Science.gov

Sample records for affect cloud formation

  1. Cloud Formation

    NASA Astrophysics Data System (ADS)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  2. Can the removal of molecular cloud envelopes by external feedback affect the efficiency of star formation?

    NASA Astrophysics Data System (ADS)

    Lucas, William E.; Bonnell, Ian A.; Forgan, Duncan H.

    2017-01-01

    We investigate how star formation efficiency can be significantly decreased by the removal of a molecular cloud's envelope by feedback from an external source. Feedback from star formation has difficulties halting the process in dense gas but can easily remove the less dense and warmer envelopes where star formation does not occur. However, the envelopes can play an important role keeping their host clouds bound by deepening the gravitational potential and providing a constraining pressure boundary. We use numerical simulations to show that removal of the cloud envelopes results in all cases in a fall in the star formation efficiency (SFE). At 1.38 free-fall times our 4 pc cloud simulation experienced a drop in the SFE from 16 to six percent, while our 5 pc cloud fell from 27 to 16 per cent. At the same time, our 3 pc cloud (the least bound) fell from an SFE of 5.67 per cent to zero when the envelope was lost. The star formation efficiency per free-fall time varied from zero to ≈0.25 according to α, defined to be the ratio of the kinetic plus thermal to gravitational energy, and irrespective of the absolute star forming mass available. Furthermore the fall in SFE associated with the loss of the envelope is found to even occur at later times. We conclude that the SFE will always fall should a star forming cloud lose its envelope due to stellar feedback, with less bound clouds suffering the greatest decrease.

  3. Cloud formation in substellar atmospheres

    NASA Astrophysics Data System (ADS)

    Helling, Christiane

    2009-02-01

    Clouds seem like an every-day experience. But-do we know how clouds form on brown dwarfs and extra-solar planets? How do they look like? Can we see them? What are they composed of? Cloud formation is an old-fashioned but still outstanding problem for the Earth atmosphere, and it has turned into a challenge for the modelling of brown dwarf and exo-planetary atmospheres. Cloud formation imposes strong feedbacks on the atmospheric structure, not only due to the clouds own opacity, but also due to the depletion of the gas phase, possibly leaving behind a dynamic and still supersaturated atmosphere. I summarise the different approaches taken to model cloud formation in substellar atmospheres and workout their differences. Focusing on the phase-non-equilibrium approach to cloud formation, I demonstrate the inside we gain from detailed microphysical modelling on for instance the material composition and grain size distribution inside the cloud layer on a Brown Dwarf atmosphere. A comparison study on four different cloud approaches in Brown Dwarf atmosphere simulations demonstrates possible uncertainties in interpretation of observational data.

  4. Ultraviolet Mars Reveals Cloud Formation

    NASA Video Gallery

    Images from MAVEN's Imaging UltraViolet Spectrograph were used to make this movie of rapid cloud formation on Mars on July 9-10, 2016. The ultraviolet colors of the planet have been rendered in fal...

  5. Cloud Processed CCN Affect Cloud Microphysics

    NASA Astrophysics Data System (ADS)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  6. Formation of Bidisperse Particle Clouds

    NASA Astrophysics Data System (ADS)

    Er, Jenn Wei; Zhao, Bing; Law, Adrian W. K.; Adams, E. Eric

    2014-11-01

    When a group of dense particles is released instantaneously into water, their motion has been conceptualized as a circulating particle thermal (Ruggerber 2000). However, Wen and Nacamuli (1996) observed the formation of particle clumps characterized by a narrow, fast moving core shedding particles into wakes. They observed the clump formation even for particles in the non-cohesive range as long as the source Rayleigh number was large (Ra > 1E3) or equivalently the source cloud number (Nc) was small (Nc < 3.2E2). This physical phenomenon has been investigated by Zhao et al. (2014) through physical experiments. They proposed the theoretical support for Nc dependence and categorized the formation processes into cloud formation, transitional regime and clump formation. Previous works focused mainly on the behavior of monodisperse particles. The present study further extends the experimental investigation to the formation process of bidisperse particles. Experiments are conducted in a glass tank with a water depth of 90 cm. Finite amounts of sediments with various weight proportions between coarser and finer particles are released from a cylindrical tube. The Nc being tested ranges from 6E-3 to 9.9E-2, which covers all the three formation regimes. The experimental results showed that the introduction of coarse particles promotes cloud formation and reduce the losses of finer particles into the wake. More quantitative descriptions of the effects of source conditions on the formation processes will be presented during the conference.

  7. Molecular cloud evolution and star formation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1985-01-01

    The present state of knowledge of the relationship between molecular clouds and young stars is reviewed. The determination of physical parameters from molecular line observations is summarized, and evidence for fragmentation of molecular clouds is discussed. Hierarchical fragmentation is reviewed, minimum fragment scales are derived, and the stability against fragmentation of both spherically and anisotropically collapsing clouds is discussed. Observational evidence for high-velocity flows in clouds is summarized, and the effects of winds from pre-main sequence stars on molecular gas are discussed. The triggering of cloud collapse by enhanced pressure is addressed, as is the formation of dense shells by spherical outflows and their subsequent breakup. A model for low-mass star formation is presented, and constraints on star formation from the initial mass function are examined. The properties of giant molecular clouds and massive star formation are described. The implications of magnetic fields for cloud evolution and star formation are addressed.

  8. Star formation in Lynds dark clouds

    NASA Astrophysics Data System (ADS)

    Spuck, Tim; Rebull, Luisa

    2008-03-01

    Recent research on star formation in large molecular cloud complexes, such as the Cepheus Flare (Kun 1995), Orion, Perseus (Rebull et al. 2007), and Taurus molecular clouds, have included studies of a number of Lynds dark nebulae (LDN). Less attention has been given to isolated Lynds clouds. Both LDN 981 and LDN 425 are smaller, more isolated, dark molecular clouds that could contain regions of active star formation within them -- they both are associated with IRAS sources, and based on prior shallow surveys, they both have a YSO candidate in the neigborhood. Spitzer observations with IRAC and MIPS will allow us to see deep inside the cloud, deeper than any prior observations could see, and reveal any hidden star formation that is ongoing in these clouds. This project is part of the Spitzer Teachers Program.

  9. Environmental conditions regulate the impact of plants on cloud formation

    NASA Astrophysics Data System (ADS)

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-02-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate.

  10. Environmental conditions regulate the impact of plants on cloud formation

    PubMed Central

    Zhao, D. F.; Buchholz, A.; Tillmann, R.; Kleist, E.; Wu, C.; Rubach, F.; Kiendler-Scharr, A.; Rudich, Y.; Wildt, J.; Mentel, Th. F.

    2017-01-01

    The terrestrial vegetation emits large amounts of volatile organic compounds (VOC) into the atmosphere, which on oxidation produce secondary organic aerosol (SOA). By acting as cloud condensation nuclei (CCN), SOA influences cloud formation and climate. In a warming climate, changes in environmental factors can cause stresses to plants, inducing changes of the emitted VOC. These can modify particle size and composition. Here we report how induced emissions eventually affect CCN activity of SOA, a key parameter in cloud formation. For boreal forest tree species, insect infestation by aphids causes additional VOC emissions which modifies SOA composition thus hygroscopicity and CCN activity. Moderate heat increases the total amount of constitutive VOC, which has a minor effect on hygroscopicity, but affects CCN activity by increasing the particles' size. The coupling of plant stresses, VOC composition and CCN activity points to an important impact of induced plant emissions on cloud formation and climate. PMID:28218253

  11. FORMATION OF MASSIVE MOLECULAR CLOUD CORES BY CLOUD-CLOUD COLLISION

    SciTech Connect

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-09-10

    Recent observations of molecular clouds around rich massive star clusters including NGC 3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by cloud-cloud collision. We find that the massive molecular cloud cores have large effective Jeans mass owing to the enhancement of the magnetic field strength by shock compression and turbulence in the compressed layer. Our results predict that massive molecular cloud cores formed by the cloud-cloud collision are filamentary and threaded by magnetic fields perpendicular to the filament.

  12. Fragmentation of interstellar clouds and star formation

    NASA Technical Reports Server (NTRS)

    Silk, J.

    1982-01-01

    The principal issues are addressed: the fragmentation of molecular clouds into units of stellar mass and the impact of star formation on molecular clouds. The observational evidence for fragmentation is summarized, and the gravitational instability described of a uniform spherical cloud collapsing from rest. The implications are considered of a finite pressure for the minimum fragment mass that is attainable in opacity-limited fragmentation. The role of magnetic fields is discussed in resolving the angular momentum problem and in making the collapse anisotropic, with notable consequences for fragmentation theory. Interactions between fragments are described, with emphasis on the effect of protostellar winds on the ambient cloud matter and on inhibiting further star formation. Such interactions are likely to have profound consequences for regulating the rate of star formation and on the energetics and dynamics of molecular clouds.

  13. Star formation in the Magellanic clouds

    NASA Technical Reports Server (NTRS)

    Frogel, Jay A.

    1987-01-01

    Because of their proximity, the Magellanic Clouds provide the opportunity to conduct a detailed study of the history and current state of star formation in dwarf irregular galaxies. There is considerable evidence that star formation in the Clouds was and is proceeding in a manner different from that found in a typical well-ordered spiral galaxy. Star formation in both Clouds appears to have undergone a number of relatively intense bursts. There exist a number of similarities and differences in the current state of star formation in the Magellanic Clouds and the Milky Way. Examination of Infrared Astronomy Satellite (IRAS) sources with ground based telescopes allows identification of highly evolved massive stars with circumstellar shells as well as several types of compact emission line objects.

  14. Star formation relations in nearby molecular clouds

    SciTech Connect

    Evans, Neal J. II; Heiderman, Amanda; Vutisalchavakul, Nalin

    2014-02-20

    We test some ideas for star formation relations against data on local molecular clouds. On a cloud by cloud basis, the relation between the surface density of star formation rate and surface density of gas divided by a free-fall time, calculated from the mean cloud density, shows no significant correlation. If a crossing time is substituted for the free-fall time, there is even less correlation. Within a cloud, the star formation rate volume and surface densities increase rapidly with the corresponding gas densities, faster than predicted by models using the free-fall time defined from the local density. A model in which the star formation rate depends linearly on the mass of gas above a visual extinction of 8 mag describes the data on these clouds, with very low dispersion. The data on regions of very massive star formation, with improved star formation rates based on free-free emission from ionized gas, also agree with this linear relation.

  15. Connecting the density structure of molecular clouds with star formation

    NASA Astrophysics Data System (ADS)

    Kainulainen, Jouni

    In the current paradigm of turbulence-regulated interstellar medium (ISM), star formation rates of entire galaxies are intricately linked to the density structure of the individual molecular clouds. This density structure is essentially encapsulated in the probability distribution function of volume densities (ρ-PDF), which directly affects the star formation rates predicted by analytic models. Contrasting its fundamental role, the ρ-PDF function has remained virtually unconstrained by observations. I describe in this contribution the recent progress in attaining observational constraints for the column density PDFs (N-PDFs) of molecular clouds that function as a proxy of the ρ-PDFs. Specifically, observational works point towards a universal correlation between the shape of the N-PDFs and star formation activity in molecular clouds. The correlation is in place from the scales of a parsec up to the scales of entire galaxies, making it a fundamental, global link between the ISM structure and star formation.

  16. Cloud Optimized Image Format and Compression

    NASA Astrophysics Data System (ADS)

    Becker, P.; Plesea, L.; Maurer, T.

    2015-04-01

    Cloud based image storage and processing requires revaluation of formats and processing methods. For the true value of the massive volumes of earth observation data to be realized, the image data needs to be accessible from the cloud. Traditional file formats such as TIF and NITF were developed in the hay day of the desktop and assumed fast low latency file access. Other formats such as JPEG2000 provide for streaming protocols for pixel data, but still require a server to have file access. These concepts no longer truly hold in cloud based elastic storage and computation environments. This paper will provide details of a newly evolving image storage format (MRF) and compression that is optimized for cloud environments. Although the cost of storage continues to fall for large data volumes, there is still significant value in compression. For imagery data to be used in analysis and exploit the extended dynamic range of the new sensors, lossless or controlled lossy compression is of high value. Compression decreases the data volumes stored and reduces the data transferred, but the reduced data size must be balanced with the CPU required to decompress. The paper also outlines a new compression algorithm (LERC) for imagery and elevation data that optimizes this balance. Advantages of the compression include its simple to implement algorithm that enables it to be efficiently accessed using JavaScript. Combing this new cloud based image storage format and compression will help resolve some of the challenges of big image data on the internet.

  17. Numerical models of Oort Cloud formation and comet delivery

    NASA Astrophysics Data System (ADS)

    Kaib, Nathan A.

    I use a newly designed numerical algorithm to simulate the dynamics of the Oort Cloud. The processes I model are the formation of the cloud, the current delivery of comets to the planetary region, and long-period comet production during comet showers. Concerning the cloud's formation, I find that the Sun's birth environment dramatically affects the structure of the inner Oort Cloud as well as the amount of material trapped in this region. In addition, the structure of this reservoir is also sensitive to the Sun's orbital history in the Milky Way. This raises the possibility that constraining our inner Oort Cloud's properties can constrain the Sun's dynamical history. In this regard, I use my simulations of comet delivery to better understand what the population of comets passing through the planetary region can tell us about the inner Oort Cloud. I find that the inner Oort Cloud (rather than the scattered disk) dominates the production of planet-crossing TNOs with perihelia beyond 15 AU and semimajor axes greater than a few hundred AU. My results indicate that two objects representing this population (2000 00 67 and 2006 SQ 372 ) have already been detected, and the detection of many analogous objects can constrain the inner Oort Cloud. In addition, these simulations of comet delivery also demonstrate that, contrary to previous understanding, the inner Oort Cloud is a significant and perhaps the dominant source of known long-period comets. This result can be used to place the first observationally motivated upper limit on the inner Oort Cloud's population. Finally, with this maximum population value, I use my comet shower simulations to show that comet showers are unlikely to be responsible for more than one minor extinction event since the Cambrian Explosion.

  18. Formation of Molecular Clouds and Initial Conditions of Star Formation

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi

    2013-07-01

    Using three-dimensional magnetohydrodynamic simulations, including the effects of radiative cool- ing/heating, chemical reactions, self-gravity and thermal conduction, we investigate the formation of molecular clouds in the multi-phase interstellar medium. We consider the formation of molecular clouds due to accretion of HI clouds as suggested by recent observations. Our simulations show that the initial HI medium is piled up behind the shock waves induced by accretion flows. Since the accreting medium is highly inhomogeneous as a consequence of thermal instability, a newly formed molecular cloud becomes very turbulent owing to the development of the Richtmyer-Meshkov instability. The kinetic energy of the turbulence dominates the thermal, magnetic, and gravitational energies. However, the kinetic energy measured using CO-fraction-weighted density is comparable to the other energies, once the CO molecules are sufficiently formed as a result of UV shielding. This suggests that the true kinetic energy of turbulence in molecular clouds as a whole can be much larger than the kinetic energy of turbulence estimated by using line widths of molecular emission. We find that dense clumps in the molecular cloud show the following evolution: the typical plasma beta of the clumps is roughly constant; the size-ělocity dispersion relation follows Larson's law, irrespective of the density; and the clumps evolve into magnetically supercritical cores by clump-clump collisions. These statistical properties would represent the initial conditions of star formation.

  19. Formation of giant molecular clouds in global spiral structures: The role of orbital dynamics and cloud-cloud collisions

    NASA Technical Reports Server (NTRS)

    Roberts, W. W., Jr.; Stewart, G. R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes.

  20. Dense cloud formation and star formation in a barred galaxy

    NASA Astrophysics Data System (ADS)

    Nimori, M.; Habe, A.; Sorai, K.; Watanabe, Y.; Hirota, A.; Namekata, D.

    2013-03-01

    We investigate the properties of massive, dense clouds formed in a barred galaxy and their possible relation to star formation, performing a two-dimensional hydrodynamical simulation with the gravitational potential obtained from the 2MASS data from the barred spiral galaxy, M83. Since the environment for cloud formation and evolution in the bar region is expected to be different from that in the spiral arm region, barred galaxies are a good target to study the environmental effects on cloud formation and the subsequent star formation. Our simulation uses for an initial 80 Myr isothermal flow of non-self gravitating gas in the barred potential, then including radiative cooling, heating and self-gravitation of the gas for the next 40 Myr, during which dense clumps are formed. We identify many cold, dense gas clumps for which the mass is more than 104 M⊙ (a value corresponding to the molecular clouds) and study the physical properties of these clumps. The relation of the velocity dispersion of the identified clump's internal motion with the clump size is similar to that observed in the molecular clouds of our Galaxy. We find that the virial parameters for clumps in the bar region are larger than that in the spiral arm region. From our numerical results, we estimate star formation in the bar and spiral arm regions by applying the simple model of Krumholz & McKee (2005). The mean relation between star formation rate and gas surface density agrees well with the observed Kennicutt-Schmidt relation. The star formation efficiency in the bar region is ˜60 per cent of the spiral arm region. This trend is consistent with observations of barred galaxies.

  1. Conditions for circumstellar disc formation - II. Effects of initial cloud stability and mass accretion rate

    NASA Astrophysics Data System (ADS)

    Machida, Masahiro N.; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro

    2016-12-01

    Disc formation in strongly magnetized cloud cores is investigated using a three-dimensional magnetohydrodynamic simulation with a focus on the effects of the initial cloud stability and the mass accretion rate. The initial cloud stability greatly alters the disc formation process even for prestellar clouds with the same mass-to-flux ratio. A high mass accretion rate on to the disc-forming region is realized in initially unstable clouds, and a large angular momentum is introduced into the circumstellar region in a short time. The region around the protostar has both a thin infalling envelope and a weak magnetic field, which both weaken the effect of magnetic braking. The growth of the rotation-supported disc is promoted in such unstable clouds. Conversely, clouds in an initially near-equilibrium state show lower accretion rates of mass and angular momentum. The angular momentum is transported to the outer envelope before protostar formation. After protostar formation, the circumstellar region has a thick infalling envelope and a strong magnetic field that effectively brakes the disc. As a result, disc formation is suppressed when the initial cloud is in a nearly stable state. The density distribution of the initial cloud also affects the disc formation process. Disc growth strongly depends on the initial conditions when the prestellar cloud has a uniform density, whereas there is no significant difference in the disc formation process in prestellar clouds with non-uniform densities.

  2. Qualitative analysis of the e-cloud formation

    SciTech Connect

    Heifets, Samuel A

    2002-01-17

    The qualitative analysis of the electron cloud formation is presented. Two mechanisms of the cloud formation, generation of jets of primary photo-electrons and thermalization of electrons in the electron cloud, are analyzed and compared with simulations for the NLC damping ring.

  3. Formation of model polar stratospheric cloud films

    NASA Technical Reports Server (NTRS)

    Middlebrook, Ann M.; Koehler, Birgit G.; Mcneill, Laurie S.; Tolbert, Margaret A.

    1992-01-01

    Fourier transform infrared spectroscopy was used to examine the competitive growth of films representative of polar stratospheric clouds. These experiments show that either crystalline nitric acid trihydrate (beta-NAT) or amorphous films with H2O:HNO3 ratios close to 3:1 formed at temperatures 3-7 K warmer than the ice frost point under stratospheric pressure conditions. In addition, with higher HNO3 pressure, we observed nitric acid dihydrate (NAD) formation at temperatures warmer than ice formation. However, our experiments also show that NAD surfaces converted to beta-NAT upon exposure to stratospheric water pressures. Finally, we determined that the net uptake coefficient for HNO3 on beta-NAT is close to unity, whereas the net uptake coefficient for H2O is much less.

  4. Star formation triggered by cloud-cloud collisions

    NASA Astrophysics Data System (ADS)

    Balfour, S. K.; Whitworth, A. P.; Hubber, D. A.; Jaffa, S. E.

    2015-11-01

    We present the results of smoothed particle hydrodynamics simulations in which two clouds, each having mass MO = 500 M⊙ and radius RO = 2 pc, collide head-on at relative velocities of ΔvO = 2.4, 2.8, 3.2, 3.6 and 4.0 km s-1. There is a clear trend with increasing ΔvO. At low ΔvO, star formation starts later, and the shock-compressed layer breaks up into an array of predominantly radial filaments; stars condense out of these filaments and fall, together with residual gas, towards the centre of the layer, to form a single large-N cluster, which then evolves by competitive accretion, producing one or two very massive protostars and a diaspora of ejected (mainly low-mass) protostars; the pattern of filaments is reminiscent of the hub and spokes systems identified recently by observers. At high ΔvO, star formation occurs sooner and the shock-compressed layer breaks up into a network of filaments; the pattern of filaments here is more like a spider's web, with several small-N clusters forming independently of one another, in cores at the intersections of filaments, and since each core only spawns a small number of protostars, there are fewer ejections of protostars. As the relative velocity is increased, the mean protostellar mass increases, but the maximum protostellar mass and the width of the mass function both decrease. We use a Minimal Spanning Tree to analyse the spatial distributions of protostars formed at different relative velocities.

  5. How chemistry influences cloud structure, star formation, and the IMF

    NASA Astrophysics Data System (ADS)

    Hocuk, S.; Cazaux, S.; Spaans, M.; Caselli, P.

    2016-03-01

    In the earliest phases of star-forming clouds, stable molecular species, such as CO, are important coolants in the gas phase. Depletion of these molecules on dust surfaces affects the thermal balance of molecular clouds and with that their whole evolution. For the first time, we study the effect of grain surface chemistry (GSC) on star formation and its impact on the initial mass function (IMF). We follow a contracting translucent cloud in which we treat the gas-grain chemical interplay in detail, including the process of freeze-out. We perform 3D hydrodynamical simulations under three different conditions, a pure gas-phase model, a freeze-out model, and a complete chemistry model. The models display different thermal evolution during cloud collapse as also indicated in Hocuk, Cazaux & Spaans, but to a lesser degree because of a different dust temperature treatment, which is more accurate for cloud cores. The equation of state (EOS) of the gas becomes softer with CO freeze-out and the results show that at the onset of star formation, the cloud retains its evolution history such that the number of formed stars differ (by 7 per cent) between the three models. While the stellar mass distribution results in a different IMF when we consider pure freeze-out, with the complete treatment of the GSC, the divergence from a pure gas-phase model is minimal. We find that the impact of freeze-out is balanced by the non-thermal processes; chemical and photodesorption. We also find an average filament width of 0.12 pc (±0.03 pc), and speculate that this may be a result from the changes in the EOS caused by the gas-dust thermal coupling. We conclude that GSC plays a big role in the chemical composition of molecular clouds and that surface processes are needed to accurately interpret observations, however, that GSC does not have a significant impact as far as star formation and the IMF is concerned.

  6. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. Several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer (TTL). Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the TTL can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, a Lagrangian, one-dimensional cloud model has been used to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the TTL. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth, advection, and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties and cloud frequencies depend strongly on the assumed supersaturation threshold for ice nucleation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is 10-50% larger than the saturation mixing ratio. I will also discuss the impacts of Kelvin waves and gravity waves on cloud properties and dehydration efficiency. These simulations can be used to determine whether observed lower stratospheric water vapor mixing ratios can be explained by dehydration associated with in situ TTL cloud formation alone.

  7. Star Formation in High-Latitude Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Magnus McGehee, Peregrine

    2015-08-01

    Galactic star formation preferentially occurs within the dense molecular clouds that reside primarily near the disk mid-plane and are thus seen in projection against the Milky Way. A population of molecular clouds are seen at higher Galactic latitude although distance determinations are required in order to identify those that are actually in extraplanar environments.We review the known high-latitude star formation regions (MBM 12, LDN 1642, and HRK 81.4-77.8) and discuss the nature and environment of other high-latitude molecular clouds. Distances to each of these structures are deduced from optical reddening profiles derived from analysis of Sloan Digital Sky Survey photometry. In particular, we examine those molecular clouds found within the complex of intermediate and high velocity HI clouds that span the Northern 2nd Galactic Quadrant: the Draco clouds, the IVC pair at (l+b) = 135+51 and 135+54, and IREC 306.

  8. Ice Cloud Formation and Dehydration in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric; Pfister, Leonhard; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Stratospheric water vapor is important not only for its greenhouse forcing, but also because it plays a significant role in stratospheric chemistry. several recent studies have focused on the potential for dehydration due to ice cloud formation in air rising slowly through the tropical tropopause layer. Holton and Gettelman showed that temperature variations associated with horizontal transport of air in the tropopause layer can drive ice cloud formation and dehydration, and Gettelman et al. recently examined the cloud formation and dehydration along kinematic trajectories using simple assumptions about the cloud properties. In this study, we use a Lagrangian, one-dimensional cloud model to further investigate cloud formation and dehydration as air is transported horizontally and vertically through the tropical tropopause layer. Time-height curtains of temperature are extracted from meteorological analyses. The model tracks the growth and sedimentation of individual cloud particles. The regional distribution of clouds simulated in the model is comparable to the subvisible cirrus distribution indicated by SAGE II. The simulated cloud properties depend strongly on the assumed ice supersaturation threshold for ice nucleation. with effective nuclei present (low supersaturation threshold), ice number densities are high (0.1--10 cm(circumflex)-3), and ice crystals do not grow large enough to fall very far, resulting in limited dehydration. With higher supersaturation thresholds, ice number densities are much lower (less than 0.01 cm(circumflex)-3), and ice crystals grow large enough to fall substantially; however, supersaturated air often crosses the tropopause without cloud formation. The clouds typically do not dehydrate the air along trajectories down to the temperature minimum saturation mixing ratio. Rather the water vapor mixing ratio crossing the tropopause along trajectories is typically 10-50% larger than the saturation mixing ratio.

  9. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    SciTech Connect

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic and characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.

  10. Drizzle formation in stratocumulus clouds: Effects of turbulent mixing

    DOE PAGES

    Magaritz-Ronen, L.; Pinsky, M.; Khain, A.

    2016-02-17

    The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian–Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic andmore » characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. Lastly, it was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.« less

  11. Formation of Polar Stratospheric Clouds in the Atmosphere

    NASA Astrophysics Data System (ADS)

    Aloyan, Artash; Yermakov, Alex; Arutyunyan, Vardan; Larin, Igor

    2014-05-01

    A new mathematical model of the global transport of gaseous species and aerosols in the atmosphere and the formation of polar stratospheric clouds (PSCs) in both hemispheres was constructed. PSCs play a significant role in ozone chemistry since heterogeneous reactions proceed on their particle surfaces and in the bulk, affecting the gas composition of the atmosphere, specifically, the content of chlorine and nitrogen compounds, which are actively involved in the destruction of ozone. Stratospheric clouds are generated by co-condensation of water vapor and nitric acid on sulfate particles and in some cases during the freezing of supercooled water as well as when nitric acid vapors are dissolved in sulfate aerosol particles [1]. These clouds differ in their chemical composition and microphysics [2]. In this study, we propose new kinetic equations describing the variability of species in the gas and condensed phases to simulate the formation of PSCs. Most models for the formation of PSCs use constant background values of sulfate aerosols in the lower stratosphere. This approach is too simplistic since sulfate aerosols in the stratosphere are characterized by considerably nonuniform spatial and temporal variations. Two PSC types are considered: Type 1 refers to the formation of nitric acid trihydrate (NAT) and Type 2 refers to the formation of particles composed of different proportions of H2SO4/HNO3/H2O. Their formation is coupled with the spatial problem of sulfate aerosol generation in the upper troposphere and lower stratosphere incorporating the chemical and kinetic transformation processes (photochemistry, nucleation, condensation/evaporation, and coagulation) and using a non-equilibrium particle-size distribution [3]. In this formulation, the system of equations is closed and allows an adequate description of the PSC dynamics in the stratosphere. Using the model developed, numerical experiments were performed to reproduce the spatial and temporal variability of

  12. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    SciTech Connect

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.

  13. Do airborne microbes matter for atmospheric chemistry and cloud formation?

    PubMed

    Konstantinidis, Konstantinos T

    2014-06-01

    The role of airborne microbial cells in the chemistry of the atmosphere and cloud formation remains essentially speculative. Recent studies have indicated that microbes might be more important than previously anticipated for atmospheric processes. However, more work and direct communication between microbiologists and atmospheric scientists and modellers are necessary to better understand and model bioaerosol-cloud-precipitation-climate interactions.

  14. Comet Formation in Collapsing Pebble Clouds: Pebble Formation

    NASA Astrophysics Data System (ADS)

    Lorek, Sebastian; Lacerda, Pedro; Blum, Jürgen

    2016-10-01

    The formation of comets by gradual growth from (sub-)micron sized ice and dust monomers to km-sized bodies suffers from growth barriers (bouncing, fragmentation, drift). Growth stalls at sizes between mm and m, rendering it considerably difficult to form km-sized objects. However, the streaming instability and subsequent gravitational collapse of clouds of pebbles (particle agglomerates) provide an alternative. The pebbles require Stokes numbers between 0.01 and 3, which corresponds to sizes between mm and dm, unless the pebbles are very porous. Furthermore, the local solid/gas density ratio must be near unity and the local total mass in solids must be >2-3x higher than the minimum mass solar nebula value (1% of gas mass). The gravitational collapse of the pebble clouds then bypasses the growth barriers, forming km-sized bodies directly. The observed bulk properties of comets, e.g. porosity near 80%, are consistent with this scenario. Okuzumi et al. (2012) showed that including porosity comets can form directly via coagulation from sub-micron monomers. However, this relies on using 0.1 micron monomers and pure sticking collisions. Krijt et al. (2015) included erosion and found that highly porous pebbles around 109 g in mass can form and might trigger the streaming instability. Drazkowska & Dullemond (2014) showed that compact coagulation can lead to triggering the streaming instability. All those studies include only ice and a simplified collision model. However, a large fraction of a comet's mass is dust. Here, we develop a pebble formation model that includes sticking, bouncing, mass transfer/erosion, and fragmentation, as well as porosity. To take dust and ice into account, we extended the collision model for the treatment of mixed pebbles by linearly interpolating the threshold velocities and compression curves between the cases of pure dust and pure ice based on the fractional abundance of dust monomers. Our simulations show that pebble formation with the full

  15. Global star formation in the L1630 molecular cloud

    NASA Technical Reports Server (NTRS)

    Lada, Elizabeth A.

    1992-01-01

    The first systematic and coordinated surveys for both dense gas and young stellar objects within a single molecular cloud, the L1630 molecular cloud are compared. It is found that (1) star formation in the L1630 molecular cloud occurs almost exclusively within the dense gas; (2) star formation does not occur uniformly throughout the dense gas and is strongly favored in a few very massive dense cores, where efficient conversion of molecular gas into stars has resulted in the production of rich stellar clusters; and (3) high gas densities and high gas mass may be necessary but not sufficient conditions for the formation of star clusters since two of the five most massive dense cores in the cloud have very low levels of star formation activity.

  16. Formation of massive clouds and dwarf galaxies during tidal encounters

    NASA Technical Reports Server (NTRS)

    Kaufman, Michele; Elmegreen, Bruce G.; Thomasson, Magnus; Elmegreen, Debra M.

    1993-01-01

    Gerola et al. (1983) propose that isolated dwarf galaxies can form during galaxy interactions. As evidence of this process, Mirabel et al. (1991) find 10(exp 9) solar mass clouds and star formation complexes at the outer ends of the tidal arms in the Antennae and Superantennae galaxies. We describe observations of HI clouds with mass greater than 10(exp 8) solar mass in the interacting galaxy pair IC 2163/NGC 2207. This pair is important because we believe it represents an early stage in the formation of giant clouds during an encounter. We use a gravitational instability model to explain why the observed clouds are so massive and discuss a two-dimensional N-body simulation of an encounter that produces giant clouds.

  17. Environmental regulation of cloud and star formation in galactic bars

    NASA Astrophysics Data System (ADS)

    Renaud, F.; Bournaud, F.; Emsellem, E.; Agertz, O.; Athanassoula, E.; Combes, F.; Elmegreen, B.; Kraljic, K.; Motte, F.; Teyssier, R.

    2015-12-01

    The strong time-dependence of the dynamics of galactic bars yields a complex and rapidly evolving distribution of dense gas and star forming regions. Although bars mainly host regions void of any star formation activity, their extremities can gather the physical conditions for the formation of molecular complexes and mini-starbursts. Using a sub-parsec resolution hydrodynamical simulation of a Milky Way-like galaxy, we probe these conditions to explore how and where bar (hydro-)dynamics favours the formation or destruction of molecular clouds and stars. The interplay between the kpc-scale dynamics (gas flows, shear) and the parsec-scale (turbulence) is key to this problem. We find a strong dichotomy between the leading and trailing sides of the bar, in term of cloud fragmentation and in the age distribution of the young stars. After orbiting along the bar edge, these young structures slow down at the extremities of the bar, where orbital crowding increases the probability of cloud-cloud collision. We find that such events increase the Mach number of the cloud, leading to an enhanced star formation efficiency and finally the formation of massive stellar associations, in a fashion similar to galaxy-galaxy interactions. We highlight the role of bar dynamics in decoupling young stars from the clouds in which they form, and discuss the implications on the injection of feedback into the interstellar medium (ISM), in particular in the context of galaxy formation.

  18. Global atmospheric particle formation from CERN CLOUD measurements.

    PubMed

    Dunne, Eimear M; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K; Pringle, Kirsty J; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L S; Riccobono, Francesco; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E; Wimmer, Daniela; Winkler, Paul M; Worsnop, Douglas R; Carslaw, Kenneth S

    2016-12-02

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

  19. Global atmospheric particle formation from CERN CLOUD measurements

    NASA Astrophysics Data System (ADS)

    Dunne, Eimear M.; Gordon, Hamish; Kürten, Andreas; Almeida, João; Duplissy, Jonathan; Williamson, Christina; Ortega, Ismael K.; Pringle, Kirsty J.; Adamov, Alexey; Baltensperger, Urs; Barmet, Peter; Benduhn, Francois; Bianchi, Federico; Breitenlechner, Martin; Clarke, Antony; Curtius, Joachim; Dommen, Josef; Donahue, Neil M.; Ehrhart, Sebastian; Flagan, Richard C.; Franchin, Alessandro; Guida, Roberto; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Jokinen, Tuija; Kangasluoma, Juha; Kirkby, Jasper; Kulmala, Markku; Kupc, Agnieszka; Lawler, Michael J.; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mann, Graham; Mathot, Serge; Merikanto, Joonas; Miettinen, Pasi; Nenes, Athanasios; Onnela, Antti; Rap, Alexandru; Reddington, Carly L. S.; Riccobono, Francesco; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Simon, Mario; Sipilä, Mikko; Smith, James N.; Stozkhov, Yuri; Tomé, Antonio; Tröstl, Jasmin; Wagner, Paul E.; Wimmer, Daniela; Winkler, Paul M.; Worsnop, Douglas R.; Carslaw, Kenneth S.

    2016-12-01

    Fundamental questions remain about the origin of newly formed atmospheric aerosol particles because data from laboratory measurements have been insufficient to build global models. In contrast, gas-phase chemistry models have been based on laboratory kinetics measurements for decades. We built a global model of aerosol formation by using extensive laboratory measurements of rates of nucleation involving sulfuric acid, ammonia, ions, and organic compounds conducted in the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber. The simulations and a comparison with atmospheric observations show that nearly all nucleation throughout the present-day atmosphere involves ammonia or biogenic organic compounds, in addition to sulfuric acid. A considerable fraction of nucleation involves ions, but the relatively weak dependence on ion concentrations indicates that for the processes studied, variations in cosmic ray intensity do not appreciably affect climate through nucleation in the present-day atmosphere.

  20. Formation of young massive clusters from turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Fujii, Michiko S.; Portegies Zwart, Simon

    2017-03-01

    We simulate the formation and evolution of young star clusters from turbulent molecular clouds using smoothed-particle hydrodynamics and direct N-body methods. We find that the shape of the cluster mass function that originates from an individual molecular cloud is consistent with a Schechter function with power-law slopes of β = -1.73. The superposition of mass functions turn out to have a power-law slope of < -2. The mass of the most massive cluster formed from a single molecular cloud with mass M g scales with 6.1 M 0.51 g. The molecular clouds that tend to form massive clusters are much denser than those typical found in the Milky Way. The velocity dispersion of such molecular clouds reaches 20km s-1 and it is consistent with the relative velocity of the molecular clouds observed near NGC 3603 and Westerlund 2, for which a triggered star formation by cloud-cloud collisions is suggested.

  1. Protostellar formation in rotation interstellar clouds. III. Nonaxisymmetric collapse

    SciTech Connect

    Boss, A.P.

    1980-05-01

    A full three spatial-dimension gravitational hydrodynamics code has been used to follow the collapse of isothermal rotating clouds subjected to various nonaxialy symmetric perturbations (NAP). An initially axially symmetric cloud collapsed to form a ring which then fragmented into a binary protostellar system. A low thermal energy cloud with a large bar-shaped NAP collapsed and fragmented directly into a binary; higher thermal energy clouds damp out such NAPs while higher rotational rotational energy clouds produce binaries with wider separations. Fragmentation into single and binary systems has been seen. The tidal effects of other nearby protostellar clouds are shown to have an important effect upon the collapse and should not be neglected. The three-dimensional calculations indicate that isothermal interstellar clouds may fragment (with or without passing through a transitory ring phase) into protostellar objects while still in the isothermal regime. The fragments obtained have masses and specific spin angular momenta roughly a 10th that of the original cloud. Interstellar clouds and their fragments may pass through successive collapse phases with fragmentation and reduction of spin angular momentum (by conversion to orbital angular momentum and preferential accretion of low angular momentum matter) terminating in the formation of pre--main-sequence stars with the observed pre--main-sequence rotation rates.

  2. Reprint of "How do components of real cloud water affect aqueous pyruvate oxidation?"

    NASA Astrophysics Data System (ADS)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2015-01-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  3. How do components of real cloud water affect aqueous pyruvate oxidation?

    NASA Astrophysics Data System (ADS)

    Boris, Alexandra J.; Desyaterik, Yury; Collett, Jeffrey L.

    2014-06-01

    Chemical oxidation of dissolved volatile or semi-volatile organic compounds within fog and cloud droplets in the atmosphere could be a major pathway for secondary organic aerosol (SOA) formation. This proposed pathway consists of: (1) dissolution of organic chemicals from the gas phase into a droplet; (2) reaction with an aqueous phase oxidant to yield low volatility products; and (3) formation of particle phase organic matter as the droplet evaporates. The common approach to simulating aqueous SOA (aqSOA) reactions is photo-oxidation of laboratory standards in pure water. Reactions leading to aqSOA formation should be studied within real cloud and fog water to determine whether additional competing processes might alter apparent rates of reaction as indicated by rates of reactant loss or product formation. To evaluate and identify the origin of any cloud water matrix effects on one example of observed aqSOA production, pyruvate oxidation experiments simulating aqSOA formation were monitored within pure water, real cloud water samples, and an aqueous solution of inorganic salts. Two analysis methods were used: online electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR-ToF-MS), and offline anion exchange chromatography (IC) with quantitative conductivity and qualitative ESI-HR-ToF-MS detection. The apparent rate of oxidation of pyruvate was slowed in cloud water matrices: overall measured degradation rates of pyruvate were lower than in pure water. This can be at least partially accounted for by the observed formation of pyruvate from reactions of other cloud water components. Organic constituents of cloud water also compete for oxidants and/or UV light, contributing to the observed slowed degradation rates of pyruvate. The oxidation of pyruvate was not significantly affected by the presence of inorganic anions (nitrate and sulfate) at cloud-relevant concentrations. Future bulk studies of aqSOA formation reactions using simplified

  4. Effect of Smoke on Cloud Formation during the Biomass Burning Season over the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Koren, I.; Kaufman, Y. J.; Remer, L. A.

    2003-01-01

    Aerosol absorption of sunlight reduces surface irradiation and heats the aerosol layer. The consequent changes in the temperature and humidity profiles can affect cloud formation extent and life time, which is called the semi-direct effect. We evaluate this aerosol semi-direct effect using data collected during the 2002 biomass burning season over the Amazon basin from the MODIS instrument on the Aqua satellite. MODIS measures the cloud coverage and the aerosol optical thickness among the clouds. We found that the radiative heating of the atmosphere and cooling of the surface due to the presence of the smoke decreases the cloud coverage. A very clear negative correlation emerges between the cloud fraction and the smoke optical depth. The results are compared to calculations using 1-D radiation model (M.D. Chou), and used to calculate this regional semi direct effect on climate forcing.

  5. Molecular Clouds, Star Formation and Galactic Structure.

    ERIC Educational Resources Information Center

    Scoville, Nick; Young, Judith S.

    1984-01-01

    Radio observations show that the gigantic clouds of molecules where stars are born are distributed in various ways in spiral galaxies, perhaps accounting for the variation in their optical appearance. Research studies and findings in this area are reported and discussed. (JN)

  6. Seasonal and spatial variability of heterogeneous ice formation in stratiform clouds and its possible impact on precipitation formation

    NASA Astrophysics Data System (ADS)

    Seifert, P.; Ansmann, A.; Baars, H.; Buehl, J.; Kanitz, T.; Bohlmann, S.; Engelmann, R.; Kunz, C.

    2015-12-01

    Lidar observations of stratiform mid-level clouds were used to investigate the efficiency of heterogeneous ice nucleation as a function of cloud top temperature. The long-term lidar-based cloud datasets were collected in Germany (51°N,12°E), in southeastern China (22°N,112°E), Cape Verde (15°N,24°W), the Amazon Basin (1°N,60°W), South Africa (34°S,19°E), and southern Chile (53°S,71°W). They thus cover a variety of northern- and southern latitudinal belts from the midlatitudes to the tropics. Observations of the depolarization ratio were used to categorize the observed cloud layers into either ice-free (no depolarized signals observed) or ice-containing clouds (signals depolarized by scattering at ice crystals). Strong hemispheric and regional differences were observed in the heterogeneous ice formation efficiency at the different sites, especially in the high-temperature range between -20 and 0 °C. The fraction of ice containing clouds in this temperature range is highest at the northern-latitudinal sites of Germany and southeastern China. Over Leipzig, 50% of all clouds contain ice at -10 °C. In contrast, over southern Chile virtually no ice-containing clouds were observed between -20 and 0 °C. Seasonal differences in the ice-cloud fraction were found over Germany and the Amazon Basin. The observed regional, hemispheric and seasonal contrasts can be explained by differences in the aerosol concentration at cloud level above the different sites. Cloud vertical motion (observed with Doppler lidar), which also determine the microphysical cloud evolution, were found to be similar for all cloud layers. From combined observations of cloud radar and lidar at Leipzig it was in addition found that ice water contents of below approx. 10-6kg/m³ cannot be detected with lidar. Clouds classified as pure liquid from the lidar-only observations thus could contain ice water contents of below that threshold. Considering the hemispheric differences in heterogeneous

  7. Thermal instabilities in diffuse molecular clouds - Formation of molecular cloud cores

    NASA Technical Reports Server (NTRS)

    Graziani, Frank R.; Black, David C.

    1987-01-01

    The stability of diffuse clouds to thermal instabilities is examined using the semiempirical cooling function derived by Tarafdar et al. (1985) for these clouds. It is found that diffuse clouds which obey such a cooling function are susceptible to thermal instability at densities n of less than about 70-80/cu cm. The growth rate for instability is large and the mass contained in unstable regions ranges from about 0.001 to 1 solar mass. It is suggested that such instabilities may trigger formation of molecular cloud cores of the type found in low-mass molecular clouds (e.g., TMC-2). Criteria for thermal instability in self-gravitating systems are also derived.

  8. Electric field measuring and display system. [for cloud formations

    NASA Technical Reports Server (NTRS)

    Wojtasinski, R. J.; Lovall, D. D. (Inventor)

    1974-01-01

    An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.

  9. The Mechanism of First Raindrops Formation in Deep Convective Clouds

    SciTech Connect

    Khain, Alexander; Prabha, Thara; Benmoshe, Nir; Pandithurai, G.; Ovchinnikov, Mikhail

    2013-08-22

    The formation of first raindrops in deep convective clouds is investigated. A combination of observational data analysis and 2-D and 3-D numerical bin microphysical simulations of deep convective clouds suggests that the first raindrops form at the top of undiluted or slightly diluted cores. It is shown that droplet size distributions in these regions are wider and contain more large droplets than in diluted volumes. The results of the study indicate that the initial raindrop formation is determined by the basic microphysical processes within ascending adiabatic volumes. It allows one to predict the height of the formation of first raindrops considering the processes of nucleation, diffusion growth and collisions. The results obtained in the study explain observational results reported by Freud and Rosenfeld (2012) according to which the height of first raindrop formation depends linearly on the droplet number concentration at cloud base. The results also explain why a simple adiabatic parcel model can reproduce this dependence. The present study provides a physical basis for retrieval algorithms of cloud microphysical properties and aerosol properties using satellites proposed by Rosenfeld et al. ( 2012). The study indicates that the role of mixing and entrainment in the formation of the first raindrops is not of crucial importance. It is also shown that low variability of effective and mean volume radii along horizontal traverses, as regularly observed by in situ measurements, can be simulated by high-resolution cloud models, in which mixing is parameterized by a traditional 1.5 order turbulence closure scheme.

  10. Star Formation around Mid-Infrared Bubble N37: Evidence of Cloud-Cloud Collision

    NASA Astrophysics Data System (ADS)

    Baug, T.; Dewangan, L. K.; Ojha, D. K.; Ninan, J. P.

    2016-12-01

    We have performed a multi-wavelength analysis of a mid-infrared (MIR) bubble N37 and its surrounding environment. The selected 15‧ × 15‧ area around the bubble contains two molecular clouds (N37 cloud; {V}{lsr} ˜ 37-43 km s-1, and C25.29+0.31; {V}{lsr} ˜ 43-48 km s-1) along the line of sight. A total of seven OB stars are identified toward the bubble N37 using photometric criteria, and two of them are spectroscopically confirmed as O9V and B0V stars. The spectro-photometric distances of these two sources confirm their physical association with the bubble. The O9V star appears to be the primary ionizing source of the region, which is also in agreement with the desired Lyman continuum flux analysis estimated from the 20 cm data. The presence of the expanding H ii region is revealed in the N37 cloud, which could be responsible for the MIR bubble. Using the 13CO line data and photometric data, several cold molecular condensations as well as clusters of young stellar objects (YSOs) are identified in the N37 cloud, revealing ongoing star formation (SF) activities. However, the analysis of ages of YSOs and the dynamical age of the H ii region do not support the origin of SF due to the influence of OB stars. The position-velocity analysis of 13CO data reveals that two molecular clouds are interconnected by a bridge-like structure, favoring the onset of a cloud-cloud collision process. The SF activities (i.e., the formation of YSO clusters and OB stars) in the N37 cloud are possibly influenced by the cloud-cloud collision.

  11. Precipitation factors leading to arc cloud formation

    NASA Technical Reports Server (NTRS)

    Brundidge, Kenneth C.

    1987-01-01

    The combined efforts of three graduate students and the principal investigator are presented. Satellite observations and interpretation have become increasingly important in the areas of weather research and operational forecasting. One reason is that geostationary satellite imagery is the only meteorological observing tool that can follow the evolution of clouds from the synoptic scale down to the cumulas scale. Therefore, it can depict atmospheric activity which is up to two orders of magnitude smaller than can be resolved by conventional meteorological observations. This unique ability of the satellite provides the meteorologist a mechanism to infer weather events down to the mesoscale. This evolution is the subject of this report.

  12. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds.

    PubMed

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H; Rudich, Yinon

    2013-12-17

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  13. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    PubMed Central

    Adler, Gabriela; Koop, Thomas; Haspel, Carynelisa; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven H.; Rudich, Yinon

    2013-01-01

    The cycling of atmospheric aerosols through clouds can change their chemical and physical properties and thus modify how aerosols affect cloud microphysics and, subsequently, precipitation and climate. Current knowledge about aerosol processing by clouds is rather limited to chemical reactions within water droplets in warm low-altitude clouds. However, in cold high-altitude cirrus clouds and anvils of high convective clouds in the tropics and midlatitudes, humidified aerosols freeze to form ice, which upon exposure to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. Here we simulate an atmospheric freeze-drying cycle of aerosols in laboratory experiments using proxies for atmospheric aerosols. We find that aerosols that contain organic material that undergo such a process can form highly porous aerosol particles with a larger diameter and a lower density than the initial homogeneous aerosol. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure after ice sublimation. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. We find that highly porous aerosol particles scatter solar light less efficiently than nonporous aerosol particles. Using a combination of satellite and radiosonde data, we show that highly porous aerosol formation can readily occur in highly convective clouds, which are widespread in the tropics and midlatitudes. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges. PMID:24297908

  14. A possible role of ground-based microorganisms on cloud formation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Ekström, S.; Nozière, B.; Hultberg, M.; Alsberg, T.; Magnér, J.; Nilsson, E. D.; Artaxo, P.

    2009-10-01

    The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but also a difficult one to predict because some aspects of the transformations of aerosol particles into cloud droplets are still not well understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth's surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and should significantly enhance their conversion into of cloud droplets. In the first part of this work, the cloud-nucleating efficiency (or "CCN" efficiency) of standard biosurfactants was characterized by osmolality and surface tension measurements and found to be better than for any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give to organic compounds exceptional CCN properties. In the second part, atmospheric aerosols sampled at different locations (temperate & tropical, forested & marine ones) were found to all have a surface tension below 30 mN/m, which can only be accounted for by the presence of biosurfactants. The results also showed that these biosurfactants were concentrated enough to significantly affect the surface tension of these aerosols and enhance their CCN efficiency. The presence of such strong biosurfactants in aerosols would be consistent with the recent identification of organic fractions of higher CCN efficiency than ammonium sulfate in aerosols. And a role of microorganisms at the Earth's surface on clouds could also explain previously reported correlations between algae bloom and cloud cover. Our results also suggest that biosurfactants might be common in aerosols and thus of global relevance. If their impact on cloud formation is confirmed by future studies, this work would have identified a new role of microorganisms at the Earth's surface on the atmosphere, and a new component of the Earth

  15. Formation and spread of aircraft-induced holes in clouds.

    PubMed

    Heymsfield, Andrew J; Thompson, Gregory; Morrison, Hugh; Bansemer, Aaron; Rasmussen, Roy M; Minnis, Patrick; Wang, Zhien; Zhang, Damao

    2011-07-01

    Hole-punch and canal clouds have been observed for more than 50 years, but the mechanisms of formation, development, duration, and thus the extent of their effect have largely been ignored. The holes have been associated with inadvertent seeding of clouds with ice particles generated by aircraft, produced through spontaneous freezing of cloud droplets in air cooled as it flows around aircraft propeller tips or over jet aircraft wings. Model simulations indicate that the growth of the ice particles can induce vertical motions with a duration of 1 hour or more, a process that expands the holes and canals in clouds. Global effects are minimal, but regionally near major airports, additional precipitation can be induced.

  16. Numerical Simulations of Star Formation in Filamentary Dark Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Li, Pak Shing; Klein, Richard I.; McKee, Christopher

    2015-08-01

    Infrared Dark Clouds (IRDCs) are believed to be the precursors to star clusters and massive stars (e.g. Bergin & Tafalla 2007). The complex intertwined braid-like structure of IRDCs (e.g. André et al. 2014) poses a challenge to theorists to explain their dynamics and formation. We have performed large-scale adaptive mesh refinement, driven turbulence, MHD simulations to study the structure and formation of IRDCs. Filamentary structure emerges naturally from the simulations. Magnetic field lines pierce the dark cloud filament primarily in the direction normal to the filament axis. The column density profiles of the main features are well fit by the power law as observations have found (e.g. Hill et al. 2011, Arzoumanian et al. 2011). The dark cloud filaments in the simulation resemble the dark cloud SDC13 (Peretto et al. 2014) and the 3D information from the simulation can be used to explain the observed structure and dynamics of SDC13. We have carried out a detailed analysis of the magnetic field properties of the cloud clumps in our simulations (Li et al. 2015), finding good agreement with the Zeeman observations of Crutcher et al. (2010). We then added radiation, zoomed into the main IRDC filament, and continued one of the simulations to study the star formation inside IRDCs. By including radiation feedback and proto-stellar outflows, we obtain a proto-stellar mass function (PMF) for comparison with theoretical PMFs (McKee & Offner 2010) and the Chabrier IMF. In this presentation, we summarize what we have learned about the formation of filamentary IRDCs, their complex braided filamentary structure, the magnetic properties of cloud clumps inside the IRDC filaments, and star formation in the first half of a free fall time of the system.

  17. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation

    PubMed Central

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H.; Morales, Ricardo; Moore, Richard H.; Lathem, Terry L.; Lance, Sara; Padró, Luz T.; Lin, Jack J.; Cerully, Kate M.; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R.; Chuang, Patrick Y.; Anderson, Bruce E.; Flagan, Richard C.; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N.

    2013-01-01

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought. PMID:23431189

  18. Open-cell cloud formation over the Bahamas

    NASA Technical Reports Server (NTRS)

    2002-01-01

    What atmospheric scientists refer to as open cell cloud formation is a regular occurrence on the back side of a low-pressure system or cyclone in the mid-latitudes. In the Northern Hemisphere, a low-pressure system will draw in surrounding air and spin it counterclockwise. That means that on the back side of the low-pressure center, cold air will be drawn in from the north, and on the front side, warm air will be drawn up from latitudes closer to the equator. This movement of an air mass is called advection, and when cold air advection occurs over warmer waters, open cell cloud formations often result. This MODIS image shows open cell cloud formation over the Atlantic Ocean off the southeast coast of the United States on February 19, 2002. This particular formation is the result of a low-pressure system sitting out in the North Atlantic Ocean a few hundred miles east of Massachusetts. (The low can be seen as the comma-shaped figure in the GOES-8 Infrared image from February 19, 2002.) Cold air is being drawn down from the north on the western side of the low and the open cell cumulus clouds begin to form as the cold air passes over the warmer Caribbean waters. For another look at the scene, check out the MODIS Direct Broadcast Image from the University of Wisconsin. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  19. Electron cloud experiments at Fermilab: Formation and mitigation

    SciTech Connect

    Zwaska, R.; /Fermilab

    2011-06-01

    We have performed a series of experiments at Fermilab to explore the electron cloud phenomenon. The Main Injector will have its beam intensity increased four-fold in the Project X upgrade, and would be subject to instabilities from the electron cloud. We present measurements of the cloud formation in the Main Injector and experiments with materials for the mitigation of the Cloud. An experimental installation of Titanium-Nitride (TiN) coated beam pipes has been under study in the Main Injector since 2009; this material was directly compared to an adjacent stainless chamber through electron cloud measurement with Retarding Field Analyzers (RFAs). Over the long period of running we were able to observe the secondary electron yield (SEY) change and correlate it with electron fluence, establishing a conditioning history. Additionally, the installation has allowed measurement of the electron energy spectrum, comparison of instrumentation techniques, and energydependent behavior of the electron cloud. Finally, a new installation, developed in conjunction with Cornell and SLAC, will allow direct SEY measurement of material samples irradiated in the accelerator.

  20. Convective Formation of Pileus Cloud Near the Tropopause

    NASA Technical Reports Server (NTRS)

    Garrett, Timothy J.; Dean-Day, Jonathan; Liu, Chuntao; Barnett, Brian K.; Mace, Gerald G.; Baumgardner, Darrel G.; Webster, Christopher R.; Bui, T. Paul; Read, William G.; Minnis, Patrick

    2005-01-01

    Pileus clouds form where humid, stably stratified air is mechanically displaced vertically ahead of rising convection. This paper describes convective formation of pileus cloud in the tropopause transition layer (TTL), and explores a possible link to the formation of long-lasting cirrus at cold temperatures. In-situ measurements from off the coast of Honduras during the July 2002 CRYSTALFACE experiment show an example of TTL cirrus associated with, and penetrated by, deep convection. The cirrus was enriched with total water compared to its surroundings, but composed of extremely small ice crystals with effective radii between 2 and 4 m. Through gravity wave analysis, and intercomparison of measured and simulated cloud microphysics, it is argued that the TTL cirrus in this case originated neither from convectively-forced gravity wave motions nor environmental mixing alone. Rather, it is hypothesized that some combination was involved in which, first, convection forced pileus cloud to form from TTL air; second, it punctured the pileus layer, contributing larger ice crystals through interfacial mixing; third, the addition of condensate inhibited evaporation of the original pileus ice crystals in the warm phase of the ensuing gravity wave; fourth, through successive pulses, deep convection formed the observed layer of TTL cirrus. While the general incidence and longevity of pileus cloud remains unknown, in-situ measurements, and satellite-based Microwave Limb Sounder retrievals, suggest that much of the tropical TTL is sufficiently humid to be susceptible to its formation. Where these clouds form and persist, there is potential for an irreversible repartition from water vapor to ice at cold temperatures.

  1. One-dimensional cloud fluid model for propagating star formation

    NASA Technical Reports Server (NTRS)

    Titus, Timothy N.; Struck-Marcell, Curtis

    1990-01-01

    The aim of this project was to study the propagation of star formation (SF) with a self-consistent deterministic model for the interstellar gas. The questions of under what conditions does star formation propagate in this model and what are the mechanisms of the propagation are explored. Here, researchers used the deterministic Oort-type cloud fluid model of Scalo and Struck-Marcell (1984, also see the review of Struck-Marcell, Scalo and Appleton 1987). This cloud fluid approach includes simple models for the effects of cloud collisional coalescence or disruption, collisional energy dissipation, and cloud disruption and acceleration as the result of young star winds, HII regions and supernovae. An extensive one-zone parameter study is presented in Struck-Marcell and Scalo (1987). To answer the questions above, researchers carried out one-dimensional calculations for an annulus within a galactic disk, like the so-called solar neighborhood of the galactic chemical evolution. In the calculations the left-hand boundary is set equal to the right hand boundary. The calculation is obviously idealized; however, it is computationally convenient to study the first order effects of propagating star formation. The annulus was treated as if it were at rest, i.e., in the local rotating frame. This assumption may remove some interesting effects of a supersonic gas flow, but was necessary to maintain a numerical stability in the annulus. The results on the one-dimensional propagation of SF in the Oort cloud fluid model follow: (1) SF is propagated by means of hydrodynamic waves, which can be generated by external forces or by the pressure generated by local bursts. SF is not effectively propagated via diffusion or variation in cloud interaction rates without corresponding density and velocity changes. (2) The propagation and long-range effects of SF depend on how close the gas density is to the critical threshold value, i.e., on the susceptibility of the medium.

  2. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Väisänen, Olli; Ruuskanen, Antti; Ylisirniö, Arttu; Miettinen, Pasi; Portin, Harri; Hao, Liqing; Leskinen, Ari; Komppula, Mika; Romakkaniemi, Sami; Lehtinen, Kari E. J.; Virtanen, Annele

    2016-08-01

    The relationship between aerosol hygroscopicity and cloud droplet activation was studied at the Puijo measurement station in Kuopio, Finland, during the autumn 2014. The hygroscopic growth of 80, 120 and 150 nm particles was measured at 90 % relative humidity with a hygroscopic tandem differential mobility analyzer. Typically, the growth factor (GF) distributions appeared bimodal with clearly distinguishable peaks around 1.0-1.1 and 1.4-1.6. However, the relative contribution of the two modes appeared highly variable reflecting the probable presence of fresh anthropogenic particle emissions. The hygroscopicity-dependent activation properties were estimated in a case study comprising four separate cloud events with varying characteristics. At 120 and 150 nm, the activation efficiencies within the low- and high-GF modes varied between 0-34 and 57-83 %, respectively, indicating that the less hygroscopic particles remained mostly non-activated, whereas the more hygroscopic mode was predominantly scavenged into cloud droplets. By modifying the measured GF distributions, it was estimated how the cloud droplet concentrations would change if all the particles belonged to the more hygroscopic group. According to κ-Köhler simulations, the cloud droplet concentrations increased up to 70 % when the possible feedback effects on effective peak supersaturation (between 0.16 and 0.29 %) were assumed negligible. This is an indirect but clear illustration of the sensitivity of cloud formation to aerosol chemical composition.

