (SAC) have been identified as one contributor to mechanosensitive autoregulation of the heartbeat. They also appear to play important roles in the development of cardiac pathologies – most notably stretch-induced arrhythmias. As recently discovered, some established cardiac drugs act, in part at least, via mechanotransduction pathways suggesting SAC as potential therapeutic targets. Clearly, identification of the molecular substrate of cardiac SAC is of clinical importance and a number of candidate proteins have been identified. At the same time, experimental studies have revealed variable–and at times contrasting–results regarding their function. Further complication arises from the fact that many ion channels that are not classically defined as SAC, including voltage and ligand-gated ion channels, can respond to mechanical stimulation. Here, we summarise what is known about the molecular substrate of the main candidates for cardiac SAC, before identifying potential further

  2. Selective potentiation of 2-APB-induced activation of TRPV1–3 channels by acid

    PubMed Central

    Gao, Luna; Yang, Pu; Qin, Peizhong; Lu, Yungang; Li, Xinxin; Tian, Quan; Li, Yang; Xie, Chang; Tian, Jin-bin; Zhang, Chengwei; Tian, Changlin; Zhu, Michael X.; Yao, Jing

    2016-01-01

    Temperature-sensitive TRP channels are important for responses to pain and inflammation, to both of which tissue acidosis is a major contributing factor. However, except for TRPV1, acid-sensing by other ThermoTRP channels remains mysterious. We show here that unique among TRPV1–3 channels, TRPV3 is directly activated by protons from cytoplasmic side. This effect is very weak and involves key cytoplasmic residues L508, D512, S518, or A520. However, mutations of these residues did not affect a strong proton induced potentiation of TRPV3 currents elicited by the TRPV1–3 common agonist, 2-aminoethoxydiphenyl borate (2-APB), no matter if the ligand was applied from extracellular or cytoplasmic side. The acid potentiation was common among TRPV1–3 and only seen with 2-APB-related ligands. Using 1H-nuclear magnetic resonance to examine the solution structures of 2-APB and its analogs, we observed striking structural differences of the boron-containing compounds at neutral/basic as compared to acidic pH, suggesting that a pH-dependent configuration switch of 2-APB-based drugs may underlie their functionality. Supporting this notion, protons also enhanced the inhibitory action of 2-APB on TRPM8. Collectively, our findings reveal novel insights into 2-APB action on TRP channels, which should facilitate the design of new drugs for these channels. PMID:26876731

  3. TRPC channels underlie cholinergic plateau potentials and persistent activity in entorhinal cortex.

    PubMed

    Zhang, Zizhen; Reboreda, Antonio; Alonso, Angel; Barker, Philip A; Séguéla, Philippe

    2011-04-01

    Persistent neuronal activity lasting seconds to minutes has been proposed to allow for the transient storage of memory traces in entorhinal cortex and thus could play a major role in working memory. Nonsynaptic plateau potentials induced by acetylcholine account for persistent firing in many cortical and subcortical structures. The expression of these intrinsic properties in cortical neurons involves the recruitment of a non-selective cation conductance. Despite its functional importance, the identity of the cation channels remains unknown. Here we show that, in layer V of rat medial entorhinal cortex, muscarinic receptor-evoked plateau potentials and persistent firing induced by carbachol require phospholipase C activation, decrease of PIP(2) levels, and permissive intracellular Ca(2+) concentrations. Plateau potentials and persistent activity were suppressed by the generic nonselective cation channel blockers FFA (100 μM) and 2-APB (100 μM), as well as by the TRPC channel blocker SKF-96365 (50 μM). However, plateau potentials were not affected by the TRPV channel blocker ruthenium red (40 μM). The TRPC3/6/7 activator OAG did not induce or enhance persistent firing evoked by carbachol. Voltage clamp recordings revealed a carbachol-activated, nonselective cationic current with a heteromeric TRPC-like phenotype. Moreover, plateau potentials and persistent firing were inhibited by intracellular application of the peptide EQVTTRL that disrupts interactions between the C-terminal domain of TRPC4/5 subunits and associated PDZ proteins. Altogether, our data suggest that TRPC cation channels mediating persistent muscarinic currents significantly contribute to the firing and mnemonic properties of projection neurons in the entorhinal cortex.

  4. Eucalyptol induces hyperexcitability and epileptiform activity in snail neurons by inhibiting potassium channels.

    PubMed

    Zeraatpisheh, Zahra; Vatanparast, Jafar

    2015-10-01

    The effects of eucalyptol (1,8-cineole) were studied on the activity of central neurons of land snail Caucasotachea atrolabiata. Eucalyptol (3 mM) depolarized the membrane potential and increased the frequency of spontaneous activity in a time dependent and reversible manner. These effects were associated with suppression of afterhyperpolarization and significant reduction of amplitude and slope of rising and falling phases of action potentials. While the eucalyptol-induced suppression of action potential amplitude and rising slope were essentially dependent on membrane depolarization, its actions on repolarization slope and afterhyperpolarization were not affected by resetting the membrane potential close to the control value. These findings suggest an inhibitory action on the potassium channels that underlie repolarization and afterhyperpolarization. Eucalyptol also increased the frequency of driven action potentials but suppressed the post stimulus inhibitory period, indicating an inhibitory action on calcium-activated potassium channels. A higher concentration of eucalyptol, 5mM, reversibly changed the pattern of activity to burst firing associated with paroxysmal depolarization shift (PDS). Low doses of eucalyptol and potassium channel blockers, tetraethylammonium and 4-aminopyridine, synergistically acted to induce burst firing. At high concentration (30 mM), tetraethylammonium was able to induce burst firing and PDS. The sodium currents and ion channel phosphorylation by protein kinases A and C were not required for the eucalyptol-induced epileptiform activity, but calcium currents were essential for this action. Our findings show the excitatory and epileptogenic action of eucalyptol, which is most likely mediated through direct inhibitory action on potassium channels.

  5. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes.

    PubMed

    Kheradpezhouh, E; Barritt, G J; Rychkov, G Y

    2016-04-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca(2+) homeostasis, resulting in a sustained elevation of the free cytosolic Ca(2+) concentration ([Ca(2+)]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca(2+) entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca(2+)]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels.

  6. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes

    PubMed Central

    Kheradpezhouh, E.; Barritt, G.J.; Rychkov, G.Y.

    2015-01-01

    Oxidative stress is a hallmark of many liver diseases including viral and drug-induced hepatitis, ischemia-reperfusion injury, and non-alcoholic steatohepatitis. One of the consequences of oxidative stress in the liver is deregulation of Ca2+ homeostasis, resulting in a sustained elevation of the free cytosolic Ca2+ concentration ([Ca2+]c) in hepatocytes, which leads to irreversible cellular damage. Recently it has been shown that liver damage induced by paracetamol and subsequent oxidative stress is, in large part, mediated by Ca2+ entry through Transient Receptor Potential Melastatin 2 (TRPM2) channels. Involvement of TRPM2 channels in hepatocellular damage induced by oxidative stress makes TRPM2 a potential therapeutic target for treatment of a range of oxidative stress-related liver diseases. We report here the identification of curcumin ((1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione), a natural plant-derived polyphenol in turmeric spice, as a novel inhibitor of TRPM2 channel. Presence of 5 µM curcumin in the incubation medium prevented the H2O2- and paracetamol-induced [Ca2+]c rise in rat hepatocytes. Furthermore, in patch clamping experiments incubation of hepatocytes with curcumin inhibited activation of TRPM2 current by intracellular ADPR with IC50 of approximately 50 nM. These findings enhance understanding of the actions of curcumin and suggest that the known hepatoprotective properties of curcumin are, at least in part, mediated through inhibition of TRPM2 channels. PMID:26609559

  7. Increased Asynchronous Release and Aberrant Calcium Channel Activation in Amyloid Precursor Protein Deficient Neuromuscular Synapses

    PubMed Central

    Yang, Li; Wang, Baiping; Long, Cheng; Wu, Gangyi; Zheng, Hui

    2007-01-01

    Despite the critical roles of the amyloid precursor protein (APP) in Alzheimer's disease pathogenesis, its physiological function remains poorly established. Our previous studies implicated a structural and functional activity of the APP family of proteins in the developing neuromuscular junction (NMJ). Here we performed comprehensive analyses of neurotransmission in mature neuromuscular synapse of APP deficient mice. We found that APP deletion led to reduced paired-pulse facilitation and increased depression of synaptic transmission with repetitive stimulation. Readily releasable pool size and total releasable vesicles were not affected, but probability of release was significantly increased. Strikingly, the amount of asynchronous release, a measure sensitive to presynaptic calcium concentration, was dramatically increased, and pharmacological studies revealed that it was attributed to aberrant activation of N- and L-type Ca2+ channels. We propose that APP modulates synaptic transmission at the NMJ by ensuring proper Ca2+ channel function. PMID:17919826

  8. Photochemical activation of TRPA1 channels in neurons and animals

    PubMed Central

    Kokel, David; Cheung, Chung Yan J.; Mills, Robert; Coutinho-Budd, Jaeda; Huang, Liyi; Setola, Vincent; Sprague, Jared; Jin, Shan; Jin, Youngnam N.; Huang, Xi-Ping; Bruni, Giancarlo; Woolf, Clifford; Roth, Bryan L.; Hamblin, Michael R; Zylka, Mark J.; Milan, David J.; Peterson, Randall T.

    2013-01-01

    Optogenetics is a powerful research tool because it enables high-resolution optical control of neuronal activity. However, current optogenetic approaches are limited to transgenic systems expressing microbial opsins and other exogenous photoreceptors. Here, we identify optovin, a small molecule that enables repeated photoactivation of motor behaviors in wild type animals. Surprisingly, optovin's behavioral effects are not visually mediated. Rather, photodetection is performed by sensory neurons expressing the cation channel TRPA1. TRPA1 is both necessary and sufficient for the optovin response. Optovin activates human TRPA1 via structure-dependent photochemical reactions with redox-sensitive cysteine residues. In animals with severed spinal cords, optovin treatment enables control of motor activity in the paralyzed extremities by localized illumination. These studies identify a light-based strategy for controlling endogenous TRPA1 receptors in vivo, with potential clinical and research applications in non-transgenic animals, including humans. PMID:23396078

  9. AMPK Dilates Resistance Arteries via Activation of SERCA and BKCa Channels in Smooth Muscle.

    PubMed

    Schneider, Holger; Schubert, Kai Michael; Blodow, Stephanie; Kreutz, Claus-Peter; Erdogmus, Serap; Wiedenmann, Margarethe; Qiu, Jiehua; Fey, Theres; Ruth, Peter; Lubomirov, Lubomir T; Pfitzer, Gabriele; Mederos Y Schnitzler, Michael; Hardie, D Grahame; Gudermann, Thomas; Pohl, Ulrich

    2015-07-01

    The protective effects of 5'-AMP-activated protein kinase (AMPK) on the metabolic syndrome may include direct effects on resistance artery vasomotor function. However, the precise actions of AMPK on microvessels and their potential interaction are largely unknown. Thus, we set to determine the effects of AMPK activation on vascular smooth muscle tone and the underlying mechanisms. Resistance arteries isolated from hamster and mouse exhibited a pronounced endothelium-independent dilation on direct pharmacological AMPK activation by 2 structurally unrelated compounds (PT1 and A769662). The dilation was associated with a decrease of intracellular-free calcium [Ca(2+)]i in vascular smooth muscle cell. AMPK stimulation induced activation of BKCa channels as assessed by patch clamp studies in freshly isolated hamster vascular smooth muscle cell and confirmed by direct proof of membrane hyperpolarization in intact arteries. The BKCa channel blocker iberiotoxin abolished the hyperpolarization but only partially reduced the dilation and did not affect the decrease of [Ca(2+)]i. By contrast, the sarcoplasmic/endoplasmic Ca(2+)-ATPase (SERCA) inhibitor thapsigargin largely reduced these effects, whereas combined inhibition of SERCA and BKCa channels virtually abolished them. AMPK stimulation significantly increased the phosphorylation of the SERCA modulator phospholamban at the regulatory T17 site. Stimulation of smooth muscle AMPK represents a new, potent vasodilator mechanism in resistance vessels. AMPK directly relaxes vascular smooth muscle cell by a decrease of [Ca(2+)]i. This is achieved by calcium sequestration via SERCA activation, as well as activation of BKCa channels. There is in part a mutual compensation of both calcium-lowering mechanisms. However, SERCA activation which involves an AMPK-dependent phosphorylation of phospholamban is the predominant mechanism in resistance vessels.

  10. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease

    PubMed Central

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca2+, possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  11. Large-Conductance Calcium-Activated Potassium Channels in Glomerulus: From Cell Signal Integration to Disease.

    PubMed

    Tao, Jie; Lan, Zhen; Wang, Yunman; Hei, Hongya; Tian, Lulu; Pan, Wanma; Zhang, Xuemei; Peng, Wen

    2016-01-01

    Large-conductance calcium-activated potassium (BK) channels are currently considered as vital players in a variety of renal physiological processes. In podocytes, BK channels become active in response to stimuli that increase local cytosolic Ca(2+), possibly secondary to activation of slit diaphragm TRPC6 channels by chemical or mechanical stimuli. Insulin increases filtration barrier permeability through mobilization of BK channels. In mesangial cells, BK channels co-expressed with β1 subunits act as a major component of the counteractive response to contraction in order to regulate glomerular filtration. This review aims to highlight recent discoveries on the localization, physiological and pathological roles of BK channels in glomerulus. PMID:27445840

  12. On the estimation of cooperativity in ion channel kinetics: activation free energy and kinetic mechanism of Shaker K+ channel.

    PubMed

    Banerjee, Kinshuk; Das, Biswajit; Gangopadhyay, Gautam

    2013-04-28

    In this paper, we have explored generic criteria of cooperative behavior in ion channel kinetics treating it on the same footing with multistate receptor-ligand binding in a compact theoretical framework. We have shown that the characterization of cooperativity of ion channels in terms of the Hill coefficient violates the standard Hill criteria defined for allosteric cooperativity of ligand binding. To resolve the issue, an alternative measure of cooperativity is proposed here in terms of the cooperativity index that sets a unified criteria for both the systems. More importantly, for ion channel this index can be very useful to describe the cooperative kinetics as it can be readily determined from the experimentally measured ionic current combined with theoretical modelling. We have analyzed the correlation between the voltage value and slope of the voltage-activation curve at the half-activation point and consequently determined the standard free energy of activation of the ion channel using two well-established mechanisms of cooperativity, namely, Koshland-Nemethy-Filmer (KNF) and Monod-Wyman-Changeux (MWC) models. Comparison of the theoretical results for both the models with appropriate experimental data of mutational perturbation of Shaker K(+) channel supports the experimental fact that the KNF model is more suitable to describe the cooperative behavior of this class of ion channels, whereas the performance of the MWC model is unsatisfactory. We have also estimated the mechanistic performance through standard free energy of channel activation for both the models and proposed a possible functional disadvantage in the MWC scheme.

  13. Study of permeation and blocker binding in TMEM16A calcium-activated chloride channels.

    PubMed

    Reyes, J P; Huanosta-Gutiérrez, A; López-Rodríguez, A; Martínez-Torres, A

    2015-01-01

    We studied the effects of mutations of positively charged amino acid residues in the pore of X. tropicalis TMEM16A calcium-activated chloride channels: K613E, K628E, K630E; R646E and R761E. The activation and deactivation kinetics were not affected, and only K613E showed a lower current density. K628E and R761E affect anion selectivity without affecting Na(+) permeation, whereas K613E, R646E and the double mutant K613E + R646E affect anion selectivity and permeability to Na(+). Furthermore, altered blockade by the chloride channel blockers anthracene-9-carboxylic acid (A-9-C), 4, 4'-Diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS) and T16inh-A01 was observed. These results suggest the existence of 2 binding sites for anions within the pore at electrical distances of 0.3 and 0.5. These sites are also relevant for anion permeation and blockade.

  14. NSAIDs attenuate hyperalgesia induced by TRP channel activation

    PubMed Central

    Nozadze, Ivliane; Tsiklauri, Nana; Gurtskaia, Gulnaz; Tsagareli, Merab G.

    2016-01-01

    Transient receptor potential (TRP) cation channels have been extensively investigated as targets for analgesic drug discovery. Because some non-steroidal anti-inflammatory drugs (NSAIDs) are structural analogs of prostaglandins (mediators of inflammation) and NSAIDs attenuate heat nociception and mechanical allodynia in models of inflammatory and neuropathic pain, we examined three widely used NSAIDs (diclofenac, ketorolac, and xefocam) on the activation of TRPA1 and TRPV1 channels using thermal paw withdrawal (Hargreaves) test and mechanical paw withdrawal (von Frey) test in male rats. Thermal withdrawal latencies and mechanical thresholds for both hind paws were obtained with 5, 15, 30, 45, 60, and 120 min intraplantar post-injection of TRPA1 agonizts, allyl isothiocyanate (AITC) (a natural compound of mustard oil) and cinnamaldehyde (CA), and TRPV1 agonist capsaicin or vehicle. Twenty minutes prior to the start of the experiment with TRP agonizts, diclofenac, ketorolac or xefocam were pre-injected in the same hindpaw and animals were examined by these two tests. After pretreatment of all three NSAIDs in the ipsilateral (injected) hindpaw that produced strong antinociceptive effects, AITC, CA, and capsaicin caused significant decreases in latency of the thermal withdrawal reflex compared with vehicle or the contralateral hindpaw. The same findings were observed for the paw withdrawal threshold. In approximately 30 min the effects of CA, AITC, and capsaicin returned to baseline. The data are different from our previous evidence, where TRPA1 agonizts AITC and CA and TRPV1 agonist capsaicin produced hyperalgesia for nearly 2 h and resulted in facilitation of these withdrawal reflexes (Tsagareli et al., 2010, 2013). Thus, our data showing that NSAIDs suppress thermal and mechanical hyperalgesia following TRP activation could presumably due to inactivation or desensitization of TRPA1 and TRPV1 channels by NSAIDs. PMID:26909384

  15. Mutations affecting enzymatic activity in liver arginase

    SciTech Connect

    Vockley, J.G.; Tabor, D.E.; Goodman, B.K.

    1994-09-01

    The hydrolysis of arginine to ornithine and urea is catalyzed by arginase in the last step of the urea cycle. We examined a group of arginase deficient patients by PCR-SSCP analysis to characterize the molecular basis of this disorder. A heterogeneous population of nonsense mutations, microdeletions, and missense mutations has been identified in our cohort. Microdeletions which introduce premature stop codons downstream of the deletion and nonsense mutations result in no arginase activity. These mutations occur randomly along the gene. The majority of missense mutations identified appear to occur in regions of high cross-species homology. To test the effect of these missense mutations on arginase activity, site-directed mutagenesis was used to re-create the patient mutations for in vivo expression studies in a prokaryotic fusion-protein expression system. Of 4 different missense mutations identified in 6 individuals, only one was located outside of a conserved region. The three substitution mutations within the conserved regions had a significant effect on enzymatic activity (0-3.1 nmole/30min, normal is 1300-1400 nmoles/30min, as determined by in vitro arginase assay), while the fourth mutation, a T to S substitution, did not. In addition, site-directed mutagenesis was utilized to create mutations not in residues postulated to play a significant role in the enzymatic function or active site formation in manganese-binding proteins such as arginase. We have determined that the substitution of glycine for a histidine residue, located in a very highly conserved region of exon 3, and the substitution of a histidine and an aspartic acid residue within a similarly conserved region in exon 4, totally abolishes enzymatic activity. Mutations substituting glycine for an additional histidine and aspartic acid residue in exon 4 and two aspartic acid residues in exon 7 have also been created. We are currently in the process of characterizing these mutations.

  16. The LRRC26 Protein Selectively Alters the Efficacy of BK Channel Activators

    PubMed Central

    Almassy, Janos

    2012-01-01

    Large conductance, Ca2+-activated K channel proteins are involved in a wide range of physiological activities, so there is considerable interest in the pharmacology of large conductance calcium-activated K (BK) channels. One potent activator of BK channels is mallotoxin (MTX), which produces a very large hyperpolarizing shift of the voltage gating of heterologously expressed BK channels and causes a dramatic increase in the activity of BK channels in human smooth muscle cells. However, we found that MTX shifted the steady-state activation of BK channels in native parotid acinar cells by only 6 mV. This was not because the parotid BK isoform (parSlo) is inherently insensitive to MTX as MTX shifted the activation of heterologously expressed parSlo channels by 70 mV. Even though MTX had a minimal effect on steady-state activation of parotid BK channels, it produced an approximate 2-fold speeding of the channel-gating kinetics. The BK channels in parotid acinar cells have a much more hyperpolarized voltage activation range than BK channels in most other cell types. We found that this is probably attributable to an accessory protein, LRRC26, which is expressed in parotid glands: expressed parSlo + LRRC26 channels were resistant to the actions of MTX. Another class of BK activators is the benzimidazalones that includes 1,3-dihydro-1-(2-hydroxy-5-(trifluoromethyl)phenyl)-5-(trifluoromethyl)-2H-benzimidazol-2-one (NS-1619). Although the LRRC26 accessory protein strongly inhibited the ability of MTX to activate BK channels, we found that it had only a small effect on the action of NS-1619 on BK channels. Thus, the LRRC26 BK channel accessory protein selectively alters the pharmacology of BK channels. PMID:21984254

  17. Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia.

    PubMed

    Arniges, Maite; Vázquez, Esther; Fernández-Fernández, José M; Valverde, Miguel A

    2004-12-24

    The vertebrate transient receptor potential cationic channel TRPV4 has been proposed as an osmo- and mechanosensor channel. Studies using knock-out animal models have further emphasized the relevance of the TRPV4 channel in the maintenance of the internal osmotic equilibrium and mechanosensation. However, at the cellular level, there is still one important question to answer: does the TRPV4 channel generate the Ca(2+) signal in those cells undergoing a Ca(2+)-dependent regulatory volume decrease (RVD) response? RVD in human airway epithelia requires the generation of a Ca(2+) signal to activate Ca(2+)-dependent K(+) channels. The RVD response is lost in airway epithelia affected with cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator channel. We have previously shown that the defective RVD in CF epithelia is linked to the lack of swelling-dependent activation of Ca(2+)-dependent K(+) channels. In the present study, we show the expression of TRPV4 in normal human airway epithelia, where it functions as the Ca(2+) entry pathway that triggers the RVD response after hypotonic stress, as demonstrated by TRPV4 antisense experiments. However, cell swelling failed to trigger Ca(2+) entry via TRPV4 channels in CF airway epithelia, although the channel's response to a specific synthetic activator, 4 alpha-phorbol 12,13-didecanoate, was maintained. Furthermore, RVD was recovered in CF airway epithelia treated with 4 alpha-phorbol 12,13-didecanoate. Together, these results suggest that defective RVD in CF airway epithelia might be caused by the absence of a TRPV4-mediated Ca(2+) signal and the subsequent activation of Ca(2+)-dependent K(+) channels. PMID:15489228

  18. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara.

  19. Membrane stretching triggers mechanosensitive Ca2+ channel activation in Chara.

    PubMed

    Kaneko, Toshiyuki; Takahashi, Naoya; Kikuyama, Munehiro

    2009-03-01

    In order to confirm that mechanosensitive Ca(2+) channels are activated by membrane stretching, we stretched or compressed the plasma membrane of Chara by applying osmotic shrinkage or swelling of the cell by varying the osmotic potential of the bathing medium. Aequorin studies revealed that treatments causing membrane stretching induced a transient but large increase in cytoplasmic concentration of Ca(2+) (Delta[Ca(2+)](c)). However, the observed Delta[Ca(2+)](c) decreased during the treatments, resulting in membrane compression. A second experiment was carried out to study the relationship between changes in membrane potential (DeltaE(m)) and stretching or compression of the plasma membrane. Significant DeltaE(m) values, often accompanied by an action potential, were observed during the initial exchange of the bathing medium from a hypotonic medium to a hypertonic one (plasmolysis). DeltaE(m) appears to be triggered by a partial stretching of the membrane as it was peeled from the cell wall. After plasmolysis, other exchanges from hypertonic to hypotonic media, with their accompanying membrane stretching, always induced large DeltaE(m) values and were often accompanied by an action potential. By contrast, action potentials were scarcely observed during other exchanges from hypotonic to hypertonic solutions (=membrane compression). Thus, we concluded that activation of the mechanosensitive channels is triggered by membrane stretching in Chara. PMID:19234734

  20. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  1. Prefrontal Cortex Haemodynamics and Affective Responses during Exercise: A Multi-Channel Near Infrared Spectroscopy Study

    PubMed Central

    Tempest, Gavin D.; Eston, Roger G.; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise. PMID:24788166

  2. Prefrontal cortex haemodynamics and affective responses during exercise: a multi-channel near infrared spectroscopy study.

    PubMed

    Tempest, Gavin D; Eston, Roger G; Parfitt, Gaynor

    2014-01-01

    The dose-response effects of the intensity of exercise upon the potential regulation (through top-down processes) of affective (pleasure-displeasure) responses in the prefrontal cortex during an incremental exercise protocol have not been explored. This study examined the functional capacity of the prefrontal cortex (reflected by haemodynamics using near infrared spectroscopy) and affective responses during exercise at different intensities. Participants completed an incremental cycling exercise test to exhaustion. Changes (Δ) in oxygenation (O2Hb), deoxygenation (HHb), blood volume (tHb) and haemoglobin difference (HbDiff) were measured from bilateral dorsal and ventral prefrontal areas. Affective responses were measured every minute during exercise. Data were extracted at intensities standardised to: below ventilatory threshold, at ventilatory threshold, respiratory compensation point and the end of exercise. During exercise at intensities from ventilatory threshold to respiratory compensation point, ΔO2Hb, ΔHbDiff and ΔtHb were greater in mostly ventral than dorsal regions. From the respiratory compensation point to the end of exercise, ΔO2Hb remained stable and ΔHbDiff declined in dorsal regions. As the intensity increased above the ventilatory threshold, inverse associations between affective responses and oxygenation in (a) all regions of the left hemisphere and (b) lateral (dorsal and ventral) regions followed by the midline (ventral) region in the right hemisphere were observed. Differential activation patterns occur within the prefrontal cortex and are associated with affective responses during cycling exercise.

  3. K(+) channel activity and redox status are differentially required for JNK activation by UV and reactive oxygen species.

    PubMed

    Gao, Jie; Wu, Dan; Guo, Taylor B; Ruan, Qin; Li, Tie; Lu, Zhenyu; Xu, Ming; Dai, Wei; Lu, Luo

    2004-07-15

    Upon exposure to ultraviolet (UV) radiation, osmotic changes or the presence of reactive oxygen species (ROS) c-Jun N-terminal kinases (JNKs) are rapidly activated. Extensive studies have elucidated molecular components that mediate the activation of JNKs. However, it remains unclear whether activation of JNKs by various stress signals involves different pathways. Here we show that K(+) channel activity is involved in mediating apoptosis induced by UV but not by H(2)O(2) in myelocytic leukemic ML-1 cells. Specifically, JNKs were rapidly phosphorylated upon treatment of ML-1 cells with UV and H(2)O(2). UV-induced, but not H(2)O(2)-induced, JNK-1 phosphorylation was inhibited by pretreatment with 4-aminopyridine (4-AP), a K(+) channel blocker. 4-AP also blocked UV-induced increase in JNK activity as well as p38 phosphorylation. Immunofluorescent microscopy revealed that phosphorylated JNKs were concentrated at centrosomes in ML-1 cells and that these proteins underwent rapid subcellular translocation upon UV treatment. Consistently, the subcellular translocation of JNKs induced by UV was largely blocked by 4-AP. Furthermore, UV-induced JNK activation was blocked by NEM, a sulfhydryl alkylating agent also affecting K(+) current. Both UV- and H(2)O(2)-induced JNK activities were inhibited by glutathione, suggesting that the redox status does play an important role in the activation of JNKs. Taken together, our findings suggest that JNK activation by UV and H(2)O(2) is mediated by distinct yet overlapping pathways and that K(+) channel activity and redox status are differentially required for UV- and H(2)O(2)-induced activation of JNKs.

  4. Activation of endogenously expressed ion channels by active complement in the retinal pigment epithelium.

    PubMed

    Genewsky, Andreas; Jost, Ingmar; Busch, Catharina; Huber, Christian; Stindl, Julia; Skerka, Christine; Zipfel, Peter F; Rohrer, Bärbel; Strauß, Olaf

    2015-10-01

    Defective regulation of the alternative pathway of the complement system is believed to contribute to damage of retinal pigment epithelial (RPE) cells in age-related macular degeneration. Thus we investigated the effect of complement activation on the RPE cell membrane by analyzing changes in membrane conductance via patch-clamp techniques and Ca(2+) imaging. Exposure of human ARPE-19 cells to complement-sufficient normal human serum (NHS) (25 %) resulted in a biphasic increase in intracellular free Ca(2+) ([Ca(2+)]i); an initial peak followed by sustained Ca(2+) increase. C5- or C7-depleted sera did not fully reproduce the signal generated by NHS. The initial peak of the Ca(2+) response was reduced by sarcoplasmic Ca(2+)-ATPase inhibitor thapsigargin, L-type channel blockers (R)-(+)-BayK8644 and isradipine, transient-receptor-potential (TRP) channel blocker ruthenium-red and ryanodine receptor blocker dantrolene. The sustained phase was carried by CaV1.3 L-type channels via tyrosine-phosphorylation. Changes in [Ca(2+)]I were accompanied by an abrupt hyperpolarization, resulting from a transient increase in membrane conductance, which was absent under extracellular Ca(2+)- or K(+)-free conditions and blocked by (R)-(+)-BayK8644 or paxilline, a maxiK channel inhibitor. Single-channel recordings confirmed the contribution of maxiK channels. Primary porcine RPE cells responded to NHS in a comparable manner. Pre-incubation with NHS reduced H2O2-induced cell death. In summary, in a concerted manner, C3a, C5a and sC5b-9 increased [Ca(2+)]i by ryanodine-receptor-dependent activation of L-type channels in addition to maxi-K channels and TRP channels absent from any insertion of a lytic pore.

  5. Activation and Regulation of Purinergic P2X Receptor Channels

    PubMed Central

    Coddou, Claudio; Yan, Zonghe; Obsil, Tomas; Huidobro-Toro, J. Pablo

    2011-01-01

    Mammalian ATP-gated nonselective cation channels (P2XRs) can be composed of seven possible subunits, denoted P2X1 to P2X7. Each subunit contains a large ectodomain, two transmembrane domains, and intracellular N and C termini. Functional P2XRs are organized as homomeric and heteromeric trimers. This review focuses on the binding sites involved in the activation (orthosteric) and regulation (allosteric) of P2XRs. The ectodomains contain three ATP binding sites, presumably located between neighboring subunits and formed by highly conserved residues. The detection and coordination of three ATP phosphate residues by positively charged amino acids are likely to play a dominant role in determining agonist potency, whereas an AsnPheArg motif may contribute to binding by coordinating the adenine ring. Nonconserved ectodomain histidines provide the binding sites for trace metals, divalent cations, and protons. The transmembrane domains account not only for the formation of the channel pore but also for the binding of ivermectin (a specific P2X4R allosteric regulator) and alcohols. The N- and C- domains provide the structures that determine the kinetics of receptor desensitization and/or pore dilation and are critical for the regulation of receptor functions by intracellular messengers, kinases, reactive oxygen species and mercury. The recent publication of the crystal structure of the zebrafish P2X4.1R in a closed state provides a major advance in the understanding of this family of receptor channels. We will discuss data obtained from numerous site-directed mutagenesis experiments accumulated during the last 15 years with reference to the crystal structure, allowing a structural interpretation of the molecular basis of orthosteric and allosteric ligand actions. PMID:21737531

  6. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  7. Structure-Function Relation of Phospholamban: Modulation of Channel Activity as a Potential Regulator of SERCA Activity

    PubMed Central

    Smeazzetto, Serena; Saponaro, Andrea; Young, Howard S.; Moncelli, Maria Rosa; Thiel, Gerhard

    2013-01-01

    Phospholamban (PLN) is a small integral membrane protein, which binds and inhibits in a yet unknown fashion the Ca2+-ATPase (SERCA) in the sarcoplasmic reticulum. When reconstituted in planar lipid bilayers PLN exhibits ion channel activity with a low unitary conductance. From the effect of non-electrolyte polymers on this unitary conductance we estimate a narrow pore with a diameter of ca. 2.2 Å for this channel. This value is similar to that reported for the central pore in the structure of the PLN pentamer. Hence the PLN pentamer, which is in equilibrium with the monomer, is the most likely channel forming structure. Reconstituted PLN mutants, which either stabilize (K27A and R9C) or destabilize (I47A) the PLN pentamer and also phosphorylated PLN still generate the same unitary conductance of the wt/non-phosphorylated PLN. However the open probability of the phosphorylated PLN and of the R9C mutant is significantly lower than that of the respective wt/non-phosphorylated control. In the context of data on PLN/SERCA interaction and on Ca2+ accumulation in the sarcoplasmic reticulum the present results are consistent with the view that PLN channel activity could participate in the balancing of charge during Ca2+ uptake. A reduced total conductance of the K+ transporting PLN by phosphorylation or by the R9C mutation may stimulate Ca2+ uptake in the same way as an inhibition of K+ channels in the SR membrane. The R9C-PLN mutation, a putative cause of dilated cardiomyopathy, might hence affect SERCA activity also via its inherent low open probability. PMID:23308118

  8. Biologically active extracts with kidney affections applications

    NASA Astrophysics Data System (ADS)

    Pascu (Neagu), Mihaela; Pascu, Daniela-Elena; Cozea, Andreea; Bunaciu, Andrei A.; Miron, Alexandra Raluca; Nechifor, Cristina Aurelia

    2015-12-01

    This paper is aimed to select plant materials rich in bioflavonoid compounds, made from herbs known for their application performances in the prevention and therapy of renal diseases, namely kidney stones and urinary infections (renal lithiasis, nephritis, urethritis, cystitis, etc.). This paper presents a comparative study of the medicinal plant extracts composition belonging to Ericaceae-Cranberry (fruit and leaves) - Vaccinium vitis-idaea L. and Bilberry (fruit) - Vaccinium myrtillus L. Concentrated extracts obtained from medicinal plants used in this work were analyzed from structural, morphological and compositional points of view using different techniques: chromatographic methods (HPLC), scanning electronic microscopy, infrared, and UV spectrophotometry, also by using kinetic model. Liquid chromatography was able to identify the specific compounds of the Ericaceae family, present in all three extracts, arbutosid, as well as specific components of each species, mostly from the class of polyphenols. The identification and quantitative determination of the active ingredients from these extracts can give information related to their therapeutic effects.

  9. Threshold bedrock channels in tectonically active mountains with frequent mass wasting

    NASA Astrophysics Data System (ADS)

    Korup, O.; Hayakawa, Y. S.; Codilean, A.; Oguchi, T.

    2013-12-01

    determining the fraction of landslide-affected terrain throughout Japan. We infer that neither average nor extreme bedrock channel steepness is a sufficiently sensitive measure for gauging landslide activity in terms of volumes mobilized as opposed to bedrock river sinuosity. This new and largely underexplored channel planform metric may reflect spacing of discontinuities in rock mass that constrains the susceptibility to large rock-slope failures, and may contain valuable compound information on both fluvial and hillslope erosion dynamics in tectonically active landscapes.

  10. A cAMP-Regulated Chloride Channel in Lymphocytes that is Affected in Cystic Fibrosis

    NASA Astrophysics Data System (ADS)

    Chen, Jennifer H.; Schulman, Howard; Gardner, Phyllis

    1989-02-01

    A defect in regulation of a chloride channel appears to be the molecular basis for cystic fibrosis (CF), a common lethal genetic disease. It is shown here that a chloride channel with kinetic and regulatory properties similar to those described for secretory epithelial cells is present in both T and B lymphocyte cell lines. The regulation of the channels by adenosine 3',5'-monophosphate (cAMP)--dependent protein kinase in transformed B cells from CF patients is defective. Thus, lymphocytes may be an accessible source of CF tissue for study of this defect, for cloning of the chloride channel complex, and for diagnosis of the disease.

  11. Effects of microgravity on liposome-reconstituted cardiac gap junction channeling activity

    NASA Technical Reports Server (NTRS)

    Claassen, D. E.; Spooner, B. S.

    1989-01-01

    Effects of microgravity on cardiac gap junction channeling activity were investigated aboard NASA zero-gravity aircraft. Liposome-reconstituted gap junctions were assayed for channel function during free-fall, and the data were compared with channeling at 1 g. Control experiments tested for 0 g effects on the structural stability of liposomes, and on the enzyme-substrate signalling system of the assay. The results demonstrate that short periods of microgravity do not perturb reconstituted cardiac gap junction channeling activity.

  12. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism.

    PubMed

    Chen, H S; Lipton, S A

    1997-02-15

    1. N-methyl-D-aspartic acid (NMDA)-activated currents were recorded from dissociated rat retinal ganglion cells using whole-cell recording. The NMDA open-channel blocking drug memantine was evaluated for non-competitive and/or uncompetitive components of antagonism. A rapid superfusion system was used to apply various drugs for kinetic analysis. 2. Dose-response data revealed that memantine blocked 200 microM NMDA-evoked responses with a 50% inhibition constant (IC50) of approximately 1 microM at -60 mV and an empirical Hill coefficient of approximately 1. The antagonism followed a bimolecular reaction process. This 1:1 stoichiometry is supported by the fact that the macroscopic blocking rate of memantine (kon) increased linearly with memantine concentration and the macroscopic unblocking rate (koff) was independent of it. The estimated pseudo-first order rate constant for macroscopic blockade was 4 x 10(5) M-1 S-1 and the rate constant for unblocking was 0.44 s-1. Both the blocking and unblocking actions of memantine were well fitted by a single exponential process. 3. The kon for 2 microM memantine decreased with decreasing concentrations of NMDA. By analysing kon behaviour, we estimate that memantine has minimal interaction with the closed-unliganded state of the channel. As channel open probability (Po) approached zero, a small residual action of memantine may be explained by the presence of endogenous glutamate and glycine. 4. Memantine could be trapped within the NMDA-gated channel if it was suddenly closed by fast washout of agonist. The measured gating process of channel activation and deactivation appeared at least 10-20-fold faster than the kinetics of memantine action. By combining the agonist and voltage dependence of antagonism, a trapping scheme was established for further kinetic analysis. 5. With low agonist concentrations, NMDA-gated channels recovered slowly from memantine blockade. By analysing the probability of a channel remaining blocked, we

  13. Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism.

    PubMed Central

    Chen, H S; Lipton, S A

    1997-01-01

    1. N-methyl-D-aspartic acid (NMDA)-activated currents were recorded from dissociated rat retinal ganglion cells using whole-cell recording. The NMDA open-channel blocking drug memantine was evaluated for non-competitive and/or uncompetitive components of antagonism. A rapid superfusion system was used to apply various drugs for kinetic analysis. 2. Dose-response data revealed that memantine blocked 200 microM NMDA-evoked responses with a 50% inhibition constant (IC50) of approximately 1 microM at -60 mV and an empirical Hill coefficient of approximately 1. The antagonism followed a bimolecular reaction process. This 1:1 stoichiometry is supported by the fact that the macroscopic blocking rate of memantine (kon) increased linearly with memantine concentration and the macroscopic unblocking rate (koff) was independent of it. The estimated pseudo-first order rate constant for macroscopic blockade was 4 x 10(5) M-1 S-1 and the rate constant for unblocking was 0.44 s-1. Both the blocking and unblocking actions of memantine were well fitted by a single exponential process. 3. The kon for 2 microM memantine decreased with decreasing concentrations of NMDA. By analysing kon behaviour, we estimate that memantine has minimal interaction with the closed-unliganded state of the channel. As channel open probability (Po) approached zero, a small residual action of memantine may be explained by the presence of endogenous glutamate and glycine. 4. Memantine could be trapped within the NMDA-gated channel if it was suddenly closed by fast washout of agonist. The measured gating process of channel activation and deactivation appeared at least 10-20-fold faster than the kinetics of memantine action. By combining the agonist and voltage dependence of antagonism, a trapping scheme was established for further kinetic analysis. 5. With low agonist concentrations, NMDA-gated channels recovered slowly from memantine blockade. By analysing the probability of a channel remaining blocked, we

  14. Trypsin-Sensitive, Rapid Inactivation of a Calcium-Activated Potassium Channel

    NASA Astrophysics Data System (ADS)

    Solaro, Christopher R.; Lingle, Christopher J.

    1992-09-01

    Most calcium-activated potassium channels couple changes in intracellular calcium to membrane excitability by conducting a current with a probability that depends directly on submembrane calcium concentration. In rat adrenal chromaffin cells, however, a large conductance, voltage- and calcium-activated potassium channel (BK) undergoes rapid inactivation, suggesting that this channel has a physiological role different than that of other BK channels. The inactivation of the BK channel, like that of the voltage-gated Shaker B potassium channel, is removed by trypsin digestion and channels are blocked by the Shaker B amino-terminal inactivating domain. Thus, this BK channel shares functional and possibly structural homologies with other inactivating voltage-gated potassium channels.

  15. The effect of single cerebroside compounds on activation of BKCa channels.

    PubMed

    Xu, Huina; Qi, Jianhua; Wang, Guangfa; Deng, Hongwen; Qi, Zhi

    2011-02-01

    We have previously shown that a mixture of cerebrosides obtained from dried tubers of herb Typhonium giganteum Engl. plays a neuroprotective role in the ischemic brain through its effect on activation of BK(Ca) channels. It is very curious to know whether a single pure cerebroside compound could activate the BK(Ca) channel as well. This study explored the possible effects of pure cerebroside compounds, termitomycesphins A and B, on the BK(Ca) channel activation. Both termitomycesphins A and B activated the BK(Ca) channels at micromole concentration without significant difference. Termitomycesphin A increased the single channel open probability of the BK(Ca) channels in a dose-dependent manner without modifying the single channel conductance. Termitomycesphin A activated BK(Ca) channel more efficiently when it was applied to the cytoplasmic face of the membrane, suggesting that binding site for termitomycesphin A is located at the cytoplasmic side. Termitomycesphin A shifted the voltage-dependent activation curve to less positive membrane potentials and the Ca(2+)-dependent activation curve of the channel upwards, suggesting that termitomycesphin A could activate the channels even without intracellular free Ca(2+). Furthermore, STREX-deleted BK(Ca) channels were completely insensitive to termitomycesphin A, indicating that STREX domain is required for the activation of the BK(Ca) channel. These data provide evidence that termitomycesphins are potent in stimulating the activity of the BK(Ca) channels. As BK(Ca) channels are associated with pathology of many diseases, termitomycesphins might be used as therapeutic agents for treating these diseases through its regulatory effect on the BK(Ca) channels.

  16. Observations of the Behavior and Distribution of Fish in Relation to the Columbia River Navigation Channel and Channel Maintenance Activities

    SciTech Connect

    Carlson, Thomas J.; Ploskey, Gene R.; Johnson, R. L.; Mueller, Robert P.; Weiland, Mark A.; Johnson, P. N.

    2001-10-19

    This report is a compilation of 7 studies conducted for the U.S. Army Corps of Engineers between 1995 and 1998 which used hydroacoustic methods to study the behavior of migrating salmon in response to navigation channel maintenance activities in the lower Columbia River near river mile 45. Differences between daytime and nighttime behavior and fish densities were noted. Comparisons were made of fish distribution across the river (in the channel, channel margin or near shore) and fish depth upstream and downstream of dikes, dredges, and pile driving areas.

  17. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption.

    PubMed

    Bugaj, Vladislav; Pochynyuk, Oleh; Stockand, James D

    2009-11-01

    We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, parsing the cellular signaling pathway and molecular mechanism of regulation. In addition, we quantified possible synergistic regulation of ENaC by vasopressin and aldosterone associating this with a requirement for distal nephron Na+ reabsorption during water conservation vs. maintenance of Na+ balance. We find that vasopressin significantly increases ENaC activity within 2-3 min by increasing open probability (P(o)). This activation was dependent on adenylyl cyclase (AC) and PKA. Water restriction (18-24 h) and pretreatment of isolated CD with vasopressin (approximately 30 min) resulted in a similar increase in P(o). In addition, this also increased the number (N) of active ENaC in the apical membrane. Similar to P(o), increases in N were sensitive to inhibitors of AC. Stressing animals with water and salt restriction separately and jointly revealed an important effect of vasopressin: conservation of water and Na+ each independently increased ENaC activity and jointly had a synergistic effect on channel activity. These results demonstrate a quantitatively important action of vasopressin on ENaC suggesting that distal nephron Na+ reabsorption mediated by this channel contributes to maintenance of water reabsorption. In addition, our results support that the combined actions of vasopressin and aldosterone are required to achieve maximally activated ENaC. PMID:19692483

  18. Activation of the epithelial Na+ channel in the collecting duct by vasopressin contributes to water reabsorption.

    PubMed

    Bugaj, Vladislav; Pochynyuk, Oleh; Stockand, James D

    2009-11-01

    We used patch-clamp electrophysiology on isolated, split-open murine collecting ducts (CD) to test the hypothesis that regulation of epithelial sodium channel (ENaC) activity is a physiologically important effect of vasopressin. Surprisingly, this has not been tested directly before. We ask whether vasopressin affects ENaC activity distinguishing between acute and chronic effects, as well as, parsing the cellular signaling pathway and molecular mechanism of regulation. In addition, we quantified possible synergistic regulation of ENaC by vasopressin and aldosterone associating this with a requirement for distal nephron Na+ reabsorption during water conservation vs. maintenance of Na+ balance. We find that vasopressin significantly increases ENaC activity within 2-3 min by increasing open probability (P(o)). This activation was dependent on adenylyl cyclase (AC) and PKA. Water restriction (18-24 h) and pretreatment of isolated CD with vasopressin (approximately 30 min) resulted in a similar increase in P(o). In addition, this also increased the number (N) of active ENaC in the apical membrane. Similar to P(o), increases in N were sensitive to inhibitors of AC. Stressing animals with water and salt restriction separately and jointly revealed an important effect of vasopressin: conservation of water and Na+ each independently increased ENaC activity and jointly had a synergistic effect on channel activity. These results demonstrate a quantitatively important action of vasopressin on ENaC suggesting that distal nephron Na+ reabsorption mediated by this channel contributes to maintenance of water reabsorption. In addition, our results support that the combined actions of vasopressin and aldosterone are required to achieve maximally activated ENaC.

  19. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities

    NASA Technical Reports Server (NTRS)

    Sukharev, S. I.; Blount, P.; Martinac, B.; Kung, C.

    1997-01-01

    Although mechanosensory responses are ubiquitous and diverse, the molecular bases of mechanosensation in most cases remain mysterious MscL, a mechanosensitive channel of large conductance of Escherichia coli and its bacterial homologues are the first and currently only channel molecules shown to directly sense mechanical stretch of the membrane. In response to the tension conveyed via the lipid bilayer, MscL increases its open probability by several orders of magnitude. In the present review we describe the identification, cloning, and first sets of biophysical and structural data on this simplest mechanosensory molecule. We discovered a 2.5-ns mechanosensitive conductance in giant E. coli spheroplasts. Using chromatographies to enrich the target and patch clamp to assay the channel activity in liposome-reconstituted fractions, we identified the MscL protein and cloned the mscL gene. MscL comprises 136 amino acid residues (15 kDa), with two highly hydrophobic regions, and resides in the inner membrane of the bacterium. PhoA-fusion experiments indicate that the protein spans the membrane twice with both termini in the cytoplasm. Spectroscopic techniques show that it is highly helical. Expression of MscL tandems and covalent cross-linking suggest that the active channel complex is a homo-hexamer. We have identified several residues, which when deleted or substituted, affect channel kinetics or mechanosensitivity. Although unique when discovered, highly conserved MscL homologues in both gram-negative and gram-positive bacteria have been found, suggesting their ubiquitous importance among bacteria.