  3. The Star Formation History of the Lupus Dark Clouds

    NASA Astrophysics Data System (ADS)

    Grocholski, A. J.; Hughes, J. D.

    1999-05-01

    In light of recent HIPPARCOS observations we have revised the distance to the Lupus dark cloud complex upwards. This, along with the adoption of newer pre-main sequence mass tracks and isochrones have led to a new mass function and age distribution. We use calculated masses and ages to discuss the progression of star formation through the Lupus clouds, with particular reference to Lupus 3, which is forming intermediate (3-5Mo) stars and a multitude of very low mass stars (<0.3 Mo).

  4. Rosette: Understanding Star Formation in Molecular Cloud Complexes

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng

    2010-09-01

    We propose Chandra imaging of three embedded clusters in the Rosette Molecular Cloud (RMC) complex. With complementary existing Spitzer and FLAMINGOS infrared surveys, the Chandra observation is critical for us to: (1) create a complete census of the young stars in the cloud; (2) study the spatial distribution of the young stars in different evolutionary stages within the RMC and the disk frequency in the embedded clusters; (3) construct X-ray Luminosity Function (XLF) and Initial Mass Function (IMF) for the clusters to examine XLF/IMF variations; (4) elucidate star formation history in this complex.

  5. Biomass Burning Aerosol Impact on Orographic Cloud Formation on Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Christopher, S. A.

    2014-12-01

    In addition to large scale climate change impacts, regional climate forcing due to land cover and land use change and biomass burning aerosols may also be relevant in understanding observed changes at Kilimanjaro. Analysis of satellite detected fires conducted for 2007 show substantial biomass burning in the vicinity of Kilimanjaro and maximum mid visible MODIS retrieved aerosol optical depth over Kilimanjaro during the month of July. For selected case days in 2007, numerical simulations were conducted using WRF Chem to assess the impact of biomass burning aerosols on orographic cloud formation on Kilimanjaro. Numerical modeling experiments with and without smoke emissions were conducted. Satellite derived smoke emissions are utilized in numerical model experiments considering biomass burning aerosol effects. Nested grid configuration was used in the experiments to establish a fine grid of 100 km x 100 km domain and 1 km grid spacing over the complex terrain of Kilimanjaro. For case days considered, numerical model simulations show substantial impact of biomass burning aerosols on orographic cloud formation. There is a net increase in cloud liquid water path with maximum increase in excess of 10%. Orographic precipitation also show increase in rainfall of up to 10% at higher elevations. Whereas there is average reduction in downwelling solar radiation 18 Wm-2 up to elevations of 5000m, impacts at the mountain peaks are minimal. Processes leading to the differences in cloud formation and results from numerical simulations are conducted for additional case study days during other seasons and will be discussed

  6. Observation of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, J.; McCormick, M. P.; Lei, L.

    2015-12-01

    We present the results of analyses performed on high-resolution remotely-sensed and in situ atmospheric measurements of the boundary layer and lower atmosphere centered over the northeast coast of the Hampton Roads body of water in southeast Virginia. This region is adjacent to the confluence of the Chesapeake Bay and the Atlantic Ocean where often times, low-level jets (LLJs) are found in the boundary layer during summer months. An East Hampton Roads Aerosol Flux (EHRAF) campaign, was conducted from the campus of Hampton University (HU) to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars, as well as rawindsondes over a one-week period in May 2014 . LLJs were observed from evening of 20 May to the morning of 21 May, and were found to lead to cloud formation. In this paper, the cloud formation caused by LLJs is analyzed using data that includes high-resolution profiles of: aerosol backscatter, turbulence structure, temperature, wind speed and direction, and water vapor. It is found that enhanced nighttime turbulence triggered by LLJs causes the aerosol and water vapor content of boundary layer to be lifted up forming a well-mixed region. We show that this region contains the cloud condensation nuclei that are very important for the formation of clouds.

  7. Protostellar formation in rotating interstellar clouds. IV. Nonisothermal collapse

    SciTech Connect

    Boss, A.P.

    1984-02-15

    Radiative transfer in the Eddington approximation is included in a multidimensional, self-gravitational, hydrodynamical computer code. Details of the numerical solution and thermodynamic relations are given. Comparison calculations with previous spherically symmetrical models of protostellar collapse are used to validate the basic approach and the artifices which allow the explicit hydrodynamics code to follow the accretion of gas onto a quasi-equilibrium core. A series of axisymmetric models is used to investigate the importance of rotation in collapsing clouds, as the initial amount of angular momentum is lowered, with an emphasis on the possible formation of rings. Rings readily form even in the nonisothermal regime except for very low initial angular momenta; even these clouds may experience ring formation prior to reaching stellar densities. The models imply that other effects (such as gravitational torques or turbulent viscosity) may be necessary to avoid binary formation and thus result in a presolar nebula consistent with the assumptions of either Safronov or Cameron.

  8. Protostellar formation in rotating interstellar clouds. IV Nonisothermal collapse

    NASA Technical Reports Server (NTRS)

    Boss, A. P.

    1984-01-01

    Radiative transfer in the Eddington approximation is included in a multidimensional, self-gravitational, hydrodynamical computer code. Details of the numerical solution and thermodynamic relations are given. Comparison calculations with previous spherically symmetrical models of protostellar collapse are used to validate the basic approach and the artifices which allow the explicit hydrodynamics code to follow the accretion of gas onto a quasi-equilibrium core. A series of axisymmetric models is used to investigate the importance of rotation in collapsing clouds, as the initial amount of angular momentum is lowered, with an emphasis on the possible formation of rings. Rings readily form even in the nonisothermal regime except for very low initial angular momenta; even these clouds may experience ring formation prior to reaching stellar densities. The models imply that other effects (such as gravitational torques or turbulent viscosity) may be necesary to avoid binary formation and thus result in a presolar nebula consistent with the assumptions of either Safronov or Cameron.

  9. Formation of Turbulent and Magnetized Molecular Clouds via Accretion Flows of H I Clouds

    NASA Astrophysics Data System (ADS)

    Inoue, Tsuyoshi; Inutsuka, Shu-ichiro

    2012-11-01

    Using three-dimensional magnetohydrodynamic simulations, including the effects of radiative cooling/heating, chemical reactions, and thermal conduction, we investigate the formation of molecular clouds in the multi-phase interstellar medium. As suggested by recent observations, we consider the formation of molecular clouds due to accretion of H I clouds. Our simulations show that the initial H I medium is piled up behind the shock waves induced by accretion flows. Since the initial medium is highly inhomogeneous as a consequence of thermal instability, a newly formed molecular cloud becomes very turbulent owing to the development of the Richtmyer-Meshkov instability. The kinetic energy of the turbulence dominates the thermal, magnetic, and gravitational energies throughout the entire 10 Myr evolution. However, the kinetic energy measured using CO-fraction-weighted densities is comparable to the other energies, once the CO molecules are sufficiently formed as a result of UV shielding. This suggests that the true kinetic energy of turbulence in molecular clouds as a whole can be much larger than the kinetic energy of turbulence estimated using line widths of molecular emission. We find that clumps in a molecular cloud show the following statistically homogeneous evolution: the typical plasma β of the clumps is roughly constant langβrang ~= 0.4; the size-velocity dispersion relation is Δv ~= 1.5 km s-1 (l/1 pc)0.5, irrespective of the density; the clumps evolve toward magnetically supercritical, gravitationally unstable cores; and the clumps seem to evolve into cores that satisfy the condition for fragmentation into binaries. These statistical properties may represent the initial conditions of star formation.

  10. Observations of cloud microphysics and ice formation during COPE

    NASA Astrophysics Data System (ADS)

    Taylor, J. W.; Choularton, T. W.; Blyth, A. M.; Liu, Z.; Bower, K. N.; Crosier, J.; Gallagher, M. W.; Williams, P. I.; Dorsey, J. R.; Flynn, M. J.; Bennett, L. J.; Huang, Y.; French, J.; Korolev, A.; Brown, P. R. A.

    2016-01-01

    We present microphysical observations of cumulus clouds measured over the southwest peninsula of the UK during the COnvective Precipitation Experiment (COPE) in August 2013, which are framed into a wider context using ground-based and airborne radar measurements. Two lines of cumulus clouds formed in the early afternoon along convergence lines aligned with the peninsula. The lines became longer and broader during the afternoon due to new cell formation and stratiform regions forming downwind of the convective cells. Ice concentrations up to 350 L-1, well in excess of the expected ice nuclei (IN) concentrations, were measured in the mature stratiform regions, suggesting that secondary ice production was active. Detailed sampling focused on an isolated liquid cloud that glaciated as it matured to merge with a band of cloud downwind. In the initial cell, drizzle concentrations increased from ˜ 0.5 to ˜ 20 L-1 in around 20 min. Ice concentrations developed up to a few per litre, which is around the level expected of primary IN. The ice images were most consistent with freezing drizzle, rather than smaller cloud drops or interstitial IN forming the first ice. As new cells emerged in and around the cloud, ice concentrations up to 2 orders of magnitude higher than the predicted IN concentrations developed, and the cloud glaciated over a period of 12-15 min. Almost all of the first ice particles to be observed were frozen drops, while vapour-grown ice crystals were dominant in the latter stages. Our observations are consistent with the production of large numbers of small secondary ice crystals/fragments, by a mechanism such as Hallett-Mossop or droplets shattering upon freezing. Some of the small ice froze drizzle drops on contact, while others grew more slowly by vapour deposition. Graupel and columns were seen in cloud penetrations up to the -12 °C level, though many ice particles were mixed habit due to riming and growth by vapour deposition at multiple temperatures

  11. SUPERGIANT SHELLS AND MOLECULAR CLOUD FORMATION IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Dawson, J. R.; Dickey, John M.; McClure-Griffiths, N. M.; Wong, T.; Hughes, A.; Fukui, Y.; Kawamura, A.

    2013-01-20

    We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between H I and {sup 12}CO(J = 1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects ({approx}70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that {approx}12%-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to {approx}4%-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.

  12. Numerical Experiments on the Formation and Maintenance of Cirriform Clouds.

    NASA Astrophysics Data System (ADS)

    Starr, David O'connell

    The role and relative importance of the dynamic and diabatic processes influencing the formation and maintenance of ice phase stratiform clouds are investigated at the cloud scale. The primary focus is on fair weather cirrus. A two-dimensional, time dependent, Eulerian numerical model is developed. The grid interval is 100 m and the domain is a vertical plane of (TURN) 3 km depth and (TURN) 6 km horizontal extent. The influence of larger scale processes are incorporated via a specified basic state vertical velocity and the initially specified thermodynamic structure. In addition to energy transformations between potential and kinetic forms and advection by the resolved wind field, other important physical processes, which are incorporated into the model in a parametric fashion, are transports due to subgrid scale processes, phase changes of water, infrared and short-wave radiative processes and the relative fall velocity of cloud particles. The parameterizations are based upon observations and theoretical consideration. This model is unique in its applicability to ice phase stratiform clouds. Comparable parameterizations for liquid phase stratiform clouds are given. The model is described in detail in all aspects. The approach is one of examining the sensitivity of simulations to the specification of various computational and parametric model constants and functions. The characteristics of the model are fully examined and the model is calibrated by means of comparison to observations and theory such that realistic simulations are obtained. The influence of the ice water relative fall speed on the physical properties of the cloud layer and the consequent modulation of the other cloud processes is found to be quite dramatic. Radiative processes are also found to have a significant impact. In particular, significant differences in the organization of convective elements between daytime and nighttime cases are found. Differences between ice phase and liquid phase

  13. Optically thin ice clouds in Arctic; Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, Caroline; Pelon, Jacques; Girard, Eric; Blanchet, Jean-Pierre; Wobrock, Wolfram; Gayet, Jean-Franćois; Schwarzenböck, Alfons; Gultepe, Ismail; Delanoë, Julien; Mioche, Guillaume

    2010-05-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Yet, their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (< -30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. To check this, it is necessary to analyse cloud properties in the Arctic. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of

  14. Ice Nuclei Variability and Ice Formation in Mixed-phase Clouds

    NASA Astrophysics Data System (ADS)

    Demott, P. J.; Twohy, C. H.; Prenni, A. J.; Kreidenweis, S. M.; Brooks, S. D.; Rogers, D. C.

    2005-12-01

    While it is expected that ice nuclei impose a critical role in ice initiation in clouds, there are relatively few validations of direct relations between ice nuclei concentrations and ice crystal concentrations. Further, very little is known about the spatial and temporal distribution of ice nuclei, let alone their sources. Such knowledge is critical for understanding precipitation formation, cloud lifetimes, the existence of aircraft icing hazards, and the impacts of changing atmospheric aerosol particle concentrations and compositions on cold cloud processes. In this study, we document measurements of ice nuclei in relation to the presence and concentrations of ice crystals in modestly supercooled clouds and also consider the implications of differences in ice nuclei concentrations measured at different locations and times during several studies. In the first part of this presentation, we show results from measurements made in the Alliance Icing Research Study II, conducted in late Fall 2003 over the Northeast U.S. and Eastern Canada. A counterflow virtual impactor was used for selectively sampling cloud particles during aircraft measurements of clouds. Measurements were made on the evaporated residual aerosol particles, including re-processing at controlled temperatures and relative humidities to determine their ice nucleating behavior for conditions of direct relevance to the clouds using a continuous flow ice-thermal diffusion chamber (CFDC). Comparing to measurements of ice crystals in clouds, a clear correlation between the presence or absence of ice nuclei and ice crystals was demonstrated in some cases. However, the concentrations of the two populations did not correlate as well. Reasons for this may reflect different (or not assessed) ice formation processes, redistribution of ice in clouds, and potential artifacts of the sampling procedure. Since these results and those of Prenni et al. (this meeting), describing the vital role of ice nuclei in affecting

  15. Star Formation and Cloud Dynamics in the Galactic Bar Region

    NASA Astrophysics Data System (ADS)

    Tolls, Volker

    The Inner Galaxy (IG) that is the Galactic Bar Region (GBR) and the Central Molecular Zone (CMZ) including the Galactic Center (GC) are, despite being the sites of dramatic processes and unique sources, still only incompletely understood. Detailed new datasets from the Herschel Space Observatory can be systematically combined with older archival material to enable a new and more complete analysis of the region, its large-scale dynamics, its unusual giant molecular clouds, and the likely influences of its bar and its supermassive black hole. Such a study is both timely and important: the region has affected the structure and evolution of the galaxy; its individual sources are opportunities to examine star formation (for example) under extreme conditions; the processes feeding the CMZ and, subsequently, its black hole are important; and not least, it is a nearby template for the inner regions of other galaxies. The Herschel Space Observatory has provided us with exciting new datasets including full FIR photometric maps and highand low-resolution far-infrared/submillimeter spectra of key sources and lines of the locations of dynamical importance. All these datasets are publicly available from the Herschel Science Archive. Our experienced team has already developed preliminary models, and we propose a thorough investigation to combine the Herschel datasets with Spitzer and WISE datasets. We will supplement them with ground-based observations in cases when it will improve the results. We will then analyze the data and use the results to refine the models and improve our understanding of this key region. Our specific goal is to characterize and model the 3 giant high-velocity molecular cloud clumps in the Galaxy Bar Region (GBR) in detail and to combine the conclusions to produce an improved model of the IG. We have seven tasks: (1) identify all smaller scale gas and dust cores using archival Herschel FIR photometric observations and obtain their physical characteristics

  16. Rapid formation of molecular clouds from turbulent atomic gas

    NASA Astrophysics Data System (ADS)

    Glover, S. C. O.; Mac Low, M.-M.

    The characteristic lifetimes of molecular clouds remain uncertain and a topic of frequent debate, with arguments having recently been advanced both in support of short-lived clouds, with lifetimes of a few Myr or less (see e.g. Elmegreen 2000; Hartmann et al. 2001) and in support of much longer-lived clouds, with lifetimes of the order of 10 Myr or more (see e.g. Tassis & Mouschovias, 2004; Goldsmith & Li, 2005). An argument that has previously been advanced in favour of longer lived clouds is the apparent difficulty involved in converting sufficient atomic hydrogen to molecular hydrogen within the short timescale required by the rapid cloud formation scenario. However, previous estimates of the time required for this conversion to occur have not taken into account the effects of the supersonic turbulence which is inferred to be present in the atomic gas. In this contribution, we present results from a set of high resolution three-dimensional simulations of turbulence in gravitationally unstable atomic gas. These simulations were performed using a modified version of the ZEUS-MP hydrodynamical code (Norman 2000), and include a detailed treatment of the thermal balance of the gas and of the formation of molecular hydrogen. The effects of photodissociation of H2 by the Galactic UV field are also included, with a simple local approximation used to compute the effects of H2 self-shielding. The results of our simulations demonstrate that H2 formation occurs rapidly in turbulent atomic gas. Starting from purely atomic gas, large quantities of molecular gas can be produced on timescales of less than a Myr, given turbulent velocity dispersions and magnetic field strengths consistent with observations. Moreover, as our simulations underestimate the effectiveness of H2 self-shielding and dust absorption, we can be confident that the molecular fractions which we compute are strong lower limits on the true values. The formation of large quantities of molecular gas on the

  17. The Star Formation History of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Harris, Jason; Zaritsky, Dennis

    2009-11-01

    We present the first ever global, spatially resolved reconstruction of the star formation history (SFH) of the Large Magellanic Cloud (LMC), based on the application of our StarFISH analysis software to the multiband photometry of 20 million of its stars from the Magellanic Clouds Photometric Survey. The general outlines of our results are consistent with previously published results: following an initial burst of star formation, there was a quiescent epoch from approximately 12 to 5 Gyr ago. Star formation then resumed and has proceeded until the current time at an average rate of roughly 0.2 M sun yr-1, with temporal variations at the factor of 2 level. The re-ignition of star formation about 5 Gyr ago, in both the LMC and Small Magellanic Cloud (SMC), is suggestive of a dramatic event at that time in the Magellanic system. Among the global variations in the recent star formation rate are peaks at roughly 2 Gyr, 500 Myr, 100 Myr, and 12 Myr. The peaks at 500 Myr and 2 Gyr are nearly coincident with similar peaks in the SFH of the SMC, suggesting a joint history for these galaxies extending back at least several Gyr. The chemical enrichment history recovered from our StarFISH analysis is in broad agreement with that inferred from the LMC's star cluster population, although our constraints on the ancient chemical enrichment history are weak. We conclude from the concordance between the star formation and chemical enrichment histories of the field and cluster populations that the field and cluster star formation modes are tightly coupled.

  18. Clarifying the dominant sources and mechanisms of cirrus cloud formation.

    PubMed

    Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M

    2013-06-14

    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds.

  19. Formation of Subgalactic Clouds under Ultraviolet Background Radiation

    NASA Astrophysics Data System (ADS)

    Kitayama, Tetsu; Ikeuchi, Satoru

    2000-02-01

    The effects of the ultraviolet (UV) background radiation on the formation of subgalactic clouds are studied by means of one-dimensional hydrodynamical simulations. The radiative transfer of the ionizing photons caused by the absorption by H I, He I, and He II, neglecting the emission, is explicitly taken into account. We find that the complete suppression of collapse occurs for the clouds with circular velocities typically in the range Vc~15-40 km s-1 and the 50% reduction in the cooled gas mass with Vc~20-55 km s-1. These values depend most sensitively on the collapse epoch of the cloud, the shape of the UV spectrum, and the evolution of the UV intensity. Compared with the optically thin case, previously investigated by Thoul & Weinberg in 1996, the absorption of the external UV photons by the intervening medium systematically lowers the above threshold values by ΔVc~5 km s-1. Whether the gas can contract or keeps expanding is roughly determined by the balance between the gravitational force and the thermal pressure gradient when it is maximally exposed to the external UV flux. Based on our simulation results, we discuss a number of implications on galaxy formation, cosmic star formation history, and the observations of quasar absorption lines. In the Appendix, we derive analytical formulae for the photoionization coefficients and heating rates, which incorporate the frequency/direction-dependent transfer of external photons.

  20. Dependence of debris cloud formation on projectile shape

    NASA Astrophysics Data System (ADS)

    Konrad, C. H.; Chhabildas, L. C.; Boslough, M. B.; Piekutowski, A. J.; Poormon, K. L.; Mullin, S. A.; Littlefield, D. L.

    1994-07-01

    A two-stage lights-gas gun has been used to impact thin zinc bumpers by zinc projectiles over the velocity range of 2.4 km/s to 6.7 km/s to determine the propagation characteristics of the impact generated debris. Constant-mass projectiles in the form of spheres, discs, cylinders, and rods were used in these studies. Radiographic techniques were employed to record the debris cloud generated upon impact and the dynamic formation of the resulting rupture in an aluminum backing plate resulting from the loading of the debris cloud. The characteristics of the debris cloud generated upon impact is found to depend on the projectile shape. The data indicate that the debris front velocity is independent of the shape of the projectile, whereas the debris lateral/radial velocity is strongly dependent on projectile geometry. Spherical impactors generate the most radially dispersed debris cloud while the normal plate impactors result in column-like debris. It has been observed that the debris generated by the impact of thin plates on a thin bumper shield is considerably more damaging to a backwall than the debris generated by an equivalent-mass sphere.

  1. A possible role of ground-based microorganisms on cloud formation in the atmosphere

    NASA Astrophysics Data System (ADS)

    Ekström, S.; Nozière, B.; Hultberg, M.; Alsberg, T.; Magnér, J.; Nilsson, E. D.; Artaxo, P.

    2010-01-01

    The formation of clouds is an important process for the atmosphere, the hydrological cycle, and climate, but some aspects of it are not completely understood. In this work, we show that microorganisms might affect cloud formation without leaving the Earth's surface by releasing biological surfactants (or biosurfactants) in the environment, that make their way into atmospheric aerosols and could significantly enhance their activation into cloud droplets. In the first part of this work, the cloud-nucleating efficiency of standard biosurfactants was characterized and found to be better than that of any aerosol material studied so far, including inorganic salts. These results identify molecular structures that give organic compounds exceptional cloud-nucleating properties. In the second part, atmospheric aerosols were sampled at different locations: a temperate coastal site, a marine site, a temperate forest, and a tropical forest. Their surface tension was measured and found to be below 30 mN/m, the lowest reported for aerosols, to our knowledge. This very low surface tension was attributed to the presence of biosurfactants, the only natural substances able to reach to such low values. The presence of strong microbial surfactants in aerosols would be consistent with the organic fractions of exceptional cloud-nucleating efficiency recently found in aerosols, and with the correlations between algae bloom and cloud cover reported in the Southern Ocean. The results of this work also suggest that biosurfactants might be common in aerosols and thus of global relevance. If this is confirmed, a new role for microorganisms on the atmosphere and climate could be identified.

  2. Optically thin ice clouds in Arctic : Formation processes

    NASA Astrophysics Data System (ADS)

    Jouan, C.; Girard, E.; Pelon, J.; Blanchet, J.; Wobrock, W.; Gultepe, I.; Gayet, J.; Delanoë, J.; Mioche, G.; Adam de Villiers, R.

    2010-12-01

    Arctic ice cloud formation during winter is poorly understood mainly due to lack of observations and the remoteness of this region. Their influence on Northern Hemisphere weather and climate is of paramount importance, and the modification of their properties, linked to aerosol-cloud interaction processes, needs to be better understood. Large concentration of aerosols in the Arctic during winter is associated to long-range transport of anthropogenic aerosols from the mid-latitudes to the Arctic. Observations show that sulphuric acid coats most of these aerosols. Laboratory and in-situ measurements show that at cold temperature (<-30°C), acidic coating lowers the freezing point and deactivates ice nuclei (IN). Therefore, the IN concentration is reduced in these regions and there is less competition for the same available moisture. As a result, large ice crystals form in relatively small concentrations. It is hypothesized that the observed low concentration of large ice crystals in thin ice clouds is linked to the acidification of aerosols. Extensive measurements from ground-based sites and satellite remote sensing (CloudSat and CALIPSO) reveal the existence of two types of extended optically thin ice clouds (TICs) in the Arctic during the polar night and early spring. The first type (TIC-1) is seen only by the lidar, but not the radar, and is found in pristine environment whereas the second type (TIC-2) is detected by both sensors, and is associated with high concentration of aerosols, possibly anthropogenic. TIC-2 is characterized by a low concentration of ice crystals that are large enough to precipitate. To further investigate the interactions between TICs clouds and aerosols, in-situ, airborne and satellite measurements of specific cases observed during the POLARCAT and ISDAC field experiments are analyzed. These two field campaigns took place respectively over the North Slope of Alaska and Northern part of Sweden in April 2008. Analysis of cloud type can be

  3. H2 distribution during the formation of multiphase molecular clouds

    NASA Astrophysics Data System (ADS)

    Valdivia, Valeska; Hennebelle, Patrick; Gérin, Maryvonne; Lesaffre, Pierre

    2016-03-01

    Context. H2 is the simplest and the most abundant molecule in the interstellar medium (ISM), and its formation precedes the formation of other molecules. Aims: Understanding the dynamical influence of the environment and the interplay between the thermal processes related to the formation and destruction of H2 and the structure of the cloud is mandatory to understand correctly the observations of H2. Methods: We performed high-resolution magnetohydrodynamical colliding-flow simulations with the adaptive mesh refinement code RAMSES in which the physics of H2 has been included. We compared the simulation results with various observations of the H2 molecule, including the column densities of excited rotational levels. Results: As a result of a combination of thermal pressure, ram pressure, and gravity, the clouds produced at the converging point of HI streams are highly inhomogeneous. H2 molecules quickly form in relatively dense clumps and spread into the diffuse interclump gas. This in particular leads to the existence of significant abundances of H2 in the diffuse and warm gas that lies in between clumps. Simulations and observations show similar trends, especially for the HI-to-H2 transition (H2 fraction vs. total hydrogen column density). Moreover, the abundances of excited rotational levels, calculated at equilibrium in the simulations, turn out to be very similar to the observed abundances inferred from FUSE results. This is a direct consequence of the presence of the H2 enriched diffuse and warm gas. Conclusions: Our simulations, which self-consistently form molecular clouds out of the diffuse atomic gas, show that H2 rapidly forms in the dense clumps and, due to the complex structure of molecular clouds, quickly spreads at lower densities. Consequently, a significant fraction of warm H2 exists in the low-density gas. This warm H2 leads to column densities of excited rotational levels close to the observed ones and probably reveals the complex intermix between

  4. The Star Formation History of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Grebel, E. K.; Brandner, W.

    1997-05-01

    We present a movie of the star formation history of the Large Magellanic Cloud (LMC) based on its stellar content. We use the present-day spatial distribution of blue and red supergiants, Cepheids, clusters and associations, and RR Lyrae stars to study the age structure and to identify areas of pronounced star formation as a function of time and position. Age estimates for different stellar populations are based on theoretical isochrones, evolutionary models, and recent calibrations of SWB types of clusters. De-reddening of the individual stars and clusters results in a large-scale extinction map for the LMC. We discuss our results in terms of internal/external trigger mechanisms of star formation and different star formation modes.

  5. Unfolding the laws of star formation: the density distribution of molecular clouds.

    PubMed

    Kainulainen, Jouni; Federrath, Christoph; Henning, Thomas

    2014-04-11

    The formation of stars shapes the structure and evolution of entire galaxies. The rate and efficiency of this process are affected substantially by the density structure of the individual molecular clouds in which stars form. The most fundamental measure of this structure is the probability density function of volume densities (ρ-PDF), which determines the star formation rates predicted with analytical models. This function has remained unconstrained by observations. We have developed an approach to quantify ρ-PDFs and establish their relation to star formation. The ρ-PDFs instigate a density threshold of star formation and allow us to quantify the star formation efficiency above it. The ρ-PDFs provide new constraints for star formation theories and correctly predict several key properties of the star-forming interstellar medium.

  6. Filament formation in wind-cloud interactions - I. Spherical clouds in uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, W. E.; Parkin, E. R.; Federrath, C.; Crocker, R. M.; Bicknell, G. V.

    2016-01-01

    Filamentary structures are ubiquitous in the interstellar medium, yet their formation, internal structure, and longevity have not been studied in detail. We report the results from a comprehensive numerical study that investigates the characteristics, formation, and evolution of filaments arising from magnetohydrodynamic interactions between supersonic winds and dense clouds. Here, we improve on previous simulations by utilizing sharper density contrasts and higher numerical resolutions. By following multiple density tracers, we find that material in the envelopes of the clouds is removed and deposited downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these tails. Aspect ratios ≳12, subsonic velocity dispersions ˜0.1-0.3 of the wind sound speed, and magnetic field amplifications ˜100 are found to be characteristic of these filaments. We also report the effects of different magnetic field strengths and orientations. The magnetic field strength regulates vorticity production: sinuous filamentary towers arise in non-magnetic environments, while strong magnetic fields inhibit small-scale perturbations at boundary layers making tails less turbulent. Magnetic field components aligned with the direction of the flow favour the formation of pressure-confined flux ropes inside the tails, whilst transverse components tend to form current sheets. Softening the equation of state to nearly isothermal leads to suppression of dynamical instabilities and further collimation of the tail. Towards the final stages of the evolution, we find that small cloudlets and distorted filaments survive the break-up of the clouds and become entrained in the winds, reaching velocities ˜0.1 of the wind speed.

  7. THE FORMATION OF FILAMENTARY BUNDLES IN TURBULENT MOLECULAR CLOUDS

    SciTech Connect

    Moeckel, Nickolas; Burkert, Andreas E-mail: burkert@usm.uni-muenchen.de

    2015-07-01

    The classical picture of a star-forming filament is a near-equilibrium structure with its collapse dependent on its gravitational criticality. Recent observations have complicated this picture, revealing filaments to be a mess of apparently interacting subfilaments with transsonic internal velocity dispersions and mildly supersonic intra-subfilament dispersions. How structures like this form is unresolved. Here, we study the velocity structure of filamentary regions in a simulation of a turbulent molecular cloud. We present two main findings. First, the observed complex velocity features in filaments arise naturally in self-gravitating hydrodynamic simulations of turbulent clouds without the need for magnetic or other effects. Second, a region that is filamentary only in projection and is in fact made of spatially distinct features can display these same velocity characteristics. The fact that these disjoint structures can masquerade as coherent filaments in both projection and velocity diagnostics highlights the need to continue developing sophisticated filamentary analysis techniques for star formation observations.

  8. Dynamic mineral clouds on HD 189733b. I. 3D RHD with kinetic, non-equilibrium cloud formation

    NASA Astrophysics Data System (ADS)

    Lee, G.; Dobbs-Dixon, I.; Helling, Ch.; Bognar, K.; Woitke, P.

    2016-10-01

    Context. Observations of exoplanet atmospheres have revealed the presence of cloud particles in their atmospheres. 3D modelling of cloud formation in atmospheres of extrasolar planets coupled to the atmospheric dynamics has long been a challenge. Aims: We investigate the thermo-hydrodynamic properties of cloud formation processes in the atmospheres of hot Jupiter exoplanets. Methods: We simulate the dynamic atmosphere of HD 189733b with a 3D model that couples 3D radiative-hydrodynamics with a kinetic, microphysical mineral cloud formation module designed for RHD/GCM exoplanet atmosphere simulations. Our simulation includes the feedback effects of cloud advection and settling, gas phase element advection and depletion/replenishment and the radiative effects of cloud opacity. We model the cloud particles as a mix of mineral materials which change in size and composition as they travel through atmospheric thermo-chemical environments. All local cloud properties such as number density, grain size and material composition are time-dependently calculated. Gas phase element depletion as a result of cloud formation is included in the model. In situ effective medium theory and Mie theory is applied to calculate the wavelength dependent opacity of the cloud component. Results: We present a 3D cloud structure of a chemically complex, gaseous atmosphere of the hot Jupiter HD 189733b. Mean cloud particle sizes are typically sub-micron (0.01-0.5 μm) at pressures less than 1 bar with hotter equatorial regions containing the smallest grains. Denser cloud structures occur near terminator regions and deeper (~1 bar) atmospheric layers. Silicate materials such as MgSiO3[s] are found to be abundant at mid-high latitudes, while TiO2[s] and SiO2[s] dominate the equatorial regions. Elements involved in the cloud formation can be depleted by several orders of magnitude. Conclusions: The interplay between radiative-hydrodynamics and cloud kinetics leads to an inhomogeneous, wavelength

  9. Star formation in the M17 SW giant molecular cloud

    NASA Technical Reports Server (NTRS)

    Jaffe, D. T.; Fazio, G. G.

    1982-01-01

    The first high-sensitivity, high-resolution far-IR survey of an entire molecular cloud complex is presented. The 20 km/s M17 SW complex, in addition to the three luminous M17 sources, contains 10 sources spread over 110 pc. The 10 lower luminosity sources divide into two groups: small blister sources powered by late O stars and compact sources powered by clusters of early B stars. No compact far-IR sources with luminosities between the detection limit and 10,000 solar luminosities were detected. Three possible formation mechanisms for the stars that power the far-IR sources in the M17 SW complex are examined. Sequential formation cannot explain the sources seen throughout the complex. Some type of stochastic formation mechanism or collapse induced by a spiral density wave could explain the observations.

  10. STAR FORMATION IN THE MOLECULAR CLOUD ASSOCIATED WITH THE MONKEY HEAD NEBULA: SEQUENTIAL OR SPONTANEOUS?

    SciTech Connect

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Nagayama, Takumi; Sunada, Kazuyoshi; Fujisawa, Kenta; Nakano, Makoto; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH{sub 3} toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the H{alpha} image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  11. Star Formation in the Molecular Cloud Associated with the Monkey Head Nebula: Sequential or Spontaneous?

    NASA Astrophysics Data System (ADS)

    Chibueze, James O.; Imura, Kenji; Omodaka, Toshihiro; Handa, Toshihiro; Nagayama, Takumi; Fujisawa, Kenta; Sunada, Kazuyoshi; Nakano, Makoto; Kamezaki, Tatsuya; Yamaguchi, Yoshiyuki; Sekido, Mamoru

    2013-01-01

    We mapped the (1,1), (2,2), and (3,3) lines of NH3 toward the molecular cloud associated with the Monkey Head Nebula (MHN) with a 1.'6 angular resolution using a Kashima 34 m telescope operated by the National Institute of Information and Communications Technology (NICT). The kinetic temperature of the molecular gas is 15-30 K in the eastern part and 30-50 K in the western part. The warmer gas is confined to a small region close to the compact H II region S252A. The cooler gas is extended over the cloud even near the extended H II region, the MHN. We made radio continuum observations at 8.4 GHz using the Yamaguchi 32 m radio telescope. The resultant map shows no significant extension from the Hα image. This means that the molecular cloud is less affected by the MHN, suggesting that the molecular cloud did not form by the expanding shock of the MHN. Although the spatial distribution of the Wide-field Infrared Survey Explorer and Two Micron All Sky Survey point sources suggests that triggered low- and intermediate-mass star formation took place locally around S252A, but the exciting star associated with it should be formed spontaneously in the molecular cloud.

  12. Factors Leading to the Formation of Arc Cloud Complexes.

    DTIC Science & Technology

    1985-12-01

    I. M2i .16 MICROCnWY O TEST CHART NATIONAL BUREAU 0F STANDARDS-1963-A ils. ... TEXAS A&M UNIVERSITY DEPARTMENT OF R AOL mMETEOROLOGY FACTORS LEADING...PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASKAFIT STUDENT AT: AREA & WORK UNIT NUMBERS Texas A&M Univ II. CONTROLLING...to an ACC. /0 FACTORS LEADING TO THE FORMATION OF ARC CLOUD COMPLEXES A Thesis by MARK JOHN WELSHINGER Submitted to the Graduate College of Texas A&M

  13. Does gallbladder angle affect gallstone formation?

    PubMed Central

    Sanal, Bekir; Korkmaz, Mehmet; Zeren, Sezgin; Can, Fatma; Elmali, Ferhan; Bayhan, Zulfu

    2016-01-01

    Introduction Morphology of gallbladder varies considerably from person to person. We believe that one of the morphological variations of gallbladder is the “gallbladder angle”. Gallbladder varies also in “angle”, which, to the best of our knowledge, has never been investigated before. The purpose of this study was to investigate the impact of gallbladder angle on gallstone formation. Methods in this study, 1075 abdominal computed tomography (CT) images were retrospectively examined. Patients with completely normal gallbladders were selected. Among these patients, those with both abdominal ultrasound and blood tests were identified in the hospital records and included in the study. Based on the findings of the ultrasound scans, patients were divided into two groups as patients with gallstones and patients without gallstones. Following the measurement of gallbladder angles on the CT images, the groups were statistically evaluated. Results The gallbladder angle was smaller in patients with gallstones (49 ± 21 degrees and 53 ± 19 degrees) and the gallbladder with larger angle was 1.015 (1/0.985) times lower the risk of gallstone formation. However, these were not statistically significant (p>0,05). Conclusion A more vertically positioned gallbladder does not affect gallstone formation. However, a smaller gallbladder angle may facilitate gallstone formation in patients with the risk factors. Gallstones perhaps more easily and earlier develop in gallbladders with a smaller angle. PMID:27795762

  14. Methods of editing cloud and atmospheric layer affected pixels from satellite data

    NASA Technical Reports Server (NTRS)

    Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.; Goodier, B. G.

    1981-01-01

    The location and migration of cloud, land and water features were examined in spectral space (reflective VIS vs. emissive IR). Daytime HCMM data showed two distinct types of cloud affected pixels in the south Texas test area. High altitude cirrus and/or cirrostratus and "subvisible cirrus" (SCi) reflected the same or only slightly more than land features. In the emissive band, the digital counts ranged from 1 to over 75 and overlapped land features. Pixels consisting of cumulus clouds, or of mixed cumulus and landscape, clustered in a different area of spectral space than the high altitude cloud pixels. Cumulus affected pixels were more reflective than land and water pixels. In August the high altitude clouds and SCi were more emissive than similar clouds were in July. Four-channel TIROS-N data were examined with the objective of developing a multispectral screening technique for removing SCi contaminated data.

  15. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water

    NASA Astrophysics Data System (ADS)

    Kahre, M. A.

    2015-12-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  16. The Coupled Mars Dust and Water Cycles: Understanding How Clouds Affect the Vertical Distribution and Meridional Transport of Dust and Water.

    NASA Technical Reports Server (NTRS)

    Kahre, M. A.

    2015-01-01

    The dust and water cycles are crucial to the current Martian climate, and they are coupled through cloud formation. Dust strongly impacts the thermal structure of the atmosphere and thus greatly affects atmospheric circulation, while clouds provide radiative forcing and control the hemispheric exchange of water through the modification of the vertical distributions of water and dust. Recent improvements in the quality and sophistication of both observations and climate models allow for a more comprehensive understanding of how the interaction between the dust and water cycles (through cloud formation) affects the dust and water cycles individually. We focus here on the effects of clouds on the vertical distribution of dust and water, and how those vertical distributions control the net meridional transport of water. For this study, we utilize observations of temperature, dust and water ice from the Mars Climate Sounder (MCS) on the Mars Reconnaissance Orbiter (MRO) combined with the NASA ARC Mars Global Climate Model (MGCM). We demonstrate that the magnitude and nature of the net meridional transport of water between the northern and southern hemispheres during NH summer is sensitive to the vertical structure of the simulated aphelion cloud belt. We further examine how clouds influence the atmospheric thermal structure and thus the vertical structure of the cloud belt. Our goal is to identify and understand the importance of radiative/dynamic feedbacks due to the physical processes involved with cloud formation and evolution on the current climate of Mars.

  17. The role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    NASA Technical Reports Server (NTRS)

    Roberts, William W., Jr.; Stewart, Glen R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors.

  18. Cirrus cloud formation and the role of heterogeneous ice nuclei

    NASA Astrophysics Data System (ADS)

    Froyd, Karl D.; Cziczo, Daniel J.; Hoose, Corinna; Jensen, Eric J.; Diao, Minghui; Zondlo, Mark A.; Smith, Jessica B.; Twohy, Cynthia H.; Murphy, Daniel M.

    2013-05-01

    Composition, size, and phase are key properties that define the ability of an aerosol particle to initiate ice in cirrus clouds. Properties of cirrus ice nuclei (IN) have not been well constrained due to a lack of systematic measurements in the upper troposphere. We have analyzed the size and composition of sublimated cirrus particles sampled from a high altitude research aircraft using both in situ and offline techniques. Mineral dust and metallic particles are the most enhanced residue types relative to background aerosol. Using a combination of cirrus residue composition, relative humidity, and cirrus particle concentration measurements, we infer that heterogeneous nucleation is a dominant cirrus formation mechanism for the mid-latitude, subtropical, and tropical regions under study. Other proposed heterogeneous IN including biomass burning particles, elemental carbon, and biological material were not abundant in cirrus residuals.

  19. Preliminary study on direct assimilation of cloud-affected satellite microwave brightness temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Sibo; Guan, Li

    2017-02-01

    Direct assimilation of cloud-affected microwave brightness temperatures from AMSU-A into the GSI three-dimensional variational (3D-Var) assimilation system is preliminarily studied in this paper. A combination of cloud microphysics parameters retrieved by the 1D-Var algorithm (including vertical profiles of cloud liquid water content, ice water content, and rain water content) and atmospheric state parameters from objective analysis fields of an NWP model are used as background fields. Three cloud microphysics parameters (cloud liquid water content, ice water content, and rain water content) are applied to the control variable. Typhoon Halong (2014) is selected as an example. The results show that direct assimilation of cloud-affected AMSU-A observations can effectively adjust the structure of large-scale temperature, humidity and wind analysis fields due to the assimilation of more AMSU-A observations in typhoon cloudy areas, especially typhoon spiral cloud belts. These adjustments, with temperatures increasing and humidities decreasing in the movement direction of the typhoon, bring the forecasted typhoon moving direction closer to its real path. The assimilation of cloud-affected satellite microwave brightness temperatures can provide better analysis fields that are more similar to the actual situation. Furthermore, typhoon prediction accuracy is improved using these assimilation analysis fields as the initial forecast fields in NWP models.

  20. Clouds in a Bottle: Qualitative and Quantiative Demonstrations for Cloud Formation in a Learning Environment

    NASA Astrophysics Data System (ADS)

    Ellis, T. D.

    2015-12-01

    The NASA CloudSat mission has been revealing the inner secrets of clouds since 2006 using its one-of-a-kind spaceborne cloud radar. During its mission, the CloudSat Education Network, consisting of schools in Asia, Europe, and North America, have been collecting data on Clouds when CloudSat passes overhead. The education team has spent many hours researching and presenting different methods for making clouds for demonstrations in formal and informal settings. In this presentation, we will present several variations on methods for doing the cloud in a bottle demonstration, including strengths and weaknesses for each, and a brief overview of the science involved in the various demonstrations.

  1. FORMATION PUMPING OF MOLECULAR HYDROGEN IN DARK CLOUDS

    SciTech Connect

    Islam, Farahjabeen; Viti, Serena; Cecchi-Pestellini, Cesare; Casu, Silvia E-mail: sv@star.ucl.ac.u E-mail: scasu@ca.astro.i

    2010-12-10

    Many theoretical and laboratory studies predict H{sub 2} to be formed in highly excited rovibrational states. The consequent relaxation of excited levels via a cascade of infrared transitions might be observable in emission from suitable interstellar regions. In this work, we model H{sub 2} formation pumping in standard dense clouds, taking into account the H/H{sub 2} transition zone, through an accurate description of chemistry and radiative transfer. The model includes recent laboratory data on H{sub 2} formation, as well as the effects of the interstellar UV field, predicting the populations of gas-phase H{sub 2} molecules and their IR emission spectra. Calculations suggest that some vibrationally excited states of H{sub 2} might be detectable toward lines of sight where significant destruction of H{sub 2} occurs, such as X-ray sources, and provides a possible explanation as to why observational attempts resulted in no detections reported to date.

  2. EFFECTS OF MAGNETIC FIELD STRENGTH AND ORIENTATION ON MOLECULAR CLOUD FORMATION

    SciTech Connect

    Heitsch, Fabian; Hartmann, Lee W.; Stone, James M.

    2009-04-10

    We present a set of numerical simulations addressing the effects of magnetic field strength and orientation on the flow-driven formation of molecular clouds. Fields perpendicular to the flows sweeping up the cloud can efficiently prevent the formation of massive clouds but permit the buildup of cold, diffuse filaments. Fields aligned with the flows lead to substantial clouds, whose degree of fragmentation and turbulence strongly depends on the background field strength. Adding a random field component leads to a 'selection effect' for molecular cloud formation: high column densities are only reached at locations where the field component perpendicular to the flows is vanishing. Searching for signatures of colliding flows should focus on the diffuse, warm gas, since the cold gas phase making up the cloud will have lost the information about the original flow direction because the magnetic fields redistribute the kinetic energy of the inflows.

  3. A Characterization of Cirrus Cloud Properties That Affect Laser Propagation

    DTIC Science & Technology

    2008-05-01

    13. SUPPLEMENTARY NOTES - Reprinted from Journal of Applied Meteorology and Climatology, Vol. 47, pp 1322 -1336 14. ABSTRACT Future high-altitude...UNCL UNL 10 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std Z3918 AFRL-RV-HA-TR-2008-1050 1322 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY VOIIt...retrieved from actual n bo t and to p atindicers The lasermmotha d topmost cloud c mputational layers. The l s r path cirrus measurements are used to

  4. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-06-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  5. Simulating the Formation of Molecular Clouds. II. Rapid Formation from Turbulent Initial Conditions

    NASA Astrophysics Data System (ADS)

    Glover, Simon C. O.; Mac Low, Mordecai-Mark

    2007-04-01

    In this paper we present results from a large set of numerical simulations that demonstrate that H2 formation occurs rapidly in turbulent gas. Starting with purely atomic hydrogen, large quantities of molecular hydrogen can be produced on timescales of 1-2 Myr, given turbulent velocity dispersions and magnetic field strengths consistent with observations. Moreover, as our simulations underestimate the effectiveness of H2 self-shielding and dust absorption, we can be confident that the molecular fractions that we compute are strong lower limits on the true values. The formation of large quantities of molecular gas on the timescale required by rapid cloud formation models therefore appears to be entirely plausible. We also investigate the density and temperature distributions of gas in our model clouds. We show that the density probability distribution function is approximately lognormal, with a dispersion that agrees well with the prediction of Padoan and coworkers. The temperature distribution is similar to that of a polytrope, with an effective polytropic index γeff~=0.8, although at low gas densities, the scatter of the actual gas temperature around this mean value is considerable, and the polytropic approximation does not capture the full range of behavior of the gas.

  6. Secondary organic aerosol formation from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Brégonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Pangui, E.; Morales, S. B.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Cazaunau, M.; DeWitt, H. L.; Tapparo, A.; Monod, A.; Doussin, J.-F.

    2016-02-01

    The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene / NOx / light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.

  7. Methods of editing cloud and atmospheric layer affected pixels from satellite data

    NASA Technical Reports Server (NTRS)

    Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.

    1982-01-01

    Practical methods of computer screening cloud-contaminated pixels from data of various satellite systems are proposed. Examples are given of the location of clouds and representative landscape features in HCMM spectral space of reflectance (VIS) vs emission (IR). Methods of screening out cloud affected HCMM are discussed. The character of subvisible absorbing-emitting atmospheric layers (subvisible cirrus or SCi) in HCMM data is considered and radiosonde soundings are examined in relation to the presence of SCi. The statistical characteristics of multispectral meteorological satellite data in clear and SCi affected areas are discussed. Examples in TIROS-N and NOAA-7 data from several states and Mexico are presented. The VIS-IR cluster screening method for removing clouds is applied to a 262, 144 pixel HCMM scene from south Texas and northeast Mexico. The SCi that remain after cluster screening are sited out by applying a statistically determined IR limit.

  8. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation.

    PubMed

    Abbatt, J P D; Benz, S; Cziczo, D J; Kanji, Z; Lohmann, U; Möhler, O

    2006-09-22

    Laboratory measurements support a cirrus cloud formation pathway involving heterogeneous ice nucleation by solid ammonium sulfate aerosols. Ice formation occurs at low ice-saturation ratios consistent with the formation of continental cirrus and an interhemispheric asymmetry observed for cloud onset. In a climate model, this mechanism provides a widespread source of ice nuclei and leads to fewer but larger ice crystals as compared with a homogeneous freezing scenario. This reduces both the cloud albedo and the longwave heating by cirrus. With the global ammonia budget dominated by agricultural practices, this pathway might further couple anthropogenic activity to the climate system.

  9. Understanding the Effect of Aerosol Properties on Cloud Droplet Formation during TCAP Field Campaign Report

    SciTech Connect

    Cziczo, Daniel

    2016-05-01

    The formation of clouds is an essential element in understanding the Earth’s radiative budget. Liquid water clouds form when the relative humidity exceeds saturation and condensedphase water nucleates on atmospheric particulate matter. The effect of aerosol properties such as size, morphology, and composition on cloud droplet formation has been studied theoretically as well as in the laboratory and field. Almost without exception these studies have been limited to parallel measurements of aerosol properties and cloud formation or collection of material after the cloud has formed, at which point nucleation information has been lost. Studies of this sort are adequate when a large fraction of the aerosol activates, but correlations and resulting model parameterizations are much more uncertain at lower supersaturations and activated fractions.

  10. Molecular clouds toward the super star cluster NGC 3603; possible evidence for a cloud-cloud collision in triggering the cluster formation

    SciTech Connect

    Fukui, Y.; Ohama, A.; Hanaoka, N.; Furukawa, N.; Torii, K.; Hasegawa, K.; Fukuda, T.; Soga, S.; Moribe, N.; Kuroda, Y.; Hayakawa, T.; Kuwahara, T.; Yamamoto, H.; Okuda, T.; Dawson, J. R.; Mizuno, N.; Kawamura, A.; Onishi, T.; Maezawa, H.; Mizuno, A.

    2014-01-01

    We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC 3603 in the transitions {sup 12}CO(J = 2-1, J = 1-0) and {sup 13}CO(J = 2-1, J = 1-0). We suggest that two molecular clouds at 13 km s{sup –1} and 28 km s{sup –1} are associated with NGC 3603 as evidenced by higher temperatures toward the H II region, as well as morphological correspondence. The mass of the clouds is too small to gravitationally bind them, given their relative motion of ∼20 km s{sup –1}. We suggest that the two clouds collided with each other 1 Myr ago to trigger the formation of the super star cluster. This scenario is able to explain the origin of the highest mass stellar population in the cluster, which is as young as 1 Myr and is segregated within the central sub-pc of the cluster. This is the second super star cluster along with Westerlund 2 where formation may have been triggered by a cloud-cloud collision.

  11. Suppression of Arctic Air Formation by Cloud Radiative Effects in a Two-Dimensional Cloud Resolving Model

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Li, H.

    2015-12-01

    To better understand equable paleoclimates, Arctic amplification of winter warming, and the high-latitude lapse-rate feedback, we investigate the process of Arctic air formation, wherein a high latitude maritime air mass is advected over land during polar night and strongly cooled from the surface up. We extend previous work done using a single-column model (Cronin and Tziperman, PNAS, in press) by performing two-dimensional idealized cloud-resolving simulations with the Weather Research and Forecasting (WRF) model. Quantitatively consistent with previous results, we find that as the initial atmospheric state is warmed, increases in low cloud amount reduce the average surface cooling over a 14-day period by roughly a degree for each degree of warming of the initial atmospheric state, with the feedback strength increasing with warming. This is primarily attributed to a monotonic increase in surface cloud radiative forcing of approximately 2 W m-2 for each degree that the initial atmospheric sounding is warmed. The use of a two-dimensional model as opposed to a single-column model shows that the lower-tropospheric cloud layer becomes more turbulent and dominated by cumulus clouds as the climate is warmed, yet the cloud fraction remains high owing to the continued prevalence of stratus and fog layers. These results are robust across a variety of cloud microphysics schemes and are not sensitive to the horizontal or vertical resolution of the model. We also explore the vertical structure and horizontal variability of the bulk horizontal flow, the sensitivity of the results to subsidence and atmospheric carbon dioxide concentration, and the contrasting roles of top-of-atmosphere and surface cloud radiative effects.

  12. Measurement of the effect of Amazon smoke on inhibition of cloud formation.

    PubMed

    Koren, Ilan; Kaufman, Yoram J; Remer, Lorraine A; Martins, Jose V

    2004-02-27

    Urban air pollution and smoke from fires have been modeled to reduce cloud formation by absorbing sunlight, thereby cooling the surface and heating the atmosphere. Satellite data over the Amazon region during the biomass burning season showed that scattered cumulus cloud cover was reduced from 38%in clean conditions to 0%for heavy smoke (optical depth of 1.3). This response to the smoke radiative effect reverses the regional smoke instantaneous forcing of climate from -28 watts per square meter in cloud-free conditions to +8 watts per square meter once the reduction of cloud cover is accounted for.

  13. Protostellar formation in rotating interstellar clouds. V - Nonisothermal collapse and fragmentation

    NASA Technical Reports Server (NTRS)

    Boss, Alan R.

    1986-01-01

    Numerical calculations are presented for rigorous models spanning a four-dimensional parameter space of initial conditions of the three-dimensional collapse of rotating protostellar clouds, encompassing radiative transfer in the Eddington approximation and detailed thermodynamical relations. It is found that protostellar formation may involve a few stages of hierarchical fragmentation terminated by increased thermal pressure in the nonisothermal regime, that high thermal energy clouds remain nearly axisymmetric during the first dynamic collapse phase, and that very slowly rotating clouds can fragment. The presolar nebula was probably formed from a cloud with very little initial rotation.

  14. How the cosmological constant affects gravastar formation

    SciTech Connect

    Chan, R.; Silva, M.F.A. da; Rocha, P. E-mail: mfasnic@gmail.com

    2009-12-01

    Here we generalized a previous model of gravastar consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with an equation of state, but now we consider an external de Sitter-Schwarzschild spacetime. We have shown explicitly that the final output can be a black hole, a ''bounded excursion'' stable gravastar, a stable gravastar, or a de Sitter spacetime, depending on the total mass of the system, the cosmological constants, the equation of state of the thin shell and the initial position of the dynamical shell. We have found that the exterior cosmological constant imposes a limit to the gravastar formation, i.e., the exterior cosmological constant must be smaller than the interior cosmological constant. Besides, we have also shown that, in the particular case where the Schwarzschild mass vanishes, no stable gravastar can be formed, but we still have formation of black hole.

  15. Ice Formation and Growth in Orographically-Enhanced Mixed-Phase Clouds

    NASA Astrophysics Data System (ADS)

    David, Robert; Lowenthal, Douglas; Gannet Hallar, A.; McCubbin, Ian; Avallone, Linnea; Mace, Gerald; Wang, Zhien

    2015-04-01

    The formation and evolution of ice in mixed-phase clouds continues to be an active area of research due to the complex interactions between vapor, liquid and ice. Orographically-enhanced clouds are commonly mixed-phase during winter. An airborne study, the Colorado Airborne Mixed-Phase Cloud Study (CAMPS), and a ground-based field campaign, the Storm Peak Lab (SPL) Cloud Property Validation Experiment (StormVEx) were conducted in the Park Range of the Colorado Rockies. The CAMPS study utilized the University of Wyoming King Air (UWKA) to provide airborne cloud microphysical and meteorological data on 29 flights totaling 98 flight hours over the Park Range from December 15, 2010 to February 28, 2011. The UWKA was equipped with instruments that measured both cloud droplet and ice crystal size distributions, liquid water content, total water content (vapor, liquid, and ice), and 3-dimensional wind speed and direction. The Wyoming Cloud Radar and Lidar were also deployed during the campaign. These measurements are used to characterize cloud structure upwind and above the Park Range. StormVEx measured temperature, and cloud droplet and ice crystal size distributions at SPL. The observations from SPL are used to determine mountain top cloud microphysical properties at elevations lower than the UWKA was able to sample in-situ. Comparisons showed that cloud microphysics aloft and at the surface were consistent with respect to snow growth processes. Small ice crystal concentrations were routinely higher at the surface and a relationship between small ice crystal concentrations, large cloud droplet concentrations and temperature was observed, suggesting liquid-dependent ice nucleation near cloud base. Terrain flow effects on cloud microphysics and structure are considered.

  16. A stochastic formation of radiative transfer in clouds

    SciTech Connect

    Stephens, G.L.; Gabriel, P.M.

    1993-03-01

    The research carried out under this award dealt with issues involving deterministic radiative transfer, remote sensing, Stochastic radiative transfer, and parameterization of cloud optical properties. A number of different forms of radiative transfer models in one, two, and three dimensions were developed in an attempt to build an understanding of the radiative transfer in clouds with realistic spatial structure and to determine the key geometrical parameter that influence this transfer. The research conducted also seeks to assess the relative importance of these geometrical effects in contrast to microphysical effects of clouds. The main conclusion of the work is that geometry has a profound influence on all aspects of radiative transfer and the interpretation of this transfer. We demonstrate how this geometry can influence estimate of particle effective radius to the 30-50% level and also how geometry can significantly bias the remote sensing of cloud optical depth.

  17. Cloud formation of particles containing humic-like substances

    NASA Astrophysics Data System (ADS)

    Kokkola, H.; Sorjamaa, R.; Peräniemi, A.; Raatikainen, T.; Laaksonen, A.

    2006-05-01

    Humic like substances (HULIS) are a class of compounds that are suspected to have an effect on cloud droplet activation properties of atmospheric aerosols because they decrease the surface tension of aqueous solutions quite efficiently. Surface active organic compounds have a tendency of concentrating on the surfaces of liquid droplets. If the total amount of surface active compound is small enough, partitioning of the substance on the surface depletes it from the droplet interior, decreasing the Raoult effect and increasing the Kelvin effect. Thus, the surface partitioning causes an increase of the critical supersaturation (Köhler curve maximum), and the effect gets stronger with decreasing size of the cloud condensation nucleus. In this study, the effects of HULIS on the activation of cloud droplets was studied by cloud parcel model calculations. Model results indicate that if the surface partitioning is not taken into account, the number of activated droplets can be highly overestimated. The simulations were made using particles containing 10-80% mass fraction of HULIS, while the remaining fraction of the particle was ammonium sulfate. The calculations indicated that the surface tension effects of humic-like compounds on the cloud activation become significant only when the weight fraction of the organics is very high. In contrast, if the surface partitioning is not taken into account, already a small weight fraction of organics will lead to significant increase in number of cloud droplets.

  18. Theory of Molecular Cloud Formation through Colliding Flows: Successes and Limits

    NASA Astrophysics Data System (ADS)

    Hennebelle, P.

    2013-10-01

    We discuss the recent efforts which have been made to understand the formation of molecular clouds through the accumulation of diffuse material, a scenario sometimes called “colliding flows”. We present a set of statistics which have been inferred from these simulations and which seem to agree reasonably with observations seemingly suggesting that this scenario could indeed be applied to understand molecular cloud formation. We also emphasize the limits of this highly idealized model.