  20. Single doses of piracetam affect 42-channel event-related potential microstate maps in a cognitive paradigm.

    PubMed

    Michel, C M; Lehmann, D

    1993-01-01

    We examined whether a single administration of piracetam produces dose-dependent effects on brain functions in healthy young men. In 6 subjects, 42-channel event-related EEG potential maps (ERP) were recorded during a task requiring subjects to watch single digits presented in a pseudorandom order on a screen and to press a button after all triplets of three consecutive odd or even digits. The ERP maps to the three digits of the correctly detected triplets were analyzed in terms of their mapped ERP field configuration (landscape). Different landscapes of the maps indicate different configuration of the activated neural population and therefore reflect different functional microstates of the brain. In order to identify these microstates, adaptive segmentation of the map series based on their landscapes was done. Nineteen time segments were found. These segments were tested for direct effects on brain function of three single doses of piracetam (2.9, 4.8 or 9.6 g) and a placebo given double-blind in balanced order. Piracetam mainly affected the map landscape of the time segments following the triplet's last digit. U-shaped dose-dependent effects were found; they were strongest after 4.8 g piracetam. Since these particular ERP segments are recognized to be strongly correlated to cognitive functions, the present findings suggest that single medium doses of piracetam selectively activate differently located or oriented neurons during cognitive steps of information processing.

  1. Reactive oxygen species inhibit polycystin-2 (TRPP2) cation channel activity in term human syncytiotrophoblast.

    PubMed

    Montalbetti, N; Cantero, M R; Dalghi, M G; Cantiello, H F

    2008-06-01

    Pregnancy is often associated with oxidative stress (OS) and lower antioxidant defences, which are both implicated in the pathophysiology of preeclampsia, free radical-induced birth defects, and abortions, as well as gestational diabetes mellitus (GDM), where products of lipid peroxidation are increased. The molecular target(s) of increased oxygen free radicals and consequent lipid peroxidation in the human placenta remains ill defined. The human syncytiotrophoblast (hST) expresses abundant polycystin-2 (PC2, TRPP2), a TRP-type Ca(2+)-permeable non-selective cation channel. Here, we explored the effect of reactive oxygen species (ROS) on PC2 channel activity of term hST. Apical membranes of the hST were reconstituted in a lipid bilayer chamber. Addition of either hydrogen-peroxide (H(2)O(2)) or tert-butyl hydroperoxide (tBHP) to the cis chamber (intracellular side) rapidly and completely inhibited PC2-mediated cation channel activity in reconstituted hST vesicles. A dose-response titration with increasing concentrations of H(2)O(2) gave an IC(50)=131 nM. The effect of H(2)O(2) on the isolated protein from in vitro transcribed/translated material was significantly different. H(2)O(2) inhibited PC2 cation channel activity, with a much lower affinity (IC(50)=193 microM). To correlate these findings with H(2)O(2)-induced lipid peroxidation, TBARS where measured in hST apical membranes incubated with H(2)O(2). Increased TBARS by exposure of hST apical membranes to H(2)O(2) (625 microM) returned to control value in the presence of catalase (167 microg/ml). Taken together these data indicate that ROS affect PC2 channel function by targetting both membrane lipids and the channel protein. Thus, OS in human pregnancy may be linked to dysregulation of channels such as PC2, which allow the transport of Ca(2+) into the placenta. Oxidative complications in pregnancy may implicate dysfunctional cation transfer between mother and fetus. PMID:18417208

  2. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel

    NASA Astrophysics Data System (ADS)

    Posson, David J.; Rusinova, Radda; Andersen, Olaf S.; Nimigean, Crina M.

    2015-09-01

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K+ channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca2+-activated K+ channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K+. Thus, Ca2+-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  3. Calcium ions open a selectivity filter gate during activation of the MthK potassium channel.

    PubMed

    Posson, David J; Rusinova, Radda; Andersen, Olaf S; Nimigean, Crina M

    2015-01-01

    Ion channel opening and closing are fundamental to cellular signalling and homeostasis. Gates that control K(+) channel activity were found both at an intracellular pore constriction and within the selectivity filter near the extracellular side but the specific location of the gate that opens Ca(2+)-activated K(+) channels has remained elusive. Using the Methanobacterium thermoautotrophicum homologue (MthK) and a stopped-flow fluorometric assay for fast channel activation, we show that intracellular quaternary ammonium blockers bind to closed MthK channels. Since the blockers are known to bind inside a central channel cavity, past the intracellular entryway, the gate must be within the selectivity filter. Furthermore, the blockers access the closed channel slower than the open channel, suggesting that the intracellular entryway narrows upon pore closure, without preventing access of either the blockers or the smaller K(+). Thus, Ca(2+)-dependent gating in MthK occurs at the selectivity filter with coupled movement of the intracellular helices.

  4. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes*

    PubMed Central

    Ramos Gomes, Fernanda; Romaniello, Vincenzo; Sánchez, Araceli; Weber, Claudia; Narayanan, Pratibha; Psol, Maryna; Pardo, Luis A.

    2015-01-01

    KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy. PMID:26518875

  5. Alternatively Spliced Isoforms of KV10.1 Potassium Channels Modulate Channel Properties and Can Activate Cyclin-dependent Kinase in Xenopus Oocytes.

    PubMed

    Ramos Gomes, Fernanda; Romaniello, Vincenzo; Sánchez, Araceli; Weber, Claudia; Narayanan, Pratibha; Psol, Maryna; Pardo, Luis A

    2015-12-18

    KV10.1 is a voltage-gated potassium channel expressed selectively in the mammalian brain but also aberrantly in cancer cells. In this study we identified short splice variants of KV10.1 resulting from exon-skipping events (E65 and E70) in human brain and cancer cell lines. The presence of the variants was confirmed by Northern blot and RNase protection assays. Both variants completely lacked the transmembrane domains of the channel and produced cytoplasmic proteins without channel function. In a reconstituted system, both variants co-precipitated with the full-length channel and induced a robust down-regulation of KV10.1 current when co-expressed with the full-length form, but their effect was mechanistically different. E65 required a tetramerization domain and induced a reduction in the overall expression of full-length KV10.1, whereas E70 mainly affected its glycosylation pattern. E65 triggered the activation of cyclin-dependent kinases in Xenopus laevis oocytes, suggesting a role in cell cycle control. Our observations highlight the relevance of noncanonical functions for the oncogenicity of KV10.1, which need to be considered when ion channels are targeted for cancer therapy. PMID:26518875

  6. Proteolytic regulation of epithelial sodium channels by urokinase plasminogen activator: cutting edge and cleavage sites.

    PubMed

    Ji, Hong-Long; Zhao, Runzhen; Komissarov, Andrey A; Chang, Yongchang; Liu, Yongfeng; Matthay, Michael A

    2015-02-27

    Plasminogen activator inhibitor 1 (PAI-1) level is extremely elevated in the edematous fluid of acutely injured lungs and pleurae. Elevated PAI-1 specifically inactivates pulmonary urokinase-type (uPA) and tissue-type plasminogen activators (tPA). We hypothesized that plasminogen activation and fibrinolysis may alter epithelial sodium channel (ENaC) activity, a key player in clearing edematous fluid. Two-chain urokinase (tcuPA) has been found to strongly stimulate heterologous human αβγ ENaC activity in a dose- and time-dependent manner. This activity of tcuPA was completely ablated by PAI-1. Furthermore, a mutation (S195A) of the active site of the enzyme also prevented ENaC activation. By comparison, three truncation mutants of the amino-terminal fragment of tcuPA still activated ENaC. uPA enzymatic activity was positively correlated with ENaC current amplitude prior to reaching the maximal level. In sharp contrast to uPA, neither single-chain tPA nor derivatives, including two-chain tPA and tenecteplase, affected ENaC activity. Furthermore, γ but not α subunit of ENaC was proteolytically cleaved at ((177)GR↓KR(180)) by tcuPA. In summary, the underlying mechanisms of urokinase-mediated activation of ENaC include release of self-inhibition, proteolysis of γ ENaC, incremental increase in opening rate, and activation of closed (electrically "silent") channels. This study for the first time demonstrates multifaceted mechanisms for uPA-mediated up-regulation of ENaC, which form the cellular and molecular rationale for the beneficial effects of urokinase in mitigating mortal pulmonary edema and pleural effusions.

  7. Channel

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03693 Channel

    This channel is located south of Iani Chaos.

    Image information: VIS instrument. Latitude -10.9N, Longitude 345.5E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Calcium-activated potassium channels mask vascular dysfunction associated with oxidized LDL exposure in rabbit aorta.

    PubMed

    Bocker, J M; Miller, F J; Oltman, C L; Chappell, D A; Gutterman, D D

    2001-05-01

    Endothelium-dependent vasodilation is impaired in atherosclerosis. Oxidized low density lipoprotein (ox-LDL) plays an important role, possibly through alterations in G-protein activation. We examined the effect of acute exposure to ox-LDL on the dilator responses of isolated rabbit aorta segments. We sought also to evaluate the specificity of this dysfunction for dilator stimuli that traditionally operate through a Gi-protein mechanism. Aortic segments were prepared for measurement of isometric tension. After contraction with prostaglandin F2alpha, relaxation to thrombin, adenosine diphosphate (ADP), or the endothelium-independent agonists, sodium nitroprusside (SNP) or papaverine was examined. Maximal relaxation to thrombin was impaired in the presence of ox-LDL (17.7+/-3.7% p<0.05) compared to control (no LDL) (52.6+/-4.0%). Ox-LDL did not affect maximal relaxation to ADP or SNP. However, in the presence of charybdotoxin (CHTX: calcium-activated potassium channel inhibitor) ox-LDL impaired relaxation to ADP (17.4+/-3.2%). CHTX did not affect control (no LDL) responses to ADP (69.6+/-5.0%) or relaxation to thrombin or papaverine. In conclusion, ox-LDL impairs relaxation to thrombin, but in the case of ADP, calcium-activated potassium channels compensate to maintain this relaxation. PMID:11605770

  9. BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis

    PubMed Central

    Béguin, Pascal; Nagashima, Kazuaki; Mahalakshmi, Ramasubbu N.; Vigot, Réjan; Matsunaga, Atsuko; Miki, Takafumi; Ng, Mei Yong; Ng, Yu Jin Alvin; Lim, Chiaw Hwee; Tay, Hock Soon; Hwang, Le-Ann; Firsov, Dmitri; Tang, Bor Luen; Inagaki, Nobuya; Mori, Yasuo; Seino, Susumu

    2014-01-01

    Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca2+-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca2+ overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain–binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca2+ channel activity at the plasma membrane, resulting in the inhibition of Ca2+-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity. PMID:24751537

  10. BARP suppresses voltage-gated calcium channel activity and Ca2+-evoked exocytosis.

    PubMed

    Béguin, Pascal; Nagashima, Kazuaki; Mahalakshmi, Ramasubbu N; Vigot, Réjan; Matsunaga, Atsuko; Miki, Takafumi; Ng, Mei Yong; Ng, Yu Jin Alvin; Lim, Chiaw Hwee; Tay, Hock Soon; Hwang, Le-Ann; Firsov, Dmitri; Tang, Bor Luen; Inagaki, Nobuya; Mori, Yasuo; Seino, Susumu; Launey, Thomas; Hunziker, Walter

    2014-04-28

    Voltage-gated calcium channels (VGCCs) are key regulators of cell signaling and Ca(2+)-dependent release of neurotransmitters and hormones. Understanding the mechanisms that inactivate VGCCs to prevent intracellular Ca(2+) overload and govern their specific subcellular localization is of critical importance. We report the identification and functional characterization of VGCC β-anchoring and -regulatory protein (BARP), a previously uncharacterized integral membrane glycoprotein expressed in neuroendocrine cells and neurons. BARP interacts via two cytosolic domains (I and II) with all Cavβ subunit isoforms, affecting their subcellular localization and suppressing VGCC activity. Domain I interacts at the α1 interaction domain-binding pocket in Cavβ and interferes with the association between Cavβ and Cavα1. In the absence of domain I binding, BARP can form a ternary complex with Cavα1 and Cavβ via domain II. BARP does not affect cell surface expression of Cavα1 but inhibits Ca(2+) channel activity at the plasma membrane, resulting in the inhibition of Ca(2+)-evoked exocytosis. Thus, BARP can modulate the localization of Cavβ and its association with the Cavα1 subunit to negatively regulate VGCC activity.

  11. Calcineurin enhances L-type Ca(2+) channel activity in hippocampal neurons: increased effect with age in culture.

    PubMed

    Norris, C M; Blalock, E M; Chen, K-C; Porter, N M; Landfield, P W

    2002-01-01

    The Ca(2+)/calmodulin-dependent protein phosphatase, calcineurin, modulates a number of key Ca(2+) signaling pathways in neurons, and has been implicated in Ca(2+)-dependent negative feedback inactivation of N-methyl-D-aspartate receptors and voltage-sensitive Ca(2+) channels. In contrast, we report here that three mechanistically disparate calcineurin inhibitors, FK-506, cyclosporin A, and the calcineurin autoinhibitory peptide, inhibited high-voltage-activated Ca(2+) channel currents by up to 40% in cultured hippocampal neurons, suggesting that calcineurin acts to enhance Ca(2+) currents. This effect occurred with Ba(2+) or Ca(2+) as charge carrier, and with or without intracellular Ca(2+) buffered by EGTA. Ca(2+)-dependent inactivation of Ca(2+) channels was not affected by FK-506. The immunosuppressant, rapamycin, and the protein phosphatase 1/2A inhibitor, okadaic acid, did not decrease Ca(2+) channel current, showing specificity for effects on calcineurin. Blockade of L-type Ca(2+) channels with nimodipine fully negated the effect of FK-506 on Ca(2+) channel current, while blockade of N-, and P-/Q-type Ca(2+) channels enhanced FK-506-mediated inhibition of the remaining L-type-enriched current. FK-506 also inhibited substantially more Ca(2+) channel current in 4-week-old vs. 2-week-old cultures, an effect paralleled by an increase in calcineurin A mRNA levels. These studies provide the first evidence that calcineurin selectively enhances L-type Ca(2+) channel activity in neurons. Moreover, this action appears to be increased concomitantly with the well-characterized increase in L-type Ca(2+) channel availability in hippocampal neurons with age-in-culture. PMID:11958864

  12. Substituted N-(biphenyl-4'-yl)methyl (R)-2-acetamido-3-methoxypropionamides: potent anticonvulsants that affect frequency (use) dependence and slow inactivation of sodium channels.

    PubMed

    Lee, Hyosung; Park, Ki Duk; Torregrosa, Robert; Yang, Xiao-Fang; Dustrude, Erik T; Wang, Yuying; Wilson, Sarah M; Barbosa, Cindy; Xiao, Yucheng; Cummins, Theodore R; Khanna, Rajesh; Kohn, Harold

    2014-07-24

    We prepared 13 derivatives of N-(biphenyl-4'-yl)methyl (R)-2-acetamido-3-methoxypropionamide that differed in type and placement of a R-substituent in the terminal aryl unit. We demonstrated that the R-substituent impacted the compound's whole animal and cellular pharmacological activities. In rodents, select compounds exhibited excellent anticonvulsant activities and protective indices (PI=TD50/ED50) that compared favorably with clinical antiseizure drugs. Compounds with a polar, aprotic R-substituent potently promoted Na+ channel slow inactivation and displayed frequency (use) inhibition of Na+ currents at low micromolar concentrations. The possible advantage of affecting these two pathways to decrease neurological hyperexcitability is discussed.

  13. Acute exposure of methylglyoxal leads to activation of KATP channels expressed in HEK293 cells

    PubMed Central

    Yang, Yang; Konduru, Anuhya S; Cui, Ningren; Yu, Lei; Trower, Timothy C; Shi, Weiwei; Shi, Yun; Jiang, Chun

    2014-01-01

    Aim: Highly reactive carbonyl methylglyoxal (MGO) is one of the metabolites excessively produced in diabetes. We have showed that prolonged exposure of vascular smooth muscle cells to MGO leads to instability of the mRNA encoding ATP-sensitive potassium (KATP) channel. In the present study we investigated the effects of MGO on the activity of KATP channels. Methods: Kir6.1/ SUR2B, Kir6.2/SUR2B or Kir6.2Δ36 (a truncated Kir6.2 isoform) alone was expressed in HEK293 cells. Whole-cell currents were recorded in the cells with an Axopatch 200B amplifier. Macroscopic currents and single-channel currents were recorded in giant inside-out patches and normal inside-out patches, respectively. Data were analyzed using Clampfit 9 software. Results: The basal activity of Kir6.1/SUR2B channels was low. The specific KATP channel opener pinacidil (10 μmol/L) could fully activate Kir6.1/SUR2B channels, which was inhibited by the specific KATP channel blocker glibenclamide (10 μmol/L). MGO (0.1-10 mmol/L) dose-dependently activated Kir6.1/SUR2B channels with an EC50 of 1.7 mmol/L. The activation of Kir6.1/SUR2B channels by MGO was reversible upon washout, and could be inhibited completely by glibenclamide. Kir6.2Δ36 channels expressed in HEK293 cells could open automatically, and the channel activity was enhanced in the presence of MGO (3 mmol/L). Single channel recordings showed that MGO (3 mmol/L) markedly increased the open probability of Kir6.1/SUR2B channels, leaving the channel conductance unaltered. Conclusion: Acute application of MGO activates KATP channels through direct, non-covalent and reversible interactions with the Kir6 subunits. PMID:24122011

  14. Keeping active channels in their place: membrane phosphoinositides regulate TRPM channel activity in a compartment-selective manner.

    PubMed

    Braun, Andrew P

    2012-01-01

    We have long appreciated that the controlled movement of ions and solutes across the cell surface or plasma membrane affects every aspect of cell function, ranging from membrane excitability to metabolism to secretion, and is also critical for the long-term maintenance of cell viability. Studies examining these physiological transport processes have revealed a vast array of ion channels, transporters and ATPase-driven pumps that underlie these transmembrane ionic movements and how acquired or genetic disruption of these processes are linked to disease. More recently, it has become evident that the ongoing function of intracellular organelles and subcellular compartments also depends heavily on the controlled movement of ions to establish distinct pH or ionic environments. However, limited experimental access to these subcellular domains/structures has hampered scientific progress in this area, due in large part to the difficulty of applying proven functional assays, such as patch clamp and radiotracer methodologies, to these specialized membrane locations. Using both functional and immune-labeling assays, we now know that the types and complement of channels, transporters and pumps located within intracellular membranes and organelles often differ from those present on the plasma membrane. Moreover, it appears that this differential distribution is due to the presence of discrete tags/signals present within these transport proteins that dictate their sorting/trafficking to spatially discrete membrane compartments, where they may also interact with scaffolding proteins that help maintain their localization. Such targeting signals may thus operate in a manner analogous to the way a postal code is used to direct the delivery of a letter. PMID:23151432

  15. Recording Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Currents (Ih) in Neurons.

    PubMed

    Shah, Mala M

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are voltage-gated ion channels that play a crucial role in many physiological processes such as memory formation and spatial navigation. Alterations in expression and function of HCN channels have also been associated with multiple disorders including epilepsy, neuropathic pain, and anxiety/depression. Interestingly, neuronal HCN currents (Ih) have diverse biophysical properties in different neurons. This is likely to be in part caused by the heterogeneity of the HCN subunits expressed in neurons. This variation in biophysical characteristics is likely to influence how Ih affects neuronal activity. Thus, it is important to record Ih directly from individual neurons. This protocol describes voltage-clamp methods that can be used to record neuronal Ih under whole-cell voltage-clamp conditions, in cell-attached mode, or with outside-out patches. The information obtained using this approach can be used in combination with other techniques such as computational modeling to determine the significance of Ih for neuronal function. PMID:27371600

  16. Identification and Characterization of Stretch-Activated Ion Channels in Pollen Protoplasts1

    PubMed Central

    Dutta, Rajiv; Robinson, Kenneth R.

    2004-01-01

    Pollen tube growth requires a Ca2+ gradient, with elevated levels of cytosolic Ca2+ at the growing tip. This gradient's magnitude oscillates with growth oscillation but is always maintained. Ca2+ influx into the growing tip is necessary, and its magnitude also oscillates with growth. It has been widely assumed that stretch-activated Ca2+ channels underlie this influx, but such channels have never been reported in either pollen grains or pollen tubes. We have identified and characterized stretch-activated Ca2+ channels from Lilium longiflorum pollen grain and tube tip protoplasts. The channels were localized to a small region of the grain protoplasts associated with the site of tube germination. In addition, we find a stretch-activated K+ channel as well as a spontaneous K+ channel distributed over the entire grain surface, but neither was present at the germination site or at the tip. Neither stretch-activated channel was detected in the grain protoplasts unless the grains were left in germination medium for at least 1 h before protoplast preparation. The stretch-activated channels were inhibited by a spider venom that is known to block stretch-activated channels in animal cells, but the spontaneous channel was unaffected by the venom. The venom also stopped pollen tube germination and elongation and blocked Ca2+ entry into the growing tip, suggesting that channel function is necessary for growth. PMID:15247410

  17. Regulation of epithelial sodium channels in urokinase plasminogen activator deficiency

    PubMed Central

    Chen, Zaixing; Zhao, Runzhen; Zhao, Meimi; Liang, Xinrong; Bhattarai, Deepa; Dhiman, Rohan; Shetty, Sreerama; Idell, Steven

    2014-01-01

    Epithelial sodium channels (ENaC) govern transepithelial salt and fluid homeostasis. ENaC contributes to polarization, apoptosis, epithelial-mesenchymal transformation, etc. Fibrinolytic proteases play a crucial role in virtually all of these processes and are elaborated by the airway epithelium. We hypothesized that urokinase-like plasminogen activator (uPA) regulates ENaC function in airway epithelial cells and tested that possibility in primary murine tracheal epithelial cells (MTE). Both basal and cAMP-activated Na+ flow through ENaC were significantly reduced in monolayers of uPA-deficient cells. The reduction in ENaC activity was further confirmed in basolateral membrane-permeabilized cells. A decrease in the Na+-K+-ATPase activity in the basolateral membrane could contribute to the attenuation of ENaC function in intact monolayer cells. Dysfunctional fluid resolution was seen in uPA-disrupted cells. Administration of uPA and plasmin partially restores ENaC activity and fluid reabsorption by MTEs. ERK1/2, but not Akt, phosphorylation was observed in the cells and lungs of uPA-deficient mice. On the other hand, cleavage of γ ENaC is significantly depressed in the lungs of uPA knockout mice vs. those of wild-type controls. Expression of caspase 8, however, did not differ between wild-type and uPA−/− mice. In addition, uPA deficiency did not alter transepithelial resistance. Taken together, the mechanisms for the regulation of ENaC by uPA in MTEs include augmentation of Na+-K+-ATPase, proteolysis, and restriction of ERK1/2 phosphorylation. We demonstrate for the first time that ENaC may serve as a downstream signaling target by which uPA controls the biophysical profiles of airway fluid and epithelial function. PMID:25172911

  18. Trapping channel block of NMDA-activated responses by amantadine and memantine.

    PubMed

    Blanpied, T A; Boeckman, F A; Aizenman, E; Johnson, J W

    1997-01-01

    We investigated the mechanisms by which the antiparkinsonian and neuroprotective agents amantadine and memantine inhibit responses to N-methyl-D-aspartic acid (NMDA). Whole cell recordings were performed using cultured rat cortical neurons or Chinese hamster ovary (CHO) cells expressing NMDA receptors. Both amantadine and memantine blocked NMDA-activated channels by binding to a site at which they could be trapped after channel closure and agonist unbinding. For neuronal receptors, the IC50s of amantadine and memantine at -67 mV were 39 and 1.4 microM, respectively. When memantine and agonists were washed off after steady-state block, one-sixth of the blocked channels released rather than trapped the blocker; memantine exhibited "partial trapping." Thus memantine appears to have a lesser tendency to be trapped than do phencyclidine or (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[1,d]cyclihepten-5,1 0-imine (MK-801). We next investigated mechanisms that might underlie partial trapping. Memantine blocked and could be trapped by recombinant NMDA receptors composed of NR1 and either NR2A or NR2B subunits. In these receptors, as in the native receptors, the drug was released from one-sixth of blocked channels rather than being trapped in all of them. The partial trapping we observed therefore was not due to variability in the action of memantine on a heterogeneous population of NMDA receptors in cultured cortical neurons. Amantadine and memantine each noncompetitively inhibited NMDA-activated responses by binding at a second site with roughly 100-fold lower affinity, but this form of inhibition had little effect on the extent to which memantine was trapped. A simple kinetic model of blocker action was used to demonstrate that partial trapping can result if the presence of memantine in the channel affects the gating transitions or agonist affinity of the NMDA receptor. Partial trapping guarantees that during synaptic communication in the presence of blocker, some

  19. The Sodium-Activated Potassium Channel Slack Is Required for Optimal Cognitive Flexibility in Mice

    ERIC Educational Resources Information Center

    Bausch, Anne E.; Dieter, Rebekka; Nann, Yvette; Hausmann, Mario; Meyerdierks, Nora; Kaczmarek, Leonard K.; Ruth, Peter; Lukowski, Robert

    2015-01-01

    "Kcnt1" encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual…

  20. Severe acute respiratory syndrome coronavirus envelope protein ion channel activity promotes virus fitness and pathogenesis.

    PubMed

    Nieto-Torres, Jose L; DeDiego, Marta L; Verdiá-Báguena, Carmina; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Fernandez-Delgado, Raul; Castaño-Rodriguez, Carlos; Alcaraz, Antonio; Torres, Jaume; Aguilella, Vicente M; Enjuanes, Luis

    2014-05-01

    Deletion of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) envelope (E) gene attenuates the virus. E gene encodes a small multifunctional protein that possesses ion channel (IC) activity, an important function in virus-host interaction. To test the contribution of E protein IC activity in virus pathogenesis, two recombinant mouse-adapted SARS-CoVs, each containing one single amino acid mutation that suppressed ion conductivity, were engineered. After serial infections, mutant viruses, in general, incorporated compensatory mutations within E gene that rendered active ion channels. Furthermore, IC activity conferred better fitness in competition assays, suggesting that ion conductivity represents an advantage for the virus. Interestingly, mice infected with viruses displaying E protein IC activity, either with the wild-type E protein sequence or with the revertants that restored ion transport, rapidly lost weight and died. In contrast, mice infected with mutants lacking IC activity, which did not incorporate mutations within E gene during the experiment, recovered from disease and most survived. Knocking down E protein IC activity did not significantly affect virus growth in infected mice but decreased edema accumulation, the major determinant of acute respiratory distress syndrome (ARDS) leading to death. Reduced edema correlated with lung epithelia integrity and proper localization of Na+/K+ ATPase, which participates in edema resolution. Levels of inflammasome-activated IL-1β were reduced in the lung airways of the animals infected with viruses lacking E protein IC activity, indicating that E protein IC function is required for inflammasome activation. Reduction of IL-1β was accompanied by diminished amounts of TNF and IL-6 in the absence of E protein ion conductivity. All these key cytokines promote the progression of lung damage and ARDS pathology. In conclusion, E protein IC activity represents a new determinant for SARS-CoV virulence. PMID:24788150

  1. Delineation of the clotrimazole/TRAM-34 binding site on the intermediate conductance calcium-activated potassium channel, IKCa1.

    PubMed

    Wulff, H; Gutman, G A; Cahalan, M D; Chandy, K G

    2001-08-24

    Selective and potent triarylmethane blockers of the intermediate conductance calcium-activated potassium channel, IKCa1, have therapeutic use in sickle cell disease and secretory diarrhea and as immunosuppressants. Clotrimazole, a membrane-permeant triarylmethane, blocked IKCa1 with equal affinity when applied externally or internally, whereas a membrane-impermeant derivative TRAM-30 blocked the channel only when applied to the cytoplasmic side, indicating an internal drug-binding site. Introduction of the S5-P-S6 region of the triarylmethane-insensitive small conductance calcium-activated potassium channel SKCa3 into IKCa1 rendered the channel resistant to triarylmethanes. Replacement of Thr(250) or Val(275) in IKCa1 with the corresponding SKCa3 residues selectively abolished triarylmethane sensitivity without affecting the affinity of the channel for tetraethylammonium, charybdotoxin, and nifedipine. Introduction of these two residues into SKCa3 rendered the channel sensitive to triarylmethanes. In a molecular model of IKCa1, Thr(250) and Val(275) line a water-filled cavity just below the selectivity filter. Structure-activity studies suggest that the side chain methyl groups of Thr(250) and Val(275) may lock the triarylmethanes in place via hydrophobic interactions with the pi-electron clouds of the phenyl rings. The heterocyclic moiety may project into the selectivity filter and obstruct the ion-conducting pathway from the inside.

  2. Forcing Open TRP channels: mechanical gating as a unifying activation mechanism

    PubMed Central

    Liu, Chao; Montell, Craig

    2015-01-01

    Transient receptor potential (TRP) proteins are cation channels that comprise a superfamily of molecular sensors that enable animals to detect a wide variety of environmental stimuli. This versatility enables vertebrate and invertebrate TRP channels to function in a diversity of senses, ranging from vision to taste, smell, touch, hearing, proprioception and thermosensation. Moreover, many individual TRP channels are activated through a surprising range of sensory stimuli. The multitasking nature of TRP channels raises the question as to whether seemingly disparate activators gate TRPs through common strategies. In this regard, a recent major advance is the discovery that a phospholipase C (PLC)-dependent signaling cascade activates the TRP channels in Drosophila photoreceptor cells through generation of force in the lipid-bilayer. The premise of this review is that mechanical force is a unifying, common strategy for gating TRP channels. In addition to several TRP channels that function in mechanosensation and are gated by force applied to the cells, changes in temperature and in the concentration of lipophilic second messengers through stimulation of signaling cascades, cause architectural modifications of the cell membrane, which in turn activate TRP channels through mechanical force. Consequently, TRPs are capable of functioning as stretch-activated channels, even in cases in which the stimuli that initiate the signaling cascades are not mechanical. We propose that most TRPs are actually mechanosensitive channels (MSCs), which undergo conformational changes in response to tension imposed on the lipid bilayer, resulting in channel gating. PMID:25998730

  3. Activation and deactivation of vibronic channels in intact phycocyanin rods

    NASA Astrophysics Data System (ADS)

    Nganou, C.; David, L.; Meinke, R.; Adir, N.; Maultzsch, J.; Mkandawire, M.; Pouhè, D.; Thomsen, C.

    2014-02-01

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm-1 is assigned to the C-C stretching vibration while the mode at 454 cm-1 is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm-1 does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm-1 rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration.

  4. Activation and deactivation of vibronic channels in intact phycocyanin rods.

    PubMed

    Nganou, C; David, L; Meinke, R; Adir, N; Maultzsch, J; Mkandawire, M; Pouhè, D; Thomsen, C

    2014-02-28

    We investigated the excitation modes of the light-harvesting protein phycocyanin (PC) from Thermosynechococcus vulcanus in the crystalline state using UV and near-infrared Raman spectroscopy. The spectra revealed the absence of a hydrogen out-of-plane wagging (HOOP) mode in the PC trimer, which suggests that the HOOP mode is activated in the intact PC rod, while it is not active in the PC trimer. Furthermore, in the PC trimer an intense mode at 984 cm(-1) is assigned to the C-C stretching vibration while the mode at 454 cm(-1) is likely due to ethyl group torsion. In contrast, in the similar chromophore phytochromobilin the C5,10,15-D wag mode at 622 cm(-1) does not come from a downshift of the HOOP. Additionally, the absence of modes between 1200 and 1300 cm(-1) rules out functional monomerization. A correlation between phycocyanobilin (PCB) and phycoerythrobilin (PEB) suggests that the PCB cofactors of the PC trimer appear in a conformation similar to that of PEB. The conformation of the PC rod is consistent with that of the allophycocyanin (APC) trimer, and thus excitonic flow is facilitated between these two independent light-harvesting compounds. This excitonic flow from the PC rod to APC appears to be modulated by the vibration channels during HOOP wagging, C = C stretching, and the N-H rocking in-plan vibration. PMID:24588198

  5. Functional reconstitution and channel activity measurements of purified wildtype and mutant CFTR protein.

    PubMed

    Eckford, Paul D W; Li, Canhui; Bear, Christine E

    2015-03-09

    The Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) is a unique channel-forming member of the ATP Binding Cassette (ABC) superfamily of transporters. The phosphorylation and nucleotide dependent chloride channel activity of CFTR has been frequently studied in whole cell systems and as single channels in excised membrane patches. Many Cystic Fibrosis-causing mutations have been shown to alter this activity. While a small number of purification protocols have been published, a fast reconstitution method that retains channel activity and a suitable method for studying population channel activity in a purified system have been lacking. Here rapid methods are described for purification and functional reconstitution of the full-length CFTR protein into proteoliposomes of defined lipid composition that retains activity as a regulated halide channel. This reconstitution method together with a novel flux-based assay of channel activity is a suitable system for studying the population channel properties of wild type CFTR and the disease-causing mutants F508del- and G551D-CFTR. Specifically, the method has utility in studying the direct effects of phosphorylation, nucleotides and small molecules such as potentiators and inhibitors on CFTR channel activity. The methods are also amenable to the study of other membrane channels/transporters for anionic substrates.

  6. GlialCAM, a CLC-2 Cl- Channel Subunit, Activates the Slow Gate of CLC Chloride Channels

    PubMed Central

    Jeworutzki, Elena; Lagostena, Laura; Elorza-Vidal, Xabier; López-Hernández, Tania; Estévez, Raúl; Pusch, Michael

    2014-01-01

    GlialCAM, a glial cell adhesion molecule mutated in megalencephalic leukoencephalopathy with subcortical cysts, targets the CLC-2 Cl- channel to cell contacts in glia and activates CLC-2 currents in vitro and in vivo. We found that GlialCAM clusters all CLC channels at cell contacts in vitro and thus studied GlialCAM interaction with CLC channels to investigate the mechanism of functional activation. GlialCAM slowed deactivation kinetics of CLC-Ka/barttin channels and increased CLC-0 currents opening the common gate and slowing its deactivation. No functional effect was seen for common gate deficient CLC-0 mutants. Similarly, GlialCAM targets the common gate deficient CLC-2 mutant E211V/H816A to cell contacts, without altering its function. Thus, GlialCAM is able to interact with all CLC channels tested, targeting them to cell junctions and activating them by stabilizing the open configuration of the common gate. These results are important to better understand the physiological role of GlialCAM/CLC-2 interaction. PMID:25185546

  7. Chloride Channel 3 Channels in the Activation and Migration of Human Blood Eosinophils in Allergic Asthma

    PubMed Central

    Gaurav, Rohit; Bewtra, Againdra K.

    2015-01-01

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is responsible for respiratory burst in immune cells. Chloride channel 3 (CLC3) has been linked to the respiratory burst in eosinophils and neutrophils. The effect of cytokines and the involvement of CLC3 in the regulation of NADPH-dependent oxidative stress and on cytokine-mediated migration of eosinophils are not known. Human peripheral blood eosinophils were isolated from healthy individuals and from individuals with asthma by negative selection. Real-time PCR was used to detect the expression of NADPH oxidases in eosinophils. Intracellular reactive oxygen species (ROS) measurement was done with flow cytometry. Superoxide generation was measured with transforming growth factor (TGF)-β, eotaxin, and CLC3 blockers. CLC3 dependence of eosinophils in TGF-β– and eotaxin-induced migration was also examined. The messenger RNA (mRNA) transcripts of NADPH oxidase (NOX) 2, dual oxidase (DUOX) 1, and DUOX2 were detected in blood eosinophils, with very low expression of NOX1, NOX3, and NOX5 and no NOX4 mRNA. The level of NOX2 mRNA transcripts increased with disease severity in the eosinophils of subjects with asthma compared with healthy nonatopic volunteers. Change in granularity and size in eosinophils, but no change in intracellular ROS, was observed with phorbol myristate acetate (PMA). PMA, TGF-β, and eotaxin used the CLC3-dependent pathway to increase superoxide radicals. TGF-β and eotaxin induced CLC3-dependent chemotaxis of eosinophils. These findings support the requirement of CLC3 in the activation and migration of human blood eosinophils and may provide a potential novel therapeutic target to regulate eosinophil hyperactivity in allergic airway inflammation in asthma. PMID:25514499

  8. In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing.

    PubMed

    Nicolas, Jonathan; Hendriksen, Peter J M; de Haan, Laura H J; Koning, Rosella; Rietjens, Ivonne M C M; Bovee, Toine F H

    2015-03-01

    The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on either the Na(+), K(+), or Ca(2+) channels or the Na(+)/K(+) ATP-ase pump, on the beating was assessed. Diphenhydramine, veratridine, isradipine, verapamil and ouabain induced specific beating arrests that were reversible and none of the concentrations tested induced cytotoxicity. Three K(+) channel blockers, amiodarone, clofilium and sematilide, and the Na(+)/K(+) ATPase pump inhibitor digoxin had no specific effect on the beating. In addition, two marine neurotoxins i.e. saxitoxin and tetrodotoxin elicited specific beating arrests in cardiomyocytes. Comparison of the results obtained with cardiomyocytes to those obtained with the neuroblastoma neuro-2a assay revealed that the cardiomyocytes were generally somewhat more sensitive for the model compounds affecting Na(+) and Ca(2+) channels, but less sensitive for the compounds affecting K(+) channels. The stem cell-derived cardiomyocytes were not as sensitive as the neuroblastoma neuro-2a assay for saxitoxin and tetrodotoxin. It is concluded that the murine stem cell-derived beating cardiomyocytes provide a sensitive model for detection of specific neurotoxins and that the neuroblastoma neuro-2a assay may be a more promising cell-based assay for the screening of marine biotoxins.

  9. How Will Climate Change Affect Channel Morphology and Salmonid Habitat in Mountain Basins?

    NASA Astrophysics Data System (ADS)

    Buffington, J. M.; Goode, J.

    2010-12-01

    Riverine habitat for salmonids is intimately linked to channel morphology and fluvial processes (channel hydraulics, sediment transport and scour regime) which are, in turn, controlled by watershed hydrology and erosional processes that input sediment to the fluvial system. Climate change has the potential to alter the timing, magnitude, and style of sediment and water inputs to mountain rivers. Channel response to these changes may range from small-scale adjustments of channel characteristics (e.g., width, depth, grain size, scour depth) to larger-scale changes in channel type (e.g., metamorphosis from a pool-riffle channel to a plane-bed morphology). Identifying which parts of the river network will remain relatively stable in response to climate change, and which are likely to cross critical morphologic and scour thresholds is important for predicting effects on salmonid populations. Toward this end, a regime framework is presented for predicting the relative degree of morphologic stability and scour potential in different physiographic settings (different water and sediment regimes). Digital elevation models are used to explore the spatial distribution of these conditions and potential consequences for salmonid habitat across the landscape. Results suggest that the potential for scour and morphologic variability are strongly influenced by hydroclimate; snowmelt channels are relatively stable across floods of different magnitude, while rainfall-dominated channels are more variable and less stable. Transitional changes in hydrologic regime (mixed rain and snow) have the greatest potential for altering geomorphic conditions and salmonid habitat. However, the vulnerability of salmonids to climate-driven changes in scour regime depend on the species and its life history (i.e., depth to which eggs are buried and timing of incubation relative to scouring flows). Overall, the regime approach provides a useful first-order assessment of channel condition and response

  10. Inhibitory effects of Tyrphostin AG-related compounds on oxidative stress-sensitive transient receptor potential channel activation.

    PubMed

    Toda, Takahiro; Yamamoto, Shinichiro; Yonezawa, Ryo; Mori, Yasuo; Shimizu, Shunichi

    2016-09-01

    Some transient receptor potential (TRP) proteins including TRPA1, TPRM2 and TRPV1 are oxidative stress-sensitive Ca(2+)-permeable channels. Ca(2+) signaling via these TRP channels activated by oxidative stress has been implicated in the aggravation of various inflammatory diseases and pain sensation. We recently reported that Tyrphostin AG490 exerted inhibitory effects on H2O2-induced TRPM2 activation by scavenging the hydroxyl radical. In order to identify stronger inhibitors of oxidative stress-sensitive TRP channels than AG490, we examined the inhibitory effects of Tyrphostin AG-related compounds on H2O2-induced TRP channel activation in human embryonic kidney 293 cells expressing TRP channels. AG555 and AG556 blocked the activation of TRPM2 by H2O2 more strongly than AG490. Regarding TRPV1 and TRPA1, none of the three compounds tested affected H2O2-induced TRPV1 activation; however, AG555 and AG556 reduced H2O2-induced TRPA1 activation more than AG490. Thus, we herein identified AG555 and AG556 as new compounds that exert stronger inhibitory effects on H2O2-induced TRPM2 and TRPA1 activation than AG490. Edaravone, a hydroxyl radical scavenger used in the treatment of cerebral hemorrhage and cerebral infarction, did not affect H2O2-induced TRPM2 or TRPA1 activation. AG555 and AG556 may be useful seed compounds as therapeutic agents for several TRP-related diseases associated with oxidative stress. PMID:27238971

  11. Calcium Channel Signaling Complexes with Receptors and Channels.

    PubMed

    Zamponi, Gerald W

    2015-01-01

    Voltage-gated calcium channels are not only mediators of cell signalling events, but also are recipients of signalling inputs from G protein coupled receptors (GPCRs) and their associated second messenger pathways. The coupling of GPCRs to calcium channels is optimized through the formation of receptor-channel complexes. In addition, this provides a mechanism for receptorchannel co-trafficking to and from the plasma membrane. On the other hand, voltage-gated calcium channel activity affects other types of ion channels such as voltage-and calcium-activated potassium channels. Coupling efficiency between these two families of channels is also enhanced through the formation of channel-channel complexes. This review provides a concise overview of the current state of knowledge on the physical interactions between voltage-gated calcium channels and members of the GPCR family, and with other types of ion channels.

  12. Gabapentin activates ROMK1 channels by a protein kinase A (PKA)-dependent mechanism

    PubMed Central

    Lee, C-H; Tsai, T-S; Liou, H-H

    2008-01-01

    Background and purpose: Gabapentin is an effective anticonvulsant. The major physiological function of renal outer medullary potassium (ROMK1) channels is to maintain the resting membrane potential (RMP). We investigated the effect of gabapentin on ROMK1 channels and the mechanism involved. Experimental approach: Xenopus oocytes were injected with mRNA coding for wild-type or mutant ROMK1 channels and giant inside-out patch-clamp recordings were performed. Key results: Gabapentin increased the activity of ROMK1 channels, concentration-dependently and enhanced the activity of wild-type and an intracellular pH (pHi)-gating residue mutant (K80M) channels over a range of pHi. Gabapentin also increased activity of channels mutated at phosphatidylinositol 4,5-bisphosphate (PIP2)-binding sites (R188Q, R217A and K218A). However, gabapentin failed to enhance channel activity in the presence of protein kinase A (PKA) inhibitors and did not activate phosphorylation site mutants (S44A, S219A or S313A), mutants that mimicked the negative charge carried by a phosphate group bound to a serine (S44D, S219D or S313D), or a mutated channel with a positive charge (S219R). These findings show that gabapentin activates ROMK1 channels independently of the pHi and not via a PIP2-dependent pathway. The effects of gabapentin on ROMK1 channels may be due to a PKA-mediated phosphorylation-induced conformational change, but not to charge–charge interactions. Conclusions and implications: ROMK1 channels are the main channels responsible for maintaining the RMP during cellular excitation. Gabapentin increased the activity of ROMK1 channels by a PKA-dependent mechanism, reducing neuronal excitability, and this may play an important role in its antiepileptic effect. PMID:18311184

  13. Disruption of KATP Channel Expression in Skeletal Muscle by Targeted Oligonucleotide Delivery Promotes Activity-linked Thermogenesis

    PubMed Central

    Koganti, Siva Rama Krishna; Zhu, Zhiyong; Subbotina, Ekaterina; Gao, Zhan; Sierra, Ana; Proenza, Manuel; Yang, Liping; Alekseev, Alexey; Hodgson-Zingman, Denice; Zingman, Leonid

    2015-01-01

    Despite the medical, social, and economic impact of obesity, only a few therapeutic options, focused largely on reducing caloric intake, are currently available and these have limited success rates. A major impediment is that any challenge by caloric restriction is counterbalanced by activation of systems that conserve energy to prevent body weight loss. Therefore, targeting energy-conserving mechanisms to promote energy expenditure is an attractive strategy for obesity treatment. Here, in order to suppress muscle energy efficiency, we target sarcolemmal ATP-sensitive potassium (KATP) channels which have previously been shown to be important in maintaining muscle energy economy. Specifically, we employ intramuscular injections of cell-penetrating vivo-morpholinos to prevent translation of the channel pore-forming subunit. This intervention results in significant reduction of KATP channel expression and function in treated areas, without affecting the channel expression in nontargeted tissues. Furthermore, suppression of KATP channel function in a group of hind limb muscles causes a substantial increase in activity-related energy consumption, with little effect on exercise tolerance. These findings establish a proof-of-principle that selective skeletal muscle targeting of sarcolemmal KATP channel function is possible and that this intervention can alter overall bodily energetics without a disabling impact on muscle mechanical function. PMID:25648265

  14. Effects of Active Subsidence Vs. Existing Basin Geometry on Fluviodeltaic Channels and Stratal Architecture

    NASA Astrophysics Data System (ADS)

    Liang, M.; Kim, W.; Passalacqua, P.

    2015-12-01

    Tectonic subsidence and basin topography, both determining the accommodation, are fundamental controls on the basin filling processes. Their effects on the fluvial organization and the resultant subsurface patterns remain difficult to predict due to the lack of understanding about interaction between internal dynamics and external controls. Despite the intensive studies on tectonic steering effects on alluvial architecture, how the self-organization of deltaic channels, especially the distributary channel network, respond to tectonics and basin geometry is mostly unknown. Recently physical experiments and field studies have hinted dramatic differences in fluviodeltaic evolution between ones associated with active differential subsidence and existing basin depth. In this work we designed a series of numerical experiments using a reduced-complexity channel-resolving model for delta formation, and tested over a range of localized subsidence rates and topographic depression in basin geometry. We also used a set of robust delta metrics to analyze: i) shoreline planform asymmetry, ii) channel and lobe geometry, iii) channel network pattern, iv) autogenic timescales, and v) subsurface structure. The modeling results show that given a similar final thickness, active subsidence enhances channel branching with smaller channel sand bodies that are both laterally and vertically connected, whereas existing topographic depression causes more large-scale channel avulsions with larger channel sand bodies. In general, both subsidence and existing basin geometry could steer channels and/or lock channels in place but develop distinct channel patterns and thus stratal architecture.

  15. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    NASA Astrophysics Data System (ADS)

    Reece, Amy E.; Oakey, John

    2016-04-01

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channels of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique's effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits of

  16. Ca(V)1.3-driven SK channel activation regulates pacemaking and spike frequency adaptation in mouse chromaffin cells.

    PubMed

    Vandael, David H F; Zuccotti, Annalisa; Striessnig, Joerg; Carbone, Emilio

    2012-11-14

    Mouse chromaffin cells (MCCs) fire spontaneous action potentials (APs) at rest. Ca(v)1.3 L-type calcium channels sustain the pacemaker current, and their loss results in depolarized resting potentials (V(rest)), spike broadening, and remarkable switches into depolarization block after BayK 8644 application. A functional coupling between Ca(v)1.3 and BK channels has been reported but cannot fully account for the aforementioned observations. Here, using Ca(v)1.3(-/-) mice, we investigated the role of Ca(v)1.3 on SK channel activation and how this functional coupling affects the firing patterns induced by sustained current injections. MCCs express SK1-3 channels whose tonic currents are responsible for the slow irregular firing observed at rest. Percentage of frequency increase induced by apamin was found inversely correlated to basal firing frequency. Upon stimulation, MCCs build-up Ca(v)1.3-dependent SK currents during the interspike intervals that lead to a notable degree of spike frequency adaptation (SFA). The major contribution of Ca(v)1.3 to the subthreshold Ca(2+) charge during an AP-train rather than a specific molecular coupling to SK channels accounts for the reduced SFA of Ca(v)1.3(-/-) MCCs. Low adaptation ratios due to reduced SK activation associated with Ca(v)1.3 deficiency prevent the efficient recovery of Na(V) channels from inactivation. This promotes a rapid decline of AP amplitudes and facilitates early onset of depolarization block following prolonged stimulation. Thus, besides serving as pacemaker, Ca(v)1.3 slows down MCC firing by activating SK channels that maintain Na(V) channel availability high enough to preserve stable AP waveforms, even upon high-frequency stimulation of chromaffin cells during stress responses. PMID:23152617

  17. A structural view of ligand-dependent activation in thermoTRP channels

    PubMed Central

    Steinberg, Ximena; Lespay-Rebolledo, Carolyne; Brauchi, Sebastian

    2014-01-01

    Transient Receptor Potential (TRP) proteins are a large family of ion channels, grouped into seven sub-families. Although great advances have been made regarding the activation and modulation of TRP channel activity, detailed molecular mechanisms governing TRP channel gating are still needed. Sensitive to electric, chemical, mechanical, and thermal cues, TRP channels are tightly associated with the detection and integration of sensory input, emerging as a model to study the polymodal activation of ion channel proteins. Among TRP channels, the temperature-activated kind constitute a subgroup by itself, formed by Vanilloid receptors 1–4, Melastatin receptors 2, 4, 5, and 8, TRPC5, and TRPA1. Some of the so-called “thermoTRP” channels participate in the detection of noxious stimuli making them an interesting pharmacological target for the treatment of pain. However, the poor specificity of the compounds available in the market represents an important obstacle to overcome. Understanding the molecular mechanics underlying ligand-dependent modulation of TRP channels may help with the rational design of novel synthetic analgesics. The present review focuses on the structural basis of ligand-dependent activation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection of ligand-binding sites within TRPV1, PIP2-dependent modulation of TRP channels, and the structure of natural and synthetic ligands. PMID:24847275

  18. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    PubMed Central

    Zhao, Xiaoqi; Gu, Tianxiang

    2016-01-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP) or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions. PMID:27556324

  19. Functional link between muscarinic receptors and large-conductance Ca2+ -activated K+ channels in freshly isolated human detrusor smooth muscle cells.

    PubMed

    Parajuli, Shankar P; Hristov, Kiril L; Cheng, Qiuping; Malysz, John; Rovner, Eric S; Petkov, Georgi V

    2015-04-01

    Activation of muscarinic acetylcholine receptors (mAChRs) constitutes the primary mechanism for enhancing excitability and contractility of human detrusor smooth muscle (DSM). Since the large-conductance Ca(2+)-activated K(+) (KCa1.1) channels are key regulators of human DSM function, we investigated whether mAChR activation increases human DSM excitability by inhibiting KCa1.1 channels. We used the mAChR agonist, carbachol, to determine the changes in KCa1.1 channel activity upon mAChR activation in freshly isolated human DSM cells obtained from open bladder surgeries using the perforated whole cell and single KCa1.1 channel patch-clamp recordings. Human DSM cells were collected from 29 patients (23 males and 6 females, average age of 65.9 ± 1.5 years). Carbachol inhibited the amplitude and frequency of KCa1.1 channel-mediated spontaneous transient outward currents and spontaneous transient hyperpolarizations, which are triggered by the release of Ca(2+) from ryanodine receptors. Carbachol also caused membrane potential depolarization, which was not observed in the presence of iberiotoxin, a KCa1.1 channel inhibitor, indicating the critical role of the KCa1.1 channels. The potential direct carbachol effects on KCa1.1 channels were examined under conditions of removing the major cellular Ca(2+) sources for KCa1.1 channel activation with pharmacological inhibitors (thapsigargin, ryanodine, and nifedipine). In the presence of these inhibitors, carbachol did not affect the single KCa1.1 channel open probability and mean KCa1.1 channel conductance (cell-attached configuration) or depolarization-induced whole cell steady-state KCa1.1 currents. The data support the concept that mAChR activation triggers indirect functional KCa1.1 channel inhibition mediated by intracellular Ca(2+), thus increasing the excitability in human DSM cells.

  20. X-ray irradiation activates K+ channels via H2O2 signaling.

    PubMed

    Gibhardt, Christine S; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  1. X-ray irradiation activates K+ channels via H2O2 signaling

    PubMed Central

    Gibhardt, Christine S.; Roth, Bastian; Schroeder, Indra; Fuck, Sebastian; Becker, Patrick; Jakob, Burkhard; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-01-01

    Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels. PMID:26350345

  2. MEG brain activities reflecting affection for visual food stimuli.

    PubMed

    Kuriki, Shinya; Miyamura, Takahiro; Uchikawa, Yoshinori

    2010-01-01

    This study aimed to explore the modulation of alpha rhythm in response to food pictures with distinct affection values. We examined the method to discriminate subject's state, i.e., whether he/she liked the article of food or not, from MEG signals detected over the head. Pictures of familiar foods were used as affective stimuli, while those pictures with complementary color phase were used as non-affective stimuli. Alpha band signals in a narrow frequency window around the spectral peak of individual subjects were wavelet analyzed and phase-locked component to the stimulus onset was obtained as a complex number. The amplitude of the phase-locked component was averaged during 0-1 s after stimulus onset for 30 epochs in a measurement session and across 76 channels of MEG sensor. In statistical test of individual subjects, significant difference was found in the real part of the averaged phase-locked amplitude between the normal-color and reverse-color pictures. These results suggest that affective information processing of food pictures is reflected in the synchronized component of narrow band alpha rhythm. PMID:21096510

  3. Designing Effective Persuasive Systems Utilizing the Power of Entanglement: Communication Channel, Strategy & Affect

    ERIC Educational Resources Information Center

    Li, Haiqing

    2010-01-01

    With rapid advancements in information and communication technologies, computer-mediated communication channels such as email, web, mobile smart-phones with SMS, social networking websites (Facebook), multimedia websites, and OEM devices provide users with multiple technology choices to seek information. However, no study has compared the…

  4. Classical-quantum arbitrarily varying wiretap channel: Ahlswede dichotomy, positivity, resources, super-activation

    NASA Astrophysics Data System (ADS)

    Boche, Holger; Cai, Minglai; Deppe, Christian; Nötzel, Janis

    2016-08-01

    We establish the Ahlswede dichotomy for arbitrarily varying classical-quantum wiretap channels, i.e., either the deterministic secrecy capacity of the channel is zero, or it equals its randomness-assisted secrecy capacity. We analyze the secrecy capacity of these channels when the sender and the receiver use various resources. It turns out that randomness, common randomness, and correlation as resources are very helpful for achieving a positive secrecy capacity. We prove the phenomenon "super-activation" for arbitrarily varying classical-quantum wiretap channels, i.e., two channels, both with zero deterministic secrecy capacity, if used together allow perfect secure transmission.

  5. Arecoline inhibits intermediate-conductance calcium-activated potassium channels in human glioblastoma cell lines.

    PubMed

    So, Edmund Cheung; Huang, Yan-Ming; Hsing, Chung-Hsi; Liao, Yu-Kai; Wu, Sheng-Nan

    2015-07-01

    Arecoline (ARE) is an alkaloid-type natural product from areca nut. This compound has numerous pharmacological and toxicological effects. Whether this agent interacts with ion channels to perturb functional activity of cells remains unknown. The effects of ARE on ionic currents were studied in glioma cell lines (U373 and U87MG) using patch-clamp technique. Like TRAM-34(1-[(2-chlorophenyl)-diphenylmethyl]pyrazole), ARE suppressed the amplitude of whole-cell voltage-gated K(+) currents in U373 cells elicited by a ramp voltage clamp. In cell-attached configuration, ARE did not modify the single-channel conductance of intermediate-conductance Ca(2+)-activated K(+) (IKCa) channels; however, it did reduce channel activity. Its inhibition of IKCa channels was accompanied by a significant lengthening in the slow component of mean closed time of IKCa channels. Based on minimal kinetic scheme, the dissociation constant (KD) required for ARE-mediated prolongation of mean closed time was 11.2µM. ARE-induced inhibition of IKCa channels was voltage-dependent. Inability of ARE to perturb the activity of large-conductance Ca(2+)-activated K(+) (BKCa) channels was seen. Under current-clamp recordings, ARE depolarized the membrane of U373 cells and DCEBIO reversed ARE-induced depolarization. Similarly, ARE suppressed IKCa-channel activities in oral keratinocytes. This study provides the evidence that ARE block IKCa channels in a concentration, voltage and state-dependent manner. ARE-induced block of IKCa channels is unrelated to the binding of muscarinic receptors. The effects of ARE on these channels may partially be responsible for the underlying cellular mechanisms by which it influences the functional activities of glioma cells or oral keratinocytes, if similar findings occur in vivo.

  6. Investigating neuronal activity by SPYCODE multi-channel data analyzer.

    PubMed

    Bologna, Luca Leonardo; Pasquale, Valentina; Garofalo, Matteo; Gandolfo, Mauro; Baljon, Pieter Laurens; Maccione, Alessandro; Martinoia, Sergio; Chiappalone, Michela

    2010-08-01

    Multi-channel acquisition from neuronal networks, either in vivo or in vitro, is becoming a standard in modern neuroscience in order to infer how cell assemblies communicate. In spite of the large diffusion of micro-electrode-array-based systems, researchers usually find it difficult to manage the huge quantity of data routinely recorded during the experimental sessions. In fact, many of the available open-source toolboxes still lack two fundamental requirements for treating multi-channel recordings: (i) a rich repertoire of algorithms for extracting information both at a single channel and at the whole network level; (ii) the capability of autonomously repeating the same set of computational operations to 'multiple' recording streams (also from different experiments) and without a manual intervention. The software package we are proposing, named SPYCODE, was mainly developed to respond to the above constraints and generally to offer the scientific community a 'smart' tool for multi-channel data processing. PMID:20554151

  7. Computational modeling of anoctamin 1 calcium-activated chloride channels as pacemaker channels in interstitial cells of Cajal.

    PubMed

    Lees-Green, Rachel; Gibbons, Simon J; Farrugia, Gianrico; Sneyd, James; Cheng, Leo K

    2014-04-15

    Interstitial cells of Cajal (ICC) act as pacemaker cells in the gastrointestinal tract by generating electrical slow waves to regulate rhythmic smooth muscle contractions. Intrinsic Ca(2+) oscillations in ICC appear to produce the slow waves by activating pacemaker currents, currently thought to be carried by the Ca(2+)-activated Cl(-) channel anoctamin 1 (Ano1). In this article we present a novel model of small intestinal ICC pacemaker activity that incorporates store-operated Ca(2+) entry and a new model of Ano1 current. A series of simulations were carried out with the ICC model to investigate current controversies about the reversal potential of the Ano1 Cl(-) current in ICC and to predict the characteristics of the other ion channels that are necessary to generate slow waves. The model results show that Ano1 is a plausible pacemaker channel when coupled to a store-operated Ca(2+) channel but suggest that small cyclical depolarizations may still occur in ICC in Ano1 knockout mice. The results predict that voltage-dependent Ca(2+) current is likely to be negligible during the slow wave plateau phase. The model shows that the Cl(-) equilibrium potential is an important modulator of slow wave morphology, highlighting the need for a better understanding of Cl(-) dynamics in ICC.

  8. Structural basis for the coupling between activation and inactivation gates in K+ channels

    PubMed Central

    Cuello, Luis G.; Jogini, Vishwanath; Cortes, D. Marien.; Pan, Albert C; Gagnon, Dominique G.; Dalmas, Olivier; Cordero-Morales, Julio F.; Chakrapani, Sudha; Roux, Benoit; Perozo, Eduardo

    2011-01-01

    The coupled interplay between activation and inactivation gating is a functional hallmark of K+ channels1,2. This coupling has been experimentally demonstrated from ion interaction effects3,4, cysteine accessibility1 and is associated with a well-defined boundary of energetically coupled residues2. The structure of KcsA in its fully open conformation, as well as four other partial openings, richly illustrates the structural basis of activation-inactivation gating5. Here, we have identified the mechanistic principles by which movements on the inner bundle gate trigger conformational changes at the selectivity filter, leading to the non-conductive C-type inactivated state. Analysis of a series of KcsA open structures suggests that as a consequence of the hinge bending and rotation of TM2, the aromatic ring of Phe103 tilts towards residues Thr74 and Thr75 in the pore helix as well as Ile100 in the neighboring subunit. This allows the network of hydrogen bonds among residues W67, E71, and D80 to destabilize the selectivity filter6,7, facilitating entry to its non-conductive conformation. Mutations at position 103, affect gating kinetics in a size-dependent way: small side chain substitutions F103A and F103C severely impair inactivation kinetics, while larger side chains (F103W) have more subtle effects. This suggests that the allosteric coupling between the inner helical bundle and the selectivity filter might rely on straightforward mechanical deformation propagated through a network of steric contacts. Average interactions calculated from molecular dynamics simulations show favourable open state interaction-energies between Phe103 and surrounding residues. Similar interactions were probed in the Shaker K-channel where inactivation was impaired in the mutant I470A. We propose that side chain rearrangements at position 103 mechanically couple activation and inactivation in KcsA and a variety of other K channels. PMID:20613845

  9. Glucocorticoids specifically enhance L-type calcium current amplitude and affect calcium channel subunit expression in the mouse hippocampus.

    PubMed

    Chameau, Pascal; Qin, Yongjun; Spijker, Sabine; Smit, August Benjamin; Smit, Guus; Joëls, Marian

    2007-01-01

    Previous studies have shown that corticosterone enhances whole cell calcium currents in CA1 pyramidal neurons, through a pathway involving binding of glucocorticoid receptor homodimers to the DNA. We examined whether glucocorticoids show selectivity for L- over N-type of calcium currents. Moreover, we addressed the putative gene targets that eventually lead to the enhanced calcium currents. Electrophysiological recordings were performed in nucleated patches that allow excellent voltage control. Calcium currents in these patches almost exclusively involve N- and L-type channels. We found that L- but not N-type calcium currents were largely enhanced after treatment with a high dose of corticosterone sufficient to activate glucocorticoid receptors. Voltage dependency and kinetic properties of the currents were unaffected by the hormone. Nonstationary noise analysis suggests that the increased current is not caused by a larger unitary conductance, but rather to a doubling of the number of functional channels. Quantitative real-time PCR revealed that transcripts of the Ca(v)1 subunits encoding for the N- or L-type calcium channels are not upregulated in the mouse CA1 area; instead, a strong, direct, and consistent upregulation of the beta4 subunit was observed. This indicates that the corticosteroid-induced increase in number of L-type calcium channels is not caused by a simple transcriptional regulation of the pore-forming subunit of the channels.

  10. Peptide fragments of the dihydropyridine receptor can modulate cardiac ryanodine receptor channel activity and sarcoplasmic reticulum Ca2+ release.

    PubMed Central

    Dulhunty, Angela F; Curtis, Suzanne M; Cengia, Louise; Sakowska, Magdalena; Casarotto, Marco G

    2004-01-01

    We show that peptide fragments of the dihydropyridine receptor II-III loop alter cardiac RyR (ryanodine receptor) channel activity in a cytoplasmic Ca2+-dependent manner. The peptides were AC (Thr-793-Ala-812 of the cardiac dihydropyridine receptor), AS (Thr-671-Leu-690 of the skeletal dihydropyridine receptor), and a modified AS peptide [AS(D-R18)], with an extended helical structure. The peptides added to the cytoplasmic side of channels in lipid bilayers at > or = 10 nM activated channels when the cytoplasmic [Ca2+] was 100 nM, but either inhibited or did not affect channel activity when the cytoplasmic [Ca2+] was 10 or 100 microM. Both activation and inhibition were independent of bilayer potential. Activation by AS, but not by AC or AS(D-R18), was reduced at peptide concentrations >1 mM in a voltage-dependent manner (at +40 mV). In control experiments, channels were not activated by the scrambled AS sequence (ASS) or skeletal II-III loop peptide (NB). Resting Ca2+ release from cardiac sarcoplasmic reticulum was not altered by peptide AC, but Ca2+-induced Ca2+ release was depressed. Resting and Ca2+-induced Ca2+ release were enhanced by both the native and modified AS peptides. NMR revealed (i) that the structure of peptide AS(D-R18) is not influenced by [Ca2+] and (ii) that peptide AC adopts a helical structure, particularly in the region containing positively charged residues. This is the first report of specific functional interactions between dihydropyridine receptor A region peptides and cardiac RyR ion channels in lipid bilayers. PMID:14678014

  11. Regulation of Arterial Tone by Activation of Calcium-Dependent Potassium Channels

    NASA Astrophysics Data System (ADS)

    Brayden, Joseph E.; Nelson, Mark T.

    1992-04-01

    Blood pressure and tissue perfusion are controlled in part by the level of intrinsic (myogenic) vascular tone. However, many of the molecular determinants of this response are unknown. Evidence is now presented that the degree of myogenic tone is regulated in part by the activation of large-conductance calcium-activated potassium channels in arterial smooth muscle. Tetraethylammonium ion (TEA^+) and charybdotoxin (CTX), at concentrations that block calcium-activated potassium channels in smooth muscle cells isolated from cerebral arteries, depolarized and constricted pressurized cerebral arteries with myogenic tone. Both TEA^+ and CTX had little effect on arteries when intracellular calcium was reduced by lowering intravascular pressure or by blocking calcium channels. Elevation of intravascular pressure through membrane depolarization and an increase in intracellular calcium may activate calcium-activated potassium channels. Thus, these channels may serve as a negative feedback pathway to control the degree of membrane depolarization and vasoconstriction.

  12. [Effects of calcium-activated chloride channels on vascular activity of rat cerebral basilar artery].

    PubMed

    Wang, Rui; Li, Li; Ma, Ke-Tao; Si, Jun-Qiang

    2014-06-25

    This study investigated the role of calcium-activated Cl⁻ channels (CaCCs) in mediating vasomotor activity of cerebral basilar artery (BA) of Wistar rat. Pressure myograph was used to examine the changes in diameter of isolated BA to vasoactive reagents. The results showed that (1) The rate of pressure-induced vasomotor activity was 78.6% (n = 28) in BA from 0 to 100 mmHg working pressure. The contractile phase of the response was faster than the relaxation phase; (2) The amplitude of contraction was (62.6 ± 6.4) µm (n = 22), the frequency of contraction was variable and the highest value was 8.0 ± 2.3 per 5 min at 60 mmHg working pressure (n = 22); (3) The pressure-induced vasomotor activity of BA was markedly attenuated when Ca²⁺ was removed from medium; (4) The pressure-induced vasomotor activity was blocked by voltage dependent Ca²⁺ channel blocker nimodipine; (5) The pressure-induced vasomotor was inhibited by CaCC antagonists NFA and NPPB. These results suggest that the pressure-induced vasomotor activity of isolated BA is associated with Ca²⁺ influx that activates CaCCs.

  13. The synaptic vesicle protein synaptophysin: purification and characterization of its channel activity.

    PubMed Central

    Gincel, Dan; Shoshan-Barmatz, Varda

    2002-01-01

    The synaptic vesicle protein synaptophysin was solubilized from rat brain synaptosomes with a relatively low concentration of Triton X-100 (0.2%) and was highly purified (above 95%) using a rapid single chromatography step on hydroxyapatite/celite resin. Purified synaptophysin was reconstituted into a planar lipid bilayer and the channel activity of synaptophysin was characterized. In asymmetric KCl solutions (cis 300 mM/trans 100 mM), synaptophysin formed a fast-fluctuating channel with a conductance of 414 +/- 13 pS at +60 mV. The open probability of synaptophysin channels was decreased upon depolarization, and channels were found to be cation-selective. Synaptophysin channels showed higher selectivity for K(+) over Cl(-) (P(K(+))/P(Cl(-)) > 8) and preferred K(+) over Li(+), Na(+), Rb(+), Cs(+), or choline(+). The synaptophysin channel is impermeable to Ca(2+), which has no effect on its channel activity. This study is the second demonstration of purified synaptophysin channel activity, but the first biophysical characterization of its channel properties. The availability of large amounts of purified synaptophysin and of its characteristic channel properties might help to establish the role of synaptophysin in synaptic transmission. PMID:12496091

  14. Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells.

    PubMed

    Tilley, Drew C; Eum, Kenneth S; Fletcher-Taylor, Sebastian; Austin, Daniel C; Dupré, Christophe; Patrón, Lilian A; Garcia, Rita L; Lam, Kit; Yarov-Yarovoy, Vladimir; Cohen, Bruce E; Sack, Jon T

    2014-11-01

    Electrically excitable cells, such as neurons, exhibit tremendous diversity in their firing patterns, a consequence of the complex collection of ion channels present in any specific cell. Although numerous methods are capable of measuring cellular electrical signals, understanding which types of ion channels give rise to these signals remains a significant challenge. Here, we describe exogenous probes which use a novel mechanism to report activity of voltage-gated channels. We have synthesized chemoselective derivatives of the tarantula toxin guangxitoxin-1E (GxTX), an inhibitory cystine knot peptide that binds selectively to Kv2-type voltage gated potassium channels. We find that voltage activation of Kv2.1 channels triggers GxTX dissociation, and thus GxTX binding dynamically marks Kv2 activation. We identify GxTX residues that can be replaced by thiol- or alkyne-bearing amino acids, without disrupting toxin folding or activity, and chemoselectively ligate fluorophores or affinity probes to these sites. We find that GxTX-fluorophore conjugates colocalize with Kv2.1 clusters in live cells and are released from channels activated by voltage stimuli. Kv2.1 activation can be detected with concentrations of probe that have a trivial impact on cellular currents. Chemoselective GxTX mutants conjugated to dendrimeric beads likewise bind live cells expressing Kv2.1, and the beads are released by channel activation. These optical sensors of conformational change are prototype probes that can indicate when ion channels contribute to electrical signaling. PMID:25331865

  15. Corrugator activity confirms immediate negative affect in surprise.

    PubMed

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes.

  16. Corrugator activity confirms immediate negative affect in surprise

    PubMed Central

    Topolinski, Sascha; Strack, Fritz

    2015-01-01

    The emotion of surprise entails a complex of immediate responses, such as cognitive interruption, attention allocation to, and more systematic processing of the surprising stimulus. All these processes serve the ultimate function to increase processing depth and thus cognitively master the surprising stimulus. The present account introduces phasic negative affect as the underlying mechanism responsible for this switch in operating mode. Surprising stimuli are schema-discrepant and thus entail cognitive disfluency, which elicits immediate negative affect. This affect in turn works like a phasic cognitive tuning switching the current processing mode from more automatic and heuristic to more systematic and reflective processing. Directly testing the initial elicitation of negative affect by surprising events, the present experiment presented high and low surprising neutral trivia statements to N = 28 participants while assessing their spontaneous facial expressions via facial electromyography. High compared to low surprising trivia elicited higher corrugator activity, indicative of negative affect and mental effort, while leaving zygomaticus (positive affect) and frontalis (cultural surprise expression) activity unaffected. Future research shall investigate the mediating role of negative affect in eliciting surprise-related outcomes. PMID:25762956

  17. Tamoxifen does not inhibit the swell activated chloride channel in human neutrophils during the respiratory burst

    SciTech Connect

    Ahluwalia, Jatinder

    2008-10-31

    Effective functioning of neutrophils relies upon electron translocation through the NADPH oxidase (NOX). The electron current generated (I{sub e}) by the neutrophil NADPH oxidase is electrogenic and rapidly depolarises the membrane potential in activated human neutrophils. Swelling activated chloride channels have been demonstrated in part to counteract the depolarisation generated by the NADPH oxidase I{sub e}. In the present study, the effects of inhibitors of swell activated chloride channels on ROS production and on the swelling activated chloride conductance was investigated in activated human neutrophils. Tamoxifen (10 {mu}M), a specific inhibitor for swell activated chloride channels in neutrophils, completely inhibited both the PMA and FMLP stimulated respiratory burst. This inhibition of the neutrophil respiratory burst was not due to the blocking effect of tamoxifen on the swelling activated chloride conductance in these cells. These results demonstrate that a tamoxifen insensitive swell activated chloride channel has important significance during the neutrophil respiratory burst.

  18. Rare Mutations of CACNB2 Found in Autism Spectrum Disease-Affected Families Alter Calcium Channel Function

    PubMed Central

    Breitenkamp, Alexandra F. S.; Matthes, Jan; Nass, Robert Daniel; Sinzig, Judith; Lehmkuhl, Gerd; Nürnberg, Peter; Herzig, Stefan

    2014-01-01

    Autism Spectrum Disorders (ASD) are complex neurodevelopmental diseases clinically defined by dysfunction of social interaction. Dysregulation of cellular calcium homeostasis might be involved in ASD pathogenesis, and genes coding for the L-type calcium channel subunits CaV1.2 (CACNA1C) and CaVβ2 (CACNB2) were recently identified as risk loci for psychiatric diseases. Here, we present three rare missense mutations of CACNB2 (G167S, S197F, and F240L) found in ASD-affected families, two of them described here for the first time (G167S and F240L). All these mutations affect highly conserved regions while being absent in a sample of ethnically matched controls. We suggest the mutations to be of physiological relevance since they modulate whole-cell Ba2+ currents through calcium channels when expressed in a recombinant system (HEK-293 cells). Two mutations displayed significantly decelerated time-dependent inactivation as well as increased sensitivity of voltage-dependent inactivation. In contrast, the third mutation (F240L) showed significantly accelerated time-dependent inactivation. By altering the kinetic parameters, the mutations are reminiscent of the CACNA1C mutation causing Timothy Syndrome, a Mendelian disease presenting with ASD. In conclusion, the results of our first-time biophysical characterization of these three rare CACNB2 missense mutations identified in ASD patients support the hypothesis that calcium channel dysfunction may contribute to autism. PMID:24752249

  19. Oxidized glutathione mediates cation channel activation in calf vascular endothelial cells during oxidant stress.

    PubMed

    Koliwad, S K; Elliott, S J; Kunze, D L

    1996-08-15

    1. The oxidant, tert-butylhydroperoxide (tBuOOH) depolarizes calf pulmonary artery endothelial cells by activating a non-selective cation channel. To identify the molecular mediator of channel activation during oxidant stress, the patch-clamp technique was used to compare tBuOOH-induced changes in membrane potential and channel activity with those induced by oxidized glutathione (GSSG), a cytosolic product of oxidant metabolism. 2. When recording pipettes contained GSSG (2 mM), whole-cell zero-current potential measured immediately following pipette break-in was not different from control values (-57 mV). However, within 20 min of break-in, zero-current potential was depolarized to -7 mV. The time course of depolarization was dependent on the concentration of GSSG and was accelerated by inhibition of GSSG metabolism. 3. In excised membrane patches, channels were activated by internal GSSG, but not by internal tBuOOH, reduced glutathione (GSH), or external GSSG. Channels were equal in size (28 pS) and in ionic selectivity to those activated by incubation of intact cells with tBuOOH. As little as 20 microM GSSG was sufficient to maximally activate channels. However, the time course of channel activation was concentration dependent between 20 microM and 2 mM GSSG. 4. Channel activation by GSSG was reversed by GSH and by increasing the [GSH]:[GSSG] ratio. Likewise, channel activation by pre-incubation of intact cells with tBuOOH was reversed by GSH applied after patch excision. 5. These results strongly suggest that GSSG is an endogenous intracellular mediator of channel activation and depolarization during oxidant stress. PMID:8866350

  20. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    PubMed

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle. PMID:25830485

  1. Role of Calcium-activated Potassium Channels in Atrial Fibrillation Pathophysiology and Therapy.

    PubMed

    Diness, Jonas G; Bentzen, Bo H; Sørensen, Ulrik S; Grunnet, Morten

    2015-11-01

    Small-conductance Ca(2+)-activated potassium (SK) channels are relative newcomers within the field of cardiac electrophysiology. In recent years, an increased focus has been given to these channels because they might constitute a relatively atrial-selective target. This review will give a general introduction to SK channels followed by their proposed function in the heart under normal and pathophysiological conditions. It is revealed how antiarrhythmic effects can be obtained by SK channel inhibition in a number of species in situations of atrial fibrillation. On the contrary, the beneficial effects of SK channel inhibition in situations of heart failure are questionable and still needs investigation. The understanding of cardiac SK channels is rapidly increasing these years, and it is hoped that this will clarify whether SK channel inhibition has potential as a new anti-atrial fibrillation principle.

  2. Structural determinants of the transient receptor potential 1 (TRPV1) channel activation by phospholipid analogs.

    PubMed

    Morales-Lázaro, Sara L; Serrano-Flores, Barbara; Llorente, Itzel; Hernández-García, Enrique; González-Ramírez, Ricardo; Banerjee, Souvik; Miller, Duane; Gududuru, Veeresh; Fells, James; Norman, Derek; Tigyi, Gabor; Escalante-Alcalde, Diana; Rosenbaum, Tamara

    2014-08-29

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal protein that responds to various stimuli, including capsaicin (the pungent compound found in chili peppers), extracellular acid, and basic intracellular pH, temperatures close to 42 °C, and several lipids. Lysophosphatidic acid (LPA), an endogenous lipid widely associated with neuropathic pain, is an agonist of the TRPV1 channel found in primary afferent nociceptors and is activated by other noxious stimuli. Agonists or antagonists of lipid and other chemical natures are known to possess specific structural requirements for producing functional effects on their targets. To better understand how LPA and other lipid analogs might interact and affect the function of TRPV1, we set out to determine the structural features of these lipids that result in the activation of TRPV1. By changing the acyl chain length, saturation, and headgroup of these LPA analogs, we established strict requirements for activation of TRPV1. Among the natural LPA analogs, we found that only LPA 18:1, alkylglycerophosphate 18:1, and cyclic phosphatidic acid 18:1, all with a monounsaturated C18 hydrocarbon chain activate TRPV1, whereas polyunsaturated and saturated analogs do not. Thus, TRPV1 shows a more restricted ligand specificity compared with LPA G-protein-coupled receptors. We synthesized fatty alcohol phosphates and thiophosphates and found that many of them with a single double bond in position Δ9, 10, or 11 and Δ9 cyclopropyl group can activate TRPV1 with efficacy similar to capsaicin. Finally, we developed a pharmacophore and proposed a mechanistic model for how these lipids could induce a conformational change that activates TRPV1. PMID:25035428

  3. Structural Determinants of the Transient Receptor Potential 1 (TRPV1) Channel Activation by Phospholipid Analogs*

    PubMed Central

    Morales-Lázaro, Sara L.; Serrano-Flores, Barbara; Llorente, Itzel; Hernández-García, Enrique; González-Ramírez, Ricardo; Banerjee, Souvik; Miller, Duane; Gududuru, Veeresh; Fells, James; Norman, Derek; Tigyi, Gabor; Escalante-Alcalde, Diana; Rosenbaum, Tamara

    2014-01-01

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal protein that responds to various stimuli, including capsaicin (the pungent compound found in chili peppers), extracellular acid, and basic intracellular pH, temperatures close to 42 °C, and several lipids. Lysophosphatidic acid (LPA), an endogenous lipid widely associated with neuropathic pain, is an agonist of the TRPV1 channel found in primary afferent nociceptors and is activated by other noxious stimuli. Agonists or antagonists of lipid and other chemical natures are known to possess specific structural requirements for producing functional effects on their targets. To better understand how LPA and other lipid analogs might interact and affect the function of TRPV1, we set out to determine the structural features of these lipids that result in the activation of TRPV1. By changing the acyl chain length, saturation, and headgroup of these LPA analogs, we established strict requirements for activation of TRPV1. Among the natural LPA analogs, we found that only LPA 18:1, alkylglycerophosphate 18:1, and cyclic phosphatidic acid 18:1, all with a monounsaturated C18 hydrocarbon chain activate TRPV1, whereas polyunsaturated and saturated analogs do not. Thus, TRPV1 shows a more restricted ligand specificity compared with LPA G-protein-coupled receptors. We synthesized fatty alcohol phosphates and thiophosphates and found that many of them with a single double bond in position Δ9, 10, or 11 and Δ9 cyclopropyl group can activate TRPV1 with efficacy similar to capsaicin. Finally, we developed a pharmacophore and proposed a mechanistic model for how these lipids could induce a conformational change that activates TRPV1. PMID:25035428

  4. Structural determinants of the transient receptor potential 1 (TRPV1) channel activation by phospholipid analogs.

    PubMed

    Morales-Lázaro, Sara L; Serrano-Flores, Barbara; Llorente, Itzel; Hernández-García, Enrique; González-Ramírez, Ricardo; Banerjee, Souvik; Miller, Duane; Gududuru, Veeresh; Fells, James; Norman, Derek; Tigyi, Gabor; Escalante-Alcalde, Diana; Rosenbaum, Tamara

    2014-08-29

    The transient receptor potential vanilloid 1 (TRPV1) ion channel is a polymodal protein that responds to various stimuli, including capsaicin (the pungent compound found in chili peppers), extracellular acid, and basic intracellular pH, temperatures close to 42 °C, and several lipids. Lysophosphatidic acid (LPA), an endogenous lipid widely associated with neuropathic pain, is an agonist of the TRPV1 channel found in primary afferent nociceptors and is activated by other noxious stimuli. Agonists or antagonists of lipid and other chemical natures are known to possess specific structural requirements for producing functional effects on their targets. To better understand how LPA and other lipid analogs might interact and affect the function of TRPV1, we set out to determine the structural features of these lipids that result in the activation of TRPV1. By changing the acyl chain length, saturation, and headgroup of these LPA analogs, we established strict requirements for activation of TRPV1. Among the natural LPA analogs, we found that only LPA 18:1, alkylglycerophosphate 18:1, and cyclic phosphatidic acid 18:1, all with a monounsaturated C18 hydrocarbon chain activate TRPV1, whereas polyunsaturated and saturated analogs do not. Thus, TRPV1 shows a more restricted ligand specificity compared with LPA G-protein-coupled receptors. We synthesized fatty alcohol phosphates and thiophosphates and found that many of them with a single double bond in position Δ9, 10, or 11 and Δ9 cyclopropyl group can activate TRPV1 with efficacy similar to capsaicin. Finally, we developed a pharmacophore and proposed a mechanistic model for how these lipids could induce a conformational change that activates TRPV1.

  5. PYR/PYL/RCAR Abscisic Acid Receptors Regulate K+ and Cl− Channels through Reactive Oxygen Species-Mediated Activation of Ca2+ Channels at the Plasma Membrane of Intact Arabidopsis Guard Cells1[W][OPEN

    PubMed Central

    Wang, Yizhou; Chen, Zhong-Hua; Zhang, Ben; Hills, Adrian; Blatt, Michael R.

    2013-01-01

    The discovery of the START family of abscisic acid (ABA) receptors places these proteins at the front of a protein kinase/phosphatase signal cascade that promotes stomatal closure. The connection of these receptors to Ca2+ signals evoked by ABA has proven more difficult to resolve, although it has been implicated by studies of the pyrbactin-insensitive pyr1/pyl1/pyl2/pyl4 quadruple mutant. One difficulty is that flux through plasma membrane Ca2+ channels and Ca2+ release from endomembrane stores coordinately elevate cytosolic free Ca2+ concentration ([Ca2+]i) in guard cells, and both processes are facilitated by ABA. Here, we describe a method for recording Ca2+ channels at the plasma membrane of intact guard cells of Arabidopsis (Arabidopsis thaliana). We have used this method to resolve the loss of ABA-evoked Ca2+ channel activity at the plasma membrane in the pyr1/pyl1/pyl2/pyl4 mutant and show the consequent suppression of [Ca2+]i increases in vivo. The basal activity of Ca2+ channels was not affected in the mutant; raising the concentration of Ca2+ outside was sufficient to promote Ca2+ entry, to inactivate current carried by inward-rectifying K+ channels and to activate current carried by the anion channels, both of which are sensitive to [Ca2+]i elevations. However, the ABA-dependent increase in reactive oxygen species (ROS) was impaired. Adding the ROS hydrogen peroxide was sufficient to activate the Ca2+ channels and trigger stomatal closure in the mutant. These results offer direct evidence of PYR/PYL/RCAR receptor coupling to the activation by ABA of plasma membrane Ca2+ channels through ROS, thus affecting [Ca2+]i and its regulation of stomatal closure. PMID:23899646

  6. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots.

    PubMed

    Trela, Zenon; Burdach, Zbigniew; Przestalski, Stanisław; Karcz, Waldemar

    2012-12-01

    The patch-clamp technique was used to examine the effect of trimethyllead chloride (Met(3)PbCl) on SV channel activity in red beet (Beta vulgaris L.) taproot vacuoles. It was found that in the control bath the macroscopic currents showed the typical slow activation and a strong outward rectification of the steady-state currents. An addition of Met(3)PbCl to the bath solution blocked, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant τ increased several times in the presence of 100 μM trimethyllead chloride at all voltages tested. When single channel properties were analyzed, only little channel activity could be recorded in the presence of 100 μM Met(3)PbCl. Trimethyllead chloride decreased significantly (by about one order of magnitude) the open probability of single channels. The recordings of single channel activity obtained in the presence and absence of Met(3)PbCl showed that organolead only slightly (by ca. 10%) decreased the unitary conductance of single channels. It was also found that Met(3)PbCl diminished significantly the number of SV channel openings, whereas it did not change the opening times of the channels. Taken together, these results suggest that Met(3)PbCl binding site is located outside the channel selectivity filter.

  7. Effect of trimethyllead chloride on slowly activating (SV) channels in red beet (Beta vulgaris L.) taproots.

    PubMed

    Trela, Zenon; Burdach, Zbigniew; Przestalski, Stanisław; Karcz, Waldemar

    2012-12-01

    The patch-clamp technique was used to examine the effect of trimethyllead chloride (Met(3)PbCl) on SV channel activity in red beet (Beta vulgaris L.) taproot vacuoles. It was found that in the control bath the macroscopic currents showed the typical slow activation and a strong outward rectification of the steady-state currents. An addition of Met(3)PbCl to the bath solution blocked, in a concentration-dependent manner, SV currents in red beet vacuoles. The time constant τ increased several times in the presence of 100 μM trimethyllead chloride at all voltages tested. When single channel properties were analyzed, only little channel activity could be recorded in the presence of 100 μM Met(3)PbCl. Trimethyllead chloride decreased significantly (by about one order of magnitude) the open probability of single channels. The recordings of single channel activity obtained in the presence and absence of Met(3)PbCl showed that organolead only slightly (by ca. 10%) decreased the unitary conductance of single channels. It was also found that Met(3)PbCl diminished significantly the number of SV channel openings, whereas it did not change the opening times of the channels. Taken together, these results suggest that Met(3)PbCl binding site is located outside the channel selectivity filter. PMID:23312295

  8. Regulation of Substantia Nigra Pars Reticulata GABAergic Neuron Activity by H2O2 via Flufenamic Acid-Sensitive Channels and KATP Channels

    PubMed Central

    Lee, Christian R.; Witkovsky, Paul; Rice, Margaret E.

    2011-01-01

    Substantia nigra pars reticulata (SNr) GABAergic neurons are key output neurons of the basal ganglia. Given the role of these neurons in motor control, it is important to understand factors that regulate their firing rate and pattern. One potential regulator is hydrogen peroxide (H2O2), a reactive oxygen species that is increasingly recognized as a neuromodulator. We used whole-cell current clamp recordings of SNr GABAergic neurons in guinea-pig midbrain slices to determine how H2O2 affects the activity of these neurons and to explore the classes of ion channels underlying those effects. Elevation of H2O2 levels caused an increase in the spontaneous firing rate of SNr GABAergic neurons, whether by application of exogenous H2O2 or amplification of endogenous H2O2 through inhibition of glutathione peroxidase with mercaptosuccinate. This effect was reversed by flufenamic acid (FFA), implicating transient receptor potential (TRP) channels. Conversely, depletion of endogenous H2O2 by catalase, a peroxidase enzyme, decreased spontaneous firing rate and firing precision of SNr neurons, demonstrating tonic control of firing rate by H2O2. Elevation of H2O2 in the presence of FFA revealed an inhibition of tonic firing that was prevented by blockade of ATP-sensitive K+ (KATP) channels with glibenclamide. In contrast to guinea-pig SNr neurons, the dominant effect of H2O2 elevation in mouse SNr GABAergic neurons was hyperpolarization, indicating a species difference in H2O2-dependent regulation. Thus, H2O2 is an endogenous modulator of SNr GABAergic neurons, acting primarily through presumed TRP channels in guinea-pig SNr, with additional modulation via KATP channels to regulate SNr output. PMID:21503158

  9. Mechanosensitive channel activation by diffusio-osmotic force.

    PubMed

    Bonthuis, Douwe Jan; Golestanian, Ramin

    2014-10-01

    For ion channel gating, the appearance of two distinct conformational states and the discrete transitions between them are essential, and therefore of crucial importance to all living organisms. We show that the physical interplay between two structural elements that are commonly present in bacterial mechanosensitive channels--namely, a charged vestibule and a hydrophobic constriction--creates two distinct conformational states, open and closed, as well as the gating between them. We solve the nonequilibrium Stokes-Poisson-Nernst-Planck equations, extended to include a molecular potential of mean force, and show that a first order transition between the closed and open states arises naturally from the diffusio-osmotic stress caused by the ions and the water inside the channel and the elastic restoring force from the membrane. PMID:25325663

  10. Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal.

    PubMed

    Baydyuk, Maryna; Wu, Xin-Sheng; He, Liming; Wu, Ling-Gang

    2015-03-18

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin that regulates synaptic function and plasticity and plays important roles in neuronal development, survival, and brain disorders. Despite such diverse and important roles, how BDNF, or more generally speaking, neurotrophins affect synapses, particularly nerve terminals, remains unclear. By measuring calcium currents and membrane capacitance during depolarization at a large mammalian central nerve terminal, the rat calyx of Held, we report for the first time that BDNF slows down calcium channel activation, including P/Q-type channels, and inhibits exocytosis induced by brief depolarization or single action potentials, inhibits slow and rapid endocytosis, and inhibits vesicle mobilization to the readily releasable pool. These presynaptic mechanisms may contribute to the important roles of BDNF in regulating synapses and neuronal circuits and suggest that regulation of presynaptic calcium channels, exocytosis, and endocytosis are potential mechanisms by which neurotrophins achieve diverse neuronal functions.

  11. Lifetime and conductance of acetylcholine-activated channels in normal and denervated toad sartorius muscle.

    PubMed Central

    Gage, P W; Hamill, O P

    1980-01-01

    1. The average lifetime and conductance of acetylcholine-activated channels were measured in normal and denervated, voltage-clamped toad sartorius muscle fibres at 10 degrees C. 2. The null potential was -4 +/- 1 mV for subsynaptic channels in normal fibres and -6 +/- 3 mV for extrasynaptic channels in denervated fibres. 3. There was a linear relationship between variance of conductance fluctuations and mean conductance for acetylcholine-induced currents up to 50 nA, in denervated fibres clamped at -50 mV. The ratio gave a channel conductance of 14 pS. 4. At the same membrane potential, the average lifetime of extrasynaptic channels in denervated fibres was approximately double, whereas channel conductance was approximately half, that of subsynaptic channels in normal fibres: there was little difference in net charge transfer through the two types of channel under similar conditions. 5. Single channel conductance increased, whereas average channel lifetime decreased, as the membrane potential became more positive (depolarized). The effect of potential on channel lifetime and conductance was more pronounced in denervated than in normal fibres. PMID:6767026

  12. Ferroelectric active models of ion channels in biomembranes.

    PubMed

    Bystrov, V S; Lakhno, V D; Molchanov, M

    1994-06-21

    Ferroactive models of ion channels in the theory of biological membranes are presented. The main equations are derived and their possible solutions are shown. The estimates of some experimentally measured parameters are given. Possible physical consequences of the suggested models are listed and the possibility of their experimental finding is discussed. The functioning of the biomembrane's ion channel is qualitatively described on the basis of the suggested ferroactive models. The main directions and prospects for development of the ferroactive approach to the theory of biological membranes and their structures are indicated.

  13. Voltage, calcium, and stretch activated ionic channels and intracellular calcium in bone cells.

    PubMed

    Ypey, D L; Weidema, A F; Höld, K M; Van der Laarse, A; Ravesloot, J H; Van Der Plas, A; Nijweide, P J

    1992-12-01

    Embryonic chick bone cells express various types of ionic channels in their plasma membranes for as yet unresolved functions. Chick osteoclasts (OCL) have the richest spectrum of channel types. Specific for OCL is a K+ channel, which activates (opens) when the inside negative membrane potential (Vm) becomes more negative (hyperpolarization). This is consistent with findings of others on rat OCL. The membrane conductance constituted by these channels is called the inward rectifying K+ conductance (GKi), or inward rectifier, because the hyperpolarization-activated channels cause cell-inward K+ current to pass more easily through the membrane than outward K+ current. Besides GKi channels, OCL may express two other types of voltage-activated K+ channels. One constitutes the transient outward rectifying K+ conductance (GKto), which is activated upon making the membrane potential less negative (depolarization) but has a transient nature. This conductance favors transient K+ conduction in the cell-outward direction. The GKto also occurs in a small percentage of cells in osteoblast (OBL) and periosteal fibroblast (PFB) cultures. The other OCL K+ conductance, the GKCa, is activated by both membrane depolarization and a rise in [Ca2+]i. GKCa channels are also present in the other chick bone cell types, that is, OBL, osteocytes (OCY), and PFB. Furthermore, in excised patches of all bone cell types, channels have been found that conduct anions, including Cl- and phosphate ions. These channels are only active around Vm = 0 mV. While searching for a membrane mechanism for adaptation of bone to mechanical loading, we found stretch-activated channels in chick osteoclasts; other investigators have found stretch-activated cation channels (K+ or aselective) in rat and human osteogenic cell lines. In contrast to other studies on cell lines or OBL from other species, we have not found any of the classic macroscopic voltage-activated calcium conductances (GCa) in any of the chick bone

  14. Interactions between divalent cations and the gating machinery of cyclic GMP-activated channels in salamander retinal rods

    PubMed Central

    1993-01-01

    The effects of divalent cations on the gating of the cGMP-activated channel, and the effects of gating on the movement of divalent cations in and out of the channel's pore were studied by recording macroscopic currents in excised membrane patches from salamander retinal rods. The fractional block of cGMP-activated Na+ currents by internal and external Mg2+ as well as internal Ca2+ was nearly independent of cGMP concentration. This indicates that Mg2+ and Ca2+ bind with similar affinity to open and closed states of the channel. In contrast, the efficiency of block by internal Cd2+ or Zn2+ increased in proportion to the fraction of open channels, indicating that these ions preferentially occupy open channels. The kinetics of block by internal Ni2+, which competes with Mg2+ but blocks more slowly, were found to be unaffected by the fraction of channels open. External Ni2+, however, blocked and unblocked much more rapidly when channels were mostly open. This suggests that within the pore a gate is located between the binding site(s) for ions and the extracellular mouth of the channel. Micromolar concentrations of the transition metal divalent cations Ni2+, Cd2+, Zn2+, and Mn2+ applied to the cytoplasmic surface of a patch potentiated the response to subsaturating concentrations of cGMP without affecting the maximum current induced by saturating cGMP. The concentration of cGMP that opened half the channels was often lowered by a factor of three or more. Potentiation persisted after the experimental chamber was washed with divalent-free solution and fresh cGMP was applied, indicating that it does not result from an interaction between divalent cations and cGMP in solution; 1 mM EDTA or isotonic MgCl2 reversed potentiation. Voltage-jump experiments suggest that potentiation results from an increase in the rate of cGMP binding. Lowering the ionic strength of the bathing solution enhanced potentiation, suggesting that it involves electrostatic interactions. The strong

  15. The AQP-3 water channel is a pivotal modulator of glycerol-induced chloride channel activation in nasopharyngeal carcinoma cells.