  19. Gravity Waves in ER-2 Observations During CRYSTAL-FACE: Propagation Characteristics and Potential Role in Cirrus Cloud Formation

    NASA Astrophysics Data System (ADS)

    Alexander, M. J.; Sherwood, S.; Mahoney, M. J.; Bui, P.

    2003-12-01

    Gravity waves are known to affect cloud formation via the temperature perturbations they cause, and these effects can be significant in conditions that are otherwise marginal for cloud formation. Cirrus clouds near the tropopause can form in the cold phases of gravity waves. The ER-2 aircraft observations during the CRYSTAL-FACE campaign provide a unique set for gravity wave analysis. For the first time, data from both the Microwave Temperature Profiler (MTP) and Meteorological Measurement System (MMS) were obtained together from the ER-2 platform, with flight paths near convection. Analyses of MTP and MMS data can be combined to provide the full set of gravity wave parameters needed to model their origin, propagation, and eventual fate. This wave analysis requires long, constant-level flight paths. First a wavelet analysis in horizontal wavenumber is performed along the flight path direction for measurements of temperature and horizontal wind. From this, the strongest wave modes are identified, and the vertical wavenumber estimated from the MTP data for these modes. Linear wave theory is then employed to compute the propagation directions and intrinsic frequencies for these strongest wave modes. The results of this analysis thus provide the full three-dimensional propagation characteristics for the dominant gravity wave modes in the data. We subsequently use these results to examine their role in cirrus cloud formation at lower altitudes, and compare the results to in situ measurements made from the WB-57F aircraft platform.

  20. Embedded star clusters and the formation of the Oort Cloud

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Duncan, M. J.; Levison, H. F.

    2006-09-01

    Observations suggest most stars originate in clusters embedded in giant molecular clouds [Lada, C.J., Lada, E.A., 2003. Annu. Rev. Astron. Astrophys. 41, 57-115]. Our Solar System likely spent 1-5 Myrs in such regions just after it formed. Thus the Oort Cloud (OC) possibly retains evidence of the Sun's early dynamical history and of the stellar and tidal influence of the cluster. Indeed, the newly found objects (90377) Sedna and 2000 CR 105 may have been put on their present orbits by such processes [Morbidelli, A., Levison, H.F., 2004. Astron. J. 128, 2564-2576]. Results are presented here of numerical simulations of the orbital evolution of comets subject to the influence of the Sun, Jupiter and Saturn (with their current masses on orbits appropriate to the period before the Late Heavy Bombardment (LHB) [Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005. Nature 435, 459-461]), passing stars and tidal force associated with the gas and stars of an embedded star cluster. The cluster was taken to be a Plummer model with 200-400 stars, with a range of initial central densities. The Sun's orbit was integrated in the cluster potential together with Jupiter and Saturn and the test particles. Stellar encounters were incorporated by directly integrating the effects of stars passing within a sphere centred on the Sun of radius equal to the Plummer radius for low-density clusters and half a Plummer radius for high-density clusters. The gravitational influence of the gas was modeled using the tidal force of the cluster potential. For a given solar orbit, the mean density, <ρ>, was computed by orbit-averaging the density of material encountered. This parameter proved to be a good measure for predicting the properties of the OC. On average 2-18% of our initial sample of comets end up in the OC after 1-3 Myr. A comet is defined to be part of the OC if it is bound and has q>35 AU. Our models show that the median distance of an object in the OC scales approximately as

  1. The Effect of Metallicity on Molecular Gas and Star Formation in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Jameson, Katherine; Bolatto, A. D.; Leroy, A. K.; Wolfire, M. G.; Meixner, M.; Roman-Duval, J.; Gordon, K. D.; HERITAGE Collaboration

    2014-01-01

    The Magellanic Clouds provide the only laboratory to study the effect of metallicity on molecular gas and star formation at high resolution. We use the dust emission (Herschel 100, 160, 250, and 350 micron) to trace the total column of gas distribution and remove the HI gas leaving the molecular gas component distribution; we avoid the known biases of CO and reveal molecular gas with no bright CO emission. Relating the molecular gas to the star formation rate, traced by H-alpha and 24 micron, reveals an average molecular gas depletion time of ˜ 1 Gyr in the LMC. This is consistent with normal disk galaxies (˜ 2 Gyr; Bigiel et al. 2008, 2012) and the SMC (Bolatto et al. 2011), suggesting that metallicity does not strongly affect the galaxy-wide molecular gas star formation efficiency. We also contrast the metallicity-dependent predictions of the Ostriker, McKee, & Leroy (2011) and Krumholz, McKee, & Tumlinson (2009) models of star formation with the data.

  2. Cloud Formation and Acceleration in a Radiative Environment

    NASA Astrophysics Data System (ADS)

    Proga, Daniel; Waters, Tim

    2015-05-01

    In a radiatively heated and cooled medium, thermal instability (TI) is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field’s theory to self-consistently account for a radiation force resulting from bound-free and bound-bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one- and two-dimensional (1D/2D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1D simulations demonstrate that the TI can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to supersonic velocities. However, our 2D simulations reveal that a single cloud with a simple morphology cannot be maintained due to destructive processes, triggered by the Rayleigh-Taylor instability and followed by the Kelvin-Helmholtz instability. Nevertheless, the resulting cold gas structures are still significantly accelerated before they are ultimately dispersed.

  3. CLOUD FORMATION AND ACCELERATION IN A RADIATIVE ENVIRONMENT

    SciTech Connect

    Proga, Daniel; Waters, Tim

    2015-05-10

    In a radiatively heated and cooled medium, thermal instability (TI) is a plausible mechanism for forming clouds, while the radiation force provides a natural acceleration, especially when ions recombine and opacity increases. Here we extend Field’s theory to self-consistently account for a radiation force resulting from bound–free and bound–bound transitions in the optically thin limit. We present physical arguments for clouds to be significantly accelerated by a radiation force due to lines during a nonlinear phase of the instability. To qualitatively illustrate our main points, we perform both one- and two-dimensional (1D/2D) hydrodynamical simulations that allow us to study the nonlinear outcome of the evolution of thermally unstable gas subjected to this radiation force. Our 1D simulations demonstrate that the TI can produce long-lived clouds that reach a thermal equilibrium between radiative processes and thermal conduction, while the radiation force can indeed accelerate the clouds to supersonic velocities. However, our 2D simulations reveal that a single cloud with a simple morphology cannot be maintained due to destructive processes, triggered by the Rayleigh–Taylor instability and followed by the Kelvin–Helmholtz instability. Nevertheless, the resulting cold gas structures are still significantly accelerated before they are ultimately dispersed.

  4. Dependence of Ice Formation in Sierra Winter Orographic Clouds on the Mixing State of Aerosols Serving as Ice Nuclei

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prather, K. A.; Sullivan, R. C.; Suski, K.; Comstock, J. M.; Tomlinson, J. M.; Rosenfeld, D.; Prenni, A. J.; Cazorla, A.

    2011-12-01

    The CalWater study of February to March 2011 offered the opportunity for observations of aerosols from local, regional and long distance sources as they were integrated into clouds and precipitation in the Sierra Nevada. Single particle chemical analysis of cloud particle residual nuclei and surface precipitation, and their association with changes in cloud microphysical differences, suggest that ice initiation and precipitation formation were strongly affected by intrusions of Asian dust. This is consistent with coincident processing of aerosols present in ambient air and cloud particle residuals as ice nuclei. Elevated ice nuclei concentrations were associated with the presence of dust detected in cloud particle residuals, and dust particles dominated ice nuclei chemical compositions assessed by transmission electron microscopy x-ray analyses at these same times. Evidence of the role of Asian dust as ice nuclei during 2011 are consistent with back trajectory analyses and with recently published observational findings from CalWater Early Start data from 2009. The relative roles of aerosols from the marine boundary layer, biomass burning, and pollution as ice nuclei will also be discussed.

  5. Cluster-formation in the Rosette molecular cloud at the junctions of filaments

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Hennemann, M.; Motte, F.; Didelon, P.; Federrath, C.; Bontemps, S.; Di Francesco, J.; Arzoumanian, D.; Minier, V.; André, Ph.; Hill, T.; Zavagno, A.; Nguyen-Luong, Q.; Attard, M.; Bernard, J.-Ph.; Elia, D.; Fallscheer, C.; Griffin, M.; Kirk, J.; Klessen, R.; Könyves, V.; Martin, P.; Men'shchikov, A.; Palmeirim, P.; Peretto, N.; Pestalozzi, M.; Russeil, D.; Sadavoy, S.; Sousbie, T.; Testi, L.; Tremblin, P.; Ward-Thompson, D.; White, G.

    2012-04-01

    Aims: For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. Instead, gravitational collapse of filaments and/or merging of filamentary structures can lead to building up dense high-mass star-forming clumps. However, the overall density structure of the cloud has a large influence on this process, and requires a better understanding. Methods: The Rosette molecular cloud, irradiated by the NGC 2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. Results: The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression, while the PDFs of the center and other cloud parts are more complex, partly with a power-law tail. A deviation of the log-normal PDF form occurs at AV ≈ 9m for the center, and around 4m for the other regions. Only the part of the cloud farthest from the Rosette nebula shows a log-normal PDF. Conclusions: The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at AV ≈ 3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star

  6. Factors Affecting University Students' Intention to Use Cloud Computing in Jordan

    ERIC Educational Resources Information Center

    Rababah, Khalid Ali; Khasawneh, Mohammad; Nassar, Bilal

    2017-01-01

    The aim of this study is to examine the factors affecting students' intention to use cloud computing in the Jordanian universities. To achieve this purpose, a quantitative research approach which is a survey-based was deployed. Around 400 questionnaires were distributed randomly to Information Technology (IT) students at four universities in…

  7. The effects of flow-inhomogeneities on molecular cloud formation: Local versus global collapse

    SciTech Connect

    Carroll-Nellenback, Jonathan J.; Frank, Adam; Heitsch, Fabian

    2014-07-20

    Observational evidence from local star-forming regions mandates that star formation occurs shortly after, or even during, molecular cloud formation. Models of molecular cloud formation in large-scale converging flows have identified the physical mechanisms driving the necessary rapid fragmentation. They also point to global gravitational collapse driving supersonic turbulence in molecular clouds. Previous cloud formation models have focused on turbulence generation, gravitational collapse, magnetic fields, and feedback. Here, we explore the effect of structure in the flow on the resulting clouds and the ensuing gravitational collapse. We compare two extreme cases, one with a collision between two smooth streams, and one with streams containing small clumps. We find that structured converging flows lead to a delay of local gravitational collapse ({sup c}ore formation{sup )}. Hence, the cloud has more time to accumulate mass, eventually leading to a strong global collapse, and thus to a high core formation rate. Uniform converging flows fragment hydrodynamically early on, leading to the rapid onset of local gravitational collapse and an overall low core formation rate. This is also mirrored in the core mass distribution: the uniform initial conditions lead to more low-mass cores than the clumpy initial conditions. Kinetic (E{sub k} ) and gravitational energy (E{sub g} ) budgets suggest that collapse is only prevented for E{sub k} >> E{sub g} , which occurs for large scales in the smooth flow, and for small scales for the clumpy flow. Whenever E{sub k} ≈ E{sub g} , we observe gravitational collapse on those scales. Signatures of chemical abundance variations evolve differently for the gas phase and for the stellar population. For smooth flows, the forming cloud is well mixed, while its stellar population retains more information about the initial metallicities. For clumpy flows, the gas phase is less well mixed, while the stellar population has lost most of the

  8. Turbulence and star formation efficiency in molecular clouds: solenoidal versus compressive motions in Orion B

    NASA Astrophysics Data System (ADS)

    Orkisz, Jan H.; Pety, Jérôme; Gerin, Maryvonne; Bron, Emeric; Guzmán, Viviana V.; Bardeau, Sébastien; Goicoechea, Javier R.; Gratier, Pierre; Le Petit, Franck; Levrier, François; Liszt, Harvey; Öberg, Karin; Peretto, Nicolas; Roueff, Evelyne; Sievers, Albrecht; Tremblin, Pascal

    2017-03-01

    Context. The nature of turbulence in molecular clouds is one of the key parameters that control star formation efficiency: compressive motions, as opposed to solenoidal motions, can trigger the collapse of cores, or mark the expansion of Hii regions. Aims: We try to observationally derive the fractions of momentum density (ρv) contained in the solenoidal and compressive modes of turbulence in the Orion B molecular cloud and relate these fractions to the star formation efficiency in the cloud. Methods: The implementation of a statistical method applied to a 13CO(J = 1-0) datacube obtained with the IRAM-30 m telescope, enables us to retrieve 3-dimensional quantities from the projected quantities provided by the observations, which yields an estimate of the compressive versus solenoidal ratio in various regions of the cloud. Results: Despite the Orion B molecular cloud being highly supersonic (mean Mach number 6), the fractions of motion in each mode diverge significantly from equipartition. The cloud's motions are, on average, mostly solenoidal (excess > 8% with respect to equipartition), which is consistent with its low star formation rate. On the other hand, the motions around the main star forming regions (NGC 2023 and NGC 2024) prove to be strongly compressive. Conclusions: We have successfully applied to observational data a method that has so far only been tested on simulations, and we have shown that there can be a strong intra-cloud variability of the compressive and solenoidal fractions, these fractions being in turn related to the star formation efficiency. This opens a new possibility for star formation diagnostics in galactic molecular clouds. Based on observations carried out at the IRAM-30 m single-dish telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  9. THE GALACTIC CENTER CLOUD G0.253+0.016: A MASSIVE DENSE CLOUD WITH LOW STAR FORMATION POTENTIAL

    SciTech Connect

    Kauffmann, Jens; Pillai, Thushara; Zhang Qizhou

    2013-03-10

    We present the first interferometric molecular line and dust emission maps for the Galactic Center (GC) cloud G0.253+0.016, observed using CARMA and the SMA. This cloud is very dense, and concentrates a mass exceeding the Orion Molecular Cloud Complex (2 Multiplication-Sign 10{sup 5} M{sub Sun }) into a radius of only 3 pc, but it is essentially starless. G0.253+0.016 therefore violates ''star formation laws'' presently used to explain trends in galactic and extragalactic star formation by a factor {approx}45. Our observations show a lack of dense cores of significant mass and density, thus explaining the low star formation activity. Instead, cores with low densities and line widths {approx}< 1 km s{sup -1}-probably the narrowest lines reported for the GC region to date-are found. Evolution over several 10{sup 5} yr is needed before more massive cores, and possibly an Arches-like stellar cluster, could form. Given the disruptive dynamics of the GC region, and the potentially unbound nature of G0.253+0.016, it is not clear that this evolution will happen.

  10. Cloud processing of organic compounds: Secondary organic aerosol and nitrosamine formation

    NASA Astrophysics Data System (ADS)

    Hutchings, James W., III

    Cloud processing of atmospheric organic compounds has been investigated through field studies, laboratory experiments, and numerical modeling. Observational cloud chemistry studies were performed in northern Arizona and fog studies in central Pennsylvania. At both locations, the cloud and fogs showed low acidity due to neutralization by soil dust components (Arizona) and ammonia (Pennsylvania). The field observations showed substantial concentrations (20-5500 ng•L -1) of volatile organic compounds (VOC) in the cloud droplets. The potential generation of secondary organic aerosol mass through the processing of these anthropogenic VOCs was investigated through laboratory and modeling studies. Under simulated atmospheric conditions, in idealized solutions, benzene, toluene, ethylbenzene, and xylene (BTEX) degraded quickly in the aqueous phase with half lives of approximately three hours. The degradation process yielded less volatile products which would contribute to new aerosol mass upon cloud evaporation. However, when realistic cloud solutions containing natural organic matter were used in the experiments, the reaction kinetics decreased with increasing organic carbon content, resulting in half lives of approximately 7 hours. The secondary organic aerosol (SUA) mass formation potential of cloud processing of BTEX was evaluated. SOA mass formation by cloud processing of BTEX, while strongly dependent on the atmospheric conditions, could contribute up to 9% of the ambient atmospheric aerosol mass, although typically ˜1% appears realistic. Field observations also showed the occurrence of N-nitrosodimethylamine (NDMA), a potent carcinogen, in fogs and clouds (100-340 ng•L -1). Laboratory studies were conducted to investigate the formation of NDMA from nitrous acid and dimethylamine in the homogeneous aqueous phase within cloud droplets. While NDMA was produced in the cloud droplets, the low yields (<1%) observed could not explain observational concentrations

  11. Modeling studying on ice formation by bacteria in warm-based convective cloud

    NASA Astrophysics Data System (ADS)

    Sun, J.

    2005-12-01

    Bacteria have been recognized as cloud condensation nuclei (CCN), and certain bacteria, commonly found in plants, have exhibited capacity to act as ice nuclei (IN) at temperatures as warm as -2 °C. These ice nucleating bacteria are readily disseminated into the atmosphere and have been observed in clouds at altitudes of several kilometres. It is noteworthy that over 20 years ago, one assumed the possibility of bacterial transport and their importance into cloud formation process, rain and precipitation, as well as causing disease in plants and animal kingdom. We used a 1-D cumulus cloud model with the CCOPE 19th July 1981 case and the observed field profile of bacterial concentration, to simulate the significance of bacteria as IN through condensation freezing mechanism. In this paper, we will present our results on the role of bacteria as active ice nuclei in the developing stage of cumulus clouds, and their potential significance in atmospheric sciences.

  12. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    NASA Technical Reports Server (NTRS)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  13. Students' Understanding of Cloud and Rainbow Formation and Teachers' Awareness of Students' Performance

    ERIC Educational Resources Information Center

    Malleus, Elina; Kikas, Eve; Kruus, Sigrid

    2016-01-01

    This study describes primary school students' knowledge about rainfall, clouds and rainbow formation together with teachers' predictions about students' performance. In our study, primary school students' (N = 177) knowledge about rainfall and rainbow formation was examined using structured interviews with open-ended questions. Primary school…

  14. SEEDING THE FORMATION OF COLD GASEOUS CLOUDS IN MILKY WAY-SIZE HALOS

    SciTech Connect

    Keres, Dusan; Hernquist, Lars

    2009-07-20

    We use one of the highest resolution cosmological smoothed particle hydrodynamic simulations to date to demonstrate that cold gaseous clouds form around Milky Way-size galaxies. We further explore mechanisms responsible for their formation and show that a large fraction of clouds originate as a consequence of late-time filamentary 'cold mode' accretion. Here, filaments that are still colder and denser than the surrounding halo gas are not able to connect directly to galaxies, as they do at high redshift, but are instead susceptible to the combined action of cooling and Rayleigh-Taylor instabilities at intermediate radii within the halo leading to the production of cold, dense pressure-confined clouds, without an associated dark matter component. This process is aided through the compression of the incoming filaments by the hot halo gas and expanding shocks during the halo buildup. Our mechanism directly seeds clouds from gas with substantial local overdensity, unlike in previous models, and provides a channel for the origin of cloud complexes. These clouds can later 'rain' onto galaxies, delivering fuel for star formation. Owing to the relatively large cross-section of filaments and the net angular momentum carried by the gas, the clouds will be distributed in a modestly flattened region around a galaxy.

  15. Detection of Star Formation in the Unusually Cold Giant Molecular Cloud G216-2.5

    NASA Astrophysics Data System (ADS)

    Megeath, S. T.; Allgaier, E.; Young, E.; Allen, T.; Pipher, J. L.; Wilson, T. L.

    2009-04-01

    The giant molecular cloud G216-2.5, also known as Maddalena's cloud or the Maddalena-Thaddeus cloud, is distinguished by an unusual combination of high gas mass (1-6 × 105 M sun), low kinetic temperatures (10 K), and the lack of bright far-IR emission. Although star formation has been detected in neighboring satellite clouds, little evidence for star formation has been found in the main body of this cloud. Using a combination of mid-IR observations with the IRAC and Multiband Imaging Photometer for Spitzer instruments onboard the Spitzer Space Telescope, and near-IR images taken with the Flamingos camera on the KPNO 2.1 m telescope, we identify a population of 41 young stars with disks and 33 protostars in the center of the cloud. Most of the young stellar objects are coincident with a filamentary structure of dense gas detected in CS (2 → 1). These observations show that the main body of G216 is actively forming stars, although at a low stellar density comparable to that found in the Taurus cloud. Based on observations made with ESO telescopes at the La Silla Observatory.

  16. DETECTION OF STAR FORMATION IN THE UNUSUALLY COLD GIANT MOLECULAR CLOUD G216-2.5

    SciTech Connect

    Megeath, S. T.; Allgaier, E.; Allen, T.; Young, E.; Pipher, J. L.; Wilson, T. L.

    2009-04-15

    The giant molecular cloud G216-2.5, also known as Maddalena's cloud or the Maddalena-Thaddeus cloud, is distinguished by an unusual combination of high gas mass (1-6 x 10{sup 5} M {sub sun}), low kinetic temperatures (10 K), and the lack of bright far-IR emission. Although star formation has been detected in neighboring satellite clouds, little evidence for star formation has been found in the main body of this cloud. Using a combination of mid-IR observations with the IRAC and Multiband Imaging Photometer for Spitzer instruments onboard the Spitzer Space Telescope, and near-IR images taken with the Flamingos camera on the KPNO 2.1 m telescope, we identify a population of 41 young stars with disks and 33 protostars in the center of the cloud. Most of the young stellar objects are coincident with a filamentary structure of dense gas detected in CS (2 {yields} 1). These observations show that the main body of G216 is actively forming stars, although at a low stellar density comparable to that found in the Taurus cloud.

  17. 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

    SciTech Connect

    Charnay, B.; Meadows, V.; Misra, A.; Arney, G.; Leconte, J.

    2015-11-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4–0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths >3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.

  18. Overshooting cloud top, variation of tropopause and severe storm formation

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Smith, R. E.

    1984-01-01

    The development of severe multicell thunderstorms leading to the touchdown of six tornados near Pampa, TX, on May 19-20, 1982, is characterized in detail on the basis of weather maps, rawinsonde data, and radar summaries, and the results are compared with GOES rapid-scan IR images. The multicell storm cloud is shown to have formed beginning at 1945 GMT at the point of highest horizontal moisture convergence and lowest tropopause height and to have penetrated the tropopause at 2130 GMT, reaching a maximum altitude and a cloud-top black-body temperature 9 C lower than the tropopause temperature at 2245 GMT and collapsing about 20 min, when the firt tornado touched down. The value of the real-time vertical profiles provided by satellite images in predicting which severe storms will produce tornados or other violent phenomena is stressed.

  19. Evidence for liquid-phase cirrus cloud formation from volcanic aerosols - Climatic implications

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth

    1992-01-01

    Supercooled droplets in cirrus uncinus cell heads between -40 and -50 C are identified from the First International Satellite Cloud Climatology Project Regional Experiment polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  20. Evidence for liquid-phase cirrus cloud formation from volcanic aerosols: climatic implications.

    PubMed

    Sassen, K

    1992-07-24

    Supercooled droplets in cirrus uncinus cell heads between -40 degrees and -50 degrees C are identified from Project FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] polarization lidar measurements. Although short-lived, complexes of these small liquid cells seem to have contributed importantly to the formation of the cirrus. Freezing-point depression effects in solution droplets, apparently resulting from relatively large cloud condensation nuclei of volcanic origin, can be used to explain this rare phenomenon. An unrecognized volcano-cirrus cloud climate feedback mechanism is implied by these findings.

  1. The collapse of clouds and the formation and evolution of stars and disks

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Galli, Daniele; Ostriker, Eve; Lizano, Susana

    1993-01-01

    We consider the interrelationships among the structure of molecular clouds; the collapse of rotating cloud cores; the formation of stars and disks; the origin of molecular outflows, protostellar winds, and highly collimated jets; the birth of planetary and binary systems; and the dynamics of star/disk/satellite interactions. Our discussion interweaves theory with the results of observations that span from millimeter wavelengths to X-rays.

  2. Numerical modelling of the formation process of planets from protoplanetary cloud

    NASA Technical Reports Server (NTRS)

    Kozlov, N. N.; Eneyev, T. M.

    1979-01-01

    Evolution of the plane protoplanetary cloud, consisting of a great number of gravitationally interacting and uniting under collision bodies (protoplanets) moving in the central field of a large mass (the Sun or a planet), is considered. It is shown that in the course of protoplanetary cloud evolution the ring zones of matter expansion and compression occur with the subsequent development leading to formation of planets, rotating about their axes mainly directly. The principal numerical results were obtained through digital simulation of planetary accumulation.

  3. Surfactants from the gas phase may promote cloud droplet formation

    PubMed Central

    Sareen, Neha; Schwier, Allison N.; Lathem, Terry L.; Nenes, Athanasios; McNeill, V. Faye

    2013-01-01

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8–10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas–aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere. PMID:23382211

  4. Surfactants from the gas phase may promote cloud droplet formation.

    PubMed

    Sareen, Neha; Schwier, Allison N; Lathem, Terry L; Nenes, Athanasios; McNeill, V Faye

    2013-02-19

    Clouds, a key component of the climate system, form when water vapor condenses upon atmospheric particulates termed cloud condensation nuclei (CCN). Variations in CCN concentrations can profoundly impact cloud properties, with important effects on local and global climate. Organic matter constitutes a significant fraction of tropospheric aerosol mass, and can influence CCN activity by depressing surface tension, contributing solute, and influencing droplet activation kinetics by forming a barrier to water uptake. We present direct evidence that two ubiquitous atmospheric trace gases, methylglyoxal (MG) and acetaldehyde, known to be surface-active, can enhance aerosol CCN activity upon uptake. This effect is demonstrated by exposing acidified ammonium sulfate particles to 250 parts per billion (ppb) or 8 ppb gas-phase MG and/or acetaldehyde in an aerosol reaction chamber for up to 5 h. For the more atmospherically relevant experiments, i.e., the 8-ppb organic precursor concentrations, significant enhancements in CCN activity, up to 7.5% reduction in critical dry diameter for activation, are observed over a timescale of hours, without any detectable limitation in activation kinetics. This reduction in critical diameter enhances the apparent particle hygroscopicity up to 26%, which for ambient aerosol would lead to cloud droplet number concentration increases of 8-10% on average. The observed enhancements exceed what would be expected based on Köhler theory and bulk properties. Therefore, the effect may be attributed to the adsorption of MG and acetaldehyde to the gas-aerosol interface, leading to surface tension depression of the aerosol. We conclude that gas-phase surfactants may enhance CCN activity in the atmosphere.

  5. Assimilation of Cloud- and Land-affected TOVS/ATOVS Level 1b data at DAO

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Frank, Donald; daSilva, Arlindo; Bosilovich, Mike; Radacovich, Jon; Atlas, Robert (Technical Monitor)

    2002-01-01

    Despite significant advances in the assimilation of TIROS Operational Vertical Sounder/Advanced TIROS Operational Vertical Sounder (TOVS)/(ATOVS) data over the last decade, there are still many unresolved issues. For example, at several centers, cloud-and land-affected TOVS data are not assimilated. In this study, we show positive impact from the use of cloud cleared and land-affected TOVS data in the NASA Data Assimilation Office's (DAO) Finite Volume Data Assimilation System (fv-DAS). We will discuss how treatment of TOVS data affects the stratosphere and tropopause in the fvDAS. We will also describe the use of TOVS data for land-surface analysis and assimilation and other developments regarding the use of TOVS data at the DAO.

  6. Cloud fluid models of gas dynamics and star formation in galaxies

    NASA Technical Reports Server (NTRS)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  7. Influence of Dust Composition on Cloud Droplet Formation

    SciTech Connect

    Kelly, J T; Chuang, C C; Wexler, A S

    2006-08-21

    Previous studies suggest that interactions between dust particles and clouds are significant; yet the conditions where dust particles can serve as cloud condensation nuclei (CCN) are uncertain. Since major dust components are insoluble, the CCN activity of dust strongly depends on the presence of minor components. However, many minor components measured in dust particles are overlooked in cloud modeling studies. Some of these compounds are believed to be products of heterogeneous reactions involving carbonates. In this study, we calculate Kohler curves (modified for slightly soluble substances) for dust particles containing small amounts of K{sup +}, Mg{sup 2+}, or Ca{sup 2+} compounds to estimate the conditions where reacted and unreacted dust can activate. We also use an adiabatic parcel model to evaluate the influence of dust particles on cloud properties via water competition. Based on their bulk solubilities, K{sup +} compounds, MgSO{sub 4} x 7H{sub 2}O, Mg(NO{sub 3}){sub 2} x 6H{sub 2}O, and Ca(NO{sub 3}){sub 2} x 4H{sub 2}O are classified as highly soluble substances, which enable activation of fine dust. Slightly soluble gypsum and MgSO{sub 3} x 6H{sub 2}O, which may form via heterogeneous reactions involving carbonates, enable activation of particles with diameters between about 0.6 and 2 mm under some conditions. Dust particles > 2 mm often activate regardless of their composition. Only under very specialized conditions does the addition of a dust distribution into a rising parcel containing fine (NH{sub 4}){sub 2}SO{sub 4} particles significantly reduce the total number of activated particles via water competition. Effects of dust on cloud saturation and droplet number via water competition are generally smaller than those reported previously for sea salt. Large numbers of fine dust CCN can significantly enhance the number of activated particles under certain conditions. Improved representations of dust mineralogy and reactions in global aerosol models

  8. The formation of stellar systems from interstellar molecular clouds.

    PubMed

    Gehrz, R D; Black, D C; Solomon, P M

    1984-05-25

    Star formation, a crucial link in the chain of events that led from the early expansion of the universe to the formation of the solar system, continues to play a major role in the evolution of many galaxies. Observational and theoretical studies of regions of ongoing star formation provide insight into the physical conditions and events that must have attended the formation of the solar system. Such investigations also elucidate the role played by star formation in the evolutionary cycle which appears to dominate the chemical processing of interstellar material by successive generations of stars in spiral galaxies like our own. New astronomical facilities planned for development during the 1980's could lead to significant advances in our understanding of the star formation process. Efforts to identify and examine both the elusive protostellar collapse phase of star formation and planetary systems around nearby stars will be especially significant.

  9. Thermal-chemical instabilities in CO clouds. [interstellar matter and protostar formation

    NASA Technical Reports Server (NTRS)

    Glassgold, A. E.; Langer, W. D.

    1976-01-01

    The stability of interstellar clouds containing CO is analyzed taking account of formation processes for CO. Two such processes are examined: O(+) charge exchange and C(+) radiative association. It is found that the C(+) radiative-association chemistry leads to low-temperature instabilities which influence the evolution of clouds. It is also found that instability may set in if CO production increases sufficiently with density, that the O(+) charge-exchange chemistry leads to instability associated with attenuation of the interstellar radiation field by grains, and that thermal instabilities will also result if grain formation, rather than ion-molecule chemistry, dominates CO production. It is suggested that such instabilities play a role in the fragmentation of interstellar clouds and in the formation of protostellar objects.

  10. The location, clustering, and propagation of massive star formation in giant molecular clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram; Meixner, Margaret; Chastenet, Jeremy; Tielens, A. G. G. M.; Roman-Duval, Julia

    2017-01-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this talk, I will highlight results from a project utilizing data from several galaxy-wide surveys to build an unbiased dataset of ~700 massive young stellar objects (MYSOs), ~200 giant molecular clouds (GMCs), and ~100 young (< 10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We have employed this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. The main results are as follows: (1) Massive stars do not typically form at the highest column densities nor centers of their parent GMCs. (2) Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. (3) The rate of massive star formation is significantly boosted in clouds near SCs. Yet, comparison of molecular clouds associated with SCs with those that are not reveals no significant difference in their global properties. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. I will compare our findings with Galactic studies and discuss this in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  11. The Location, Clustering, and Propagation of Massive Star Formation in Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Ochsendorf, Bram B.; Meixner, Margaret; Chastenet, Jérémy; Tielens, Alexander G. G. M.; Roman-Duval, Julia

    2016-11-01

    Massive stars are key players in the evolution of galaxies, yet their formation pathway remains unclear. In this work, we use data from several galaxy-wide surveys to build an unbiased data set of ∼600 massive young stellar objects, ∼200 giant molecular clouds (GMCs), and ∼100 young (<10 Myr) optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this data to quantitatively study the location and clustering of massive star formation and its relation to the internal structure of GMCs. We reveal that massive stars do not typically form at the highest column densities nor centers of their parent GMCs at the ∼6 pc resolution of our observations. Massive star formation clusters over multiple generations and on size scales much smaller than the size of the parent GMC. We find that massive star formation is significantly boosted in clouds near SCs. However, whether a cloud is associated with an SC does not depend on either the cloud’s mass or global surface density. These results reveal a connection between different generations of massive stars on timescales up to 10 Myr. We compare our work with Galactic studies and discuss our findings in terms of GMC collapse, triggered star formation, and a potential dichotomy between low- and high-mass star formation.

  12. Observational Evidence of Dynamic Star Formation Rate in Milky Way Giant Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Miville-Deschênes, Marc-Antoine; Murray, Norman W.

    2016-12-01

    Star formation on galactic scales is known to be a slow process, but whether it is slow on smaller scales is uncertain. We cross-correlate 5469 giant molecular clouds (GMCs) from a new all-sky catalog with 256 star-forming complexes (SFCs) to build a sample of 191 SFC-GMC complexes—collections of multiple clouds each matched to 191 SFCs. The total mass in stars harbored by these clouds is inferred from WMAP free-free fluxes. We measure the GMC mass, the virial parameter, the star formation efficiency ɛ and the star formation rate per freefall time ɛ ff. Both ɛ and ɛ ff range over 3-4 orders of magnitude. We find that 68.3% of the clouds fall within {σ }{logɛ }=0.79+/- 0.22 {dex} and {σ }{log{ɛ }{ff}}=0.91+/- 0.22 {dex} about the median. Compared to these observed scatters, a simple model with a time-independent ɛ ff that depends on the host GMC properties predicts {σ }{log{ɛ }{ff}}=0.12{--}0.24. Allowing for a time-variable ɛ ff, we can recover the large dispersion in the rate of star formation. This strongly suggests that star formation in the Milky Way is a dynamic process on GMC scales. We also show that the surface star formation rate profile of the Milky Way correlates well with the molecular gas surface density profile.

  13. Magnetohydrodynamics of Wind-Cloud Interactions: Filament Formation in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Banda-Barragán, Wladimir E.

    2016-08-01

    Filaments are ubiquitous in the interstellar medium, yet their formation, internal structure, magnetic properties, and longevity have not been analysed in detail. In this thesis I report the results from a comprehensive numerical study that investigates the characteristics, formation, dynamics, and global evolution of filamentary structures arising from (magneto)hydrodynamic interactions between supersonic winds and interstellar clouds. Here I improve on previous wind-cloud simulations by utilising higher numerical resolutions, sharper density contrasts, more complex magnetic field configurations, and more realistic systems with turbulent clouds. I use gas multi-tracking algorithms and state-of-the-art visualisation techniques to study the physical mechanisms acting upon wind-swept clouds. I find that material originally in the envelopes of the clouds is removed and transported downstream to form filamentary tails, while the cores of the clouds serve as footpoints and late-stage outer layers of these low-density tails. The evolution of filaments comprises four phases: 1) tail formation, 2) tail erosion, 3) footpoint dispersion, and 4) filament free floating. Overall, wind-cloud interactions produce filaments with aspect ratios >10, lateral expansions 1-3 of the core radius, mixing fractions 10-30%, velocity dispersions 0.02-0.05 of the wind speed, and magnetic field amplifications by factors of 10-100. I find that the strength of magnetic fields regulates vorticity production: sinuous filamentary towers arise in non-magnetic environments, while strong magnetic fields inhibit small-scale Kelvin-Helmholtz perturbations at boundary layers making tails less turbulent. The orientation of magnetic fields also influences the morphology of filaments: magnetic field components aligned with the direction of the wind favour the formation of pressure-confined flux ropes inside the tails, whilst transverse components tend to form current sheets and favour the growth of Rayleigh

  14. Factors leading to the formation of arc cloud complexes

    NASA Technical Reports Server (NTRS)

    Welshinger, Mark John; Brundidge, Kenneth C.

    1987-01-01

    A total of 12 mesoscale convective systems (MCSs) were investigated. The duration of the gust front, produced by each MCS, was used to classify the MCSs. Category 1 MCSs were defined as ones that produced a gust front and the gust front lasted for more than 6 h. There were 7 category 1 MCSs in the sample. Category 2 MCSs were defined as ones that produced a gust front and the gust front lasted for 6 h or less. There were 4 category 2 MCSs. The MCS of Case 12 was not categorized because the precipitation characteristics were similar to a squall line, rather than an MCS. All of the category 1 MCSs produced arc cloud complexes (ACCs), while only one of the category 2 MCSs produced an ACC. To determine if there were any differences in the characteristics between the MCSs of the two categories, composite analyses were accomplished. The analyses showed that there were significant differences in the characteristics of category 1 and 2 MCSs. Category 1 MCSs, on average, had higher thunderstorm heights, greater precipitation intensities, colder cloud top temperatures and produced larger magnitudes of surface divergence than category 2 MCSs.

  15. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    PubMed

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.

  16. THE TWO MOLECULAR CLOUDS IN RCW 38: EVIDENCE FOR THE FORMATION OF THE YOUNGEST SUPER STAR CLUSTER IN THE MILKY WAY TRIGGERED BY CLOUD–CLOUD COLLISION

    SciTech Connect

    Fukui, Y.; Torii, K.; Ohama, A.; Hasegawa, K.; Hattori, Y.; Sano, H.; Yamamoto, H.; Tachihara, K.; Ohashi, S.; Fujii, K.; Kuwahara, S.; Mizuno, N.; Okuda, T.; Dawson, J. R.; Onishi, T.; Mizuno, A.

    2016-03-20

    We present distributions of two molecular clouds having velocities of 2 and 14 km s{sup −1} toward RCW 38, the youngest super star cluster in the Milky Way, in the {sup 12}CO J = 1–0 and 3–2 and {sup 13}CO J = 1–0 transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the J = 3–2 emission to the J = 1–0 emission, the bridging feature connecting the two clouds in velocity, and their morphological correspondence with the infrared dust emission. The velocity difference is too large for the clouds to be gravitationally bound. We frame a hypothesis that the two clouds are colliding with each other by chance to trigger formation of the ∼20 O stars that are localized within ∼0.5 pc of the cluster center in the 2 km s{sup −1} cloud. We suggest that the collision is currently continuing toward part of the 2 km s{sup −1} cloud where the bridging feature is localized. This is the third super star cluster alongside Westerlund 2 and NGC 3603 where cloud–cloud collision has triggered the cluster formation. RCW 38 is the youngest super star cluster in the Milky Way, holding a possible sign of on-going O star formation, and is a promising site where we may be able to witness the moment of O star formation.

  17. Formation of a protocluster: A virialized structure from gravoturbulent collapse. I. Simulation of cluster formation in a collapsing molecular cloud

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2016-06-01

    Context. Stars are often observed to form in clusters and it is therefore important to understand how such a region of concentrated mass is assembled out of the diffuse medium. The properties of such a region eventually prescribe the important physical mechanisms and determine the characteristics of the stellar cluster. Aims: We study the formation of a gaseous protocluster inside a molecular cloud and associate its internal properties with those of the parent cloud by varying the level of the initial turbulence of the cloud with a view to better characterize the subsequent stellar cluster formation. Methods: We performed high resolution magnetohydrodynamic (MHD) simulations of gaseous protoclusters forming in molecular clouds collapsing under self-gravity. We determined ellipsoidal cluster regions via gas kinematics and sink particle distribution, permitting us to determine the mass, size, and aspect ratio of the cluster. We studied the cluster properties, such as kinetic and gravitational energy, and made links to the parent cloud. Results: The gaseous protocluster is formed out of global collapse of a molecular cloud and has non-negligible rotation owing to angular momentum conservation during the collapse of the object. Most of the star formation occurs in this region, which occupies only a small volume fraction of the whole cloud. This dense entity is a result of the interplay between turbulence and gravity. We identify such regions in simulations and compare the gas and sink particles to observed star-forming clumps and embedded clusters, respectively. The gaseous protocluster inferred from simulation results presents a mass-size relation that is compatible with observations. We stress that the stellar cluster radius, although clearly correlated with the gas cluster radius, depends sensitively on its definition. Energy analysis is performed to confirm that the gaseous protocluster is a product of gravoturbulent reprocessing and that the support of turbulent

  18. Studying the Formation and Development of Molecular Clouds: With the CCAT Heterodyne Array Instrument (CHAI)

    NASA Technical Reports Server (NTRS)

    Goldsmith, Paul F.

    2012-01-01

    Surveys of all different types provide basic data using different tracers. Molecular clouds have structure over a very wide range of scales. Thus, "high resolution" surveys and studies of selected nearby clouds add critical information. The combination of large-area and high resolution allows Increased spatial dynamic range, which in turn enables detection of new and perhaps critical morphology (e.g. filaments). Theoretical modeling has made major progress, and suggests that multiple forces are at work. Galactic-scale modeling also progressing - indicates that stellar feedback is required. Models must strive to reproduce observed cloud structure at all scales. Astrochemical observations are not unrelated to questions of cloud evolution and star formation but we are still learning how to use this capability.

  19. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    SciTech Connect

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  20. Star Formation in Disk Galaxies. III. Does Stellar Feedback Result in Cloud Death?

    NASA Astrophysics Data System (ADS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  1. Magnetohydrodynamic simulations of a jet drilling an H I cloud: Shock induced formation of molecular clouds and jet breakup

    SciTech Connect

    Asahina, Yuta; Ogawa, Takayuki; Matsumoto, Ryoji; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo

    2014-07-01

    The formation mechanism of the jet-aligned CO clouds found by NANTEN CO observations is studied by magnetohydrodynamical (MHD) simulations taking into account the cooling of the interstellar medium. Motivated by the association of the CO clouds with the enhancement of H I gas density, we carried out MHD simulations of the propagation of a supersonic jet injected into the dense H I gas. We found that the H I gas compressed by the bow shock ahead of the jet is cooled down by growth of the cooling instability triggered by the density enhancement. As a result, a cold dense sheath is formed around the interface between the jet and the H I gas. The radial speed of the cold, dense gas in the sheath is a few km s{sup –1} almost independent of the jet speed. Molecular clouds can be formed in this region. Since the dense sheath wrapping the jet reflects waves generated in the cocoon, the jet is strongly perturbed by the vortices of the warm gas in the cocoon, which breaks up the jet and forms a secondary shock in the H I-cavity drilled by the jet. The particle acceleration at the shock can be the origin of radio and X-ray filaments observed near the eastern edge of the W50 nebula surrounding the galactic jet source SS433.

  2. Quantifying compositional impacts of ambient aerosol on cloud droplet formation

    NASA Astrophysics Data System (ADS)

    Lance, Sara

    It has been historically assumed that most of the uncertainty associated with the aerosol indirect effect on climate can be attributed to the unpredictability of updrafts. In Chapter 1, we analyze the sensitivity of cloud droplet number density, to realistic variations in aerosol chemical properties and to variable updraft velocities using a 1-dimensional cloud parcel model in three important environmental cases (continental, polluted and remote marine). The results suggest that aerosol chemical variability may be as important to the aerosol indirect effect as the effect of unresolved cloud dynamics, especially in polluted environments. We next used a continuous flow streamwise thermal gradient Cloud Condensation Nuclei counter (CCNc) to study the water-uptake properties of the ambient aerosol, by exposing an aerosol sample to a controlled water vapor supersaturation and counting the resulting number of droplets. In Chapter 2, we modeled and experimentally characterized the heat transfer properties and droplet growth within the CCNc. Chapter 3 describes results from the MIRAGE field campaign, in which the CCNc and a Hygroscopicity Tandem Differential Mobility Analyzer (HTDMA) were deployed at a ground-based site during March, 2006. Size-resolved CCN activation spectra and growth factor distributions of the ambient aerosol in Mexico City were obtained, and an analytical technique was developed to quantify a probability distribution of solute volume fractions for the CCN in addition to the aerosol mixing-state. The CCN were shown to be much less CCN active than ammonium sulfate, with water uptake properties more consistent with low molecular weight organic compounds. The pollution outflow from Mexico City was shown to have CCN with an even lower fraction of soluble material. "Chemical Closure" was attained for the CCN, by comparing the inferred solute volume fraction with that from direct chemical measurements. A clear diurnal pattern was observed for the CCN solute

  3. A Search for Star Formation in the Translucent Cloud MBM 40

    NASA Technical Reports Server (NTRS)

    Magnani, Loris; Caillault, Jean-Pierre; Hearty, Thomas; Stauffer, John; Schmitt, J. H. M. M.; Neuhaeuser, Ralph; Verter, Frances; Dwek, Eli

    1996-01-01

    The star formation status of the translucent high-latitude molecular cloud, MBM 40, is explored through analysis of radio, infrared, optical, and X-ray data. With a peak visual extinction of 1 to 2 mag, MBM 40 is an example of a high-latitude cloud near the diffuse/translucent demarcation. However, unlike most translucent clouds, MBM 40 exhibits a compact morphology and a kinetic energy-to gravitational potential energy ratio near unity. Our radio data, encompassing the CO (J = 1-0), CS (J = 2-1), and H2CO 1(sub 11-1(sub 10), spectral line transitions, reveal that the cloud contains a ridge of molecular gas with n greater than or equal to 10(exp 3)/ cc. In addition, the molecular data, together with IRAS data, indicate that the mass of MBM 40 is approx. 40 solar mass. In light of the ever-increasing number of recently formed stars far from any dense molecular clouds or cores, we searched the environs of MBM 40 for any trace of recent star formation. We used the ROSAT All-Sky Survey X-ray data and a ROSAT PSPC pointed observation toward MBM 40 to identify 33 stellar candidates with properties consistent with pre-main-sequence (PMS) stars. Follow-up optical spectroscopy of the candidates with V less than 15.5 was conducted with the 1.5 m Fred Lawrence Whipple Observatory telescope in order to identify signatures of T Tauri or pre-main- sequence stars (such as the Li 6708 A resonance line). Since none of our optically observed candidates display standard PMS signatures, we conclude that MBM 40 displays no evidence of recent or ongoing star formation. The absence of high-density molecular cores in the cloud and the relatively low column density compared to star-forming interstellar clouds may be the principal reasons that MBM 40 is devoid of star formation. More detailed comparison between this cloud and other, higher extinction translucent and dark clouds may elucidate the necessary initial conditions for the onset of low-mass star formation.

  4. Diagnosing Warm Frontal Cloud Formation in a GCM: A Novel Approach Using Conditional Subsetting

    NASA Technical Reports Server (NTRS)

    Booth, James F.; Naud, Catherine M.; DelGenio, Anthony D.

    2013-01-01

    This study analyzes characteristics of clouds and vertical motion across extratropical cyclone warm fronts in the NASA Goddard Institute for Space Studies general circulation model. The validity of the modeled clouds is assessed using a combination of satellite observations from CloudSat, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), and the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. The analysis focuses on developing cyclones, to test the model's ability to generate their initial structure. To begin, the extratropical cyclones and their warm fronts are objectively identified and cyclone-local fields are mapped into a vertical transect centered on the surface warm front. To further isolate specific physics, the cyclones are separated using conditional subsetting based on additional cyclone-local variables, and the differences between the subset means are analyzed. Conditional subsets are created based on 1) the transect clouds and 2) vertical motion; 3) the strength of the temperature gradient along the warm front, as well as the storm-local 4) wind speed and 5) precipitable water (PW). The analysis shows that the model does not generate enough frontal cloud, especially at low altitude. The subsetting results reveal that, compared to the observations, the model exhibits a decoupling between cloud formation at high and low altitudes across warm fronts and a weak sensitivity to moisture. These issues are caused in part by the parameterized convection and assumptions in the stratiform cloud scheme that are valid in the subtropics. On the other hand, the model generates proper covariability of low-altitude vertical motion and cloud at the warm front and a joint dependence of cloudiness on wind and PW.

  5. Star formation efficiencies of molecular clouds in a galactic centre environment

    NASA Astrophysics Data System (ADS)

    Bertram, Erik; Glover, Simon C. O.; Clark, Paul C.; Klessen, Ralf S.

    2015-08-01

    We use the AREPO moving mesh code to simulate the evolution of molecular clouds exposed to a harsh environment similar to that found in the galactic centre (GC), in an effort to understand why the star formation efficiency (SFE) of clouds in this environment is so small. Our simulations include a simplified treatment of time-dependent chemistry and account for the highly non-isothermal nature of the gas and the dust. We model clouds with a total mass of 1.3 × 105 M⊙ and explore the effects of varying the mean cloud density and the virial parameter, α = Ekin/|Epot|. We vary the latter from α = 0.5 to 8.0, and so many of the clouds that we simulate are gravitationally unbound. We expose our model clouds to an interstellar radiation field (ISRF) and cosmic ray flux (CRF) that are both a factor of 1000 higher than the values found in the solar neighbourhood. As a reference, we also run simulations with local solar neighbourhood values of the ISRF and the CRF in order to better constrain the effects of the extreme conditions in the GC on the SFE. Despite the harsh environment and the large turbulent velocity dispersions adopted, we find that all of the simulated clouds form stars within less than a gravitational free-fall time. Increasing the virial parameter from α = 0.5 to 8.0 decreases the SFE by a factor of ˜4-10, while increasing the ISRF/CRF by a factor of 1000 decreases the SFE again by a factor of ˜2-6. However, even in our most unbound clouds, the SFE remains higher than that inferred for real GC clouds. We therefore conclude that high levels of turbulence and strong external heating are not enough by themselves to lead to a persistently low SFE at the centre of the Galaxy.

  6. New particle formation in the southern Aegean Sea during the Etesians: importance for CCN production and cloud droplet number

    NASA Astrophysics Data System (ADS)

    Kalkavouras, Panayiotis; Bossioli, Elissavet; Bezantakos, Spiros; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Kouvarakis, Giorgos; Protonotariou, Anna P.; Dandou, Aggeliki; Biskos, George; Mihalopoulos, Nikolaos; Nenes, Athanasios; Tombrou, Maria

    2017-01-01

    This study examines how new particle formation (NPF) in the eastern Mediterranean in summer affects CCN (cloud condensation nuclei) concentrations and cloud droplet formation. For this, the concentration and size distribution of submicron aerosol particles, along with the concentration of trace gases and meteorological variables, were studied over the central (Santorini) and southern Aegean Sea (Finokalia, Crete) from 15 to 28 July 2013, a period that includes Etesian events and moderate northern surface winds. Particle nucleation bursts were recorded during the Etesian flow at both stations, with those observed at Santorini reaching up to 1.5 × 104 particles cm-3; the fraction of nucleation-mode particles over Crete was relatively diminished, but a higher number of Aitken-mode particles were observed as a result of aging. Aerosol and photochemical pollutants covaried throughout the measurement period; lower concentrations were observed during the period of Etesian flow (e.g., 43-70 ppbv for ozone and 1.5-5.7 µg m-3 for sulfate) but were substantially enhanced during the period of moderate surface winds (i.e., increase of up to 32 for ozone and 140 % for sulfate). We find that NPF can double CCN number (at 0.1 % supersaturation), but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number only by 12 %. Therefore, although NPF events may strongly elevate CCN numbers, the relative impacts on cloud droplet number (compared to pre-event levels) is eventually limited by water vapor availability and depends on the prevailing cloud formation dynamics and the aerosol levels associated with the background of the region.

  7. Understanding star formation in molecular clouds. I. Effects of line-of-sight contamination on the column density structure

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Ossenkopf, V.; Csengeri, T.; Klessen, R. S.; Federrath, C.; Tremblin, P.; Girichidis, P.; Bontemps, S.; André, Ph.

    2015-03-01

    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to precisely determine the column density from dust emission, which is the best tracer of the bulk of material in molecular clouds. However, line-of-sight (LOS) contamination from fore- or background clouds can lead to overestimating the dust emission of molecular clouds, in particular for distant clouds. This implies values that are too high for column density and mass, which can potentially lead to an incorrect physical interpretation of the column density probability distribution function (PDF). In this paper, we use observations and simulations to demonstrate how LOS contamination affects the PDF. We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga and Maddalena (low-mass star-forming), and Carina and NGC 3603 (both high-mass SF regions). In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF for higher column densities flattens after correction. All corrected PDFs have a lognormal part for low column densities with a peak at Av ~ 2 mag, a deviation point (DP) from the lognormal at Av(DP) ~ 4-5 mag, and a power-law tail for higher column densities. Assuming an equivalent spherical density distribution ρ ∝ r- α, the slopes of the power-law tails correspond to αPDF = 1.8, 1.75, and 2.5 for Auriga, Carina, and NGC 3603. These numbers agree within the uncertainties with the values of α ≈ 1.5,1.8, and 2.5 determined from the slope γ (with α = 1-γ) obtained from the radial column density profiles (N ∝ rγ). While α ~ 1.5-2 is consistent with a structure dominated by collapse (local free-fall collapse of individual cores and clumps and global collapse), the higher value of α > 2 for NGC 3603 requires a physical

  8. Nitric acid in polar stratospheric clouds - Similar temperature of nitric acid condensation and cloud formation

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Snetsinger, Kenneth G.; Hamill, Patrick; Goodman, Jindra K.; Mccormick, M. Patrick

    1990-01-01

    As shown independently by two different techniques, nitric acid aerosols and polar stratospheric clouds (PSCs) both form below similar threshold temperatures. This supports the idea that the PSC particles involved in chlorine activation and ozone depletion in the winter polar stratosphere are composed of nitric acid. One technique used to show this is the inertial impaction of nitric acid aerosols using an Er-2 aircraft; the other method is remote sensing of PSCs by the Stratospheric Aerosol Measurement (SAM II) satellite borne optical sensor. Both procedures were in operation during the Arctic Airborne Stratospheric Expedition in 1989, and the Airborne Antarctic Ozone Experiment in 1987. Analysis of Arctic particles gathered in situ indicates the presence of nitric acid below a 'first appearance' temperature Tfa = 202 K. This is the same highest temperature at which PSCs are seen by the SAM II satellite. In comparison, a 'first appearance' temperature Tfa = 198 K as found for the Antarctic samples.

  9. An evolutionary model for collapsing molecular clouds and their star formation activity. II. Mass dependence of the star formation rate

    SciTech Connect

    Zamora-Avilés, Manuel; Vázquez-Semadeni, Enrique

    2014-10-01

    We discuss the evolution and dependence on cloud mass of the star formation rate (SFR) and efficiency (SFE) of star-forming molecular clouds (MCs) within the scenario that clouds are undergoing global collapse and that the SFR is controlled by ionization feedback. We find that low-mass clouds (M {sub max} ≲ 10{sup 4} M {sub ☉}) spend most of their evolution at low SFRs, but end their lives with a mini-burst, reaching a peak SFR ∼10{sup 4} M {sub ☉} Myr{sup –1}, although their time-averaged SFR is only (SFR) ∼ 10{sup 2} M {sub ☉} Myr{sup –1}. The corresponding efficiencies are SFE{sub final} ≲ 60% and (SFE) ≲ 1%. For more massive clouds (M {sub max} ≳ 10{sup 5} M {sub ☉}), the SFR first increases and then reaches a plateau because the clouds are influenced by stellar feedback since earlier in their evolution. As a function of cloud mass, (SFR) and (SFE) are well represented by the fits (SFR) ≈ 100(1 + M {sub max}/1.4 × 10{sup 5} M {sub ☉}){sup 1.68} M {sub ☉} Myr{sup –1} and (SFE) ≈ 0.03(M {sub max}/2.5 × 10{sup 5} M {sub ☉}){sup 0.33}, respectively. Moreover, the SFR of our model clouds follows closely the SFR-dense gas mass relation recently found by Lada et al. during the epoch when their instantaneous SFEs are comparable to those of the clouds considered by those authors. Collectively, a Monte Carlo integration of the model-predicted SFR(M) over a Galactic giant molecular cloud mass spectrum yields values for the total Galactic SFR that are within half an order of magnitude of the relation obtained by Gao and Solomon. Our results support the scenario that star-forming MCs may be in global gravitational collapse and that the low observed values of the SFR and SFE are a result of the interruption of each SF episode, caused primarily by the ionizing feedback from massive stars.

  10. The role of organic compounds in cloud formation: Relative importance of entrainment, co-condensation and particle-phase properties

    NASA Astrophysics Data System (ADS)

    Lowe, Samuel; Partridge, Daniel; Topping, David; Riipinen, Ilona

    2016-04-01

    The organic fraction of atmospheric aerosols is widely acknowledged to affect the cloud nucleating potential of aerosols. Cloud droplet formation through activation of non-volatile CCN is considered to be relatively well understood, however, there are fewer systematic studies on the activation of aerosols containing semi-volatile organic compounds that co-condense alongside water vapour, thus enhancing CCN activity. Although the significance of co-condensation of organic vapours for cloud droplet number concentration predictions has recently been identified, it remains uncertain how this process may interact with atmospheric dynamics. In addition to co-condensation of existing in-cloud material, additional semi-volatile mass can be entrained from the surrounding environment. Reduced cloud droplet number concentrations are expected as the parcel is diluted with clean air; however, additional soluble mass in the particle phase promotes droplet activation. The extent of increased droplet activation due to co-condensation relies also on the physiochemical properties of the organic compounds, as seen in several other phase partitioning sensitivity studies. In this work we study the simultaneous impact of entrainment and co-condensation, the relative importance of these two processes at different atmospheric conditions, their interactions with each other, and the particle-phase chemistry in terms of cloud microphysical properties and their parametric sensitivities. To assess the importance of the entrainment of semi-volatile materials as compared with their co-condensation and chemical properties, a pseudo-adiabatic cloud parcel model with a detailed description of bin microphysics is employed. We have added the co-condensation process to the model such that it is coupled with the parametric entrainment representation. The effects of entrainment and co-condensation are benchmarked independently and simultaneously against a control simulation. Furthermore, we probe the

  11. Barium cloud evolution and striation formation in the magnetospheric release on September 21, 1971

    NASA Technical Reports Server (NTRS)

    Adamson, D.; Fricke, C. L.

    1974-01-01

    The joint NASA-Max Planck Institute Barium Ion Cloud (BIC) Experiment on September 21, 1971 involved the release of 1.7 kg of neutral barium at an altitude of 31,500 km at a latitude of 6.93 deg N. and a longitude of 74.40 deg W. A theoretical model describing the barium neutral cloud expansion and the ion cloud formation is developed. The mechanism of formation of the striational features observed in the release is also discussed. Two candidate instabilities, which may contribute to striation formation, are examined. The drift instability stemming from the outwardly directed drag force exerted on the ions by the outstreaming neutrals is rejected on the grounds that the ion density is too low during the collision-dominated phase of the cloud expansion to support this kind of instability. The joint action of Rayleigh-Taylor and flute instabilities plausibly accounts for the observed striational structure. This same mechanism may well be operative at times of sudden injection of plasma into the inner magnetosphere during geomagnetic storms and may thus contribute to the formation of field-alined inhomogeneities which serve as whistler ducts.