    PubMed

    Zhang, Haifeng; Deng, Zhiqin; Yang, Lili; Luo, Hai; Liu, Shanwen; Li, Yuan; Wei, Yan; Peng, Shuang; Zhu, Linyan; Wang, Liwei; Chen, Lixin

    2016-03-01

    Aquaporin (AQP) and chloride channels are ubiquitous in virtually all living cells, playing pivotal roles in cell proliferation, migration and apoptosis. We previously reported that AQP-3 aquaglyceroporin and ClC-3 chloride channels could form complexes to regulate cell volume in nasopharyngeal carcinoma cells. In this study, the roles of AQP-3 in their hetero-complexes were further investigated. Glycerol entered the cells via AQP-3 and induced two different Cl(-) currents through cell swelling-dependent or -independent pathways. The swelling-dependent Cl(-) current was significantly inhibited by pretreatment with CuCl2 and AQP-3-siRNA. After siRNA-induced AQP-3 knock-down, the 140 mM glycerol isoosmotic solution swelled cells by 22% (45% in AQP-3-intact cells) and induced a smaller Cl(-) current; this current was smaller than that activated by 8% cell volume swelling, which induced by the 140 mM glycerol hyperosmotic solution in AQP-3-intact cells. This suggests that the interaction between AQP-3 and ClC-3 plays an important role in cell volume regulation and that AQP-3 may be a modulator that opens volume-regulated chloride channels. The swelling-independent Cl(-) current, which was activated by extracellular glycerol, was reduced by CuCl2 and AQP-3-siRNA pretreatment. Dialyzing glycerol into cells via the pipette directly induced the swelling-independent Cl(-) current; however this current was blocked by AQP-3 down-regulation, suggesting AQP-3 is essential for the opening of chloride channels. In conclusion, AQP-3 is the pathway for water, glycerol and other small solutes to enter cells, and it may be an essential modulator for the gating of chloride channels. PMID:26794461

  16. Thermodynamic view of activation energies of proton transfer in various gramicidin A channels.

    PubMed

    Chernyshev, Anatoly; Cukierman, Samuel

    2002-01-01

    The temperature dependencies (range: 5-45 degrees C) of single-channel proton conductances (g(H)) in native gramicidin A (gA) and in two diastereoisomers (SS and RR) of the dioxolane-linked gA channels were measured in glycerylmonooleate/decane (GMO) and diphytanoylphosphatidylcholine/decane (DiPhPC) bilayers. Linear Arrhenius plots (ln (g(H)) versus K(-1)) were obtained for the native gA and RR channels in both types of bilayers, and for the SS channel in GMO bilayers only. The Arrhenius plot for proton transfer in the SS channel in DiPhPC bilayers had a break in linearity around 20 degrees C. This break seems to occur only when protons are the permeating cations in the SS channel. The activation energies (E(a)) for proton transfer in various gA channels (approximately 15 kJ/mol) are consistent with the rate-limiting step being in the channel and/or at the membrane-channel/solution interface, and not in bulk solution. E(a) values for proton transfer in gA channels are considerably smaller than for the permeation of nonproton currents in gA as well as in various other ion channels. The E(a) values for proton transfer in native gA channels are nearly the same in both GMO and DiPhPC bilayers. In contrast, for the dioxolane linked gA dimers, E(a) values were strongly modulated by the lipid environment. The Gibbs activation free energies (Delta G(#)(o)) for protons in various gA channels are within the range of 27-29 kJ/mol in GMO bilayers and of 20-22 kJ/mol in DiPhPC bilayers. The largest difference between Delta G(#)(o) for proton currents occurs between native gA (or SS channels) and the RR channel. In general, the activation entropy (Delta S) is mostly responsible for the differences between g(H) values in various gA channels, and also in distinct bilayers. However, significant differences between the activation enthalpies (Delta H(#)(o)) for proton transfer in the SS and RR channels occur in distinct membranes.

  17. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3 Activities... affecting commerce. Examples: 1. A foreign subsidiary of a U.S. corporation seeks to acquire a foreign business. The acquiring person includes the U.S. parent corporation. If the U.S. corporation, or...

  18. 16 CFR 801.3 - Activities in or affecting commerce.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... INTERPRETATIONS UNDER THE HART-SCOTT-RODINO ANTITRUST IMPROVEMENTS ACT OF 1976 COVERAGE RULES § 801.3 Activities... affecting commerce. Examples: 1. A foreign subsidiary of a U.S. corporation seeks to acquire a foreign business. The acquiring person includes the U.S. parent corporation. If the U.S. corporation, or...

  19. Monitoring Affect States during Effortful Problem Solving Activities

    ERIC Educational Resources Information Center

    D'Mello, Sidney K.; Lehman, Blair; Person, Natalie

    2010-01-01

    We explored the affective states that students experienced during effortful problem solving activities. We conducted a study where 41 students solved difficult analytical reasoning problems from the Law School Admission Test. Students viewed videos of their faces and screen captures and judged their emotions from a set of 14 states (basic…

  20. Cyclic GMP-activated channels of salamander retinal rods: spatial distribution and variation of responsiveness.

    PubMed Central

    Karpen, J W; Loney, D A; Baylor, D A

    1992-01-01

    1. Patch-clamp methods were used to investigate the areal density and spatial location of cyclic GMP-activated channels in the surface membrane of salamander rod outer segments. 2. The density of active channels (i.e. channels able to respond to cyclic GMP) in patches excised from outer segments was determined from the number of active channels, N, and the membrane area, A. N was estimated from the current induced by a saturating concentration of cyclic GMP, while A was estimated from the electrical capacitance of the patch. 3. In patches excised from forty-one isolated outer segments prepared in the light the active channel density varied over a remarkable range: 0.34-629 microns-2, with a mean of 166 microns-2. Density was not correlated with patch area in this or any of the conditions studied. 4. The spatial distribution of open channels on the outer segment of a transducing rod was measured by recording the local dark current at various positions with a loose-patch electrode. The apparent density of open channels varied by only about +/- 50% around the circumference of the outer segment and up and down its length. This indicates that the wide range of densities in excised patches did not result from sampling a non-uniform spatial distribution of channels. 5. Patches excised from sixteen dark-adapted whole cells with healthy appearances and saturating light responses of normal size had active channel densities of 1.1-200 microns-2, with a mean of 60 microns-2. Patches from twenty light-adapted whole cells had similar densities. Many densities from the whole cells were much lower than expected. This, and the wide variation in densities, suggests that obtaining a patch often lowered the density of active channels. The number of channels in a patch was quite stable from 1 s to 30 min after excision, ruling out progressive denaturation or adsorption of channels to the glass as a cause for this effect. 6. The mean active channel density in patches excised from whole

  1. Molecular bases for the asynchronous activation of sodium and potassium channels required for nerve impulse generation.

    PubMed

    Lacroix, Jérôme J; Campos, Fabiana V; Frezza, Ludivine; Bezanilla, Francisco

    2013-08-21

    Most action potentials are produced by the sequential activation of voltage-gated sodium (Nav) and potassium (Kv) channels. This is mainly achieved by the rapid conformational rearrangement of voltage-sensor (VS) modules in Nav channels, with activation kinetics up to 6-fold faster than Shaker-type Kv channels. Here, using mutagenesis and gating current measurements, we show that a 3-fold acceleration of the VS kinetics in Nav versus Shaker Kv channels is produced by the hydrophilicity of two "speed-control" residues located in the S2 and S4 segments in Nav domains I-III. An additional 2-fold acceleration of the Nav VS kinetics is provided by the coexpression of the β1 subunit, ubiquitously found in mammal tissues. This study uncovers the molecular bases responsible for the differential activation of Nav versus Kv channels, a fundamental prerequisite for the genesis of action potentials.

  2. Modulation of Kv3 potassium channels expressed in CHO cells by a nitric oxide-activated phosphatase

    PubMed Central

    Moreno, Herman; de Miera, Eleazar Vega-Saenz; Nadal, Marcela S; Amarillo, Yimy; Rudy, Bernardo

    2001-01-01

    Voltage-gated K+ channels containing Kv3 subunits play specific roles in the repolarization of action potentials. Kv3 channels are expressed in selective populations of CNS neurons and are thought to be important in facilitating sustained and/or repetitive high frequency firing. Regulation of the activity of Kv3 channels by neurotransmitters could have profound effects on the repetitive firing characteristics of those neurons. Kv3 channels are found in several neuronal populations in the CNS that express nitric oxide synthases (NOSs). We therefore investigated whether Kv3 channels are modulated by the signalling gas nitric oxide (NO). We found that Kv3.1 and Kv3.2 currents are potentially suppressed by D-NONOate and other NO donors. The effects of NO on these currents are mediated by the activation of guanylyl cyclase (GC), since they are prevented by Methylene Blue, an inhibitor of GC, and by ODQ, a specific inhibitor of the soluble form of GC. Moreover, application of 8-Br-cGMP, a permeant analogue of cGMP, also blocked Kv3.1 and Kv3.2 currents. KT5283, a cGMP-dependent protein kinase (PKG) blocker, prevented the inhibition of Kv3.1 and Kv3.2 currents by D-NONOate and 8-Br-cGMP. This indicates that activation of PKG as a result of the increase in intracellular cGMP levels produced by D-NONOate or 8-Br-cGMP is necessary for channel block. Although the effects of NO on Kv3.1 and Kv3.2 channels require PKG activity, two observations suggest that they are not mediated by phosphorylation of channel proteins: (a) the reagents affect both Kv3.2 and Kv3.1 channels, although only Kv3.2 proteins have a putative PKA-PKG phosphorylation site, and (b) mutation of the PKA-PKG phosphorylation site in Kv3.2 does not interfere with the effects of NO or cGMP. The inhibitory effects of NO and cGMP on Kv3.1 and Kv3.2 currents appear to be mediated by the activation of serine-threonine phosphatase, since they are blocked by low doses of okadaic acid. Furthermore, direct intracellular

  3. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels.

    PubMed

    Vocke, Kerstin; Dauner, Kristin; Hahn, Anne; Ulbrich, Anne; Broecker, Jana; Keller, Sandro; Frings, Stephan; Möhrlen, Frank

    2013-10-01

    Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca(2+)/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca(2+)/calmodulin, one at submicromolar Ca(2+) concentrations and one in the micromolar Ca(2+) range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca(2+)/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca(2+) signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca(2+) regulation in anoctamin Cl(-) channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.

  4. Fe(2+) substrate transport through ferritin protein cage ion channels influences enzyme activity and biomineralization.

    PubMed

    Behera, Rabindra K; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M; Goulding, Celia W; Theil, Elizabeth C

    2015-09-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3·H2O), by moving cytoplasmic Fe(2+) through intracage ion channels to cage-embedded enzyme (2Fe(2+)/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe(2+) movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one -CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650 nm (DFP λ max). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe(3+)-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: (1) narrower interior ion channel openings/pores; (2) increased numbers of ion channel protein-metal binding sites, and (3) a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells.

  5. Fe2+ Substrate Transport through Ferritin Protein Cage Ion Channels Influences Enzyme Activity and Biomineralization

    PubMed Central

    Behera, Rabindra K.; Torres, Rodrigo; Tosha, Takehiko; Bradley, Justin M.; Goulding, Celia W.; Theil, Elizabeth C.

    2015-01-01

    Ferritins, complex protein nanocages, form internal iron-oxy minerals (Fe2O3.H2O), by moving cytoplasmic Fe2+ through intracage ion channels to cage-embedded enzyme (2Fe2+/O2 oxidoreductase) sites where ferritin biomineralization is initiated. The products of ferritin enzyme activity are diferric oxy complexes that are mineral precursors. Conserved, carboxylate amino acid side chains of D127 from each of three cage subunits project into ferritin ion channels near the interior ion channel exits and, thus, could direct Fe2+ movement to the internal enzyme sites. Ferritin D127E was designed and analyzed to probe properties of ion channel size and carboxylate crowding near the internal ion channel opening. Glu side chains are chemically equivalent to, but longer by one – CH2 than Asp, side chains. Ferritin D127E assembled into normal protein cages, but diferric peroxo formation (enzyme activity) was not observed, when measured at 650nm (DFP λmax). The caged biomineral formation, measured at 350 nm in the middle of the broad, nonspecific Fe3+-O absorption band, was slower. Structural differences (protein X-ray crystallography), between ion channels in wild type and ferritin D127E, which correlate with the inhibition of ferritin D127E enzyme activity include: 1. narrower interior ion channel openings/pores, 2. increased numbers of ion channel protein-metal binding sites, and 3. a change in ion channel electrostatics due to carboxylate crowding. The contributions of ion channel size and structure to ferritin activity reflect metal ion transport in ion channels are precisely regulated both in ferritin protein nanocages and membranes of living cells. PMID:26202907

  6. Identification of a Peptide Toxin from Grammostola spatulata Spider Venom That Blocks Cation-Selective Stretch-Activated Channels

    PubMed Central

    Suchyna, Thomas M.; Johnson, Janice H.; Hamer, Katherine; Leykam, Joseph F.; Gage, Douglas A.; Clemo, Henry F.; Baumgarten, Clive M.; Sachs, Frederick

    2000-01-01

    We have identified a 35 amino acid peptide toxin of the inhibitor cysteine knot family that blocks cationic stretch-activated ion channels. The toxin, denoted GsMTx-4, was isolated from the venom of the spider Grammostola spatulata and has <50% homology to other neuroactive peptides. It was isolated by fractionating whole venom using reverse phase HPLC, and then assaying fractions on stretch-activated channels (SACs) in outside-out patches from adult rat astrocytes. Although the channel gating kinetics were different between cell-attached and outside-out patches, the properties associated with the channel pore, such as selectivity for alkali cations, conductance (∼45 pS at −100 mV) and a mild rectification were unaffected by outside-out formation. GsMTx-4 produced a complete block of SACs in outside-out patches and appeared specific since it had no effect on whole-cell voltage-sensitive currents. The equilibrium dissociation constant of ∼630 nM was calculated from the ratio of association and dissociation rate constants. In hypotonically swollen astrocytes, GsMTx-4 produces ∼40% reduction in swelling-activated whole-cell current. Similarly, in isolated ventricular cells from a rabbit dilated cardiomyopathy model, GsMTx-4 produced a near complete block of the volume-sensitive cation-selective current, but did not affect the anion current. In the myopathic heart cells, where the swell-induced current is tonically active, GsMTx-4 also reduced the cell size. This is the first report of a peptide toxin that specifically blocks stretch-activated currents. The toxin affect on swelling-activated whole-cell currents implicates SACs in volume regulation. PMID:10779316

  7. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    PubMed

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement. PMID:25817708

  8. Factors affecting measurement of channel thickness in asymmetrical flow field-flow fractionation.

    PubMed

    Dou, Haiyang; Jung, Euo Chang; Lee, Seungho

    2015-05-01

    Asymmetrical flow field-flow fractionation (AF4) has been considered to be a useful tool for simultaneous separation and characterization of polydisperse macromolecules or colloidal nanoparticles. AF4 analysis requires the knowledge of the channel thickness (w), which is usually measured by injecting a standard with known diffusion coefficient (D) or hydrodynamic diameter (dh). An accurate w determination is a challenge due to its uncertainties arising from the membrane's compressibility, which may vary with experimental condition. In the present study, influence of factors including the size and type of the standard on the measurement of w was systematically investigated. The results revealed that steric effect and the particles-membrane interaction by van der Waals or electrostatic force may result in an error in w measurement.

  9. Small-conductance Ca2+ -activated K+ channels and cardiac arrhythmias.

    PubMed

    Zhang, Xiao-Dong; Lieu, Deborah K; Chiamvimonvat, Nipavan

    2015-08-01

    Small-conductance Ca2+ -activated K+ (SK, KCa2) channels are unique in that they are gated solely by changes in intracellular Ca2+ and, hence, function to integrate intracellular Ca2+ and membrane potentials on a beat-to-beat basis. Recent studies have provided evidence for the existence and functional significance of SK channels in the heart. Indeed, our knowledge of cardiac SK channels has been greatly expanded over the past decade. Interests in cardiac SK channels are further driven by recent studies suggesting the critical roles of SK channels in human atrial fibrillation, the SK channel as a possible novel therapeutic target in atrial arrhythmias, and upregulation of SK channels in heart failure in animal models and in human heart failure. However, there remain critical gaps in our knowledge. Specifically, blockade of SK channels in cardiac arrhythmias has been shown to be both antiarrhythmic and proarrhythmic. This contemporary review provides an overview of the literature on the role of cardiac SK channels in cardiac arrhythmias and serves as a discussion platform for the current clinical perspectives. At the translational level, development of SK channel blockers as a new therapeutic strategy in the treatment of atrial fibrillation and the possible proarrhythmic effects merit further considerations and investigations.

  10. Ca2+-Activated K+ Channels in Gonadotropin-Releasing Hormone-Stimulated Mouse Gonadotrophs

    PubMed Central

    Waring, Dennis W.; Turgeon, Judith L.

    2009-01-01

    GnRH receptor activation elicits release of intracellular Ca2+, which leads to secretion and also activates Ca2+-activated ion channels underlying membrane voltage changes. The predominant Ca2+-activated ion channels in rat and mouse gonadotrophs are Ca2+-activated K+ channels. To establish the temporal relationship between GnRH-induced changes in intracellular [Ca2+] ([Ca2+]i) and membrane current (Im), and to identify specific Ca2+-activated K+ channels linking GnRH-induced increase in [Ca2+]i to changes in plasma membrane electrical activity, we used single female mouse gonadotrophs in the perforated patch configuration of the patch-clamp technique, which preserves signaling pathways. Simultaneous measurement of [Ca2+]i and Im in voltage-clamped gonadotrophs revealed that GnRH stimulates an increase in [Ca2+]i that precedes outward Im, and that activates two kinetically distinct currents identified, using specific toxin inhibitors, as small conductance Ca2+-activated K+ (SK) current (ISK) and large (big) conductance voltage- and Ca2+-activated K+ (BK) current (IBK). We show that the apamin-sensitive current has an IC50 of 69 pM, consistent with the SK2 channel subtype and confirmed by immunocytochemistry. The magnitude of the SK current response to GnRH was attenuated by 17β-estradiol (E2) pretreatment. Iberiotoxin, an inhibitor of BK channels, completely blocked the residual apamin-insensitive outward Im, substantiating that IBK is a component of the GnRH-induced outward Im. In contrast to its suppression of ISK, E2 pretreatment augmented peak IBK. SK or BK channel inhibition modulated GnRH-stimulated LH secretion, implicating a role for these channels in gonadotroph function. In summary, in mouse gonadotrophs the GnRH-stimulated increase in [Ca2+]i activates ISK and IBK, which are differentially regulated by E2 and which may be targets for E2 positive feedback in LH secretion. PMID:19106218

  11. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning

    PubMed Central

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor. PMID:27094086

  12. pH regulation of amphotericin B channels activity in the bilayer lipid membrane

    PubMed Central

    Shahmoradi, Tahereh; Sepehry, Hamid; Ashrafpour, Manuchehr

    2016-01-01

    Background: Amphotericin B (AmB) is a polyene antibiotic frequently applied in the treatment of systemic fungal infections in spite of its secondary effects. The pH plays a crucial role in modulating biophysical features of ion channels in the bilayer lipid membranes. Aim: In this study, the role of pH in the regulation of AmB channel was assessed by single channel recording of ion channel incorporated in the artificial membrane. Materials and Methods: Bilayer lipid membrane was formed by phosphatidylcholine in a 350 μm diameter aperture between two chambers, cis and trans contained 200/50 mMKCl solutions, respectively; then AmB was incorporated into the bilayer lipid membrane. Single channel recordings were used to indicate the effects of pH changes on AmB channels activity. The records were analyzed by Clamp fit 10 software. Results: A kinetic analysis of single channel currents indicated a cation ion channel with 500 pS conductance and voltage-dependence of the open probability of the AmB channel (Po). A reduction of cis pH to 6 decreased Po and conductance. This effect was also voltage-dependent, being greater at a more positive above −40. The pH changes in the range of 6-8 had no effect on the reversal potential and ion selectivity. Conclusion: Our data indicated that extracellular acidity can reduce AmB activity. PMID:27003977

  13. Transient potassium channels augment degeneracy in hippocampal active dendritic spectral tuning.

    PubMed

    Rathour, Rahul Kumar; Malik, Ruchi; Narayanan, Rishikesh

    2016-01-01

    Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.

  14. Ion Channels in Regulation of Neuronal Regenerative Activities

    PubMed Central

    Chen, Dongdong; Yu, Shan Ping; Wei, Ling

    2014-01-01

    The regeneration of the nervous system is achieved by the regrowth of damaged neuronal axons, the restoration of damaged nerve cells, and the generation of new neurons to replace those that have been lost. In the central nervous system the regenerative ability is limited by various factors including damaged oligodendrocytes that are essential for neuronal axon myelination, an emerging glial scar, and secondary injury in the surrounding areas. Stem cell transplantation therapy has been shown to be a promising approach to treating neurodegenerative diseases because of the regenerative capability of stem cells that secrete neurotrophic factors and give rise to differentiated progeny. However, some issues of stem cell transplantation, such as survival, homing, and efficiency of neural differentiation after transplantation, still need to be improved. Ion channels allow for the exchange of ions between the intra- and extracellular spaces or between the cytoplasm and organelles. These ion channels maintain the ion homeostasis in the brain and play a key role in regulating the physiological function of the nervous system and allowing the processing of neuronal signals. In seeking a potential strategy to enhance the efficacy of stem cell therapy in neurological and neurodegenerative diseases, this review briefly summarizes the roles of ion channels in cell proliferation, differentiation, migration, chemotropic axon guidance of growth cones and axon outgrowth after injury. PMID:24399572

  15. Characterization of ryanodine receptor type 1 single channel activity using "on-nucleus" patch clamp.

    PubMed

    Wagner, Larry E; Groom, Linda A; Dirksen, Robert T; Yule, David I

    2014-08-01

    In this study, we provide the first description of the biophysical and pharmacological properties of ryanodine receptor type 1 (RyR1) expressed in a native membrane using the on-nucleus configuration of the patch clamp technique. A stable cell line expressing rabbit RyR1 was established (HEK-RyR1) using the FLP-in 293 cell system. In contrast to untransfected cells, RyR1 expression was readily demonstrated by immunoblotting and immunocytochemistry in HEK-RyR1 cells. In addition, the RyR1 agonists 4-CMC and caffeine activated Ca(2+) release that was inhibited by high concentrations of ryanodine. On nucleus patch clamp was performed in nuclei prepared from HEK-RyR1 cells. Raising the [Ca(2+)] in the patch pipette resulted in the appearance of a large conductance cation channel with well resolved kinetics and the absence of prominent subconductance states. Current versus voltage relationships were ohmic and revealed a chord conductance of ∼750pS or 450pS in symmetrical 250mM KCl or CsCl, respectively. The channel activity was markedly enhanced by caffeine and exposure to ryanodine resulted in the appearance of a subconductance state with a conductance ∼40% of the full channel opening with a Po near unity. In total, these properties are entirely consistent with RyR1 channel activity. Exposure of RyR1 channels to cyclic ADP ribose (cADPr), nicotinic acid adenine dinucleotide phosphate (NAADP) or dantrolene did not alter the single channel activity stimulated by Ca(2+), and thus, it is unlikely these molecules directly modulate RyR1 channel activity. In summary, we describe an experimental platform to monitor the single channel properties of RyR channels. We envision that this system will be influential in characterizing disease-associated RyR mutations and the molecular determinants of RyR channel modulation.

  16. Kv Channel S1-S2 Linker Working as a Binding Site of Human β-Defensin 2 for Channel Activation Modulation.

    PubMed

    Feng, Jing; Yang, Weishan; Xie, Zili; Xiang, Fang; Cao, Zhijian; Li, Wenxin; Hu, Hongzhen; Chen, Zongyun; Wu, Yingliang

    2015-06-19

    Among the three extracellular domains of the tetrameric voltage-gated K(+) (Kv) channels consisting of six membrane-spanning helical segments named S1-S6, the functional role of the S1-S2 linker still remains unclear because of the lack of a peptide ligand. In this study, the Kv1.3 channel S1-S2 linker was reported as a novel receptor site for human β-defensin 2 (hBD2). hBD2 shifts the conductance-voltage relationship curve of the human Kv1.3 channel in a positive direction by nearly 10.5 mV and increases the activation time constant for the channel. Unlike classical gating modifiers of toxin peptides from animal venoms, which generally bind to the Kv channel S3-S4 linker, hBD2 only targets residues in both the N and C termini of the S1-S2 linker to influence channel gating and inhibit channel currents. The increment and decrement of the basic residue number in a positively charged S4 sensor of Kv1.3 channel yields conductance-voltage relationship curves in the positive direction by ∼31.2 mV and 2-4 mV, which suggests that positively charged hBD2 is anchored in the channel S1-S2 linker and is modulating channel activation through electrostatic repulsion with an adjacent S4 helix. Together, these findings reveal a novel peptide ligand that binds with the Kv channel S1-S2 linker to modulate channel activation. These findings also highlight the functional importance of the Kv channel S1-S2 linker in ligand recognition and modification of channel activation.

  17. Peptide inhibition of constitutively activated epithelial Na(+) channels expressed in Xenopus oocytes.

    PubMed

    Ji, H L; Fuller, C M; Benos, D J

    1999-12-31

    The hypothesis that 30-amino acid peptides corresponding to the C-terminal portion of the beta- and/or gamma-rat epithelial sodium channel (rENaC) subunits block constitutively activated ENaC was tested by examining the effects of these peptides on wild-type (wt) rENaC (alphabetagamma-rENaC), truncated Liddle's mutants (alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC), and point mutants (alphabeta(Y)gamma-, alphabetagamma(Y)-rENaC) expressed in Xenopus oocytes. The chord conductances of alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC were 2- or 3-fold greater than for wt alphabetagamma-rENaC. Introduction of peptides into oocytes expressing alphabeta(T)gamma-, alphabetagamma(T)-, and alphabeta(T)gamma(T)-rENaC produced a concentration-dependent inhibition of the amiloride-sensitive Na(+) conductances, with apparent dissociation constants (K(d)) ranging from 1700 to 160 microM, depending upon whether individual peptides or their combination was used. Injection of peptides alone or in combination into oocytes expressing wt alphabetagamma-rENaC or single-point mutants did not affect the amiloride-sensitive whole-cell currents. The single channel conductances of all the mutant ENaCs were the same as that of wild type (alphabetagamma-). The single channel activities (N.P(o)) of the mutants were approximately 2.2-2.6-fold greater than wt alphabetagamma-rENaC (1.08 +/- 0.24, n = 7) and were reduced to 1.09 +/- 0.17 by 100 microM peptide mixture (n = 9). The peptides were without effect on the single channel properties of either wt or single-point mutants of rENaC. Our data demonstrate that the C-terminal peptides blocked the Liddle's truncation mutant (alphabeta(T)gamma(T)) expressed in Xenopus oocytes but not the single-point mutants (alphabeta(Y)gamma or alphabetagamma(Y)). Moreover, the blocking effect of both peptides in combination on alphabeta(T)gamma(T)-rENaC was synergistic. PMID:10608827

  18. Structure-activity studies on 1,4-dihydropyridine calcium channel antagonists and activators

    SciTech Connect

    Joslyn, A.F.

    1986-01-01

    Four series of 1,4-dihydropyridine Ca{sup 2+} channel antagonists related to mifedipine were synthesized by a modified Hantzsch procedure to determine the effects of ester (C{sub 3} = CO{sub 2}Me, C{sub 5} = CO{sub 2}R) and phenyl (C{sub 4}) substituents on pharmacological and radioligand binding ((H)nitrendipine) activities in guinea pig ileal longitudinal smooth muscle. Two series of Ca{sup 2+} channel activator 1,4-dihydropyridines, BAY K 8644 (C{sub 3} = NO{sub 2}, C{sub 5} = CO{sub 2}Me) and CGP 28392 (C{sub 2,3} = lactone, C{sub 5} = CO{sub 2}Me) were biochemically evaluated by inhibition of ({sup 3}H)nitrendipine binding in guinea pig ileal longitudinal smooth muscle membranes to establish fundamental structure-activity requirements. A homologous series of bis-1,4-dihydropyridines were synthesized, pharmacologically and biochemically evaluated in an attempt to explore the distribution of the 1,4-dihydropyridine receptor in guinea pig ileal longitudinal smooth muscle membranes. Several potential affinity labels including ester substituted 3- and 4-fluorosulfonyl benzoyl and isothiocyanate derivatives were synthesized and evaluated by inhibition of ({sup 3}H)nitrendipine binding.

  19. UCP3 Regulates Single-Channel Activity of the Cardiac mCa1.

    PubMed

    Motloch, Lukas J; Gebing, Tina; Reda, Sara; Schwaiger, Astrid; Wolny, Martin; Hoppe, Uta C

    2016-08-01

    Mitochondrial Ca(2+) uptake (mCa(2+) uptake) is thought to be mediated by the mitochondrial Ca(2+) uniporter (MCU). UCP2 and UCP3 belong to a superfamily of mitochondrial ion transporters. Both proteins are expressed in the inner mitochondrial membrane of the heart. Recently, UCP2 was reported to modulate the function of the cardiac MCU related channel mCa1. However, the possible role of UCP3 in modulating cardiac mCa(2+) uptake via the MCU remains inconclusive. To understand the role of UCP3, we analyzed cardiac mCa1 single-channel activity in mitoplast-attached single-channel recordings from isolated murine cardiac mitoplasts, from adult wild-type controls (WT), and from UCP3 knockout mice (UCP3(-/-)). Single-channel registrations in UCP3(-/-) confirmed a murine voltage-gated Ca(2+) channel, i.e., mCa1, which was inhibited by Ru360. Compared to WT, mCa1 in UCP3(-/-) revealed similar single-channel characteristics. However, in UCP3(-/-) the channel exhibited decreased single-channel activity, which was insensitive to adenosine triphosphate (ATP) inhibition. Our results suggest that beyond UCP2, UCP3 also exhibits regulatory effects on cardiac mCa1/MCU function. Furthermore, we speculate that UCP3 might modulate previously described inhibitory effects of ATP on mCa1/MCU activity as well.

  20. A ubiquitous splice variant and a common polymorphism affect heterologous expression of recombinant human SCN5A heart sodium channels.

    PubMed

    Makielski, Jonathan C; Ye, Bin; Valdivia, Carmen R; Pagel, Matthew D; Pu, Jielin; Tester, David J; Ackerman, Michael J

    2003-10-31

    Amino acid sequence variations in SCN5A are known to affect function of wild-type channels and also those with coexisting mutations; therefore, it is important to know the exact sequence and function of channels most commonly present in human myocardium. SCN5A was analyzed in control panels of human alleles, demonstrating that the existing clones (hH1, hH1a, hH1b) each contained a rare variant and thus none represented the common sequence. Confirming prior work, the H558R polymorphism was present in approximately 30% of subjects. Quantitative mRNA analysis from human hearts showed that a shorter 2015 amino acid splice variant lacking glutamine at position 1077 (Q1077del) made up 65% of the transcript in every heart examined. Age, sex, race, or structural heart disease did not affect this proportion of Q1077del. Estimated population frequencies for the four common variants were 25% SCN5A, 10% [H558R], 45% [Q1077del], and 20% [H558R;Q1077del], where the reference sequence SCN5A is GenBank AC137587. When expressed in HEK-293 cells, these common variants had a more positive mid-point of the voltage dependence of inactivation than the standard clone hH1. Also, channels containing Q1077 expressed smaller currents. When H558R was present with Q1077 ([H558R]), current expression was profoundly reduced despite normal trafficking to the cell surface. Thus, four variant sequences for SCN5A are commonly present in human myocardium and they exhibit functional differences among themselves and with the previous standard clone. These results have implications for the choice of background sequence for experiments with heterologous expression systems, and possibly implications for electrophysiological function in vivo. PMID:14500339

  1. Store-operated Ca2+ channels blockers inhibit lipopolysaccharide induced astrocyte activation.

    PubMed

    Li, Jian-Hua; Zhao, Shen-Ting; Wu, Cui-Ying; Cao, Xiong; Peng, Miao-Ru; Li, Shu-Ji; Liu, Xiao-Ai; Gao, Tian-Ming

    2013-10-01

    The destruction of calcium homeostasis is an important factor leading to neurological diseases. Store-operated Ca(2+) (SOC) channels are essential for Ca(2+) homeostasis in many cell types. However, whether SOC channels are involved in astrocyte activation induced by lipopolysaccharide (LPS) still remains unknown. In this study, we used LPS as an exogenous stimulation to investigate the role of SOC channels in astrocyte activation. Using calcium imaging technology, we first found that SOC channels blockers, 1-[h-[3-(4-methoxyphenyl)propoxy]-4-methoxyphenethyl]-1H-imidazole (SKF-96365) and 2-aminoethyldiphenyl borate (2-APB), inhibited LPS induced [Ca(2+)]i increase, which prompted us to speculate that SOC channels may be involved in LPS induced astrocyte activation. Further experiments confirmed our speculation shown as SOC channels blockers inhibited LPS induced astrocyte activation characterized as cell proliferation by MTS and BrdU assay, raise in glial fibrillary acidic protein expression by immunofluorescence and Western Blot and secretion of interleukin 6 (IL-6) and interleukin 1β (IL-1β) by ELISA. So, our studies showed that SOC channels are involved in LPS-induced astrocyte activation.

  2. Fast and slow activation kinetics of voltage-gated sodium channels in molluscan neurons.

    PubMed

    Gilly, W F; Gillette, R; McFarlane, M

    1997-05-01

    Whole cell patch-clamp recordings of Na current (I(Na)) were made under identical experimental conditions from isolated neurons from cephalopod (Loligo, Octopus) and gastropod (Aplysia, Pleurobranchaea, Doriopsilla) species to compare properties of activation gating. Voltage dependence of peak Na conductance (gNa) is very similar in all cases, but activation kinetics in the gastropod neurons studied are markedly slower. Kinetic differences are very pronounced only over the voltage range spanned by the gNa-voltage relation. At positive and negative extremes of voltage, activation and deactivation kinetics of I(Na) are practically indistinguishable in all species studied. Voltage-dependent rate constants underlying activation of the slow type of Na channel found in gastropods thus appear to be much more voltage dependent than are the equivalent rates in the universally fast type of channel that predominates in cephalopods. Voltage dependence of inactivation kinetics shows a similar pattern and is representative of activation kinetics for the two types of Na channels. Neurons with fast Na channels can thus make much more rapid adjustments in the number of open Na channels at physiologically relevant voltages than would be possible with only slow Na channels. This capability appears to be an adaptation that is highly evolved in cephalopods, which are well known for their high-speed swimming behaviors. Similarities in slow and fast Na channel subtypes in molluscan and mammalian neurons are discussed. PMID:9163364

  3. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity

    PubMed Central

    Hawkins, Virginia E.; Hawryluk, Joanna M.; Takakura, Ana C.; Tzingounis, Anastasios V.; Moreira, Thiago S.

    2014-01-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H+-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs+) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih. PMID:25429115

  4. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity.

    PubMed

    Hawkins, Virginia E; Hawryluk, Joanna M; Takakura, Ana C; Tzingounis, Anastasios V; Moreira, Thiago S; Mulkey, Daniel K

    2015-02-15

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H(+)-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs(+)) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih.

  5. Ischemia enhances activation by Ca2+ and redox modification of ryanodine receptor channels from rat brain cortex.

    PubMed

    Bull, Ricardo; Finkelstein, José Pablo; Gálvez, Jorge; Sánchez, Gina; Donoso, Paulina; Behrens, María Isabel; Hidalgo, Cecilia

    2008-09-17

    Cerebral ischemia stimulates Ca2+ influx and thus increases neuronal intracellular free [Ca2+]. Using a rat model of cerebral ischemia without recirculation, we tested whether ischemia enhances the activation by Ca2+ of ryanodine receptor (RyR) channels, a requisite feature of RyR-mediated Ca2+-induced Ca2+ release (CICR). To this aim, we evaluated how single RyR channels from endoplasmic reticulum vesicles, fused into planar lipid bilayers, responded to cytoplasmic [Ca2+] changes. Endoplasmic reticulum vesicles were isolated from the cortex of rat brains incubated without blood flow for 5 min at 37 degrees C (ischemic) or at 4 degrees C (control). Ischemic brains displayed increased oxidative intracellular conditions, as evidenced by a lower ratio (approximately 130:1) of reduced/oxidized glutathione than controls (approximately 200:1). Single RyR channels from ischemic or control brains displayed the same three responses to Ca2+ reported previously, characterized by low, moderate, or high maximal activity. Relative to controls, RyR channels from ischemic brains displayed with increased frequency the high activity response and with lower frequency the low activity response. Both control and ischemic cortical vesicles contained the RyR2 and RyR3 isoforms in a 3:1 proportion, with undetectable amounts of RyR1. Ischemia reduced [3H]ryanodine binding and total RyR protein content by 35%, and increased at least twofold endogenous RyR2 S-nitrosylation and S-glutathionylation without affecting the corresponding RyR3 endogenous levels. In vitro RyR S-glutathionylation but not S-nitrosylation favored the emergence of high activity channels. We propose that ischemia, by enhancing RyR2 S-glutathionylation, allows RyR2 to sustain CICR; the resulting amplification of Ca2+ entry signals may contribute to cortical neuronal death. PMID:18799678

  6. Bothriurus bonariensis scorpion venom activates voltage-dependent sodium channels in insect and mammalian nervous systems.

    PubMed

    Dos Santos, Douglas Silva; Carvalho, Evelise Leis; de Lima, Jeferson Camargo; Breda, Ricardo Vaz; Oliveira, Raquel Soares; de Freitas, Thiago Carrazoni; Salamoni, Simone Denise; Domingues, Michelle Flores; Piovesan, Angela Regina; Boldo, Juliano Tomazzoni; de Assis, Dênis Reis; da Costa, Jaderson Costa; Dal Belo, Cháriston André; Pinto, Paulo Marcos

    2016-10-25

    Animal venoms have been widely recognized as a major source of biologically active molecules. Bothriurus bonariensis, popularly known as black scorpion, is the arthropod responsible for the highest number of accidents involving scorpion sting in Southern Brazil. Here we reported the first attempt to investigate the neurobiology of B. bonariensis venom (BBV) in the insect and mammalian nervous system. BBV (32 μg/g) induced a slow neuromuscular blockade in the in vivo cockroach nerve-muscle preparations (70 ± 4%, n = 6, p < 0.001), provoking repetitive twitches and significantly decreasing the frequency of spontaneous leg action potentials (SNCAPs) from 82 ± 3 min(-1) to 36 ± 1.3 min(-1) (n = 6, p < 0.05), without affecting the amplitude. When tested in primary cultures of rat hippocampal cells, BBV induced a massive increase of Ca(2+) influx (250 ± 1% peak increase, n = 3, p < 0.0001). The disturbance of calcium homeostasis induced by BBV on the mammalian central nervous system was not accompanied by cellular death and was prevented by the co-treatment of the hippocampal cells with tetrodotoxin, a selective sodium channel blocker. The results suggest that the biological activity of BBV is mostly related to a modulation of sodium channels function. Our biological activity survey suggests that BBV may have a promising insecticidal and therapeutic potential. PMID:27544632

  7. How does the anthropogenic activity affect the spring discharge?

    NASA Astrophysics Data System (ADS)

    Hao, Yonghong; Zhang, Juan; Wang, Jiaojiao; Li, Ruifang; Hao, Pengmei; Zhan, Hongbin

    2016-09-01

    Karst hydrological process has largely been altered by climate change and human activity. In many places throughout the world, human activity (e.g. groundwater pumping and dewatering from mining) has intensified and surpassed climate change, where human activity becomes the primary factor that affects groundwater system. But it is still largely unclear how the human activity affects spring discharge in magnitude and periodicity. This study investigates the effects of anthropogenic activity on spring discharge, using the Xin'an Springs of China as an example. The Xin'an Spring discharge were divided into two time periods: the pre-development period from 1956 to 1971 and the post-development period from 1972 to 2013. We confirm the dividing time (i.e. 1971) of these two periods using the Wilcoxon rank-sum test. Then the wavelet transform and wavelet coherence were used to analyze the karst hydrological processes for the two periods respectively. We analyze the correlations of precipitation and the Xin'an spring discharge with the monsoons including the Indian Summer Monsoon (ISM) and the West North Pacific Monsoon (WNPM) and the climate teleconnections including El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO), respectively. The results indicated that the spring discharge was attenuated about 19.63% under the influence of human activity in the Xin'an Springs basin. However, human activity did not alter the size of the resonance frequencies between the spring discharge and the monsoons. In contrast, it reinforced the periodicities of the monsoons-driven spring discharge. It suggested that human has adapted to the major climate periodicities, and human activity had the same rhyme with the primary climate periodicity. In return, human activity enhances the correlation between the monsoons and the spring discharge.

  8. Large-conductance voltage- and Ca2+-activated K+ channel regulation by protein kinase C in guinea pig urinary bladder smooth muscle.

    PubMed

    Hristov, Kiril L; Smith, Amy C; Parajuli, Shankar P; Malysz, John; Petkov, Georgi V

    2014-03-01

    Large-conductance voltage- and Ca(2+)-activated K(+) (BK) channels are critical regulators of detrusor smooth muscle (DSM) excitability and contractility. PKC modulates the contraction of DSM and BK channel activity in non-DSM cells; however, the cellular mechanism regulating the PKC-BK channel interaction in DSM remains unknown. We provide a novel mechanistic insight into BK channel regulation by PKC in DSM. We used patch-clamp electrophysiology, live-cell Ca(2+) imaging, and functional studies of DSM contractility to elucidate BK channel regulation by PKC at cellular and tissue levels. Voltage-clamp experiments showed that pharmacological activation of PKC with PMA inhibited the spontaneous transient BK currents in native freshly isolated guinea pig DSM cells. Current-clamp recordings revealed that PMA significantly depolarized DSM membrane potential and inhibited the spontaneous transient hyperpolarizations in DSM cells. The PMA inhibitory effects on DSM membrane potential were completely abolished by the selective BK channel inhibitor paxilline. Activation of PKC with PMA did not affect the amplitude of the voltage-step-induced whole cell steady-state BK current or the single BK channel open probability (recorded in cell-attached mode) upon inhibition of all major Ca(2+) sources for BK channel activation with thapsigargin, ryanodine, and nifedipine. PKC activation with PMA elevated intracellular Ca(2+) levels in DSM cells and increased spontaneous phasic and nerve-evoked contractions of DSM isolated strips. Our results support the concept that PKC activation leads to a reduction of BK channel activity in DSM via a Ca(2+)-dependent mechanism, thus increasing DSM contractility.

  9. Myotonia Congenita-Associated Mutations in Chloride Channel-1 Affect Zebrafish Body Wave Swimming Kinematics

    PubMed Central

    Cheng, Wei; Tian, Jing; Burgunder, Jean-Marc; Hunziker, Walter; Eng, How-Lung

    2014-01-01

    Myotonia congenita is a human muscle disorder caused by mutations in CLCN1, which encodes human chloride channel 1 (CLCN1). Zebrafish is becoming an increasingly useful model for human diseases, including muscle disorders. In this study, we generated transgenic zebrafish expressing, under the control of a muscle specific promoter, human CLCN1 carrying mutations that have been identified in human patients suffering from myotonia congenita. We developed video analytic tools that are able to provide precise quantitative measurements of movement abnormalities in order to analyse the effect of these CLCN1 mutations on adult transgenic zebrafish swimming. Two new parameters for body-wave kinematics of swimming reveal changes in body curvature and tail offset in transgenic zebrafish expressing the disease-associated CLCN1 mutants, presumably due to their effect on muscle function. The capability of the developed video analytic tool to distinguish wild-type from transgenic zebrafish could provide a useful asset to screen for compounds that reverse the disease phenotype, and may be applicable to other movement disorders besides myotonia congenita. PMID:25083883

  10. Molecular characterization of a gene affecting potassium channels in Drosophila melanogaster

    SciTech Connect

    Drysdale, R.A.

    1988-01-01

    This study describes the molecular isolation and characterization of the ether-a-go-go (eag) gene of Drosophila melanogaster. Electrophysiological and genetic evidence suggest that the product of the eag locus is intimately involved in the normal functioning of voltage-gated potassium channels. A molecular analysis of eag was undertaken in order to elucidate the contribution of eag{sup +} to the proper operation of the nervous system. An inverted chromosome, In(1)sc{sup 29}, broken in the scute complex and in the eag locus, was used to isolate DNA from the eag region. 85kb of DNA around this starting point were isolated by chromosome waling. Analysis of the corresponding genomic DNA identified the molecular lesions associated with three additional eag allels: two dysgeneis-induced insertion mutations and a lambda-ray-induced insertional translocation. The molecular defects associated with these alleles are spread throughout 27kb within the chromosome walk. Several cDNAs have been isolated on the basis of homology to parts of the chromosome walk. One of these is multiply spliced over 32kb of genomic DNA in a pattern that strongly suggests that it represents at least part of the eag message.

  11. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance

    PubMed Central

    Ahmad, Izhar; Mian, Afaq; Maathuis, Frans J. M.

    2016-01-01

    Potassium (K+) is the most important cationic nutrient for all living organisms and has roles in most aspects of plant physiology. To assess the impact of one of the main K+ uptake components, the K+ inward rectifying channel AKT1, we characterized both loss of function and overexpression of OsAKT1 in rice. In many conditions, AKT1 expression correlated with K+ uptake and tissue K+ levels. No salinity-related growth phenotype was observed for either loss or gain of function mutants. However, a correlation between AKT1 expression and root Na+ when the external Na/K ratio was high suggests that there may be a role for AKT1 in Na+ uptake in such conditions. In contrast to findings with Arabidopsis thaliana, we did not detect any change in growth of AKT1 loss of function mutants in the presence of NH4 +. Nevertheless, NH4 +-dependent inhibition was detected during K+ uptake assays in loss of function and wild type plants, depending on pre-growth conditions. The most prominent result of OsAKT1 overexpression was a reduction in sensitivity to osmotic/drought stress in transgenic plants: the data suggest that AKT1 overexpression improved rice osmotic and drought stress tolerance by increasing tissue levels of K+, especially in the root. PMID:26969743

  12. Can gramicidin ion channel affect the dipole potential of neighboring phospholipid headgroups?

    PubMed

    Becucci, Lucia; Guidelli, Rolando

    2015-12-01

    The cyclic voltammetry behavior of a mercury-supported tethered bilayer lipid membrane (tBLM) incorporating gramicidin A was investigated in aqueous 0.1 M KCl at pH 6.8, 5.4 and 3. The distal leaflet of the lipid bilayer consisted of dioleoylphosphatidylcholine (DOPC), dioleoylphosphatidylserine (DOPS), dioleoylphosphatidic acid or a DOPC/cholesterol mixture. In passing from pH 6.8 to pH 3, the midpoint potential between the negative current peak, due to K(+) inflow into the spacer, and the positive current peak, due to K(+) ejection into the aqueous solution, shifts toward more positive potentials, while the separation between these two peaks decreases. This behavior is interpreted quantitatively on the basis of a model relying on tBLM structural features estimated independently in previous works. The only adjustable parameter is the rate constant for cation translocation across a potential energy barrier located in the hydrocarbon tail region. The behavior is ascribed to a dragging of the lipid headgroups adjacent to the gramicidin channel mouth toward the hydrocarbon tail region, with a resulting decrease in the negative charge of the DOPC phosphate group, or of the DOPS carboxyl group, with decreasing pH.

  13. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs.

    PubMed

    Dittrich, Nikolaus P; Kummer, Wolfgang; Clauss, Wolfgang G; Fronius, Martin

    2015-11-01

    Fluid homeostasis mediated by the airway epithelium is required for proper lung function, and the CFTR (cystic fibrosis transmembrane conductance regulator) Cl(-) channel is crucial for these processes. Luminal acetylcholine (ACh) acts as an auto-/paracrine mediator to activate Cl(-) channels in airway epithelia and evidence exists showing that nicotinic ACh receptors activate CFTR in murine airway epithelia. The present study investigated whether or not luminal ACh regulates CFTR activity in airway epithelia of pigs, an emerging model for investigations of human airway disease and cystic fibrosis (CF) in particular. Transepithelial ion currents of freshly dissected pig tracheal preparations were measured with Ussing chambers. Application of luminal ACh (100 μM) induced an increase of the short-circuit current (I(SC)). The ACh effect was mimicked by muscarine and pilocarpine (100 μM each) and was sensitive to muscarinic receptor antagonists (atropine, 4-DAMP, pirenzepine). No changes of the I(SC) were observed by nicotine (100 μM) and ACh responses were not affected by nicotine or mecamylamine (25 μM). Luminal application of IBMX (I, 100 μM) and forskolin (F, 10 μM), increase the I(SC) and the I/F-induced current were decreased by the CFTR inhibitor GlyH-101 (GlyH, 50 μM) indicating increased CFTR activity by I/F. In contrast, GlyH did not affect the ACh-induced current, indicating that the ACh response does not involve the activation of the CFTR. Results from this study suggest that luminal ACh does not regulate the activity of the CFTR in tracheal epithelia of pigs which opposes observation from studies using mice airway epithelium.

  14. Luminal acetylcholine does not affect the activity of the CFTR in tracheal epithelia of pigs.

    PubMed

    Dittrich, Nikolaus P; Kummer, Wolfgang; Clauss, Wolfgang G; Fronius, Martin

    2015-11-01

    Fluid homeostasis mediated by the airway epithelium is required for proper lung function, and the CFTR (cystic fibrosis transmembrane conductance regulator) Cl(-) channel is crucial for these processes. Luminal acetylcholine (ACh) acts as an auto-/paracrine mediator to activate Cl(-) channels in airway epithelia and evidence exists showing that nicotinic ACh receptors activate CFTR in murine airway epithelia. The present study investigated whether or not luminal ACh regulates CFTR activity in airway epithelia of pigs, an emerging model for investigations of human airway disease and cystic fibrosis (CF) in particular. Transepithelial ion currents of freshly dissected pig tracheal preparations were measured with Ussing chambers. Application of luminal ACh (100 μM) induced an increase of the short-circuit current (I(SC)). The ACh effect was mimicked by muscarine and pilocarpine (100 μM each) and was sensitive to muscarinic receptor antagonists (atropine, 4-DAMP, pirenzepine). No changes of the I(SC) were observed by nicotine (100 μM) and ACh responses were not affected by nicotine or mecamylamine (25 μM). Luminal application of IBMX (I, 100 μM) and forskolin (F, 10 μM), increase the I(SC) and the I/F-induced current were decreased by the CFTR inhibitor GlyH-101 (GlyH, 50 μM) indicating increased CFTR activity by I/F. In contrast, GlyH did not affect the ACh-induced current, indicating that the ACh response does not involve the activation of the CFTR. Results from this study suggest that luminal ACh does not regulate the activity of the CFTR in tracheal epithelia of pigs which opposes observation from studies using mice airway epithelium. PMID:26286842

  15. BK channel activation by tungstate requires the β1 subunit extracellular loop residues essential to modulate voltage sensor function and channel gating.

    PubMed

    Fernández-Mariño, Ana I; Valverde, Miguel A; Fernández-Fernández, José M

    2014-07-01

    Tungstate, a compound with antidiabetic, antiobesity, and antihypertensive properties, activates the large-conductance voltage- and Ca(2+)-dependent K(+) (BK) channel containing either β1 or β4 subunits. The BK activation by tungstate is Mg(2+)-dependent and promotes arterial vasodilation, but only in precontracted mouse arteries expressing β1. In this study, we further explored how the β1 subunit participates in tungstate activation of BK channels. Activation of heterologously expressed human BKαβ1 channels in inside-out patches is fully dependent on the Mg(2+) sensitivity of the BK α channel subunit even at high (10 μM) cytosolic Ca(2+) concentration. Alanine mutagenesis of β1 extracellular residues Y74 or S104, which destabilize the active voltage sensor, greatly decreased the tungstate-induced left-shift of the BKαβ1 G-V curves in either the absence or presence of physiologically relevant cytosolic Ca(2+) levels (10 μM). The weakened tungstate activation of the BKαβ1Y74A and BKαβ1S104A mutant channels was not related to decreased Mg(2+) sensitivity. These results, together with previously published reports, support the idea that the putative binding site for tungstate-mediated BK channel activation is located in the pore-forming α channel subunit, around the Mg(2+) binding site. The role of β1 in tungstate-induced channel activation seems to rely on its interaction with the BK α subunit to modulate channel activity. Loop residues that are essential for the regulation of voltage sensor activation and gating of the BK channel are also relevant for BK activation by tungstate.

  16. Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels

    PubMed Central

    Gomis, Ana; Soriano, Sergio; Belmonte, Carlos; Viana, Félix

    2008-01-01

    Transient receptor potential (TRP) channels mediate a wide array of sensory functions. We investigated the role of TRPC5, a poorly characterized channel widely expressed in the central and peripheral nervous system, as a potential osmosensory protein. Here we show that hypoosmotic stimulation activates TRPC5 channels resulting in a large calcium influx. The response to osmotically induced membrane stretch is blocked by GsMTx-4, an inhibitor of stretch activated ion channels. Direct hypoosmotic activation of TRPC5 is independent of phospholipase C function. However, the osmotic response is inhibited in a cell line in which PIP2 levels are reduced by regulated overexpression of a lipid phosphatase. The response was restored by increasing intracellular PIP2 levels through the patch pipette. The mechano-sensitivity of the channel was probed in the whole-cell configuration by application of steps of positive pressure through the patch pipette. Pressure-induced membrane stretch also activated TRPC5 channels, suggesting its role as a transducer of osmo-mechanical stimuli. We also demonstrated the expression of TRPC5 in sensory neurones which together with the osmo-mechanical characteristics of TRPC5 channels suggest its putative role in mechanosensory transduction events. PMID:18832422

  17. Methyl p-hydroxybenzoate causes pain sensation through activation of TRPA1 channels

    PubMed Central

    Fujita, F; Moriyama, T; Higashi, T; Shima, A; Tominaga, M

    2007-01-01

    Background and purpose: Parabens are commonly added in pharmaceutical, cosmetic and food products because of their wide antibacterial properties, low toxicity, inertness and chemical stability, although the molecular mechanism of their antibacterial effect is not fully understood. Some agonists of the transient receptor potential (TRP) A1 channels are known to have strong antibacterial activities. Therefore, a series of experiments was conducted to find out the effects of parabens on TRP channels expressed in sensory neurons, particularly the TRPA1 channels. Experimental approach: Effects of parabens, especially of methyl p-hydroxybenzoate (methyl paraben) on TRP channel activities were examined using Ca2+-imaging and patch-clamp methods. In addition, an involvement of methyl paraben in the development of pain-related behavior in mice was investigated. Key results: Methyl paraben specifically activated TRPA1 in both HEK293 cells expressing TRPA1 and in mouse sensory neurons with an EC50 value of 4.4 mM, an attainable concentration in methyl paraben-containing products. Methyl paraben caused pain-related behavior in mice similar to that caused by allyl isothiocyanate, which was blocked by the TRP channel blocker, ruthenium red. Conclusions and implications: Our data indicate that methyl paraben is able to activate TRPA1 channels and can cause pain sensation. As such, methyl paraben provides a useful tool for investigating TRPA1 function and development of antinociceptive agents acting on TRPA1 channels. PMID:17351650

  18. Differential distribution of the sodium‐activated potassium channels slick and slack in mouse brain

    PubMed Central

    Knaus, Hans‐Günther; Schwarzer, Christoph

    2015-01-01

    ABSTRACT The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26587966

  19. A Calcium-Dependent Plasticity Rule for HCN Channels Maintains Activity Homeostasis and Stable Synaptic Learning

    PubMed Central

    Honnuraiah, Suraj; Narayanan, Rishikesh

    2013-01-01

    Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis. Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results establish specific physiological roles

  20. Does the choice of the forcing term affect flow statistics in DNS of turbulent channel flow?

    NASA Astrophysics Data System (ADS)

    Quadrio, Maurizio; Frohnapfel, Bettina; Hasegawa, Yosuke

    2016-01-01

    We seek possible statistical consequences of the way a forcing term is added to the Navier--Stokes equations in the Direct Numerical Simulation (DNS) of incompressible channel flow. Simulations driven by constant flow rate, constant pressure gradient and constant power input are used to build large databases, and in particular to store the complete temporal trace of the wall-shear stress for later analysis. As these approaches correspond to different dynamical systems, it can in principle be envisaged that these differences are reflect by certain statistics of the turbulent flow field. The instantaneous realizations of the flow in the various simulations are obviously different, but, as expected, the usual one-point, one-time statistics do not show any appreciable difference. However, the PDF for the fluctuations of the streamwise component of wall friction reveals that the simulation with constant flow rate presents lower probabilities for extreme events of large positive friction. The low probability value of such events explains their negligible contribution to the commonly computed statistics; however, the very existence of a difference in the PDF demonstrates that the forcing term is not entirely uninfluential. Other statistics for wall-based quantities (the two components of friction and pressure) are examined; in particular spatio-temporal autocorrelations show small differences at large temporal separations, where unfortunately the residual statistical uncertainty is still of the same order of the observed difference. Hence we suggest that the specific choice of the forcing term does not produce important statistical consequences, unless one is interested in the strongest events of high wall friction, that are underestimated by a simulation run at constant flow rate.

  1. Cryo-EM structure of the Slo2.2 Na+-activated K+ channel

    PubMed Central

    Hite, Richard; Yuan, Peng; Li, Zongli; Hsuing, Yichun; Walz, Thomas; MacKinnon, Roderick

    2015-01-01

    Na+-activated K+ channels are members of the Slo family of large conductance K+ channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels are fascinating for the biological roles they fulfill as well as for their intriguing biophysical properties, including conductance levels ten times most other K+ channels and gating sensitivity to intracellular Na+. Here we present the structure a complete Na+-activated K+ channel, Slo2.2, in the Na+-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 Å. The channel is composed of a large cytoplasmic gating ring within which resides the Na+-binding site and a transmembrane domain that closely resembles voltage-gated K+ channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure provides a first view of a member of the Slo K+ channel family, which reveals features explaining their high conductance and gating mechanism. PMID:26436452

  2. Paradoxical Contribution of SK3 and GIRK Channels to the Activation of Mouse Vomeronasal Organ

    PubMed Central

    Kim, SangSeong; Ma, Limei; Jensen, Kristi L.; Kim, Michelle M.; Bond, Chris T.; Adelman, John P.; Yu, C. Ron

    2012-01-01

    The vomeronasal organ (VNO) plays an essential role in intraspecies communication for terrestrial vertebrates. The ionic mechanisms of VNO activation remain unclear. We find that the calcium–activated potassium channel SK3 and G–protein activated potassium channel GIRK are part of an independent pathway for VNO activation. In slice preparations, the potassium channels attenuate inward currents carried by TRPC2 and calcium–activated chloride channels (CACCs). In intact tissue preparations, paradoxically, the potassium channels enhance urine–evoked inward currents. This discrepancy results from the loss of a high concentration of lumenal potassium, which enables the influx of potassium ions to depolarize the VNO neurons in vivo. SK3−/− and GIRK1−/− mice show deficits in both mating and aggressive behaviors and deficiency in SK3−/− is exacerbated by TRPC2 knockout. Our results suggest a model of VNO activation that is mediated by TRPC2, CACCs and two potassium channels, all contributing to the in vivo depolarization of VNO neurons. PMID:22842147

  3. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines

    PubMed Central

    Griffith, Thom; Tsaneva-Atanasova, Krasimira; Mellor, Jack R.

    2016-01-01

    The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels) which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM) activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators. PMID:27232631

  4. Direct Activation of β-Cell KATP Channels with a Novel Xanthine Derivative

    PubMed Central

    Raphemot, Rene; Swale, Daniel R.; Dadi, Prasanna K.; Jacobson, David A.; Cooper, Paige; Wojtovich, Andrew P.; Banerjee, Sreedatta; Nichols, Colin G.

    2014-01-01

    ATP-regulated potassium (KATP) channel complexes of inward rectifier potassium channel (Kir) 6.2 and sulfonylurea receptor (SUR) 1 critically regulate pancreatic islet β-cell membrane potential, calcium influx, and insulin secretion, and consequently, represent important drug targets for metabolic disorders of glucose homeostasis. The KATP channel opener diazoxide is used clinically to treat intractable hypoglycemia caused by excessive insulin secretion, but its use is limited by off-target effects due to lack of potency and selectivity. Some progress has been made in developing improved Kir6.2/SUR1 agonists from existing chemical scaffolds and compound screening, but there are surprisingly few distinct chemotypes that are specific for SUR1-containing KATP channels. Here we report the serendipitous discovery in a high-throughput screen of a novel activator of Kir6.2/SUR1: VU0071063 [7-(4-(tert-butyl)benzyl)-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione]. The xanthine derivative rapidly and dose-dependently activates Kir6.2/SUR1 with a half-effective concentration (EC50) of approximately 7 μM, is more efficacious than diazoxide at low micromolar concentrations, directly activates the channel in excised membrane patches, and is selective for SUR1- over SUR2A-containing Kir6.1 or Kir6.2 channels, as well as Kir2.1, Kir2.2, Kir2.3, Kir3.1/3.2, and voltage-gated potassium channel 2.1. Finally, we show that VU0071063 activates native Kir6.2/SUR1 channels, thereby inhibiting glucose-stimulated calcium entry in isolated mouse pancreatic β cells. VU0071063 represents a novel tool/compound for investigating β-cell physiology, KATP channel gating, and a new chemical scaffold for developing improved activators with medicinal chemistry. PMID:24646456

  5. Discovery of novel tetrahydroisoquinoline derivatives as orally active N-type calcium channel blockers with high selectivity for hERG potassium channels.

    PubMed

    Ogiyama, Takashi; Inoue, Makoto; Honda, Shugo; Yamada, Hiroyoshi; Watanabe, Toshihiro; Gotoh, Takayasu; Kiso, Tetsuo; Koakutsu, Akiko; Kakimoto, Shuichiro; Shishikura, Jun-ichi

    2014-12-15

    N-type calcium channels represent a promising target for the treatment of neuropathic pain. The selective N-type calcium channel blocker ziconotide ameliorates severe chronic pain but has a narrow therapeutic window and requires intrathecal administration. We identified tetrahydroisoquinoline derivative 1a as a novel potent N-type calcium channel blocker. However, this compound also exhibited potent inhibitory activity against hERG channels. Structural optimizations led to identification of (1S)-(1-cyclohexyl-3,4-dihydroisoquinolin-2(1H)-yl)-2-{[(1-hydroxycyclohexyl)methyl]amino}ethanone ((S)-1h), which exhibited high selectivity for hERG channels while retaining potency for N-type calcium channel inhibition. (S)-1h went on to demonstrate in vivo efficacy as an orally available N-type calcium channel blocker in a rat spinal nerve ligation model of neuropathic pain.

  6. CACNA1H missense mutations associated with amyotrophic lateral sclerosis alter Cav3.2 T-type calcium channel activity and reticular thalamic neuron firing.

    PubMed

    Rzhepetskyy, Yuriy; Lazniewska, Joanna; Blesneac, Iulia; Pamphlett, Roger; Weiss, Norbert

    2016-11-01

    Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects nerve cells in the brain and the spinal cord. In a recent study by Steinberg and colleagues, 2 recessive missense mutations were identified in the Cav3.2 T-type calcium channel gene (CACNA1H), in a family with an affected proband (early onset, long duration ALS) and 2 unaffected parents. We have introduced and functionally characterized these mutations using transiently expressed human Cav3.2 channels in tsA-201 cells. Both of these mutations produced mild but significant changes on T-type channel activity that are consistent with a loss of channel function. Computer modeling in thalamic reticular neurons suggested that these mutations result in decreased neuronal excitability of thalamic structures. Taken together, these findings implicate CACNA1H as a susceptibility gene in amyotrophic lateral sclerosis.

  7. Properties of cyclic nucleotide-gated channels mediating olfactory transduction. Activation, selectivity, and blockage

    PubMed Central

    1992-01-01

    Cyclic nucleotide-gated channels (cng channels) in the sensory membrane of olfactory receptor cells, activated after the odorant-induced increase of cytosolic cAMP concentration, conduct the receptor current that elicits electrical excitation of the receptor neurons. We investigated properties of cng channels from frog and rat using inside- out and outside-out membrane patches excised from isolated olfactory receptor cells. Channels were activated by cAMP and cGMP with activation constants of 2.5-4.0 microM for cAMP and 1.0-1.8 for cGMP. Hill coefficients of dose-response curves were 1.4-1.8, indicating cooperativity of ligand binding. Selectivity for monovalent alkali cations and the Na/Li mole-fraction behavior identified the channel as a nonselective cation channel, having a cation-binding site of high field strength in the pore. Cytosolic pH effects suggest the presence of an additional titratable group which, when protonated, inhibits the cAMP-induced current with an apparent pK of 5.0-5.2. The pH effects were not voltage dependent. Several blockers of Ca2+ channels also blocked olfactory cng channels. Amiloride, D 600, and diltiazem inhibited the cAMP-induced current from the cytosolic side. Inhibition constants were voltage dependent with values of, respectively, 0.1, 0.3, and 1 mM at -60 mV, and 0.03, 0.02, and 0.2 mM at +60 mV. Our results suggest functional similarity between frog and rat cng channels, as well as marked differences to cng channels from photoreceptors and other tissues. PMID:1324972

  8. ENaC-membrane interactions: regulation of channel activity by membrane order.

    PubMed

    Awayda, Mouhamed S; Shao, Weijian; Guo, Fengli; Zeidel, Mark; Hill, Warren G

    2004-06-01

    Recently, it was reported that the epithelial Na+ channel (ENaC) is regulated by temperature (Askwith, C.C., C.J. Benson, M.J. Welsh, and P.M. Snyder. 2001. Proc. Natl. Acad. Sci. USA. 98:6459-6463). As these changes of temperature affect membrane lipid order and lipid-protein interactions, we tested the hypothesis that ENaC activity can be modulated by membrane lipid interactions. Two approaches were used to modulate membrane anisotropy, a lipid order-dependent parameter. The nonpharmacological approach used temperature changes, while the pharmacological one used chlorpromazine (CPZ), an agent known to decrease membrane order, and Gd+3. Experiments used Xenopus oocytes expressing human ENaC. Methods of impedance analysis were used to determine whether the effects of changing lipid order indirectly altered ENaC conductance via changes of membrane area. These data were further corroborated with quantitative morphology on micrographs from oocytes membranes studied via electron microscopy. We report biphasic effects of cooling (stimulation followed by inhibition) on hENaC conductance. These effects were relatively slow (minutes) and were delayed from the actual bath temperature changes. Peak stimulation occurred at a calculated Tmax of 15.2. At temperatures below Tmax, ENaC conductance was inhibited with cooling. The effects of temperature on gNa were distinct from those observed on ion channels endogenous to Xenopus oocytes, where the membrane conductance decreased monoexponentially with temperature (t = 6.2 degrees C). Similar effects were also observed in oocytes with reduced intra- and extracellular [Na+], thereby ruling out effects of self or feedback inhibition. Addition of CPZ or the mechanosensitive channel blocker, Gd+3, caused inhibition of ENaC. The effects of Gd+3 were also attributed to its ability to partition into the outer membrane leaflet and to decrease anisotropy. None of the effects of temperature, CPZ, or Gd+3 were accompanied by changes of

  9. The Fungal Sexual Pheromone Sirenin Activates the Human CatSper Channel Complex

    PubMed Central

    2015-01-01

    The basal fungus Allomyces macrogynus (A. macrogynus) produces motile male gametes displaying well-studied chemotaxis toward their female counterparts. This chemotaxis is driven by sirenin, a sexual pheromone released by the female gametes. The pheromone evokes a large calcium influx in the motile gametes, which could proceed through the cation channel of sperm (CatSper) complex. Herein, we report the total synthesis of sirenin in 10 steps and 8% overall yield and show that the synthetic pheromone activates the CatSper channel complex, indicated by a concentration-dependent increase in intracellular calcium in human sperm. Sirenin activation of the CatSper channel was confirmed using whole-cell patch clamp electrophysiology with human sperm. Based on this proficient synthetic route and confirmed activation of CatSper, analogues of sirenin can be designed as blockers of the CatSper channel that could provide male contraceptive agents. PMID:26674547

  10. Allelic variation in the vacuolar TPK1 channel affects its calcium dependence and may impact on stomatal conductance.

    PubMed

    Hartley, Tom N; Maathuis, Frans J M

    2016-01-01

    Natural variation can be exploited to identify allelic variants of proteins. In this study, patch clamp was used to determine transport properties of two AtTPK1 alleles from Landsberg and Kas-2 ecotypes. No difference in conductance or ion selectivity was observed but the Kas version of TPK1 showed different Ca(2+) dependence in its open probability compared to Ler. Leaves from Kas showed lower rates of water loss than those of Ler, in either the absence or presence of ABA, an observation that is consistent with higher TPK1 channel activity at comparable cytoplasmic Ca(2+) concentrations. A model that explains the results is presented. PMID:26765783

  11. Calmodulin regulation of TMEM16A and 16B Ca(2+)-activated chloride channels.

    PubMed

    Yang, Tingting; Colecraft, Henry M

    2016-01-01

    Ca(2+)-activated chloride channels encoded by TMEM16A and 16B are important for regulating epithelial mucus secretion, cardiac and neuronal excitability, smooth muscle contraction, olfactory transduction, and cell proliferation. Whether and how the ubiquitous Ca(2+) sensor calmodulin (CaM) regulates the activity of TMEM16A and 16B channels has been controversial and the subject of an ongoing debate. Recently, using a bioengineering approach termed ChIMP (Channel Inactivation induced by Membrane-tethering of an associated Protein) we argued that Ca(2+)-free CaM (apoCaM) is pre-associated with functioning TMEM16A and 16B channel complexes in live cells. Further, the pre-associated apoCaM mediates Ca(2+)-dependent sensitization of activation (CDSA) and Ca(2+)-dependent inactivation (CDI) of some TMEM16A splice variants. In this review, we discuss these findings in the context of previous and recent results relating to Ca(2+)-dependent regulation of TMEM16A/16B channels and the putative role of CaM. We further discuss potential future directions for these nascent ideas on apoCaM regulation of TMEM16A/16B channels, noting that such future efforts will benefit greatly from the pioneering work of Dr. David T. Yue and colleagues on CaM regulation of voltage-dependent calcium channels.

  12. Anion permeation in calcium-activated chloride channels formed by TMEM16A from Xenopus tropicalis.

    PubMed

    Reyes, J P; López-Rodríguez, A; Espino-Saldaña, A E; Huanosta-Gutiérrez, A; Miledi, R; Martínez-Torres, A

    2014-09-01

    Calcium-activated chloride channels (CaCC) formed by anoctamin1/TMEM16A subunits are ubiquitously expressed, and these channels are known to prevent polyspermy in amphibian oocytes. Here, we describe a TMEM16A clone isolated from Xenopus tropicalis oocytes (xtTMEM16A) and how the anion permeation properties are modified in single-site mutants of the ion pore. The anion permeability sequence was SCN(-) > I(-) > Br(-) > Cl(-) > gluconate (relative permeabilities 5.6:3.0:2.1:1:0.2, respectively). Dose-response curves indicated that the voltage-dependent half-maximal concentration for Ca(2+) activation (K d of the Hill equation at +100 mV) was 120 nM in normal external Cl(-), whereas it was displaced leftward to 75 nM Ca(2+), when I(-) replaced Cl(-). The I(-):Cl(-) mole fraction (MF) of the external solution was varied in order to gain insight into the permeation mechanism of the pore. No anomaly in MF behavior was observed for conductance, but it was observed for current reversal potential, which deviated from the prediction of the Goldman-Hodgkin-Katz equation. Mutations of positively charged amino acids in the pore, R646 and R761, to glutamate resulted in reduction of the relative permeability to I(-). Data from the wild type and mutants could be well fitted by a three-barrier, two-site permeation model. This suggests a multi-ion pore with at least two binding sites for anions, with R646 mole fraction closer to the extracellular membrane surface--being important for the stability of both sites--and R761--located deeper within the membrane--mainly affecting the innermost binding site. Considerations of xtTMEM16A putative pore region topology are discussed in the light of two alternative topological models of the protein. PMID:24352628

  13. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators.

    PubMed

    Wang, Wei; Hong, Jeong S; Rab, Andras; Sorscher, Eric J; Kirk, Kevin L

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3-5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  14. Robust Stimulation of W1282X-CFTR Channel Activity by a Combination of Allosteric Modulators

    PubMed Central

    Wang, Wei; Hong, Jeong S.; Rab, Andras; Sorscher, Eric J.; Kirk, Kevin L.

    2016-01-01

    W1282X is a common nonsense mutation among cystic fibrosis patients that results in the production of a truncated Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) channel. Here we show that the channel activity of the W1282X-CFTR polypeptide is exceptionally low in excised membrane patches at normally saturating doses of ATP and PKA (single channel open probability (PO) < 0.01). However, W1282X-CFTR channels were stimulated by two CFTR modulators, the FDA-approved VX-770 and the dietary compound curcumin. Each of these compounds is an allosteric modulator of CFTR gating that promotes channel activity in the absence of the native ligand, ATP. Although W1282X-CFTR channels were stimulated by VX-770 in the absence of ATP their activities remained dependent on PKA phosphorylation. Thus, activated W1282X-CFTR channels should remain under physiologic control by cyclic nucleotide signaling pathways in vivo. VX-770 and curcumin exerted additive effects on W1282X-CFTR channel gating (opening/closing) in excised patches such that the Po of the truncated channel approached unity (> 0.9) when treated with both modulators. VX-770 and curcumin also additively stimulated W1282X-CFTR mediated currents in polarized FRT epithelial monolayers. In this setting, however, the stimulated W1282X-CFTR currents were smaller than those mediated by wild type CFTR (3–5%) due presumably to lower expression levels or cell surface targeting of the truncated protein. Combining allosteric modulators of different mechanistic classes is worth considering as a treatment option for W1282X CF patients perhaps when coupled with maneuvers to increase expression of the truncated protein. PMID:27007499

  15. Modulation of BK channel activities by calcium-sensing receptor in rat bronchopulmonary sensory neurons.

    PubMed

    Vysotskaya, Zhanna V; Moss, Charles R; Gilbert, Carolyn A; Gabriel, Sabry A; Gu, Qihai

    2014-11-01

    This study was carried out to investigate the expression of large-conductance Ca(2+)-activated potassium (BK) channels and to explore the possible modulation of BK channel activities by calcium-sensing receptors (CaSR) in rat bronchopulmonary sensory neurons. The expression of BK channels was demonstrated by immunohistochemistry and RT-PCR. Results from whole-cell patch-clamp recordings demonstrated that activation of CaSR with its agonist spermine or NPS R-568 showed a dual regulating effect on BK channel activities: it potentiated BK currents in cells exhibiting low baseline BK activity while slightly inhibited BK currents in cells with high baseline BK activity. Blocking CaSR with its antagonist NPS 2143 significantly inhibited BK currents. Our results further showed that the modulation of BK currents by CaSR activation or blockade was completely abolished when the intracellular Ca(2+) was chelated by BAPTA-AM. In summary, our data suggest that CaSR plays an integrative role in bronchopulmonary afferent signaling, at least partially through the regulation of BK channel activities.

  16. Substrate elasticity affects bovine satellite cell activation kinetics in vitro.

    PubMed

    Lapin, M R; Gonzalez, J M; Johnson, S E

    2013-05-01

    Satellite cells support efficient postnatal skeletal muscle hypertrophy through fusion into the adjacent muscle fiber. Nuclear contribution allows for maintenance of the fiber myonuclear domain and proficient transcription of myogenic genes. Niche growth factors affect satellite cell biology; however, the interplay between fiber elasticity and microenvironment proteins remains largely unknown. The objective of the experiment was to examine the effects of hepatocyte growth factor (HGF) and surface elasticity on bovine satellite cell (BSC) activation kinetics in vitro. Young's elastic modulus was calculated for the semimembranosus (SM) and LM muscles of young bulls (5 d; n = 8) and adult cows (27 mo; n = 4) cattle. Results indicate that LM elasticity decreased (P < 0.05) with age; no difference in Young's modulus for the SM was noted. Bovine satellite cells were seeded atop polyacrylamide bioscaffolds with surface elasticities that mimic young bull and adult cow LM or traditional cultureware. Cells were maintained in low-serum media supplemented with 5 ng/mL HGF or vehicle only for 24 or 48 h. Activation was evaluated by proliferating cell nuclear antigen (PCNA) immunocytochemistry. Results indicate that BSC maintained on rigid surfaces were activated at 24 h and refractive to HGF supplementation. By contrast, fewer (P < 0.05) BSC had exited quiescence after 24 h of culture on surfaces reflective of either young bull (8.1 ± 1.7 kPa) or adult cow (14.6 ± 1.6 kPa) LM. Supplementation with HGF promoted activation of BSC cultured on bioscaffolds as measured by an increase (P < 0.05) in PCNA immunopositive cells. Culture on pliant surfaces affected neither activation kinetics nor numbers of Paired box 7 (Pax7) immunopositive muscle stem cells (P > 0.05). However, with increasing surface elasticity, an increase (P < 0.05) in the numbers of muscle progenitors was observed. These results confirm that biophysical and biochemical signals regulate BSC activation.

  17. Blockade by local anaesthetics of the single Ca(2+)-activated K+ channel in rat hippocampal neurones.

    PubMed

    Oda, M; Yoshida, A; Ikemoto, Y

    1992-01-01

    1. Effects of local anaesthetics on single Ca(2+)-activated K+ channels were investigated using the inside-out configuration of the patch-clamp technique in single pyramidal neurones, which were freshly dissociated from rat hippocampus by use of proteolytic enzymes. 2. No significant effect was observed when 2 mM benzocaine was applied on either side of the membrane patch, or when 2 mM lignocaine or QX-314 was applied to the external surface of the membrane. 3. Lignocaine 1 mM, applied to the internal surface, slightly reduced the amplitude of the single K+ channel current. When applied to the internal surface QX-314 reduced the amplitude of the K+ channel current, accompanied by an increase in noise in the open channel current, suggesting a fast flickering block. The blocking effect of QX-314 on the outward current increased with depolarization, suggesting a binding site for the drug at an electrical distance of about 0.5 across the membrane field. 4. The open time histogram showed one exponential component and the closed time histogram showed at least two components. The mean open time of the outward current was increased when the amplitude was reduced by the drugs. 5. The ionized form of the local anaesthetics had a similar action on the Ca(2+)-activated K+ channels to that on Na+ channels, that is, they enter into the channel from the cytoplasmic side to induce open channel block. The blocking kinetics, however, might be so fast that they were beyond the frequency response of our recording apparatus, thus the recorded current amplitude was decreased. In contrast the K+ channel was not accessible via hydrophobic pathways for the neutral form, which is also known to block the sodium channel.

  18. Alternative mechanism of activation of the epithelial na+ channel by cleavage.

    PubMed

    Hu, John Cong; Bengrine, Abderrahmane; Lis, Agnieszka; Awayda, Mouhamed S

    2009-12-25

    We examined activation of the human epithelial sodium channel (ENaC) by cleavage. We focused on cleavage of alphaENaC using the serine protease subtilisin. Trimeric channels formed with alphaFM, a construct with point mutations in both furin cleavage sites (R178A/R204A), exhibited marked reduction in spontaneous cleavage and an approximately 10-fold decrease in amiloride-sensitive whole cell conductance as compared with alphaWT (2.2 versus 21.2 microsiemens (microS)). Both alphaWT and alphaFM were activated to similar levels by subtilisin cleavage. Channels formed with alphaFD, a construct that deleted the segment between the two furin sites (Delta175-204), exhibited an intermediate conductance of 13.2 microS. More importantly, alphaFD retained the ability to be activated by subtilisin to 108.8 +/- 20.9 microS, a level not significantly different from that of subtilisin activated alphaWT (125.6 +/- 23.9). Therefore, removal of the tract between the two furin sites is not the main mechanism of channel activation. In these experiments the levels of the cleaved 22-kDa N-terminal fragment of alpha was low and did not match those of the C-terminal 65-kDa fragment. This indicated that cleavage may activate ENaC by the loss of the smaller fragment and the first transmembrane domain. This was confirmed in channels formed with alphaLD, a construct that extended the deleted sequence of alphaFD by 17 amino acids (Delta175-221). Channels with alphaLD were uncleaved, exhibited low baseline activity (4.1 microS), and were insensitive to subtilisin. Collectively, these data support an alternative hypothesis of ENaC activation by cleavage that may involve the loss of the first transmembrane domain from the channel complex. PMID:19858199

  19. Chronic hypoxia suppresses pregnancy-induced upregulation of large-conductance Ca2+-activated K+ channel activity in uterine arteries.

    PubMed

    Hu, Xiang-Qun; Xiao, Daliao; Zhu, Ronghui; Huang, Xiaohui; Yang, Shumei; Wilson, Sean M; Zhang, Lubo

    2012-07-01

    Our previous study demonstrated that increased Ca(2+)-activated K(+) (BK(Ca)) channel activity played a key role in the normal adaptation of reduced myogenic tone of uterine arteries in pregnancy. The present study tested the hypothesis that chronic hypoxia during gestation inhibits pregnancy-induced upregulation of BK(Ca) channel function in uterine arteries. Resistance-sized uterine arteries were isolated from nonpregnant and near-term pregnant sheep maintained at sea level (≈ 300 m) or exposed to high-altitude (3801 m) hypoxia for 110 days. Hypoxia during gestation significantly inhibited pregnancy-induced upregulation of BK(Ca) channel activity and suppressed BK(Ca) channel current density in pregnant uterine arteries. This was mediated by a selective downregulation of BK(Ca) channel β1 subunit in the uterine arteries. In accordance, hypoxia abrogated the role of the BK(Ca) channel in regulating pressure-induced myogenic tone of uterine arteries that was significantly elevated in pregnant animals acclimatized to chronic hypoxia. In addition, hypoxia abolished the steroid hormone-mediated increase in the β1 subunit and BK(Ca) channel current density observed in nonpregnant uterine arteries. Although the activation of protein kinase C inhibited BK(Ca) channel current density in pregnant uterine arteries of normoxic sheep, this effect was ablated in the hypoxic animals. The results demonstrate that selectively targeting BK(Ca) channel β1 subunit plays a critical role in the maladaption of uteroplacental circulation caused by chronic hypoxia, which contributes to the increased incidence of preeclampsia and fetal intrauterine growth restriction associated with gestational hypoxia. PMID:22665123

  20. Environmental layout complexity affects neural activity during navigation in humans.

    PubMed

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation.

  1. Environmental layout complexity affects neural activity during navigation in humans.

    PubMed

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. PMID:26990572

  2. S-adenosyl-L-homocysteine hydrolase is necessary for aldosterone-induced activity of epithelial Na(+) channels.

    PubMed

    Stockand, J D; Zeltwanger, S; Bao, H F; Becchetti, A; Worrell, R T; Eaton, D C

    2001-09-01

    The A6 cell line was used to study the role of S-adenosyl-L-homocysteine hydrolase (SAHHase) in the aldosterone-induced activation of the epithelial Na(+) channel (ENaC). Because aldosterone increases methylation of several different molecules, and because this methylation is associated with increased Na(+) reabsorption, we tested the hypothesis that aldosterone increases the expression and activity of SAHHase protein. The rationale for this work is that general methylation may be promoted by activation of SAHHase, the only enzyme known to metabolize SAH, a potent end-product inhibitor of methylation. Although aldosterone increased SAHHase activity, steroid did not affect SAHHase expression. Antisense SAHHase oligonucleotide decreased SAHHase expression and activity. Moreover, this oligonucleotide, as well as a pharmacological inhibitor of SAHHase, decreased aldosterone-induced activity of ENaC via a decrease in ENaC open probability. The kinetics of ENaC in cells treated with antisense plus aldosterone were similar to those reported previously for the channel in the absence of steroid. This is the first report showing that active SAHHase, in part, increases ENaC open probability by reducing the transition rate from open states in response to aldosterone. Thus aldosterone-induced SAHHase activity plays a critical role in shifting ENaC from a gating mode with short open and closed times to one with longer open and closed times. PMID:11502554

  3. Attracting Views and Going Viral: How Message Features and News-Sharing Channels Affect Health News Diffusion

    PubMed Central

    Kim, Hyun Suk

    2015-01-01

    This study examined how intrinsic as well as perceived message features affect the extent to which online health news stories prompt audience selections and social retransmissions, and how news-sharing channels (e-mail vs. social media) shape what goes viral. The study analyzed actual behavioral data on audience viewing and sharing of New York Times health news articles, and associated article content and context data. News articles with high informational utility and positive sentiment invited more frequent selections and retransmissions. Articles were also more frequently selected when they presented controversial, emotionally evocative, and familiar content. Informational utility and novelty had stronger positive associations with e-mail-specific virality, while emotional evocativeness, content familiarity, and exemplification played a larger role in triggering social media-based retransmissions. PMID:26441472

  4. Trimethyloxonium modification of batrachotoxin-activated Na channels alters functionally important protein residues.

    PubMed Central

    Cherbavaz, D B

    1995-01-01

    The extracellular side of single batrachotoxin-activated voltage-dependent Na channels isolated from rat skeletal muscle membranes incorporated into neutral planar lipid bilayers were treated in situ with the carboxyl methylating reagent, trimethyloxonium (TMO). These experiments were designed to determine whether TMO alters Na channel function by a general through-space electrostatic mechanism or by methylating specific carboxyl groups essential to channel function. TMO modification reduced single-channel conductance by decreasing the maximal turnover rate. Modification increased channel selectivity for sodium ions relative to potassium ions as measured under biionic conditions. TMO modification increased the mu-conotoxin (muCTX) off-rate by three orders of magnitude. Modification did not alter the muCTX on-rate at low ionic strength or Na channel voltage-dependent gating characteristics. These data demonstrate that TMO does not act via a general electrostatic mechanism. Instead, TMO targets protein residues specifically involved in ion conduction, ion selectivity, and muCTX binding. These data support the hypothesis that muCTX blocks open-channel current by physically obstructing the ion channel pore. PMID:7787022

  5. Up-Regulatory Effects of Curcumin on Large Conductance Ca2+-Activated K+ Channels.

    PubMed

    Chen, Qijing; Tao, Jie; Hei, Hongya; Li, Fangping; Wang, Yunman; Peng, Wen; Zhang, Xuemei

    2015-01-01

    Large conductance Ca2+-activated potassium channels (BK) are targets for research that explores therapeutic means to various diseases, owing to the roles of the channels in mediating multiple physiological processes in various cells and tissues. We investigated the pharmacological effects of curcumin, a compound isolated from the herb Curcuma longa, on BK channels. As recorded by whole-cell patch-clamp, curcumin increased BK (α) and BK (α+β1) currents in transfected HEK293 cells as well as the current density of BK in A7r5 smooth muscle cells in a dose-dependent manner. By incubating with curcumin for 24 hours, the current density of exogenous BK (α) in HEK293 cells and the endogenous BK in A7r5 cells were both enhanced notably, though the steady-state activation of the channels did not shift significantly, except for BK (α+β1). Curcumin up-regulated the BK protein expression without changing its mRNA level in A7r5 cells. The surface expression and the half-life of BK channels were also increased by curcumin in HEK293 cells. These effects of curcumin were abolished by MG-132, a proteasome inhibitor. Curcumin also increased ERK 1/2 phosphorylation, while inhibiting ERK by U0126 attenuated the curcumin-induced up-regulation of BK protein expression. We also observed that the curcumin-induced relaxation in the isolated rat aortic rings was significantly attenuated by paxilline, a BK channel specific blocker. These results show that curcumin enhances the activity of the BK channels by interacting with BK directly as well as enhancing BK protein expression through inhibiting proteasomal degradation and activating ERK signaling pathway. The findings suggest that curcumin is a potential BK channel activator and provide novel insight into its complicated pharmacological effects and the underlying mechanisms. PMID:26672753

  6. [The activation effect of nobiletin on cystic fibrosis transmembrane conductance regulator chloride channel].

    PubMed

    Yang, Shuang; Yu, Bo; Zhang, Yao-Fang; Wang, Xue; Yang, Hong

    2013-06-01

    Aim of the present study is to investigate activation effect of nobiletin on cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel activity. CFTR-mediated iodide influx assay and patch-clamp tests were done on FRT cells stably co-transfected with human CFTR and EYFP/H148Q. Nobiletin potently activated CFTR chloride channel activity in a dose- and time-dependent manner. The CFTR blocker CFTR(inh)-172 could completely reverse the effect. Preliminary mechanism study indicated that nobiletin activated CFTR chloride channel through a direct binding way. In addition, ex vivo tests done on mice trachea showed that nobiletin time-dependently stimulated submucosal gland fluid secretion. Nobiletin may be a therapeutic lead compound in treating CFTR-related diseases including disseminated bronchiectasis.

  7. RIM Promotes Calcium Channel Accumulation at Active Zones of the Drosophila Neuromuscular Junction

    PubMed Central

    Graf, Ethan R.; Valakh, Vera; Wright, Christina M.; Wu, Chunlai; Liu, Zhihua; Zhang, Yong Q.; DiAntonio, Aaron

    2012-01-01

    Summary Synaptic communication requires the controlled release of synaptic vesicles from presynaptic axon terminals. Release efficacy is regulated by the many proteins that comprise the presynaptic release apparatus, including Ca2+ channels and proteins that influence Ca2+ channel accumulation at release sites. Here we identify Drosophila RIM and demonstrate that it localizes to active zones at the larval neuromuscular junction. In Drosophila RIM mutants, there is a large decrease in evoked synaptic transmission, due to a significant reduction in both the clustering of Ca2+ channels and the size of the readily releasable pool of synaptic vesicles at active zones. Hence, RIM plays an evolutionarily conserved role in regulating synaptic calcium channel localization and readily releasable pool size. Since RIM has traditionally been studied as an effector of Rab3 function, we investigate whether RIM is involved in the newly identified function of Rab3 in the distribution of presynaptic release machinery components across release sites. Bruchpilot (Brp), an essential component of the active zone cytomatrix T bar, is unaffected by RIM disruption, indicating that Brp localization and distribution across active zones does not require wild type RIM. In addition, larvae containing mutations in both RIM and rab3 have reduced Ca2+ channel levels and a Brp distribution that is very similar to that of the rab3 single mutant, indicating that RIM functions to regulate Ca2+ channel accumulation but is not a Rab3 effector for release machinery distribution across release sites. PMID:23175814

  8. Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism

    PubMed Central

    1996-01-01

    Muscarinic potassium channels (KACh) are composed of two subunits, GIRK1 and GIRK4 (or CIR), and are directly gated by G proteins. We have identified a novel gating mechanism of KACh, independent of G-protein activation. This mechanism involved functional modification of KACh which required hydrolysis of physiological levels of intracellular ATP and was manifested by an increase in the channel mean open time. The ATP-modified channels could in turn be gated by intracellular Na+, starting at approximately 3 mM with an EC50 of approximately 40 mM. The Na(+)-gating of KACh was operative both in native atrial cells and in a heterologous system expressing recombinant channel subunits. Block of the Na+/K+ pump (e.g., by cardiac glycosides) caused significant activation of KACh in atrial cells, with a time course similar to that of Na+ accumulation and in a manner indistinguishable from that of Na(+)-mediated activation of the channel, suggesting that cardiac glycosides activated KACh by increasing intracellular Na+ levels. These results demonstrate for the first time a direct effect of cardiac glycosides on atrial myocytes involving ion channels which are critical in the regulation of cardiac rhythm. PMID:8923264

  9. Piezo proteins are pore-forming subunits of mechanically activated channels.

    PubMed

    Coste, Bertrand; Xiao, Bailong; Santos, Jose S; Syeda, Ruhma; Grandl, Jörg; Spencer, Kathryn S; Kim, Sung Eun; Schmidt, Manuela; Mathur, Jayanti; Dubin, Adrienne E; Montal, Mauricio; Patapoutian, Ardem

    2012-02-19

    Mechanotransduction has an important role in physiology. Biological processes including sensing touch and sound waves require as-yet-unidentified cation channels that detect pressure. Mouse Piezo1 (MmPiezo1) and MmPiezo2 (also called Fam38a and Fam38b, respectively) induce mechanically activated cationic currents in cells; however, it is unknown whether Piezo proteins are pore-forming ion channels or modulate ion channels. Here we show that Drosophila melanogaster Piezo (DmPiezo, also called CG8486) also induces mechanically activated currents in cells, but through channels with remarkably distinct pore properties including sensitivity to the pore blocker ruthenium red and single channel conductances. MmPiezo1 assembles as a ∼1.2-million-dalton homo-oligomer, with no evidence of other proteins in this complex. Purified MmPiezo1 reconstituted into asymmetric lipid bilayers and liposomes forms ruthenium-red-sensitive ion channels. These data demonstrate that Piezo proteins are an evolutionarily conserved ion channel family involved in mechanotransduction.