  12. Radiative Interaction of Shocks with Small Interstellar Clouds as a Pre-stage to Star Formation

    NASA Astrophysics Data System (ADS)

    Johansson, Erik P. G.; Ziegler, Udo

    2013-03-01

    Cloud compression by external shocks is believed to be an important triggering mechanism for gravitational collapse and star formation in the interstellar medium. We have performed MHD simulations to investigate whether the radiative interaction between a shock wave and a small interstellar cloud can induce the conditions for Jeans instability and how the interaction is influenced by magnetic fields of different strengths and orientation. The simulations use the NIRVANA code in three dimensions with anisotropic heat conduction and radiative heating/cooling at an effective resolution of 100 cells per cloud radius. Our cloud has radius 1.5 pc, has density 17 cm-3, is embedded in a medium of density 0.17 cm-3, and is struck by a planar Mach 30 shock wave. The simulations produce dense, cold fragments similar to those of Mellema et al. and Fragile et al. We do not find any regions that are Jeans unstable but do record transient cloud density enhancements of factors ~103-105 for the bulk of the cloud mass, which then decline and converge toward seemingly stable net density enhancement factors ~102-104. Our run with a weak, initial magnetic field (β = 103) perpendicular to the shock normal stands out as producing the most lasting density enhancements. We interpret this field strength as being the compromise between weak internal magnetic pressure preventing compression and sufficiently strong magnetic field to thermally insulate the condensations, thus helping them cool radiatively.

  13. Ice nucleation by cellulose and its potential contribution to ice formation in clouds

    NASA Astrophysics Data System (ADS)

    Hiranuma, N.; Möhler, O.; Yamashita, K.; Tajiri, T.; Saito, A.; Kiselev, A.; Hoffmann, N.; Hoose, C.; Jantsch, E.; Koop, T.; Murakami, M.

    2015-04-01

    Ice particles in the atmosphere influence clouds, precipitation and climate, and often form with help from aerosols that serve as ice-nucleating particles. Biological particles, including non-proteinaceous ones, contribute to the diverse spectrum of ice-nucleating particles. However, little is known about their atmospheric abundance and ice nucleation efficiency, and their role in clouds and the climate system is poorly constrained. One biological particle type, cellulose, has been shown to exist in an airborne form that is prevalent throughout the year even at remote and elevated locations. Here we report experiments in a cloud simulation chamber to demonstrate that microcrystalline cellulose particles can act as efficient ice-nucleating particles in simulated supercooled clouds. In six immersion mode freezing experiments, we measured the ice nucleation active surface-site densities of aerosolized cellulose across a range of temperatures. Using these active surface-site densities, we developed parameters describing the ice nucleation ability of these particles and applied them to observed atmospheric cellulose and plant debris concentrations in a global aerosol model. We find that ice nucleation by cellulose becomes significant (>0.1 l-1) below about -21 °C, temperatures relevant to mixed-phase clouds. We conclude that the ability of cellulose to act as ice-nucleating particles requires a revised quantification of their role in cloud formation and precipitation.

  14. Star formation triggered by non-head-on cloud-cloud collisions, and clouds with pre-collision sub-structure

    NASA Astrophysics Data System (ADS)

    Balfour, S. K.; Whitworth, A. P.; Hubber, D. A.

    2017-03-01

    In an earlier paper, we used smoothed particle hydrodynamics (SPH) simulations to explore star formation triggered by head-on collisions between uniform-density 500 M⊙ clouds, and showed that there is a critical collision velocity, vCRIT. At collision velocities below vCRIT, a hub-and-spoke mode operates and delivers a monolithic cluster with a broad mass function, including massive stars (M⋆ ≳ 10 M⊙) formed by competitive accretion. At collision velocities above vCRIT, a spider's-web mode operates and delivers a loose distribution of small sub-clusters with a relatively narrow mass function and no massive stars. Here we show that, if the head-on assumption is relaxed, vCRIT is reduced. However, if the uniform-density assumption is also relaxed, the collision velocity becomes somewhat less critical: a low collision velocity is still needed to produce a global hub-and-spoke system and a monolithic cluster, but, even at high velocities, large cores - capable of supporting competitive accretion and thereby producing massive stars - can be produced. We conclude that cloud-cloud collisions may be a viable mechanism for forming massive stars - and we show that this might even be the major channel for forming massive stars in the Galaxy.

  15. Giant Molecular Clouds and Star Formation in the Non-Grand Design Spiral Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Rebolledo, David; Wong, T.; Leroy, A.

    2012-01-01

    Although the internal physical properties of molecular clouds have been extensively studied (Solomon et al. 1987), a more detailed understanding of their origin and evolution in different types of galaxies is needed. In order to disentangle the details of this process, we performed CO(1-0) CARMA observations of the eastern part of the multi-armed galaxy NGC 6946. Although we found no evidence of an angular offset between molecular gas, atomic gas and star formation regions in our observations (Tamburro et al. 2008), we observe a clear radial progression from regions where molecular gas dominates over atomic gas (for r ≤ 2.8 kpc) to regions where the gas becomes mainly atomic (5.6 kpc ≤ r ≤ 7.6 kpc) when azimuthally averaged. In addition, we found that the densest concentrations of molecular gas are located on arms, particularly where they appear to intersect, which is in concordance with the predictions by simulations of the spiral galaxies with an active potential (Clarke & Gittins 2006; Dobbs & Bonnell 2008). At CO(1-0) resolution (140 pc), we were able to find CO emitting complexes with masses greater than those of typical Giant Molecular Clouds (105-106 M⊙). To identify GMCs individually and make a more detailed study of their physical properties, we made D array observations of CO(2-1) toward the densest concentrations of gas, achieving a resolution similar to GMCs sizes found in other galaxies (Bolatto et al. 2008). We present first results about differences in properties of the on-arm clouds and inter-arm clouds. We found that, in general, on-arm clouds present broader line widths, are more massive and more active in star formation than inter-arm clouds. We investigated if the velocity dispersion observed in CO(1-0) emitting complexes reflects velocity differences between unresolved smaller clouds, or if it corresponds to actual internal turbulence of the gas observed.

  16. Reassessing the formation of the inner Oort cloud in an embedded star cluster

    NASA Astrophysics Data System (ADS)

    Brasser, R.; Duncan, M. J.; Levison, H. F.; Schwamb, M. E.; Brown, M. E.

    2012-01-01

    We re-examine the formation of the inner Oort comet cloud while the Sun was in its birth cluster with the aid of numerical simulations. This work is a continuation of an earlier study (Brasser, R., Duncan, M.J., Levison, H.F. [2006]. Icarus 184, 59-82) with several substantial modifications. First, the system consisting of stars, planets and comets is treated self-consistently in our N-body simulations, rather than approximating the stellar encounters with the outer Solar System as hyperbolic fly-bys. Second, we have included the expulsion of the cluster gas, a feature that was absent previously. Third, we have used several models for the initial conditions and density profile of the cluster - either a Hernquist or Plummer potential - and chose other parameters based on the latest observations of embedded clusters from the literature. These other parameters result in the stars being on radial orbits and the cluster collapses. Similar to previous studies, in our simulations the inner Oort cloud is formed from comets being scattered by Jupiter and Saturn and having their pericentres decoupled from the planets by perturbations from the cluster gas and other stars. We find that all inner Oort clouds formed in these clusters have an inner edge ranging from 100 AU to a few hundred AU, and an outer edge at over 100,000 AU, with little variation in these values for all clusters. All inner Oort clouds formed are consistent with the existence of (90377) Sedna, an inner Oort cloud dwarf planetoid, at the inner edge of the cloud: Sedna tends to be at the innermost 2% for Plummer models, while it is 5% for Hernquist models. We emphasise that the existence of Sedna is a generic outcome. We define a 'concentration radius' for the inner Oort cloud and find that its value increases with increasing number of stars in the cluster, ranging from 600 AU to 1500 AU for Hernquist clusters and from 1500 AU to 4000 AU for Plummer clusters. The increasing trend implies that small star

  17. Understanding star formation in molecular clouds. II. Signatures of gravitational collapse of IRDCs

    NASA Astrophysics Data System (ADS)

    Schneider, N.; Csengeri, T.; Klessen, R. S.; Tremblin, P.; Ossenkopf, V.; Peretto, N.; Simon, R.; Bontemps, S.; Federrath, C.

    2015-06-01

    We analyse column density and temperature maps derived from Herschel dust continuum observations of a sample of prominent, massive infrared dark clouds (IRDCs) i.e. G11.11-0.12, G18.82-0.28, G28.37+0.07, and G28.53-0.25. We disentangle the velocity structure of the clouds using 13CO 1→0 and 12CO 3→2 data, showing that these IRDCs are the densest regions in massive giant molecular clouds (GMCs) and not isolated features. The probability distribution function (PDF) of column densities for all clouds have a power-law distribution over all (high) column densities, regardless of the evolutionary stage of the cloud: G11.11-0.12, G18.82-0.28, and G28.37+0.07 contain (proto)-stars, while G28.53-0.25 shows no signs of star formation. This is in contrast to the purely log-normal PDFs reported for near and/or mid-IR extinction maps. We only find a log-normal distribution for lower column densities, if we perform PDFs of the column density maps of the whole GMC in which the IRDCs are embedded. By comparing the PDF slope and the radial column density profile of three of our clouds, we attribute the power law to the effect of large-scale gravitational collapse and to local free-fall collapse of pre- and protostellar cores for the highest column densities. A significant impact on the cloud properties from radiative feedback is unlikely because the clouds are mostly devoid of star formation. Independent from the PDF analysis, we find infall signatures in the spectral profiles of 12CO for G28.37+0.07 and G11.11-0.12, supporting the scenario of gravitational collapse. Our results are in line with earlier interpretations that see massive IRDCs as the densest regions within GMCs, which may be the progenitors of massive stars or clusters. At least some of the IRDCs are probably the same features as ridges (high column density regions with N> 1023 cm-2 over small areas), which were defined for nearby IR-bright GMCs. Because IRDCs are only confined to the densest (gravity dominated

  18. Tiny Molten Droplets, Dusty Clouds, and Planet Formation

    NASA Astrophysics Data System (ADS)

    Taylor, G. J.

    2008-11-01

    Chondrules, millimeter-sized spherules that formed as rapidly-cooled molten droplets, are characteristic of chondrite meteorites. If they formed at low pressure in the solar nebula (the cloud of gas and dust surrounding the infant Sun and from which the planets formed), then they should have lost almost all their inventories of volatile elements, such as sodium, because volatile elements would have boiled off the chondrules when they were molten. Conel Alexander (Carnegie Institution of Washington) and colleagues at Carnegie, the U.S. Geological Survey (Reston), and the American Museum of Natural History (New York) show that there was little sodium loss. They measured the sodium concentrations in numerous crystals of olivine inside chondrules in the Semarkona meteorite. The results show that the variations in concentrations from the centers of crystals to their edges are consistent with crystallization in a molten droplet that was not losing sodium to the surrounding gas. These results are supported by independent measurements by Alexander Borisov (Russian Academy of Sciences, Moscow) and colleagues at the University of Hannover, Georg-August-University Goettingen, and Koln University, all in Germany. Sodium loss could have been suppressed if the gas surrounding each chondrule had a much higher pressure of sodium than that expected for the solar nebula. Such a high pressure of sodium is most easily explained if chondrules formed in a region with a high density of solids. Alexander and his co-workers argue that such dense regions could have enough mass in a small space to collapse by gravity, perhaps forming planetesimals, the first step in constructing the inner planets.

  19. Star Formation in the Filamentary Dark Cloud GF-9: a Multi-Wavelength Intra-Cloud Comparative Study

    NASA Astrophysics Data System (ADS)

    Ciardi, David Robert

    Filamentary dark clouds (FDCs) are a subclass of small molecular clouds containing small numbers of somewhat regularly spaced dense cores connected by lower density gas and dust. Most of the previous work performed on FDCs has concerned the star formation properties of individual dense cores within the FDCs and has not concerned the FDCs as entities of their own. As a result little is known about the general star formation properties of FDCs. The primary question addressed in this work is 'Within filamentary dark clouds, how does the star formation process within a core region compare to that within a filamentary region?' In order to address the above question, a multi-wavelength observational comparative study has been performed upon a representative dense core (hereafter, GF9-Core) and filamentary region (hereafter, GF9-Fila) within the FDC GF-9 (LDN 1082). At the Five College Radio Astronomy Observatory, the core and filamentary region were observed in the rotational transitions of 12CO/ (J=1/to0),/ 13CO/ (J=1/to0)/ and/ CS/ (J=2/to1) covering a region of 10' x 8'. The temperature, density and kinematic structures of the two regions were deduced from the radio imaging spectroscopy data and were used to estimate the energy balance of the regions. We also obtained 70, 100, 135 and 200 μm images from the Infrared Space Observatory (ISO) covering approximately 12' x 9' which were used to investigate the temperature and density distributions of the dust within the two regions. Finally, at the Wyoming Infrared Observatory using the Aerospace Corporation NICMOS3 camera, the core and filament were imaged in the near-infrared broadband filters J, H, and K-short covering a slightly smaller region of 7' x 7'. The near-infrared survey data were used to search for embedded Class I and Class II protostars and to investigate the density distribution of the dust. We have found that the evolutionary processes of the core region and the filament region proceed along similar

  20. Diffusion and reaction of pollutants in stratus clouds: application to nocturnal acid formation in plumes

    SciTech Connect

    Seigneur, C.; Saxena, P.; Mirabella, V.A.

    1985-09-01

    A mathematical model is presented that describes the transport, turbulent diffusion, and chemical reactions of air pollutants in stratus clouds. The chemical kinetic mechanism treats 97 gaseous, heterogeneous, and aqueous reactions between 54 species. The dispersion and night-time chemistry of a power plant plume in a stratus cloud is simulated. The contributions of various chemical pathways to the formation of sulfate and nitrate, the differences between plume and background concentrations, and the effect of reduced primary emissions on secondary pollutants are discussed. Calculated sulfate and nitrate concentrations are commensurate with measured atmospheric concentrations.

  1. Star formation in a turbulent framework: from giant molecular clouds to protostars

    NASA Astrophysics Data System (ADS)

    Guszejnov, Dávid; Hopkins, Philip F.

    2016-06-01

    Turbulence is thought to be a primary driving force behind the early stages of star formation. In this framework large, self-gravitating, turbulent clouds fragment into smaller clouds which in turn fragment into even smaller ones. At the end of this cascade we find the clouds which collapse into protostars. Following this process is extremely challenging numerically due to the large dynamical range, so in this paper we propose a semi-analytic framework which is able to model star formation from the largest, giant molecular cloud scale, to the final protostellar size scale. Because of the simplicity of the framework it is ideal for theoretical experimentation to explore the principal processes behind different aspects of star formation, at the cost of introducing strong assumptions about the collapse process. The basic version of the model discussed in this paper only contains turbulence, gravity and crude assumptions about feedback; nevertheless it can reproduce the observed core mass function and provide the protostellar system mass function (PSMF), which shows a striking resemblance to the observed initial mass function (IMF), if a non-negligible fraction of gravitational energy goes into turbulence. Furthermore we find that to produce a universal IMF protostellar feedback must be taken into account otherwise the PSMF peak shows a strong dependence on the background temperature.

  2. Formation of iron nanoparticles and increase in iron reactivity in mineral dust during simulated cloud processing.

    PubMed

    Shi, Zongbo; Krom, Michael D; Bonneville, Steeve; Baker, Alex R; Jickells, Timothy D; Benning, Liane G

    2009-09-01

    The formation of iron (Fe) nanoperticles and increase in Fe reactivity in mineral dust during simulated cloud processing was investigated using high-resolution microscopy and chemical extraction methods. Cloud processing of dust was experimentally simulated via an alternation of acidic (pH 2) and circumneutral conditions (pH 5-6) over periods of 24 h each on presieved (<20 microm) Saharan soil and goethite suspensions. Microscopic analyses of the processed soil and goethite samples reveal the neo-formation of Fe-rich nanoparticle aggregates, which were not found initially. Similar Fe-rich nanoparticles were also observed in wet-deposited Saharen dusts from the western Mediterranean but not in dry-deposited dust from the eastern Mediterranean. Sequential Fe extraction of the soil samples indicated an increase in the proportion of chemically reactive Fe extractable by an ascorbate solution after simulated cloud processing. In addition, the sequential extractions on the Mediterranean dust samples revealed a higher content of reactive Fe in the wet-deposited dust compared to that of the dry-deposited dust These results suggestthat large variations of pH commonly reported in aerosol and cloud waters can trigger neo-formation of nanosize Fe particles and an increase in Fe reactivity in the dust

  3. The Relationship Between Gas and Star Formation in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Jameson, Katherine; Bolatto, Alberto D.; Leroy, Adam K.; Meixner, Margaret; Roman-Duval, Julia; Gordon, Karl D.; Heritage Collaboration

    2015-01-01

    The low-mass, low-metallicity Magellanic Clouds provide ideal laboratories to study the physics of star formation at high resolution. We map the molecular gas distribution in the Large and Small Magellanic Clouds (LMC and SMC, respectively) by using the dust emission from HERITAGE Herschel data, which avoids the known biases of CO. Given the high resolution of the data (r˜20"˜5 pc for the LMC HERITAGE maps), we show the effect of convolving to resolutions up to r˜1 kpc and how the resolution differences compare to other studies of nearby galaxies. We find that the relationship between the molecular gas and star formation rate is consistent with studies of higher mass disk galaxies (i.e., Bigiel et al. 2011, Leroy et al. 2013), although the average molecular gas depletion time in the Magellanic Clouds may be shorter (~0.5 Gyr) than more massive, higher metallicity galaxies (typically ~2 Gyr). In the SMC, we find warm molecular gas fractions of ~10% using S4MC Spitzer IRS data of the rotational H2 lines, which is also consistent with higher mass, higher metallicity galaxies. Finally, we compare the total gas (atomic and molecular) and the star formation rate in the Magellanic Clouds to the model predictions from Krumholz (2013) and Ostriker, McKee, & Leroy (2010) and find that both models are consistent with the data.

  4. Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Lossow, S.; Stiller, G.; Weigel, K.; Braesicke, P.; Pitts, M. C.; Rozanov, A.; Burrows, J. P.; Murtagh, D.

    2016-01-01

    More than a decade ago it was suggested that a cooling of stratospheric temperatures by 1 K or an increase of 1 ppmv of stratospheric water vapour could promote denitrification, the permanent removal of nitrogen species from the stratosphere by solid polar stratospheric cloud (PSC) particles. In fact, during the two Arctic winters 2009/10 and 2010/11 the strongest denitrification in the recent decade was observed. Sensitivity studies along air parcel trajectories are performed to test how a future stratospheric water vapour (H2O) increase of 1 ppmv or a temperature decrease of 1 K would affect PSC formation. We perform our study based on measurements made during the Arctic winter 2010/11. Air parcel trajectories were calculated 6 days backward in time based on PSCs detected by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations). The sensitivity study was performed on single trajectories as well as on a trajectory ensemble. The sensitivity study shows a clear prolongation of the potential for PSC formation and PSC existence when the temperature in the stratosphere is decreased by 1 K and water vapour is increased by 1 ppmv. Based on 15 years of satellite measurements (2000-2014) from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS, Envisat/SCIAMACHY and SCISAT/ACE-FTS it is further investigated if there is a decrease in temperature and/or increase of water vapour (H2O) observed in the polar regions similar to that observed at midlatitudes and in the tropics. Performing linear regression analyses we derive from the Envisat/MIPAS (2002-2012) and Aura/MLS (2004-2014) observations predominantly positive changes in the potential temperature range 350 to 1000 K. The linear changes in water vapour derived from Envisat/MIPAS observations are largely insignificant, while those from Aura/MLS are mostly significant. For the temperature neither of the two instruments indicate any significant changes. Given the strong inter-annual variation observed in

  5. Star formation in massive Milky Way molecular clouds: Building a bridge to distant galaxies

    NASA Astrophysics Data System (ADS)

    Willis, Sarah Elizabeth

    The Kennicutt-Schmidt relation is an empirical power-law linking the surface density of the star formation rate (SigmaSFR) to the surface density of gas (Sigmagas ) averaged over the observed face of a starforming galaxy Kennicutt (1998). The original presentation used observations of CO to measure gas density and H alpha emission to measure the population of hot, massive young stars (and infer the star formation rate). Observations of Sigma SFR from a census of young stellar objects in nearby molecular clouds in our Galaxy are up to 17 times higher than the extragalactic relation would predict given their Sigmagas. These clouds primarily form low-mass stars that are essentially invisible to star formation rate tracers. A sample of six giant molecular cloud (GMC) complexes with signposts of massive star formation was identified in our galaxy. The regions selected have a range of total luminosity and morphology. Deep ground-based observations in the near-infrared with NEWFIRM and IRAC observations with the Spitzer Space Telescope were used to conduct a census of the young stellar content associated with each of these clouds. The star formation rates from the stellar census in each of these regions was compared with the star formation rates measured by extragalactic star formation rate tracers based on monochromatic mid-infrared luminosities. Far-infrared Herschel observations from 160 through 500 mum were used to determine the column density and temperature in each region. The region NGC 6334 served as a test case to compare the Herschel column density measurements with the measurements for near-infrared extinction. The combination of the column density maps and the stellar census lets us examine SigmaSFR vs. Sigma gas for the massive GMCs. These regions are consistent with the results for the low-mass molecular clouds, indicating Sigma SFR levels that are higher than predicted based on Sigma gas. The overall Sigmagas levels are higher for the massive star forming

  6. Recent star formation in the Lupus clouds as seen by Herschel

    NASA Astrophysics Data System (ADS)

    Rygl, K. L. J.; Benedettini, M.; Schisano, E.; Elia, D.; Molinari, S.; Pezzuto, S.; André, Ph.; Bernard, J. P.; White, G. J.; Polychroni, D.; Bontemps, S.; Cox, N. L. J.; Di Francesco, J.; Facchini, A.; Fallscheer, C.; di Giorgio, A. M.; Hennemann, M.; Hill, T.; Könyves, V.; Minier, V.; Motte, F.; Nguyen-Luong, Q.; Peretto, N.; Pestalozzi, M.; Sadavoy, S.; Schneider, N.; Spinoglio, L.; Testi, L.; Ward-Thompson, D.

    2013-01-01

    We present a study of the star formation histories of the Lupus I, III, and IV clouds using the Herschel 70-500 μm maps obtained by the Herschel Gould Belt Survey Key Project. By combining the new Herschel data with the existing Spitzer catalog we obtained an unprecedented census of prestellar sources and young stellar objects in the Lupus clouds, which allowed us to study the overall star formation rate (SFR) and efficiency (SFE). The high SFE of Lupus III, its decreasing SFR, and its large number of pre-main sequence stars with respect to proto- and prestellar sources, suggest that Lupus III is the most evolved cloud, and after having experienced a major star formation event in the past, is now approaching the end of its current star-forming cycle. Lupus I is currently undergoing a large star formation event, apparent by the increasing SFR, the large number of prestellar objects with respect to more evolved objects, and the high percentage of material at high extinction (e.g., above AV ≈ 8 mag). Also Lupus IV has an increasing SFR; however, the relative number of prestellar sources is much lower, suggesting that its star formation has not yet reached its peak. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Appendix A is available in electronic form at http://www.aanda.org

  7. Recent Star Formation in the Lupus Clouds as Seen by Herschel

    NASA Astrophysics Data System (ADS)

    Rygl, Kazi L. J.; Benedettini, Milena

    We present a study of the star formation histories of the Lupus I, III, and IV clouds using the Herschel 70-500 μm maps obtained by the Herschel Gould Belt Survey Key-Project. By combining the new Herschel data with the existing Spitzer catalog we obtained an unprecedented census of prestellar sources and young stellar objects in the Lupus clouds, which allowed us to study the overall star formation rate (SFR) and efficiency (SFE). The high SFE of Lupus III and its decreasing SFR suggest that Lupus III is the most evolved cloud, that after having experienced a major star formation event, is now approaching the end of its current star-forming cycle. Lupus I is currently undergoing a large star formation event, apparent by the increasing SFR. Also Lupus IV has an increasing SFR, however, the relative number of prestellar sources is much lower than in Lupus I, suggesting that its star formation has not yet reached its peak.

  8. Formation and aging of secondary organic aerosol from isoprene photooxidation during cloud condensation-evaporation cycles

    NASA Astrophysics Data System (ADS)

    Giorio, C.; Siekmann, F.; Bregonzio, L.; Temime-Roussel, B.; Ravier, S.; Tapparo, A.; Kalberer, M.; Doussin, J.; Monod, A.

    2013-12-01

    Biogenic volatile organic compounds (BVOCs) can be oxidized in the gas phase to form more water-soluble compounds which could partition into atmospheric water droplets. Oxidation processes in the liquid phase could produce high molecular weight and less volatile compounds which can partly remain in the particle phase after water evaporation (Ervens et al., 2011). This work investigates the formation and composition of secondary organic aerosol (SOA) from the photooxidation of isoprene (the most abundant BVOC) and methacrolein (its main first-generation oxidation product). The experiments were performed during the CUMULUS (CloUd MULtiphase chemistry of organic compoUndS in the troposphere) campaigns at the 4.2 m3 stainless steel CESAM chamber at LISA, specifically designed to investigate multiphase processes (Wang et al., 2011). In each experiment, 500/1000 ppb of isoprene or methacrolein were injected in the chamber together with HONO before irradiation. Gas phase oxidation products have been analyzed on-line by a Proton Transfer Reaction Mass Spectrometer (PTR-MS) and a Fourier Transform Infrared Spectrometer (FTIR) together with NOx and O3 analyzers. SOA formation and composition has been followed on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-Of-Flight Aerosol Mass Spectrometer (HR-TOF-AMS). Particular attention has been focused on the study of SOA formation and aging during cloud condensation-evaporation cycles simulated in the smog chamber. In all experiments, we noted that water soluble gas-phase oxidation products readily partition into cloud droplets accompanied by a prompt SOA production during cloud formation which partly persists after cloud evaporation. Ervens, B. et al. (2011) Atmos. Chem. Phys. 11, 11069 11102. Wang, J. et al. (2011) Atmos. Measur. Tech. 4, 2465 2494.

  9. High-Velocity Star Formation in the Large Magellanic Cloud.

    PubMed

    Graff; Gould

    2000-05-01

    Light-echo measurements show that SN 1987A is 425 pc behind the LMC disk. It is continuing to move away from the disk at 18 km s-1. Thus, it has been suggested that SN 1987A was ejected from the LMC disk. However, SN 1987A is a member of a star cluster, so this entire cluster would have to have been ejected from the disk. We show that the cluster was formed in the LMC disk, with a velocity perpendicular to the disk of about 50 km s-1. Such high-velocity formation of a star cluster is unusual, having no known counterpart in the Milky Way.

  10. The Formation of First Generation Stars and Globular Clusters in Protogalactic Clouds

    SciTech Connect

    Murray, S

    2003-07-07

    Within collapsing protogalaxies, thermal instability leads to the formation of a population of cool fragments which are confined by the pressure of a residual hot background medium. The critical mass required for the cold clouds to become gravitationally unstable and to form stars is determined by both their internal temperature and external pressure. Massive first generation stars form in primordial clouds with sufficient column density to shield themselves from external UV photons emitted by nearby massive stars or AGNs. Less massive photoionized clouds gain mass due to ram pressure stripping by the residual halo gas. Collisions may also trigger thermal instability and fragmentation into cloudlets. While most cloudlets have substellar masses, the largest become self-gravitating and collapse to form protostellar cores without further fragmentation. The initial stellar mass function is established as these cores capture additional residual cloudlets. Energy dissipation from the mergers ensures that the cluster remains bound in the limit of low star formation efficiency. Dissipation also promotes the formation and retention of the most massive stars in the cluster center. On the scale of the protogalactic clouds, the formation of massive stars generates intense UV radiation which photoionizes gas and quenches star formation in nearby regions. As gas density accumulates in the center of the galactic potential, the self-regulated star formation rate increases. At the location where most of the residual gas can be converted into stars on its internal dynamical timescale, a galaxy attains its asymptotic kinematic structure such as exponential profiles, Tully-Fisher, and Faber-Jackson laws.

  11. The effect of clouds on photolysis rates and ozone formation in the unpolluted troposphere

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1984-01-01

    The photochemistry of the lower atmosphere is sensitive to short- and long-term meteorological effects; accurate modeling therefore requires photolysis rates for trace gases which reflect this variability. As an example, the influence of clouds on the production of tropospheric ozone has been investigated, using a modification of Luther's two-stream radiation scheme to calculate cloud-perturbed photolysis rates in a one-dimensional photochemical transport model. In the unpolluted troposphere, where stratospheric inputs of odd nitrogen appear to represent the photochemical source of O3, strong cloud reflectance increases the concentration of NO in the upper troposphere, leading to greatly enhanced rates of ozone formation. Although the rate of these processes is too slow to verify by observation, the calculation is useful in distinguishing some features of the chemistry of regions of differing mean cloudiness.

  12. Studies of the effects of electron cloud formation on beam dynamics at CesrTA

    SciTech Connect

    Crittenden, J. A.; Calvey, J. R.; Dugan, G.; Livezey, J. A.; Kreinick, D.L.; Palmer, M. A.; Rubin, D. L.; Harkay, K.; Holtzapple, R. L.; Ohmi, K.; Furman, M. A.; Penn, G.; Venturini, M.; Pivi, M. T. F.; Wang, L.

    2009-05-01

    The Cornell Electron Storage Ring Test Accelerator (CesrTA) has commenced operation as a linear collider damping ring test bed following its conversion from an e{sup +}e{sup -}-collider in 2008. A core component of the research program is the measurement of effects of synchrotron-radiation-induced electron cloud formation on beam dynamics. We have studied the interaction of the beam with the cloud with measurements of coherent tune shifts and emittance growth in various bunch train configurations, bunch currents, beam energies, and bunch lengths, for both e{sup +} and e{sup -} beams. This paper compares a subset of these measurements to modeling results from the two-dimensional cloud simulation packages ECLOUD and POSINST. These codes each model most of the tune shift measurements with remarkable accuracy, while some comparisons merit further investigation.

  13. The VISTA Orion mini-survey: star formation in the Lynds 1630 North cloud

    NASA Astrophysics Data System (ADS)

    Spezzi, L.; Petr-Gotzens, M. G.; Alcalá, J. M.; Jørgensen, J. K.; Stanke, T.; Lombardi, M.; Alves, J. F.

    2015-09-01

    The Orion cloud complex presents a variety of star formation mechanisms and properties and is still one of the most intriguing targets for star formation studies. We present VISTA/VIRCAM near-infrared observations of the L1630N star-forming region, including the stellar clusters NGC 2068 and NGC 2071 in the Orion molecular cloud B, and discuss them in combination with Spitzer data. We select 186 young stellar object (YSO) candidates in the region on the basis of multi-color criteria, confirm the YSO nature of the majority of them using published spectroscopy from the literature, and use this sample to investigate the overall star formation properties in L1630N. The K-band luminosity function of L1630N is remarkably similar to that of the Trapezium cluster, i.e., it presents a broad peak in the range 0.3-0.7 M⊙ and a fraction of substellar objects of ~20%. The fraction of YSOs still surrounded by disk/envelopes is very high (~85%) compared to other star-forming regions of similar age (1-2 Myr), but includes some uncertain corrections for diskless YSOs. Yet, a possibly high disk fraction, together with the fact that 1/3 of the cloud mass has a gas surface density above the threshold for star formation (~129 M⊙ pc-2), points toward a still ongoing star formation activity in L1630N. The star formation efficiency (SFE), star formation rate (SFR), and density of star formation of L1630N are within the ranges estimated for Galactic star-forming regions by the Spitzer core to disk and Gould's Belt surveys. However, the SFE and SFR are lower than the average value measured in the Orion A cloud and, in particular, lower than that in the southern regions of L1630. This might suggest different star formation mechanisms within the L1630 cloud complex. Based on observations collected at the ESO La Silla Paranal Observatory under programme ID 060.A-9285(B).Tables A.1 and A.2 are are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130

  14. Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2008-09-01

    Dust and black carbon aerosol have long been known to have potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of such particles, and ignore interactions of the insoluble fraction with water vapor (even if known to be hydrophilic). To address this gap, we develop a new parameterization framework that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable) particles mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler Theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frankel-Halsey-Hill (FHH) adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory, and i) find combinations of the adsorption parameters AFHH, BFHH for which activation into cloud droplets is not possible, and, ii) express activation properties (critical supersaturation) that follow a simple power law with respect to dry particle diameter. Parameterization formulations are developed for sectional and lognormal aerosol size distribution functions. The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R2 ~0.98.

  15. Ultraviolet Escape Fractions from Giant Molecular Clouds during Early Cluster Formation

    NASA Astrophysics Data System (ADS)

    Howard, Corey; Pudritz, Ralph; Klessen, Ralf

    2017-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the interstellar medium and extragalactic processes such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction (fesc) arising as a consequence of star cluster formation in a turbulent, 106 M⊙ giant molecular cloud, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloud boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at ∼5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum fesc of 30% and 37%, respectively. These peaks are due to the formation of large H ii regions that expand into regions of lower density, some of which reaching the cloud surface. However, these phases are short-lived, and fesc drops sharply as the H ii regions are quenched by the central cluster passing through high-density material due to the turbulent nature of the cloud. We find an average fesc of 15% with factor of two variations over 1 Myr timescales. Our results suggest that assuming a single value for fesc from a molecular cloud is in general a poor approximation, and that the dynamical evolution of the system leads to large temporal variation.

  16. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming

    PubMed Central

    Cronin, Timothy W.; Tziperman, Eli

    2015-01-01

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919

  17. Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.

    PubMed

    Cronin, Timothy W; Tziperman, Eli

    2015-09-15

    High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.

  18. Theory of molecular formation by radiative association in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Bates, D. R.

    1983-01-01

    A theory of molecular formation by radiative association is presented which is consistent with angular momentum being conserved during the encounter and which incorporates explicitly the long-range attraction between the reactants. It is pointed out that the activated complex would not have a Boltzmann energy distribution should the rotational and kinetic temperatures of the reactants differ, and it is shown how allowance for this may be made. Account is taken of the inaccessibility of a considerable fraction of the nuclear spin states of the complex. Methods are given for treating the effect which the finiteness of the dissociation frequency may have on the association rate. Calculations on some reactions of interest are performed. A very simple semiempirical formula for the rate coefficient for radiative association is also given.

  19. Formation of highly porous aerosol particles by atmospheric freeze-drying in ice clouds

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Adler, Gabriela; Koop, Thomas; Taraniuk, Ilya; Moise, Tamar; Koren, Ilan; Heiblum, Reuven; Haspel, Carynelisa

    2014-05-01

    In cold high altitude cirrus clouds and anvils of high convective clouds in the tropics and mid-latitudes, ice partciles that are exposed to subsaturation conditions with respect to ice can sublimate, leaving behind residual modified aerosols. This freeze-drying process can occur in various types of clouds. In this talk we will describe experiements that simulate the atmospheric freeze-drying cycle of aerosols. We find that aerosols with high organic content can form highly porous particles (HPA) with a larger diameter and a lower density than the initial homogenous aerosol following ice subliation. We attribute this morphology change to phase separation upon freezing followed by a glass transition of the organic material that can preserve a porous structure follwoing ice sublimation. We find that the highly porous aerosol scatter solar light less efficiently than non-porous aerosol particles. A porous structure may explain the previously observed enhancement in ice nucleation efficiency of glassy organic particles. These observations may have implications for subsequent cloud formation cycles and aerosol albedo near cloud edges.

  20. Formation of Brown Aqueous Secondary Organic Aerosol during Multiphase Cloud Simulations using the CESAM Chamber Facility

    NASA Astrophysics Data System (ADS)

    Hawkins, L. N.; Welsh, H.; De Haan, D. O.; Doussin, J. F.; Pednekar, R.; Caponi, L.; Pangui, E.; Gratien, A.; Cazaunau, M.; Formenti, P.; Pajunoja, A.

    2015-12-01

    We investigated the formation of aqueous brown carbon (aqBrC) from methylglyoxal and methylamine in multiphase reactions using the CESAM chamber facility at the University Paris-Est Creteil. Following reaction in the chamber, droplets and particles were sampled with a Particle-Into-Liquid-Sampler (PILS), a capillary waveguide cell for UV/visible spectroscopy, and a total organic carbon analyzer (TOC). Particle size distributions were measured with a scanning mobility particle sizer and used to determine the mass absorption coefficient (a normalized absorbance measurement). Absorption spectra were recorded while aerosol or gas phase aqBrC precursors were introduced into the humid chamber. Sampling was continuous during and after cloud events. The events lasted 5-10 minutes and produced measurable brown carbon signal at 365 nm. When lights were used, absorbance at 365 nm decreased steadily indicating photobleaching of aqBrC products or preferential formation of different, non-absorbing products. Although absorptivity increases prior to cloud formation, cloud events produce sharp increased in aqBrC absorptivity. While measurable absorbance at 365 nm indicates aqBrC formation, very little absorbance was recorded beyond 450 nm indicating that the products were not as oligomerized as products observed in prior work in multi-day, bulk phase simulations.

  1. Attack of the flying snakes: formation of isolated H I clouds by fragmentation of long streams

    NASA Astrophysics Data System (ADS)

    Taylor, R.; Davies, J. I.; Jáchym, P.; Keenan, O.; Minchin, R. F.; Palouš, J.; Smith, R.; Wünsch, R.

    2016-09-01

    The existence of long (>100 kpc) H I streams and small (<20 kpc) free-floating H I clouds is well known. While the formation of the streams has been investigated extensively, and the isolated clouds are often purported to be interaction debris, little research has been done on the formation of optically dark H I clouds that are not part of a larger stream. One possibility is that such features result from the fragmentation of more extended streams, while another idea is that they are primordial, optically dark galaxies. We test the validity of the fragmentation scenario (via harassment) using numerical simulations. In order to compare our numerical models with observations, we present catalogues of both the known long H I streams (42 objects) and free-floating H I clouds suggested as dark galaxy candidates (51 objects). In particular, we investigate whether it is possible to form compact features with high velocity widths (>100 km s-1), similar to observed clouds which are otherwise intriguing dark galaxy candidates. We find that producing such features is possible but extremely unlikely, occurring no more than 0.2% of the time in our simulations. In contrast, we find that genuine dark galaxies could be extremely stable to harassment and remain detectable even after 5 Gyr in the cluster environment (with the important caveat that our simulations only explore harassment and do not yet include the intracluster medium, heating and cooling, or star formation). We also discuss the possibility that such objects could be the progenitors of recently discovered ultra diffuse galaxies.

  2. Collapse of primordial gas clouds and the formation of quasar black holes

    NASA Technical Reports Server (NTRS)

    Loeb, Abraham; Rasio, Frederic A.

    1994-01-01

    The formation of quasar black holes during the hydrodynamic collapse of protogalactic gas clouds is discussed. The dissipational collapse and long-term dynamical evolution of these systems is analyzed using three-dimensional numerical simulations. The calculations focus on the final collapse stages of the inner baryonic component and therefore ignore the presence of dark matter. Two types of initial conditions are considered: uniformly rotating spherical clouds, and iirotational ellipsoidal clouds. In both cases the clouds are initially cold, homogeneous, and not far from rotational support (T/(absolute value of W) approximately equals 0.1). Although the details of the dynamical evolution depend sensitively on the initial conditions, the qualitative features of the final configurations do not. Most of the gas is found to fragment into small dense clumps, that eventually make up a spheroidal component resembling a galactic bulge. About 5% of the initial mass remains in the form of a smooth disk of gas supported by rotation in the gravitational potential potential well of the outer spheroid. If a central seed black hole of mass approximately greater than 10(exp 6) solar mass forms, it can grow by steady accretion from the disk and reach a typical quasar black hole mass approximately 10(exp 8) solar mass in less than 5 x 10(exp 8) yr. In the absence of a sufficiently massive seed, dynamical instabilities in a strongly self-gravitating inner region of the disk will inhibit steady accretion of gas and may prevent the immediate formation of quasar.

  3. Rapid collisional evolution of comets during the formation of the Oort cloud.

    PubMed

    Stern, S A; Weissman, P R

    2001-02-01

    The Oort cloud of comets was formed by the ejection of icy planetesimals from the region of giant planets--Jupiter, Saturn, Uranus and Neptune--during their formation. Dynamical simulations have previously shown that comets reach the Oort cloud only after being perturbed into eccentric orbits that result in close encounters with the giant planets, which then eject them to distant orbits about 10(4) to 10(5) AU from the Sun (1 AU is the average Earth-Sun distance). All of the Oort cloud models constructed until now simulate its formation using only gravitational effects; these include the influence of the Sun, the planets and external perturbers such as passing stars and Galactic tides. Here we show that physical collisions between comets and small debris play a fundamental and hitherto unexplored role throughout most of the ejection process. For standard models of the protosolar nebula (starting with a minimum-mass nebula) we find that collisional evolution of comets is so severe that their erosional lifetimes are much shorter than the timescale for dynamical ejection. It therefore appears that collisions will prevent most comets escaping from most locations in the region of the giant planets until the disk mass there declines sufficiently that the dynamical ejection timescale is shorter than the collisional lifetime. One consequence is that the total mass of comets in the Oort cloud may be less than currently believed.

  4. Gas Cloud Accretion onto the SMBH SgrA* and Formation of Jet

    NASA Astrophysics Data System (ADS)

    Nishiyama, Shogo

    2013-01-01

    A dense gas cloud is rapidly approaching the Galactic supermassive black hole (SMBH) SgrA^*, and will be ~ 2,200 Schwarzschild radii from the SMBH at the pericenter of its eccentric orbit in Sep 2013. The cloud is expected to be disrupted by instabilities and tidal forces, and the cloud fragments accrete onto the SMBH on the dynamical timescale of several days to several weeks, suggesting a jet formation in 2013. So we are carrying out daily monitoring observations of SgrA^* in near-infrared and radio wavelengths, and we propose quick follow-up observations with Subaru/Gemini. Br-gamma line emission maps obtained with Gemini/NIFS will be used to fine tune our 3D simulation to estimate how much mass is, and when the fragment is accreted onto the SMBH. Polarimetric signals from a jet taken with Subaru/HiCIAO will be compared with the finely tuned simulation to understand the timescale of a jet formation, and to investigate the correlation between the accreted mass of the cloud fragment and a luminosity of a newly-formed jet. Spectroscopic and imaging observations from 1.6 - 11 mum (Subaru/IRCS, COMICS) will also be conducted to understand processes responsible for near to mid-infrared emission during the accretion event.

  5. Effect of cloud-scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing

    NASA Astrophysics Data System (ADS)

    Shi, X.; Liu, X.

    2016-06-01

    Ice nucleation is a critical process for the ice crystal formation in cirrus clouds. The relative contribution of homogeneous nucleation versus heterogeneous nucleation to cirrus formation differs between measurements and predictions from general circulation models. Here we perform large-ensemble simulations of the ice nucleation process using a cloud parcel model driven by observed vertical motions and find that homogeneous nucleation occurs rather infrequently, in agreement with recent measurement findings. When the effect of observed vertical velocity fluctuations on ice nucleation is considered in the Community Atmosphere Model version 5, the relative contribution of homogeneous nucleation to cirrus cloud occurrences decreases to only a few percent. However, homogeneous nucleation still has strong impacts on the cloud radiative forcing. Hence, the importance of homogeneous nucleation for cirrus cloud formation should not be dismissed on the global scale.

  6. A High-Latitude Winter Continental Low Cloud Feedback Suppresses Arctic Air Formation in Warmer Climates

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Tziperman, E.; Li, H.

    2015-12-01

    High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback

  7. Methods of editing cloud and atmospheric layer affected pixels from satellite data

    NASA Technical Reports Server (NTRS)

    Nixon, P. R.; Wiegand, C. L.; Richardson, A. J.; Johnson, M. P. (Principal Investigator)

    1982-01-01

    Subvisible cirrus clouds (SCi) were easily distinguished in mid-infrared (MIR) TIROS-N daytime data from south Texas and northeast Mexico. The MIR (3.55-3.93 micrometer) pixel digital count means of the SCi affected areas were more than 3.5 standard deviations on the cold side of the scene means. (These standard deviations were made free of the effects of unusual instrument error by factoring out the Ch 3 MIR noise on the basis of detailed examination of noisy and noise-free pixels). SCi affected areas in the IR Ch 4 (10.5-11.5 micrometer) appeared cooler than the general scene, but were not as prominent as in Ch 3, being less than 2 standard deviations from the scene mean. Ch 3 and 4 standard deviations and coefficients of variation are not reliable indicators, by themselves, of the presence of SCi because land features can have similar statistical properties.

  8. METHANE-NITROGEN BINARY NUCLEATION: A NEW MICROPHYSICAL MECHANISM FOR CLOUD FORMATION IN TITAN'S ATMOSPHERE

    SciTech Connect

    Tsai, I-Chun; Chen, Jen-Ping; Liang, Mao-Chang

    2012-03-01

    It is known that clouds are present in the troposphere of Titan; however, their formation mechanism, particle size, and chemical composition remain poorly understood. In this study, a two-component (CH{sub 4} and N{sub 2}) bin-microphysics model is developed and applied to simulate cloud formation in the troposphere of Titan. A new process, binary nucleation of particles from CH{sub 4} and N{sub 2} gases, is considered. The model is validated and calibrated by recent laboratory experiments that synthesize particle formation in Titan-like environments. Our model simulations show that cloud layers can be formed at about 20 km with a particle size ranging from one to several hundred {mu}m and number concentration 10{sup -2} to over 100 cm{sup -3} depending on the strength of the vertical updraft. The particles are formed by binary nucleation and grow via the condensation of both CH{sub 4} and N{sub 2} gases, with their N{sub 2} mole fraction varying from <10% in the nucleation stage to >30% in the condensation growth stage. The locally occurring CH{sub 4}-N{sub 2} binary nucleation mechanism is strong and could potentially be more important than the falling condensation nuclei mechanism assumed in many current models.

  9. Dependence of the star formation efficiency on global parameters of molecular clouds

    NASA Astrophysics Data System (ADS)

    Rosas-Guevara, Yetli; Vázquez-Semadeni, Enrique; Gómez, Gilberto C.; Jappsen, A.-Katharina

    2010-08-01

    We investigate the response of the star formation efficiency (SFE) to the main parameters of simulations of molecular cloud formation and evolution (growth and star formation) by the collision of warm diffuse medium [warm neutral medium (WNM)] cylindrical streams, and compare our results with theoretical predictions for this dependence. The parameters we vary are the Mach number of the inflow velocity of the streams, , the rms Mach number, , of the initial background turbulence in the WNM and the total mass contained in the colliding gas streams, Minf, which is eventually deposited in the forming clouds. Because the SFE is a function of time, we define two estimators for it, the `absolute' SFE, measured at t = 25Myr into the simulation's evolution (SFEabs,25), and the `relative' SFE, measured 5Myr after the onset of star formation in each simulation (SFErel,5). The latter is close to the `SFE per free-fall time' for gas at n = 100cm-3. Our simulations suggest that the dominant parameter controlling the SFE is Minf. The SFE in general decreases as this parameter is decreased, presumably because, with the other parameters being equal, smaller fragments are more weakly gravitationally bound. In terms of the initial virial parameter (α ≡ 2Ekin/|Egrav|) of the clouds, our results are qualitatively consistent with the theoretical prediction by Krumholz & McKee that the SFE decreases with increasing α. However, quantitatively, their prediction lies beyond the 1σ error of our observed trend. This may be due to the fact that the simulated clouds develop significant gravitational contraction motions, which overwhelm the initial turbulent motions, contrary to Krumholz & McKee's assumption of stationary turbulent support. We also observe that the SFE decreases (moderately) with increasing , although the SFR increases. The decrease of the SFE with is thus a consequence of the cloud mass accretion rate from the WNM increasing more steeply with this parameter than the SFR

  10. Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2009-04-01

    Dust and black carbon aerosol have long been known to exert potentially important and diverse impacts on cloud droplet formation. Most studies to date focus on the soluble fraction of these particles, and overlook interactions of the insoluble fraction with water vapor (even if known to be hydrophilic). To address this gap, we developed a new parameterization that considers cloud droplet formation within an ascending air parcel containing insoluble (but wettable) particles externally mixed with aerosol containing an appreciable soluble fraction. Activation of particles with a soluble fraction is described through well-established Köhler theory, while the activation of hydrophilic insoluble particles is treated by "adsorption-activation" theory. In the latter, water vapor is adsorbed onto insoluble particles, the activity of which is described by a multilayer Frenkel-Halsey-Hill (FHH) adsorption isotherm modified to account for particle curvature. We further develop FHH activation theory to i) find combinations of the adsorption parameters AFHH, BFHH which yield atmospherically-relevant behavior, and, ii) express activation properties (critical supersaturation) that follow a simple power law with respect to dry particle diameter. The new parameterization is tested by comparing the parameterized cloud droplet number concentration against predictions with a detailed numerical cloud model, considering a wide range of particle populations, cloud updraft conditions, water vapor condensation coefficient and FHH adsorption isotherm characteristics. The agreement between parameterization and parcel model is excellent, with an average error of 10% and R2~0.98. A preliminary sensitivity study suggests that the sublinear response of droplet number to Köhler particle concentration is not as strong for FHH particles.

  11. Hidden Star Formation in High-Velocity Gas Clouds in Clump 2 near the Edge of the CMZ

    NASA Astrophysics Data System (ADS)

    Tolls, Volker; Smith, Howard A.

    2017-01-01

    We present a snapshot of our ongoing investigation of molecular clouds in Clump 2 located in the Galactic Bar region at a projected distance of ~400pc from the Galactic Center. We show that the analysis of the Clump 2 molecular clouds is complicated because of many fore- and background clouds in the line of sight. Of all clouds, IGGC 22 is the most interesting one, showing very high dust column densities, significant high-J CO emission, and, potentially harbors star formations as eluded to by the detection of [OIII] emission.

  12. Implications of Observed High Supersaturation for TTL Cloud Formation and Dehydration

    NASA Technical Reports Server (NTRS)

    Jensen, Eric

    2004-01-01

    In situ measurements of water vapor concentration made during the CRYSTAL-FACE and Pre-AVE missions indicate higher than expected supersaturations in both clear and cloudy air near the cold tropical tropopause: (1) steady-state ice supersaturations of 20-30% were measured within cirrus at T < 200 K; (2) supersaturations exceeding 100% (near water saturation) were observed under cloud-free conditions near 187 K. The in-cloud measurements challenge the conventional belief that any water vapor in excess of ice saturation should be depleted by crystal growth given sufficient time. The high clear-sky supersaturations imply that thresholds for ice nucleation due to homogeneous freezing of aerosols (or any other mechanism) are much higher than those inferred from laboratory measurements. We will use simulations of Tropical Tropopause Layer (TTL) transport and cloud formation throughout the tropics to show that these effects have important implications for TTL cloud frequency and freeze-drying of air crossing the tropical tropopause cold trap.

  13. Formation of low-mass condensations in molecular cloud cores via thermal instability

    NASA Astrophysics Data System (ADS)

    Nejad-Asghar, Mohsen

    2011-06-01

    Low-mass condensations (LMCs) have been observed within molecular cloud cores. In this study, we investigate the effect of the application of isobaric thermal instability (TI) in forming these LMCs. For this purpose, we first investigate the occurrence of TI in molecular clouds. Then, to study the significance of linear isobaric TI, we use a contracting axisymmetric cylindrical core with an axial magnetic field. Consideration of cooling and heating mechanisms in molecular clouds shows that including the heating due to ambipolar diffusion can lead to the occurrence of TI on a time-scale smaller than the dynamical time-scale. Application of linear perturbation analysis shows that isobaric TI can take place in the outer regions of molecular cloud cores. Furthermore, the results show that perturbations with wavelengths greater than few astronomical units are protected from the destabilization property of thermal conduction, so that they can grow to form LMCs. Thus, the results show that the mechanism of TI can be used to explain the formation of LMCs as the progenitors of collapsing protostellar entities, brown dwarfs or protoplanets.

  14. Global aerosol formation and revised radiative forcing based on CERN CLOUD data

    NASA Astrophysics Data System (ADS)

    Gordon, H.; Carslaw, K. S.; Sengupta, K.; Dunne, E. M.; Kirkby, J.

    2015-12-01

    New particle formation in the atmosphere accounts for 40-70% of global cloud condensation nuclei (CCN). It is a complex process involving many precursors: sulphuric acid, ions, ammonia, and a wide range of natural and anthropogenic organic molecules. The CLOUD laboratory chamber experiment at CERN allows the contributions of different compounds to be disentangled in a uniquely well-controlled environment. To date, CLOUD has measured over 500 formation rates (Riccobono 2014, Kirkby 2015, Dunne 2015), under conditions representative of the planetary boundary layer and free troposphere. To understand the sensitivity of the climate to anthropogenic atmospheric aerosols, we must quantify historical aerosol radiative forcing. This requires an understanding of pre-industrial aerosol sources. Here we show pre-industrial nucleation over land usually involves organic molecules in the very first steps of cluster formation. The complexity of the organic vapors is a major challenge for theoretical approaches. Furthermore, with fewer sulphuric acid and ammonia molecules available to stabilize nucleating clusters in the pre-industrial atmosphere, ions from radon or galactic cosmic rays were probably more important than they are today. Parameterizations of particle formation rates determined in CLOUD as a function of precursor concentrations, temperature and ions are being used to refine the GLOMAP aerosol model (Spracklen 2005). The model simulates the growth, transport and loss of particles, translating nucleation rates to CCN concentrations. This allows us to better understand the effects of pre-industrial and present-day particle formation. I will present new results on global CCN based on CLOUD data, including estimates of anthropogenic aerosol radiative forcing, currently the most uncertain driver of climate change (IPCC 2013). References: Riccobono, F. et al, Science 344 717 (2014); Kirkby, J. et al, in review; Dunne, E. et al, in preparation; Spracklen, D. et al, Atmos

  15. Effects of Deep Convection on Upper Tropospheric Outflow Ice Supersaturation and Cirrus Cloud Formation

    NASA Astrophysics Data System (ADS)

    DiGangi, J. P.; O'Brien, A.; Diao, M.; Beaton, S. P.; Zondlo, M. A.

    2013-12-01

    A barrier in constraining the Earth's radiative forcing budget stems from the large uncertainties associated with cloud formation and dynamics. Recent work* has shown that small scale dynamics play a significant role in controlling the relative humidity of the upper troposphere and, in turn, the microphysics of cirrus clouds. While there has been significant discussion of the long-term transport effects of ground level trace gases and aerosols, only recently have datasets become available which examine the effects of fast convective transport on the relatively pristine upper troposphere. During the NSF Deep Convective Clouds and Chemistry (DC3) Experiment in May-June 2012, multiple aircraft, each with a large suite of chemical, aerosol and, cloud physics payloads, were utilized to characterize both the inflow and outflow of deep convective storms over the continental US. We have used data from 10 storms during DC3 as case studies to illustrate the influence of trace gases and aerosols, transported by deep convection to the upper troposphere, on ice supersaturation regions and cirrus cloud formation. Ice supersaturation regions (ISSR), defined as regions with relative humidity greater than 100% at temperatures below -40°C, in the outflow region of each storm are identified using humidity data from the NSF/NCAR VCSEL hygrometer on the NSF G-V. The ISSR intensity of the outflow of a storm is defined as the aggregate mean of the maximum relative humidity encountered in each individual ISSR in this region, a quantity that is observed to increase with ISSR length scales. Coordinated sampling of the inflow region of each storm, determined from NEXRAD radar measurements and flight tracks combined with notes from the flight summaries, by the NASA DC-8 provide a characterization of the chemical and particulate composition at the base of the storm. Mineral and nitrate particulate in the storm inflow are observed to have strong positive correlations with the ISSR intensity in

  16. Importance of Chemical Composition of Ice Nuclei on the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, Setigui Aboubacar; Girard, Eric

    2016-09-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation remain poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TICs-1 are composed by non-precipitating small (radar-unseen) ice crystals of less than 30 μm in diameter. The second type, TICs-2, are detected by radar and are characterized by a low concentration of large precipitating ice crystals ice crystals (>30 μm). To explain these differences, we hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibits the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a lower concentration of larger ice crystals. Water vapor available for deposition being the same, these crystals reach a larger size. Current weather and climate models cannot simulate these different types of ice clouds. This problem is partly due to the parameterizations implemented for ice nucleation. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation on IN of different chemical compositions have been developed. These parameterizations are based on two approaches: stochastic (that is nucleation is a probabilistic process, which is time dependent) and singular (that is nucleation occurs at fixed conditions of temperature and humidity and time-independent). The best approach remains unclear. This research aims to better understand the formation process of Arctic TICs using recently developed ice nucleation parameterizations. For this purpose, we have implemented these ice nucleation parameterizations into the Limited Area version of the Global Multiscale Environmental Model

  17. Flow-driven cloud formation and fragmentation: results from Eulerian and Lagrangian simulations

    NASA Astrophysics Data System (ADS)

    Heitsch, Fabian; Naab, Thorsten; Walch, Stefanie

    2011-07-01

    The fragmentation of shocked flows in a thermally bistable medium provides a natural mechanism to form turbulent cold clouds as precursors to molecular clouds. Yet because of the large density and temperature differences and the range of dynamical scales involved, following this process with numerical simulations is challenging. We compare two-dimensional simulations of flow-driven cloud formation without self-gravity, using the Lagrangian smoothed particle hydrodynamics (SPH) code VINE and the Eulerian grid code PROTEUS. Results are qualitatively similar for both methods, yet the variable spatial resolution of the SPH method leads to smaller fragments and thinner filaments, rendering the overall morphologies different. Thermal and hydrodynamical instabilities lead to rapid cooling and fragmentation into cold clumps with temperatures below 300 K. For clumps more massive than 1 M⊙ pc-1, the clump mass function has an average slope of -0.8. The internal velocity dispersion of the clumps is nearly an order of magnitude smaller than their relative motion, rendering it subsonic with respect to the internal sound speed of the clumps but supersonic as seen by an external observer. For the SPH simulations most of the cold gas resides at temperatures below 100 K, while the grid-based models show an additional, substantial component between 100 and 300 K. Independent of the numerical method, our models confirm that converging flows of warm neutral gas fragment rapidly and form high-density, low-temperature clumps as possible seeds for star formation.

  18. Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT)

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-09-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  19. Heterogeneous Formation of Polar Stratospheric Clouds- Part 1: Nucleation of Nitric Acid Trihydrate (NAT)

    NASA Technical Reports Server (NTRS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooss, J.-U.; Peter, T.

    2013-01-01

    Satellite-based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid-December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled a thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed polar stratospheric clouds (PSCs) very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  20. Seeding the Galactic Centre gas stream: gravitational instabilities set the initial conditions for the formation of protocluster clouds

    NASA Astrophysics Data System (ADS)

    Henshaw, J. D.; Longmore, S. N.; Kruijssen, J. M. D.

    2016-11-01

    Star formation within the Central Molecular Zone (CMZ) may be intimately linked to the orbital dynamics of the gas. Recent models suggest that star formation within the dust ridge molecular clouds (from G0.253+0.016 to Sgr B2) follows an evolutionary time sequence, triggered by tidal compression during their preceding pericentre passage. Given that these clouds are the most likely precursors to a generation of massive stars and extreme star clusters, this scenario would have profound implications for constraining the time-evolution of star formation. In this Letter, we search for the initial conditions of the protocluster clouds, focusing on the kinematics of gas situated upstream from pericentre. We observe a highly regular corrugated velocity field in {l, vLSR} space, with amplitude and wavelength A = 3.7 ± 0.1 km s-1 and λvel,i = 22.5 ± 0.1 pc, respectively. The extremes in velocity correlate with a series of massive (˜104 M⊙) and compact (Req ˜ 2 pc), quasi-regularly spaced (˜8 pc), molecular clouds. The corrugation wavelength and cloud separation closely agree with the predicted Toomre (˜17 pc) and Jeans (˜6 pc) lengths, respectively. We conclude that gravitational instabilities are driving the condensation of molecular clouds within the Galactic Centre gas stream. Furthermore, we speculate these seeds are the historical analogue of the dust-ridge molecular clouds, representing the initial conditions of star and cluster formation in the CMZ.