  10. Glial potassium channels activated by neuronal firing or intracellular cyclic AMP in Helix.

    PubMed Central

    Gommerat, I; Gola, M

    1996-01-01

    1. Cell-attached and whole cell patch clamp experiments were performed on satellite glial cells adhering to the cell body of neurones in situ within the nervous system of the snail Helix pomatia. The underlying neurone was under current or voltage-clamp control. 2. Neuronal firing induced a delayed (20-30 s) persistent (3-4 min) increase in the opening probability of glial K+ channels. The channels were also activated by perfusing the ganglion with a depolarizing high-K+ saline, except when the underlying neurone was prevented from depolarizing under voltage-clamp conditions. 3. Two K(+)-selective channels were detected in the glial membrane. The channel responding to neuronal firing was present in 95% of the patches (n = 393). It had a unitary conductance of 56 pS, a Na+ :K+ permeability ratio < 0.02 and displayed slight inward rectification in symmetrical [K+] conditions. It was sensitive to TEA, Ba2+ and Cs+. The following results refer to this channel as studied in the cell-attached configuration. 4. The glial K+ channel was activated by bath application of the membrane-permeant cyclic AMP derivatives 8-bromo-cAMP and dibutyryl-cAMP, the adenylyl cyclase activator forskolin and the diesterase inhibitors IBMX, theophylline and caffeine. It was insensitive to cyclic GMP activators and to conditions that might alter the intracellular [Ca2+] (ionomycin, low-Ca2+ saline and Ca2+ channel blockers). 5. The forskolin-induced changes in channel behaviour (open and closed time distributions, burst duration, short and long gaps within bursts) could be accounted for by a four-state model (3 closed states, 1 open state) by simply changing one of the six rate parameters. 6. The present results suggest that the signal sent by an active neurone to satellite glial cells is confined to the glial cells round that neurone. The effect of this signal on the class of glial K+ channels studied can be mimicked by an increase in glial cAMP concentration. The subsequent delayed opening

  11. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle.

    PubMed

    Bolotina, V M; Najibi, S; Palacino, J J; Pagano, P J; Cohen, R A

    1994-04-28

    Nitric oxide is the major endothelium-derived relaxing factor (EDRF), and it is thought to relax smooth muscle cells by stimulation of guanylate cyclase, accumulation of its product cyclic GMP, and cGMP-dependent modification of several intracellular processes, including activation of potassium channels through cGMP-dependent protein kinase. Here we present evidence that both exogenous nitric oxide and native EDRF can directly activate single Ca(2+)-dependent K+ channels (K+Ca) in cell-free membrane patches without requiring cGMP. Under conditions when guanylate cyclase was inhibited by methylene blue, considerable relaxation of rabbit aorta to nitric oxide persisted which was blocked by charybdotoxin, a specific inhibitor of K+Ca channels. These studies demonstrate a novel direct action of nitric oxide on K+Ca channels. PMID:7512692

  12. Intermediate Conductance Ca2+-Activated K+ Channels Modulate Human Placental Trophoblast Syncytialization

    PubMed Central

    Díaz, Paula; Wood, Amber M.; Sibley, Colin P.; Greenwood, Susan L.

    2014-01-01

    Regulation of human placental syncytiotrophoblast renewal by cytotrophoblast migration, aggregation/fusion and differentiation is essential for successful pregnancy. In several tissues, these events are regulated by intermediate conductance Ca2+-activated K+ channels (IKCa), in part through their ability to regulate cell volume. We used cytotrophoblasts in primary culture to test the hypotheses that IKCa participate in the formation of multinucleated syncytiotrophoblast and in syncytiotrophoblast volume homeostasis. Cytotrophoblasts were isolated from normal term placentas and cultured for 66 h. This preparation recreates syncytiotrophoblast formation in vivo, as mononucleate cells (15 h) fuse into multinucleate syncytia (66 h) concomitant with elevated secretion of human chorionic gonadotropin (hCG). Cells were treated with the IKCa inhibitor TRAM-34 (10 µM) or activator DCEBIO (100 µM). Culture medium was collected to measure hCG secretion and cells fixed for immunofluorescence with anti-IKCa and anti-desmoplakin antibodies to assess IKCa expression and multinucleation respectively. K+ channel activity was assessed by measuring 86Rb efflux at 66 h. IKCa immunostaining was evident in nucleus, cytoplasm and surface of mono- and multinucleate cells. DCEBIO increased 86Rb efflux 8.3-fold above control and this was inhibited by TRAM-34 (85%; p<0.0001). Cytotrophoblast multinucleation increased 12-fold (p<0.05) and hCG secretion 20-fold (p<0.05), between 15 and 66 h. Compared to controls, DCEBIO reduced multinucleation by 42% (p<0.05) and hCG secretion by 80% (p<0.05). TRAM-34 alone did not affect cytotrophoblast multinucleation or hCG secretion. Hyposmotic solution increased 86Rb efflux 3.8-fold (p<0.0001). This effect was dependent on extracellular Ca2+, inhibited by TRAM-34 and 100 nM charybdotoxin (85% (p<0.0001) and 43% respectively) but unaffected by 100 nM apamin. In conclusion, IKCa are expressed in cytotrophoblasts and their activation inhibits the formation

  13. Faster voltage-dependent activation of Na+ channels in growth cones versus somata of neuroblastoma N1E-115 cells.

    PubMed Central

    Zhang, J; Loew, L M; Davidson, R M

    1996-01-01

    Kinetics of voltage-gated ionic channels fundamentally reflect the response of the channels to local electric fields. In this report cell-attached patch-clamp studies reveal that the voltage-dependent activation rate of sodium channels residing in the growth cone membrane differs from that of soma sodium channels in differentiating N1E-115 neuroblastoma cells. Because other electrophysiological properties of these channels do not differ, this finding may be a reflection of the difference in intramembrane electric field in these two regions of the cell. This represents a new mechanism for channels to attain a range of activities both within and between cells. PMID:8913589

  14. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    PubMed Central

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-01-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes. PMID:26096612

  15. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    NASA Astrophysics Data System (ADS)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  16. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    PubMed

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  17. STIM1 dimers undergo unimolecular coupling to activate Orai1 channels

    PubMed Central

    Zhou, Yandong; Wang, Xizhuo; Wang, Xianming; Loktionova, Natalia A.; Cai, Xiangyu; Nwokonko, Robert M.; Vrana, Erin; Wang, Youjun; Rothberg, Brad S.; Gill, Donald L.

    2015-01-01

    The endoplasmic reticulum (ER) Ca2+ sensor, STIM1, becomes activated when ER-stored Ca2+ is depleted and translocates into ER–plasma membrane junctions where it tethers and activates Orai1 Ca2+ entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)—the minimal sequence sufficient to activate Orai1 channels. Since SOAR itself is a dimer, we constructed SOAR concatemer–dimers and introduced mutations at F394, which is critical for Orai1 coupling and activation. The F394H mutation in both SOAR monomers completely blocks dimer function, but F394H introduced in only one of the dimeric SOAR monomers has no effect on Orai1 binding or activation. This reveals an unexpected unimolecular coupling between STIM1 and Orai1 and argues against recent evidence suggesting dimeric interaction between STIM1 and two adjacent Orai1 channel subunits. The model predicts that STIM1 dimers may be involved in crosslinking between Orai1 channels with implications for the kinetics and localization of Orai1 channel opening. PMID:26399906

  18. STIM1 dimers undergo unimolecular coupling to activate Orai1 channels

    NASA Astrophysics Data System (ADS)

    Zhou, Yandong; Wang, Xizhuo; Wang, Xianming; Loktionova, Natalia A.; Cai, Xiangyu; Nwokonko, Robert M.; Vrana, Erin; Wang, Youjun; Rothberg, Brad S.; Gill, Donald L.

    2015-09-01

    The endoplasmic reticulum (ER) Ca2+ sensor, STIM1, becomes activated when ER-stored Ca2+ is depleted and translocates into ER-plasma membrane junctions where it tethers and activates Orai1 Ca2+ entry channels. The dimeric STIM1 protein contains a small STIM-Orai-activating region (SOAR)--the minimal sequence sufficient to activate Orai1 channels. Since SOAR itself is a dimer, we constructed SOAR concatemer-dimers and introduced mutations at F394, which is critical for Orai1 coupling and activation. The F394H mutation in both SOAR monomers completely blocks dimer function, but F394H introduced in only one of the dimeric SOAR monomers has no effect on Orai1 binding or activation. This reveals an unexpected unimolecular coupling between STIM1 and Orai1 and argues against recent evidence suggesting dimeric interaction between STIM1 and two adjacent Orai1 channel subunits. The model predicts that STIM1 dimers may be involved in crosslinking between Orai1 channels with implications for the kinetics and localization of Orai1 channel opening.

  19. GIRK channel activation via adenosine or muscarinic receptors has similar effects on rat atrial electrophysiology.

    PubMed

    Wang, Xiaodong; Liang, Bo; Skibsbye, Lasse; Olesen, Søren-Peter; Grunnet, Morten; Jespersen, Thomas

    2013-08-01

    G protein-coupled inwardly rectifying K⁺ channels (GIRK) are important in the regulation of heart rate and atrial electrophysiology. GIRK channels are activated by G protein-coupled receptors, including muscarinic M₂ receptors and adenosine A₁ receptors. The aim of this study was to characterize and compare the electrophysiological effects of acetylcholine (ACh) and adenosine on GIRK channels in rat atria. Action potential duration at 90% repolarization (APD₉₀), effective refractory period (ERP), and resting membrane potential (RMP) were investigated in isolated rat atria by intracellular recordings. Both the adenosine analog N6-cyclopentyladenosine (CPA) and ACh profoundly shortened APD₉₀ and ERP and hyperpolarized the RMP. No additive or synergistic effect of CPA and ACh coapplication was observed. To antagonize GIRK channel activation, the specific inhibitor rTertiapin Q (TTQ) was applied. The coapplication of TTQ reversed the CPA and ACh-induced effects. When TTQ was applied without exogenous receptor activator, both APD₉₀ and ERP were prolonged and RMP was depolarized, confirming a basal activity of the GIRK current. The results reveal that activation of A₁ and M₂ receptors has a profound and equal effect on the electrophysiology in rat atrium. This effect is to a major extent mediated through GIRK channels. Furthermore, these results support the notion that atrial GIRK currents from healthy hearts have a basal component and additional activation can be mediated via at least 2 different receptor mechanisms. PMID:23609329

  20. Dehydrated Hereditary Stomatocytosislinked to gain-of-function mutations in mechanically activated PIEZO1 ion channels

    PubMed Central

    Albuisson, Juliette; Murthy, Swetha E.; Bandell, Michael; Coste, Bertrand; Louis-dit-Picard, Hélène; Mathur, Jayanti; Fénéant-Thibault, Madeleine; Tertian, Gérard; de Jaureguiberry, Jean-Pierre; Syfuss, Pierre-Yves; Cahalan, Stuart; Garçon, Loic; Toutain, Fabienne; Rohrlich, Pierre Simon; Delaunay, Jean; Picard, Véronique; Jeunemaitre, Xavier; Patapoutian, Ardem

    2013-01-01

    Dehydrated hereditary stomatocytosis (DHS) is a genetic condition with defective red blood cell (RBC) membrane properties that causes an imbalance in intracellular cation concentrations. Recently, two missense mutations inthe mechanically activated PIEZO1(FAM38A) ion channel were associated with DHS. However, it is not known how these mutations affect PIEZO1 function. Here, by combining linkage analysis and whole-exome sequencing in a large pedigree and Sanger sequencing in two additional kindreds and 11 unrelated DHS cases, we identifythree novel missense mutations and one recurrent duplication in PIEZO1, demonstrating that it is the major gene for DHS. All the DHS-associated mutations locate at C-terminal half of PIEZO1. Remarkably, we find that all PIEZO1 mutations give rise to mechanically activated currents that inactivate more slowly than wild-type currents. This gain-of-function PIEZO1 phenotype provides insight that helps to explain the increased permeability of cations in RBCs of DHS patients. Our findings also suggest a new role for mechanotransduction in RBC biology and pathophysiology. PMID:23695678

  1. Detection of sodium channel activators by a rapid fluorimetric microplate assay.

    PubMed

    Louzao, M C; Vieytes, M R; Yasumoto, T; Botana, L M

    2004-04-01

    Marine toxins such as brevetoxins and ciguatoxins are produced by dinoflagellates and can accumulate in seafood. These toxins affect humans through seafood consumption. Intoxication is mainly characterized by gastrointestinal and neurological disorders and, in most severe cases, by cardiovascular problems. To prevent the consumption of food contaminated with these toxins, shellfish have been tested by mouse bioassay. However, this method is expensive, time-consuming, and ethically questionable. The objective of this study was to use a recently developed fluorimetric microplate assay to rapidly detect brevetoxins and ciguatoxins. The method is based on the pharmacological effect of brevetoxins and ciguatoxins known to activate sodium channels and involves (i). the incubation of excitable cells in 96 well microtiter plates with the fluorescent dye bis-oxonol, whose distribution across the membrane is potential-dependent, and (ii). dose-dependent cell depolarization by the toxins. Our findings demonstrate that measuring changes in membrane potential induced by brevetoxins and ciguatoxins allowed their quantitation. Active toxins could be reliably detected at concentrations in the nanomolar range. The simplicity, sensitivity, and possibility of being automated provide the basis for development of a practical alternative to conventional testing for brevetoxins and ciguatoxins.

  2. Activities affecting surface water resources: A general overview

    SciTech Connect

    Not Available

    1990-01-01

    In November 1987, P.E.I. signed a federal/provincial work-sharing arrangement on water resource management focusing on groundwater pollution, surface water degradation and estuarine eutrophication. The surface water program was designed to identify current surface water uses and users within 12 major watersheds across the Island containing 26 individual rivers, as well as problems arising due to practices that degrade the quality of surface water and restricts its value to other user groups. This report presents a general overview of the program, covering the general characteristics of the Island; operations in agriculture, fish and wildlife, forestry, recreation, fisheries, and industry; alterations of natural features of waterways; wetlands; additional watershed activities such as hydrometric stations and subdivision development; and activities affecting surface water resources such as sedimentation sources, pollution point sources and instream obstructions.

  3. Proton Channel Activity of Influenza A Virus Matrix Protein 2 Contributes to Autophagy Arrest

    PubMed Central

    Ren, Yizhong; Feng, Liqiang; Pan, Weiqi; Li, Liang; Wang, Qian; Li, Jiashun; Li, Na; Han, Ling; Zheng, Xuehua; Niu, Xuefeng; Sun, Caijun

    2015-01-01

    Influenza A virus infection can arrest autophagy, as evidenced by autophagosome accumulation in infected cells. Here, we report that this autophagosome accumulation can be inhibited by amantadine, an antiviral proton channel inhibitor, in amantadine-sensitive virus infected cells or cells expressing influenza A virus matrix protein 2 (M2). Thus, M2 proton channel activity plays a role in blocking the fusion of autophagosomes with lysosomes, which might be a key mechanism for arresting autophagy. PMID:26468520

  4. Activation of muscarinic M3 receptors inhibits large-conductance voltage- and Ca2+-activated K+ channels in rat urinary bladder smooth muscle cells

    PubMed Central

    Parajuli, Shankar P.

    2013-01-01

    Large conductance voltage- and Ca2+-activated K+ (BK) channels are key regulators of detrusor smooth muscle (DSM) contraction and relaxation during urine voiding and storage. Here, we explored whether BK channels are regulated by muscarinic receptors (M-Rs) in native freshly isolated rat DSM cells under physiological conditions using the perforated whole cell patch-clamp technique and pharmacological inhibitors. M-R activation with carbachol (1 μM) initially evoked large transient outward BK currents, followed by inhibition of the spontaneous transient outward BK currents (STBKCs) in DSM cells. Carbachol (1 μM) also inhibited the amplitude and frequency of spontaneous transient hyperpolarizations (STHs) and depolarized the DSM cell membrane potential. Selective inhibition of the muscarinic M3 receptors (M3-Rs) with 4-diphenylacetoxy-N-methylpiperidine (4-DAMP; 0.1 μM), but not muscarinic M2 receptors with methoctramine (1 μM), blocked the carbachol inhibitory effects on STBKCs. Furthermore, blocking the inositol 1,4,5-triphosphate (IP3) receptors with xestospongin-C (1 μM) inhibited the carbachol-induced large transient outward BK currents without affecting carbachol inhibitory effects on STBKCs. Upon pharmacological inhibition of all known cellular sources of Ca2+ for BK channel activation, carbachol (1 μM) did not affect the voltage-step-induced steady-state BK currents, suggesting that the muscarinic effects in DSM cells are mediated by mobilization of intracellular Ca2+. In conclusion, our findings provide strong evidence that activation of M3-Rs leads to inhibition of the STBKCs, STHs, and depolarization of DSM cells. Collectively, the data suggest the existence of functional interactions between BK channels and M3-Rs at a cellular level in DSM. PMID:23703523

  5. Role of calcium-activated potassium channels in transmitter release at the squid giant synapse.

    PubMed Central

    Augustine, G J; Charlton, M P; Horn, R

    1988-01-01

    1. Several compounds known to block Ca2+-activated K+ channels were microinjected into squid 'giant' presynaptic terminals to test the hypothesis that these channels mediate Ca2+-dependent neurotransmitter release. 2. Injection of tetrapentylammonium, nonyl-triethylammonium and decamethonium all reversibly blocked transmission evoked by presynaptic action potentials. 3. All three of these compounds blocked presynaptic Ca2+ channels. The actions of tetrapentylammonium on presynaptic Ca2+ influx were examined in detail and found to be quantitatively sufficient to account for the ability of this compound to inhibit transmitter release. 4. Injection of Ba2+, another agent known to block Ca2+-activated K+ channels, also reversibly blocked evoked transmitter release. Ba2+ simultaneously enhanced basal (asynchronous) transmitter release and thus may be decreasing evoked release by depleting transmitter quanta available for release. 5. None of these results provide any support for the hypothesis that Ca2+-activated K+ channels mediate Ca2+-dependent release of transmitter at the squid synapse. However, our results have identified a new class of compounds that block Ca2+ channels from their cytoplasmic surface. PMID:2455797

  6. Enhanced activation of the transient receptor potential channel TRPA1 by ajoene, an allicin derivative.

    PubMed

    Yassaka, Ricardo Tsuneo; Inagaki, Hidetoshi; Fujino, Tsuchiyoshi; Nakatani, Kei; Kubo, Tai

    2010-01-01

    TRPA1 is a calcium-permeable, nonselective cation channel expressed in the dorsal root ganglion and trigeminal ganglia nociceptive neurons. It is activated by the pungent compounds in mustard oil (AITC, allyl isothiocyanate), cinnamon (cinnamaldehyde), garlic (allicin), and is believed to mediate the inflammatory actions of environmental irritants and proalgesic agents. Thiosulfinate (allicin) and isothiocyanate (AITC) compounds contain reactive electrophilic chemical groups that react with cysteine residues within the TRPA1 channel N terminus, leading to channel activation. Ajoene also contains reactive electrophilic chemical groups likely to target TRPA1 channel. Here, we have used voltage-clamp recordings to show that TRPA1-responses are enhanced by ajoene application in a Xenopus oocyte expression system. Though ajoene alone did not activate TRPA1, subsequent application of ajoene enhanced the AITC-, allicin- and depolarization-induced responses of TRPA1. Moreover, when increasing concentrations of ajoene were applied along with constant concentrations of allicin or AITC, stronger responses were elicited. These findings suggest that ajoene is a novel TRPA1 channel enhancer, operating in a channel-opening-dependent manner.

  7. The mechano-activated K+ channels TRAAK and TREK-1 control both warm and cold perception.

    PubMed

    Noël, Jacques; Zimmermann, Katharina; Busserolles, Jérome; Deval, Emanuel; Alloui, Abdelkrim; Diochot, Sylvie; Guy, Nicolas; Borsotto, Marc; Reeh, Peter; Eschalier, Alain; Lazdunski, Michel

    2009-05-01

    The sensation of cold or heat depends on the activation of specific nerve endings in the skin. This involves heat- and cold-sensitive excitatory transient receptor potential (TRP) channels. However, we show here that the mechano-gated and highly temperature-sensitive potassium channels of the TREK/TRAAK family, which normally work as silencers of the excitatory channels, are also implicated. They are important for the definition of temperature thresholds and temperature ranges in which excitation of nociceptor takes place and for the intensity of excitation when it occurs. They are expressed with thermo-TRP channels in sensory neurons. TRAAK and TREK-1 channels control pain produced by mechanical stimulation and both heat and cold pain perception in mice. Expression of TRAAK alone or in association with TREK-1 controls heat responses of both capsaicin-sensitive and capsaicin-insensitive sensory neurons. Together TREK-1 and TRAAK channels are important regulators of nociceptor activation by cold, particularly in the nociceptor population that is not activated by menthol.

  8. Apical Ca2+-activated potassium channels in mouse parotid acinar cells.

    PubMed

    Almassy, Janos; Won, Jong Hak; Begenisich, Ted B; Yule, David I

    2012-02-01

    Ca(2+) activation of Cl and K channels is a key event underlying stimulated fluid secretion from parotid salivary glands. Cl channels are exclusively present on the apical plasma membrane (PM), whereas the localization of K channels has not been established. Mathematical models have suggested that localization of some K channels to the apical PM is optimum for fluid secretion. A combination of whole cell electrophysiology and temporally resolved digital imaging with local manipulation of intracellular [Ca(2+)] was used to investigate if Ca(2+)-activated K channels are present in the apical PM of parotid acinar cells. Initial experiments established Ca(2+)-buffering conditions that produced brief, localized increases in [Ca(2+)] after focal laser photolysis of caged Ca(2+). Conditions were used to isolate K(+) and Cl(-) conductances. Photolysis at the apical PM resulted in a robust increase in K(+) and Cl(-) currents. A localized reduction in [Ca(2+)] at the apical PM after photolysis of Diazo-2, a caged Ca(2+) chelator, resulted in a decrease in both K(+) and Cl(-) currents. The K(+) currents evoked by apical photolysis were partially blocked by both paxilline and TRAM-34, specific blockers of large-conductance "maxi-K" (BK) and intermediate K (IK), respectively, and almost abolished by incubation with both antagonists. Apical TRAM-34-sensitive K(+) currents were also observed in BK-null parotid acini. In contrast, when the [Ca(2+)] was increased at the basal or lateral PM, no increase in either K(+) or Cl(-) currents was evoked. These data provide strong evidence that K and Cl channels are similarly distributed in the apical PM. Furthermore, both IK and BK channels are present in this domain, and the density of these channels appears higher in the apical versus basolateral PM. Collectively, this study provides support for a model in which fluid secretion is optimized after expression of K channels specifically in the apical PM.

  9. Pyrethroid modifications of the activation and inactivation kinetics of the sodium channels in squid giant axons.

    PubMed

    de Weille, J R; Brown, L D; Narahashi, T

    1990-03-26

    The kinetics of sodium channel activation and inactivation were analyzed in the squid giant axons internally treated with various pyrethroids. Pyrethroids increased the steady-state sodium current in squid giant axons by removing the inactivation. The steady-state sodium conductances in control and pyrethroid-treated axons showed the same voltage dependence, indicating that the removal of inactivation by pyrethroids did not lead to an alteration of gating charge transfer. The pyrethroid-modified sodium channels were activated with a biphasic time course involving the movement of at least two gating particles, and both components were voltage-dependent. The slower component was abolished by treatment with either pronase or N-bromoacetamide. The net elementary charges transported in the electric membrane field were reduced in the course of slow activation of the pyrethroid-induced sodium current. It appears that the 'immobilization' of gating charge is related to the slow activation rather than the inactivation of the sodium channel.

  10. KCNQ channel openers reverse depressive symptoms via an active resilience mechanism

    PubMed Central

    Friedman, Allyson K.; Juarez, Barbara; Ku, Stacy M.; Zhang, Hongxing; Calizo, Rhodora C.; Walsh, Jessica J.; Chaudhury, Dipesh; Zhang, Song; Hawkins, Angel; Dietz, David M.; Murrough, James W.; Ribadeneira, Maria; Wong, Erik H.; Neve, Rachael L.; Han, Ming-Hu

    2016-01-01

    Less than half of patients suffering from major depressive disorder, a leading cause of disability worldwide, achieve remission with current antidepressants, making it imperative to develop more effective treatment. A new therapeutic direction is emerging from the increased understanding of natural resilience as an active stress-coping process. It is known that potassium (K+) channels in the ventral tegmental area (VTA) are an active mediator of resilience. However, no druggable targets have been identified to potentiate active resilience mechanisms. In the chronic social defeat stress model of depression, we report that KCNQ-type K+ channel openers, including FDA-approved drug retigabine (ezogabine), show antidepressant efficacy. We demonstrate that overexpression of KCNQ channels in the VTA dopaminergic neurons and either local infusion or systemic administration of retigabine normalized neuronal hyperactivity and depressive behaviours. These findings identify KCNQ as a target for conceptually novel antidepressants that function through the potentiation of active resilience mechanisms. PMID:27216573

  11. Analysis of G-protein-activated inward rectifying K(+) (GIRK) channel currents upon GABAB receptor activation in rat supraoptic neurons.

    PubMed

    Harayama, Nobuya; Kayano, Tomohiko; Moriya, Taiki; Kitamura, Naoki; Shibuya, Izumi; Tanaka-Yamamoto, Keiko; Uezono, Yasuhito; Ueta, Yoichi; Sata, Takeyoshi

    2014-12-01

    While magnocellular neurons in the supraoptic nucleus (SON) possess rich Gi/o-mediated mechanisms, molecular and cellular properties of G-protein-activated inwardly rectifying K(+) (GIRK) channels have been controversial. Here, properties of GIRK channels are examined by RT-PCR and whole-cell patch-clamp techniques in rat SON neurons. Patch clamp experiments showed that the selective GABAB agonist, baclofen, enhanced currents in a high K(+) condition. The baclofen-enhanced currents exhibited evident inward rectification and were blocked by the selective GABAB antagonist, CGP55845A, the IRK channel blocker, Ba(2+), and the selective GIRK channel blocker, tertiapin, indicating that baclofen activates GIRK channels via GABAB receptors. The GIRK currents were abolished by N-ethylmaleimide pretreatment, and prolonged by GTPγS inclusion in the patch pipette, suggesting that Gi/o proteins are involved. RT-PCR analysis revealed mRNAs for all four GIRK 1-4 channels and for both GABABR1 and GABABR2 receptors in rat SON. However, the concentration-dependency of the baclofen-induced activation of GIRK currents had an EC50 of 110 µM, which is about 100 times higher than that of baclofen-induced inhibition of voltage-dependent Ca(2+) channels. Moreover, baclofen caused no significant changes in the membrane potential and the firing rate. These results suggest that although GIRK channels can be activated by GABAB receptors via the Gi/o pathway, this occurs at high agonist concentrations, and thus may not be a physiological mechanism regulating the function of SON neurons. This property that the membrane potential receives little influence from GIRK currents seems to be uncommon for CNS neurons possessing rich Gi/o-coupled receptors, and could be a special feature of rat SON neurons.

  12. Pharmacological activation of small conductance calcium-activated potassium channels with naphtho[1,2-d]thiazol-2-ylamine decreases guinea pig detrusor smooth muscle excitability and contractility.

    PubMed

    Parajuli, Shankar P; Soder, Rupal P; Hristov, Kiril L; Petkov, Georgi V

    2012-01-01

    Small conductance Ca²⁺-activated K⁺ (SK) and intermediate conductance Ca(2+)-activated K⁺ (IK) channels are thought to be involved in detrusor smooth muscle (DSM) excitability and contractility. Using naphtho[1,2-d]thiazol-2-ylamine (SKA-31), a novel and highly specific SK/IK channel activator, we investigated whether pharmacological activation of SK/IK channels reduced guinea pig DSM excitability and contractility. We detected the expression of all known isoforms of SK (SK1-SK3) and IK channels at mRNA and protein levels in DSM by single-cell reverse transcription-polymerase chain reaction and Western blot. Using the perforated patch-clamp technique on freshly isolated DSM cells, we observed that SKA-31 (10 μM) increased SK currents, which were blocked by apamin (1 μM), a selective SK channel inhibitor. In current-clamp mode, SKA-31 (10 μM) hyperpolarized the cell resting membrane potential, which was blocked by apamin (1 μM) but not by 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34) (1 μM), a selective IK channel inhibitor. SKA-31 (10 nM-10 μM) significantly inhibited the spontaneous phasic contraction amplitude, frequency, duration, and muscle force in DSM isolated strips. The SKA-31 inhibitory effects on DSM contractility were blocked by apamin (1 μM) but not by TRAM-34 (1 μM), which did not per se significantly affect DSM spontaneous contractility. SK channel activation with SKA-31 reduced contractions evoked by electrical field stimulation. SKA-31 effects were reversible upon washout. In conclusion, SK channels, but not IK channels, mediate SKA-31 effects in guinea pig DSM. Pharmacological activation of SK channels reduces DSM excitability and contractility and therefore may provide a novel therapeutic approach for controlling bladder dysfunction.

  13. SecA Alone Can Promote Protein Translocation and Ion Channel Activity

    PubMed Central

    Hsieh, Ying-hsin; Zhang, Hao; Lin, Bor-ruei; Cui, Ningren; Na, Bing; Yang, Hsiuchin; Jiang, Chun; Sui, Sen-fang; Tai, Phang C.

    2011-01-01

    SecA is an essential component of the Sec-dependent protein translocation pathway across cytoplasmic membranes in bacteria. Escherichia coli SecA binds to cytoplasmic membranes at SecYEG high affinity sites and at phospholipid low affinity sites. It has been widely viewed that SecYEG functions as the essential protein-conducting channel through which precursors cross the membranes in bacterial Sec-dependent pathways, and that SecA functions as a motor to hydrolyze ATP in translocating precursors through SecYEG channels. We have now found that SecA alone can promote precursor translocation into phospholiposomes. Moreover, SecA-liposomes elicit ionic currents in Xenopus oocytes. Patch-clamp recordings further show that SecA alone promotes signal peptide- or precursor-dependent single channel activity. These activities were observed with the functional SecA at about 1–2 μm. The results show that SecA alone is sufficient to promote protein translocation into liposomes and to elicit ionic channel activity at the phospholipids low affinity binding sites, thus indicating that SecA is able to form the protein-conducting channels. Even so, such SecA-liposomes are less efficient than those with a full complement of Sec proteins, and lose the signal-peptide proofreading function, resembling the effects of PrlA mutations. Addition of purified SecYEG restores the signal peptide specificity and increases protein translocation and ion channel activities. These data show that SecA can promote protein translocation and ion channel activities both when it is bound to lipids at low affinity sites and when it is bound to SecYEG with high affinity. The latter of the two interactions confers high efficiency and specificity. PMID:22033925

  14. Discovery, structure-activity relationship study, and oral analgesic efficacy of cyproheptadine derivatives possessing N-type calcium channel inhibitory activity.

    PubMed

    Yamamoto, Takashi; Niwa, Seiji; Iwayama, Satoshi; Koganei, Hajime; Fujita, Shin-ichi; Takeda, Tomoko; Kito, Morikazu; Ono, Yukitsugu; Saitou, Yuki; Takahara, Akira; Iwata, Seinosuke; Yamamoto, Hiroshi; Shoji, Masataka

    2006-08-01

    Antiallergic drug cyproheptadine (Cyp) is known to have inhibitory activities for L-type calcium channels in addition to histamine and serotonin receptors. Since we found that Cyp had an inhibitory activity against N-type calcium channel, Cyp was optimized to obtain more selective N-type calcium channel blocker with analgesic action. As a consequence of the optimization, we found 13 with potent N-type calcium channel inhibitory activity which had lower inhibitory activities against L-type calcium channel, histamine (H1), and serotonin (5-HT2A) receptors than those of Cyp. 13 showed an oral analgesic activity in rat formalin-induced pain model.

  15. Influence of proline position upon the ion channel activity of alamethicin.

    PubMed Central

    Kaduk, C; Duclohier, H; Dathe, M; Wenschuh, H; Beyermann, M; Molle, G; Bienert, M

    1997-01-01

    Alamethicin, a 20-residue peptaibol, induces voltage-dependent ion channels in lipid bilayers according to the barrel-stave model. To study relationships between the proline-14-induced kink region and the channel-forming behavior of the peptide, a set of alamethicin analogs with proline incorporated at positions 11, 12, 13, 14, 15, 16, and 17, respectively, as well as an analog with alanine instead of proline at position 14 were synthesized. Macroscopic conductance experiments show that the voltage dependence of the peptides is conserved although slightly influenced, but the apparent mean number of monomers forming the channels is significantly reduced when proline is not located at position 14. This is confirmed in single-channel experiments. The analogs with proline next to position 14 (i.e., 13, 15, 16) show stable conductance levels, but of reduced number, which follows the order Alam-P14 > Alam-P15 > Alam-P16 > Alam-P13. This reduction in the number of levels is connected with changes in the lifetime of the channels. Analogs with proline at position 11, 12, or 17 produce erratic, extremely short-lived current events that could not be resolved. The changes in functional properties are related to structural properties as probed by circular dichroism. The results indicate that proline at position 14 results in optimal channel activity, whereas channels formed by the analogs bearing proline at different positions are considerably less stable. PMID:9129817

  16. TRPM8 Channel Activation Induced by Monoterpenoid Rotundifolone Underlies Mesenteric Artery Relaxation

    PubMed Central

    Silva, Darizy Flavia; de Almeida, Monica Moura; Chaves, Cinthia Guedes; Braz, Ana Letícia; Gomes, Maria Aparecida; Pinho-da-Silva, Leidiane; Pesquero, Jorge Luiz; Andrade, Viviane Aguiar; Leite, Maria de Fátima; de Albuquerque, José George Ferreira; Araujo, Islania Giselia Albuquerque; Nunes, Xirley Pereira; Barbosa-Filho, José Maria; Cruz, Jader dos Santos; Correia, Nadja de Azevedo; de Medeiros, Isac Almeida

    2015-01-01

    In this study, our aims were to investigate transient receptor potential melastatin-8 channels (TRPM8) involvement in rotundifolone induced relaxation in the mesenteric artery and to increase the understanding of the role of these thermosensitive TRP channels in vascular tissue. Thus, message and protein levels of TRPM8 were measured by semi-quantitative PCR and western blotting in superior mesenteric arteries from 12 week-old Spague-Dawley (SD) rats. Isometric tension recordings evaluated the relaxant response in mesenteric rings were also performed. Additionally, the intracellular Ca2+ changes in mesenteric artery myocytes were measured using confocal microscopy. Using PCR and western blotting, both TRPM8 channel mRNA and protein expression was measured in SD rat mesenteric artery. Rotundifolone and menthol induced relaxation in the isolated superior mesenteric artery from SD rats and improved the relaxant response induced by cool temperatures. Also, this monoterpene induced an increase in transient intracellular Ca2+. These responses were significantly attenuated by pretreatment with capsazepine or BCTC, both TRPM8 channels blockers. The response induced by rotundifolone was not significantly attenuated by ruthenium red, a non-selective TRP channels blocker, or following capsaicin-mediated desensitization of TRPV1. Our findings suggest that rotundifolone induces relaxation by activating TRPM8 channels in rat superior mesenteric artery, more selectively than menthol, the classic TRPM8 agonist, and TRPM8 channels participates in vasodilatory pathways in isolated rat mesenteric arteries. PMID:26599698

  17. Molecular mechanism of ATP binding and ion channel activation in P2X receptors

    SciTech Connect

    Hattori, Motoyuki; Gouaux, Eric

    2012-10-24

    P2X receptors are trimeric ATP-activated ion channels permeable to Na{sup +}, K{sup +} and Ca{sup 2+}. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body {beta}-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

  18. The activation effect of hainantoxin-I, a peptide toxin from the Chinese spider, Ornithoctonus hainana, on intermediate-conductance Ca2+-activated K+ channels.

    PubMed

    Huang, Pengfei; Zhang, Yiya; Chen, Xinyi; Zhu, Li; Yin, Dazhong; Zeng, Xiongzhi; Liang, Songping

    2014-08-21

    Intermediate-conductance Ca2+-activated K+ (IK) channels are calcium/calmodulin-regulated voltage-independent K+ channels. Activation of IK currents is important in vessel and respiratory tissues, rendering the channels potential drug targets. A variety of small organic molecules have been synthesized and found to be potent activators of IK channels. However, the poor selectivity of these molecules limits their therapeutic value. Venom-derived peptides usually block their targets with high specificity. Therefore, we searched for novel peptide activators of IK channels by testing a series of toxins from spiders. Using electrophysiological experiments, we identified hainantoxin-I (HNTX-I) as an IK-channel activator. HNTX-I has little effect on voltage-gated Na+ and Ca2+ channels from rat dorsal root ganglion neurons and on the heterologous expression of voltage-gated rapidly activating delayed rectifier K+ channels (human ether-à-go-go-related gene; human ERG) in HEK293T cells. Only 35.2% ± 0.4% of the currents were activated in SK channels, and there was no effect on BK channels. We demonstrated that HNTX-I was not a phrenic nerve conduction blocker or acutely toxic. This is believed to be the first report of a peptide activator effect on IK channels. Our study suggests that the activity and selectivity of HNTX-I on IK channels make HNTX-I a promising template for designing new drugs for cardiovascular diseases.

  19. Calmodulin and calcium interplay in the modulation of TRPC5 channel activity. Identification of a novel C-terminal domain for calcium/calmodulin-mediated facilitation.

    PubMed

    Ordaz, Benito; Tang, Jisen; Xiao, Rui; Salgado, Alfonso; Sampieri, Alicia; Zhu, Michael X; Vaca, Luis

    2005-09-01

    TRPC5 forms Ca2+-permeable nonselective cation channels important for neurite outgrowth and growth cone morphology of hippocampal neurons. Here we studied the activation of mouse TRPC5 expressed in Chinese hamster ovary and human embryonic kidney 293 cells by agonist stimulation of several receptors that couple to the phosphoinositide signaling cascade and the role of calmodulin (CaM) on the activation. We showed that exogenous application of 10 microM CaM through patch pipette accelerated the agonist-induced channel activation by 2.8-fold, with the time constant for half-activation reduced from 4.25 +/- 0.4 to 1.56 +/- 0.85 min. We identified a novel CaM-binding site located at the C terminus of TRPC5, 95 amino acids downstream from the previously determined common CaM/IP3R-binding (CIRB) domain for all TRPC proteins. Deletion of the novel CaM-binding site attenuated the acceleration in channel activation induced by CaM. However, disruption of the CIRB domain from TRPC5 rendered the channel irresponsive to agonist stimulation without affecting the cell surface expression of the channel protein. Furthermore, we showed that high (>5 microM) intracellular free Ca2+ inhibited the current density without affecting the time course of TRPC5 activation by receptor agonists. These results demonstrated that intracellular Ca2+ has dual and opposite effects on the activation of TRPC5. The novel CaM-binding site is important for the Ca2+/CaM-mediated facilitation, whereas the CIRB domain is critical for the overall response of receptor-induced TRPC5 channel activation.

  20. CaT1 knock-down strategies fail to affect CRAC channels in mucosal-type mast cells.

    PubMed

    Kahr, Heike; Schindl, Rainer; Fritsch, Reinhard; Heinze, Barbara; Hofbauer, Michael; Hack, Marlene E; Mörtelmaier, Manuel A; Groschner, Klaus; Peng, Ji-Bin; Takanaga, Hitomi; Hediger, Matthias A; Romanin, Christoph

    2004-05-15

    CaT1, the calcium transport protein 1 encoded by TRPV6, is able to generate a Ca(2+) conductance similar but not identical to the classical CRAC current in mucosal-type mast cells. Here we show that CaT1-derived Ca(2+) entry into HEK293 cells is effectively inhibited either by expression of various dominant negative N-terminal fragments of CaT1 (N(334)-CaT1, N(198)-CaT1 and N(154)-CaT1) or by antisense suppression. By contrast, the endogenous CRAC current of the mast cells was unaffected by CaT1 antisense and siRNA knockdown but markedly suppressed by two (N(334)-CaT1, N(198)-CaT1) of the dominant negative N-CaT1 fragments. Inhibition of CRAC current was not an unspecific, toxic effect, as inward rectifier K(+) and MagNuM currents of the mast cells were not significantly affected by these N-CaT1 fragments. The shortest N(154)-CaT1 fragment inhibited CaT1-derived currents in mast cells, but failed to inhibit CRAC currents. Thus, the structural requirements of rCaT N-terminal fragments for inhibition of rCaT1 and CRAC channels are different. These results together with the lack of CaT1 antisense and siRNA effects on currents render it unlikely that CaT1 is a component of native CRAC channels in mast cells. The data further demonstrate a novel strategy for CRAC current inhibition by an N-terminal structure of CaT1.

  1. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain.

    PubMed

    Moussaieff, Arieh; Rimmerman, Neta; Bregman, Tatiana; Straiker, Alex; Felder, Christian C; Shoham, Shai; Kashman, Yoel; Huang, Susan M; Lee, Hyosang; Shohami, Esther; Mackie, Ken; Caterina, Michael J; Walker, J Michael; Fride, Ester; Mechoulam, Raphael

    2008-08-01

    Burning of Boswellia resin as incense has been part of religious and cultural ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with such events. Transient receptor potential vanilloid (TRPV) 3 is an ion channel implicated in the perception of warmth in the skin. TRPV3 mRNA has also been found in neurons throughout the brain; however, the role of TRPV3 channels there remains unknown. Here we show that incensole acetate (IA), a Boswellia resin constituent, is a potent TRPV3 agonist that causes anxiolytic-like and antidepressive-like behavioral effects in wild-type (WT) mice with concomitant changes in c-Fos activation in the brain. These behavioral effects were not noted in TRPV3(-/-) mice, suggesting that they are mediated via TRPV3 channels. IA activated TRPV3 channels stably expressed in HEK293 cells and in keratinocytes from TRPV3(+/+) mice. It had no effect on keratinocytes from TRPV3(-/-) mice and showed modest or no effect on TRPV1, TRPV2, and TRPV4, as well as on 24 other receptors, ion channels, and transport proteins. Our results imply that TRPV3 channels in the brain may play a role in emotional regulation. Furthermore, the biochemical and pharmacological effects of IA may provide a biological basis for deeply rooted cultural and religious traditions.

  2. Altered resting-state activity in seasonal affective disorder.

    PubMed

    Abou Elseoud, Ahmed; Nissilä, Juuso; Liettu, Anu; Remes, Jukka; Jokelainen, Jari; Takala, Timo; Aunio, Antti; Starck, Tuomo; Nikkinen, Juha; Koponen, Hannu; Zang, Yu-Feng; Tervonen, Osmo; Timonen, Markku; Kiviniemi, Vesa

    2014-01-01

    At present, our knowledge about seasonal affective disorder (SAD) is based mainly up on clinical symptoms, epidemiology, behavioral characteristics and light therapy. Recently developed measures of resting-state functional brain activity might provide neurobiological markers of brain disorders. Studying functional brain activity in SAD could enhance our understanding of its nature and possible treatment strategies. Functional network connectivity (measured using ICA-dual regression), and amplitude of low-frequency fluctuations (ALFF) were measured in 45 antidepressant-free patients (39.78 ± 10.64, 30 ♀, 15 ♂) diagnosed with SAD and compared with age-, gender- and ethnicity-matched healthy controls (HCs) using resting-state functional magnetic resonance imaging. After correcting for Type 1 error at high model orders (inter-RSN correction), SAD patients showed significantly increased functional connectivity in 11 of the 47 identified RSNs. Increased functional connectivity involved RSNs such as visual, sensorimotor, and attentional networks. Moreover, our results revealed that SAD patients compared with HCs showed significant higher ALFF in the visual and right sensorimotor cortex. Abnormally altered functional activity detected in SAD supports previously reported attentional and psychomotor symptoms in patients suffering from SAD. Further studies, particularly under task conditions, are needed in order to specifically investigate cognitive deficits in SAD.

  3. Activation of Plant Plasma Membrane Ca2+-Permeable Channels by Race-Specific Fungal Elicitors.

    PubMed Central

    Gelli, A.; Higgins, V. J.; Blumwald, E.

    1997-01-01

    The response of plant cells to invading pathogens is regulated by fluctuations in cytosolic Ca2+ levels that are mediated by Ca2+-permeable channels located at the plasma membrane of the host cell. The mechanisms by which fungal elicitors can induce Ca2+ uptake by the host cell were examined by the application of conventional patch-clamp techniques. Whole-cell and single-channel experiments on tomato (Lycopersicon esculentum L.) protoplasts revealed a race-specific fungal elicitor-induced activation of a plasma membrane Ca2+-permeable channel. The presence of the fungal elicitor resulted in a greater probability of channel opening. Guanosine 5[prime]-[[beta]-thio]diphosphate, a GDP analog that locks heterotrimeric G-proteins into their inactivated state, abolished the channel activation induced by the fungal elicitor, whereas guanosine 5[prime][[gamma]-thio]triphosphate, a nonhydrolyzable GTP analog that locks heterotrimeric G-proteins into their activated state, produced an effect similar to that observed with the fungal elicitor. Mastoparan, which stimulates GTPase activity, mimicked the effect of GTP[[gamma

  4. Energetics of Ion Permeation in an Open-Activated TRPV1 Channel.

    PubMed

    Jorgensen, Christian; Furini, Simone; Domene, Carmen

    2016-09-20

    Ion channels enable diffusion of ions down physiological electrochemical gradients. Modulation of ion permeation is crucial for the physiological functioning of cells, and misregulation of ion channels is linked to a myriad of channelopathies. The ion permeation mechanism in the transient receptor potential (TRP) ion channel family is currently not understood at an atomistic level. In this work, we employed a simulation strategy for ion permeation (molecular-dynamics simulations with bias-exchange metadynamics) to study and compare monovalent (Na(+), K(+)) ion permeation in the open-activated TRP vanniloid-1 (TRPV1) ion channel. Using ∼3.6 μs of simulation trajectories, we obtained atomistic evidence for the nonselective nature of TRPV1. Our analysis shows that solvated monovalent ions permeate through the selectivity filter with comparable energetic barriers via a two-site mechanism. Finally, we confirmed that an intracellular binding site is located between the intracellular gate residues I679 and E684. PMID:27653480

  5. Energetics of Ion Permeation in an Open-Activated TRPV1 Channel.

    PubMed

    Jorgensen, Christian; Furini, Simone; Domene, Carmen

    2016-09-20

    Ion channels enable diffusion of ions down physiological electrochemical gradients. Modulation of ion permeation is crucial for the physiological functioning of cells, and misregulation of ion channels is linked to a myriad of channelopathies. The ion permeation mechanism in the transient receptor potential (TRP) ion channel family is currently not understood at an atomistic level. In this work, we employed a simulation strategy for ion permeation (molecular-dynamics simulations with bias-exchange metadynamics) to study and compare monovalent (Na(+), K(+)) ion permeation in the open-activated TRP vanniloid-1 (TRPV1) ion channel. Using ∼3.6 μs of simulation trajectories, we obtained atomistic evidence for the nonselective nature of TRPV1. Our analysis shows that solvated monovalent ions permeate through the selectivity filter with comparable energetic barriers via a two-site mechanism. Finally, we confirmed that an intracellular binding site is located between the intracellular gate residues I679 and E684.

  6. Impedance spectroscopy of micro-Droplets reveals activation of Bacterial Mechanosensitive Channels in Hypotonic Solutions

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Aida; Alam, Muhammad A.