  1. The Formation of the Local Group and the High Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Spergel, D. N.; Blitz, L.; Teuben, P. J.; Hartmann, D.; Burton, B.

    1996-12-01

    We simulate the formation and evolution of the Local Group. The dynamics of the Local Group is governed primarily by the its two largest members, Andromeda (M31) and the Galaxy (M0) and secondarily by the tidal effects of neighboring galaxies. In the simulation, a long filament forms which contains M31 and M0. While the gas near M31 and M0 is likely shock heated, we expect that much of the gas in the filament is cold. The kinematics of this gas in the simulation is remarkably similar to the kinematics of the High Velocity Clouds (HVCs). This similarity suggests reinterpreting the HVCs as primarily extragalactic. In this model, the HVCs are similar to the Lyman alpha clouds. Recent work (Hernquist et al. 996) suggests that the Lyman alpha clouds are primarily condensations in the filaments between galaxies. We suggest a similar picture for most of the HVCs: they are gravitationally confined, rather than pressure confined, clouds infalling into the Local Group and are likely associated with a substantial amount of dark matter. In this picture, the two phase structure seen in some of the HVCs (Wakker & Schwarz 1991) would be due to self shielding that arises in gas clouds ionized by external UV (Murakami & Ikeuchi 1990). This model suggests that there is a substantial amount of gas in the HVCs: ~ 1 x 10(10) M_sun. This gas is and was a reservoir of relatively unprocessed gas for both M31 and our Galaxy and likely plays an important role in the evolution of both galaxies. Hernquist, L, Katz, N., Weinberg, D. & Miralda-Escude, J. 1996, ApJ L 457, 51 Murakami, I. & Ikeuchi, S. 1990 PASJ, 41 , L11. Wakker, B.P. & Schwarz, U.J. 1991 A & A, 250, 48.

  2. Lidar remote sensing of cloud formation caused by low-level jets

    NASA Astrophysics Data System (ADS)

    Su, Jia; Felton, Melvin; Lei, Liqiao; McCormick, M. Patrick; Delgado, Ruben; St. Pé, Alexandra

    2016-05-01

    In May 2014, the East Hampton Roads Aerosol Flux campaign was conducted at Hampton University to examine small-scale aerosol transport using aerosol, Raman, and Doppler lidars and rawindsonde launches. We present the results of analyses performed on these high-resolution planetary boundary layer and lower atmospheric measurements, with a focus on the low-level jets (LLJs) that form in this region during spring and summer. We present a detailed case study of a LLJ lasting from evening of 20 May to morning of 21 May using vertical profiles of aerosol backscatter, wind speed and direction, water vapor mixing ratio, temperature, and turbulence structure. We show with higher resolution than in previous studies that enhanced nighttime turbulence triggered by LLJs can cause the aerosol and water vapor content of the boundary layer to be transported vertically and form a well-mixed region containing the cloud condensation nuclei that are necessary for cloud formation.

  3. A proposed chemical scheme for HCCO formation in cold dense clouds

    NASA Astrophysics Data System (ADS)

    Wakelam, V.; Loison, J.-C.; Hickson, K. M.; Ruaud, M.

    2015-10-01

    The ketenyl radical (HCCO) has recently been discovered in two cold dense clouds with a non-negligible abundance of a few 10-11 (compared to H2). Until now, no chemical network has been able to reproduce this observation. We propose here a chemical scheme that can reproduce HCCO abundances together with HCO, H2CCO and CH3CHO in the dark clouds Lupus-1A and L486. The main formation pathway for HCCO is the OH + CCH → HCCO + H reaction as suggested by Agúndez et al. but with a much larger rate coefficient than used in current models. Since this reaction has never been studied experimentally or theoretically, this larger value is based on a comparison with other similar systems.

  4. THE 'NESSIE' NEBULA: CLUSTER FORMATION IN A FILAMENTARY INFRARED DARK CLOUD

    SciTech Connect

    Jackson, James M.; Finn, Susanna C.; Chambers, Edward T.; Rathborne, Jill M.; Simon, Robert E-mail: sfinn@bu.ed E-mail: rathborn@das.uchile.c

    2010-08-20

    The 'Nessie' Nebula is a filamentary infrared dark cloud (IRDC) with a large aspect ratio of over 150:1 (1.{sup 0}5 x 0.{sup 0}01 or 80 pc x 0.5 pc at a kinematic distance of 3.1 kpc). Maps of HNC (1-0) emission, a tracer of dense molecular gas, made with the Australia Telescope National Facility Mopra telescope, show an excellent morphological match to the mid-IR extinction. Moreover, because the molecular line emission from the entire nebula has the same radial velocity to within {+-}3.4 km s{sup -1}, the nebula is a single, coherent cloud and not the chance alignment of multiple unrelated clouds along the line of sight. The Nessie Nebula contains a number of compact, dense molecular cores which have a characteristic projected spacing of {approx}4.5 pc along the filament. The theory of gravitationally bound gaseous cylinders predicts the existence of such cores, which, due to the 'sausage' or 'varicose' fluid instability, fragment from the cylinder at a characteristic length scale. If turbulent pressure dominates over thermal pressure in Nessie, then the observed core spacing matches theoretical predictions. We speculate that the formation of high-mass stars and massive star clusters arises from the fragmentation of filamentary IRDCs caused by the 'sausage' fluid instability that leads to the formation of massive, dense molecular cores. The filamentary molecular gas clouds often found near high-mass star-forming regions (e.g., Orion, NGC 6334, etc.) may represent a later stage of IRDC evolution.

  5. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  6. High-Mass X-ray Binaries in our Backyard: Studying Their Formation and Evolution in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Antoniou, Vallia

    2013-04-01

    Our nearest star-forming galaxy, the Large Magellanic Cloud (LMC), offers unique insights into the observational characteristics of young (<100 Myr) X-ray binaries (XRBs) in other distant star-forming galaxies for which these faint luminosity levels are out of reach. The number of currently known High-Mass X-ray Binaries (HXMBs) in this galaxy 40) allows the investigation of the parameters affecting their formation, such as the star-formation rate, the age of the parent stellar populations and the metallicity. Most importantly though, it allows for a direct comparison with the well-studied population of HMXBs in the Small Magellanic Cloud (SMC). We find that the HMXBs (and as expected the X-ray pulsars) are shown in regions with star-formation rate bursts ~6-25 Myr ago, in contrast to the SMC, for which this population peaks at later ages 25-60 Myr ago), a direct result of the younger parent stellar populations in the LMC. Although the SMC is widely believed to have lower metallicity than the LMC 1/5Zsun and ~1/3Zsun, respectively), in this work we have used the available star-formation history for the youngest stellar populations, even if this resulted in the same metallicity 1/2Zsun for Zsun=0.0134) for the HMXB populations in both Magellanic Clouds, thus in this work we do not investigate directly the effect of metallicity. Using the mean offset between each HMXB and its nearest star cluster, we estimate the distance that the HMXBs may have travelled since birth. Although the HMXBs in the LMC seem to travel twice as large distances as their counterparts in the SMC, at the same time they are significantly younger than the HMXBs in the SMC (i.e. with ages of ~6-25 Myr and ~25-60 Myr, respectively). For this reason, we derive similar kick velocities for the HMXBs in both galaxies, which are also in agreement with values estimated for the Galactic systems 10-20 km/s). The young XRBs are tracers of past populations of massive stars, while the study of their compact

  7. Stratospheric water vapour and temperature variability and their effect on polar stratospheric cloud formation and existence in the Arctic

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Lossow, Stefan; Stiller, Gabriele; Weigel, Katja; Braesicke, Peter; Pitts, Michael C.; Murtagh, Donal

    2015-04-01

    Based on more than 10-years of satellite measurements from UARS/HALOE, Envisat/MIPAS, Odin/SMR, Aura/MLS and SciSat/ACE-FTS we investigate water vapour (H2O) variability in the northern hemisphere polar regions. We find from the observations a connection between cold winters and enhanced water vapour mixing ratios in the lower polar stratosphere (475 to 525 K). We perform a sensitivity study along air parcel trajectories to test how an increase of stratospheric water vapour of 1 ppmv or a temperature decrease of 1 K affects the time period during which polar stratospheric clouds (PSCs) can be formed and exist. Air parcel trajectories were calculated 6-days backward in time. The trajectories were started at the time and locations where PSCs were observed by CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder satellite observations) during the Arctic winter 2010/2011. We test the sensitivity of PSCs formation and existence to changes in H2O and temperature based on PSC observations during this winter since it was one of the coldest Arctic winters in the last decade. The polar vortex persisted over a period of four months, thus leading to extensive PSC formation. During this winter PSCs were detected by CALIPSO on 42 days. In total, 738 trajectories were calculated and analysed. The resulting statistic derived from the air parcel trajectories shows a clear prolongation of the time period where PSCs can be formed and exist when the temperature in the stratosphere is decreased by 1 K and H2O is increased by 1 ppmv. We derive an increase in time where the stratospheric air is exposed to temperatures below Tice and TNAT, respectively, by ~6000 h. Thus, changes in stratospheric water vapour and temperature can prolong PSC formation and existence and thus have a significant influence on the chemistry of the polar stratosphere.

  8. Discovery of star formation in the extreme outer galaxy possibly induced by a high-velocity cloud impact

    SciTech Connect

    Izumi, Natsuko; Kobayashi, Naoto; Hamano, Satoshi; Yasui, Chikako; Tokunaga, Alan T.; Saito, Masao

    2014-11-01

    We report the discovery of star formation activity in perhaps the most distant molecular cloud in the extreme outer galaxy. We performed deep near-infrared imaging with the Subaru 8.2 m telescope, and found two young embedded clusters at two CO peaks of 'Digel Cloud 1' at the kinematic distance of D = 16 kpc (Galactocentric radius R {sub G} = 22 kpc). We identified 18 and 45 cluster members in the two peaks, and the estimated stellar densities are ∼5 and ∼3 pc{sup –2}, respectively. The observed K-band luminosity function suggests that the age of the clusters is less than 1 Myr and also that the distance to the clusters is consistent with the kinematic distance. On the sky, Cloud 1 is located very close to the H I peak of high-velocity cloud Complex H, and there are some H I intermediate velocity structures between the Complex H and the Galactic disk, which could indicate an interaction between them. We suggest the possibility that Complex H impacting on the Galactic disk has triggered star formation in Cloud 1 as well as the formation of the Cloud 1 molecular cloud.

  9. Compositional controls on spinel clouding and garnet formation in plagioclase of olivine metagabbros, Adirondack Mountains, New York

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    Olivine metagabbros from the Adirondacks usually contain both clear and spinel-clouded plagioclase, as well as garnet. The latter occurs primarily as the outer rim of coronas surrounding olivine and pyroxene, and less commonly as lamellae or isolated grains within plagioclase. The formation of garnet and metamorphic spinel is dependent upon the anorthite content of the plagioclase. Plagioclase more sodic than An38??2 does not exhibit spinel clouding, and garnet rarely occurs in contact with plagioclase more albitic than An36??4. As a result of these compositional controls, the distribution of spinel and garnet mimics and visually enhances original igneous zoning in plagioclase. Most features of the arrangement of clear (unclouded) plagioclase, including the shells or moats of clear plagioclase which frequently occur inside the garnet rims of coronas, can be explained on the basis of igneous zoning. The form and distribution of the clear zones may also be affected by the metamorphic reactions which have produced the coronas, and by redistribution of plagioclase in response to local volume changes during metamorphism. ?? 1980 Springer-Verlag.

  10. Oxidant supply and aqueous photochemical SOA formation in cloud droplets and aqueous aerosol

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Ervens, B.; Lim, Y. B.

    2012-12-01

    Many recent laboratory, field and model studies point to significant contributions to the total secondary organic aerosol (SOA) budget from aqueous phase reactions in cloud droplets and aqueous aerosol particles. Laboratory studies of the photochemical oxidation of glyoxal and methylglyoxal in the aqueous phase show a strong dependence on the initial concentration of dissolved organics, with preferential formation of large molecules (dimers, oligomers) at the high concentrations found in ambient deliquesced aerosol particles. In such experimental studies OH radicals are produced in the aqueous phase (via hydrogen peroxide photolysis) and OH radical is assumed to be the major oxidant. An explicit aqueous photooxidation mechanism has been validated, in part, based on the observed temporal evolution of organic intermediates and products in these experiments. In this work, this mechanism was incorporated into multiphase process models (box, cloud parcel) in order to further explore aqueous SOA formation in dilute cloud droplets and concentrated aerosol particles. We found that the predicted SOA mass in both aqueous phases can be comparable despite the much lower liquid water content in aerosols, where oligomer formation is favored. Direct uptake from the gas phase was the largest source of OH radicals in the aqueous phase. In-situ production through the Fenton reaction (Fe), hydrogen peroxide and nitrate photolysis were minor sources. Since phase transfer is slower than the OH(aq) consumption by organics, modeled OH(aq) concentrations were smaller by 1-2 orders of magnitude than predicted based on thermodynamic equilibrium. Our model studies suggest that, unless there are substantial additional sources of OH radical in the aqueous phase, aqueous SOA formation will be oxidant limited. Since the phase transfer rate is a function of the drop (or particle) surface area, aqueous SOA formation may occur preferentially at or near the drop/particle surface (e.g., be surface

  11. Soil-plant-atmosphere conditions regulating convective cloud formation above southeastern US pine plantations.

    PubMed

    Manoli, Gabriele; Domec, Jean-Christophe; Novick, Kimberly; Oishi, Andrew Christopher; Noormets, Asko; Marani, Marco; Katul, Gabriel

    2016-06-01

    Loblolly pine trees (Pinus taeda L.) occupy more than 20% of the forested area in the southern United States, represent more than 50% of the standing pine volume in this region, and remove from the atmosphere about 500 g C m-2 per year through net ecosystem exchange. Hence, their significance as a major regional carbon sink can hardly be disputed. What is disputed is whether the proliferation of young plantations replacing old forest in the southern United States will alter key aspects of the hydrologic cycle, including convective rainfall, which is the focus of the present work. Ecosystem fluxes of sensible (Hs) and latent heat (LE) and large-scale, slowly evolving free atmospheric temperature and water vapor content are known to be first-order controls on the formation of convective clouds in the atmospheric boundary layer. These controlling processes are here described by a zero-order analytical model aimed at assessing how plantations of different ages may regulate the persistence and transition of the atmospheric system between cloudy and cloudless conditions. Using the analytical model together with field observations, the roles of ecosystem Hs and LE on convective cloud formation are explored relative to the entrainment of heat and moisture from the free atmosphere. Our results demonstrate that cloudy-cloudless regimes at the land surface are regulated by a nonlinear relation between the Bowen ratio Bo=Hs/LE and root-zone soil water content, suggesting that young/mature pines ecosystems have the ability to recirculate available water (through rainfall predisposition mechanisms). Such nonlinearity was not detected in a much older pine stand, suggesting a higher tolerance to drought but a limited control on boundary layer dynamics. These results enable the generation of hypotheses about the impacts on convective cloud formation driven by afforestation/deforestation and groundwater depletion projected to increase following increased human population in the

  12. Building a Global Network of Hydro-climatology Sites in Cloud-affected Tropical Montane Forests

    NASA Astrophysics Data System (ADS)

    Moore, G. W.; Asbjornsen, H.; Bruijnzeel, S., Sr.; Berry, Z. C.; Giambelluca, T. W.; Martin, P.; Mulligan, M.

    2015-12-01

    Tropical montane forests are characteristically wet environments with low evapotranspiration and sometimes significant contributions from fog interception. They are often located at headwater catchments critical for water supplies, but ecohydroclimate data in these regions are sparse. Such evidence may be crucial for assessing climate alterations in these sensitive ecosystems. As part of a global effort led by the Tropical Montane Cloud Forest Research Coordination Network (Cloudnet - http://cloudnet.agsci.colostate.edu), we aim to extend the network of tropical montane forest sites and establish robust protocols for measuring key ecohydroclimatic parameters, including fog interception, windblown rain, throughfall, leaf wetness, and micrometeorological conditions. Specific recommendations for standardized protocols include (1) rain and fog collectors uniquely designed to separately quantify fog interception from direct rain inputs, even in windy conditions, (2) trough-style throughfall gages that collect 40 times the area of a typical tipping bucket gage with added features to reduce splash-out, (3) clusters of leaf wetness sensors to differentiate frequency and duration of wetness caused by rain and fog on windward and leeward exposures, and (4) basic micrometeorological sensors for solar radiation, temperature, humidity, and wind. At sites where resources allow for additional measurements, we developed protocols for quantifying soil moisture, soil saturation, and plant water uptake from both roots and leaves (i.e. foliar absorption), since these are also important drivers in these systems. Participating sites will be invited to contribute to a global meta-analysis that will provide new insights into the ecohydrology of cloud-affected tropical montane forests.

  13. Low-Mass Star Formation: From Molecular Cloud Cores to Protostars and Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Inutsuka, S.-I.; Machida, M.; Matsumoto, T.; Tsukamoto, Y.; Iwasaki, K.

    2016-05-01

    This review describes realistic evolution of magnetic field and rotation of the protostars, dynamics of outflows and jets, and the formation and evolution of protoplanetary disks. Recent advances in the protostellar collapse simulations cover a huge dynamic range from molecular cloud core density to stellar density in a self-consistent manner and account for all the non-ideal magnetohydrodynamical effects, such as Ohmic resistivity, ambipolar diffusion, and Hall current. We explain the emergence of the first core, i.e., the quasi-hydrostatic object that consists of molecular gas, and the second core, i.e., the protostar. Ohmic dissipation largely removes the magnetic flux from the center of a collapsing cloud core. A fast well-collimated bipolar jet along the rotation axis of the protostar is driven after the magnetic field is re-coupled with warm gas (˜103 K) around the protostar. The circumstellar disk is born in the "dead zone", a region that is de-coupled from the magnetic field, and the outer radius of the disk increases with that of the dead zone during the early accretion phase. The rapid increase of the disk size occurs after the depletion of the envelope of molecular cloud core. The effect of Hall current may create two distinct populations of protoplanetary disks.

  14. Influence of 2010 Canadian Forest Fires on Cloud Formation on the Regional Scale

    NASA Astrophysics Data System (ADS)

    Walter, C.; Freitas, S. R.; Kraut, I.; Rieger, D.; Vogel, H.; Vogel, B.

    2014-12-01

    In July 2010 a strong biomass burning event occurred in the North of Saskatchewan, Canada. The fires were well observed by satellites. The changing synoptic situation and the variations in plume height created a complex distribution of the emitted gaseous and particulate matter. The comprehensive regional model system COSMO-ART allows us to study the influence of aerosols on the atmosphere. The formation of new aerosol particles from gaseous precursors is as well accounted as changes in the mixing state of existing aerosol particles. The impact of aerosol particles on cloud microphysics and precipitation is simulated by a two-moment scheme in combination with parameterizations for aerosol activation and ice nucleation. To address emissions from biomass burning, the model system was extended by a plume rise model. It delivers the effective emission height which depends on the current state of the atmosphere and the fire intensity. Datasets based on satellites provide the composition and source strength of numerous chemical tracers. With this framework we are able to gain insight into various effects of aerosols from biomass burning. We found that simulated aerosol optical depth is in very good agreement with AERONET measurements. Temperature at the surface is significantly influenced by adsorbing and scattering particles inside elevated smoke layers. This has further impact on thermal stratification. The high aerosol load inside clouds leads to displaced precipitation patterns. Number and size distributions of cloud droplets are examined for different smoke regimes. It turns out that it depends on the hygroscopicity of available aerosols.

  15. Impact of land use on Costa Rican tropical montane cloud forests: Sensitivity of orographic cloud formation to deforestation in the plains

    NASA Astrophysics Data System (ADS)

    Ray, Deepak K.; Nair, Udaysankar S.; Lawton, Robert O.; Welch, Ronald M.; Pielke, Roger A.

    2006-01-01

    The current study provides new insights into the coupling of land use in lowland and premontane regions (i.e., regions below 1000 m) and orographic cloud formation over the Monteverde cloud forests. Rawinsondes launched during the Land Use Cloud Interaction Experiment (LUCIE) together with those from the National Centers for Environmental Prediction (NCEP) provided profiles that were used to drive the Colorado State University Regional Atmospheric Modeling System (CSU RAMS) model, which simulated three realistic land use scenarios (pristine forests, current conditions and future deforestation). For current conditions, the model-simulated clouds were compared against those observed at hourly intervals by the Geostationary Environmental Observational Satellite-East (GOES E) satellite. The model performed best on 6 different days. The model-simulated profiles of dew point and air temperatures were compared with the observed profiles from rawinsondes for these days. There was generally very good agreement below 700 mb, the region of the atmosphere most crucial to the cloud forests. The average model simulations for the 6 days show that when the lowland and premontane regions were completely forested, the orographic cloud bank intersected the mountains at the lowest elevations, covered the largest land surface area and remained longest on the surface in the montane regions. Deforestation has decreased the cloud forest area covered with fog in the montane regions by around 5-13% and raised the orographic cloud bases by about 25-75 m in the afternoon. The model results show that further deforestation in the lowland and premontane regions would lead to around 15% decrease in the cloud forest area covered with fog and also raise the orographic cloud base heights by up to 125 m in the afternoon. The simulations show that deforestation in the lowland and premontane regions raises surface sensible heat fluxes and decreases latent heat fluxes. This warms the air temperature and

  16. Meteorology: dusty ice clouds over Alaska.

    PubMed

    Sassen, Kenneth

    2005-03-24

    Particles lofted into the atmosphere by desert dust storms can disperse widely and affect climate directly through aerosol scattering and absorption. They can also affect it indirectly by changing the scattering properties of clouds and, because desert dusts are particularly active ice-forming agents, by affecting the formation and thermodynamic phase of clouds. Here I show that dust storms that occurred in Asia early in 2004 created unusual ice clouds over Alaska at temperatures far warmer than those expected for normal cirrus-cloud formation.

  17. Assessing nucleation in cloud formation modelling for Brown Dwarf and Exoplanet atmospheres

    NASA Astrophysics Data System (ADS)

    Lee, Graham; Helling, Christiane; Giles, Helen; Bromley, Stefan

    2015-04-01

    Context. Substellar objects such as Brown Dwarfs and hot Jupiter exoplanets are cool enough that clouds can form in their atmospheres (Helling & Casewell 2014; A&ARv 22)). Unlike Earth, where cloud condensation nuclei are provided by the upward motion of sand or ash, in Brown Dwarf and hot Jupiters these condensation seeds form from the gas phase. This process proceeds in a stepwise chemical reaction of single monomer addition of a single nucleation species, referred to as homogeneous nucleation. The rate at which these seeds form is determined by the local thermodynamic conditions and the chemical composition of the local gas phase. Once the seed particles have formed, multiple materials are thermally stable and grow almost simultaneously by chemical surface reactions. This results in the growth of the condensation seeds to macroscopic particles of μm size. At the same time, the gas phase becomes depleted. Once temperatures become too high for thermal stability of the cloud particle, it evaporates until its constituents return to the gas phase. Convection from deeper atmospheric layers provides element replenishment to upper, cooler layers allowing the cloud formation process to reach a stationary state (Woitke & Helling 2003; A&A 399). Aims. The most efficient nucleation is a 'winner takes all' process as the losing molecules will condense on the surface of the faster nucleating seed particle. We apply new molecular (TiO2)N-cluster and SiO vapour data to our cloud formation model in order to re-asses the question of the primary nucleation species. Methods. We apply density functional theory (B3LYP, 6-311G(d)) using the computational chemistry package GAUSSIAN 09 to derive updated thermodynamical data for (TiO2)N-clusters as input for our TiO2 seed formation model. We test both TiO2 and SiO as primary nucleates assuming a homogeneous nucleation process and by solving a system of dust moment equations and element conservation for a pre-scribed Brown Dwarf

  18. Natural versus anthropogenic factors affecting low-level cloud albedo over the North Atlantic

    NASA Technical Reports Server (NTRS)

    Falkowski, Paul G.; Kim, Yongseung; Kolber, Zbigniew; Wilson, Cara; Wirick, Creighton; Cess, Robert

    1992-01-01

    Cloud albedo plays a key role in regulating earth's climate. Cloud albedo depends on column-integrated liquid water content and the density of cloud condensation nuclei, which consists primarily of submicrometer-sized aerosol sulfate particles. A comparison of two independent satellite data sets suggests that, although anthropogenic sulfate emissions may enhance cloud albedo immediately adjacent to the east coast of the United States, over the central North Atlantic Ocean the variability in albedo can be largely accounted for by natural marine and atmospheric processes that probably have remained relatively constant since the beginning of the industrial revolution.

  19. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation

    DOE PAGES

    Charnawskas, Joseph C.; Alpert, Peter A.; Lambe, Andrew; ...

    2017-01-24

    Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil-fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles’ organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without presence of sulfate or soot particles. Corresponding particle glass transition (Tg) and full deliquescence relative humidity (FDRH) were estimated by a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit amore » core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation in agreement with respective Tg and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid inducing ice nucleation. Naphthalene SOA coated soot particles acted as IN above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate further renders this even less likely. Furthermore, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during preindustrial times or in pristine areas.« less

  20. The impact of organic vapours on warm cloud formation; characterisation of chamber setup and first experimental results

    NASA Astrophysics Data System (ADS)

    Frey, Wiebke; Connolly, Paul; Dorsey, James; Hu, Dawei; Alfarra, Rami; McFiggans, Gordon

    2016-04-01

    The Manchester Ice Cloud Chamber (MICC), consisting of a 10m high stainless steel tube and 1m in diameter, can be used to study cloud processes. MICC is housed in three separate cold rooms stacked on top of each other and warm pseudo-adiabatic expansion from controlled initial temperature and pressure is possible through chamber evacuation. Further details about the facility can be found at http://www.cas.manchester.ac.uk/restools/cloudchamber/index.html. MICC can be connected to the Manchester Aerosol Chamber (MAC, http://www.cas.manchester.ac.uk/restools/aerosolchamber/), which allows to inject specified aerosol particles into the cloud chamber for nucleation studies. The combination of MAC and MICC will be used in the CCN-Vol project, which seeks to bring the experimental evidence for co-condensation of organic and water vapour in cloud formation which leads to an increase in cloud particle numbers (see Topping et al., 2013, Nature Geoscience Letters, for details). Here, we will show a characterisation of the cloud and aerosol chamber coupling in regard to background aerosol particles and nucleation. Furthermore, we will show preliminary results from the warm CCN-Vol experiment, investigating the impact of co-condensation of organic vapours and water vapour on warm cloud droplet formation.

  1. The origin of massive clusters: from hyper-massive clouds to mini-bursts of star formation

    NASA Astrophysics Data System (ADS)

    Motte, Frederique; Louvet, Fabien; Nguyen Luong, Quang

    2015-08-01

    Herschel revealed high-density cloud filaments of several pc^3, which are forming clusters of OB-type stars. Counting Herschel protostars gives a direct measure of the mass of stars forming in a period of ~10^5 yrs, the ``instantaneous'' star formation activity. Given their activity, these so-called mini-starburst cloud ridges could be seen as "miniature and instant models" of starburst galaxies. Their characteristics could shed light on the origin of massive clusters.

  2. Students' understanding of cloud and rainbow formation and teachers' awareness of students' performance

    NASA Astrophysics Data System (ADS)

    Malleus, Elina; Kikas, Eve; Kruus, Sigrid

    2016-04-01

    This study describes primary school students' knowledge about rainfall, clouds and rainbow formation together with teachers' predictions about students' performance. In our study, primary school students' (N = 177) knowledge about rainfall and rainbow formation was examined using structured interviews with open-ended questions. Primary school teachers' (N = 110) awareness of students' understanding was measured with questionnaires and the results will be discussed in relation to teaching experience and the use of different teaching practices. Our results show that students in every grade hold a wide-ranging set of misconceptions that reflect different combinations of their own understanding and learnt scientific knowledge. Teachers tended to overestimate students' performance and described second-grade students' knowledge more accurately than fourth- and sixth-grade students' knowledge. Teachers with less teaching experience were found to less overestimate and more underestimate sixth-grade students' knowledge than teachers with more teaching experience.

  3. Study of the critical radius influence on the cloud drops formation in the seeding operations

    NASA Astrophysics Data System (ADS)

    Pérez, R.. C.

    2010-09-01

    In the seeding operations in order to mitigate the climatic changes or to intervene on the atmospherics process of the precipitations in order to can beneficent enhancement it; it is very important the roll that play the critical radius of the cloud formation drops. In the seeding operations is fundamental to determinate the critical radius in order to make more efficient its results; because if the size of the cloud drop formation nuclei in the heterogeneous nucleation is smaller than critical radius, then it is very possible that the precipitation amount decrease when the seeding take a place, and viceversa. So, we must take in account the critical radius that the boundary conditions determine, and with this data, it must to be established the seeding nuclei size to use, in order to get the results whit the wished efficiency. We had worked is in this way, searching and developed a methodology in order to get to calculate the critical radius to boundary atmospherics conditions, and with this data to can estimate the seeding nuclei size necessary. We had obtained approximate values that are enough to ours goals.

  4. Heterogeneous formation of polar stratospheric clouds - Part 1: Nucleation of nitric acid trihydrate (NAT)

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-03-01

    Satellite based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current understanding, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid December 2009, a heterogeneous nucleation mechanism is required, occurring via immersion freezing on the surface of solid particles, likely of meteoritic origin. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along more than sixty thousand trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarisation (CALIOP) observation points. Comparing the optical properties of the modelled NAT with these observations enabled the thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory, is simple to implement in models and provides substantial advantages over previous approaches which involved a constant rate of NAT nucleation in a given volume of air. It is shown that the new method is capable of reproducing observed PSCs very well, despite the varied conditions experienced by air parcels travelling along the different trajectories. In a companion paper, ZOMM is applied to a later period of the winter, when ice PSCs are also present, and it is shown that the observed PSCs are also represented extremely well under these conditions.

  5. CO{sub 2} FORMATION IN QUIESCENT CLOUDS: AN EXPERIMENTAL STUDY OF THE CO + OH PATHWAY

    SciTech Connect

    Noble, J. A.; Fraser, H. J.; Dulieu, F.; Congiu, E.

    2011-07-10

    The formation of CO{sub 2} in quiescent regions of molecular clouds is not yet fully understood, despite CO{sub 2} having an abundance of around 10%-34% H{sub 2}O. We present a study of the formation of CO{sub 2} via the nonenergetic route CO + OH on nonporous H{sub 2}O and amorphous silicate surfaces. Our results are in the form of temperature-programmed desorption spectra of CO{sub 2} produced via two experimental routes: O{sub 2} + CO + H and O{sub 3} + CO + H. The maximum yield of CO{sub 2} is around 8% with respect to the starting quantity of CO, suggesting a barrier to CO + OH. The rate of reaction, based on modeling results, is 24 times slower than O{sub 2} + H. Our model suggests that competition between CO{sub 2} formation via CO + OH and other surface reactions of OH is a key factor in the low yields of CO{sub 2} obtained experimentally, with relative reaction rates of k{sub CO+H}<clouds could be explained by the reaction CO + OH occurring concurrently with the formation of H{sub 2}O via the route OH + H.

  6. Mantle formation, coagulation, and the origin of cloud/core shine. II. Comparison with observations

    NASA Astrophysics Data System (ADS)

    Ysard, N.; Köhler, M.; Jones, A.; Dartois, E.; Godard, M.; Gavilan, L.

    2016-04-01

    Context. Many dense interstellar clouds are observable in emission in the near-IR (J, H, and K photometric bands), commonly referred to as "Cloudshine", and in the mid-IR (Spitzer IRAC 3.6 and 4.5 μm bands), the so-called "Coreshine". These C-shine observations have usually been explained in terms of grain growth but no model has yet been able to self-consistently explain the dust spectral energy distribution from the near-IR to the submm. Aims: Our new core/mantle evolutionary dust model, The Heterogeneous dust Evolution Model at the IaS (THEMIS), has been shown to be valid in the far-IR and submm. We want to demonstrate its ability to reproduce the C-shine observations. Methods: Our starting point is a physically motivated core/mantle dust model. It consists of three dust populations: small poly-aromatic-rich carbon grains, bigger core/mantle grains with mantles of aromatic-rich carbon, and cores made of either amorphous aliphatic-rich carbon or amorphous silicate. Then, we assume an evolutionary path where these grains, when entering denser regions, may first form a second aliphatic-rich carbon mantle (coagulation of small grains, accretion of carbon from the gas phase), second coagulate together to form large aggregates, and third accrete gas phase molecules coating them with an ice mantle. To compute the corresponding dust emission and scattering, we use a 3D Monte Carlo radiative transfer code. Results: We show that our global evolutionary dust modelling approach THEMIS allows us to reproduce C-shine observations towards dense starless clouds. Dust scattering and emission is most sensitive to the cloud central density and to the steepness of the cloud density profile. Varying these two parameters leads to changes that are stronger in the near-IR, in both the C-shine intensity and profile. Conclusions: With a combination of aliphatic-rich mantle formation and low-level coagulation into aggregates, we can self-consistently explain the observed C-shine and far

  7. STAR FORMATION AND YOUNG STELLAR CONTENT IN THE W3 GIANT MOLECULAR CLOUD

    SciTech Connect

    Rivera-Ingraham, Alana; Martin, Peter G.; Polychroni, Danae; Moore, Toby J. T.

    2011-12-10

    In this work, we have carried out an in-depth analysis of the young stellar content in the W3 giant molecular cloud (GMC). The young stellar object (YSO) population was identified and classified in the Infrared Array Camera/Multiband Imaging Photometer color-magnitude space according to the 'Class' scheme and compared to other classifications based on intrinsic properties. Class 0/I and II candidates were also compared to low-/intermediate-mass pre-main-sequence (PMS) stars selected through their colors and magnitudes in the Two Micron All Sky Survey. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate-mass objects can be more reliably identified. By means of the minimum spanning tree algorithm and our YSO spatial distribution and age maps, we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large-scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high-density layer (HDL) also shows signs of quiescent and triggered stellar activity, as well as extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star-forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming a spontaneous origin for the isolated massive star(s) powering KR 140.

  8. Heterogeneous formation of polar stratospheric clouds - Part 2: Nucleation of ice on synoptic scales

    NASA Astrophysics Data System (ADS)

    Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Hoyle, C. R.; Grooß, J.-U.; Dörnbrack, A.; Peter, T.

    2013-04-01

    This paper provides unprecedented evidence for the importance of heterogeneous nucleation, likely on solid particles of meteoritic origin, and of small-scale temperature fluctuations, for the formation of ice particles in the Arctic stratosphere. During January 2010, ice PSCs (Polar Stratospheric Clouds) were shown by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) to have occurred on a synoptic scale (~ 1000 km dimension). CALIPSO observations also showed widespread PSCs containing nitric acid trihydrate (NAT) particles in December 2009, prior to the occurrence of synoptic-scale regions of ice PSCs during mid-January 2010. We demonstrate by means of detailed microphysical modeling along air parcel trajectories that the formation of these PSCs is not readily reconciled with expectations from the conventional understanding of PSC nucleation mechanisms. The measurements are at odds with the previous laboratory-based understanding of PSC formation, which deemed direct heterogeneous nucleation of NAT and ice on preexisting solid particles unlikely. While a companion paper (Part 1) addresses the heterogeneous nucleation of NAT during December 2009, before the existence of ice PSCs, this paper shows that also the large-scale occurrence of stratospheric ice in January 2010 cannot be explained merely by homogeneous ice nucleation but requires the heterogeneous nucleation of ice, e.g. on meteoritic dust or preexisting NAT particles. The required efficiency of the ice nuclei is surprisingly high, namely comparable to that of known tropospheric ice nuclei such as mineral dust particles. To gain model agreement with the ice number densities inferred from observations, the presence of small-scale temperature fluctuations, with wavelengths unresolved by the numerical weather prediction models, is required. With the derived rate parameterization for heterogeneous ice nucleation we are able to explain and reproduce CALIPSO observations throughout the

  9. Heterogeneous formation of polar stratospheric clouds - Part 2: Nucleation of ice on synoptic scales

    NASA Astrophysics Data System (ADS)

    Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Hoyle, C. R.; Grooß, J.-U.; Dörnbrack, A.; Peter, T.

    2013-11-01

    This paper provides compelling evidence for the importance of heterogeneous nucleation, likely on solid particles of meteoritic origin, and of small-scale temperature fluctuations, for the formation of ice particles in the Arctic stratosphere. During January 2010, ice PSCs (polar stratospheric clouds) were shown by CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) to have occurred on a synoptic scale (~1000 km dimension). CALIPSO observations also showed widespread PSCs containing NAT (nitric acid trihydrate) particles in December 2009, prior to the occurrence of synoptic-scale regions of ice PSCs during mid-January 2010. We demonstrate by means of detailed microphysical modeling along air parcel trajectories that the formation of these PSCs is not readily reconciled with expectations from the conventional understanding of PSC nucleation mechanisms. The measurements are at odds with the previous laboratory-based understanding of PSC formation, which deemed direct heterogeneous nucleation of NAT and ice on preexisting solid particles unlikely. While a companion paper (Part 1) addresses the heterogeneous nucleation of NAT during December 2009, before the existence of ice PSCs, this paper shows that also the large-scale occurrence of stratospheric ice in January 2010 cannot be explained merely by homogeneous ice nucleation but requires the heterogeneous nucleation of ice, e.g. on meteoritic dust or preexisting NAT particles. The required efficiency of the ice nuclei is surprisingly high, namely comparable to that of known tropospheric ice nuclei such as mineral dust particles. To gain model agreement with the ice number densities inferred from observations, the presence of small-scale temperature fluctuations, with wavelengths unresolved by the numerical weather prediction models, is required. With the derived rate parameterization for heterogeneous ice nucleation we are able to explain and reproduce CALIPSO observations throughout the

  10. Applying Chemical Imaging Analysis to Improve Our Understanding of Cold Cloud Formation

    NASA Astrophysics Data System (ADS)

    Laskin, A.; Knopf, D. A.; Wang, B.; Alpert, P. A.; Roedel, T.; Gilles, M. K.; Moffet, R.; Tivanski, A.

    2012-12-01

    The impact that atmospheric ice nucleation has on the global radiation budget is one of the least understood problems in atmospheric sciences. This is in part due to the incomplete understanding of various ice nucleation pathways that lead to ice crystal formation from pre-existing aerosol particles. Studies investigating the ice nucleation propensity of laboratory generated particles indicate that individual particle types are highly selective in their ice nucleating efficiency. This description of heterogeneous ice nucleation would present a challenge when applying to the atmosphere which contains a complex mixture of particles. Here, we employ a combination of micro-spectroscopic and optical single particle analytical methods to relate particle physical and chemical properties with observed water uptake and ice nucleation. Field-collected particles from urban environments impacted by anthropogenic and marine emissions and aging processes are investigated. Single particle characterization is provided by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). A particle-on-substrate approach coupled to a vapor controlled cooling-stage and a microscope system is applied to determine the onsets of water uptake and ice nucleation including immersion freezing and deposition ice nucleation as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. We observe for urban aerosol particles that for T > 230 K the oxidation level affects initial water uptake and that subsequent immersion freezing depends on particle mixing state, e.g. by the presence of insoluble particles. For T < 230 K the particles initiate deposition ice nucleation well below the homogeneous freezing limit. Particles collected throughout one day for similar meteorological conditions show very similar

  11. Comparisons of cirrus cloud formation and evolution lifetime between five field campaigns

    NASA Astrophysics Data System (ADS)

    Diao, M.; Zondlo, M. A.; DiGangi, J. P.; O'Brien, A.; Heymsfield, A.; Rogers, D. C.; Beaton, S. P.

    2013-12-01

    In order to understand the microphysical properties of cirrus clouds, it is important to understand the formation and evolution of the environments where ice crystals form and reside on the microscale (~100 m). Uncertainties remain in simulating/parameterizing the evolution of ice crystals, which require more analyses in the Lagrangian view. However, most in situ observations are in the Eulerian view and are restricted from examining the lifecycle of cirrus clouds. In this work, a new method of Diao et al. GRL (2013)* is used to separate out five phases of ice crystal evolution, using the horizontal spatial relationships between ice supersaturated regions (ISSRs) and ice crystal regions (ICRs). In-situ, aircraft-based observations from five flight campaigns are used to compare the evolution processes of ISSRs and ICRs, which include the National Science Foundation HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011 Arctic to Antarctic over the central Pacific Ocean), the Stratosphere Troposphere Analyses Regional Transport 2008 (START08) campaign (2008 North America), the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) campaign (2010 tropical western Atlantic), the Tropical Ocean Troposphere Exchange of Reactive Halogen Species and Oxygenated VOC (2012 Costa Rica), and the Deep Convection, Clouds, and Chemistry (DC3) campaign (2011 Interior North America). To understand the evolution of ICRs and ISSRs on the microscale, we compare the microphysical evolution processes inside ISSRs and ICRs in terms of relative humidity with respect to ice (RHi), ice crystal mean diameter (Dc) and ice crystal number density (Nc) at different meteorological and dynamical backgrounds during these five campaigns. Different phases of ice nucleation and evolution are contrasted to understand how cirrus clouds evolve from clear-sky ISS into fully developed clouds, and finally into sedimentation/evaporation phase. The results show that the ratios of

  12. Completing the Mapping of the W3 Giant Molecular Cloud; Testing Models and the Importance of Triggered Star Formation

    NASA Astrophysics Data System (ADS)

    Moore, Toby; Allsopp, James; Jones, Huw

    2006-05-01

    It is proposed to complete the R. Gehrz's mapping of W3 at both IRAC and MIPS 24um wavelengths. W3 is an outer galaxy Giant Molecular Cloud comprising of two regions; a quiescent, spontaneously star forming region and a region compressed by the W4 OB association containing the majority of star formation and all of the high mass star formation. Currently only the high-density region, Lada( put date) is mapped, but for a scientifically-valid comparision between the triggered and spontaneous modes we require the remainder of the cloud to be mapped. Triggered star formation is vitally important as it provides a mechanism for understanding the massive disparity between the low star formation efficiencies of galaxies such as our own andmore violent events such as galaxy mergers. Currently we have mapped the majority of the cloud at 850 um using SCUBA and the whole cloud using the CO(J=1-0) with the 12CO, 13CO and C18O isotomers. From these studies we have identified and measured the masses of 230 clumps. Without Spitzer data we have no way of determining which of these clumps have formed stars. This project forms the final crucial piece which when added to our current observations of the mass in the cloud will quantify the local star formation efficiency for each region. This is the first part of an ongoing much larger study into triggered star formation. We used Aztec (1.1mm continuum) on the JCMT in January 2006 to map two more clouds and Spitzer data on these from other observers has either been recently released or is about to be. In 2007, we will expand on the knowledge gained from this with the SCUBA2 JCMT Galactic Plane Survey (JPS) in which we are collaborators.

  13. Characterizing molecular clouds in the earliest phases of high-mass star formation

    NASA Astrophysics Data System (ADS)

    Sanhueza, Patricio A.

    High-mass stars play a key role in the energetics and chemical evolution. of molecular clouds and galaxies. However, the mechanisms that allow. the formation of high-mass stars are far less clear than those of. their low-mass. counterparts. Most of the research on high-mass star formation has focused. on regions currently undergoing star formation. In contrast, objects. in the earlier prestellar stage have been more difficult to identify. Recently, it has been. suggested that the cold, massive, and dense Infrared Dark Clouds (IRDCs) host. the earliest stages of high-mass star formation. The chemistry of IRDCs remains poorly explored. In this dissertation, an. observational program to search for chemical. variations in IRDC clumps as a function of their age is described. An increase in N2H+ and HCO+ abundances. is found from the quiescent, cold phase to the protostellar, warmer phases, reflecting chemical. evolution. For HCO+ abundances, the observed trend is consistent with. theoretical predictions. However, chemical models fail to explain the observed. trend of increasing N2H+ abundances. Pristine high-mass prestellar clumps are ideal for testing and constraining. theories of high-mass star formation because their predictions differ. the most at the early stages of evolution. From the initial IRDC sample, a high-mass clump that is the best candidate to be in the prestellar phase. was selected (IRDC G028.23-00.19 MM1). With a new set of observations, the prestellar nature of the clump is confirmed. High-angular resolution. observations of IRDC G028.23-00.19 suggest that in. order to form high-mass stars, the detected cores have to accrete a large. amount of material, passing through a low- to intermediate-mass phase. before having the necessary mass to form a. high-mass star. The turbulent core accretion model. is inconsistent with this observational result, but on the other hand, the. observations support the competitive accretion model. Embedded cores have. to

  14. Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Pitts, M. C.; Voelger, P.; Achtert, P.; Kaphlanov, M.; Santee, M. L.; Manney, G. L.; Murtagh, D.; Fricke, K.-H.

    2011-08-01

    The sedimentation of HNO3 containing Polar Stratospheric Cloud (PSC) particles leads to a permanent removal of HNO3 and thus to a denitrification of the stratosphere, an effect which plays an important role in stratospheric ozone depletion. The polar vortex in the Arctic winter 2009/2010 was very cold and stable between end of December and end of January. Strong denitrification between 475 to 525 K was observed in the Arctic in mid of January by the Odin Sub Millimetre Radiometer (Odin/SMR). This was the strongest denitrification that had been observed in the entire Odin/SMR measuring period (2001-2010). Lidar measurements of PSCs were performed in the area of Kiruna, Northern Sweden with the IRF (Institutet för Rymdfysik) lidar and with the Esrange lidar in January 2010. The measurements show that PSCs were present over the area of Kiruna during the entire period of observations. The formation of PSCs during the Arctic winter 2009/2010 is investigated using a microphysical box model. Box model simulations are performed along air parcel trajectories calculated six days backward according to the PSC measurements with the ground-based lidar in the Kiruna area. From the temperature history of the backward trajectories and the box model simulations we find two PSC regions, one over Kiruna according to the measurements made in Kiruna and one north of Scandinavia which is much colder, reaching also temperatures below Tice. Using the box model simulations along backward trajectories together with the observations of Odin/SMR, Aura/MLS (Microwave Limb Sounder), CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and the ground-based lidar we investigate how and by which type of PSC particles the denitrification that was observed during the Arctic winter 2009/2010 was caused. From our analysis we find that due to an unusually strong synoptic cooling event in mid January, ice particle formation on NAT may be a possible formation mechanism during

  15. THE STAR FORMATION RATE OF TURBULENT MAGNETIZED CLOUDS: COMPARING THEORY, SIMULATIONS, AND OBSERVATIONS

    SciTech Connect

    Federrath, Christoph; Klessen, Ralf S.

    2012-12-20

    The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)-the Krumholz and McKee (KM), Padoan and Nordlund (PN), and Hennebelle and Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC-all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter {alpha}{sub vir}; (2) sonic Mach number M; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma {beta}=2M{sub A}{sup 2}/M{sup 2} with the Alfven Mach number M{sub A}. We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 Multiplication-Sign 10{sup 6} M{sub Sun} and Mach numbers M=3-50 and M{sub A}=1-{infinity}, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between M=5 and 50 for compressive turbulent forcing and {alpha}{sub vir} {approx} 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for M=10 simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvenic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%-10% and local efficiencies {epsilon} = 0.3-0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.

  16. The Star Formation Rate of Turbulent Magnetized Clouds: Comparing Theory, Simulations, and Observations

    NASA Astrophysics Data System (ADS)

    Federrath, Christoph; Klessen, Ralf S.

    2012-12-01

    The role of turbulence and magnetic fields is studied for star formation in molecular clouds. We derive and compare six theoretical models for the star formation rate (SFR)—the Krumholz & McKee (KM), Padoan & Nordlund (PN), and Hennebelle & Chabrier (HC) models, and three multi-freefall versions of these, suggested by HC—all based on integrals over the log-normal distribution of turbulent gas. We extend all theories to include magnetic fields and show that the SFR depends on four basic parameters: (1) virial parameter αvir (2) sonic Mach number {M}; (3) turbulent forcing parameter b, which is a measure for the fraction of energy driven in compressive modes; and (4) plasma \\beta =2 {M}_A^2/ {M}^2 with the Alfvén Mach number {M}_A. We compare all six theories with MHD simulations, covering cloud masses of 300 to 4 × 106 M ⊙ and Mach numbers {M}=3-50 and {M}_A=1-∞, with solenoidal (b = 1/3), mixed (b = 0.4), and compressive turbulent (b = 1) forcings. We find that the SFR increases by a factor of four between {M}=5 and 50 for compressive turbulent forcing and αvir ~ 1. Comparing forcing parameters, we see that the SFR is more than 10 times higher with compressive than solenoidal forcing for {M}=10 simulations. The SFR and fragmentation are both reduced by a factor of two in strongly magnetized, trans-Alfvénic turbulence compared to hydrodynamic turbulence. All simulations are fit simultaneously by the multi-freefall KM and multi-freefall PN theories within a factor of two over two orders of magnitude in SFR. The simulated SFRs cover the range and correlation of SFR column density with gas column density observed in Galactic clouds, and agree well for star formation efficiencies SFE = 1%-10% and local efficiencies epsilon = 0.3-0.7 due to feedback. We conclude that the SFR is primarily controlled by interstellar turbulence, with a secondary effect coming from magnetic fields.

  17. A Submillimetre Study of Massive Star Formation Within the W51 Complex and Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Parsons, Harriet Alice Louise

    Despite its importance the fundamental question of how massive stars form remains unanswered, with improvements to both models and observations having crucial roles to play. To quote Bate et al. (2003) computational models of star formation are limited because "conditions in molecular clouds are not sufficiently well understood to be able to select a representative sample of cloud cores for the initial conditions". It is this notion that motivates the study of the environments within Giant Molecular Clouds (GMCs) and Infrared Dark Clouds (IRDCs), known sites of massive star formation, at the clump and core level. By studying large populations of these objects, it is possible to make conclusions based on global properties. With this in mind I study the dense molecular clumps within one of the most massive GMCs in the Galaxy: the W51 GMC. New observations of the W51 GMC in the 12CO, 13CO and C18O (3-2) transitions using the HARP instrument on the JCMT are presented. With the help of the clump finding algorithm CLUMPFIND a total of 1575 dense clumps are identified of which 1130 are associated with the W51 GMC, yielding a dense mass reservoir of 1.5 × 10^5 M contained within these clumps. Of these clumps only 1% by number are found to be super-critical, yielding a super-critical clump formation efficiency of 0.5%, below current SFE estimates of the region. This indicates star formation within the W51 GMC will diminish over time although evidence from the first search for molecular outflows presents the W51 GMC in an active light with a lower limit of 14 outflows. The distribution of the outflows within the region searched found them concentrated towards the W51A region. Having much smaller sizes and masses, obtaining global properties of clumps and cores within IRDCs required studying a large sample of these objects. To do this pre-existing data from the SCUBA Legacy Catalogue was utilised to study IRDCs within a catalogues based on 8 μm data. This data identified

  18. New aspects of absorption line formation in intervening turbulent clouds - I. General principles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.

    1997-07-01

    We study the formation of absorption lines in intervening clouds with stochastic velocity fields, accounting for the fact that actually only one line of sight is observed. Our results show that the introduction of the finite velocity correlation length leads to a new type of absorption line profiles which are asymmetric in general, may have different shifts of the centres of gravity, and look like barely resolved blends, i.e. could be interpreted in a standard Voigt fitting analysis as being caused by several independent clouds with different physical parameters. Numerical results are presented for the HI Lyalpha line with N_Hi=10^12,10^14,10^15 and 10^16cm^-2, T_kin=10^4 K, and different sets of turbulent parameters. The intensity fluctuations within the line profile caused by `turbulent noise' are investigated and the confidence belts for the absorption lines are calculated. We conclude that an exact measurement of the column densities of the absorbing atoms N_a from the observed values of the optical depths tau lambda is actually impossible for the case of the correlated velocity field. One can only determine a range of values within which N_a is to be found with a certain probability.

  19. Non-linear dense core formation in the dark cloud L1517

    NASA Astrophysics Data System (ADS)

    Heigl, S.; Burkert, A.; Hacar, A.

    2016-12-01

    We present a solution for the observed core fragmentation of filaments in the Taurus L1517 dark cloud which previously could not be explained. Core fragmentation is a vital step for the formation of stars. Observations suggest a connection to the filamentary structure of the cloud gas, but it remains unclear which process is responsible. We show that the gravitational instability process of an infinite, isothermal cylinder can account for the exhibited fragmentation under the assumption that the perturbation grows on the dominant wavelength. We use numerical simulations with the code RAMSES, estimate observed column densities and line-of-sight velocities, and compare them to the observations. A critical factor for the observed fragmentation is that cores grow by redistributing mass within the filament and thus the density between the cores decreases over the fragmentation process. This often leads to wrong dominant wavelength estimates, as it is strongly dependent on the initial central density. We argue that non-linear effects also play an important role in the evolution of the fragmentation. Once the density perturbation grows above the critical line mass, non-linearity leads to an enhancement of the central core density in comparison to the analytical prediction. Choosing the correct initial conditions with perturbation strengths of around 20 per cent leads to inclination-corrected line-of-sight velocities and central core densities within the observational measurement error in a realistic evolution time.

  20. Formation of semisolid, oligomerized aqueous SOA: lab simulations of cloud processing.

    PubMed

    Hawkins, Lelia N; Baril, Molly J; Sedehi, Nahzaneen; Galloway, Melissa M; De Haan, David O; Schill, Gregory P; Tolbert, Margaret A

    2014-02-18

    Glyoxal, methylglyoxal, glycolaldehyde, and hydroxyacetone form N-containing and oligomeric compounds during simulated cloud processing with small amines. Using a novel hygroscopicity tandem differential mobility analysis (HTDMA) system that allows varied humidification times, the hygroscopic growth (HG) of each of the resulting products of simulated cloud processing was measured. Continuous water uptake (gradual deliquescence) was observed beginning at ∼ 40% RH for all aldehyde-methylamine products. Particles containing ionic reaction products of either glyoxal or glycine were most hygroscopic, with HG between 1.16 and 1.20 at 80% RH. Longer humidification times (up to 20 min) produced an increase in growth factors for glyoxal-methylamine (19% by vol) and methylglyoxal-methylamine (8% by vol) aerosol, indicating that unusually long equilibration times can be required for HTDMA measurements of such particles. Glyoxal- and methylglyoxal-methylamine aerosol particles shattered in Raman microscopy impact-flow experiments, revealing that the particles were semisolid. Similar experiments on glycolaldehyde- and hydroxyacetone-methylamine aerosol found that the aerosol particles were liquid when dried for <1 h, but semisolid when dried for 20 h under ambient conditions. The RH required for flow (liquification) during humidification experiments followed the order methylglyoxal > glyoxal > glycolaldehyde = hydroxyacetone, likely caused by the speed of oligomer formation in each system.

  1. Cloud Evolution during Tropical Cyclone Formation as Revealed by TRMM PR

    NASA Astrophysics Data System (ADS)

    Fritz, C.; Wang, Z.; Nesbitt, S. W.; Dunkerton, T. J.

    2015-12-01

    To understand the cloud evolution during tropical cyclone formation, cloud features for more than 100 named tropical cyclones over the Atlantic are examined from the tropical wave to the tropical cyclone stage using the TRMM Precipitation Radar (PR). We focus on a time window from 3 days before genesis to 1 day after genesis, where the diagnoses for the pre-genesis evolution are carried out in the framework of the marsupial paradigm and the post-genesis analysis using the NHC best-tracks. The 20 dBZ echo-top height is used in combination with the near surface rain rate to identify the different types of convection: i) shallow convection; ii) mid-level convection and iii) deep convection. The frequency of occurrence for each precipitation type is calculated, and the relative contributions of different types of precipitation to the total rain rate are examined with respect to the center. Precipitation was found to increase in coverage and intensity near the wave-pouch center approaching genesis. Stratiform precipitation is prevalent from day -3 to day +1, but convective precipitation persistently increases near the inner-core. Mid-level convection occurs more frequently than deep convection from day -3 to day +1 and makes a larger contribution to the total precipitation than deep convection. It is also shown that stratiform precipitation, mid-level convection and deep convection all contribute to the substantial increase in rain-rate.

  2. CARMA Large Area Star Formation Survey: Observational Analysis of Filaments in the Serpens South Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Fernández-López, M.; Arce, H. G.; Looney, L.; Mundy, L. G.; Storm, S.; Teuben, P. J.; Lee, K.; Segura-Cox, D.; Isella, A.; Tobin, J. J.; Rosolowsky, E.; Plunkett, A.; Kwon, W.; Kauffmann, J.; Ostriker, E.; Tassis, K.; Shirley, Y. L.; Pound, M.

    2014-08-01

    We present the N2H+ (J = 1 → 0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey. The observations cover 250 arcmin2 and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s-1, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N2H+ emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N2H+ filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.

  3. Growing evidence for a core formation threshold traced in Herschel Gould Belt survey clouds

    NASA Astrophysics Data System (ADS)

    Könyves , V.; André, Ph.; Schneider, N.; Palmeirim, P.; Arzoumanian, D.; Men'shchikov, A.

    2013-11-01

    It has already been suggested that a threshold in column density - or in visual extinction - may need to be exceeded to form dense cores and then protostars. Based on Herschel Gould Belt survey results in the Aquila and Orion B molecular cloud complexes we observe clear connection between the locations of the detected prestellar cores and their background column density values. This finding appears to support a core formation scenario where such threshold corresponds to the extinction above which interstellar filaments become gravitationally unstable and fragment into cores. In these two actively star-forming regions we find the vast majority of the gravitationally bound prestellar cores above a high column density of about (6-7) × 1021 cm-2 (AV ˜ 6-7). This limit similarly appears in the column density probability distribution function (PDF) of the regions as well. The spatial distribution of the protostars and young stellar objects (YSOs) also shows a tight connection with the densest sites of both clouds, as more than 70 % of them appear above the mentioned AV thresholds. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. Condition for the formation of micron-sized dust grains in dense molecular cloud cores

    NASA Astrophysics Data System (ADS)

    Hirashita, Hiroyuki; Li, Zhi-Yun

    2013-07-01

    We investigate the condition for the formation of micron-sized grains in dense cores of molecular clouds. This is motivated by the detection of mid-infrared emission from deep inside a number of dense cores, the so-called `coreshine,' which is thought to come from scattering by micron (μm)-sized grains. Based on numerical calculations of coagulation starting from the typical grain-size distribution in the diffuse interstellar medium, we obtain a conservative lower limit to the time t to form μm-sized grains: t/tff > 3(5/S)(nH/105 cm-3)-1/4 (where tff is the free-fall time at hydrogen number density nH in the core and S the enhancement factor of the grain-grain collision cross-section to account for non-compact aggregates). At the typical core density nH = 105 cm-3, it takes at least a few free-fall times to form the μm-sized grains responsible for coreshine. The implication is that those dense cores observed in coreshine are relatively long-lived entities in molecular clouds, rather than dynamically transient objects that last for one free-fall time or less.