    Rapid detection of bacterial pathogens is of great importance in healthcare, food safety, environmental monitoring, and homeland security. Most bacterial detection platforms rely on binary fission (i.e. cell growth) to reach a threshold cell population that can be resolved by the sensing method. Since cell division depends on the bacteria type, the detection time of such methods can vary from hours to days. In contrast, in this work, we show that bacteria cells can be detected within minutes by relying on activation of specific protein channels, i.e. mechanosensitive channels (MS channels). When cells are exposed to hypotonic solutions, MS channels allow efflux of solutes to the external solution which leads to release the excessive membrane tension. Release of the cytoplasmic solutes, in turn, results in increase of the electrical conductance measured by droplet-based impedance sensing. The approach can be an effective technique for fast, pre-screening of bacterial contamination at ultra-low concentration.

  7. Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola

    PubMed Central

    Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît

    2016-01-01

    The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel. PMID:27678077

  8. Backward reflection analysis of transmitting channel of active laser ranging optics

    NASA Astrophysics Data System (ADS)

    Hong, Jinsuk; Koh, Hae Seog

    2013-09-01

    The designed Active LDR(Laser Detection and Ranging) System contains high-power Laser and its diameter is approximately 24mm. Although the laser transmitting channel and receiving optic channel are completely separated from each other and doesn't share any of the optical components in design, each channel shares 4 wedge scanners, which are to overcome the narrow FOV(Field of View) of the optical system. Any backward reflection back to the fiber laser end must be carefully studied since it can damage the LD(Laser Diodes), the inner components of the laser unit because of the high amplification factor of the laser unit. In this study, the stray light caused by the transmitting channel's laser and inner reflection by optical components were analyzed by ASAP(Advanced System Analysis Program) software. We also can confirm the operability and stability of the system by more than 6 months of operation of the system.

  9. Structural and functional characterization of a calcium-activated cation channel from Tsukamurella paurometabola

    NASA Astrophysics Data System (ADS)

    Dhakshnamoorthy, Balasundaresan; Rohaim, Ahmed; Rui, Huan; Blachowicz, Lydia; Roux, Benoît

    2016-09-01

    The selectivity filter is an essential functional element of K+ channels that is highly conserved both in terms of its primary sequence and its three-dimensional structure. Here, we investigate the properties of an ion channel from the Gram-positive bacterium Tsukamurella paurometabola with a selectivity filter formed by an uncommon proline-rich sequence. Electrophysiological recordings show that it is a non-selective cation channel and that its activity depends on Ca2+ concentration. In the crystal structure, the selectivity filter adopts a novel conformation with Ca2+ ions bound within the filter near the pore helix where they are coordinated by backbone oxygen atoms, a recurrent motif found in multiple proteins. The binding of Ca2+ ion in the selectivity filter controls the widening of the pore as shown in crystal structures and in molecular dynamics simulations. The structural, functional and computational data provide a characterization of this calcium-gated cationic channel.

  10. Hyaluronan modulates TRPV1 channel opening, reducing peripheral nociceptor activity and pain.

    PubMed

    Caires, Rebeca; Luis, Enoch; Taberner, Francisco J; Fernandez-Ballester, Gregorio; Ferrer-Montiel, Antonio; Balazs, Endre A; Gomis, Ana; Belmonte, Carlos; de la Peña, Elvira

    2015-01-01

    Hyaluronan (HA) is present in the extracellular matrix of all body tissues, including synovial fluid in joints, in which it behaves as a filter that buffers transmission of mechanical forces to nociceptor nerve endings thereby reducing pain. Using recombinant systems, mouse-cultured dorsal root ganglia (DRG) neurons and in vivo experiments, we found that HA also modulates polymodal transient receptor potential vanilloid subtype 1 (TRPV1) channels. HA diminishes heat, pH and capsaicin (CAP) responses, thus reducing the opening probability of the channel by stabilizing its closed state. Accordingly, in DRG neurons, HA decreases TRPV1-mediated impulse firing and channel sensitization by bradykinin. Moreover, subcutaneous HA injection in mice reduces heat and capsaicin nocifensive responses, whereas the intra-articular injection of HA in rats decreases capsaicin joint nociceptor fibres discharge. Collectively, these results indicate that extracellular HA reduces the excitability of the ubiquitous TRPV1 channel, thereby lowering impulse activity in the peripheral nociceptor endings underlying pain.

  11. ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification

    PubMed Central

    Stephan, Aaron B.; Shum, Eleen Y.; Hirsh, Sarah; Cygnar, Katherine D.; Reisert, Johannes; Zhao, Haiqing

    2009-01-01

    For vertebrate olfactory signal transduction, a calcium-activated chloride conductance serves as a major amplification step. However, the molecular identity of the olfactory calcium-activated chloride channel (CaCC) is unknown. Here we report a proteomic screen for cilial membrane proteins of mouse olfactory sensory neurons (OSNs) that identified all the known olfactory transduction components as well as Anoctamin 2 (ANO2). Ano2 transcripts were expressed specifically in OSNs in the olfactory epithelium, and ANO2::EGFP fusion protein localized to the OSN cilia when expressed in vivo using an adenoviral vector. Patch-clamp analysis revealed that ANO2, when expressed in HEK-293 cells, forms a CaCC and exhibits channel properties closely resembling the native olfactory CaCC. Considering these findings together, we propose that ANO2 constitutes the olfactory calcium-activated chloride channel. PMID:19561302

  12. EMERGENCE OF HELICAL FLUX AND THE FORMATION OF AN ACTIVE REGION FILAMENT CHANNEL

    SciTech Connect

    Lites, B. W.; Kubo, M.; Berger, T.; Frank, Z.; Shine, R.; Tarbell, T.; Title, A.; Okamoto, T. J.; Otsuji, K.

    2010-07-20

    We present comprehensive observations of the formation and evolution of a filament channel within NOAA Active Region (AR) 10978 from Hinode/Solar Optical Telescope and TRACE. We employ sequences of Hinode spectro-polarimeter maps of the AR, accompanying Hinode Narrowband Filter Instrument magnetograms in the Na I D1 line, Hinode Broadband Filter Instrument filtergrams in the Ca II H line and G-band, Hinode X-ray telescope X-ray images, and TRACE Fe IX 171 A image sequences. The development of the channel resembles qualitatively that presented by Okamoto et al. in that many indicators point to the emergence of a pre-existing sub-surface magnetic flux rope. The consolidation of the filament channel into a coherent structure takes place rapidly during the course of a few hours, and the filament form then gradually shrinks in width over the following two days. Particular to this filament channel is the observation of a segment along its length of horizontal, weak (500 G) flux that, unlike the rest of the filament channel, is not immediately flanked by strong vertical plage fields of opposite polarity on each side of the filament. Because this isolated horizontal field is observed in photospheric lines, we infer that it is unlikely that the channel formed as a result of reconnection in the corona, but the low values of inferred magnetic fill fraction along the entire length of the filament channel suggest that the bulk of the field resides somewhat above the low photosphere. Correlation tracking of granulation in the G band presents no evidence for either systematic flows toward the channel or systematic shear flows along it. The absence of these flows, along with other indications of these data from multiple sources, reinforces (but does not conclusively demonstrate) the picture of an emerging flux rope as the origin of this AR filament channel.

  13. Active membrane having uniform physico-chemically functionalized ion channels

    DOEpatents

    Gerald, II, Rex E; Ruscic, Katarina J; Sears, Devin N; Smith, Luis J; Klingler, Robert J; Rathke, Jerome W

    2012-09-24

    The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 .mu.m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.

  14. How Active Learning Affects Student Understanding of Concepts in Electromagnetism

    NASA Astrophysics Data System (ADS)

    Belcher, John; Dori, Judy; Breslow, Lori

    2009-05-01

    We discuss the effects of the learning environment of the MIT TEAL project on student cognitive and affective outcomes in introductory electromagnetism. Our assessment included examining student conceptual understanding before and after studying electromagnetism in a media-rich environment. We developed pre-and posttests consisting of conceptual questions from standardized tests, as well as questions designed to assess the effect of visualizations and experiments. The research population consisted of 811 undergraduate students, consisting of small-and a large-scale experimental group and control group. The active learning students improved their conceptual understanding of the subject matter to a significantly higher extent than their control group peers. A subsequent longitudinal study indicates that the long-term effect of the TEAL course on student retention of concepts was significantly stronger than that of the traditional course.

  15. Identification of a stretch-activated monovalent cation channel from teleost urinary bladder cells.

    PubMed

    Chang, W H; Loretz, C A

    1991-09-01

    The urinary bladder of euryhaline teleost is an important osmoregulatory organ which absorbs Na+, Cl-, and water from urine. Using patch clamp technique, single stretch-activated channels, which were permeable to K+ and Na+ (PNa/PK approximately 0.75) and had conductances of 55 and 116 pS, were studied. In excised, inside-out patches which were voltage-clamped in the physiological range of membrane potential, the single-channel open probability (Po) was low (approximately 0.02), and increased to a maximum of 0.9 with applied pipette suction. Single-channel conductance also increased with suction. The channels showed adaptation to applied suction and relaxed to a steady-state activity about 20 seconds after application of suction. The Po increased up to 0.9 with strong membrane depolarization (Vm = 0 to +80 mV); however, there was little dependence of Po on membrane potential in the physiological range. The kinetic data suggest that there is one conducting state and at least two non-conducting states of the channel. The open-time constant increased with suction but remained unchanged with membrane potential (Vm = -70 to +60 mV). The mean closed-time of the channel decreased with suction and membrane depolarization. These results demonstrate the presence of a non-selective monovalent cation channel which may be involved in cell volume regulation in the goby urinary bladder. Additionally, this channel may function as an enhancer of Na+ influx and K+ efflux across the bladder cell as part of transepithelial ion transport if it is located in apical membrane.

  16. Thalamic Kv7 channels: pharmacological properties and activity control during noxious signal processing

    PubMed Central

    Cerina, Manuela; Szkudlarek, Hanna J; Coulon, Philippe; Meuth, Patrick; Kanyshkova, Tatyana; Nguyen, Xuan Vinh; Göbel, Kerstin; Seidenbecher, Thomas; Meuth, Sven G; Pape, Hans-Christian; Budde, Thomas

    2015-01-01

    Background and Purpose The existence of functional Kv7 channels in thalamocortical (TC) relay neurons and the effects of the K+-current termed M-current (IM) on thalamic signal processing have long been debated. Immunocytochemical evidence suggests their presence in this brain region. Therefore, we aimed to verify their existence, pharmacological properties and function in regulating activity in neurons of the ventrobasal thalamus (VB). Experimental Approach Characterization of Kv7 channels was performed by combining in vitro, in vivo and in silico techniques with a pharmacological approach. Retigabine (30 μM) and XE991 (20 μM), a specific Kv7 channel enhancer and blocker, respectively, were applied in acute brain slices during electrophysiological recordings. The effects of intrathalamic injection of retigabine (3 mM, 300 nL) and/or XE991 (2 mM, 300 nL) were investigated in freely moving animals during hot-plate tests by recording behaviour and neuronal activity. Key Results Kv7.2 and Kv7.3 subunits were found to be abundantly expressed in TC neurons of mouse VB. A slow K+-current with properties of IM was activated by retigabine and inhibited by XE991. Kv7 channel activation evoked membrane hyperpolarization, a reduction in tonic action potential firing, and increased burst firing in vitro and in computational models. Single-unit recordings and pharmacological intervention demonstrated a specific burst-firing increase upon IM activation in vivo. A Kv7 channel-mediated increase in pain threshold was associated with fewer VB units responding to noxious stimuli, and increased burst firing in responsive neurons. Conclusions and Implications Kv7 channel enhancement alters somatosensory activity and may reflect an anti-nociceptive mechanism during acute pain processing. PMID:25684311

  17. Structural basis for calcium and magnesium regulation of a large conductance calcium-activated potassium channel with β1 subunits.

    PubMed

    Liu, Hao-Wen; Hou, Pan-Pan; Guo, Xi-Ying; Zhao, Zhi-Wen; Hu, Bin; Li, Xia; Wang, Lu-Yang; Ding, Jiu-Ping; Wang, Sheng

    2014-06-13

    Large conductance Ca(2+)- and voltage-activated potassium (BK) channels, composed of pore-forming α subunits and auxiliary β subunits, play important roles in diverse physiological activities. The β1 is predominately expressed in smooth muscle cells, where it greatly enhances the Ca(2+) sensitivity of BK channels for proper regulation of smooth muscle tone. However, the structural basis underlying dynamic interaction between BK mSlo1 α and β1 remains elusive. Using macroscopic ionic current recordings in various Ca(2+) and Mg(2+) concentrations, we identified two binding sites on the cytosolic N terminus of β1, namely the electrostatic enhancing site (mSlo1(K392,R393)-β1(E13,T14)), increasing the calcium sensitivity of BK channels, and the hydrophobic site (mSlo1(L906,L908)-β1(L5,V6,M7)), passing the physical force from the Ca(2+) bowl onto the enhancing site and S6 C-linker. Dynamic binding of these sites affects the interaction between the cytosolic domain and voltage-sensing domain, leading to the reduction of Mg(2+) sensitivity. A comprehensive structural model of the BK(mSlo1 α-β1) complex was reconstructed based on these functional studies, which provides structural and mechanistic insights for understanding BK gating. PMID:24764303

  18. Channel morphodynamics and habitat recovery in a river reach affected by gravel-mining (River Ésera, Ebro basin)

    NASA Astrophysics Data System (ADS)

    Lopez-Tarazon, J. A.; Lobera, G.; Andrés-Doménech, I.; Martínez-Capel, F.; Muñoz-Mas, R.; Vallés, F.; Tena, A.; Vericat, D.; Batalla, R. J.

    2012-04-01

    Physical processes in rivers are the result of the interaction between flow regime and hydraulics, morphology, sedimentology and sediment transport. The frequency and magnitude of physical disturbance (i.e. bed stability) control habitat integrity and, consequently, ecological diversity of a particular fluvial system. Most rivers experience human-induced perturbations that alter such hydrosedimentary equilibrium, thus affecting the habitat of aquatic species. A dynamic balance may take long time to be newly attained. Within this context, gravel mining is well known to affect channel characteristics mostly at the local scale, but its effect may also propagate downstream and upstream. Sedimentary forms are modified during extraction and habitat features are reduced or even eliminated. Effects tend to be most acute in contrasted climatic environments, such as the Mediterranean areas, in which climatic and hydrological variability maximises effects of impacts and precludes short regeneration periods. Present research focuses on the evolution of a river reach, which has experienced an intense gravel extraction. The selected area is located in the River Ésera (Ebro basin), where interactions between morphodynamics and habitat recovery are examined. Emphasis is put on monitoring sedimentary, morphological and hydraulic variables to later compare pre (t0) and post (t1, t2... tn) extraction situations. Methodology for all time monitoring steps (i.e. ti) includes: i) characterization of grain size distribution at all of the different hydromorphological units within the reach; ii) description of channel morphology (together with changes before and after floods) by means of close-range aerial photographs, which are taken with a digital camera attached to a 1m3 helium balloon (i.e. BLIMP); and iii) determination of flow parameters from 2D hydraulic modelling that is based on detailed topographical data obtained from Leica® GNSS/GPS and robotic total station, and River

  19. Vector activity and propagule size affect dispersal potential by vertebrates.

    PubMed

    van Leeuwen, Casper H A; Tollenaar, Marthe L; Klaassen, Marcel

    2012-09-01

    Many small organisms in various life stages can be transported in the digestive system of larger vertebrates, a process known as endozoochory. Potential dispersal distances of these "propagules" are generally calculated after monitoring retrieval in experiments with resting vector animals. We argue that vectors in natural situations will be actively moving during effective transport rather than resting. We here test for the first time how physical activity of a vector animal might affect its dispersal efficiency. We compared digestive characteristics between swimming, wading (i.e. resting in water) and isolation (i.e. resting in a cage) mallards (Anas platyrhynchos). We fed plastic markers and aquatic gastropods, and monitored retrieval and survival of these propagules in the droppings over 24 h. Over a period of 5 h of swimming, mallards excreted 1.5 times more markers than when wading and 2.3 times more markers than isolation birds, the pattern being reversed over the subsequent period of monitoring where all birds were resting. Retention times of markers were shortened for approximately 1 h for swimming, and 0.5 h for wading birds. Shorter retention times imply higher survival of propagules at increased vector activity. However, digestive intensity measured directly by retrieval of snail shells was not a straightforward function of level of activity. Increased marker size had a negative effect on discharge rate. Our experiment indicates that previous estimates of propagule dispersal distances based on resting animals are overestimated, while propagule survival seems underestimated. These findings have implications for the dispersal of invasive species, meta-population structures and long distance colonization events.

  20. Dissection of the components for PIP2 activation and thermosensation in TRP channels

    PubMed Central

    Brauchi, Sebastian; Orta, Gerardo; Mascayano, Carolina; Salazar, Marcelo; Raddatz, Natalia; Urbina, Hector; Rosenmann, Eduardo; Gonzalez-Nilo, Fernando; Latorre, Ramon

    2007-01-01

    Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in the activation of several transient receptor potential (TRP) channels. The role of PIP2 on temperature gating of thermoTRP channels has not been explored in detail, and the process of temperature activation is largely unexplained. In this work, we have exchanged different segments of the C-terminal region between cold-sensitive (TRPM8) and heat-sensitive (TRPV1) channels, trying to understand the role of the segment in PIP2 and temperature activation. A chimera in which the proximal part of the C-terminal of TRPV1 replaces an equivalent section of TRPM8 C-terminal is activated by PIP2 and confers the phenotype of heat activation. PIP2, but not temperature sensitivity, disappears when positively charged residues contained in the exchanged region are neutralized. Shortening the exchanged segment to a length of 11 aa produces voltage-dependent and temperature-insensitive channels. Our findings suggest the existence of different activation domains for temperature, PIP2, and voltage. We provide an interpretation for channel–PIP2 interaction using a full-atom molecular model of TRPV1 and PIP2 docking analysis. PMID:17548815

  1. Channel-Forming Activities in the Glycosomal Fraction from the Bloodstream Form of Trypanosoma brucei

    PubMed Central

    Miinalainen, Ilkka J.; Hiltunen, J. Kalervo; Michels, Paul A. M.; Antonenkov, Vasily D.

    2012-01-01

    Background Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway that is responsible for substrate-level ATP production in the cell. Glycolysis is essential for bloodstream-form Trypanosoma brucei and enzymes comprising this pathway have been validated as drug targets. Glycosomes are surrounded by a single membrane. How glycolytic metabolites are transported across the glycosomal membrane is unclear. Methods/Principal Findings We hypothesized that glycosomal membrane, similarly to membranes of yeast and mammalian peroxisomes, contains channel-forming proteins involved in the selective transfer of metabolites. To verify this prediction, we isolated a glycosomal fraction from bloodstream-form T.brucei and reconstituted solubilized membrane proteins into planar lipid bilayers. The electrophysiological characteristics of the channels were studied using multiple channel recording and single channel analysis. Three main channel-forming activities were detected with current amplitudes 70–80 pA, 20–25 pA, and 8–11 pA, respectively (holding potential +10 mV and 3.0 M KCl as an electrolyte). All channels were in fully open state in a range of voltages ±150 mV and showed no sub-conductance transitions. The channel with current amplitude 20–25 pA is anion-selective (PK+/PCl−∼0.31), while the other two types of channels are slightly selective for cations (PK+/PCl− ratios ∼1.15 and ∼1.27 for the high- and low-conductance channels, respectively). The anion-selective channel showed an intrinsic current rectification that may suggest a functional asymmetry of the channel's pore. Conclusions/Significance These results indicate that the membrane of glycosomes apparently

  2. Extracellular K(+) and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and beta1 integrins.

    PubMed

    Levite, M; Cahalon, L; Peretz, A; Hershkoviz, R; Sobko, A; Ariel, A; Desai, R; Attali, B; Lider, O

    2000-04-01

    Elevated extracellular K(+) ([K(+)](o)), in the absence of "classical" immunological stimulatory signals, was found to itself be a sufficient stimulus to activate T cell beta1 integrin moieties, and to induce integrin-mediated adhesion and migration. Gating of T cell voltage-gated K(+) channels (Kv1.3) appears to be the crucial "decision-making" step, through which various physiological factors, including elevated [K(+)](o) levels, affect the T cell beta1 integrin function: opening of the channel leads to function, whereas its blockage prevents it. In support of this notion, we found that the proadhesive effects of the chemokine macrophage-inflammatory protein 1beta, the neuropeptide calcitonin gene-related peptide (CGRP), as well as elevated [K(+)](o) levels, are blocked by specific Kv1.3 channel blockers, and that the unique physiological ability of substance P to inhibit T cell adhesion correlates with Kv1.3 inhibition. Interestingly, the Kv1.3 channels and the beta1 integrins coimmunoprecipitate, suggesting that their physical association underlies their functional cooperation on the T cell surface. This study shows that T cells can be activated and driven to integrin function by a pathway that does not involve any of its specific receptors (i.e., by elevated [K(+)](o)). In addition, our results suggest that undesired T cell integrin function in a series of pathological conditions can be arrested by molecules that block the Kv1.3 channels. PMID:10748234

  3. A chimeric prokaryotic pentameric ligand–gated channel reveals distinct pathways of activation

    PubMed Central

    Schmandt, Nicolaus; Velisetty, Phanindra; Chalamalasetti, Sreevatsa V.; Stein, Richard A.; Bonner, Ross; Talley, Lauren; Parker, Mark D.; Mchaourab, Hassane S.; Yee, Vivien C.; Lodowski, David T.

    2015-01-01

    Recent high resolution structures of several pentameric ligand–gated ion channels have provided unprecedented details of their molecular architecture. However, the conformational dynamics and structural rearrangements that underlie gating and allosteric modulation remain poorly understood. We used a combination of electrophysiology, double electron–electron resonance (DEER) spectroscopy, and x-ray crystallography to investigate activation mechanisms in a novel functional chimera with the extracellular domain (ECD) of amine-gated Erwinia chrysanthemi ligand–gated ion channel, which is activated by primary amines, and the transmembrane domain of Gloeobacter violaceus ligand–gated ion channel, which is activated by protons. We found that the chimera was independently gated by primary amines and by protons. The crystal structure of the chimera in its resting state, at pH 7.0 and in the absence of primary amines, revealed a closed-pore conformation and an ECD that is twisted with respect to the transmembrane region. Amine- and pH-induced conformational changes measured by DEER spectroscopy showed that the chimera exhibits a dual mode of gating that preserves the distinct conformational changes of the parent channels. Collectively, our findings shed light on both conserved and divergent features of gating mechanisms in this class of channels, and will facilitate the design of better allosteric modulators. PMID:26415570

  4. Fly DPP10 acts as a channel ancillary subunit and possesses peptidase activity

    PubMed Central

    Shiina, Yohei; Muto, Tomohiro; Zhang, Zhili; Baihaqie, Ahmad; Yoshizawa, Takamasa; Lee, Hye-in J.; Park, Eulsoon; Tsukiji, Shinya; Takimoto, Koichi

    2016-01-01

    Mammalian DPP6 (DPPX) and DPP10 (DPPY) belong to a family of dipeptidyl peptidases, but lack enzyme activity. Instead, these proteins form complexes with voltage-gated K+ channels in Kv4 family to control their gating and other properties. Here, we find that the fly DPP10 ortholog acts as an ancillary subunit of Kv4 channels and digests peptides. Similarly to mammalian DPP10, the fly ortholog tightly binds to rat Kv4.3 protein. The association causes negative shifts in voltage dependence of channel activation and steady state inactivation. It also results in faster inactivation and recovery from inactivation. In addition to its channel regulatory role, fly DPP10 exhibits significant dipeptidyl peptidase activity with Gly-Pro-MCA (glycyl-L-proline 4-methylcoumaryl-7-amide) as a substrate. Heterologously expressed Flag-tagged fly DPP10 and human DPP4 show similar Km values towards this substrate. However, fly DPP10 exhibits approximately a 6-times-lower relative kcat value normalized with anti-Flag immunoreactivity than human DPP4. These results demonstrate that fly DPP10 is a dual functional protein, controlling Kv4 channel gating and removing bioactive peptides. PMID:27198182

  5. Arabidopsis MSL10 Has a Regulated Cell Death Signaling Activity That Is Separable from Its Mechanosensitive Ion Channel Activity[C][W

    PubMed Central

    Veley, Kira M.; Maksaev, Grigory; Frick, Elizabeth M.; January, Emma; Kloepper, Sarah C.; Haswell, Elizabeth S.

    2014-01-01

    Members of the MscS superfamily of mechanosensitive ion channels function as osmotic safety valves, releasing osmolytes under increased membrane tension. MscS homologs exhibit diverse topology and domain structure, and it has been proposed that the more complex members of the family might have novel regulatory mechanisms or molecular functions. Here, we present a study of MscS-Like (MSL)10 from Arabidopsis thaliana that supports these ideas. High-level expression of MSL10-GFP in Arabidopsis induced small stature, hydrogen peroxide accumulation, ectopic cell death, and reactive oxygen species- and cell death-associated gene expression. Phosphomimetic mutations in the MSL10 N-terminal domain prevented these phenotypes. The phosphorylation state of MSL10 also regulated its ability to induce cell death when transiently expressed in Nicotiana benthamiana leaves but did not affect subcellular localization, assembly, or channel behavior. Finally, the N-terminal domain of MSL10 was sufficient to induce cell death in tobacco, independent of phosphorylation state. We conclude that the plant-specific N-terminal domain of MSL10 is capable of inducing cell death, this activity is regulated by phosphorylation, and MSL10 has two separable activities—one as an ion channel and one as an inducer of cell death. These findings further our understanding of the evolution and significance of mechanosensitive ion channels. PMID:25052715

  6. Cardiac sodium/calcium exchanger preconditioning promotes anti-arrhythmic and cardioprotective effects through mitochondrial calcium-activated potassium channel

    PubMed Central

    Zhang, Jian-Ying; Cheng, Kang; Lai, Dong; Kong, Ling-Heng; Shen, Min; Yi, Fu; Liu, Bing; Wu, Feng; Zhou, Jing-Jun

    2015-01-01

    Background: Reverse-mode of the Na+/Ca2+ exchanger (NCX) stimulation provides cardioprotective effects for the ischemic/reperfused heart during ischemic preconditioning (IP). This study was designed to test the hypothesis that pretreatment with an inhibitor of cardiac delayed-rectifying K+ channel (IKr), E4031, increases reverse-mode of NCX activity, and triggers preconditioning against infarct size (IS) and arrhythmias caused by ischemia/reperfusion injury through mitoKCa channels. Materials and methods: In the isolated perfused rat heart, myocardial ischemia/reperfusion injury was created by occlusion of the left anterior descending coronary artery for 30 min followed by 120 min reperfusion. Two cycles of coronary occlusion for 5 min and reperfusion were performed, or pretreatment with E4031 or sevoflurane (Sevo) before the 30 min occlusion with the reversed-mode of NCX inhibitor (KB-R7943) or not. Results: E4031 or Sevo preconditioning not only markedly decreased IS but also reduced arrhythmias, which was significantly blunted by KB-R7943. Furthermore, these effects of E4031 preconditioning on IS and arrhythmias were abolished by inhibition of the mitoKCa channels. Similarly, pretreatment with NS1619, an opener of the mitoKCa channels, for 10 min before occlusion reduced both the infarct size and arrhythmias caused by ischemia/reperfusion. However, these effects weren’t affected by blockade of the NCX with KB-R7943. Conclusion: Taken together, these preliminary results conclude that pretreatment with E4031 reduces infarct size and produces anti-arrhythmic effect via stimulating the reverse-mode NCX, and that the mitoKCa channels mediate the protective effects. PMID:26617732

  7. Inaudible high-frequency sounds affect brain activity: hypersonic effect.

    PubMed

    Oohashi, T; Nishina, E; Honda, M; Yonekura, Y; Fuwamoto, Y; Kawai, N; Maekawa, T; Nakamura, S; Fukuyama, H; Shibasaki, H

    2000-06-01

    Although it is generally accepted that humans cannot perceive sounds in the frequency range above 20 kHz, the question of whether the existence of such "inaudible" high-frequency components may affect the acoustic perception of audible sounds remains unanswered. In this study, we used noninvasive physiological measurements of brain responses to provide evidence that sounds containing high-frequency components (HFCs) above the audible range significantly affect the brain activity of listeners. We used the gamelan music of Bali, which is extremely rich in HFCs with a nonstationary structure, as a natural sound source, dividing it into two components: an audible low-frequency component (LFC) below 22 kHz and an HFC above 22 kHz. Brain electrical activity and regional cerebral blood flow (rCBF) were measured as markers of neuronal activity while subjects were exposed to sounds with various combinations of LFCs and HFCs. None of the subjects recognized the HFC as sound when it was presented alone. Nevertheless, the power spectra of the alpha frequency range of the spontaneous electroencephalogram (alpha-EEG) recorded from the occipital region increased with statistical significance when the subjects were exposed to sound containing both an HFC and an LFC, compared with an otherwise identical sound from which the HFC was removed (i.e., LFC alone). In contrast, compared with the baseline, no enhancement of alpha-EEG was evident when either an HFC or an LFC was presented separately. Positron emission tomography measurements revealed that, when an HFC and an LFC were presented together, the rCBF in the brain stem and the left thalamus increased significantly compared with a sound lacking the HFC above 22 kHz but that was otherwise identical. Simultaneous EEG measurements showed that the power of occipital alpha-EEGs correlated significantly with the rCBF in the left thalamus. Psychological evaluation indicated that the subjects felt the sound containing an HFC to be more

  8. Blocking mechanisms of batrachotoxin-activated Na channels in artificial bilayers.

    PubMed

    Uehara, A; Moczydlowski, E

    1986-01-01

    The effects of various pharmacological agents that block single batrachotoxin-activated Na channels from rat muscle can be described in terms of three modes of action that correspond to at least three different binding sites. Guanidinium toxins such as tetrodotoxin, saxitoxin, and a novel polypeptide, mu-conotoxin GIIIA, act only from the extra-cellular side and induce discrete blocked states that correspond to residence times of individual toxin molecules. Such toxins apparently do not deeply penetrate the channel pore since the voltage dependence of block is insensitive to toxin charge and block is not relieved by internal Na+. Many nonspecific organic cations, including charged anesthetics, exhibit a voltage-dependent block that is enhanced by depolarization when present on the inside of the channel. This site is probably within the pore, but binding to this site is weak, as indicated by fast blockade that often appears as lowered channel conductance. A separate class of neutral and tertiary amine anesthetics such as benzocaine and procaine induce discrete closed states when added to either side of the membrane. This blocking effect can be explained by preferential binding to closed states of the channel and appears to be due to a modulation of channel gating.

  9. Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning

    PubMed Central

    Yang, Qizong; Kuzyk, Pavlo; Antonov, Igor; Bostwick, Caleb J.; Kohn, Andrea B.; Moroz, Leonid L.; Hawkins, Robert D.

    2015-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K+ and Na+ ions, and is selectively blocked by Cs+ and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway. PMID:26668355

  10. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels

    PubMed Central

    Salari, Autoosa; Vega, Benjamin S.; Milescu, Lorin S.; Milescu, Mirela

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b–S4 “paddle motif,” which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3–S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning. PMID:27045173

  11. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    PubMed

    Zhang, Weiping; Schmelzeisen, Steffen; Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.

  12. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex.

    PubMed

    Zhang, Weiping; Schmelzeisen, Steffen; Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388

  13. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex

    PubMed Central

    Parthier, Daniel; Frings, Stephan; Möhrlen, Frank

    2015-01-01

    Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum. PMID:26558388

  14. Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning.

    PubMed

    Yang, Qizong; Kuzyk, Pavlo; Antonov, Igor; Bostwick, Caleb J; Kohn, Andrea B; Moroz, Leonid L; Hawkins, Robert D

    2015-12-29

    Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K(+) and Na(+) ions, and is selectively blocked by Cs(+) and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway. PMID:26668355

  15. Molecular Interactions between Tarantula Toxins and Low-Voltage-Activated Calcium Channels.

    PubMed

    Salari, Autoosa; Vega, Benjamin S; Milescu, Lorin S; Milescu, Mirela

    2016-01-01

    Few gating-modifier toxins have been reported to target low-voltage-activated (LVA) calcium channels, and the structural basis of toxin sensitivity remains incompletely understood. Studies of voltage-gated potassium (Kv) channels have identified the S3b-S4 "paddle motif," which moves at the protein-lipid interface to drive channel opening, as the target for these amphipathic neurotoxins. Voltage-gated calcium (Cav) channels contain four homologous voltage sensor domains, suggesting multiple toxin binding sites. We show here that the S3-S4 segments within Cav3.1 can be transplanted into Kv2.1 to examine their individual contributions to voltage sensing and pharmacology. With these results, we now have a more complete picture of the conserved nature of the paddle motif in all three major voltage-gated ion channel types (Kv, Nav, and Cav). When screened with tarantula toxins, the four paddle sequences display distinct toxin binding properties, demonstrating that gating-modifier toxins can bind to Cav channels in a domain specific fashion. Domain III was the most commonly and strongly targeted, and mutagenesis revealed an acidic residue that is important for toxin binding. We also measured the lipid partitioning strength of all toxins tested and observed a positive correlation with their inhibition of Cav3.1, suggesting a key role for membrane partitioning. PMID:27045173

  16. Hyperpolarization-activated, cyclic nucleotide-gated cation channels in Aplysia: Contribution to classical conditioning.

    PubMed

    Yang, Qizong; Kuzyk, Pavlo; Antonov, Igor; Bostwick, Caleb J; Kohn, Andrea B; Moroz, Leonid L; Hawkins, Robert D

    2015-12-29

    Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels are critical regulators of neuronal excitability, but less is known about their possible roles in synaptic plasticity and memory circuits. Here, we characterized the HCN gene organization, channel properties, distribution, and involvement in associative and nonassociative forms of learning in Aplysia californica. Aplysia has only one HCN gene, which codes for a channel that has many similarities to the mammalian HCN channel. The cloned acHCN gene was expressed in Xenopus oocytes, which displayed a hyperpolarization-induced inward current that was enhanced by cGMP as well as cAMP. Similarly to its homologs in other animals, acHCN is permeable to K(+) and Na(+) ions, and is selectively blocked by Cs(+) and ZD7288. We found that acHCN is predominantly expressed in inter- and motor neurons, including LFS siphon motor neurons, and therefore tested whether HCN channels are involved in simple forms of learning of the siphon-withdrawal reflex in a semiintact preparation. ZD7288 (100 μM) significantly reduced an associative form of learning (classical conditioning) but had no effect on two nonassociative forms of learning (intermediate-term sensitization and unpaired training) or baseline responses. The HCN current is enhanced by nitric oxide (NO), which may explain the postsynaptic role of NO during conditioning. HCN current in turn enhances the NMDA-like current in the motor neurons, suggesting that HCN channels contribute to conditioning through this pathway.

  17. Role of phospholipase D and diacylglycerol in activating constitutive TRPC-like cation channels in rabbit ear artery myocytes.

    PubMed

    Albert, A P; Piper, A S; Large, W A

    2005-08-01

    Previously we have described a constitutively active Ca2+-permeable non-selective cation channel in freshly dispersed rabbit ear artery myocytes that has similar properties to canonical transient receptor potential (TRPC) channel proteins. In the present study we have investigated the transduction pathways responsible for stimulating constitutive channel activity in these myocytes. Application of the pharmacological inhibitors of phosphatidylcholine-phospholipase D (PC-PLD), butan-1-ol and C2 ceramide, produced marked inhibition of constitutive channel activity in cell-attached patches and also butan-1-ol produced pronounced suppression of resting membrane conductance measured with whole-cell recording whereas the inactive isomer butan-2-ol had no effect on constitutive whole-cell or channel activity. In addition butan-1-ol had no effect on channel activity evoked by the diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG). Inhibitors of PC-phospholipase C (PC-PLC) and phospholipase A2 (PLA2) had no effect on constitutive channel activity. Application of a purified PC-PLD enzyme and its metabolite phosphatidic acid to inside-out patches markedly increased channel activity. The phosphatidic acid phosphohydrolase (PAP) inhibitor dl-propranolol also inhibited constitutive and phosphatidic acid-induced increases in channel activity but had no effect on OAG-evoked responses. The DAG lipase and DAG kinase inhibitors, RHC80267 and R59949 respectively, which inhibit DAG metabolism, produced transient increases in channel activity which were mimicked by relatively high concentrations (40 microm) of OAG. The protein kinase C (PKC) inhibitor chelerythrine did not prevent channel activation by OAG but blocked the secondary inhibitory response of OAG. It is proposed that endogenous DAG is involved in the activation of channel activity and that its effects on channel activity are concentration-dependent with higher concentrations of DAG also inhibiting channel

  18. Role of phospholipase D and diacylglycerol in activating constitutive TRPC-like cation channels in rabbit ear artery myocytes.

    PubMed

    Albert, A P; Piper, A S; Large, W A

    2005-08-01

    Previously we have described a constitutively active Ca2+-permeable non-selective cation channel in freshly dispersed rabbit ear artery myocytes that has similar properties to canonical transient receptor potential (TRPC) channel proteins. In the present study we have investigated the transduction pathways responsible for stimulating constitutive channel activity in these myocytes. Application of the pharmacological inhibitors of phosphatidylcholine-phospholipase D (PC-PLD), butan-1-ol and C2 ceramide, produced marked inhibition of constitutive channel activity in cell-attached patches and also butan-1-ol produced pronounced suppression of resting membrane conductance measured with whole-cell recording whereas the inactive isomer butan-2-ol had no effect on constitutive whole-cell or channel activity. In addition butan-1-ol had no effect on channel activity evoked by the diacylglycerol (DAG) analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG). Inhibitors of PC-phospholipase C (PC-PLC) and phospholipase A2 (PLA2) had no effect on constitutive channel activity. Application of a purified PC-PLD enzyme and its metabolite phosphatidic acid to inside-out patches markedly increased channel activity. The phosphatidic acid phosphohydrolase (PAP) inhibitor dl-propranolol also inhibited constitutive and phosphatidic acid-induced increases in channel activity but had no effect on OAG-evoked responses. The DAG lipase and DAG kinase inhibitors, RHC80267 and R59949 respectively, which inhibit DAG metabolism, produced transient increases in channel activity which were mimicked by relatively high concentrations (40 microm) of OAG. The protein kinase C (PKC) inhibitor chelerythrine did not prevent channel activation by OAG but blocked the secondary inhibitory response of OAG. It is proposed that endogenous DAG is involved in the activation of channel activity and that its effects on channel activity are concentration-dependent with higher concentrations of DAG also inhibiting channel

  19. Intramembrane Proton Binding Site Linked to Activation of Bacterial Pentameric Ion Channel*

    PubMed Central

    Wang, Hai-Long; Cheng, Xiaolin; Sine, Steven M.

    2012-01-01

    Prokaryotic orthologs of eukaryotic Cys-loop receptor channels recently emerged as structural and mechanistic surrogates to investigate this superfamily of intercellular signaling proteins. Here, we examine proton activation of the prokaryotic ortholog GLIC using patch clamp electrophysiology, mutagenesis, and molecular dynamics (MD) simulations. Whole-cell current recordings from human embryonic kidney (HEK) 293 cells expressing GLIC show half-maximal activation at pH 6, close to the pKa of histidine, implicating the three native His residues in proton sensing linked to activation. The mutation H235F abolishes proton activation, H277Y is without effect, and all nine mutations of His-127 prevent expression on the cell surface. In the GLIC crystal structure, His-235 on transmembrane (TM) α-helix 2, hydrogen bonds to the main chain carbonyl oxygen of Ile-259 on TM α-helix 3. MD simulations show that when His-235 is protonated, the hydrogen bond persists, and the channel remains in the open conformation, whereas when His-235 is deprotonated, the hydrogen bond dissociates, and the channel closes. Mutations of the proximal Tyr-263, which also links TM α-helices 2 and 3 via a hydrogen bond, alter proton sensitivity over a 1.5 pH unit range. MD simulations show that mutations of Tyr-263 alter the hydrogen bonding capacity of His-235. The overall findings show that His-235 in the TM region of GLIC is a novel proton binding site linked to channel activation. PMID:22084238

  20. Single-channel basis for the slow activation of the repolarizing cardiac potassium current, I(Ks).

    PubMed

    Werry, Daniel; Eldstrom, Jodene; Wang, Zhuren; Fedida, David

    2013-03-12

    Coassembly of potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) with potassium voltage-gated channel, Isk-related family, member 1 (KCNE1) the delayed rectifier potassium channel I(Ks). Its slow activation is critically important for membrane repolarization and for abbreviating the cardiac action potential, especially during sympathetic activation and at high heart rates. Mutations in either gene can cause long QT syndrome, which can lead to fatal arrhythmias. To understand better the elementary behavior of this slowly activating channel complex, we quantitatively analyzed direct measurements of single-channel I(Ks). Single-channel recordings from transiently transfected mouse ltk(-) cells confirm a channel that has long latency periods to opening (1.67 ± 0.073 s at +60 mV) but that flickers rapidly between multiple open and closed states in non-deactivating bursts at positive membrane potentials. Channel activity is cyclic with periods of high activity followed by quiescence, leading to an overall open probability of only ∼0.15 after 4 s under our recording conditions. The mean single-channel conductance was determined to be 3.2 pS, but unlike any other known wild-type human potassium channel, long-lived subconductance levels coupled to activation are a key feature of both the activation and deactivation time courses of the conducting channel complex. Up to five conducting levels ranging from 0.13 to 0.66 pA could be identified in single-channel recordings at 60 mV. Fast closings and overt subconductance behavior of the wild-type I(Ks) channel required modification of existing Markov models to include these features of channel behavior. PMID:23431135

  1. Shaking stack model of ion conduction through the Ca(2+)-activated K+ channel.

    PubMed Central

    Schumaker, M F

    1992-01-01

    Motivated by the results of Neyton and Miller (1988. J. Gen. Physiol. 92:549-586), suggesting that the Ca(2+)-activated K+ channel has four high affinity ion binding sites, we propose a physically attractive variant of the single-vacancy conduction mechanism for this channel. Simple analytical expressions for conductance, current, flux ratio exponent, and reversal potential under bi-ionic conditions are found. A set of conductance data are analyzed to determine a realistic range of parameter values. Using these, we find qualitative agreement with a variety of experimental results previously reported in the literature. The exquisite selectivity of the Ca(2+)-activated K+ channel may be explained as a consequence of the concerted motion of the "stack" in the proposed mechanism. PMID:1420923

  2. Activation of Na+ channels in cell membrane by capacitive stimulation with silicon chip

    NASA Astrophysics Data System (ADS)

    Schoen, Ingmar; Fromherz, Peter

    2005-11-01

    Sodium channels are the crucial electrical elements of neuronal excitation. As a step toward hybrid neuron-semiconductor devices, we studied the activation of recombinant NaV1.4 sodium channels in human embryonic kidney (HEK293) cells by stimulation from an electrolyte/oxide/silicon (EOS) capacitor. HfO2 was used as an insulator to attain a high capacitance. An effective activation was achieved by decaying voltage ramps at constant intracellular voltage at a depleted NaCl concentration in the bath to enhance the resistance of the cell-chip contact. We were also able to open sodium channels at a NaCl concentration close to physiological conditions. This experiment provides a basis for noninvasive capacitive stimulation of nerve cells with semiconductor chips.

  3. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity.

    PubMed

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-06-30

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility.

  4. Nuclear pore ion channel activity in live syncytial nuclei.

    PubMed

    Bustamante, Jose Omar

    2002-05-01

    Nuclear pore complexes (NPCs) are important nanochannels for the control of gene activity and expression. Most of our knowledge of NPC function has been derived from isolated nuclei and permeabilized cells in cell lysates/extracts. Since recent patch-clamp work has challenged the dogma that NPCs are freely permeable to small particles, a preparation of isolated living nuclei in their native liquid environment was sought and found: the syncytial nuclei in the water of the coconut Cocos nucifera. These nuclei have all properties of NPC-mediated macromolecular transport (MMT) and express foreign green fluorescent protein (GFP) plasmids. They display chromatin movement, are created by particle aggregation or by division, can grow by throwing filaments to catch material, etc. This study shows, for the first time, that living NPCs engaged in MMT do not transport physiological ions - a phenomenon that explains observations of nucleocytoplasmic ion gradients. Since coconuts are inexpensive (less than US$1/nut per litre), this robust preparation may contribute to our understanding of NPCs and cell nucleus and to the development of biotechnologies for the production of DNA, RNA and proteins.

  5. Multi-channel Kalman filters for active noise control.

    PubMed

    van Ophem, S; Berkhoff, A P

    2013-04-01

    By formulating the feed-forward broadband active noise control problem as a state estimation problem it is possible to achieve a faster rate of convergence than the filtered reference least mean squares algorithm and possibly also a better tracking performance. A multiple input/multiple output Kalman algorithm is derived to perform this state estimation. To make the algorithm more suitable for real-time applications, the Kalman filter is written in a fast array form and the secondary path state matrices are implemented in output normal form. The resulting filter implementation is tested in simulations and in real-time experiments. It was found that for a constant primary path the filter has a fast rate of convergence and is able to track changes in the frequency spectrum. For a forgetting factor equal to unity the system is robust but the filter is unable to track rapid changes in the primary path. A forgetting factor lower than 1 gives a significantly improved tracking performance but leads to a numerical instability for the fast array form of the algorithm. PMID:23556580

  6. Apparent intermediate K conductance channel hyposmotic activation in human lens epithelial cells.

    PubMed

    Lauf, Peter K; Misri, Sandeep; Chimote, Ameet A; Adragna, Norma C

    2008-03-01

    This study explores the nature of K fluxes in human lens epithelial cells (LECs) in hyposmotic solutions. Total ion fluxes, Na-K pump, Cl-dependent Na-K-2Cl (NKCC), K-Cl (KCC) cotransport, and K channels were determined by 85Rb uptake and cell K (Kc) by atomic absorption spectrophotometry, and cell water gravimetrically after exposure to ouabain +/- bumetanide (Na-K pump and NKCC inhibitors), and ion channel inhibitors in varying osmolalities with Na, K, or methyl-d-glucamine and Cl, sulfamate, or nitrate. Reverse transcriptase polymerase chain reaction (RT-PCR), Western blot analyses, and immunochemistry were also performed. In isosmotic (300 mosM) media approximately 90% of the total Rb influx occurred through the Na-K pump and NKCC and approximately 10% through KCC and a residual leak. Hyposmotic media (150 mosM) decreased K(c) by a 16-fold higher K permeability and cell water, but failed to inactivate NKCC and activate KCC. Sucrose replacement or extracellular K to >57 mM, but not Rb or Cs, in hyposmotic media prevented Kc and water loss. Rb influx equaled Kc loss, both blocked by clotrimazole (IC50 approximately 25 microM) and partially by 1-[(2-chlorophenyl) diphenylmethyl]-1H-pyrazole (TRAM-34) inhibitors of the IK channel KCa3.1 but not by other K channel or connexin hemichannel blockers. Of several anion channel blockers (dihydro-indenyl)oxy]alkanoic acid (DIOA), 4-2(butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid (DCPIB), and phloretin totally or partially inhibited Kc loss and Rb influx, respectively. RT-PCR and immunochemistry confirmed the presence of KCa3.1 channels, aside of the KCC1, KCC2, KCC3 and KCC4 isoforms. Apparently, IK channels, possibly in parallel with volume-sensitive outwardly rectifying Cl channels, effect regulatory volume decrease in LECs. PMID:18184876

  7. Ca(2+)-activated chloride channel activity during Ca(2+) alternans in ventricular myocytes.

    PubMed

    Kanaporis, Giedrius; Blatter, Lothar A

    2016-11-01

    Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca(2+)-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl(-) channel blocker DIDS or lowering external Cl(-) concentration identifying it as a Ca(2+)-activated Cl(-) current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.