  5. STAR FORMATION IN THE MASSIVE ''STARLESS'' INFRARED DARK CLOUD G0.253+0.016

    SciTech Connect

    Rodriguez, Luis F.; Zapata, Luis A. E-mail: lzapata@crya.unam.mx

    2013-04-10

    G0.253+0.016 is a remarkable massive infrared dark cloud located within {approx}100 pc of the galactic center. With a high mass of 1.3 Multiplication-Sign 10{sup 5} M{sub Sun }, a compact average radius of {approx}2.8 pc, and a low dust temperature of 23 K, it has been believed to be a yet starless precursor to a massive Arches-like stellar cluster. We present sensitive JVLA 1.3 and 5.6 cm radio continuum observations that reveal the presence of three compact thermal radio sources projected against this cloud. These radio sources are interpreted as H II regions powered by {approx}B0.5 zero-age main sequence stars. We conclude that although G0.253+0.016 does not show evidence of O-type star formation, there are certainly early B-type stars embedded in it. We detect three more sources in the periphery of G0.253+0.016 with non-thermal spectral indices. We suggest that these sources may be related to the galactic center region and deserve further study.

  6. Giant Molecular Clouds and High-Mass Star Formation in the Milky Way

    NASA Technical Reports Server (NTRS)

    1998-01-01

    We are conducting an extensive investigation of high-mass (OB) star formation within the dense cores of giant molecular clouds (GMCS) throughout the first Galactic quadrant of the Milky Way using enhanced resolution Infrared Astronomical Satellite (IRAS) images in combination with high-resolution ground-based observations in millimeter wave molecular transitions and radio continuum. As part of this investigation several resolution enhancement algorithms are applied to the IRAS data, including the HIgh RESolution (HIRES) algorithm developed at the IRAS Processing and Analysis Center (IPAC), as well as others ("pixon" image reconstruction). In addition, as part of a related study, we have completed a large survey of the CO emission in the first Galactic quadrant using the 15-element array detector (QUARRY) with the Five College Radio Astronomy Observatory (FCRAO) 14 m antenna, which provides sampling at an angular resolution of 50", comparable to that attained in the reprocessed IRAS data. Both of these data sets are compared with a sample of ultra-compact (UC) H II regions taken from a high-resolution multi-wavelength (6 and 20 cm) radio survey of the Galactic plane using the NRAO Very Large Array (VLA). Selected regions are observed in 1.3 mm continuum, which has proven to be particularly sensitive to the dust column density. Extensive observations of molecular clouds at high resolution in CO, CS and HCN are combined with the reprocessed IRAS high-resolution images to give a more complete picture of the physical conditions and kinematics of high-mass star forming GMCS. Our goals are to study in detail the morphology, structure, and rate of high-mass star formation within GMCs throughout the Galactic disk from the inner edge of the molecular ring to the outer Galaxy.

  7. Denitrification and polar stratospheric cloud formation during the Arctic winter 2009/2010

    NASA Astrophysics Data System (ADS)

    Khosrawi, F.; Urban, J.; Pitts, M. C.; Voelger, P.; Achtert, P.; Kaphlanov, M.; Murtagh, D.; Fricke, K.-H.

    2011-04-01

    The sedimentation of HNO3 containing Polar Stratospheric Cloud (PSC) particles leads to a permanent removal of HNO3 and thus to a denitrification of the stratosphere, an effect which plays an important role in stratospheric ozone depletion. The polar vortex in the Arctic winter 2009/2010 was very cold and stable between end of December and end of January. Strong denitrification was observed in the Arctic in mid of January by the Odin Sub Millimetre Radiometer (Odin/SMR) which was the strongest denitrification that had been observed in the entire Odin/SMR measuring period (2001-2010). Lidar measurements of PSCs were performed in the area of Kiruna, Northern Sweden with the IRF (Institutet för Rymdfysik) lidar and with the Esrange lidar in January 2010. The measurements show that PSCs were present over the area of Kiruna during the entire period of observations. The formation of PSCs during the Arctic winter 2009/2010 is investigated using a microphysical box model. Box model simulations are performed along air parcel trajectories calculated six days backward according to the PSC measurements with the ground-based lidar in the Kiruna area. From the temperature history of the trajectories and the box model simulations we find two PSC regions, one over Kiruna according to the measurements made in Kiruna and one north of Scandinavia which is much colder, reaching also temperatures below Tice. Using the box model simulations along backward trajectories together with the observations of Odin/SMR, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and the ground-based lidar we investigate how and by which type of PSC particles the denitrification that was observed during the Arctic winter 2009/2010 was caused. From our analysis we find that due to an unusually strong synoptic cooling event in mid January, ice particle formation on NAT may be a possible mechanism that caused denitrification during the Arctic winter 2009/2010.

  8. H{sub 2} formation in diffuse clouds: A new kinetic Monte Carlo study

    SciTech Connect

    Iqbal, Wasim; Acharyya, Kinsuk; Herbst, Eric

    2014-04-01

    We used the continuous-time random-walk Monte Carlo technique to study anew the formation of H{sub 2} on the surfaces of interstellar dust grains in diffuse interstellar clouds. For our study, we considered three different grain materials, olivine (a polycrystalline silicate), amorphous silicate, and amorphous carbon, as well as a grain temperature that depends on granular size. For some runs, we included temperature fluctuations. Four different granular surfaces were used, one 'flat' with one type of binding site due to physisorption, one 'rough' with five different types of physisorption binding sites due to lateral forces, and two with sites for chemisorption, one in which chemisorption sites are entered through precursor physisorption sites, and one in which chemisorption is direct but occurs with a barrier for the adsorption of the first hydrogen atom. We found that on flat and rough olivine surfaces, molecular hydrogen is formed at low efficiencies, with smaller grains contributing very little despite their large numbers due to high temperatures. For flat amorphous carbon and amorphous silicate surfaces, the efficiency increases, reaching unity for the largest grains. For models with barrierless chemisorption, the efficiency of formation of H{sub 2} is near unity at all grain sizes considered, while for direct chemisorption via a barrier, we found efficiencies of 0.13-0.6 depending upon the barrier, but independent of grain size. Treating the flat olivine and amorphous silicate surfaces with temperature fluctuations increases the efficiency of H{sub 2} formation.

  9. Water formation in early solar nebula: II-Collapsing cloud core

    NASA Astrophysics Data System (ADS)

    Tornow, C.; Gast, P.; Motschmann, U.; Kupper, S.; Kührt, E.; Pelivan, I.

    2014-08-01

    The formation of water is a repetitive process and depends on the physical conditions in the different stages of the solar nebula and early solar system. Our solar nebula model considers the thermal and chemical evolution of a collapsing globular cloud core. We simulate the collapse with a semi-analytical model which is based on a multi-zone density distribution. This model describes the formation of a central protostellar object surrounded by a disk and a thin outer envelope. It considers an adiabatic equation of state, viscous gas flow and a resistive magnetic field. Due to the low temperatures in the hydrostatic stage of the core, icy layers of water mixed with other molecules build on the dust grains. In the course of the collapse the ice sublimates and drives a complex chemical evolution located in a warm region around the proto-stellar object called hot corino. Moreover, the relatively high temperatures in this region allow the gas phase formation of water together with other molecules. The abundances of the chemical compounds are computed from rate equations solved in a Lagrangian grid. We can show that there was high water density in the early and late accretion zone of the Earth. This water was sublimated from the dust or formed by hot neutral reactions in the gas phase. Thus, according to our collapse model, there were two sources delivering the water incorporated into the Earth.

  10. Investigating Type I Polar Stratospheric Cloud Formation Mechanisms with POAM Satellite Observations

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Drdla, K.; Fromm, M.; Hoppel, K.; Browell, E.; Hamill, P.; Dempsey, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Type Ia PSCs are believed to be composed of nitric acid hydrate particles. Recent results from the SOLVE/THESEO 2000 campaign showed evidence that this type of PSC was composed of a small number of very large particles capable of sedimentary denitrification of regions of the stratosphere. It is unknown whether homogeneous or heterogeneous nucleation is responsible for the formation of these PSCs. Arctic winters are tending to be colder in response to global tropospheric warming. The degree to which this influences ozone depletion will depend on the freezing mechanism of nitric acid hydrate particles. If nucleation is homogeneous it implies that the freezing process is an inherent property of the particle, while heterogeneous freezing means that the extent of PSCs will depend in part on the number of nuclei available. The Polar Ozone and Aerosol Measurement (POAM)II and III satellites have been making observations of stratospheric aerosols and Polar Stratospheric Clouds (PSCs) since 1994. Recently, we have developed a technique that can discriminate between Type Ia and Ib PSCs using these observations. A statistical approach is employed to demonstrate the robustness of this approach and results are compared with lidar measurements. The technique is used to analyze observations from POAM II and II during Northern Hemisphere winters where significant PSC formation occurred with the objective of exploring Type I PSC formation mechanisms. The different PSCs identified using this method exhibit different growth curve as expressed as extinction versus temperature.

  11. EXTENDED STAR FORMATION IN THE INTERMEDIATE-AGE LARGE MAGELLANIC CLOUD STAR CLUSTER NGC 2209

    SciTech Connect

    Keller, Stefan C.; Mackey, A. Dougal; Da Costa, Gary S.

    2012-12-10

    We present observations of the 1 Gyr old star cluster NGC 2209 in the Large Magellanic Cloud made with the GMOS imager on the Gemini South Telescope. These observations show that the cluster exhibits a main-sequence turnoff that spans a broader range in luminosity than can be explained by a single-aged stellar population. This places NGC 2209 amongst a growing list of intermediate-age (1-3 Gyr) clusters that show evidence for extended or multiple epochs of star formation of between 50 and 460 Myr in extent. The extended main-sequence turnoff observed in NGC 2209 is a confirmation of the prediction in Keller et al. made on the basis of the cluster's large core radius. We propose that secondary star formation is a defining feature of the evolution of massive star clusters. Dissolution of lower mass clusters through evaporation results in only clusters that have experienced secondary star formation surviving for a Hubble time, thus providing a natural connection between the extended main-sequence turnoff phenomenon and the ubiquitous light-element abundance ranges seen in the ancient Galactic globular clusters.

  12. Ionization impact on molecular clouds and star formation. Numerical simulations and observations

    NASA Astrophysics Data System (ADS)

    Tremblin, P.

    2012-11-01

    At all the scales of Astrophysics, the impact of the ionization from massive stars is a crucial issue. At the galactic scale, the ionization can regulate star formation by supporting molecular clouds against gravitational collapse and at the stellar scale, indications point toward a possible birth place of the Solar System close to massive stars. At the molecular cloud scale, it is clear that the hot ionized gas compresses the surrounding cold gas, leading to the formation of pillars, globules, and shells of dense gas in which some young stellar objects are observed. What are the formation mechanisms of these structures? Are the formation of these young stellar objects triggered or would have they formed anyway? Do massive stars have an impact on the distribution of the surrounding gas? Do they have an impact on the mass distribution of stars (the initial mass function, IMF)? This thesis aims at shedding some light on these questions, by focusing especially on the formation of the structures between the cold and the ionized gas. We present the state of the art of the theoretical and observational works on ionized regions (H ii regions) and we introduce the numerical tools that have been developed to model the ionization in the hydrodynamic simulations with turbulence performed with the HERACLES code. Thanks to the simulations, we present a new model for the formation of pillars based on the curvature and collapse of the dense shell on itself and a new model for the formations of cometary globules based on the turbulence of the cold gas. Several diagnostics have been developed to test these new models in the observations. If pillars are formed by the collapse of the dense shell on itself, the velocity spectrum of a nascent pillar presents a large spectra with a red-shifted and a blue-shifted components that are caused by the foreground and background parts of the shell that collapse along the line of sight. If cometary globules emerge because of the turbulence of

  13. Cloud Formation and Water Transport on Mars after Major Outflow Events

    NASA Technical Reports Server (NTRS)

    Santiago, D. L.; Colaprete, A.; Kreslavsky, M.; Kahre, M. A.; Asphaug, E.

    2012-01-01

    The triggering of a robust water cycle on Mars might have been caused by the gigantic flooding events evidenced by outflow channels. We use the Ames Mars General Circulation Model (MGCM) to test this hypothesis, studying how these presumably abrupt eruptions of water might have affected the climate of Mars in the past. We model where the water ultimately went as part of a transient atmospheric water cycle, to answer questions including: (1) Can sudden introductions of large amounts of water on the Martian surface lead to a new equilibrated water cycle? (2) What are the roles of water vapor and water ice clouds to sudden changes in the water cycle on Mars? (3) How are radiative feedbacks involved with this? (4) What is the ultimate fate of the outflow water? (5) Can we tie certain geological features to outflow water redistributed by the atmosphere?

  14. Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds.

    PubMed

    Bogdan, Anatoli; Molina, Mario J; Tenhu, Heikki; Mayer, Erwin; Loerting, Thomas

    2010-03-01

    Polar stratospheric clouds (PSCs) are extremely efficient at catalysing the transformation of photostable chlorine reservoirs into photolabile species, which are actively involved in springtime ozone-depletion events. Why PSCs are such efficient catalysts, however, is not well understood. Here, we investigate the freezing behaviour of ternary HNO₃-H₂SO₄-H₂O droplets of micrometric size, which form type II PSC ice particles. We show that on freezing, a phase separation into pure ice and a residual solution coating occurs; this coating does not freeze but transforms into glass below ∼150 K. We find that the coating, which is thicker around young ice crystals, can still be approximately 30 nm around older ice crystals of diameter about 10 µm. These results affect our understanding of PSC microphysics and chemistry and suggest that chlorine-activation reactions are better studied on supercooled HNO₃-H₂SO₄-H₂O solutions rather than on a pure ice surface.

  15. Direct Observation of Secondary Organic Aerosol Formation during Cloud Condensation-Evaporation Cycles (SOAaq) in Simulation Chamber Experiments

    NASA Astrophysics Data System (ADS)

    Doussin, J. F.; Bregonzio-Rozier, L.; Giorio, C.; Siekmann, F.; Gratien, A.; Temime-Roussel, B.; Ravier, S.; Pangui, E.; Tapparo, A.; Kalberer, M.; Monod, A.

    2014-12-01

    Biogenic volatile organic compounds (BVOCs) undergo many reactions in the atmosphere and form a wide range of oxidised and water-soluble compounds. These compounds can partition into atmospheric water droplets, and react within the aqueous phase producing higher molecular weight and/or less volatile compounds which can remain in the particle phase after water evaporation and thus increase the organic aerosol mass (Ervens et al., 2011; Altieri et al., 2008; Couvidat et al., 2013). While this hypothesis is frequently discussed in the literature, so far, almost no direct observations of such a process have been provided.The aim of the present work is to study SOA formation from isoprene photooxidation during cloud condensation-evaporation cycles.The experiments were performed during the CUMULUS project (CloUd MULtiphase chemistry of organic compoUndS in the troposphere), in the CESAM simulation chamber located at LISA. CESAM is a 4.2 m3 stainless steel chamber equipped with realistic irradiation sources and temperature and relative humidity (RH) controls (Wang et al., 2011). In each experiment, isoprene was allowed to oxidize during several hours in the presence on nitrogen oxides under dry conditions. Gas phase compounds were analyzed on-line by a Proton Transfer Reaction Time of Flight Mass Spectrometer (PTR-ToF-MS), a Fourier Transform Infrared Spectrometer (FTIR), NOx and O3 analyzers. SOA formation was monitored on-line with a Scanning Mobility Particle Sizer (SMPS) and an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The experimental protocol was optimised to generate cloud events in the simulation chamber, which allowed us to generate clouds lasting for ca. 10 minutes in the presence of light.In all experiments, we observed that during cloud formation, water-soluble gas-phase oxidation products (e.g., methylglyoxal, hydroxyacetone, acetaldehyde, formic acid, acetic acid and glycolaldehyde) readily partitioned into cloud

  16. Comet formation in collapsing pebble clouds. What cometary bulk density implies for the cloud mass and dust-to-ice ratio

    NASA Astrophysics Data System (ADS)

    Lorek, S.; Gundlach, B.; Lacerda, P.; Blum, J.

    2016-03-01

    Context. Comets are remnants of the icy planetesimals that formed beyond the ice line in the solar nebula. Growing from μm-sized dust and ice particles to km-sized objects is, however, difficult because of growth barriers and time scale constraints. The gravitational collapse of pebble clouds that formed through the streaming instability may provide a suitable mechanism for comet formation. Aims: We study the collisional compression of silica, ice, and silica/ice-mixed pebbles during gravitational collapse of pebble clouds. Using the initial volume-filling factor and the dust-to-ice ratio of the pebbles as free parameters, we constrain the dust-to-ice mass ratio of the formed comet and the resulting volume-filling factor of the pebbles, depending on the cloud mass. Methods: We use the representative particle approach, which is a Monte Carlo method, to follow cloud collapse and collisional evolution of an ensemble of ice, silica, and silica/ice-mixed pebbles. Therefore, we developed a collision model which takes the various collision properties of dust and ice into account. We study pebbles with a compact size of 1 cm and vary the initial volume-filling factors, φ0, ranging from 0.001 to 0.4. We consider mixed pebbles as having dust-to-ice ratios between 0.5 and 10. We investigate four typical cloud masses, M, between 2.6 × 1014 (very low) and 2.6 × 1023 g (high). Results: Except for the very low-mass cloud (M = 2.6 × 1014 g), silica pebbles are always compressed during the collapse and attain volume-filling factors in the range from ⟨ φ ⟩ V ≈ 0.22 to 0.43, regardless of φ0. Ice pebbles experience no significant compression in very low-mass clouds. They are compressed to values in the range ⟨ φ ⟩ V ≈ 0.11 to 0.17 in low- and intermediate-mass clouds (M = 2.6 × 1017-2.6 × 1020 g); in high-mass clouds (M = 2.6 × 1023 g), ice pebbles end up with ⟨ φ ⟩ V ≈ 0.23. Mixed pebbles obtain filling factors in between the values for pure ice and

  17. Some factors affecting cyclopropane acid formation in Escherichia coli

    PubMed Central

    Knivett, V. A.; Cullen, Julia

    1965-01-01

    1. The fatty acid composition of the extractable lipids of Escherichia coli varied with growth conditions. 2. The principal fatty acids were palmitic acid, hexadecenoic acid, octadecenoic acid and the cyclopropane acids, methylenehexadecanoic acid and methyleneoctadecanoic acid. 3. Cyclopropane acid formation from monoenoic acids was increased by acid media, poor oxygen supply, or high growth temperature. 4. Cyclopropane acid formation was decreased by alkaline media, well oxygenated conditions, the presence of citrate, or lack of Mg2+. PMID:5324304

  18. Methods of editing cloud and atmospheric layer affected pixels from satellite data

    NASA Technical Reports Server (NTRS)

    Nixon, P. R. (Principal Investigator); Wiegand, C. L.; Richardson, A. J.; Johnson, M. P.

    1981-01-01

    Plotted transects made from south Texas daytime HCMM data show the effect of subvisible cirrus (SCI) clouds in the emissive (IR) band but the effect is unnoticable in the reflective (VIS) band. The depression of satellite indicated temperatures ws greatest in the center of SCi streamers and tapered off at the edges. Pixels of uncontaminated land and water features in the HCMM test area shared identical VIS and IR digital count combinations with other pixels representing similar features. A minimum of 0.015 percent repeats of identical VIS-IR combinations are characteristic of land and water features in a scene of 30 percent cloud cover. This increases to 0.021 percent of more when the scene is clear. Pixels having shared VIS-IR combinations less than these amounts are considered to be cloud contaminated in the cluster screening method. About twenty percent of SCi was machine indistinguishable from land features in two dimensional spectral space (VIS vs IR).

  19. Water formation in early solar nebula: I. Quasi-stationary cloud core

    NASA Astrophysics Data System (ADS)

    Tornow, C.; Gast, P.; Pelivan, I.; Kupper, S.; Kührt, E.; Motschmann, U.

    2014-08-01

    An important condition for the habitability of rocky planets is the existence of water in or on their upper lithospheric layer. We will show that the available amount of this water depends on the conditions in the parental cloud the planetary system has formed from. These clouds can be giant gas clusters with a complex structure associated with bright nebulae or smaller gas aggregations appearing as quiescent dark regions. It has been observed that in both cloud types young stars are formed in dense cores consisting mainly of molecular hydrogen. We assume that the physical and chemical state of these cores, which defines the initial conditions of star formation, is also representative for the initial state of the solar nebula 4.6 Giga years ago. Based on this assumption, we have developed a radial symmetric model to study the physical and chemical evolution of the earliest period of the solar nebula described by a cloud core with 1.01 solar mass and a radius of about 104 AU. The evolution of this core is simulated for a few Mega years, while its molecular gas being in a hydrostatic equilibrium. The related radial distributions of the gas and dust temperature can be calculated from thermal balance equations. These equations depend on the radial profile of the dust to gas density which follows from the continuity equation of the dust phase. The velocity of the dust grains is influenced by the radiation pressure of the local interstellar radiation field and the gas drag. The resulting temperature and dust profiles derived from our model depend on the grain size distribution of the dust. These profiles determine the chemical evolution of the cloud core. It is shown that in the dust phase about 106 to 107 times more water is produced than in the gas phase. Further, the total mass of the water formed in the core varies only marginally between 0.11 and 0.12 wt% for a life time of the core between 1 and 6.5 Mega years, respectively. Roughly 84% of the oxygen atoms are

  20. L1188: A Promising Candidate for Cloud–Cloud Collisions Triggering the Formation of Low- and Intermediate-mass Stars

    NASA Astrophysics Data System (ADS)

    Gong, Yan; Fang, Min; Mao, Ruiqing; Zhang, Shaobo; Wang, Yuan; Su, Yang; Chen, Xuepeng; Yang, Ji; Wang, Hongchi; Lu, Dengrong

    2017-01-01

    We present a new large-scale (2° × 2°) simultaneous 12CO, 13CO, and C18O (J = 1–0) mapping of L1188 with the Purple Mountain Observatory 13.7 m telescope. Our observations have revealed that L1188 consists of two nearly orthogonal filamentary molecular clouds at two clearly separated velocities. Toward the intersection showing large velocity spreads, we find several bridging features connecting the two clouds in velocity, and an open arc structure that exhibits high excitation temperatures, enhanced 12CO and 13CO emission, and broad 12CO line wings. This agrees with the scenario that the two clouds are colliding with each other. The distribution of young stellar object (YSO) candidates implies an enhancement of star formation in the intersection of the two clouds. We suggest that a cloud–cloud collision happened in L1188 about 1 Myr ago, possibly triggering the formation of low- and intermediate-mass YSOs in the intersection.

  1. Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds

    DOE PAGES

    Chang, D.; Cheng, Y.; Reutter, P.; ...

    2015-09-21

    Here, a recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. Themore » integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show the following. (1) The three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complex and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for values of NCN of ~ 1000 to 3000 cm–3. (3) The nonlinear properties of aerosol–cloud interactions challenge the conclusions drawn from limited case studies in terms of their representativeness, and ensemble studies over a wide range of aerosol concentrations and other influencing factors are strongly recommended for a more robust assessment of the aerosol effects.« less

  2. Comprehensive mapping and characteristic regimes of aerosol effects on the formation and evolution of pyro-convective clouds

    SciTech Connect

    Chang, D.; Cheng, Y.; Reutter, P.; Trentmann, J.; Burrows, S. M.; Spichtinger, P.; Nordmann, S.; Andreae, M. O.; Poschl, U.; Su, H.

    2015-09-21

    Here, a recent parcel model study (Reutter et al., 2009) showed three deterministic regimes of initial cloud droplet formation, characterized by different ratios of aerosol concentrations (NCN) to updraft velocities. This analysis, however, did not reveal how these regimes evolve during the subsequent cloud development. To address this issue, we employed the Active Tracer High Resolution Atmospheric Model (ATHAM) with full microphysics and extended the model simulation from the cloud base to the entire column of a single pyro-convective mixed-phase cloud. A series of 2-D simulations (over 1000) were performed over a wide range of NCN and dynamic conditions. The integrated concentration of hydrometeors over the full spatial and temporal scales was used to evaluate the aerosol and dynamic effects. The results show the following. (1) The three regimes for cloud condensation nuclei (CCN) activation in the parcel model (namely aerosol-limited, updraft-limited, and transitional regimes) still exist within our simulations, but net production of raindrops and frozen particles occurs mostly within the updraft-limited regime. (2) Generally, elevated aerosols enhance the formation of cloud droplets and frozen particles. The response of raindrops and precipitation to aerosols is more complex and can be either positive or negative as a function of aerosol concentrations. The most negative effect was found for values of NCN of ~ 1000 to 3000 cm–3. (3) The nonlinear properties of aerosol–cloud interactions challenge the conclusions drawn from limited case studies in terms of their representativeness, and ensemble studies over a wide range of aerosol concentrations and other influencing factors are strongly recommended for a more robust assessment of the aerosol effects.

  3. Shells, outflows and star formation in the giant molecular cloud Monoceros R2

    NASA Astrophysics Data System (ADS)

    Xie, Taoling

    1992-09-01

    To improve our understanding about giant molecular clouds (GMC) associated with R-associations, a CO-12 J = 1-0 map of 167,000 spectra with 45 inch resolution and 25 inch spacing, a CO-13 J = 1-0 map of approximately 40,000 spectra with 1.5 foot resolution and 1 foot spacing, IRAS BIGMAP images, and maps of high density molecular tracers for the dense cores are obtained for the GMC Monoceros R2 (D = 830 plus or minus 50 pc). These data reveal that the large-scale structure of Mon R2 is dominated by an expanding bubble shell (approximately 30 pc) with front side moving towards us at a radial velocity of approximately 4-5 km/s. Distortions of this shell are obvious, suggesting of the inhomogeneity of the cloud before the formation of the bubble. There is no evidence for red-shifted shell at the far side of the bubble. There are at least two generations of star formation in Mon R2. The older generation of stars with an age of 6-10 x 106 years are represented mostly by reflection nebulae. The younger generation of stars with an age of approximately 105 years are represented mostly by IRAS point sources. It is proposed that the large-scale expanding bubble shell is the result of combined effects of ionizing flux and stellar winds originating from the older generation of young stellar objects, but perhaps dominated by O type stars which either are obscured or left main sequence. It is suggested that the formation of the younger generation of stars has been triggered by the older generation of stars. The main and the GGD12-15 cores are located on the large-scale expanding shell, and their harboring both generations of stars can be explained were the cores preexisting clumps. Our CO data reveal an eggplant-shaped bipolar outflow shell, whose shape can be satisfactorily modeled with radially directed stellar winds sweeping up ambient material with momentum conservation. An inversion method is implemented for analyzing dust emission spectra at FIR wavelengths in terms of a

  4. Evidence for two discrete epochs of star formation in the large magellanic cloud

    SciTech Connect

    Frogel, J.A.; Blanco, V.M.

    1983-11-15

    An infrared color-magnitude diagram for an unbiased sample of M giants in a 0.12 deg/sup 2/ field of the Large Magellanic Cloud (LMC) shows the existence of two distinct asymptotic giant branches (AGBs), one of which is 1.5 mag brighter than the other. Stars on the bright AGB are quite similar in color and luminosity to giants in LMC clusters which have ages of about 10/sup 8/ yr; those on the faint AGB look like giants in clusters with ages of a few Gyr. The faint AGB is identified with the star-forming episode found by Butcher and Stryker. The bright AGB is taken to be evidence for a second, discrete episode of star formation corresponding in age to the blue globular clusters in the LMC. At least for main-sequence stars near the turnoff, this recent episode has been only one-tenth as efficient at making stars as was the older episode. The rate of star formation between these two episodes appears to have been significantly lower than in either.

  5. Evidence for two discrete epochs of star formation in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Frogel, J. A.; Blanco, V. M.

    1983-11-01

    An infrared color-magnitude diagram for an unbiased sample of M giants in a 0.12 sq deg field of the Large Magellanic Cloud (LMC) shows the existence of two distinct asymptotic giant branches (AGBs), one of which is 1.5 mag brighter than the other. Stars on the bright AGB are quite similar in color and luminosity to giants in LMC clusters which have ages of about 10 to the 8th yr; those on the faint AGB look like giants in clusters with ages of a few Gyr. The faint AGB is identified with the star-forming episode found by Butcher and Stryker (1981). The bright AGB is taken to be evidence for a second, discrete episode of star formation corresponding in age to the blue globular clusters in the LMC. At least for main-sequence stars near the turnoff, this recent episode has been only one-tenth as efficient at making stars as was the older episode. The rate of star formation between these two episodes appears to have been significantly lower than in either.

  6. On the Star-Formation History of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Cole, A. A.; Smecker-Hane, T. A.; Gallagher, J. S., III

    1999-12-01

    Using WFPC2, we have obtained deep images in the V and I passbands of two fields in the central Large Magellanic Cloud. From these data, we have constructed high-quality color-magnitude diagrams that extend to I 27 and contain 70,000 stars each. Our CMDs extend over 2.5 magnitudes below the oldest main-sequence turnoff, which will allow us to determine the complete star-formation history of the two LMC fields with unprecedented accuracy. The fields are near the star clusters SL 336 (disk) and HS 275 (bar). We present our first analysis, focusing on the distance, age, and metallicity of the two fields as derived from the red clump and the red giant, asymptotic giant, and horizontal branches. There is evidence for differing histories of star-formation and/or chemical enrichment between the bar and the inner disk. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Partial funding provided by NSF grant AST-9619460 to TSH.

  7. Protostar Formation in Magnetic Molecular Clouds beyond Ion Detachment. II. Typical Axisymmetric Solution

    NASA Astrophysics Data System (ADS)

    Tassis, Konstantinos; Mouschovias, Telemachos Ch.

    2007-05-01

    We follow the ambipolar-diffusion-driven formation and evolution of a fragment in a magnetically supported molecular cloud, until a hydrostatic protostellar core forms at its center. This problem was formulated in Paper I. We determine the density, velocity, and magnetic field as functions of space and time, and the contribution of ambipolar diffusion and Ohmic dissipation to the resolution of the magnetic flux problem of star formation. The issue of whether the magnetic field ever decouples from the (neutral) matter is also addressed. We also find that the electrons do not decouple from the field lines before thermal ionization becomes important and recouples the magnetic field to the neutral matter. Ohmic dissipation becomes more effective than ambipolar diffusion as a flux reduction mechanism only at the highest densities (a few × 1012 cm-3). In the high-density central parts of the core, the magnetic field acquires an almost spatially uniform structure, with a value that, at the end of the calculation (nn~5×1014 cm-3), is found to be in excellent agreement with meteoritic measurements of magnetic fields in the protosolar nebula. Outside the hydrostatic protostellar core, a concentration of magnetic flux (a ``magnetic wall'') forms, which gives rise to a magnetic shock. This magnetic shock is the precursor of the repeated shocks previously found by Tassis & Mouschovias, which cause spasmodic accretion onto the hydrostatic core at later times.

  8. New particle formation events as a source for cloud condensation nuclei in an urban environment

    NASA Astrophysics Data System (ADS)

    Wonaschütz, Anna; Burkart, Julia; Wagner, Robert; Reischl, Georg; Steiner, Gerhard; Hitzenberger, Regina

    2014-05-01

    Nucleation and growth events have been observed in many remote, urban and rural environments. The new particles can contribute significantly to cloud condensation nuclei concentrations, after growing into the appropriate size range (Kerminen et al., 2012). Several studies have attempted to quantify this contribution (e.g. Asmi et al., 2011, Matsui et al., 2013), but only a limited number of them to date have used simultaneous measurements of CCN concentrations and particle size distributions for this purpose (e.g. Levin et al., 2012). In this study, a data set from an urban background station, consisting of 22 months of size distribution and 12 months of CCN concentration measurements (Burkart et al., 2011, Burkart et al., 2012) with 10 months of overlapping measurements is combined to explore the variability of CCN concentrations, their possible causes, and the contribution of nucleation and growth events to CCN concentrations. Consistent with observations in many other locations, nucleation and growth events occur on 30% of all days in spring and summer, on 11% of days in fall and on 4% of days in winter. This suggests a potentially large source of CCN from nucleation and growth events, particularly in the warm season. We acknowledge funding from FWF (Austrian Science Fund) P19515-N20 References: Asmi E., Kivekas, N., Kerminen, V. M., Komppula, M., Hyvarinen, A. P., Hatakka, J., Viisanen, Y., and Lihavainen, H.: Secondary new particle formation in Northern Finland Pallas site between the years 2000 and 2010, Atmos. Chem. Phys., 11, 12959-12972, doi: 10.5194/acp-11-12959-2011, 2011 Burkart J., Steiner, G., Reischl, G., and Hitzenberger, R.: Long-term study of cloud condensation nuclei (CCN) acticvation of the atmospheric aerosol in Vienna, Atmos. Environ., 45, 5751-5759, doi: 10.1016/j.atmosenv.2011.07.022, 2011. Burkart J., Hitzenberger, R., Reischl, G., Bauer, H., Leder, K., and Puxbaum, H.: Activation of "synthetic ambient" aerosols - relation to chemical

  9. Identification of Dust and Ice Cloud Formation from A-Train Datasets

    NASA Astrophysics Data System (ADS)

    Russell, D. S.; Liou, K. N.

    2014-12-01

    Dust aerosols are effective ice nuclei for clouds and instances of nucleation have been well studied in laboratory experiments. We used CALIOP/CALIPSO, MODIS/Aqua, and CloudSat on the A-Train to find collocated instances of clouds characterized as water by MODIS, but contain ice water as indicated by CloudSat. The vertical profiles of CALIPSO detect the presence of dust and polluted dust near clouds. This study concentrates on high dust aerosol areas including the regions surrounding the Sahara Desert as well as South Asia including the Tibetan Plateau. These cases display the effects of dust acting as ice nuclei in the time frame between MODIS overpass and CloudSat overpass (~45 seconds). Utilizing available datasets, we then carried out radiative transfer calculations to understand spectral radiative forcing differences between water and ice clouds, particularly over snow surfaces at the Tibetan Plateau.

  10. Climatology and Formation of Tropical Midlevel Clouds at the Darwin ARM Site

    SciTech Connect

    Riihimaki, Laura D.; McFarlane, Sally A.; Comstock, Jennifer M.

    2012-10-01

    A 4-yr climatology of midlevel clouds is presented from vertically pointing cloud lidar and radar measurements at the Atmospheric Radiation Measurement Program (ARM) site at Darwin, Australia. Few studies exist of tropical midlevel clouds using a dataset of this length. Seventy percent of clouds with top heights between 4 and 8 km are less than 2 km thick. These thin layer clouds have a peak in cloud-top temperature around the melting level (0°C) and also a second peak around -12.5°C. The diurnal frequency of thin clouds is highest during the night and reaches a minimum around noon, consistent with variation caused by solar heating. Using a 1.5-yr subset of the observations, the authors found that thin clouds have a high probability of containing supercooled liquid water at low temperatures: ~20% of clouds at -30°C, ~50% of clouds at -20°C, and ~65% of clouds at -10°C contain supercooled liquid water. The authors hypothesize that thin midlevel clouds formed at the melting level are formed differently during active and break monsoon periods and test this over three monsoon seasons. A greater frequency of thin midlevel clouds are likely formed by increased condensation following the latent cooling of melting during active monsoon periods when stratiform precipitation is most frequent. This is supported by the high percentage (65%) of midlevel clouds with preceding stratiform precipitation and the high frequency of stable layers slightly warmer than 0°C. In the break monsoon, a distinct peak in the frequency of stable layers at 0°C matches the peak in thin midlevel cloudiness, consistent with detrainment from convection.

  11. Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN)

    NASA Astrophysics Data System (ADS)

    Reutter, P.; Su, H.; Trentmann, J.; Simmel, M.; Rose, D.; Gunthe, S. S.; Wernli, H.; Andreae, M. O.; Pöschl, U.

    2009-09-01

    We have investigated the formation of cloud droplets under pyro-convective conditions using a cloud parcel model with detailed spectral microphysics and with the κ-Köhler model approach for efficient and realistic description of the cloud condensation nucleus (CCN) activity of aerosol particles. Assuming a typical biomass burning aerosol size distribution (accumulation mode centred at 120 nm), we have calculated initial cloud droplet number concentrations (NCD) for a wide range of updraft velocities (w=0.25-20 m s-1) and aerosol particle number concentrations (NCN=200-105 cm-3) at the cloud base. Depending on the ratio between updraft velocity and particle number concentration (w/NCN), we found three distinctly different regimes of CCN activation and cloud droplet formation: (1) An aerosol-limited regime that is characterized by high w/NCN ratios (>≈10-3 m s-1 cm3), high maximum values of water vapour supersaturation (Smax>≈0.5%), and high activated fractions of aerosol particles (NCN/NCN>≈90%). In this regime NCD is directly proportional to NCN and practically independent of w. (2) An updraft-limited regime that is characterized by low w/NCN ratios (<≈10-4 m s-1 cm3), low maximum values of water vapour supersaturation (Smax<≈0.2%), and low activated fractions of aerosol particles (NCD/NCN<≈20%). In this regime NCD is directly proportional to w and practically independent of NCN. (3) An aerosol- and updraft-sensitive regime (transitional regime), which is characterized by parameter values in between the two other regimes and covers most of the conditions relevant for pyro-convection. In this regime NCD depends non-linearly on both NCN and w. In sensitivity studies we have tested the influence of aerosol particle size distribution and hygroscopicity on NCD. Within the range of effective hygroscopicity parameters that is characteristic for continental atmospheric aerosols (κ≈0.05-0.6), we found that NCD depends rather weakly on the actual value of κ

  12. Exploring How Giant Planet Formation Affected the Asteroid Belt

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Levison, Harold F.; Bottke, William

    2016-10-01

    The asteroid belt is observed to be a mixture of objects with different compositions, with volatile-poor asteroids (mostly S-complex) dominant in the inner asteroid belt while volatile-rich (mostly C-complex) asteroids dominate the outer asteroid belt. While this general compositional stratification was originally thought to be an indicator of the primordial temperature gradient in the protoplanetary disk, the very distinct properties of these populations suggest that they must represent two completely decoupled reservoirs, not a simple gradient (e.g., Warren 2011). It is possible to create this general stratification (as well as the observed mixing) as the implantation of outer Solar System material into the asteroid belt by the early migration of the giant planets (e.g. the Grand Tack, Walsh et al. 2011). However, this presupposes that the inner and outer Solar System materials were still sorted in their primordial locations prior to any migration of the planets. The lack of a fully dynamically self-consistent model of giant planet core formation has prevented the study of how the core formation process itself may result in dynamical mixing in the early Solar System's history. Recently, pebble accretion, the process by which planetesimals can grow to giant planet cores via the accretion of small, rapidly drifting sub-meter-sized bodies known as ``pebbles,'' (Lambrechts & Johansen 2012, Levison, Kretke & Duncan 2015) finally offers such a model. Here we show how the process of giant planet formation will impact the surrounding planetesimal population, possibly resulting in the observed compositional mixture of the asteroid belt, without requiring a dramatic migration of the giant planets. For example, preliminary runs suggest planetesimals from the Jupiter-formation zone can be implanted in the outer main belt via interactions with scattered Jupiter-zone protoplanets. This could potentially provide an alternative non-Grand Tack solution to the origin of many C

  13. Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, O.; Gharaylou, M.

    2017-03-01

    Through modifying the number concentration and size of cloud droplets, aerosols have intricate impacts on radiative and microphysical properties of clouds, which together influence precipitation processes. Aerosol-cloud interactions for a mid-latitude convective cloud system are investigated using a two-moment aerosol-aware bulk microphysical scheme implemented into the Weather Research and Forecasting (WRF) model. Three sensitivity experiments with initial identical dynamic and thermodynamic conditions, but different cloud-nucleating aerosol concentrations were conducted. Increased aerosol number concentration has resulted in more numerous cloud droplets of overall smaller sizes, through which the optical properties of clouds have been changed. While the shortwave cloud forcing is significantly increased in more polluted experiments, changes in the aerosol number concentration have negligible impacts on the longwave cloud forcing. For the first time, it is found that polluted clouds have higher cloud base heights, the feature that is caused by more surface cooling due to a higher shortwave cloud forcing, as well as a drier boundary layer in the polluted experiment compared to the clean. The polluted experiment was also associated with a higher liquid water content (LWC), caused by an increase in the number of condensation of water vapor due to higher concentration of hygroscopic aerosols acting as condensation nuclei. The domain-averaged accumulated precipitation is little changed under both polluted and clean atmosphere. Nevertheless, changes in the rate of precipitation are identified, such that under polluted atmosphere light rain is reduced, while both moderate and heavy rain are intensified, confirming the fact that if an ample influx of water vapor exists, an increment of hygroscopic aerosols can increase the amount of precipitation.

  14. Effects of Ice-Crystal Structure on Halo Formation: Cirrus Cloud Experimental and Ray-Tracing Modeling Studies

    NASA Technical Reports Server (NTRS)

    Sassen, Kenneth; Knight, Nancy C.; Takano, Yoshihide; Heymsfield, Andrew J.

    1994-01-01

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22 deg halo-producing cirrus clouds were studied jointly from a ground-based polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow-ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  15. Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies.

    PubMed

    Sassen, K; Knight, N C; Takano, Y; Heymsfield, A J

    1994-07-20

    During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22° halo-producing cirrus clouds were studied jointly from a groundbased polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations, and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

  16. Understanding the Star Formation Process in the Filamentary Dark Cloud GF 9: Near-Infrared Observations

    NASA Technical Reports Server (NTRS)

    Ciardi, David R.; Woodward, Charles E.; Clemens, Dan P.; Harker, David E.; Rudy, Richard J.

    1998-01-01

    We have performed a near-infrared JHK survey of a dense core and a diffuse filament region within the filamentary dark cloud GF 9 (LDN 1082). The core region is associated with the IRAS point source PSC 20503+6006 and is suspected of being a site of star formation. The diffuse filament region has no associated IRAS point sources and is likely quiescent. We find that neither the core nor the filament region appears to contain a Class I or Class II young stellar object. As traced by the dust extinction, the core and filament regions contain 26 and 22 solar mass, respectively, with an average H2 volume density for both regions of approximately 2500/cu cm. The core region contains a centrally condensed extinction maximum with a peak extinction of A(sub v) greater than or approximately equal to 10 mag that appears to be associated with the IRAS point source. The average H2 volume density of the extinction core is approximately 8000/cu cm. The dust within the filament, however, shows no sign of a central condensation and is consistent with a uniform-density cylindrical distribution.

  17. Modelling of cloud formation due to air-sea interactions in an energy-active zone

    NASA Astrophysics Data System (ADS)

    Kondratyev, K. Ya.; Khvorostyanov, V. I.

    1989-02-01

    A mesoscale 3D numerical model is described, with which detailed calculations have been made of turbulence and wind characteristics in the atmospheric boundary layer (ABL), as well as cloud particle size distribution, longwave and solar radiation fluxes and flux divergences, and atmosphere-ocean heat exchange. Based on numerical experiments simulating winter conditions of the Newfoundland energy-active zone of the ocean (EAZO), atmosphere-ocean energy exchange is investigated. It is shown that the basic mechanisms for the EAZO formation involve the following processes: (i) at the hydrological front between cold and warm ocean currents, the fluxes of sensible and latent heat grow significantly; (ii) at this front, in a particular synoptic situation, overcast low-level cloudiness forms, screening solar radiation so that in winter, the radiation budget at the front is reduced, and the radiative flux into the ocean is less than the energy release to the atmosphere; (iii) frequent occurrence of such synoptic situations with cloudiness decreases the oceanic enthalpy and creates negative SST anomalies. The transport of these anomalies by currents to the western coasts of the continents causes anomalies of weather and climate.

  18. Nonequilibrium spatiotemporal formation of the Kondo screening cloud on a lattice

    NASA Astrophysics Data System (ADS)

    Nuss, Martin; Ganahl, Martin; Arrigoni, Enrico; von der Linden, Wolfgang; Evertz, Hans Gerd

    2015-02-01

    We study the nonequilibrium formation of a spin screening cloud that accompanies the quenching of a local magnetic moment immersed in a Fermi sea at zero temperature. Based on high-precision density matrix renormalization-group results for the interacting single-impurity Anderson model, we discuss the real-time evolution after a quantum quench in the impurity-reservoir hybridization using time-evolving block decimation. We report emergent length and time scales in the spatiotemporal structure of nonlocal correlation functions in the spin and the charge density channel. At equilibrium, our data for the correlation functions and the extracted length scales show good agreement with existing results, as do local time-dependent observables at the impurity. In the time-dependent data, we identify a major signal which defines a "light cone" moving at the Fermi velocity and a ferromagnetic component in its wake. Inside the light cone we find that the structure of the nonequilibrium correlation functions emerges on two time scales. Initially, the qualitative structure of the correlation functions develops rapidly at the lattice Fermi velocity. Subsequently the spin correlations converge to the equilibrium results on a much larger time scale. This process sets a dynamic energy scale, which we identify to be proportional to the Kondo temperature. Outside the light cone we observe two different power-law decays of the correlation functions in space, with time- and interaction-strength-independent exponents.

  19. Infalling clouds on to supermassive black hole binaries - I. Formation of discs, accretion and gas dynamics

    NASA Astrophysics Data System (ADS)

    Goicovic, F. G.; Cuadra, J.; Sesana, A.; Stasyszyn, F.; Amaro-Seoane, P.; Tanaka, T. L.

    2016-01-01

    There is compelling evidence that most - if not all - galaxies harbour a supermassive black hole (SMBH) at their nucleus; hence binaries of these massive objects are an inevitable product of the hierarchical evolution of structures in the Universe, and represent an important but thus-far elusive phase of galaxy evolution. Gas accretion via a circumbinary disc is thought to be important for the dynamical evolution of SMBH binaries, as well as in producing luminous emission that can be used to infer their properties. One plausible source of the gaseous fuel is clumps of gas formed due to turbulence and gravitational instabilities in the interstellar medium, that later fall towards and interact with the binary. In this context, we model numerically the evolution of turbulent clouds in near-radial infall on to equal-mass SMBH binaries, using a modified version of the SPH (smoothed particle hydrodynamics) code GADGET-3. We present a total of 12 simulations that explore different possible pericentre distances and relative inclinations, and show that the formation of circumbinary discs and discs around each SMBH (`mini-discs') depend on those parameters. We also study the dynamics of the formed discs, and the variability of the feeding rate on to the SMBHs in the different configurations.

  20. Numerical Simulations of Turbulent Molecular Clouds Regulated by Radiation Feedback Forces. I. Star Formation Rate and Efficiency

    NASA Astrophysics Data System (ADS)

    Raskutti, Sudhir; Ostriker, Eve C.; Skinner, M. Aaron

    2016-10-01

    Radiation feedback from stellar clusters is expected to play a key role in setting the rate and efficiency of star formation in giant molecular clouds. To investigate how radiation forces influence realistic turbulent systems, we have conducted a series of numerical simulations employing the Hyperion radiation hydrodynamics solver, considering the regime that is optically thick to ultraviolet and optically thin to infrared radiation. Our model clouds cover initial surface densities between Σ cl,0∼ 10--300 M⊙ pc-2, with varying initial turbulence. We follow them through turbulent, self-gravitating collapse, star cluster formation, and cloud dispersal by stellar radiation. All our models display a log-normal distribution of gas surface density Σ for an initial virial parameter αvir,0=2, the log-normal standard deviation is σln Σ =1-1.5 and the star formation rate coefficient ɛff,ρ=0.3-0.5, both of which are sensitive to turbulence but not radiation feedback. The net star formation efficiency (SFE) ɛfinal increases with Σcl,0 and decreases with α vir,0. We interpret these results via a simple conceptual framework, whereby steady star formation increases the radiation force, such that local gas patches at successively higher Σ become unbound. Based on this formalism (with fixed σln Σ), we provide an analytic upper bound on ɛfinal, which is in good agreement with our numerical results. The final SFE depends on the distribution of Eddington ratios in the cloud and is strongly increased by the turbulent compression of gas.

  1. Impacts of new particle formation on aerosol cloud condensation nuclei (CCN) activity in Shanghai: case study

    NASA Astrophysics Data System (ADS)

    Leng, C.; Zhang, Q.; Zhang, D.; Zhang, H.; Xu, C.; Li, X.; Kong, L.; Tao, J.; Cheng, T.; Zhang, R.; Chen, J.; Qiao, L.; Lou, S.; Wang, H.; Chen, C.

    2014-07-01

    New particle formation (NPF) events and their impacts on cloud condensation nuclei (CCN) were investigated using continuous measurements collected in urban Shanghai from 1 to 30 April 2012. During the campaign, NPF occurred in 8 out of the 30 days and enhanced CCN number concentration (NCCN) by a actor of 1.2-1.8, depending on supersaturation (SS). The NPF event on 3 April 2012 was chosen as an example to investigate the NPF influence on CCN activity. In this NPF event, secondary aerosols were produced continuously and increased PM2.5 mass concentration at a~rate of 4.33 μg cm-3 h-1, and the growth rate (GR) and formation rate (FR) were on average 5 nm h-1 and 0.36 cm-3 s-1, respectively. The newly formed particles grew quickly from nucleation mode (10-20 nm) into CCN size range. NCCN increased rapidly at SS of 0.4-1.0% but weakly at SS of 0.2%. Correspondingly, aerosol CCN activities (fractions of activated aerosol particles in total aerosols, NCCN / NCN) were significantly enhanced from 0.24-0.60 to 0.30-0.91 at SS of 0.2-1.0% due to the NPF. On the basis of the κ-Köhler theory, aerosol size distributions and chemical composition measured simultaneously were used to predict NCCN. There was a good agreement between the predicted and measured NCCN (R2 = 0.96, Npredicted / Nmeasured = 1.04). This study reveals that NPF exerts large impacts on aerosol particle abundance and size spectra, thus significantly promotes NCCN and aerosol CCN activity in this urban environment. The GR of NPF is the key factor controlling the newly formed particles to become CCN at all SS levels, whereas the FR is an effective factor only under high SS (e.g. 1.0%) conditions.

  2. Tropical Cyclone Formation in 30-day Simulation Using Cloud-System-Resolving Global Nonhydrostatic Model (NICAM)

    NASA Astrophysics Data System (ADS)

    Yanase, W.; Satoh, M.; Iga, S.; Tomita, H.

    2007-12-01

    We are developing an icosahedral-grid non-hydrostatic AGCM, which can explicitly represent cumulus or meso-scale convection over the entire globe. We named the model NICAM (Nonhydrostatic ICosahedral Atmospheric Model). On 2005, we have performed a simulations with horizontal grid intervals of 14, 7 and 3.5 km using realistic topography and sea surface temperature in April 2004 (Miura et al., 2007; GRL). It simulated a typhoon Sudal that actually developed over the Northwestern Pacific in 2004. In the present study, the NICAM model with the horizontal grid interval of 14 km was used for perpetual July experiment with 30 forecasting days. In this simulation, several tropical cyclones formed over the wesetern and eastern North Pacific, althought the formation over the western North Pacific occured a little further north to the actually observed region. The mature tropical cyclones with intense wind speed had a structure of a cloud-free eye and eye wall. We have found that the enviromental parameters associated with the tropical cyclone genesis explain well the simulated region of tropical cyclone generation. Over the North Atlantic and eastern North Pacific, westward-moving disturbances like African wave are simulated, which seems to be related to the cyclone formation over the eastern North Pacific. On the other hand, the simulated tropical cyclones over the western North Pacifis seem to form by different factors as has been suggested by the previous studies based on observation. Although the model still has some problems and is under continuous improvement, we can discuss what dynamics is to be represented using a global high-resolution model.

  3. Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment.

    PubMed

    Guerra, P; Kim, M; Kinsman, L; Ng, T; Alaee, M; Smyth, S A

    2014-05-15

    This study examined the fate and behaviour of perfluoroalkyl acids (PFAAs) in liquid and solid samples from five different wastewater treatment types: facultative and aerated lagoons, chemically assisted primary treatment, secondary aerobic biological treatment, and advanced biological nutrient removal treatment. To the best of our knowledge, this is the largest data set from a single study available in the literature to date for PFAAs monitoring study in wastewater treatment. Perfluorooctanoic acid (PFOA) was the predominant PFAA in wastewater with levels from 2.2 to 150ng/L (influent) and 1.9 to 140ng/L (effluent). Perfluorooctanesulfonic acid (PFOS) was the predominant compound in primary sludge, waste biological sludge, and treated biosolids with concentrations from 6.4 to 2900ng/g dry weight (dw), 9.7 to 8200ng/gdw, and 2.1 to 17,000ng/gdw, respectively. PFAAs were formed during wastewater treatment and it was dependant on both process temperature and treatment type; with higher rates of formation in biological wastewater treatment plants (WWTPs) operating at longer hydraulic retention times and higher temperatures. PFAA removal by sorption was influenced by different sorption tendencies; median log values of the solid-liquid distribution coefficient estimated from wastewater biological sludge and final effluent were: PFOS (3.73)>PFDA (3.68)>PFNA (3.25)>PFOA (2.49)>PFHxA (1.93). Mass balances confirmed the formation of PFAAs, low PFAA removal by sorption, and high PFAA levels in effluents.

  4. Staphylococcal biofilm formation as affected by type acidulant.

    PubMed

    Nostro, Antonia; Cellini, Luigina; Ginestra, Giovanna; D'Arrigo, Manuela; di Giulio, Mara; Marino, Andreana; Blanco, Anna Rita; Favaloro, Angelo; Bisignano, Giuseppe

    2014-07-01

    Staphylococcal growth and biofilm formation in culture medium where pH was lowered with weak organic (acetic and lactic) or strong inorganic (hydrochloric) acids were studied. The effects were evaluated by biomass measurements, cell-surface hydrophobicity, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). The results demonstrated that the inhibition was related to type of acidulant and pH value. At pH 5.0, the antibacterial effect was more pronounced in the presence of acetic acid (58-60% growth reduction) compared with that in the presence of lactic (7-16% growth reduction) and hydrochloric acids (23-24% reduction). The biofilm biomass of Staphylococcus aureus and Staphylococcus epidermidis was reduced by 92, 85, 63, and 93, 87, 81% after exposition to acetic, lactic, and hydrochloric acids, respectively. Increasing the pH from 5.0 to 6.0 resulted in a noticeable reduction in the effectiveness of acids. A minor cells hydrophobic character was also documented. The SEM and CLSM revealed a poorly structured and thinner biofilm compared with the dense and multilayered control. Acidic environment could have important implications for food-processing system to prevent bacterial colonization and control biofilm formation. The findings of this study lead to consider the rational use of the type of acid to achieve acidic environments.

  5. The formation of interstellar molecular lines in a turbulent velocity field with finite correlation length III. Spherical clouds in hydrostatic equilibrium.

    NASA Astrophysics Data System (ADS)

    Piehler, G.; Kegel, W. H.

    1995-05-01

    We investigated the formation of interstellar molecular lines in a turbulent velocity field with finite correlation length, extending previous work (Albrecht & Kegel 1987; Kegel et al. 1992) to isothermal spheres in hydrostatic equilibrium as cloud models with σ>>v_ therm _. For this we use the transformed generalized radiative transfer equation (Kegel et al. 1992). We concentrate our calculations on the CO-molecule with up to 12 energy levels. We give numerical results for models with T_kin_=50K, σ=3.9km/sec (σ/v_ therm _=22), and different values of the central H_2_ density and different values of the correlation length. As our results show, accounting for a velocity field with a finite correlation length affects the line profiles, the center-to-limb variation, and the intensity ratios. We find that the higher transitions are more strongly affected than the J=1-0 transition.

  6. Freezing of sulfuric and nitric acid solutions: Implications for polar stratospheric cloud formation

    NASA Astrophysics Data System (ADS)

    Salcedo Gonzalez, Dara

    2000-12-01

    Polar Stratospheric Clouds (PSCs) play an important role in ozone chemistry during the polar winter. The magnitude of their effect depends on their phase, composition and formation mechanism, which are not fully understood yet. In order to understand how liquid PSCs freeze, two apparatus were designed to study the freezing behavior of small drops using a Fourier transform infrared (FTIR) spectrometer and an optical microscope. Sulfuric acid aqueous drops with composition of 10 to 50 wt % were studied with the FTIR apparatus. The surface on which the drops stand caused heterogeneous nucleation of ice, but not of the sulfuric acid hydrates. The more concentrated solutions (>40 wt %) supercooled to 130 K without freezing. Below 150 K these solutions formed an amorphous solid, which liquefied upon warming. Drops with composition of 40 to 64 wt % HNO3 were prepared and their phase transitions were detected with the optical microscope apparatus. Freezing temperatures of the drops were determined and homogeneous nucleation rates of nitric acid dihydrate (JNAD) and nitric acid trihydrate (JNAT) between 170 and 190 K were calculated. JNAT and JNAD depend predominantly on the saturation of the solid in the liquid solution: higher saturation ratios correspond to higher nucleation rates. Classical nucleation theory was used to parameterize this relation. Since the saturation ratios of NAD and NAT vary with temperature and composition in different ways, NAT or NAD can form preferentially under different conditions. Evidence was found that NAD catalyzes the nucleation of NAT below ~183 K. Mullite, cristobalite and alumina were tested as possible heterogeneous nuclei of volcanic origin for PSCs. They catalyze freezing of NAD and NAT at temperatures below 179 K, which are too low to be stratospherically important. The results suggest that the largest drops in a PSC will freeze homogeneously if the stratospheric temperature remains below the NAT condensation temperature for more

  7. The initial conditions for stellar protocluster formation. III. The Herschel counterparts of the Spitzer Dark Cloud catalogue

    NASA Astrophysics Data System (ADS)

    Peretto, N.; Lenfestey, C.; Fuller, G. A.; Traficante, A.; Molinari, S.; Thompson, M. A.; Ward-Thompson, D.

    2016-05-01

    Context. Galactic plane surveys of pristine molecular clouds are key for establishing a Galactic-scale view of star formation. For this reason, an unbiased sample of infrared dark clouds in the 10° < | l | < 65°, | b | < 1° region of the Galactic plane was built using Spitzer 8 μm extinction. However, intrinsic fluctuations in the mid-infrared background can be misinterpreted as foreground clouds. Aims: The main goal of this study is to disentangle real clouds in the Spitzer Dark Cloud (SDC) catalogue from artefacts due to fluctuations in the mid-infrared background. Methods: We constructed H2 column density maps at ~18″ resolution using the 160 μm and 250 μm data from the Herschel Galactic plane survey Hi-GAL. We also developed an automated detection scheme that confirms the existence of a SDC through its association with a peak on these Herschel column density maps. Detection simulations, along with visual inspection of a small sub-sample of SDCs, have been performed to get more insight into the limitations of our automated identification scheme. Results: Our analysis shows that 76( ± 19)% of the catalogued SDCs are real. This fraction drops to 55( ± 12)% for clouds with angular diameters larger than ~1 arcmin. The contamination of the PF09 catalogue by large spurious sources reflects the large uncertainties associated to the construction of the 8 μm background emission, a key stage in identiying SDCs. A comparison of the Herschel confirmed SDC sample with the BGPS and ATLASGAL samples shows that SDCs probe a unique range of cloud properties, reaching down to more compact and lower column density clouds than any of these two (sub-)millimetre Galactic plane surveys. Conclusions: Even though about half of the large SDCs are spurious sources, the vast majority of the catalogued SDCs do have a Herschel counterpart. The Herschel-confirmed sample of SDCs offers a unique opportunity to study the earliest stages of both low- and high-mass star formation across

  8. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    SciTech Connect

    Reeder, Michael J.; Lane, Todd P.; Hankinson, Mai Chi Nguyen

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  9. New aspects of absorption line formation in intervening turbulent clouds - II. Monte Carlo simulation of interstellar H+D Lyalpha absorption profiles

    NASA Astrophysics Data System (ADS)

    Levshakov, Sergei A.; Kegel, Wilhelm H.; Mazets, Igor E.

    1997-07-01

    Stochastic velocity fields with finite correlation lengths affect the formation of interstellar (intergalactic) absorption lines in a way not accounted for in the standard analysis procedure in which Voigt profiles are fitted to the observed line profiles. We investigate these effects, accounting in particular for the fact that interstellar absorption spectra reflect only one realization of the velocity field, since (i) actually only one line of sight is observed and (ii) the velocity structure of the cloud has to be considered to be `frozen' over the exposure time. This paper presents results of Monte Carlo calculations. In this technique an ensemble of line profiles is computed, each one of which corresponds to one realization of the random velocity field. The most important results are the following. (1) The individual line profiles may deviate substantially from each other and from the ensemble average. (2) Correlated velocity fields may cause complex multicomponent absorption features which in a traditional analysis would be attributed to several clouds, i.e. to density and/or kinetic temperature inhomogeneities. (3) Each line of sight has its own curve-of-growth. (4) Applying the standard analysis to such line profiles may produce misleading results concerning the physical parameters of the cloud. (5) In particular, the apparent scatter of the D/H ratio revealed in the ISM on the basis of the Copernicus, IUE, and HST observations may be caused by an inadequate analysis. Finally, we discuss under which conditions cloud characteristics may be derived from absorption lines without relying on a particular physical model.

  10. Magnetohydrodynamic Simulations of the Formation of Molecular Clouds toward the Stellar Cluster Westerlund 2: Interaction of a Jet with a Clumpy Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Asahina, Yuta; Kawashima, Tomohisa; Furukawa, Naoko; Enokiya, Rei; Yamamoto, Hiroaki; Fukui, Yasuo; Matsumoto, Ryoji

    2017-02-01

    The formation mechanism of CO clouds observed with the NANTEN2 and Mopra telescopes toward the stellar cluster Westerlund 2 is studied by 3D magnetohydrodynamic simulations, taking into account the interstellar cooling. These molecular clouds show a peculiar shape composed of an arc-shaped cloud on one side of the TeV γ-ray source HESS J1023-575 and a linear distribution of clouds (jet clouds) on the other side. We propose that these clouds are formed by the interaction of a jet with clumps of interstellar neutral hydrogen (H i). By studying the dependence of the shape of dense cold clouds formed by shock compression and cooling on the filling factor of H i clumps, we found that the density distribution of H i clumps determines the shape of molecular clouds formed by the jet–cloud interaction: arc clouds are formed when the filling factor is large. On the other hand, when the filling factor is small, molecular clouds align with the jet. The jet propagates faster in models with small filling factors.

  11. A nutrient combination that can affect synapse formation.

    PubMed

    Wurtman, Richard J

    2014-04-23

    Brain neurons form synapses throughout the life span. This process is initiated by neuronal depolarization, however the numbers of synapses thus formed depend on brain levels of three key nutrients-uridine, the omega-3 fatty acid DHA, and choline. Given together, these nutrients accelerate formation of synaptic membrane, the major component of synapses. In infants, when synaptogenesis is maximal, relatively large amounts of all three nutrients are provided in bioavailable forms (e.g., uridine in the UMP of mothers' milk and infant formulas). However, in adults the uridine in foods, mostly present at RNA, is not bioavailable, and no food has ever been compelling demonstrated to elevate plasma uridine levels. Moreover, the quantities of DHA and choline in regular foods can be insufficient for raising their blood levels enough to promote optimal synaptogenesis. In Alzheimer's disease (AD) the need for extra quantities of the three nutrients is enhanced, both because their basal plasma levels may be subnormal (reflecting impaired hepatic synthesis), and because especially high brain levels are needed for correcting the disease-related deficiencies in synaptic membrane and synapses.

  12. Planck intermediate results. XXXV. Probing the role of the magnetic field in the formation of structure in molecular clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Arzoumanian, D.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falceta-Gonçalves, D.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Harrison, D. L.; Helou, G.; Hennebelle, P.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Netterfield, C. B.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zonca, A.

    2016-02-01

    Within ten nearby (d < 450 pc) Gould belt molecular clouds we evaluate statistically the relative orientation between the magnetic field projected on the plane of sky, inferred from the polarized thermal emission of Galactic dust observed by Planck at 353 GHz, and the gas column density structures, quantified by the gradient of the column density, NH. The selected regions, covering several degrees in size, are analysed at an effective angular resolution of 10' FWHM, thus sampling physical scales from 0.4 to 40 pc in the nearest cloud. The column densities in the selected regions range from NH≈ 1021 to1023 cm-2, and hence they correspond to the bulk of the molecular clouds. The relative orientation is evaluated pixel by pixel and analysed in bins of column density using the novel statistical tool called "histogram of relative orientations". Throughout this study, we assume that the polarized emission observed by Planck at 353 GHz is representative of the projected morphology of the magnetic field in each region, i.e., we assume a constant dust grain alignment efficiency, independent of the local environment. Within most clouds we find that the relative orientation changes progressively with increasing NH, from mostly parallel or having no preferred orientation to mostly perpendicular. In simulations of magnetohydrodynamic turbulence in molecular clouds this trend in relative orientation is a signature of Alfvénic or sub-Alfvénic turbulence, implying that the magnetic field is significant for the gas dynamics at the scales probed by Planck. We compare the deduced magnetic field strength with estimates we obtain from other methods and discuss the implications of the Planck observations for the general picture of molecular cloud formation and evolution.

  13. Non-LTE line formation in clumpy and turbulent molecular clouds

    NASA Astrophysics Data System (ADS)

    Hegmann, M.; Kegel, W. H.

    2000-07-01

    Extending previous work (Albrecht & Kegel \\cite{alb87}, Kegel et al. \\cite{keg93}, Piehler & Kegel \\cite{pie94}), we investigated the formation of interstellar molecular lines in a medium with stochastic density and velocity fluctuations. We solved the full NLTE-problem, i.e. the generalized radiative transfer equation simultaneously with the rate equations, for a 6-level CO molecule and a plane-parallel slab geometry. Our results indicate that accounting for a finite correlation length of both, the density and velocity field, strongly affects the line profile and the line width as well as the intensity ratios of different rotational transitions.

  14. Nighttime lidar water vapor mixing ratio profiling over Warsaw - impact of the relative humidity profile on cloud formation

    NASA Astrophysics Data System (ADS)

    Costa Surós, Montserrat; Stachlewska, Iwona S.

    2016-04-01

    A long-term study, assessing ground-based remote Raman lidar versus in-situ radiosounding has been conducted with the aim of improving the knowledge on the water content vertical profile through the atmosphere, and thus the conditions for cloud formation processes. Water vapor mixing ratio (WVMR) and relative humidity (RH) profiles were retrieved from ADR Lidar (PollyXT-type, EARLINET site in Warsaw). So far, more than 100 nighttime profiles averaged over 1h around midnight from July 2013 to December 2015 have been investigated. Data were evaluated with molecular extinctions calculated using two approximations: the US62 standard atmosphere and the radiosounding launched in Legionowo (12374). The calibration factor CH2O for lidar retrievals was obtained for each profile using the regression method and the profile method to determine the best calibration factor approximation to be used in the final WVMR and RH calculation. Thus, statistically representative results for comparisons between lidar WVMR median profiles obtained by calibrating using radiosounding profiles and using atmospheric synthetic profiles, all of them with the best calibration factor, will be presented. Finally, in order to constrain the conditions of cloud formation in function of the RH profile, the COS14 algorithm, capable of deriving cloud bases and tops by applying thresholds to the RH profiles, was applied to find the cloud vertical structure (CVS). The algorithm was former applied to radiosounding profiles at SGP-ARM site and tested against the CVS obtained from the Active Remote Sensing of Clouds (ARSCL) data. Similarly, it was applied for lidar measurements at the Warsaw measurement site.

  15. TIMESCALES ON WHICH STAR FORMATION AFFECTS THE NEUTRAL INTERSTELLAR MEDIUM

    SciTech Connect

    Stilp, Adrienne M.; Dalcanton, Julianne J.; Weisz, Daniel R.; Williams, Benjamin F.; Warren, Steven R.; Skillman, Evan; Ott, Juergen; Dolphin, Andrew E.

    2013-08-01

    Turbulent neutral hydrogen (H I) line widths are often thought to be driven primarily by star formation (SF), but the timescale for converting SF energy to H I kinetic energy is unclear. As a complication, studies on the connection between H I line widths and SF in external galaxies often use broadband tracers for the SF rate, which must implicitly assume that SF histories (SFHs) have been constant over the timescale of the tracer. In this paper, we compare measures of H I energy to time-resolved SFHs in a number of nearby dwarf galaxies. We find that H I energy surface density is strongly correlated only with SF that occurred 30-40 Myr ago. This timescale corresponds to the approximate lifetime of the lowest mass supernova progenitors ({approx}8 M{sub Sun }). This analysis suggests that the coupling between SF and the neutral interstellar medium is strongest on this timescale, due either to an intrinsic delay between the release of the peak energy from SF or to the coherent effects of many supernova explosions during this interval. At {Sigma}{sub SFR} > 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}, we find a mean coupling efficiency between SF energy and H I energy of {epsilon} = 0.11 {+-} 0.04 using the 30-40 Myr timescale. However, unphysical efficiencies are required in lower {Sigma}{sub SFR} systems, implying that SF is not the primary driver of H I kinematics at {Sigma}{sub SFR} < 10{sup -3} M{sub Sun} yr{sup -1} kpc{sup -2}.

  16. Moderate Resolution Spectroscopy of Directly Imaged Exoplanets: Formation, Chemistry, and Clouds

    NASA Astrophysics Data System (ADS)

    Konopacky, Quinn

    resolution data, capable of resolving atomic and molecular lines. Depending upon the mode of planet formation, the differentiation of solids and gas in a protoplanetary disk may lead to elemental abundances that differ substantially from that of the host star. Subsequent migration or planetesimal accretion after formation can also lead to variation in the abundance of species such as carbon and oxygen. Our program will yield measurements of abundances and abundance ratios precise enough to study the early accretion history for a variety of giant planets. We will provide a library of J, H, and K near-IR spectra for all observable directly imaged planets at these spectral resolutions. We will use these spectra to measure abundance ratios and search for higher atomic number species such as sodium and iron. Grids of models will be generated to test possible values of carbon, oxygen, and other metal abundances, in addition to properties such as non-equilibrium chemistry and cloud coverage. In order to assure that these models are not systematically yielding certain abundance values, we will test their predictions on a set of well-studied brown dwarfs with precisely measured masses, temperatures, and gravities. The research proposed here is highly relevant to the NASA Exoplanets Research program. By probing the spectra of gas giant planets in unmatched detail, we seek to provide a fundamental understanding of the physical processes at work during the early stages of planet formation and the subsequent atmospheric evolution as a function of mass and age. The proposed research will complement current NASA exoplanet missions by investigating the relatively unexplored population of widely separated planets. We will also provide a framework for measuring atmospheric properties that will be applicable to planets discovered with upcoming NASA missions such as WFIRST-AFTA and JWST.

  17. Assimilation of precipitation-affected microwave radiances in a cloud-resolving WRF ensemble data assimilation system

    NASA Astrophysics Data System (ADS)

    Zhang, Sara; Zupanski, Dusanka; Zupanski, Milija; Hou, Arthur; Cheung, Samson

    2010-05-01

    In the last decade the progress in satellite precipitation estimation and the advance in precipitation assimilation techniques proved to have positive impact on the quality of atmospheric analyses and forecasts. Direct assimilation of rain-affected radiances presents new challenge to optimal utilization of satellite precipitation observations. Currently operational and research experiences in using precipitation observations have focused on a global model resolution with prescribed static forecast error statistics, while a high-resolution with cloud-resolving physics and flow-dependent forecast error information are needed for applications such as for downscaling precipitation information from rain-affected radiances and for improving hydrological forecasts. To address some of these challenges, a WRF ensemble data assimilation system (WRF-EDAS) at cloud-resolving scales has been developed jointly by NASA/GSFC and Colorado State University. The high-resolution WRF-EDAS is designed to assimilate precipitation-affected radiances in addition to the NOAA/NCEP operational data stream of in-situ data and clear-sky satellite observations. The ensemble data assimilation technique opens a new pathway to provide dynamically updated background error covariance, and to utilize full nonlinear microphysics and radiative transfer model in precipitation observation operators. The high resolution of nested domain WRF model first guess allows more realistic representation of precipitation distribution in the field of view (FOV) of microwave radiance observations in low and medium range of frequencies. We present experimental results of assimilating AMSR-E microwave radiances in case studies of summer storm events over land. The assimilation of precipitation-affected radiances from multiple channels of AMSR-E has shown positive impact on the downscaled precipitation analysis and short term forecast of microphysical variables. The sensitivity of precipitation analyses to the

  18. TRIGGERED STAR FORMATION AND YOUNG STELLAR POPULATION IN BRIGHT-RIMMED CLOUD SFO 38

    SciTech Connect

    Choudhury, Rumpa; Bhatt, H. C.; Mookerjea, Bhaswati E-mail: hcbhatt@iiap.res.i

    2010-07-10

    We have investigated the young stellar population in and around SFO 38, one of the massive globules located in the northern part of the Galactic H II region IC 1396, using the Spitzer IRAC and MIPS observations (3.6-24 {mu}m), and followed up with ground-based optical photometric and spectroscopic observations. Based on the IRAC and MIPS colors and H{alpha} emission, we identify {approx}45 young stellar objects (Classes 0/I/II) and 13 probable pre-main-sequence candidates. We derive the spectral types (mostly K- and M-type stars), effective temperatures, and individual extinction of the relatively bright and optically visible Class II objects. Most of the Class II objects show variable H{alpha} emission as well as optical and near-infrared photometric variability, which confirm their 'youth'. Based on optical photometry and theoretical isochrones, we estimate the spread in stellar ages to be between 1 and 8 Myr with a median age of 3 Myr and a mass distribution of 0.3-2.2 M{sub sun} with a median value around 0.5 M{sub sun}. Using the width of the H{alpha} emission line measured at 10% peak intensity, we derive the mass accretion rates of individual objects to be between 10{sup -10} and 10{sup -8} M{sub sun} yr{sup -1}. From the continuum-subtracted H{alpha} line image, we find that the H{alpha} emission of the globule is not spatially symmetric with respect to the O-type ionizing star HD 206267, and the interstellar extinction toward the globule is also anomalous. We clearly detect an enhanced concentration of YSOs closer to the southern rim of SFO 38 and identify an evolutionary sequence of YSOs from the rim to the dense core of the cloud, with most of the Class II objects located at the bright rim. The YSOs appear to be aligned along two different directions toward the O6.5V type star HD 206267 and the B0V type star HD 206773. This is consistent with the Radiation Driven Implosion (RDI) model for triggered star formation. Further, the apparent speed of

  19. Spiral structure and star formation. II - Stellar lifetimes and cloud kinematics

    NASA Technical Reports Server (NTRS)

    Hausman, M. A.; Roberts, W. W., Jr.

    1984-01-01

    The reliability studies using continuum gas dynamical calculations becomes questionable in connection with the apparent clumpiness of the Galaxy's interstellar medium (ISM). Roberts and Hausman (1984) have, therefore, presented a detailed model of a disk galaxy in which the ISM consists entirely of 'cloud particles', which orbit ballistically in the galaxy's gravitational field, collide inelastically with one another, and give birth to and subsequently interact with young star associations. The effects of changing the clouds's collisional mean free path have been examined, and the variations in the young star system's spiral morphology have been explored. The present investigation is concerned with a further study of this clumpy, cloudy ISM model, taking into account longer mean free path models likely to be appropriate for systems of molecular clouds. Attention is also given to the kinematics of clouds as they orbit under the influence of galactic gravity, collisions, and supernova remnants.

  20. Polarimetric Retrievals of Surface and Cirrus Clouds Properties in the Region Affected by the Deepwater Horizon Oil Spill

    NASA Technical Reports Server (NTRS)

    Ottaviani, Matteo; Cairns, Brian; Chowdhary, Jacek; Van Diedenhoven, Bastiaan; Knobelspiesse, Kirk; Hostetler, Chris; Ferrare, Rich; Burton, Sharon; Hair, John; Obland, Michael D.; Rogers, Raymond

    2012-01-01

    In 2010, the Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP) performed several aerial surveys over the region affected by the oil spill caused by the explosion of the Deepwater Horizon offshore platform. The instrument was deployed on the NASA Langley B200 aircraft together with the High Spectral Resolution Lidar (HSRL), which provides information on the distribution of the aerosol layers beneath the aircraft, including an accurate estimate of aerosol optical depth. This work illustrates the merits of polarization measurements in detecting variations of ocean surface properties linked to the presence of an oil slick. In particular, we make use of the degree of linear polarization in the glint region, which is severely affected by variations in the refractive index but insensitive to the waviness of the water surface. Alterations in the surface optical properties are therefore expected to directly affect the polarization response of the RSP channel at 2264 nm, where both molecular and aerosol scattering are negligible and virtually all of the observed signal is generated via Fresnel reflection at the surface. The glint profile at this wavelength is fitted with a model which can optimally estimate refractive index, wind speed and direction, together with aircraft attitude variations affecting the viewing geometry. The retrieved refractive index markedly increases over oil-contaminated waters, while the apparent wind speed is significantly lower than in adjacent uncontaminated areas, suggesting that the slick dampens high-frequency components of the ocean wave spectrum. The constraint on surface reflectance provided by the short-wave infrared channels is a cornerstone of established procedures to retrieve atmospheric aerosol microphysical parameters based on the inversion of the RSP multispectral measurements. This retrieval, which benefits from the ancillary information provided by the HSRL, was in this specific case hampered by

  1. Star Formation in the Molecular Cloud Associated with the Monkey Head Nebula: Sequential or Spontaneous?

    NASA Astrophysics Data System (ADS)

    Chibueze, J. O.; Imura, K.; Omodaka, T.; Handa, T.; Nagayama, T.; Fujisawa, K.; Sunada, K.; Nakano, M.; Kamezaki, T.; Yamaguchi, Y.

    2013-03-01

    We mapped the NH3 (1,1), (2,2), and (3,3) lines of the molecular cloud associated with the Monkey Head Nebula (MHN) with 1'.6 angular resolution using Kashima 34 m telescope. Its kinetic temperature distribution was contrary to what is expected for a molecular cloud at the edge of an expanding H II region and suggested that the massive star associated with S252A compact HII region formed spontaneously rather than through a sequential process.

  2. STAR FORMATION AND DISTRIBUTIONS OF GAS AND DUST IN THE CIRCINUS CLOUD

    SciTech Connect

    Shimoikura, Tomomi; Dobashi, Kazuhito

    2011-04-10

    We present results of a study on the Circinus cloud based on {sup 13}CO (J = 1 - 0) data as well as visual to near-infrared (JHK{sub S}) extinction maps, to investigate the distributions of gas and dust around the cloud. The global {sup 13}CO distribution of the Circinus cloud is revealed for the first time, and the total molecular mass of the cloud is estimated to be 2.5 x 10{sup 4} M{sub sun} for the assumed distance 700 pc. Two massive clumps in the cloud, called Circinus-W and Circinus-E, have a mass of {approx}5 x 10{sup 3} M{sub sun}. These clumps are associated with a number of young stellar objects (YSOs) searched for in the literature, indicating that they are the most active star-forming sites in Circinus. All of the extinction maps show good agreement with the {sup 13}CO distribution. We derived the average N({sup 13}CO)/A{sub V} ratio in the Circinus cloud to be 1.25 x 10{sup 15} cm{sup -2} mag{sup -1} by comparing the extinction maps with the {sup 13}CO data. The extinction maps also allowed us to probe into the reddening law over the Circinus cloud. We found that there is a clear change in dust properties in the densest regions of Circinus-W and Circinus-E, possibly due to grain growth in the dense cloud interior. Among the YSOs found in the literature, we attempted to infer the ages and masses of the H{alpha} emission-line stars forming in the two clumps, and found that they are likely to be younger than 1 Myr, having a relatively small mass of {approx}<2 M{sub sun} at the zero-age main sequence.

  3. OT2_jpineda_2: Large-scale dynamics and the formation of clouds and stars in the 30 Doradus region of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Pineda, J.

    2011-09-01

    Understanding the processes governing the formation of clouds and stars in merging systems is key for the study of how galaxies evolved in the early Universe. The 30 Doradus region in the low-metallicity Large Magellanic Cloud (LMC) is the nearest example of this process, resulting from the interaction between the LMC and the halo of the Milky Way. This makes 30 Doradus the prime laboratory to study these large-scale dynamical processes under conditions that are similar to those at early cosmological times. We propose to use Herschel to obtain a large-scale uniform sampling of this region in [CII] 158um, [NII] 122um and 205um, and [OI] 63um and 146um lines with PACS, and at selected positions in [CII] with HIFI. With this data we will derive the large-scale distribution of the density and pressure of the low-metallicity gas revealing the characteristic signatures of shocked gas. This will then be used to determine the relationships among the diffuse, "dark H2", and dense molecular gas in the 30 Doradus region. We will also derive the electron density distribution of the gas and from this the contribution from ionized gas to the observed [CII] emission. The proposed observations will allow us to study the effect of large-scale gas compression in the multiphase, low-metallicity interstellar medium of 30 Doradus. This information will be valuable for the interpretation of future observations of [CII] in high-redshift galaxies made with ALMA

  4. Investigation of Polar Stratospheric Cloud Solid Particle Formation Mechanisms Using ILAS and AVHRR Observations in the Arctic

    NASA Technical Reports Server (NTRS)

    Irie, H.; Pagan, K. L.; Tabazadeh, A.; Legg, M. J.; Sugita, T.

    2004-01-01

    Satellite observations of denitrification and ice clouds in the Arctic lower stratosphere in February 1997 are used with Lagrangian microphysical box model calculations to evaluate nucleation mechanisms of solid polar stratospheric cloud (PSC) particles. The occurrences of ice clouds are not correlated in time and space with the locations of back trajectories of denitrified air masses, indicating that ice particle surfaces are not always a prerequisite for the formation of solid PSCs that lead to denitrification. In contrast, the model calculations incorporating a pseudoheterogeneous freezing process occurring at the vapor-liquid interface can quantitatively explain most of the observed denitrification when the nucleation activation free energy for nitric acid dihydrate formation is raised by only approx.10% relative to the current published values. Once nucleated, the conversion of nitric acid dihydrate to the stable trihydrate phase brings the computed levels of denitrification closer to the measurements. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and SblctureC: loud physics and chemistry; 0340 Atmospheric Composition and Structure: Middle atmosphere-composition and chemistry

  5. Modeling the relative contributions of secondary ice formation processes to ice crystal number concentrations within mixed-phase clouds

    NASA Astrophysics Data System (ADS)

    Sullivan, Sylvia; Hoose, Corinna; Nenes, Athanasios

    2016-04-01

    Measurements of in-cloud ice crystal number concentrations can be three or four orders of magnitude greater than the in-cloud ice nuclei number concentrations. This discrepancy can be explained by various secondary ice formation processes, which occur after initial ice nucleation, but the relative importance of these processes, and even the exact physics of each, is still unclear. A simple bin microphysics model (2IM) is constructed to investigate these knowledge gaps. 2IM extends the time-lag collision parameterization of Yano and Phillips, 2011 to include rime splintering, ice-ice aggregation, and droplet shattering and to incorporate the aspect ratio evolution as in Jensen and Harrington, 2015. The relative contribution of the secondary processes under various conditions are shown. In particular, temperature-dependent efficiencies are adjusted for ice-ice aggregation versus collision around -15°C, when rime splintering is no longer active, and the effect of aspect ratio on the process weighting is explored. The resulting simulations are intended to guide secondary ice formation parameterizations in larger-scale mixed-phase cloud schemes.

  6. Triggered O Star Formation in M20 via Cloud–Cloud Collision: Comparisons between High-resolution CO Observations and Simulations

    NASA Astrophysics Data System (ADS)

    Torii, K.; Hattori, Y.; Hasegawa, K.; Ohama, A.; Haworth, T. J.; Shima, K.; Habe, A.; Tachihara, K.; Mizuno, N.; Onishi, T.; Mizuno, A.; Fukui, Y.

    2017-02-01

    Understanding high-mass star formation is one of the top-priority issues in astrophysics. Recent observational studies have revealed that cloud–cloud collisions may play a role in high-mass star formation in several places in the Milky Way and the Large Magellanic Cloud. The Trifid Nebula M20 is a well-known Galactic H ii region ionized by a single O7.5 star. In 2011, based on the CO observations with NANTEN2, we reported that the O star was formed by the collision between two molecular clouds ∼0.3 Myr ago. Those observations identified two molecular clouds toward M20, traveling at a relative velocity of 7.5 {km} {{{s}}}-1. This velocity separation implies that the clouds cannot be gravitationally bound to M20, but since the clouds show signs of heating by the stars there they must be spatially coincident with it. A collision is therefore highly possible. In this paper we present the new CO J = 1–0 and J = 3–2 observations of the colliding clouds in M20 performed with the Mopra and ASTE telescopes. The high-resolution observations revealed that the two molecular clouds have peculiar spatial and velocity structures, i.e., a spatially complementary distribution between the two clouds and a bridge feature that connects the two clouds in velocity space. Based on a new comparison with numerical models, we find that this complementary distribution is an expected outcome of cloud–cloud collisions, and that the bridge feature can be interpreted as the turbulent gas excited at the interface of the collision. Our results reinforce the cloud–cloud collision scenario in M20.

  7. Assimilation of precipitation-affected microwave radiances in a cloud-resolving WRF ensemble data assimilation system

    NASA Astrophysics Data System (ADS)

    Zhang, S. Q.; Zupanski, M.; Hou, A. Y.; Lin, X.; Cheung, S.

    2010-12-01

    In the last decade the progress in satellite precipitation estimation and the advance in precipitation assimilation techniques proved to have positive impact on the quality of atmospheric analyses and forecasts. Direct assimilation of rain-affected radiances presents new challenge to optimal utilization of satellite precipitation observations in numeric weather and climate predictions. Current operational and research methodologies are generally limited to relatively coarse resolution models and prescribed static error statistics, and commonly require tangent linear model and adjoint model for the highly non-linear cloud and precipitation physics. To address some of these challenges, a WRF ensemble data assimilation system (Goddard-WRF-EDAS) at cloud-resolving scales has been developed jointly by NASA/GSFC and Colorado State University (CSU). The system employs the Weather Research and Forecasting (WRF) model with NASA Goddard microphysics schemes, and the Maximum Likelihood Ensemble Filter (MLEF). Precipitation affected radiances are assimilated with Goddard Satellite Data Simulator Unit (SDSU) as the observation operator. In addition to the boundary forcing constructed from operational global analysis, NCEP operational data stream is also assimilated to ensure realistic representation of dynamic circulation in the regional domains. Using the ensemble assimilation approach, the forecast error-statistics is updated by ensemble forecasts, and information is extracted from precipitation observations along with other types of data to produce dynamically consistent precipitation analyses and forecasts. We present experimental results of assimilating precipitation-affected microwave radiances over land in middle latitudes. The results demonstrate the data impact to the downscaled precipitation short term forecasts and information propagation from precipitation data to dynamic fields. The error statistics of microphysical control variables and their relationship to the

  8. On a report that the 2012 M = 6.0 earthquake in Italy was predicted after seeing an unusual cloud formation

    NASA Astrophysics Data System (ADS)

    Thomas, J. N.; Masci, F.; Love, J. J.

    2014-09-01

    Several recently published reports have suggested that semi-stationary linear-cloud formations might be causally precursory to earthquakes. We examine the report of Guangmeng and Jie (2013), who claim to have predicted the 2012 M = 6.0 earthquake in the Po Valley of northern Italy after seeing a satellite image showing a linear-cloud formation over the eastern Apennine Mountains of central Italy. From inspection of four years of satellite images we find numerous examples of linear-cloud formations over Italy. A simple test shows no obvious statistical relationship between the occurrence of these cloud formations and earthquakes that occurred in and around Italy. All of the linear-cloud formations we have identified in satellite images, including that which Guangmeng and Jie (2013) claim to have used to predict the 2012 earthquake, appear to be orographic - formed by the interaction of moisture-laden wind flowing over mountains. Guangmeng and Jie (2013) have not clearly stated how linear-cloud formations can be used to predict the size, location, and time of an earthquake, and they have not published an account of all of their predictions (including any unsuccessful predictions). We are skeptical of the validity of the claim by Guangmeng and Jie (2013) that they have managed to predict any earthquakes

  9. On a report that the 2012 M 6.0 earthquake in Italy was predicted after seeing an unusual cloud formation

    NASA Astrophysics Data System (ADS)

    Thomas, J. N.; Masci, F.; Love, J. J.

    2015-05-01

    Several recently published reports have suggested that semi-stationary linear-cloud formations might be causally precursory to earthquakes. We examine the report of Guangmeng and Jie (2013), who claim to have predicted the 2012 M 6.0 earthquake in the Po Valley of northern Italy after seeing a satellite photograph (a digital image) showing a linear-cloud formation over the eastern Apennine Mountains of central Italy. From inspection of 4 years of satellite images we find numerous examples of linear-cloud formations over Italy. A simple test shows no obvious statistical relationship between the occurrence of these cloud formations and earthquakes that occurred in and around Italy. All of the linear-cloud formations we have identified in satellite images, including that which Guangmeng and Jie (2013) claim to have used to predict the 2012 earthquake, appear to be orographic - formed by the interaction of moisture-laden wind flowing over mountains. Guangmeng and Jie (2013) have not clearly stated how linear-cloud formations can be used to predict the size, location, and time of an earthquake, and they have not published an account of all of their predictions (including any unsuccessful predictions). We are skeptical of the validity of the claim by Guangmeng and Jie (2013) that they have managed to predict any earthquakes.

  10. On a report that the 2012 M 6.0 earthquake in Italy was predicted after seeing an unusual cloud formation

    USGS Publications Warehouse

    Thomas, J.N.; Masci, F; Love, Jeffrey J.

    2015-01-01

    Several recently published reports have suggested that semi-stationary linear-cloud formations might be causally precursory to earthquakes. We examine the report of Guangmeng and Jie (2013), who claim to have predicted the 2012 M 6.0 earthquake in the Po Valley of northern Italy after seeing a satellite photograph (a digital image) showing a linear-cloud formation over the eastern Apennine Mountains of central Italy. From inspection of 4 years of satellite images we find numerous examples of linear-cloud formations over Italy. A simple test shows no obvious statistical relationship between the occurrence of these cloud formations and earthquakes that occurred in and around Italy. All of the linear-cloud formations we have identified in satellite images, including that which Guangmeng and Jie (2013) claim to have used to predict the 2012 earthquake, appear to be orographic – formed by the interaction of moisture-laden wind flowing over mountains. Guangmeng and Jie (2013) have not clearly stated how linear-cloud formations can be used to predict the size, location, and time of an earthquake, and they have not published an account of all of their predictions (including any unsuccessful predictions). We are skeptical of the validity of the claim by Guangmeng and Jie (2013) that they have managed to predict any earthquakes.

  11. Solid-state photochemistry as a formation mechanism for Titan's stratospheric C4N2 ice clouds

    NASA Astrophysics Data System (ADS)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-04-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 cm-1 ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  12. Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-01-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  13. Feedback in Clouds II: UV photoionization and the first supernova in a massive cloud

    NASA Astrophysics Data System (ADS)

    Geen, Sam; Hennebelle, Patrick; Tremblin, Pascal; Rosdahl, Joakim

    2016-12-01

    Molecular cloud structure is regulated by stellar feedback in various forms. Two of the most important feedback processes are UV photoionization and supernovae from massive stars. However, the precise response of the cloud to these processes, and the interaction between them, remains an open question. In particular, we wish to know under which conditions the cloud can be dispersed by feedback, which, in turn, can give us hints as to how feedback regulates the star formation inside the cloud. We perform a suite of radiative magnetohydrodynamic simulations of a 105 solar mass cloud with embedded sources of ionizing radiation and supernovae, including multiple supernovae and a hypernova model. A UV source corresponding to 10 per cent of the mass of the cloud is required to disperse the cloud, suggesting that the star formation efficiency should be of the order of 10 per cent. A single supernova is unable to significantly affect the evolution of the cloud. However, energetic hypernovae and multiple supernovae are able to add significant quantities of momentum to the cloud, approximately 1043 g cm s-1 of momentum per 1051 erg of supernova energy. We argue that supernovae alone are unable to regulate star formation in molecular clouds. We stress the importance of ram pressure from turbulence in regulating feedback in molecular clouds.

  14. Biofilm formation and antibiotic resistance in Salmonella Typhimurium are affected by different ribonucleases.

    PubMed

    Saramago, Margarida; Domingues, Susana; Viegas, Sandra Cristina; Arraiano, Cecília Maria

    2014-01-01

    Biofilm formation and antibiotic resistance are important determinants for bacterial pathogenicity. Ribonucleases control RNA degradation and there is increasing evidence that they have an important role in virulence mechanisms. In this report, we show that ribonucleases affect susceptibility against ribosome-targeting antibiotics and biofilm formation in Salmonella.

  15. Large scale and cloud scale dynamics and microphysics in the formation and evolution of a TTL cirrus : a case modelling study

    NASA Astrophysics Data System (ADS)

    Podglajen, Aurélien; Plougonven, Riwal; Hertzog, Albert; Legras, Bernard

    2015-04-01

    Cirrus clouds in the tropical tropopause layer (TTL) control dehydration of air masses entering the stratosphere and strongly contribute to the local radiative heating. In this study, we aim at understanding, through a real case simulation, the dynamics controlling the formation and life cycle of a cirrus cloud event in the TTL. We also aim at quantifying the chemical and radiative impacts of the clouds. To do this, we use the Weather Research and Forecast (WRF) model to simulate a large scale TTL cirrus event happening in January 2009 (27-29) over the Eastern Pacific, which has been extensively described through satellite observations (Taylor et al., 2011). Comparison of simulated and observed high clouds shows a fair agreement, and validates the reference simulation regarding cloud extension, location and life time. The simulation and Lagrangian trajectories within the simulation are then used to characterize the evolution of the cloud : displacement, Lagrangian life time and links with dynamics. The efficiency of dehydration by such clouds is also examined. Sensitivity tests were performed to evaluate the importance of different microphysics schemes and initial and boundary conditions to accurately simulate the cirrus. As expected, both were found to have strong impacts. In particular, there were substantial differences between simulations using different initial and boundary conditions from atmospheric analyses (NCEP CFSR and ECMWF). This illustrates the primordial role of accurate vapour and dynamics for realistic cirrus modelling, on top of the need for appropriate microphysics. Last, we examined the effects of cloud radiative heating. Long wave radiative heating in cirrus clouds has been invoked to induce a cloud scale circulation that would lengthen the cloud lifetime, and increase the size of its dehydration area (Dinh et al. 2010). To try to diagnose this, we have carried out simulations using different radiative schemes, including or suppressing the

  16. Cloud droplet size distributions in low-level stratiform clouds

    SciTech Connect

    Miles, N.L.; Verlinde, J.; Clothiaux, E.E.

    2000-01-15

    A database of stratus cloud droplet size distribution parameters, derived from in situ data reported in the existing literature, was created, facilitating intercomparison among datasets and quantifying typical values and their variability. From the datasets, which were divided into marine and continental groups, several parameters are presented, including the total number concentration, effective diameter, mean diameter, standard deviation of the droplet diameters about the mean diameter, and liquid water content, as well as the parameters of modified gamma and lognormal distributions. In light of these results, the appropriateness of common assumptions used in remote sensing of cloud droplet size distributions is discussed. For example, vertical profiles of mean diameter, effective diameter, and liquid water content agreed qualitatively with expectations based on the current paradigm of cloud formation. Whereas parcel theory predicts that the standard deviation about the mean diameter should decrease with height, the results illustrated that the standard deviation generally increases with height. A feature common to all marine clouds was their approximately constant total number concentration profiles; however, the total number concentration profiles of continental clouds were highly variable. Without cloud condensation nuclei spectra, classification of clouds into marine and continental groups is based on indirect methods. After reclassification of four sets of measurements in the database, there was a fairly clear dichotomy between marine and continental clouds, but a great deal of variability within each classification. The relevant applications of this study lie in radiative transfer and climate issues, rather than in cloud formation and dynamics. Techniques that invert remotely sensed measurements into cloud droplet size distributions frequently rely on a priori assumptions, such as constant number concentration profiles and constant spectral width. The

  17. Saharan Dust Event Impacts on Cloud Formation and Radiation over Western Europe

    NASA Technical Reports Server (NTRS)

    Bangert, M.; Nenes, A.; Vogel, B.; Vogel, H.; Barahona, D.; Karydis, V. A.; Kumar, P.; Kottmeier, C.; Blahak, U.

    2013-01-01

    We investigated the impact of mineral dust particles on clouds, radiation and atmospheric state during a strong Saharan dust event over Europe in May 2008, applying a comprehensive online-coupled regional model framework that explicitly treats particle-microphysics and chemical composition. Sophisticated parameterizations for aerosol activation and ice nucleation, together with two-moment cloud microphysics are used to calculate the interaction of the different particles with clouds depending on their physical and chemical properties. The impact of dust on cloud droplet number concentration was found to be low, with just a slight increase in cloud droplet number concentration for both uncoated and coated dust. For temperatures lower than the level of homogeneous freezing, no significant impact of dust on the number and mass concentration of ice crystals was found, though the concentration of frozen dust particles reached up to 100 l-1 during the ice nucleation events. Mineral dust particles were found to have the largest impact on clouds in a temperature range between freezing level and the level of homogeneous freezing, where they determined the number concentration of ice crystals due to efficient heterogeneous freezing of the dust particles and modified the glaciation of mixed phase clouds. Our simulations show that during the dust events, ice crystals concentrations were increased twofold in this temperature range (compared to if dust interactions are neglected). This had a significant impact on the cloud optical properties, causing a reduction in the incoming short-wave radiation at the surface up to -75Wm-2. Including the direct interaction of dust with radiation caused an additional reduction in the incoming short-wave radiation by 40 to 80Wm-2, and the incoming long-wave radiation at the surface was increased significantly in the order of +10Wm-2. The strong radiative forcings associated with dust caused a reduction in surface temperature in the order of -0

  18. Formation of Pillars at the Boundaries between HII Regions and Molecular Clouds

    SciTech Connect

    Mizuta, A; Kane, J O; Pound, M W; Remington, B A; Ryutov, D D; Takabe, H

    2006-04-20

    We investigate numerically the hydrodynamic instability of an ionization front (IF) accelerating into a molecular cloud, with imposed initial perturbations of different amplitudes. When the initial amplitude is small, the imposed perturbation is completely stabilized and does not grow. When the initial perturbation amplitude is large enough, roughly the ratio of the initial amplitude to wavelength is greater than 0.02, portions of the IF temporarily separate from the molecular cloud surface, locally decreasing the ablation pressure. This causes the appearance of a large, warm HI region and triggers nonlinear dynamics of the IF. The local difference of the ablation pressure and acceleration enhances the appearance and growth of a multimode perturbation. The stabilization usually seen at the IF in the linear regimes does not work due to the mismatch of the modes of the perturbations at the cloud surface and in density in HII region above the cloud surface. Molecular pillars are observed in the late stages of the large amplitude perturbation case. The velocity gradient in the pillars is in reasonably good agreement with that observed in the Eagle Nebula. The initial perturbation is imposed in three different ways: in density, in incident photon number flux, and in the surface shape. All cases show both stabilization for a small initial perturbation and large growth of the second harmonic by increasing amplitude of the initial perturbation above a critical value.

  19. Using Word Clouds for Fast, Formative Assessment of Students' Short Written Responses

    ERIC Educational Resources Information Center

    Brooks, Bill J.; Gilbuena, Debra M.; Krause, Stephen J.; Koretsky, Milo D.

    2014-01-01

    Active learning in class helps students develop deeper understanding of chemical engineering principles. While the use of multiple-choice ConcepTests is clearly effective, we advocate for including student writing in learning activities as well. In this article, we demonstrate that word clouds can provide a quick analytical technique to assess…

  20. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases.

    PubMed

    Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin

    2016-04-04

    We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation.

  1. Star Formation Activity in the Molecular Cloud G35.20–0.74: Onset of Cloud–Cloud Collision

    NASA Astrophysics Data System (ADS)

    Dewangan, L. K.

    2017-03-01

    To probe star formation (SF) processes, we present results of an analysis of the molecular cloud G35.20‑0.74 (hereafter MCG35.2) using multi-frequency observations. The MCG35.2 is depicted in a velocity range of 30–40 km s‑1. An almost horseshoe-like structure embedded within the MCG35.2 is evident in the infrared and millimeter images and harbors the previously known sites, ultra-compact/hyper-compact G35.20‑0.74N H ii region, Ap2-1, and Mercer 14 at its base. The site, Ap2-1, is found to be excited by a radio spectral type of B0.5V star where the distribution of 20 cm and Hα emission is surrounded by the extended molecular hydrogen emission. Using the Herschel 160–500 μm and photometric 1–24 μm data analysis, several embedded clumps and clusters of young stellar objects (YSOs) are investigated within the MCG35.2, revealing the SF activities. A majority of the YSOs clusters and massive clumps (500–4250 {M}ȯ ) are seen toward the horseshoe-like structure. The position–velocity analysis of 13CO emission shows a blueshifted peak (at 33 km s‑1) and a redshifted peak (at 37 km s‑1) interconnected by lower intensity intermediate velocity emission, tracing a broad bridge feature. The presence of such a broad bridge feature suggests the onset of a collision between molecular components in the MCG35.2. A noticeable change in the H-band starlight mean polarization angles has also been observed in the MCG35.2, probably tracing the interaction between molecular components. Taken together, it seems that the cloud–cloud collision process has influenced the birth of massive stars and YSOs clusters in the MCG35.2.

  2. Impact of nucleation schemes on cirrus cloud formation in a GCM with sectional microphysics

    NASA Astrophysics Data System (ADS)

    Bardeen, C.; Gettelman, A.; Jensen, E. J.; Heymsfield, A.; Delanoe, J.; Deng, M.

    2012-12-01

    We have implemented a sectional microphysics scheme for ice clouds based upon the Community Aerosol and Radiation Model for Atmospheres (CARMA) in the Community Atmosphere Model version 5 (CAM5), which allows for a size resolved treatment of ice particle nucleation, condensational growth, coagulation, sedimentation and detrainment. Detrained and in situ formed ice particles are tracked separately in the model allowing for different microphysical assumptions and separate analysis. Cloud ice from CAM5/CARMA simulations compare better with satellite observations than those with the standard CAM5 two-moment microphysics. CAM5/CARMA has a prognostic treatment for snow, which results in improved ice mass and representation of a melting layer that is absent in CAM5. Here we explore the sensitivity of the simulations to different nucleation schemes including: homogeneous freezing based on Koop et al. (2000), homogeneous freezing based upon Aerosols Interaction and Dynamics in the Atmosphere (AIDA) chamber measurement (Möhler et al., 2010), heterogeneous nucleation with dust aerosols, and heterogeous nucleation with glassy aerosols (Murray et al. 2010). The initial size for detrained ice particles in CAM5/CARMA is temperature dependent based upon a fits to observations from Heymsfield et al. (2010). We explore the sensitivity of the model to different choices for these fits. Results from these simulations are compared to retrievals of water vapor from the Microwave Limb Sounder (MLS) and the Atmospheric Infrared Sounder (AIRS), ice cloud properties from CloudSat-CALIPSO observations (Delanoë and Hogan, 2010; Deng et al. 2010) and to aircraft observations from several field campaigns including: the Costa Rica Aura Validation Experiment (CR-AVE), the Tropical Composition, Cloud and Climate Coupling (TC4), the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) and the Airborne Tropical Tropopause Experiment (ATTREX).

  3. The PdBI Arcsecond Whirlpool Survey (PAWS): The Role of Spiral Arms in Cloud and Star Formation

    NASA Astrophysics Data System (ADS)

    Schinnerer, Eva; Meidt, Sharon E.; Colombo, Dario; Chandar, Rupali; Dobbs, Clare L.; García-Burillo, Santiago; Hughes, Annie; Leroy, Adam K.; Pety, Jérôme; Querejeta, Miguel; Kramer, Carsten; Schuster, Karl F.

    2017-02-01

    The process that leads to the formation of the bright star-forming sites observed along prominent spiral arms remains elusive. We present results of a multi-wavelength study of a spiral arm segment in the nearby grand-design spiral galaxy M51 that belongs to a spiral density wave and exhibits nine gas spurs. The combined observations of the (ionized, atomic, molecular, dusty) interstellar medium with star formation tracers (H ii regions, young <10 Myr stellar clusters) suggest (1) no variation in giant molecular cloud (GMC) properties between arm and gas spurs, (2) gas spurs and extinction feathers arising from the same structure with a close spatial relation between gas spurs and ongoing/recent star formation (despite higher gas surface densities in the spiral arm), (3) no trend in star formation age either along the arm or along a spur, (4) evidence for strong star formation feedback in gas spurs, (5) tentative evidence for star formation triggered by stellar feedback for one spur, and (6) GMC associations being not special entities but the result of blending of gas arm/spur cross sections in lower resolution observations. We conclude that there is no evidence for a coherent star formation onset mechanism that can be solely associated with the presence of the spiral density wave. This suggests that other (more localized) mechanisms are important to delay star formation such that it occurs in spurs. The evidence of star formation proceeding over several million years within individual spurs implies that the mechanism that leads to star formation acts or is sustained over a longer timescale.

  4. Marine boundary layer cloud regimes and POC formation in an LES coupled to a bulk aerosol scheme

    NASA Astrophysics Data System (ADS)

    Berner, A. H.; Bretherton, C. S.; Wood, R.; Muhlbauer, A.

    2013-07-01

    A large-eddy simulation (LES) coupled to a new bulk aerosol scheme is used to study long-lived regimes of aerosol-boundary layer cloud-precipitation interaction and the development of pockets of open cells (POCs) in subtropical stratocumulus cloud layers. The aerosol scheme prognoses mass and number concentration of a single log-normal accumulation mode with surface and entrainment sources, evolving subject to processing of activated aerosol and scavenging of dry aerosol by cloud and rain. The LES with the aerosol scheme is applied to a range of steadily-forced simulations idealized from a well-observed POC case. The long-term system evolution is explored with extended two-dimensional simulations of up to 20 days, mostly with diurnally-averaged insolation. One three-dimensional two-day simulation confirms the initial development of the corresponding two-dimensional case. With weak mean subsidence, an initially aerosol-rich mixed layer deepens, the capping stratocumulus cloud slowly thickens and increasingly depletes aerosol via precipitation accretion, then the boundary layer transitions within a few hours into an open-cell regime with scattered precipitating cumuli, in which entrainment is much weaker. The inversion slowly collapses for several days until the cumulus clouds are too shallow to efficiently precipitate. Inversion cloud then reforms and radiatively drives renewed entrainment, allowing the boundary layer to deepen and become more aerosol-rich, until the stratocumulus layer thickens enough to undergo another cycle of open-cell formation. If mean subsidence is stronger, the stratocumulus never thickens enough to initiate drizzle and settles into a steady state. With lower initial aerosol concentrations, this system quickly transitions into open cells, collapses, and redevelops into a different steady state with a shallow, optically thin cloud layer. In these steady states, interstitial scavenging by cloud droplets is the main sink of aerosol number. The

  5. Aerosol patterns and aerosol-cloud-interactions off the West African Coast based on the A-train formation

    NASA Astrophysics Data System (ADS)

    Fuchs, Julia; Bendix, Jörg; Cermak, Jan

    2013-04-01

    ). Satellite data from the A-train formation, including the Aqua, CloudSat and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) are used to analyze aerosol-cloud-interactions in detail, along with re-analysis data to constrain by meteorological conditions. Information about the vertical and geographical distribution of different aerosol types and cloud parameters will lead to a process-oriented understanding of these issues on a regional scale. Ackerman, A., Kirkpatrick, M., Stevens, D., & Toon, O. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432(December), 1014-1017. doi:10.1038/nature03137.1. Feingold, G. (2003). First measurements of the Twomey indirect effect using ground-based remote sensors. Geophysical Research Letters, 30(6), 1287. doi:10.1029/2002GL016633 IPCC. (2007). Climate Change 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Interfovernmental Panel on climate Change. Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Kaufman, Y. J., Koren, I., Remer, L. A., Tanré, D., Ginoux, P., & Fan, S. (2005). Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research, 110(D10), 1-16. doi:10.1029/2003JD004436 McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., et al. (2006). The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmospheric Chemistry and Physics, 6(9), 2593-2649. doi:10.5194/acp-6-2593-2006

  6. The Role of Affect in Attitude Formation toward New Technologies: The Case of Stratospheric Aerosol Injection.

    PubMed

    Merk, Christine; Pönitzsch, Gert

    2017-02-28

    This article analyzes determinants of technology acceptance and their interdependence. It highlights the role of affect in attitude formation toward new technologies and examines how it mediates the influence of stable psychological variables on the technology's acceptability. Based on theory and previous empirical evidence, we develop an analytical framework of attitude formation. We test this framework using survey data on attitudes toward stratospheric aerosol injection (SAI), a technology that could be used to counteract global warming. We show that affect is more important than risk and benefit perception in forming judgment about SAI. Negative and positive affect directly alter the perception of risks and benefits of SAI and its acceptability. Furthermore, affect is an important mediator between stable psychological variables-such as trust in governmental institutions, values, and attitudes-and acceptability. A person's affective response is thus guided by her general attitudes and values.

  7. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description

    NASA Astrophysics Data System (ADS)

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan; Feingold, Graham; Kostinski, Alexander B.; Khain, Alexander P.; Ovchinnikov, Mikhail; Fredj, Erick; Dagan, Guy; Pinto, Lital; Yaish, Ricki; Chen, Qian

    2016-06-01

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3-D cloud-tracking algorithm, and results are presented in the phase space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projected on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.

  8. Warm/cold cloud processes

    NASA Technical Reports Server (NTRS)

    Bowdle, D. A.

    1979-01-01

    Technical assistance continued in support of the Atmospheric Cloud Physics Laboratory is discussed. A study of factors affecting warm cloud formation showed that the time of formation during an arbitrary expansion is independent of carrier gas composition for ideal gases and independent of aerosol concentration for low concentrations of very small aerosols. Equipment and procedures for gravimetric evaluation of a precision saturator were laboratory tested. A numerical feasibility study was conducted for the stable levitation of charged solution droplets by an electric field in a one-g static diffusion chamber. The concept, operating principles, applications, limits, and sensitivity of the levitation technique are discussed.

  9. The Formation of Preplanetary Disks from the Collapse of Rotating Molecular Cloud Cores

    NASA Technical Reports Server (NTRS)

    Cassen, P.; Shu, F. H.; Tereby, S.

    1985-01-01

    Solutions that describe the collapse of a molecular cloud core that is initially in unstable equilibrium, embedded within an envelope of uniform density, and rotating at the same rate as the envelope are given. Hydrodynamic equations, including self gravity, are deduced to a set of ordinary differential equations, which are solved by the method of matched asymptotic expansions. Results of these calculations are: (1) the range of stellar masses derived seems to correspond to realistic ranges of observed stellar masses and interstellar cloud parameters, (2) the proper measure of dissipation rate is the ratio of accretion time to viscous diffusion time, and (3) the pressure distribution on the surface of an accreting protostar is nonuniform in a way that favors the channeling of a stellar wind into a bipolar flow directed along the rotation axis.

  10. The formation of molecules in interstellar clouds from singly and multiply ionized atoms

    NASA Technical Reports Server (NTRS)

    Langer, W. D.

    1978-01-01

    The suggestion is considered that multiply ionized atoms produced by K- and L-shell X-ray ionization and cosmic-ray ionization can undergo ion-molecule reactions and also initiate molecule production. The role of X-rays in molecule production in general is discussed, and the contribution to molecule production of the C(+) radiative association with hydrogen is examined. Such gas-phase reactions of singly and multiply ionized atoms are used to calculate molecular abundances of carbon-, nitrogen-, and oxygen-bearing species. The column densities of the molecules are evaluated on the basis of a modified version of previously developed isobaric cloud models. It is found that reactions of multiply ionized carbon with H2 can contribute a significant fraction of the observed CH in diffuse interstellar clouds in the presence of diffuse X-ray structures or discrete X-ray sources and that substantial amounts of CH(+) can be produced under certain conditions.

  11. A case study of formation and maintenance of a lower stratospheric cirrus cloud over the tropics

    NASA Astrophysics Data System (ADS)

    Sandhya, M.; Sridharan, S.; Indira Devi, M.; Niranjan, K.; Jayaraman, A.

    2015-05-01

    A rare occurrence of stratospheric cirrus at 18.6 km height persisting for about 5 days during 3-7 March 2014 is inferred from the ground-based Mie lidar observations over Gadanki (13.5° N, 79.2° E) and spaceborne observations. Due to the vertical transport by large updrafts on 3 March in the troposphere, triggered by a potential vorticity intrusion, the water vapour mixing ratio shows an increase around the height of 18.6 km. Relative humidity with respect to ice is ~ 150%, indicating that the cirrus cloud may be formed though homogeneous nucleation of sulfuric acid. The cirrus cloud persists due to the cold anomaly associated with the presence of a 4-day wave.

  12. Submm Observations of Massive Star Formation in the Giant Molecular Cloud NGC 6334 : Gas Kinematics with Radiative Transfer Models

    NASA Astrophysics Data System (ADS)

    Zernickel, A.

    2015-05-01

    Context. How massive stars (M>8 Ms) form and how they accrete gas is still an open research field, but it is known that their influence on the interstellar medium (ISM) is immense. Star formation involves the gravitational collapse of gas from scales of giant molecular clouds (GMCs) down to dense hot molecular cores (HMCs). Thus, it is important to understand the mass flows and kinematics in the ISM. Aims. This dissertation focuses on the detailed study of the region NGC 6334, located in the Galaxy at a distance of 1.7 kpc. It is aimed to trace the gas velocities in the filamentary, massive star-forming region NGC 6334 at several scales and to explain its dynamics. For that purpose, different scales are examined from 0.01-10 pc to collect information about the density, molecular abundance, temperature and velocity, and consequently to gain insights about the physio-chemical conditions of molecular clouds. The two embedded massive protostellar clusters NGC 6334I and I(N), which are at different stages of development, were selected to determine their infall velocities and mass accretion rates. Methods. This astronomical source was surveyed by a combination of different observatories, namely with the Submillimeter Array (SMA), the single-dish telescope Atacama Pathfinder Experiment (APEX), and the Herschel Space Observatory (HSO). It was mapped with APEX in carbon monoxide (13CO and C18O, J=2-1) at 220.4 GHz to study the filamentary structure and turbulent kinematics on the largest scales of 10 pc. The spectral line profiles are decomposed by Gaussian fitting and a dendrogram algorithm is applied to distinguish velocity-coherent structures and to derive statistical properties. The velocity gradient method is used to derive mass flow rates. The main filament was mapped with APEX in hydrogen cyanide (HCN) and oxomethylium (HCO+, J=3-2) at 267.6 GHz to trace the dense gas. To reproduce the position- velocity diagram (PVD), a cylindrical model with the radiative transfer

  13. Star-formation rates, molecular clouds, and the origin of the far-infrared luminosity of isolated and interacting galaxies

    NASA Technical Reports Server (NTRS)

    Solomon, P. M.; Sage, L. J.

    1988-01-01

    The CO luminosities of 93 galaxies have been determined and are compared with their IRAS FIR luminosities. Strongly interacting/merging galaxies have L(FIR)/L(CO) substantially higher than that of isolated galaxies or galactic giant molecular clouds (GMCs). Galaxies with tidal tails/bridges are the most extreme type with L(FIR)/L(CO) nine times as high as isolated galaxies. Interactions between close pairs of galaxies do not have much effect on the molecular content and global star-formation rate. If the high ratio L(FIR)/L(CO) in strongly interacting galaxies is due to star formation then the efficiency of this process is higher than that of any galactic GMC. Isolated galaxies, distant pairs, and close pairs have an FIR/CO luminosity ratio which is within a factor of two of galactic GMCs with H II regions. The CO luminosities of FIR-luminous galaxies are among the highest observed for any spiral galaxies.

  14. Heterogeneous formation of polar stratospheric clouds-nucleation of nitric acid trihydrate (NAT) in the arctic stratosphere

    NASA Astrophysics Data System (ADS)

    Hoyle, C. R.; Engel, I.; Luo, B. P.; Pitts, M. C.; Poole, L. R.; Grooß, J.-U.; Peter, T.

    2013-05-01

    Satellite based observations during the Arctic winter of 2009/2010 provide firm evidence that, in contrast to the current theory, the nucleation of nitric acid trihydrate (NAT) in the polar stratosphere does not only occur on preexisting ice particles. In order to explain the NAT clouds observed over the Arctic in mid December 2009, a heterogeneous nucleation mechanism is required, occurring on the surface of dust or meteoritic particles. For the first time, a detailed microphysical modelling of this NAT formation pathway has been carried out. Heterogeneous NAT formation was calculated along tens of thousands of trajectories, ending at Cloud Aerosol Lidar with Orthogonal Polarisation (CALIOP) observation points. Comparing the optical properties of the modelled NAT PSCs with these observations enables the thorough validation of a newly developed NAT nucleation parameterisation, which has been built into the Zurich Optical and Microphysical box Model (ZOMM). The parameterisation is based on active site theory and is simple to implement in models. It is shown that the new method is capable of reproducing observed PSCs very well, despite the varied conditions experienced by air parcels travelling along the different trajectories.

  15. Radar studies of the distribution of the formation zones of the first radar echo of hail clouds

    NASA Astrophysics Data System (ADS)

    Inyukhin, V. S.; Kushchev, S. A.; Liev, K. B.; Makitov, V. S.

    2016-11-01

    The results of studying the regions of hail-cell formation in the North Caucasus are considered. The optimal range of the underlying surface heights for their generation is determined based on an analysis of 392 hail cells. It is shown that the majority of hail cells are formed in the zone where the heights of the underlying surface vary from 900 to 2400 m. The most favorable conditions for the formation of hail clouds are recorded in the northern slopes of the Skalistyi (Rocky) ridge. This region accumulates the main maxima of the frequency of first radar echo recording. The second group of the frequency maxima is located over the Pastbishchnyi (Pasturable) and the Lesistyi (Woody) ridges. The generalized scheme for the region under study is constructed of three zones of generation of the first radar echo of the hail cells. It is shown that approximately 70% of hail clouds are formed over submontane and mountainous regions in the central North Caucasus (zones 2 and 3). The directions of motion of hail cells are quantified for each identified zone.

  16. Determining the necessary conditions for Martian cloud formation: Ice nucleation in an electrodynamic balance (EDB)

    NASA Astrophysics Data System (ADS)

    Berlin, S.; Bauer, A. J.; Cziczo, D. J.

    2013-12-01

    The Martian atmosphere contains water ice clouds similar to Earth's cirrus clouds. These clouds influence the atmospheric temperature profile, alter the balance of incoming and outgoing radiation, and vertically redistribute water and mineral dust. Extrapolations of classical heterogeneous nucleation theory from Earth-like conditions to colder temperature and lower pressure regimes present in extraterrestrial atmospheres may be inaccurate, and thus hydrological models describing these regimes could lack physical meaning. In this project, we use an electrodynamic balance (EDB) to levitate individual aerosol particles and study their freezing properties. We test previously characterized aerosols such as Arizona Test Dust (ATD) and sodium chloride (NaCl). Then, we examine the less well-studied Mojave Mars Simulant (MMS) dust, which mimics the composition and size of dust particles found in the Martian atmosphere. A relative humidity, temperature, and inert atmosphere are utilized to emulate conditions found in the Martian atmosphere. We will discuss the supersaturations under which heterogeneous ice nucleation occurs on surrogate Martian ice nuclei at various temperatures.