  8. Active Sites of Spinoxin, a Potassium Channel Scorpion Toxin, Elucidated by Systematic Alanine Scanning.

    PubMed

    Peigneur, Steve; Yamaguchi, Yoko; Kawano, Chihiro; Nose, Takeru; Nirthanan, Selvanayagam; Gopalakrishnakone, Ponnampalam; Tytgat, Jan; Sato, Kazuki

    2016-05-31

    Peptide toxins from scorpion venoms constitute the largest group of toxins that target the voltage-gated potassium channel (Kv). Spinoxin (SPX) isolated from the venom of scorpion Heterometrus spinifer is a 34-residue peptide neurotoxin cross-linked by four disulfide bridges. SPX is a potent inhibitor of Kv1.3 potassium channels (IC50 = 63 nM), which are considered to be valid molecular targets in the diagnostics and therapy of various autoimmune disorders and cancers. Here we synthesized 25 analogues of SPX and analyzed the role of each amino acid in SPX using alanine scanning to study its structure-function relationships. All synthetic analogues showed similar disulfide bond pairings and secondary structures as native SPX. Alanine replacements at Lys(23), Asn(26), and Lys(30) resulted in loss of activity against Kv1.3 potassium channels, whereas replacements at Arg(7), Met(14), Lys(27), and Tyr(32) also largely reduced inhibitory activity. These results suggest that the side chains of these amino acids in SPX play an important role in its interaction with Kv1.3 channels. In particular, Lys(23) appears to be a key residue that underpins Kv1.3 channel inhibition. Of these seven amino acid residues, four are basic amino acids, suggesting that the positive electrostatic potential on the surface of SPX is likely required for high affinity interaction with Kv1.3 channels. This study provides insight into the structure-function relationships of SPX with implications for the rational design of new lead compounds targeting potassium channels with high potency. PMID:27159046

  9. Activation of TRPC6 channels promotes endocannabinoid biosynthesis in neuronal CAD cells

    PubMed Central

    Bardell, Tamera K.; Barker, Eric L.

    2010-01-01

    Calcium influx activates biosynthesis of the endogenous cannabinoids 2-arachidonyl glycerol (2-AG) and anandamide (AEA). The calcium channel involved with endocannabinoid synthesis and release in neurons is still unknown. The canonical TRP (TRPC) channels are calcium-permeable channels that are a homology-based subdivision of the broader class of TRP channels. TRPC3, 6, and 7 are G-protein-gated nonselective cation channels that have been localized to lipid rafts and shown to colocalize with caveolin 1. Because endocannabinoid synthesis has been found to occur “on demand” in a calcium-dependent manner and has been linked to lipid rafts, we explored the potential role of transient receptor potential (TRP) channels in this process. Previously, we observed that after metabolism AEA and arachidonic acid (ArA) can be recycled into new endocannabinoid molecules. Consistent with these previous findings, we found that Cath.a differentiated (CAD) cells pretreated with radiolabeled ArA exhibited a robust increase in 2-AG release in response to TRPC stimulation with the diacylglycerol (DAG) analogue, 1-oleoyl-2-acetyl-sn-glycerol (OAG). Furthermore, cells pretreated with [3H]AEA produced a significant amount of AEA and 2-AG upon stimulation of TRPC channels. This process was not mediated through protein kinase C activation. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis revealed that only TRPC6 was present in the CAD cells. siRNA-induced knockdown of TRPC6 in the CAD cells abolished OAG-stimulated production of the endocannabionids. This evidence suggests that TRPC6 may be capable of promoting endocannabinoid synthesis in neuronal cells. PMID:20466028

  10. C-Terminal β9-Strand of the Cyclic Nucleotide-Binding Homology Domain Stabilizes Activated States of Kv11.1 Channels

    PubMed Central

    Ng, Chai Ann; Ke, Ying; Perry, Matthew D.; Tan, Peter S.; Hill, Adam P.; Vandenberg, Jamie I.

    2013-01-01

    Kv11.1 potassium channels are important for regulation of the normal rhythm of the heartbeat. Reduced activity of Kv11.1 channels causes long QT syndrome type 2, a disorder that increases the risk of cardiac arrhythmias and sudden cardiac arrest. Kv11.1 channels are members of the KCNH subfamily of voltage-gated K+ channels. However, they also share many similarities with the cyclic nucleotide gated ion channel family, including having a cyclic nucleotide-binding homology (cNBH) domain. Kv11.1 channels, however, are not directly regulated by cyclic nucleotides. Recently, crystal structures of the cNBH domain from mEAG and zELK channels, both members of the KCNH family of voltage-gated potassium channels, revealed that a C-terminal β9-strand in the cNBH domain occupied the putative cyclic nucleotide-binding site thereby precluding binding of cyclic nucleotides. Here we show that mutations to residues in the β9-strand affect the stability of the open state relative to the closed state of Kv11.1 channels. We also show that disrupting the structure of the β9-strand reduces the stability of the inactivated state relative to the open state. Clinical mutations located in this β9-strand result in reduced trafficking efficiency, which suggests that binding of the C-terminal β9-strand to the putative cyclic nucleotide-binding pocket is also important for assembly and trafficking of Kv11.1 channels. PMID:24204727

  11. Quantifying the transition from fluvial- to wave-dominance for river deltas with multiple active channels

    NASA Astrophysics Data System (ADS)

    Nienhuis, J.; Ashton, A. D.; Giosan, L.

    2012-12-01

    The plan-view morphologies of fluvial- and wave-dominated deltas are clearly distinctive, but transitional forms are numerous. A quantitative, process-based description of this transition remains unexplored, particularly for river deltas with multiple active channels. Previous studies focused on general attributes of the fluvial and marine environment, such as the balance between wave energy and river discharge. Here, we propose that the transition between fluvial and wave dominance is directly related to the magnitude of the fluvial bedload flux to the nearshore region versus the alongshore sediment transport capacity of waves removing sediment away from the mouth. In the case of a single-channel delta, this balance can be computed for a given distribution of waves approaching shore. Fluvial dominance occurs when fluvial sediment input exceeds the wave-sustained maximum alongshore sediment transport for all potential shoreline orientations both up- and downdrift of the river mouth. However, deltaic channels have the tendency to bifurcate with increasing fluvial strength. Initial bifurcation splits the fluvial sediment flux among individual channels, while the potential sediment transport by waves remains constant for both river mouths. At higher bifurcation orders, multiple channels interact with each other alongshore, a situation more complicated than the single channel case and one that cannot be simple addressed analytically. We apply a model of plan-view shoreline evolution to simulate the evolution of a deltaic environment with multiple active channels. A highly simplified fluvial domain is represented by deposition of sediment where channels meet the coast. We investigate two scenarios of fluvial delivery. The first scenario deposits fluvial sediment alongshore on a self-similar predefined network of channels. We analyze the effects of different network geometrical parameters, such as bifurcation length, bifurcation angle, and sediment partitioning. In the

  12. Effects of urine composition on epithelial Na+ channel-targeted protease activity

    PubMed Central

    Berman, Jonathan M; Awayda, Ryan G; Awayda, Mouhamed S

    2015-01-01

    We examined human urinary proteolytic activity toward the Epithelial Sodium Channel (ENaC). We focused on two sites in each of alpha and gamma ENaC that are targets of endogenous and exogenous proteases. We examined the effects of ionic strength, pH and urinary H+-buffers, metabolic intermediates, redox molecules, and large urinary proteins. Monoatomic cations caused the largest effect, with sodium inhibiting activity in the 15–515 mEq range. Multivalent cations zinc and copper inhibited urinary proteolytic activity at concentrations below 100 μmol/L. Similar to sodium, urea caused a 30% inhibition in the 0–500 mmol/L range. This was not observed with acetone and ethanol. Modulating urinary redox status modified activity with H2O2 stimulated and ascorbate inhibited activity. Minimal effects (<10%) were observed with caffeine, glucose, several TCA cycle intermediates, salicylic acid, inorganic phosphate, albumin, creatinine, and Tamm–Horsfall protein. The cumulative activity of ENaC-cleaving proteases was highest at neutral pH, however, alpha and gamma proteases exhibited an inverse dependence with alpha stimulated at acidic and gamma stimulated at alkaline pH. These data indicate that ENaC-targeting urinary proteolytic activity is sensitive to sodium, urea and pH and changes in these components can modify channel cleavage and activation status, and likely downstream sodium absorption unrelated to changes in protein or channel density. PMID:26564065

  13. TRPV3 channels mediate strontium-induced mouse-egg activation.

    PubMed

    Carvacho, Ingrid; Lee, Hoi Chang; Fissore, Rafael A; Clapham, David E

    2013-12-12

    In mammals, calcium influx is required for oocyte maturation and egg activation. The molecular identities of the calcium-permeant channels that underlie the initiation of embryonic development are not established. Here, we describe a transient receptor potential (TRP) ion channel current activated by TRP agonists that is absent in TrpV3(-/-) eggs. TRPV3 current is differentially expressed during oocyte maturation, reaching a peak of maximum density and activity at metaphase of meiosis II (MII), the stage of fertilization. Selective activation of TRPV3 channels provokes egg activation by mediating massive calcium entry. Widely used to activate eggs, strontium application is known to yield normal offspring in combination with somatic cell nuclear transfer. We show that TRPV3 is required for strontium influx, because TrpV3(-/-) eggs failed to conduct Sr(2+) or undergo strontium-induced activation. We propose that TRPV3 is a major mediator of calcium influx in mouse eggs and is a putative target for artificial egg activation. PMID:24316078

  14. Effects of urine composition on epithelial Na+ channel-targeted protease activity.

    PubMed

    Berman, Jonathan M; Awayda, Ryan G; Awayda, Mouhamed S

    2015-11-01

    We examined human urinary proteolytic activity toward the Epithelial Sodium Channel (ENaC). We focused on two sites in each of alpha and gamma ENaC that are targets of endogenous and exogenous proteases. We examined the effects of ionic strength, pH and urinary H(+)-buffers, metabolic intermediates, redox molecules, and large urinary proteins. Monoatomic cations caused the largest effect, with sodium inhibiting activity in the 15-515 mEq range. Multivalent cations zinc and copper inhibited urinary proteolytic activity at concentrations below 100 μmol/L. Similar to sodium, urea caused a 30% inhibition in the 0-500 mmol/L range. This was not observed with acetone and ethanol. Modulating urinary redox status modified activity with H2O2 stimulated and ascorbate inhibited activity. Minimal effects (<10%) were observed with caffeine, glucose, several TCA cycle intermediates, salicylic acid, inorganic phosphate, albumin, creatinine, and Tamm-Horsfall protein. The cumulative activity of ENaC-cleaving proteases was highest at neutral pH, however, alpha and gamma proteases exhibited an inverse dependence with alpha stimulated at acidic and gamma stimulated at alkaline pH. These data indicate that ENaC-targeting urinary proteolytic activity is sensitive to sodium, urea and pH and changes in these components can modify channel cleavage and activation status, and likely downstream sodium absorption unrelated to changes in protein or channel density. PMID:26564065

  15. Channel-forming activities of peroxisomal membrane proteins from the yeast Saccharomyces cerevisiae.

    PubMed

    Grunau, Silke; Mindthoff, Sabrina; Rottensteiner, Hanspeter; Sormunen, Raija T; Hiltunen, J Kalervo; Erdmann, Ralf; Antonenkov, Vasily D

    2009-03-01

    Highly-purified peroxisomes from the yeast Saccharomyces cerevisiae grown on oleic acid were investigated for the presence of channel (pore)-forming proteins in the membrane of these organelles. Solubilized membrane proteins were reconstituted in planar lipid bilayers and their pore-forming activity was studied by means of multiple-channel monitoring or single-channel analysis. Two abundant pore-forming activities were detected with an average conductance of 0.2 and 0.6 nS in 1.0 m KCl, respectively. The high-conductance pore (0.6 nS in 1.0 m KCl) is slightly selective to cations (P(K+)/P(Cl-) approximately 1.3) and showed an unusual flickering at elevated (> +/-40 mV) holding potentials directed upward relative to the open state of the channel. The data obtained for the properties of the low-conductance pore (0.2 nS in 1.0 m KCl) support the notion that the high-conductance channel represents a cluster of two low-conductance pores. The results lead to conclusion that the yeast peroxisomes contain membrane pore-forming proteins that may aid the transfer of small solutes between the peroxisomal lumen and cytoplasm.

  16. Anoctamin 1 (Tmem16A) Ca2+-activated chloride channel stoichiometrically interacts with an ezrin–radixin–moesin network

    PubMed Central

    Perez-Cornejo, Patricia; Gokhale, Avanti; Duran, Charity; Cui, Yuanyuan; Xiao, Qinghuan; Hartzell, H. Criss; Faundez, Victor

    2012-01-01

    The newly discovered Ca2+-activated Cl− channel (CaCC), Anoctamin 1 (Ano1 or TMEM16A), has been implicated in vital physiological functions including epithelial fluid secretion, gut motility, and smooth muscle tone. Overexpression of Ano1 in HEK cells or Xenopus oocytes is sufficient to generate Ca2+-activated Cl− currents, but the details of channel composition and the regulatory factors that control channel biology are incompletely understood. We used a highly sensitive quantitative SILAC proteomics approach to obtain insights into stoichiometric protein networks associated with the Ano1 channel. These studies provide a comprehensive footprint of putative Ano1 regulatory networks. We find that Ano1 associates with the signaling/scaffolding proteins ezrin, radixin, moesin, and RhoA, which link the plasma membrane to the cytoskeleton with very high stoichiometry. Ano1, ezrin, and moesin/radixin colocalize apically in salivary gland epithelial cells, and overexpression of moesin and Ano1 in HEK cells alters the subcellular localization of both proteins. Moreover, interfering RNA for moesin modifies Ano1 current without affecting its surface expression level. Another network associated with Ano1 includes the SNARE and SM proteins VAMP3, syntaxins 2 and -4, and syntaxin-binding proteins munc18b and munc18c, which are integral to translocation of vesicles to the plasma membrane. A number of other regulatory proteins, including GTPases, Ca2+-binding proteins, kinases, and lipid-interacting proteins are enriched in the Ano1 complex. These data provide stoichiometrically prioritized information about mechanisms regulating Ano1 function and trafficking to polarized domains of the plasma membrane. PMID:22685202

  17. TRPC1 regulates calcium-activated chloride channels in salivary gland cells.

    PubMed

    Sun, Yuyang; Birnbaumer, Lutz; Singh, Brij B

    2015-11-01

    Calcium-activated chloride channel (CaCC) plays an important role in modulating epithelial secretion. It has been suggested that in salivary tissues, sustained fluid secretion is dependent on Ca(2+) influx that activates ion channels such as CaCC to initiate Cl(-) efflux. However direct evidence as well as the molecular identity of the Ca(2+) channel responsible for activating CaCC in salivary tissues is not yet identified. Here we provide evidence that in human salivary cells, an outward rectifying Cl(-) current was activated by increasing [Ca(2+)]i, which was inhibited by the addition of pharmacological agents niflumic acid (NFA), an antagonist of CaCC, or T16Ainh-A01, a specific TMEM16a inhibitor. Addition of thapsigargin (Tg), that induces store-depletion and activates TRPC1-mediated Ca(2+) entry, potentiated the Cl(-) current, which was inhibited by the addition of a non-specific TRPC channel blocker SKF96365 or removal of external Ca(2+). Stimulation with Tg also increased plasma membrane expression of TMEM16a protein, which was also dependent on Ca(2+) entry. Importantly, in salivary cells, TRPC1 silencing, but not that of TRPC3, inhibited CaCC especially upon store depletion. Moreover, primary acinar cells isolated from submandibular gland also showed outward rectifying Cl(-) currents upon increasing [Ca(2+)]i. These Cl(-) currents were again potentiated with the addition of Tg, but inhibited in the presence of T16Ainh-A01. Finally, acinar cells isolated from the submandibular glands of TRPC1 knockout mice showed significant inhibition of the outward Cl(-) currents without decreasing TMEM16a expression. Together the data suggests that Ca(2+) entry via the TRPC1 channels is essential for the activation of CaCC.

  18. Possibility of inhibition of calcium-activated chloride channel rescuing erectile failures in diabetes.

    PubMed

    Lau, L-C; Adaikan, P G

    2014-01-01

    Although calcium-activated chloride channel (CaCC) blockers, niflumic acid (NFA) and anthracene-9-carboxylic acid (A9C), have been shown as potential erectogenic agents in healthy corpus cavernosum (CC) tissues, the pharmacological characteristics of CaCC blockers in diabetic state are relatively unknown. This study compares the direct muscle relaxant property of NFA and A9C with their influence on contraction and nitrergic relaxation as elicited by electrical field stimulation in normal and 16-week-old diabetic rabbit CC (n=8). Mean blood glucose level in alloxan-treated rabbits was elevated threefold (21.9±0.5 mmol  l(-1) vs 7.1±0.2 mmol l(-1) in untreated rabbits; P<0.05). There was no significant alteration in the efficacies of NFA and A9C in eliciting a concentration-dependent relaxation of noradrenaline-induced cavernosum tone and in inhibiting neurogenic contraction of CC from diabetic rabbits. The capability of NFA (100 μM) and A9C (1 mM) in augmenting nitrergic transmission was also not adversely affected by diabetes. However, in CC from diabetic rabbits, A9C markedly increased nitrergic relaxation response to 1-10 Hz by 10.6-36.6% (vs -5.1-0.8% in nondiabetic control). CaCC sensitivity to A9C appears to be enhanced in diabetic CC tissue. Inhibiting the CaCC activity in diabetes-related ED may tip the balance between proerectile/relaxant and antierectile/contractile mechanisms in favor of cavernosum relaxation.

  19. Probing the energy landscape of activation gating of the bacterial potassium channel KcsA.

    PubMed

    Linder, Tobias; de Groot, Bert L; Stary-Weinzinger, Anna

    2013-01-01

    The bacterial potassium channel KcsA, which has been crystallized in several conformations, offers an ideal model to investigate activation gating of ion channels. In this study, essential dynamics simulations are applied to obtain insights into the transition pathways and the energy profile of KcsA pore gating. In agreement with previous hypotheses, our simulations reveal a two phasic activation gating process. In the first phase, local structural rearrangements in TM2 are observed leading to an intermediate channel conformation, followed by large structural rearrangements leading to full opening of KcsA. Conformational changes of a highly conserved phenylalanine, F114, at the bundle crossing region are crucial for the transition from a closed to an intermediate state. 3.9 µs umbrella sampling calculations reveal that there are two well-defined energy barriers dividing closed, intermediate, and open channel states. In agreement with mutational studies, the closed state was found to be energetically more favorable compared to the open state. Further, the simulations provide new insights into the dynamical coupling effects of F103 between the activation gate and the selectivity filter. Investigations on individual subunits support cooperativity of subunits during activation gating.

  20. Functional insights into modulation of BKCa channel activity to alter myometrial contractility

    PubMed Central

    Lorca, Ramón A.; Prabagaran, Monali; England, Sarah K.

    2014-01-01

    The large-conductance voltage- and Ca2+-activated K+ channel (BKCa) is an important regulator of membrane excitability in a wide variety of cells and tissues. In myometrial smooth muscle, activation of BKCa plays essential roles in buffering contractility to maintain uterine quiescence during pregnancy and in the transition to a more contractile state at the onset of labor. Multiple mechanisms of modulation have been described to alter BKCa channel activity, expression, and cellular localization. In the myometrium, BKCa is regulated by alternative splicing, protein targeting to the plasma membrane, compartmentation in membrane microdomains, and posttranslational modifications. In addition, interaction with auxiliary proteins (i.e., β1- and β2-subunits), association with G-protein coupled receptor signaling pathways, such as those activated by adrenergic and oxytocin receptors, and hormonal regulation provide further mechanisms of variable modulation of BKCa channel function in myometrial smooth muscle. Here, we provide an overview of these mechanisms of BKCa channel modulation and provide a context for them in relation to myometrial function. PMID:25132821

  1. External protons destabilize the activated voltage sensor in hERG channels.

    PubMed

    Shi, Yu Patrick; Cheng, Yen May; Van Slyke, Aaron C; Claydon, Tom W

    2014-03-01

    Extracellular acidosis shifts hERG channel activation to more depolarized potentials and accelerates channel deactivation; however, the mechanisms underlying these effects are unclear. External divalent cations, e.g., Ca(2+) and Cd(2+), mimic these effects and coordinate within a metal ion binding pocket composed of three acidic residues in hERG: D456 and D460 in S2 and D509 in S3. A common mechanism may underlie divalent cation and proton effects on hERG gating. Using two-electrode voltage clamp, we show proton sensitivity of hERG channel activation (pKa = 5.6), but not deactivation, was greatly reduced in the presence of Cd(2+) (0.1 mM), suggesting a common binding site for the Cd(2+) and proton effect on activation and separable effects of protons on activation and deactivation. Mutational analysis confirmed that D509 plays a critical role in the pH dependence of activation, as shown previously, and that cooperative actions involving D456 and D460 are also required. Importantly, neutralization of all three acidic residues abolished the proton-induced shift of activation, suggesting that the metal ion binding pocket alone accounts for the effects of protons on hERG channel activation. Voltage-clamp fluorimetry measurements demonstrated that protons shifted the voltage dependence of S4 movement to more depolarized potentials. The data indicate a site and mechanism of action for protons on hERG activation gating; protonation of D456, D460 and D509 disrupts interactions between these residues and S4 gating charges to destabilize the activated configuration of S4.

  2. GPR119 Agonist AS1269574 Activates TRPA1 Cation Channels to Stimulate GLP-1 Secretion.

    PubMed

    Chepurny, Oleg G; Holz, George G; Roe, Michael W; Leech, Colin A

    2016-06-01

    GPR119 is a G protein-coupled receptor expressed on intestinal L cells that synthesize and secrete the blood glucose-lowering hormone glucagon-like peptide-1 (GLP-1). GPR119 agonists stimulate the release of GLP-1 from L cells, and for this reason there is interest in their potential use as a new treatment for type 2 diabetes mellitus. AS1269574 is one such GPR119 agonist, and it is the prototype of a series of 2,4,6 trisubstituted pyrimidines that exert positive glucoregulatory actions in mice. Here we report the unexpected finding that AS1269574 stimulates GLP-1 release from the STC-1 intestinal cell line by directly promoting Ca(2+) influx through transient receptor potential ankyrin 1 (TRPA1) cation channels. These GPR119-independent actions of AS1269574 are inhibited by TRPA1 channel blockers (AP-18, A967079, HC030031) and are not secondary to intracellular Ca(2+) release or cAMP production. Patch clamp studies reveal that AS1269574 activates an outwardly rectifying membrane current with properties expected of TRPA1 channels. However, the TRPA1 channel-mediated action of AS1269574 to increase intracellular free calcium concentration is not replicated by GPR119 agonists (AR231453, oleoylethanolamide) unrelated in structure to AS1269574. Using human embryonic kidney-293 cells expressing recombinant rat TRPA1 channels but not GPR119, direct TRPA1 channel activating properties of AS1269574 are validated. Because we find that AS1269574 also acts in a conventional GPR119-mediated manner to stimulate proglucagon gene promoter activity in the GLUTag intestinal L cell line, new findings reported here reveal the surprising capacity of AS1269574 to act as a dual agonist at two molecular targets (GPR119/TRPA1) important to the control of L-cell function and type 2 diabetes mellitus drug discovery research. PMID:27082897

  3. Increased Anion Channel Activity Is an Unavoidable Event in Ozone-Induced Programmed Cell Death

    PubMed Central

    Errakhi, Rafik; Hiramatsu, Takuya; Meimoun, Patrice; Briand, Joël; Iwaya-Inoue, Mari; Kawano, Tomonori; Bouteau, François

    2010-01-01

    Background Ozone is a major secondary air pollutant often reaching high concentrations in urban areas under strong daylight, high temperature and stagnant high-pressure systems. Ozone in the troposphere is a pollutant that is harmful to the plant. Principal Findings By exposing cells to a strong pulse of ozonized air, an acute cell death was observed in suspension cells of Arabidopsis thaliana used as a model. We demonstrated that O3 treatment induced the activation of a plasma membrane anion channel that is an early prerequisite of O3-induced cell death in A. thaliana. Our data further suggest interplay of anion channel activation with well known plant responses to O3, Ca2+ influx and NADPH-oxidase generated reactive oxygen species (ROS) in mediating the oxidative cell death. This interplay might be fuelled by several mechanisms in addition to the direct ROS generation by O3; namely, H2O2 generation by salicylic and abscisic acids. Anion channel activation was also shown to promote the accumulation of transcripts encoding vacuolar processing enzymes, a family of proteases previously reported to contribute to the disruption of vacuole integrity observed during programmed cell death. Significance Collectively, our data indicate that anion efflux is an early key component of morphological and biochemical events leading to O3-induced programmed cell death. Because ion channels and more specifically anion channels assume a crucial position in cells, an understanding about the underlying role(s) for ion channels in the signalling pathway leading to programmed cell death is a subject that warrants future investigation. PMID:20967217

  4. Assessing water source and channel type as factors affecting benthic macroinvertebrate and periphyton assemblages in the highly urbanized Santa Ana River Basin, California

    USGS Publications Warehouse

    Burton, C.A.; Brown, L.R.; Belitz, K.

    2005-01-01

    The Santa Ana River basin is the largest stream system in Southern California and includes a densely populated coastal area. Extensive urbanization has altered the geomorphology and hydrology of the streams, adversely affecting aquatic communities. We studied macroinvertebrate and periphyton assemblages in relation to two categorical features of the highly engineered hydrologic system-water source and channel type. Four water sources were identified-natural, urban-impacted groundwater, urban runoff, and treated wastewater. Three channel types were identified-natural, channelized with natural bottom, and concrete-lined. Nineteen sites, covering the range of these two categorical features, were sampled in summer 2000. To minimize the effects of different substrate types among sites, artificial substrates were used for assessing macroinvertebrate and periphyton assemblages. Physical and chemical variables and metrics calculated from macroinvertebrate and periphyton assemblage data were compared among water sources and channel types using analysis of variance and multiple comparison tests. Macroinvertebrate metrics exhibiting significant (P < 0.05) differences between water sources included taxa and Ephemeroptera-Plecoptera-Trichoptera richness, relative richness and abundance of nonchironomid dipterans, orthoclads, oligochaetes, and some functional-feeding groups such as parasites and shredders. Periphyton metrics showing significant differences between water sources included blue-green algae biovolume and relative abundance of nitrogen heterotrophic, eutrophic, motile, and pollution-sensitive diatoms. The relative abundance of trichopterans, tanytarsini chironomids, noninsects, and filter feeders, as well as the relative richness and abundance of diatoms, were significantly different between channel types. Most physical variables were related to channel type, whereas chemical variables and some physical variables (e.g., discharge, velocity, and channel width) were

  5. ENaC activity requires CFTR channel function independently of phosphorylation in sweat duct.

    PubMed

    Reddy, M M; Quinton, P M

    2005-09-01

    We previously showed that activation of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) Cl- conductance (gCFTR) supports parallel activation of amiloride-sensitive epithelial Na+ channel (ENaC) in the native human sweat duct. However, it is not clear whether phosphorylated CFTR, phosphorylated ENaC, or only Cl(-) -channel function is required for activation. We used basilaterally alpha-toxin-permeabilized human sweat ducts to test the hypothesis that ENaC activation depends only on Cl(-) -channel function and not on phosphorylation of either CFTR or ENaC. CFTR is classically activated by PKA plus millimolar ATP, but cytosolic glutamate activation of gCFTR is independent of ATP and phosphorylation. We show here that both phosphorylation-dependent (PKA) and phosphorylation-independent (glutamate) activation of CFTR Cl- channel function support gENaC activation. We tested whether cytosolic application of 5 mM ATP alone, phosphorylation by cAMP, cGMP, G-protein dependent kinases (all in the presence of 100 microM ATP), or glutamate could support ENaC activation in the absence of gCFTR. We found that none of these agonists activated gENaC by themselves when Cl- current (I(Cl-)) through CFTR was blocked by: 1) Cl- removal, 2) DIDS inhibition, 3) lowering the ATP concentration to 100 microM (instead of 5 mM required to support CFTR channel function), or 4) mutant CFTR (homozygous DeltaF508 CF ducts). However, Cl- gradients in the direction of absorption supported, while Cl- gradients in the direction of secretion prevented ENaC activation. We conclude that the interaction between CFTR and ENaC is dependent on activated I(Cl-) through CFTR in the direction of absorption (Cl- gradient from lumen to cell). But such activation of ENaC is independent of phosphorylation and ATP. However, reversing I(Cl-) through CFTR in the direction of secretion (Cl- gradient from cell to lumen) prevents ENaC activation even in the presence of I(Cl-) through CFTR. PMID

  6. Effect of Cytochalasin B, Lantrunculin B, Colchicine, Cycloheximid, Dimethyl Sulfoxide and Ion Channel Inhibitors on Biospeckle Activity in Apple Tissue.

    PubMed

    Kurenda, Andrzej; Pieczywek, Piotr M; Adamiak, Anna; Zdunek, Artur

    2013-01-01

    The biospeckle phenomenon is used for non-destructive monitoring the quality of fresh fruits and vegetables, but in the case of plant tissues there is a lack of experimentally confirmed information about the biological origin of the biospeckle activity (BA). As a main sources of BA, processes associated with the movement inside the cell, such as cytoplasmic streaming, organelle movement and intra- and extracellular transport mechanisms, are considered. The aim of this study is to investigate the effect of metabolism inhibitors, connected with intracellular movement such as cytochalasin B, lantrunculin B, colchicine, cycloheximid, dimethyl sulfoxide (DMSO) and mixture of ion channel inhibitors, injected into apples, on BA. Two methods of BA analysis based on cross-correlation coefficient and Laser Speckle Contrast Analysis (LASCA) were used. DMSO, lantrunculin B and mixture of ion channel inhibitors have a significant effect on BA, and approximately 74 % of BA of apple tissue is potentially caused by biological processes. Results indicate that the functioning of actin microfilaments and ion channels significantly affect BA.

  7. Myrsinane, Premyrsinane, and Cyclomyrsinane Diterpenes from Euphorbia falcata as Potassium Ion Channel Inhibitors with Selective G Protein-Activated Inwardly Rectifying Ion Channel (GIRK) Blocking Effects.

    PubMed

    Vasas, Andrea; Forgo, Peter; Orvos, Péter; Tálosi, László; Csorba, Attila; Pinke, Gyula; Hohmann, Judit

    2016-08-26

    GIRK channels are activated by a large number of G protein-coupled receptors and regulate the electrical activity of neurons, cardiac atrial myocytes, and β-pancreatic cells. Abnormalities in GIRK channel function have been implicated in the pathophysiology of neuropathic pain, drug addiction, and cardiac arrhythmias. In the heart, GIRK channels are selectively expressed in the atrium, and their activation inhibits pacemaker activity, thereby slowing the heart rate. In the present study, 19 new diterpenes, falcatins A-S (1-19), and the known euphorprolitherin D (20) were isolated from Euphorbia falcata. The compounds were assayed on stable transfected HEK-hERG (Kv11.1) and HEK-GIRK1/4 (Kir3.1 and Kir3.4) cells. Blocking activity on GIRK channels was exerted by 13 compounds (61-83% at 10 μM), and, among them, five possessed low potency on the hERG channel (4-20% at 10 μM). These selective activities suggest that myrsinane-related diterpenes are potential lead compounds for the treatment of atrial fibrillation. PMID:27441737

  8. Potency of irritation by benzylidenemalononitriles in humans correlates with TRPA1 ion channel activation

    PubMed Central

    Lindsay, Christopher D.; Green, Christopher; Bird, Mike; Jones, James T. A.; Riches, James R.; McKee, Katherine K.; Sandford, Mark S.; Wakefield, Debra A.; Timperley, Christopher M.

    2015-01-01

    We show that the physiological activity of solid aerosolized benzylidenemalononitriles (BMNs) including ‘tear gas’ (CS) in historic human volunteer trials correlates with activation of the human transient receptor potential ankyrin 1 ion channel (hTRPA1). This suggests that the irritation caused by the most potent of these compounds results from activation of this channel. We prepared 50 BMNs and measured their hTRPA1 agonist potencies. A mechanism of action consistent with their physiological activity, involving their dissolution in water on contaminated body surfaces, cell membrane penetration and reversible thiolation by a cysteine residue of hTRPA1, supported by data from nuclear magnetic resonance experiments with a model thiol, explains the structure–activity relationships. The correlation provides evidence that hTRPA1 is a receptor for irritants on nociceptive neurons involved in pain perception; thus, its activation in the eye, nose, mouth and skin would explain the symptoms of lachrymation, sneezing, coughing and stinging, respectively. The structure–activity results and the use of the BMNs as pharmacological tools in future by other researchers may contribute to a better understanding of the TRPA1 channel in humans (and other animals) and help facilitate the discovery of treatments for human diseases involving this receptor. PMID:26064575

  9. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro

    PubMed Central

    Du, Xixun; Xu, Huamin; Shi, Limin; Jiang, Zhifeng; Song, Ning; Jiang, Hong; Xie, Junxia

    2016-01-01

    Iron importer divalent metal transporter 1 (DMT1) plays a crucial role in the nigal iron accumulation in Parkinson’s disease (PD). Membrane hyperpolarization is one of the factors that could affect its iron transport function. Besides iron, selective activation of the ATP-sensitive potassium (KATP) channels also contributes to the vulnerability of dopaminergic neurons in PD. Interestingly, activation of KATP channels could induce membrane hyperpolarization. Therefore, it is of vital importance to study the effects of activation of KATP channels on DMT1-mediated iron uptake function. In the present study, activation of KATP channels by diazoxide resulted in the hyperpolarization of the membrane potential and increased DMT1-mediated iron uptake in SK-N-SH cells. This led to an increase in intracellular iron levels and a subsequent decrease in the mitochondrial membrane potential and an increase in ROS production. Delayed inactivation of the Fe2+-evoked currents by diazoxide was recorded by patch clamp in HEK293 cells, which demonstrated that diazoxide could prolonged DMT1-facilitated iron transport. While inhibition of KATP channels by glibenclamide could block ferrous iron influx and the subsequent cell damage. Overexpression of Kir6.2/SUR1 resulted in an increase in iron influx and intracellular iron levels, which was markedly increased after diazoxide treatment. PMID:27646472

  10. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro.

    PubMed

    Du, Xixun; Xu, Huamin; Shi, Limin; Jiang, Zhifeng; Song, Ning; Jiang, Hong; Xie, Junxia

    2016-09-20

    Iron importer divalent metal transporter 1 (DMT1) plays a crucial role in the nigal iron accumulation in Parkinson's disease (PD). Membrane hyperpolarization is one of the factors that could affect its iron transport function. Besides iron, selective activation of the ATP-sensitive potassium (KATP) channels also contributes to the vulnerability of dopaminergic neurons in PD. Interestingly, activation of KATP channels could induce membrane hyperpolarization. Therefore, it is of vital importance to study the effects of activation of KATP channels on DMT1-mediated iron uptake function. In the present study, activation of KATP channels by diazoxide resulted in the hyperpolarization of the membrane potential and increased DMT1-mediated iron uptake in SK-N-SH cells. This led to an increase in intracellular iron levels and a subsequent decrease in the mitochondrial membrane potential and an increase in ROS production. Delayed inactivation of the Fe(2+)-evoked currents by diazoxide was recorded by patch clamp in HEK293 cells, which demonstrated that diazoxide could prolonged DMT1-facilitated iron transport. While inhibition of KATP channels by glibenclamide could block ferrous iron influx and the subsequent cell damage. Overexpression of Kir6.2/SUR1 resulted in an increase in iron influx and intracellular iron levels, which was markedly increased after diazoxide treatment.

  11. Activation of ATP-sensitive potassium channels enhances DMT1-mediated iron uptake in SK-N-SH cells in vitro.

    PubMed

    Du, Xixun; Xu, Huamin; Shi, Limin; Jiang, Zhifeng; Song, Ning; Jiang, Hong; Xie, Junxia

    2016-01-01

    Iron importer divalent metal transporter 1 (DMT1) plays a crucial role in the nigal iron accumulation in Parkinson's disease (PD). Membrane hyperpolarization is one of the factors that could affect its iron transport function. Besides iron, selective activation of the ATP-sensitive potassium (KATP) channels also contributes to the vulnerability of dopaminergic neurons in PD. Interestingly, activation of KATP channels could induce membrane hyperpolarization. Therefore, it is of vital importance to study the effects of activation of KATP channels on DMT1-mediated iron uptake function. In the present study, activation of KATP channels by diazoxide resulted in the hyperpolarization of the membrane potential and increased DMT1-mediated iron uptake in SK-N-SH cells. This led to an increase in intracellular iron levels and a subsequent decrease in the mitochondrial membrane potential and an increase in ROS production. Delayed inactivation of the Fe(2+)-evoked currents by diazoxide was recorded by patch clamp in HEK293 cells, which demonstrated that diazoxide could prolonged DMT1-facilitated iron transport. While inhibition of KATP channels by glibenclamide could block ferrous iron influx and the subsequent cell damage. Overexpression of Kir6.2/SUR1 resulted in an increase in iron influx and intracellular iron levels, which was markedly increased after diazoxide treatment. PMID:27646472

  12. Single-channel biophysical and pharmacological characterizations of native human large-conductance calcium-activated potassium channels in freshly isolated detrusor smooth muscle cells.

    PubMed

    Malysz, John; Rovner, Eric S; Petkov, Georgi V

    2013-07-01

    Recent studies have demonstrated the importance of large-conductance Ca(2+)-activated K(+) (BK) channels in detrusor smooth muscle (DSM) function in vitro and in vivo. However, in-depth characterization of human native DSM single BK channels has not yet been provided. Here, we conducted single-channel recordings from excised patches from native human DSM cells. Inside-out and outside-out recordings in high K(+) symmetrical solution (containing 140 mM KCl and ~300 nM free Ca(2+)) showed single-channel conductance of 215-220 pS, half-maximum constant for activation of ~+75 to +80 mV, and low probability of opening (P o) at +20 mV that increased ~10-fold at +40 mV and ~60-fold at +60 mV. Using the inside-out configuration at +30 mV, reduction of intracellular [Ca(2+)] from ~300 nM to Ca(2+)-free decreased the P o by ~85 %, whereas elevation to ~800 nM increased P o by ~50-fold. The BK channel activator NS1619 (10 μM) enhanced the P o by ~10-fold at +30 mV; subsequent application of the selective BK channel inhibitor paxilline (500 nM) blocked the activity. Changes in intracellular [Ca(2+)] or the addition of NS1619 did not significantly alter the current amplitude or single-channel conductance. This is the first report to provide biophysical and pharmacological profiles of native human DSM single BK channels highlighting their importance in regulating human DSM excitability.

  13. ADP-Ribose Activates the TRPM2 Channel from the Sea Anemone Nematostella vectensis Independently of the NUDT9H Domain.

    PubMed

    Kühn, Frank J P; Kühn, Cornelia; Winking, Mathis; Hoffmann, Daniel C; Lückhoff, Andreas

    2016-01-01

    The human redox-sensitive Transient receptor potential melastatin type 2 (hTRPM2) channel contains the C-terminal Nudix hydrolase domain NUDT9H which most likely binds ADP-ribose. During oxidative stress, the intracellular release of ADP-ribose triggers the activation of hTRPM2. The TRPM2 orthologue from Nematostella vectensis (nv) is also stimulated by ADP-ribose but not by the oxidant hydrogen peroxide. For further clarification of the structure-function relationships of these two distantly related channel orthologues, we performed whole-cell as well as single channel patch-clamp recordings, Ca2+-imaging and Western blot analysis after heterologous expression of wild-type and mutated channels in HEK-293 cells. We demonstrate that the removal of the entire NUDT9H domain does not disturb the response of nvTRPM2 to ADP-ribose. The deletion, however, created channels that were activated by hydrogen peroxide, as did mutations within the NUDT9H domain of nvTRPM2 that presumably suppress its enzymatic function. The same findings were obtained with the nvTRPM2 channel when the NUDT9H domain was replaced by the corresponding sequences of the original hNUDT9 enzyme. Whenever the enzyme domain was mutated to presumably inactive variants, channel activation by hydrogen peroxide could be achieved. Moreover, we found strong evidences for ADPRase activity of the isolated NUDT9H domain of nvTRPM2 in co-expression experiments with the C-terminally truncated nvTRPM2 channel. Thus, there is a clear correlation between the loss of enzymatic activity and the capability of nvTRPM2 to respond to oxidative stress. In striking contrast, the channel function of the hTRPM2 orthologue, in particular its sensitivity to ADP-ribose, was abrogated by already small changes of the NUDT9H domain. These findings establish nvTRPM2 as a channel gated by ADP-ribose through a novel mechanism. We conclude that the endogenous NUDT9H domain does not directly affect ADP-ribose-dependent gating of the nv

  14. ADP-Ribose Activates the TRPM2 Channel from the Sea Anemone Nematostella vectensis Independently of the NUDT9H Domain

    PubMed Central

    Kühn, Frank J. P.; Kühn, Cornelia; Winking, Mathis; Hoffmann, Daniel C.; Lückhoff, Andreas

    2016-01-01

    The human redox-sensitive Transient receptor potential melastatin type 2 (hTRPM2) channel contains the C-terminal Nudix hydrolase domain NUDT9H which most likely binds ADP-ribose. During oxidative stress, the intracellular release of ADP-ribose triggers the activation of hTRPM2. The TRPM2 orthologue from Nematostella vectensis (nv) is also stimulated by ADP-ribose but not by the oxidant hydrogen peroxide. For further clarification of the structure-function relationships of these two distantly related channel orthologues, we performed whole-cell as well as single channel patch-clamp recordings, Ca2+-imaging and Western blot analysis after heterologous expression of wild-type and mutated channels in HEK-293 cells. We demonstrate that the removal of the entire NUDT9H domain does not disturb the response of nvTRPM2 to ADP-ribose. The deletion, however, created channels that were activated by hydrogen peroxide, as did mutations within the NUDT9H domain of nvTRPM2 that presumably suppress its enzymatic function. The same findings were obtained with the nvTRPM2 channel when the NUDT9H domain was replaced by the corresponding sequences of the original hNUDT9 enzyme. Whenever the enzyme domain was mutated to presumably inactive variants, channel activation by hydrogen peroxide could be achieved. Moreover, we found strong evidences for ADPRase activity of the isolated NUDT9H domain of nvTRPM2 in co-expression experiments with the C-terminally truncated nvTRPM2 channel. Thus, there is a clear correlation between the loss of enzymatic activity and the capability of nvTRPM2 to respond to oxidative stress. In striking contrast, the channel function of the hTRPM2 orthologue, in particular its sensitivity to ADP-ribose, was abrogated by already small changes of the NUDT9H domain. These findings establish nvTRPM2 as a channel gated by ADP-ribose through a novel mechanism. We conclude that the endogenous NUDT9H domain does not directly affect ADP-ribose-dependent gating of the nv

  15. Proteolytic fragmentation of inositol 1,4,5-trisphosphate receptors: a novel mechanism regulating channel activity?

    PubMed

    Wang, Liwei; Alzayady, Kamil J; Yule, David I

    2016-06-01

    Inositol 1,4,5-trisphosphate receptors (IP3 Rs) are a family of ubiquitously expressed intracellular Ca(2+) release channels. Regulation of channel activity by Ca(2+) , nucleotides, phosphorylation, protein binding partners and other cellular factors is thought to play a major role in defining the specific spatiotemporal characteristics of intracellular Ca(2+) signals. These properties are, in turn, believed pivotal for the selective and specific physiological activation of Ca(2+) -dependent effectors. IP3 Rs are also substrates for the intracellular cysteine proteases, calpain and caspase. Cleavage of the IP3 R has been proposed to play a role in apoptotic cell death by uncoupling regions important for IP3 binding from the channel domain, leaving an unregulated leaky Ca(2+) pore. Contrary to this hypothesis, we demonstrate following proteolysis that N- and C-termini of IP3 R1 remain associated, presumably through non-covalent interactions. Further, we show that complementary fragments of IP3 R1 assemble into tetrameric structures and retain their ability to be regulated robustly by IP3 . While peptide continuity is clearly not necessary for IP3 -gating of the channel, we propose that cleavage of the IP3 R peptide chain may alter other important regulatory events to modulate channel activity. In this scenario, stimulation of the cleaved IP3 R may support distinct spatiotemporal Ca(2+) signals and activation of specific effectors. Notably, in many adaptive physiological events, the non-apoptotic activities of caspase and calpain are demonstrated to be important, but the substrates of the proteases are poorly defined. We speculate that proteolytic fragmentation may represent a novel form of IP3 R regulation, which plays a role in varied adaptive physiological processes.

  16. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria-An Amazing Defense Tool Against Hyperosmotic Stress.

    PubMed

    Trono, Daniela; Laus, Maura N; Soccio, Mario; Alfarano, Michela; Pastore, Donato

    2015-01-01

    In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about 15 years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP). Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous) and tissues/organs (etiolated and green) have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel) are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs) and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane toward the matrix, so collapsing membrane potential (ΔΨ), the main component of the protonmotive force (Δp) in plant mitochondria; moreover, cooperation between PmitoKATP and the K(+)/H(+) antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS) production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate hyperosmotic stress

  17. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria—An Amazing Defense Tool Against Hyperosmotic Stress

    PubMed Central

    Trono, Daniela; Laus, Maura N.; Soccio, Mario; Alfarano, Michela; Pastore, Donato

    2015-01-01

    In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about 15 years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP). Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous) and tissues/organs (etiolated and green) have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel) are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs) and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane toward the matrix, so collapsing membrane potential (ΔΨ), the main component of the protonmotive force (Δp) in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS) production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate hyperosmotic stress

  18. Measurement of orexin (hypocretin) and substance P effects on constitutively active inward rectifier K(+) channels in brain neurons.

    PubMed

    Nakajima, Yasuko; Nakajima, Shigehiro

    2010-01-01

    Electrophysiological experiments in our laboratory have led to the discovery that the cholinergic neurons in the nucleus basalis in the rat forebrain possess constitutively active inward rectifier K(+) channels. Unlike cloned inward rectifier K(+) channels, these constitutively active inward rectifier K(+) channels were found to have unique properties, and thus were named "KirNB" (inward rectifier K(+) channels in the nucleus basalis). We found that slow excitatory transmitters, such as orexin (hypocretin) and substance P, suppress the KirNB channel, resulting in neuronal excitation. Furthermore, it was discovered that suppression of KirNB channels by these transmitters is through protein kinase C (PKC). This chapter describes detailed electrophysiological techniques for investigating the effects of orexin and substance P on constitutively active KirNB channels. For this purpose, we also present a method for culturing nucleus basalis cholinergic neurons in which KirNB channels exist. Then, we describe the procedures through which PKC has been determined to mediate inhibition of KirNB channels by orexin and substance P. There are probably many other transmitters which may produce effects on KirNB channels. This chapter will enable researchers to investigate the effects of such transmitters on KirNB channels and their roles in neuronal functions.

  19. Prolactin stimulates cell proliferation through a long form of prolactin receptor and K+ channel