  17. Fomalhaut b as a cloud of dust: Testing aspects of planet formation theory

    SciTech Connect

    Kenyon, Scott J.; Currie, Thayne; Bromley, Benjamin C. E-mail: currie@astro.utoronto.ca

    2014-05-01

    We consider the ability of three models—impacts, captures, and collisional cascades—to account for a bright cloud of dust in Fomalhaut b. Our analysis is based on a novel approach to the power-law size distribution of solid particles central to each model. When impacts produce debris with (1) little material in the largest remnant and (2) a steep size distribution, the debris has enough cross-sectional area to match observations of Fomalhaut b. However, published numerical experiments of impacts between 100 km objects suggest this outcome is unlikely. If collisional processes maintain a steep size distribution over a broad range of particle sizes (300 μm to 10 km), Earth-mass planets can capture enough material over 1-100 Myr to produce a detectable cloud of dust. Otherwise, capture fails. When young planets are surrounded by massive clouds or disks of satellites, a collisional cascade is the simplest mechanism for dust production in Fomalhaut b. Several tests using Hubble Space Telescope or James Webb Space Telescope data—including measuring the expansion/elongation of Fomalhaut b, looking for trails of small particles along Fomalhaut b's orbit, and obtaining low resolution spectroscopy—can discriminate among these models.

  18. Bridging the Gap from Galactic to Extragalactic: Star Formation and Giant Molecular Clouds within the Nearby Spiral Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher

    2017-01-01

    The questions surrounding the origins of stars are of key importance in astrophysics across a huge range in physical scales. However, until recently, investigations have been restricted to either detailed studies targeting a few nearby regions in the Milky Way, or kpc- or larger-scale studies of entire galaxies. Between these two scales lies a crucial gap in understanding. In this thesis work, I have taken steps in bridging this gap between Galactic and extragalactic star formation. I will present the results of a campaign of observations and modeling targeting the nearby spiral galaxy NGC 300. Using an extensive suite of multi-wavelength data I have characterized the star formation activity and molecular gas in a large sample of star-forming regions within this galaxy. Additionally, I have assembled an extensive (300 clouds) and high resolution (10 pc) catalog of Giant Molecular Clouds (GMCs) based on ALMA CO observations. This unprecedented look at the population of GMCs in a nearby spiral galaxy reveals an astonishing range of morphologies and properties in the Molecular Gas as well as providing a key testbed for comparison with GMCs in the Milky Way and other nearby galaxies. The GMCs in NGC 300 appear to have similar global properties and show scaling relations consistent with those seen in the Milky Way. Furthermore, the star formation rate appears to correlate with the mass of molecular gas with approximately 250 Gyr depletion time, extending the relation discovered in the Milky Way linearly to larger scales. These results suggest a level of universality in the star formation process within spiral galaxy disks like our own Milky Way.

  19. {sup 26}Al AND THE FORMATION OF THE SOLAR SYSTEM FROM A MOLECULAR CLOUD CONTAMINATED BY WOLF-RAYET WINDS

    SciTech Connect

    Gaidos, Eric; Krot, Alexander N.; Williams, Jonathan P.; Raymond, Sean N. E-mail: sasha@higp.hawaii.edu E-mail: sean.raymond@colorado.edu

    2009-05-10

    abundance of a second, co-occurring SLR, {sup 41}Ca, if {approx}5 x 10{sup 5} yr elapsed between ejection of the radionuclides and the formation of CAIs. The presence of a third radionuclide, {sup 60}Fe, can be quantitatively explained if (1) the Sun formed immediately after the first SNe from the earlier generation of stars; (2) only 5% of SN ejecta was incorporated into the molecular cloud, or (3) the radionuclide originated in an even earlier generation of stars whose contributions to other radionuclides with a shorter half-life had completely decayed.

  20. Photogrammetry and photo interpretation applied to analyses of cloud cover, cloud type, and cloud motion

    NASA Technical Reports Server (NTRS)

    Larsen, P. A.

    1972-01-01

    A determination was made of the areal extent of terrain obscured by clouds and cloud shadows on a portion of an Apollo 9 photograph at the instant of exposure. This photogrammetrically determined area was then compared to the cloud coverage reported by surface weather observers at approximately the same time and location, as a check on result quality. Stereograms prepared from Apollo 9 vertical photographs, illustrating various percentages of cloud coverage, are presented to help provide a quantitative appreciation of the degradation of terrain photography by clouds and their attendant shadows. A scheme, developed for the U.S. Navy, utilizing pattern recognition techniques for determining cloud motion from sequences of satellite photographs, is summarized. Clouds, turbulence, haze, and solar altitude, four elements of our natural environment which affect aerial photographic missions, are each discussed in terms of their effects on imagery obtained by aerial photography. Data of a type useful to aerial photographic mission planners, expressing photographic ground coverage in terms of flying height above terrain and camera focal length, for a standard aerial photograph format, are provided. Two oblique orbital photographs taken during the Apollo 9 flight are shown, and photo-interpretations, discussing the cloud types imaged and certain visible geographical features, are provided.

  1. High-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments

    NASA Astrophysics Data System (ADS)

    Junge, K.; Swanson, B. D.

    2008-05-01

    Even though studies of Arctic ice forming particles suggest that a bacterial or viral source derived from open leads could be important for ice formation in Arctic clouds (Bigg and Leck, 2001), the ice nucleation potential of most polar marine psychrophiles or viruses has not been examined under conditions more closely resembling those in the atmosphere. In this paper, we examined the ice nucleation activity (INA) of several representative Arctic and Antarctic sea-ice bacterial isolates and a polar Colwellia phage virus. High-resolution ice nucleation spectra were obtained for droplets containing bacterial cells or virus particles using a free-fall freezing tube technique. The fraction of frozen droplets at a particular droplet temperature was determined by measuring the depolarized light scattering intensity from solution droplets in free-fall. Our experiments revealed that all sea-ice isolates and the virus nucleated ice at temperatures very close to the homogeneous nucleation temperature for the nucleation medium - which for artificial seawater was -42.2±0.3°C. Our results suggest that immersion freezing of these marine psychro-active bacteria and viruses would not be important for heterogeneous ice nucleation processes in polar clouds or to the formation of sea ice. These results also suggested that avoidance of ice formation in close proximity to cell surfaces might be one of the cold-adaptation and survival strategies for sea-ice bacteria. The fact that INA occurs at such low temperature could constitute one factor that explains the persistence of metabolic activities at temperatures far below the freezing point of seawater.

  2. Colorimetric method for identifying plant essential oil components that affect biofilm formation and structure.

    PubMed

    Niu, C; Gilbert, E S

    2004-12-01

    The specific biofilm formation (SBF) assay, a technique based on crystal violet staining, was developed to locate plant essential oils and their components that affect biofilm formation. SBF analysis determined that cinnamon, cassia, and citronella oils differentially affected growth-normalized biofilm formation by Escherichia coli. Examination of the corresponding essential oil principal components by the SBF assay revealed that cinnamaldehyde decreased biofilm formation compared to biofilms grown in Luria-Bertani broth, eugenol did not result in a change, and citronellol increased the SBF. To evaluate these results, two microscopy-based assays were employed. First, confocal laser scanning microscopy (CLSM) was used to examine E. coli biofilms cultivated in flow cells, which were quantitatively analyzed by COMSTAT, an image analysis program. The overall trend for five parameters that characterize biofilm development corroborated the findings of the SBF assay. Second, the results of an assay measuring growth-normalized adhesion by direct microscopy concurred with the results of the SBF assay and CLSM imaging. Viability staining indicated that there was reduced toxicity of the essential oil components to cells in biofilms compared to the toxicity to planktonic cells but revealed morphological damage to E. coli after cinnamaldehyde exposure. Cinnamaldehyde also inhibited the swimming motility of E. coli. SBF analysis of three Pseudomonas species exposed to cinnamaldehyde, eugenol, or citronellol revealed diverse responses. The SBF assay could be useful as an initial step for finding plant essential oils and their components that affect biofilm formation and structure.

  3. Does Powerful Language Training Affect Student Participation, Impression Formation, and Gender Communication in Online Discussions?

    ERIC Educational Resources Information Center

    Thomas, Crystal Ann

    2012-01-01

    The purpose of this dissertation was to investigate whether powerful language training affected student participation, impression formation, and gender communication style in online discussions. Powerful language was defined as a lack of the use of powerless language. Participants in this study were 507 freshmen taking a first-year college…

  4. Differential Effects of Question Formats in Math Assessment on Metacognition and Affect.

    ERIC Educational Resources Information Center

    O'Neil, Harold F., Jr.; Brown, Richard S.

    1998-01-01

    The effect of item format on metacognitive and affective processes of children in a large-scale mathematics assessment program were studied. Results from 1032 eighth graders indicate that open-ended and multiple choice items have differential effects, although these did not vary substantially as a function of gender and ethnicity. (SLD)

  5. Jovian clouds and haze

    NASA Astrophysics Data System (ADS)

    West, Robert A.; Baines, Kevin H.; Friedson, A. James; Banfield, Don; Ragent, Boris; Taylor, Fred W.

    Tropospheric clouds: thermochemical equilibrium theory and cloud microphysical theory, condensate cloud microphysics, tropospheric cloud and haze distribution - observations, results from the Galileo probe experiments, Galileo NIMS observations and results, Galileo SSE observations and results, recent analyses of ground-based and HST data; Tropospheric clouds and haze: optical and physical properties: partical composition, particle optical properties, size and shape, chromophores; Stratospheric haze: particle distribution, optical properties, size and shape, particle formation.

  6. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    NASA Astrophysics Data System (ADS)

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-07-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10-100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface site below. The vertical

  7. Star formation rates on global and cloud scales within the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Barnes, A. T.; Longmore, S. N.; Battersby, C.; Bally, J.; Kruijssen, J. M. D.

    2017-01-01

    The environment within the inner few hundred parsecs of the Milky Way, known as the ``Central Molecular Zone'' (CMZ), harbours densities and pressures orders of magnitude higher than the Galactic Disc; akin to that at the peak of cosmic star formation (Kruijssen & Longmore 2013). Previous studies have shown that current theoretical star-formation models under-predict the observed level of star-formation (SF) in the CMZ by an order of magnitude given the large reservoir of dense gas it contains. Here we explore potential reasons for this apparent dearth of star formation activity.

  8. Diagnostics of void expansion during cyclic growth and formation of layered nanoparticle clouds

    NASA Astrophysics Data System (ADS)

    Pilch, Iris; Greiner, Franko

    2017-03-01

    Nanoparticles were grown in an argon-acetylene plasma, and the particle size was characterized during growth using imaging Mie ellipsometry (I-Mie). The typical cyclic growth was observed, and the previously reported expansion and contraction of the void before depletion of nanoparticles [van de Wetering et al., J. Phys. D: Appl. Phys. 48, 035204 (2015)] was independently confirmed in our measurements. The cyclic growth was interrupted by repetitively turning the acetylene flow on and off. The nanoparticles that were confined in the discharge proceeded to grow slowly but more importantly a new growth cycle started with nucleation and growth taking place in the void region. The additional growth burst in the void region leads to a structured dust cloud with regions of nanoparticles with different sizes that were sharply separated. The advantages of using the I-Mie diagnostics for the observation of nanoparticles compared to standard video microscopy are demonstrated for the structured dust cloud. The results are discussed in relation to the growth processes for nucleation and coagulation.

  9. Dust in brown dwarfs and extra-solar planets. IV. Assessing TiO2 and SiO nucleation for cloud formation modelling

    NASA Astrophysics Data System (ADS)

    Lee, G.; Helling, Ch.; Giles, H.; Bromley, S. T.

    2015-03-01

    Context. Clouds form in atmospheres of brown dwarfs and planets. The cloud particle formation processes, seed formation and growth/evaporation are very similar to the dust formation process studied in circumstellar shells of AGB stars and in supernovae. Cloud formation modelling in substellar objects requires gravitational settling and element replenishment in addition to element depletion. All processes depend on the local conditions, and a simultaneous treatment is required. Aims: We apply new material data in order to assess our cloud formation model results regarding the treatment of the formation of condensation seeds. We look again at the question of the primary nucleation species in view of new (TiO2)N-cluster data and new SiO vapour pressure data. Methods: We applied the density functional theory (B3LYP, 6-311G(d)) using the computational chemistry package Gaussian 09 to derive updated thermodynamical data for (TiO2)N clusters as input for our TiO2 seed formation model. We tested different nucleation treatments and their effect on the overall cloud structure by solving a system of dust moment equations and element conservation for a prescribed Drift-Phoenixatmosphere structure. Results: Updated Gibbs free energies for the (TiO2)N clusters are presented, as well as a slightly temperature dependent surface tension for T = 500 ... 2000 K with an average value of σ∞ = 480.6 erg cm-2. The TiO2 seed formation rate changes only slightly with the updated cluster data. A considerably larger effect on the rate of seed formation, and hence on grain size and dust number density, results from a switch to SiO nucleation. The question about the most efficient nucleation species can only be answered if all dust/cloud formation processes and their feedback are taken into account. Despite the higher abundance of SiO over TiO2 in the gas phase, TiO2 remains considerably more efficient at forming condensation seeds by homogeneous nucleation. The paper discusses the effect

  10. Formation and Fractionation of CO (Carbon Monoxide) in Diffuse Clouds Observed at Optical and Radio Wavelengths

    NASA Astrophysics Data System (ADS)

    Liszt, H. S.

    2017-02-01

    We modeled {{{H}}}2 and CO formation incorporating the fractionation and selective photodissociation affecting CO when {A}{{V}} ≲ 2 mag. UV absorption measurements typically have N({}12{CO})/N({}13{CO}) ≈ 65 that are reproduced with the standard UV radiation and little density dependence at n(H) ≈ 32–1024 {{cm}}-3: densities n(H) ≲ 256 {{cm}}-3 avoid overproducing CO. Sightlines observed in millimeter wave absorption and a few in UV show enhanced {}13{CO} by factors of two to four and are explained by higher n(H) ≳ 256 {{cm}}-3 and/or weaker radiation. The most difficult observations to understand are UV absorptions having N({}12{CO})/N({}13{CO}) > 100 and N(CO) ≳ 1015 {{cm}}-2. Plots of {W}{CO} versus N(CO) show that {W}{CO} remains linearly proportional to N(CO) even at high opacity owing to sub-thermal excitation. {}12{CO} and {}13{CO} have nearly the same curve of growth so their ratios of column density/integrated intensity are comparable even when different from the isotopic abundance ratio. For n(H) ≳ 128 {{cm}}-3, plots of {W}{CO} versus N(CO) are insensitive to n(H), and {W}{CO}/N(CO) ≈ 1 {{K}} {km} {{{s}}}-1/(1015 CO {{cm}}-2); this compensates for small CO/{{{H}}}2 to make {W}{CO} more readily detectable. Rapid increases of N(CO) with n(H), N(H), and N({{{H}}}2) often render the CO bright, i.e., a small CO-{{{H}}}2 conversion factor. For n(H) ≲ 64 {{cm}}-3, CO enters the regime of truly weak excitation, where {W}{CO} ∝ n(H)N(CO). {W}{CO} is a strong function of the average {{{H}}}2 fraction and models with {W}{CO} = 1 {{K}} {km} {{{s}}}-1 fall in the narrow range of < {f}{{{H}}2}> 0.65–0.8 or < {f}{{{H}}2}> 0.4–0.5 at {W}{CO} 0.1 {{K}} {km} {{{s}}}-1. The insensitivity of easily detected CO emission to gas with small < {f}{{{H}}2}> implies that even deep CO surveys using broad beams may not discover substantially more emission.

  11. Microphysical Processes Affecting the Pinatubo Volcanic Plume

    NASA Technical Reports Server (NTRS)

    Hamill, Patrick; Houben, Howard; Young, Richard; Turco, Richard; Zhao, Jingxia

    1996-01-01

    In this paper we consider microphysical processes which affect the formation of sulfate particles and their size distribution in a dispersing cloud. A model for the dispersion of the Mt. Pinatubo volcanic cloud is described. We then consider a single point in the dispersing cloud and study the effects of nucleation, condensation and coagulation on the time evolution of the particle size distribution at that point.

  12. The Impact of Assimilating Precipitation-affected Radiance on Cloud and Precipitation in Goddard WRF-EDAS Analyses

    NASA Technical Reports Server (NTRS)

    Lin, Xin; Zhang, Sara Q.; Zupanski, M.; Hou, Arthur Y.; Zhang, J.

    2015-01-01

    High-frequency TMI and AMSR-E radiances, which are sensitive to precipitation over land, are assimilated into the Goddard Weather Research and Forecasting Model- Ensemble Data Assimilation System (WRF-EDAS) for a few heavy rain events over the continental US. Independent observations from surface rainfall, satellite IR brightness temperatures, as well as ground-radar reflectivity profiles are used to evaluate the impact of assimilating rain-sensitive radiances on cloud and precipitation within WRF-EDAS. The evaluations go beyond comparisons of forecast skills and domain-mean statistics, and focus on studying the cloud and precipitation features in the jointed rainradiance and rain-cloud space, with particular attentions on vertical distributions of height-dependent cloud types and collective effect of cloud hydrometers. Such a methodology is very helpful to understand limitations and sources of errors in rainaffected radiance assimilations. It is found that the assimilation of rain-sensitive radiances can reduce the mismatch between model analyses and observations by reasonably enhancing/reducing convective intensity over areas where the observation indicates precipitation, and suppressing convection over areas where the model forecast indicates rain but the observation does not. It is also noted that instead of generating sufficient low-level warmrain clouds as in observations, the model analysis tends to produce many spurious upperlevel clouds containing small amount of ice water content. This discrepancy is associated with insufficient information in ice-water-sensitive radiances to address the vertical distribution of clouds with small amount of ice water content. Such a problem will likely be mitigated when multi-channel multi-frequency radiances/reflectivity are assimilated over land along with sufficiently accurate surface emissivity information to better constrain the vertical distribution of cloud hydrometers.

  13. Variable dust formation by the colliding-wind Wolf-Rayet system HD 36402 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Williams, P. M.; Chu, Y.-H.; Gruendl, R. A.; Guerrero, M. A.

    2013-05-01

    Infrared photometry of the probable triple WC4(+O?)+O8I: Wolf-Rayet system HD 36402 (= BAT99-38) in the Large Magellanic Cloud shows emission characteristic of heated dust. The dust emission is variable on a time-scale of years, with a period near 4.7 yr, possibly associated with orbital motion of the O8 supergiant and the inner P ≃ 3.03-d WC4+O binary. The phase of maximum dust emission is close to that of the X-ray minimum, consistent with both processes being tied to colliding wind effects in an elliptical binary orbit. It is evident that Wolf-Rayet dust formation occurs also in metal-poor environments.

  14. A case of type I polar stratospheric cloud formation by heterogeneous nucleation

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Ferry, G. V.; Snetsinger, K. G.; Goodman, J.; Dye, J. E.; Baumgardner, D.; Gandrud, B. W.

    1992-01-01

    The NASA ER-2 aircraft flew on January 24, 1989, from Stavanger to Spitsbergen, Norway, at the 430-440 K potential temperature surface (19.2-19.8 km pressure altitude). Aerosols were sampled continuously by an optical particle counter (PMS-FSSP300) for concentration and size analyses, and during five 10-min intervals by four wire and one replicator impactor for concentration, size, composition, and phase analysis. During sampling, the air saturation of H2O with respect to ice changed from 20 to 100 percent, and of HNO3 with respect to nitric acid trihydrate (NAT) from subsaturation to supersaturation. Data from both instruments indicate a condensation of hydrochloric acid and, later, nitric acid on the background aerosol particles as the ambient temperature decreases along the flight track. This heterogeneous nucleation mechanism generates type I polar stratospheric cloud particles of 10-fold enhanced optical depth, which could play a role in stratospheric ozone depletion.

  15. Molecule Formation at High Extinction and Low Metallicity in the Magellanic Clouds

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael

    2005-01-01

    During 2005, our FUSE research group prepared two major FUSE surveys of interstellar molecular hydrogen: 1. Galactic Disk Sightlines. We measured N(H2) in rotational states J = 0 and 1 and in higher states, J = 2,3,4,5, sometimes up to J = l, for 139 sightlines to Galactic OB stars. 2. High-Latitude QSO sightlines. We surveyed 50 sightlines to high-latitude QSOs, finding H2 in most of them (44 of 50). 3 . Molecular Hydrogen in Infrared Cirrus. Related to the high-latitude H2 survey (#2), we examined the high-latitude infrared cirrus and its correlation with H2. In addition, we are accumulating H2 measurements for additional 0 stars in the Magellanic Clouds (LMC and SMC) to add to the previously published survey.

  16. How salt lakes affect atmospheric new particle formation: A case study in Western Australia.

    PubMed

    Kamilli, K A; Ofner, J; Krause, T; Sattler, T; Schmitt-Kopplin, P; Eitenberger, E; Friedbacher, G; Lendl, B; Lohninger, H; Schöler, H F; Held, A

    2016-12-15

    New particle formation was studied above salt lakes in-situ using a mobile aerosol chamber set up above the salt crust and organic-enriched layers of seven different salt lakes in Western Australia. This unique setup made it possible to explore the influence of salt lake emissions on atmospheric new particle formation, and to identify interactions of aqueous-phase and gas-phase chemistry. New particle formation was typically observed at enhanced air temperatures and enhanced solar irradiance. Volatile organic compounds were released from the salt lake surfaces, probably from a soil layer enriched in organic compounds from decomposed leaf litter, and accumulated in the chamber air. After oxidation of these organic precursor gases, the reaction products contributed to new particle formation with observed growth rates from 2.7 to 25.4nmh(-1). The presence of ferrous and ferric iron and a drop of pH values in the salt lake water just before new particle formation events indicated that organic compounds were also oxidized in the aqueous phase, affecting the new particle formation process in the atmosphere. The contribution of aqueous-phase chemistry to new particle formation is assumed, as a mixture of hundreds of oxidized organic compounds was characterized with several analytical techniques. This chemically diverse composition of the organic aerosol fraction contained sulfur- and nitrogen-containing organic compounds, and halogenated organic compounds. Coarse mode particles were analyzed using electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Ultra-high resolution mass spectrometry was applied to analyze filter samples. A targeted mass spectral analysis revealed the formation of organosulfates from monoterpene precursors and two known tracers for secondary organic aerosol formation from atmospheric oxidation of 1,8-cineole, which indicates that a complex interplay of aqueous-phase and gas-phase oxidation of monoterpenes contributes to

  17. Feedback of the HBe star IL Cep on nearby molecular cloud and star formation

    NASA Astrophysics Data System (ADS)

    Zhang, Si-Ju; Wu, Yuefang; Li, Jin Zeng; Yuan, Jing-Hua; Liu, Hong-Li; Dong, Xiaoyi; Huang, Ya-Fang

    2016-06-01

    We present investigations of the feedback of a luminous Herbig Be star, IL Cep. We mapped the vicinity of IL Cep in the J = 1-0 transitions of 12CO, 13CO and C18O molecular lines with the Purple Mountain Observatory 13.7 m telescope. Archival data from Wide-field Infrared Survey Explorer were also employed. A parsec-scale cavity that has probably been excavated by the dominant HBe star, IL Cep, is revealed. An expanding shell-like structure featured by 12CO(J = 1-0) emission was found surrounding the cavity, which embeds several 13CO(J = 1-0) molecular clumps. The density and velocity gradients imply strong stellar winds from exciting stars, this is consistent with the morphology of molecular cloud. The 12CO(J = 1-0) spectra show broad blue wings with a width of about 3.5 km s-1. We suggest that the broad blue wings could be emission from the molecular gas shocked by stellar winds, while the main narrow component may originate from pre-shocked gas. Several bright bow-shaped rims have been detected at 12 μm, which serve as the interface of the molecular cloud facing UV dissipation from the exciting stars. The rims all have an orientation facing IL Cep, this may indicate the pre-dominant effects of IL Cep on its surroundings. A very young star candidate (about 104.8 yr) was found in the head of one bright rim, but its triggered origin is uncertain. All results achieved in this paper suggest that IL Cep has violent effects on its surroundings.

  18. Biomass-burning impact on CCN number, hygroscopicity and cloud formation during summertime in the eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Bougiatioti, Aikaterini; Bezantakos, Spiros; Stavroulas, Iasonas; Kalivitis, Nikos; Kokkalis, Panagiotis; Biskos, George; Mihalopoulos, Nikolaos; Papayannis, Alexandros; Nenes, Athanasios

    2016-06-01

    This study investigates the concentration, cloud condensation nuclei (CCN) activity and hygroscopic properties of particles influenced by biomass burning in the eastern Mediterranean and their impacts on cloud droplet formation. Air masses sampled were subject to a range of atmospheric processing (several hours up to 3 days). Values of the hygroscopicity parameter, κ, were derived from CCN measurements and a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA). An Aerosol Chemical Speciation Monitor (ACSM) was also used to determine the chemical composition and mass concentration of non-refractory components of the submicron aerosol fraction. During fire events, the increased organic content (and lower inorganic fraction) of the aerosol decreases the values of κ, for all particle sizes. Particle sizes smaller than 80 nm exhibited considerable chemical dispersion (where hygroscopicity varied up to 100 % for particles of same size); larger particles, however, exhibited considerably less dispersion owing to the effects of condensational growth and cloud processing. ACSM measurements indicate that the bulk composition reflects the hygroscopicity and chemical nature of the largest particles (having a diameter of ˜ 100 nm at dry conditions) sampled. Based on positive matrix factorization (PMF) analysis of the organic ACSM spectra, CCN concentrations follow a similar trend as the biomass-burning organic aerosol (BBOA) component, with the former being enhanced between 65 and 150 % (for supersaturations ranging between 0.2 and 0.7 %) with the arrival of the smoke plumes. Using multilinear regression of the PMF factors (BBOA, OOA-BB and OOA) and the observed hygroscopicity parameter, the inferred hygroscopicity of the oxygenated organic aerosol components is determined. We find that the transformation of freshly emitted biomass burning (BBOA) to more oxidized organic aerosol (OOA-BB) can result in a 2-fold increase of the inferred organic hygroscopicity; about 10

  19. Polar Stratospheric Cloud formation and denitrification during the Arctic winter 2009/2010 and 2010/2011

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Pitts, Michael C.; Kirner, Oliver; Braesicke, Peter; Santee, Michelle L.; Manney, Gloria L.; Murtagh, Donal

    2015-04-01

    The sedimentation of HNO3 containing polar stratospheric cloud particles leads to a permanent removal of HNO3 from the stratosphere. The so-called denitrification is an effect that plays an important role in stratospheric ozone depletion. The Arctic winter 2009/2010 and 2010/2011 were both quite unique. The Arctic winter 2010/2011 was one of the coldest winters on record leading to the strongest depletion of ozone measured in the Arctic. Though the Arctic winter 2009/2010 was rather warm in the climatological sense it was distinguished by an exceptionally cold stratosphere from mid December 2009 to mid January 2010 leading to prolonged PSC formation and significant denitrification. Model simulations and space-borne observations are used to investigate PSC formation and denitrification during these two winters. Model simulations were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) and compared to observations by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Satellite (CALIPSO) and the Odin Sub-Millimetre Radiometer (Odin/SMR) as well as with observations from the Microwave Limb Sounder on Aura (Aura/MLS). While PSCs were present during the Arctic winter 2010/2011 over nearly four months, from mid December to end of March, they were not as persistent as the ones that occurred during the shorter (one month) cold period during the Arctic winter 2009/2010. Although the PSC season during the Arctic winter 2009/2010 was much shorter than in 2010/2011, denitrification during the Arctic winter 2009/2010 was similar in magnitude than during 2010/2011.

  20. High-resolution ice nucleation spectra of sea-ice bacteria: implications for cloud formation and life in frozen environments

    NASA Astrophysics Data System (ADS)

    Junge, K.; Swanson, B. D.

    2007-11-01

    Even though studies of Arctic ice forming particles suggest that a bacterial or viral source derived from open leads could be important for cloud formation in the Arctic (Bigg and Leck, 2001), the ice nucleation potential of most polar marine psychrophiles or viruses has not been examined under conditions more closely resembling those in the atmosphere. In this paper, we examined the ice nucleation activity (INA) of several representative Arctic and Antarctic sea-ice bacterial isolates and a polar Colwellia phage virus. High-resolution ice nucleation spectra were obtained for droplets containing bacterial cells or virus particles using a free-fall freezing tube technique. The fraction of frozen droplets at a particular droplet temperature was determined by measuring the depolarized light scattering intensity from solution droplets in free-fall. Our experiments revealed that all sea-ice isolates and the virus nucleated ice at temperatures very close to the homogeneous nucleation temperature for the nucleation medium - which for artificial seawater was -42.2±0.3°C. Our results indicated that these marine psychro-active bacteria and viruses are not important for heterogeneous ice nucleation processes in sea ice or polar clouds. These results also suggested that avoidance of ice formation in close proximity to cell surfaces might be one of the cold-adaptation and survival strategies for sea-ice bacteria. The fact that INA occurs at such low temperature could constitute one factor that explains the persistence of metabolic activities at temperatures far below the freezing point of seawater.

  1. High-Resolution ice Nucleation Spectra of Sea-Ice Bacteria: Implications for Cloud Formation and Life in Frozen Environments

    NASA Astrophysics Data System (ADS)

    Junge, K.; Swanson, B.

    2007-12-01

    Even though studies of Arctic ice forming particles suggest that a bacterial or viral source derived from open leads could be important for cloud formation in the Arctic (Bigg and Leck, 2002), the ice nucleation potential of most polar marine psychrophiles or viruses has not been examined under conditions more closely resembling those in the atmosphere. In this paper, we examined the ice nucleation activity (INA) of several representative Arctic and Antarctic sea-ice bacterial isolates and a polar Colwellia phage virus. High-resolution ice nucleation spectra were obtained for droplets containing bacterial cells or virus particles using a free-fall freezing tube technique. The fraction of frozen droplets at a particular droplet temperature was determined by measuring the depolarized light scattering intensity from solution droplets in free-fall. Our experiments revealed that all sea-ice isolates and the virus nucleated ice at temperatures very close to the homogeneous nucleation temperature for the nucleation medium -- which for artificial seawater was - 42.2 degC (standdev. 0.3 degC). Our results indicated that these marine psychro-active bacteria and viruses are not important for heterogeneous ice nucleation processes in sea ice or polar clouds. These results also suggested that avoidance of ice formation in close proximity to cell surfaces might be one of the cold-adaptation and survival strategies for sea-ice bacteria. The fact that INA occurs at such low temperature could constitute one factor that explains the persistence of metabolic activities at temperatures far below the freezing point of seawater (Junge et al., 2006).

  2. On the Formation of Interstellar Water Ice: Constraints from a Search for Hydrogen Peroxide Ice in Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Smith, R. G.; Charnely, S. B.; Pendleton, Y. J.; Wright, C. M.; Maldoni, M. M.; Robinson, G.

    2011-01-01

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H2O2), for the production of water (H2O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H2O2 ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H2O2 should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H2O2/H2O ice films between 2.5 and 200 micron, from 10 to 180 K, containing 3%, 30%, and 97% H2O2 ice. Integrated absorbances for all the absorption features in low-temperature H2O2 ice have been derived from these spectra. For identifying H2O2 ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 micron. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H2O ice absorption bands, no absorption features are found that can definitely be identified with H2O2 ice. In the absence of definite H2O2 features, the H2O2 abundance is constrained by its possible contribution to the weak absorption feature near 3.47 micron found on the long-wavelength wing of the 3 micron H2O ice band. This gives an average upper limit for H2O2, as a percentage of H2O, of 9% +/- 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  3. Disc formation in turbulent cloud cores: is magnetic flux loss necessary to stop the magnetic braking catastrophe or not?

    NASA Astrophysics Data System (ADS)

    Santos-Lima, R.; de Gouveia Dal Pino, E. M.; Lazarian, A.

    2013-03-01

    Recent numerical analysis of Keplerian disc formation in turbulent, magnetized cloud cores by Santos-Lima et al. demonstrated that reconnection diffusion is an efficient process to remove the magnetic flux excess during the buildup of a rotationally supported disc. This process is induced by fast reconnection of the magnetic fields in a turbulent flow. In a similar numerical study, Seifried et al. concluded that reconnection diffusion or any other non-ideal magnetohydrodynamic effects would not be necessary and turbulence shear alone would provide a natural way to build up a rotating disc without requiring magnetic flux loss. Their conclusion was based on the fact that the mean mass-to-flux ratio (μ) evaluated over a spherical region with a radius much larger than the disc is nearly constant in their models. In this paper, we compare the two sets of simulations and show that this averaging over large scales can mask significant real increases of μ in the inner regions where the disc is built up. We demonstrate that turbulence-induced reconnection diffusion of the magnetic field happens in the initial stages of the disc formation in the turbulent envelope material that is accreting. Our analysis is suggestive that reconnection diffusion is present in both sets of simulations and provides a simple solution for the `magnetic braking catastrophe' which is discussed in the literature in relation to the formation of protostellar accretion discs.

  4. Affect and Cognition in Attitude Formation toward Familiar and Unfamiliar Attitude Objects.

    PubMed

    van Giesen, Roxanne I; Fischer, Arnout R H; van Dijk, Heleen; van Trijp, Hans C M

    2015-01-01

    At large attitudes are built on earlier experience with the attitude object. If earlier experiences are not available, as is the case for unfamiliar attitude objects such as new technologies, no stored evaluations exist. Yet, people are still somehow able to construct attitudes on the spot. Depending on the familiarity of the attitude object, attitudes may find their basis more in affect or cognition. The current paper investigates differences in reliance on affect or cognition in attitude formation toward familiar and unfamiliar realistic attitude objects. In addition, individual differences in reliance on affect (high faith in intuition) or cognition (high need for cognition) are taken into account. In an experimental survey among Dutch consumers (N = 1870), we show that, for unfamiliar realistic attitude objects, people rely more on affect than cognition. For familiar attitude objects where both affective and cognitive evaluations are available, high need for cognition leads to more reliance on cognition, and high faith in intuition leads to more reliance on affect, reflecting the influence of individually preferred thinking style. For people with high need for cognition, cognition has a higher influence on overall attitude for both familiar and unfamiliar realistic attitude objects. On the other hand, affect is important for people with high faith in intuition for both familiar and unfamiliar attitude objects and for people with low faith in intuition for unfamiliar attitude objects; this shows that preferred thinking style is less influential for unfamiliar objects. By comparing attitude formation for familiar and unfamiliar realistic attitude objects, this research contributes to understanding situations in which affect or cognition is the better predictor of overall attitudes.

  5. Affect and Cognition in Attitude Formation toward Familiar and Unfamiliar Attitude Objects

    PubMed Central

    van Giesen, Roxanne I.

    2015-01-01

    At large attitudes are built on earlier experience with the attitude object. If earlier experiences are not available, as is the case for unfamiliar attitude objects such as new technologies, no stored evaluations exist. Yet, people are still somehow able to construct attitudes on the spot. Depending on the familiarity of the attitude object, attitudes may find their basis more in affect or cognition. The current paper investigates differences in reliance on affect or cognition in attitude formation toward familiar and unfamiliar realistic attitude objects. In addition, individual differences in reliance on affect (high faith in intuition) or cognition (high need for cognition) are taken into account. In an experimental survey among Dutch consumers (N = 1870), we show that, for unfamiliar realistic attitude objects, people rely more on affect than cognition. For familiar attitude objects where both affective and cognitive evaluations are available, high need for cognition leads to more reliance on cognition, and high faith in intuition leads to more reliance on affect, reflecting the influence of individually preferred thinking style. For people with high need for cognition, cognition has a higher influence on overall attitude for both familiar and unfamiliar realistic attitude objects. On the other hand, affect is important for people with high faith in intuition for both familiar and unfamiliar attitude objects and for people with low faith in intuition for unfamiliar attitude objects; this shows that preferred thinking style is less influential for unfamiliar objects. By comparing attitude formation for familiar and unfamiliar realistic attitude objects, this research contributes to understanding situations in which affect or cognition is the better predictor of overall attitudes. PMID:26517876

  6. Spitzer Analysis of H II Region Complexes in the Magellanic Clouds: Determining a Suitable Monochromatic Obscured Star Formation Indicator

    NASA Astrophysics Data System (ADS)

    Lawton, B.; Gordon, K. D.; Babler, B.; Block, M.; Bolatto, A. D.; Bracker, S.; Carlson, L. R.; Engelbracht, C. W.; Hora, J. L.; Indebetouw, R.; Madden, S. C.; Meade, M.; Meixner, M.; Misselt, K.; Oey, M. S.; Oliveira, J. M.; Robitaille, T.; Sewilo, M.; Shiao, B.; Vijh, U. P.; Whitney, B.

    2010-06-01

    H II regions are the birth places of stars, and as such they provide the best measure of current star formation rates (SFRs) in galaxies. The close proximity of the Magellanic Clouds allows us to probe the nature of these star forming regions at small spatial scales. To study the H II regions, we compute the bolometric infrared flux, or total infrared (TIR), by integrating the flux from 8 to 500 μm. The TIR provides a measure of the obscured star formation because the UV photons from hot young stars are absorbed by dust and re-emitted across the mid-to-far-infrared (IR) spectrum. We aim to determine the monochromatic IR band that most accurately traces the TIR and produces an accurate obscured SFR over large spatial scales. We present the spatial analysis, via aperture/annulus photometry, of 16 Large Magellanic Cloud (LMC) and 16 Small Magellanic Cloud (SMC) H II region complexes using the Spitzer Space Telescope's IRAC (3.6, 4.5, 8 μm) and MIPS (24, 70, 160 μm) bands. Ultraviolet rocket data (1500 and 1900 Å) and SHASSA Hα data are also included. All data are convolved to the MIPS 160 μm resolution (40 arcsec full width at half-maximum), and apertures have a minimum radius of 35''. The IRAC, MIPS, UV, and Hα spatial analysis are compared with the spatial analysis of the TIR. We find that nearly all of the LMC and SMC H II region spectral energy distributions (SEDs) peak around 70 μm at all radii, from ~10 to ~400 pc from the central ionizing sources. As a result, we find the following: the sizes of H II regions as probed by 70 μm are approximately equal to the sizes as probed by TIR (≈70 pc in radius); the radial profile of the 70 μm flux, normalized by TIR, is constant at all radii (70 μm ~ 0.45TIR); the 1σ standard deviation of the 70 μm fluxes, normalized by TIR, is a lower fraction of the mean (0.05-0.12 out to ~220 pc) than the normalized 8, 24, and 160 μm normalized fluxes (0.12-0.52); and these results are the same for the LMC and the SMC

  7. Cloud water measurements of glyoxal and methylglyoxal during the Whistler Aerosol and Cloud Study (WACS)

    NASA Astrophysics Data System (ADS)

    Herckes, P.; Ervens, B.; Wang, Y.; Eagar, J.; Leaitch, R.; Macdonald, A.; Sjostedt, S.; Abbatt, J.

    2011-12-01

    Glyoxal and methylglyoxal are produced in high yields from both anthropogenic (aromatics) and biogenic (isoprene) precursors. The role of glyoxal and methylglyoxal in secondary organic aerosol (SOA) formation in the aqueous phase of cloud water and aerosols has received great attention over the past years. In addition, gas phase oxidation and photolysis of these compounds yield radicals and, thus, impact the oxidant budgets. While the reactivity of methylglyoxal and glyoxal in both the gas and aqueous phases is nearly identical, the much higher solubility of glyoxal leads to its more efficient removal in the presence of clouds. Thus, the amount of cloud water (liquid water content, LWC) and cloud processing time will affect the concentration ratios and thus the reaction rates of oxidation processes in the gas and aqueous phase, respectively. The Whistler Aerosol and Cloud Study (WACS) investigated the interactions between clouds and biogenic aerosol in summer 2010 in Whistler (Canada). During this study, cloud samples were collected at two locations, Whistler peak and a mid mountain station Raven's Nest. Cloud samples were extensively chemically characterized including the measurements of glyoxal and methylglyoxal using liquid chromatography coupled to UV and mass spectrometric detection after derivatization. Concentrations were variable on the order of micromoles, accounting for 1% of the dissolved organic matter in clouds. Glyoxal and methylglyoxal concentrations at both locations are predicted by means of model studies using VOC measurements and liquid water contents as input data. These concentrations and their ratios are compared to those in different regions. It will be discussed how cloud liquid water content, cloud processing time and amount and mixture of precursors (emissions) affect these concentration ratios. Finally, the role of different emission scenarios and the presence of clouds for SOA formation and radical budgets will be briefly assessed.

  8. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  9. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  10. Disc Formation in Turbulent Cloud Cores: Circumventing the Magnetic Braking Catastrophe

    NASA Astrophysics Data System (ADS)

    Seifried, Daniel; Banerjee, Robi; Pudritz, Ralph E.; Klessen, Ralf S.

    We present collapse simulations of strongly magnetised, 100 M⊙, turbulent cloud cores. Around the protostars formed during the collapse Keplerian discs with typical sizes of up to 100 AU build up in contrast to previous simulations neglecting turbulence. Analysing the condensations in which the discs form, we show that the magnetic flux loss is not sufficient to explain the build-up of Keplerian discs. The average magnetic field is strongly inclined to the disc which might reduce the magnetic braking efficiency. However, the main reason for the reduced magnetic braking efficiency is the highly disordered magnetic field in the surroundings of the discs. Furthermore, due to the lack of a coherently rotating structure in the turbulent environment of the disc no toroidal magnetic field necessary for angular momentum extraction can build up. Simultaneously the angular momentum inflow remains high due to local shear flows created by the turbulent motions. We suggest that the "magnetic braking catastrophe" is an artefact of the idealised non-turbulent initial conditions and that turbulence provides a natural mechanism to circumvent this problem.

  11. Titan's Tropopause Temperatures from CIRS: Implications for Stratospheric Methane Cloud Formation

    NASA Astrophysics Data System (ADS)

    Anderson, C. M.; Samuelson, R.; Achterberg, R. K.; Barnes, J. W.; Flasar, F. M.

    2012-12-01

    Analysis of Cassini Composite Infrared Spectrometer (CIRS) far-IR spectra enable the construction of Titan's temperature profile in the altitude region containing the tropopause. Whereas the methane ν4 band at 1306 cm-1 (7.7 μm) is the primary opacity source for deducing thermal structure between 100 km and 500 km, N2-N2 collision-induced absorption between 70 and 140 cm-1 (143 μm and 71 μm) is utilized to determine temperatures at Titan's tropopause. Additional opacity due to aerosol and nitrile ices must also be taken into account in this part of the far-IR spectral region. The spectral characteristics of these particulate opacities have been deduced from CIRS limb data at 58°S, 15°S, 15°N, and 85°N. Empirically, the spectral shapes of these opacities appear to be independent of both latitude and altitude below 300 km (Anderson and Samuelson, 2011, Icarus 212, 762-778), justifying the extension of these spectral properties to all latitudes. We find that Titan's tropopause temperature is cooler than the HASI value of 70.5K by ~6K. This leads to the possibility that subsidence at high northern latitudes can cause methane condensation in the winter polar stratosphere. A search for methane clouds in this region is in progress.

  12. Titan's Tropopause Temperatures from CIRS: Implications for Stratospheric Methane Cloud Formation

    NASA Technical Reports Server (NTRS)

    Anderson, C. M.; Samuelson, R. E.; Achterberg, R. K.; Barnes, J. W.; Flasar, F. M.

    2012-01-01

    Analysis of Cassini Composite Infrared Spectrometer (CIRS) far-IR spectra enable the construction of Titan's temperature profile in the altitude region containing the tropopause. Whereas the methane V4 band at 1306/cm (7.7 microns) is the primary opacity source for deducing thermal structure between 100 km and 500 km, N2-N2 collision-induced absorption between 70 and 140/cm (143 microns and 71 microns) is utilized to determine temperatures at Titan's tropopause. Additional opacity due to aerosol and nitrile ices must also be taken into account in this part of the far-IR spectral region. The spectral characteristics of these particulate opacities have been deduced from CIRS limb data at 58degS, 15degS, 15degN, and 85degN. Empirically, the spectral shapes of these opacities appear to be independent of both latitude and altitude below 300 km (Anderson and Samuelson, 2011, Icarus 212, 762-778), justifying the extension of these spectral properties to all latitudes. We find that Titan's tropopause temperature is cooler than the HAS! value of 70.5K by approx. 6K. This leads to the possibility that subsidence at high northern latitudes can cause methane condensation in the winter polar stratosphere. A search for methane clouds in this region is in progress.

  13. Dust Processing Near Sites of High-Mass Star Formation in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hony, Sacha; Madden, S.; Rubin, D.; Oey, M. S.; Galliano, F.; Whitney, B.; Meade, M.; Babler, B.; Indebetouw, R.; Hora, J.; Gordon, K.; Engelbracht, C.; For, B.; Block, M.; Misselt, K.; Meixner, M.; Vijh, U.; Leitherer, C.

    2006-12-01

    We present a study into the properties of the dust and complex molecules in and around selected Hii regions in the Large Magellanic Cloud. The analysis is based on the Spitzer program SAGE (Surveying the Agents of a Galaxy's Evolution). Because of the lower metallicity environment, dust shielding is reduced and the effects of the ultraviolet radiation carry further than in the Milky way. Because of this these Hii regions may well be better representatives of star forming regions in the more distant universe. We present the mid-IR spectral energy distributions (SEDs) as a function of radial distance to the center of the clusters: LHA 120-N4, N11, N63 and N105. These regions span a wide range in luminosities. The observed variations in SED are interpreted in terms of the varying incident radiation-field and changing abundances of polycyclic aromatic hydrocarbons (PAHs), transiently heated very small grains (VSG) to submicron-sized grains in thermal equilibrium, i.e. in terms of the varying grain-size distribution. This analysis allows us to quantify the dust destruction and/or processing-rate due to photoevaporation and the typical distance scale on which Hii regions impact their surroundings.

  14. Autism spectrum disorder susceptibility gene TAOK2 affects basal dendrite formation in the neocortex.

    PubMed

    de Anda, Froylan Calderon; Rosario, Ana Lucia; Durak, Omer; Tran, Tracy; Gräff, Johannes; Meletis, Konstantinos; Rei, Damien; Soda, Takahiro; Madabhushi, Ram; Ginty, David D; Kolodkin, Alex L; Tsai, Li-Huei

    2012-06-10

    How neurons develop their morphology is an important question in neurobiology. Here we describe a new pathway that specifically affects the formation of basal dendrites and axonal projections in cortical pyramidal neurons. We report that thousand-and-one-amino acid 2 kinase (TAOK2), also known as TAO2, is essential for dendrite morphogenesis. TAOK2 downregulation impairs basal dendrite formation in vivo without affecting apical dendrites. Moreover, TAOK2 interacts with Neuropilin 1 (Nrp1), a receptor protein that binds the secreted guidance cue Semaphorin 3A (Sema3A). TAOK2 overexpression restores dendrite formation in cultured cortical neurons from Nrp1(Sema-) mice, which express Nrp1 receptors incapable of binding Sema3A. TAOK2 overexpression also ameliorates the basal dendrite impairment resulting from Nrp1 downregulation in vivo. Finally, Sema3A and TAOK2 modulate the formation of basal dendrites through the activation of the c-Jun N-terminal kinase (JNK). These results delineate a pathway whereby Sema3A and Nrp1 transduce signals through TAOK2 and JNK to regulate basal dendrite development in cortical neurons.

  15. Remote sensing of smoke, clouds, and fire using AVIRIS data

    NASA Technical Reports Server (NTRS)

    Gao, Bo-Cai; Kaufman, Yorman J.; Green, Robert O.

    1993-01-01

    Clouds remain the greatest element of uncertainty in predicting global climate change. During deforestation and biomass burning processes, a variety of atmospheric gases, including CO2 and SO2, and smoke particles are released into the atmosphere. The smoke particles can have important effects on the formation of clouds because of the increased concentration of cloud condensation nuclei. They can also affect cloud albedo through changes in cloud microphysical properties. Recently, great interest has arisen in understanding the interaction between smoke particles and clouds. We describe our studies of smoke, clouds, and fire using the high spatial and spectral resolution data acquired with the NASA/JPL Airborne Visible/Infrared Imaging Spectrometer (AVIRIS).

  16. Interannual variations of early winter Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP and MLS

    NASA Astrophysics Data System (ADS)

    Lambert, Alyn; Santee, Michelle L.; Livesey, Nathaniel J.

    2016-12-01

    We use satellite-borne measurements collected over the last decade (2006-2015) from the Aura Microwave Limb Sounder (MLS) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) to investigate the nitric acid distribution and the properties of polar stratospheric clouds (PSCs) in the early winter Antarctic vortex. Frequently, at the very start of the winter, we find that synoptic-scale depletion of HNO3 can be detected in the inner vortex before the first lidar detection of geophysically associated PSCs. The generation of "sub-visible" PSCs can be explained as arising from the development of a solid particle population with low number densities and large particle sizes. Assumed to be composed of nitric acid trihydrate (NAT), the sub-visible PSCs form at ambient temperatures well above the ice frost point, but also above the temperature at which supercooled ternary solution (STS) grows out of the background supercooled binary solution (SBS) distribution. The temperature regime of their formation, inferred from the simultaneous uptake of ambient HNO3 into NAT and their Lagrangian temperature histories, is at a depression of a few kelvin with respect to the NAT existence threshold, TNAT. Therefore, their nucleation requires a considerable supersaturation of HNO3 over NAT, and is consistent with a recently described heterogeneous nucleation process on solid foreign nuclei immersed in liquid aerosol. We make a detailed investigation of the comparative limits of detection of PSCs and the resulting sequestration of HNO3 imposed by lidar, mid-infrared, and microwave techniques. We find that the temperature history of air parcels, in addition to the local ambient temperature, is an important factor in the relative frequency of formation of liquid/solid PSCs. We conclude that the initiation of NAT nucleation and the subsequent development of large NAT particles capable of sedimentation and denitrification in the early winter do not emanate from an ice

  17. Cloud formation by combined instabilities in galactic gas layers - Evidence for a Q threshold in the fragmentation of shearing wavelets

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.

    1991-09-01

    The growth of shearing wavelets in thick galactic gas disks is studied, including the magnetic Rayleigh-Taylor instability perpendicular to the plane, various degrees of thermal instability, and the gravitational instability. Growth rates are calculated numerically for a wide range of parameter values, giving an effective dispersion relation and mass distribution function, and an approximate dispersion relation is derived analytically for the epoch of peak growth. An extensive coverage of parameter space illustrates the relative insensitivity of the gaseous shear instability to the axisymmetric stability parameter Q. The fragmentation of shearing wavelets by self-gravitational collapse parallel to the wave crest is also considered. Such fragmentation is sensitive to Q, requiring Q equal to or less than 1-2 for the growth of parallel perturbations to overcome shear inside the wavelet. Fragmentation instabilities may provide the link between shear instabilities and the formation of individual clouds. They are much more sensitive to Q than shear instabilities, and may regulate star formation so that Q approximately equals 1.

  18. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    DOE PAGES

    China, Swarup; Alpert, Peter A.; Zhang, Bo; ...

    2017-02-27

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition betweenmore » samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. Finally, this study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.« less

  19. Star Formation In Nearby Clouds (SFiNCs): X-Ray and Infrared Source Catalogs and Membership

    NASA Astrophysics Data System (ADS)

    Getman, Konstantin V.; Broos, Patrick S.; Kuhn, Michael A.; Feigelson, Eric D.; Richert, Alexander J. W.; Ota, Yosuke; Bate, Matthew R.; Garmire, Gordon P.

    2017-04-01

    The Star Formation in Nearby Clouds (SFiNCs) project is aimed at providing a detailed study of the young stellar populations and of star cluster formation in the nearby 22 star-forming regions (SFRs) for comparison with our earlier MYStIX survey of richer, more distant clusters. As a foundation for the SFiNCs science studies, here, homogeneous data analyses of the Chandra X-ray and Spitzer mid-infrared archival SFiNCs data are described, and the resulting catalogs of over 15,300 X-ray and over 1,630,000 mid-infrared point sources are presented. On the basis of their X-ray/infrared properties and spatial distributions, nearly 8500 point sources have been identified as probable young stellar members of the SFiNCs regions. Compared to the existing X-ray/mid-infrared publications, the SFiNCs member list increases the census of YSO members by 6%–200% for individual SFRs and by 40% for the merged sample of all 22 SFiNCs SFRs.

  20. The Effects of Transpacific Transported Aerosol on Clouds in California

    NASA Astrophysics Data System (ADS)

    Suski, K.; Creamean, J.; Rosenfeld, D.; Cazorla, A.; DeMott, P. J.; Sullivan, R. C.; White, A. B.; Ralph, F. M.; Cahill, J.; Tomlinson, J. M.; Chand, D.; Schmid, B.; Prather, K. A.

    2012-12-01

    Atmospheric aerosols are frequently lofted high into the atmosphere and can travel large distances within several days. Long-range transported aerosols can have large impacts on radiative and microphysical cloud properties and can affect precipitation on both regional and global scales. Research flights were conducted out of Sacramento, California onboard the DOE G-1 aircraft during the CalWater 2011 flight campaign, which aimed to understand the effects of aerosols on clouds and precipitation in California. To investigate aerosol effects on clouds, measurements of cloud microphysical properties were coupled with an aircraft aerosol time-of-flight mass spectrometer (A-ATOFMS), which characterized the chemical composition of aerosols and cloud residues. California Central Valley pollution aerosols were hypothesized to have a large impact on orographic clouds in the California Sierra Nevada Mountains; however transpacific transported aerosols were observed in cloud residues on several flights. Our observations indicate that dust from Asia, Africa, and the Middle East initiated ice formation in upper level clouds, while Asian soot from biomass burning served as cloud condensation nuclei in clouds with large concentrations of small liquid droplets. Previous work has linked large concentrations of small droplets to suppression of orographic precipitation, while ice formation has been shown to enhance precipitation. Therefore, the overall impact of these competing effects on precipitation in the Sierra Nevada is highly uncertain. The varying impacts of long-range transported aerosols on clouds and precipitation in California are presented.

  1. Abundance of fluorescent biological aerosol particles at temperatures conducive to the formation of mixed-phase and cirrus clouds

    SciTech Connect

    Twohy, Cynthia H.; McMeeking, Gavin R.; DeMott, Paul J.; McCluskey, Christina S.; Hill, Thomas C. J.; Burrows, Susannah M.; Kulkarni, Gourihar R.; Tanarhte, Meryem; Kafle, Durga N.; Toohey, Darin W.

    2016-01-01

    Some types of biological particles are known to nucleate ice at warmer temperatures than mineral dust, with the potential to influence cloud microphysical properties and climate. However, the prevalence of these particle types above the atmospheric boundary layer is not well known. Many types of biological particles fluoresce when exposed to ultraviolet light, and the Wideband Integrated Bioaerosol Sensor takes advantage of this characteristic to perform real-time measurements of fluorescent biological aerosol particles (FBAPs). This instrument was flown on the National Center for Atmospheric Research Gulfstream V aircraft to measure concentrations of fluorescent biological particles from different potential sources and at various altitudes over the US western plains in early autumn. Clear-air number concentrations of FBAPs between 0.8 and 12 µm diameter usually decreased with height and generally were about 10–100 L-1 in the continental boundary layer but always much lower at temperatures colder than 255 K in the free troposphere. At intermediate temperatures where biological ice-nucleating particles may influence mixed-phase cloud formation (255 K ≤ T ≤ 270 K), concentrations of fluorescent particles were the most variable and were occasionally near boundary-layer concentrations. Predicted vertical distributions of ice-nucleating particle concentrations based on FBAP measurements in this temperature regime sometimes reached typical concentrations of primary ice in clouds but were often much lower. If convection was assumed to lift boundary-layer FBAPs without losses to the free troposphere, better agreement between predicted ice-nucleating particle concentrations and typical ice crystal concentrations was achieved. Ice-nucleating particle concentrations were also measured during one flight and showed a decrease with height, and concentrations were consistent with a relationship to FBAPs established previously at the forested surface

  2. What's in a name? Word inflation, punctuation, abbreviation and cloud formation.

    PubMed

    Schofield, Susie J; Schofield, Pieta G

    2016-12-01

    The title of a journal paper offers a crucial portal into any scientific field. It determines whether interested readers locate the paper and whether others have enough interest sparked to lead them to read the abstract. This article looks at authored journal paper titles in Medical Education over its first 50 years (n = 6357) of publication and Medical Teacher over its first 35 years of publication, revealing both trends in areas of interest and how those interests are worded. Word clouds per decade showed a shift from teaching to learning and from examination to assessment, and new foci on learning, patients, research and feedback in both journals. The average length of title in Medical Education peeked in the 2000s, dropping to 70 characters in the 2010s, with no titles being longer than 140 characters (the length of a tweet) in this last decade. Abbreviations were used sparingly. The use of humorous titles, although not common, has increased in recent years. The use of the colon showed a marked increase in the 1980s, dropping a little in the 2000s but resurging in the 2010s. Titles posed as a question increased steadily, appearing to plateau in the 2000s at 11%. The use of humour and questions suggests that the authors of these articles are submitting papers to be selected by the human rather than just the virtual eye. We also hypothesise that the use of humour may indicate a maturation of medical education as a subject.

  3. Investigations of the impact of natural dust aerosol on cold cloud formation

    NASA Astrophysics Data System (ADS)

    Koehler, K. A.; Kreidenweis, S. M.; Demott, P. J.; Petters, M. D.; Prenni, A. J.; Möhler, O.

    2010-08-01

    Dust particles represent a dominant source of particulate matter (by mass) to the atmosphere, and their emission from some source regions has been shown to be transported on regional and hemispherical scales. Dust particles' potential to interact with water vapor in the atmosphere can lead to important radiative impacts on the climate system, both direct and indirect. We have investigated this interaction for several types of dust aerosol, collected from the Southwestern United States and the Saharan region. A continuous flow diffusion chamber was operated to measure the ice nucleation ability of the dust particles in the temperature range of relevance to cirrus and mixed-phase clouds (-65

  4. Insertion site and sealing technique affect residual hearing and tissue formation after cochlear implantation.

    PubMed

    Burghard, Alice; Lenarz, Thomas; Kral, Andrej; Paasche, Gerrit

    2014-06-01

    Tissue formation around the electrode array of a cochlear implant has been suggested to influence preservation of residual hearing as well as electrical hearing performance of implanted subjects. Further, inhomogeneity in the electrical properties of the scala tympani shape the electrical field and affect current spread. Intracochlear trauma due to electrode insertion and the insertion site itself are commonly seen as triggers for the tissue formation. The present study investigates whether the insertion site, round window membrane (RWM) vs. cochleostomy (CS), or the sealing material, no seal vs. muscle graft vs. carboxylate cement, have an influence on the amount of fibrous tissue and/or new bone formation after CI implantation in the guinea pig. Hearing thresholds were determined by auditory brainstem response (ABR) measurements prior to implantation and after 28 days. The amount of tissue formation was quantified by evaluation of microscopic images obtained by a grinding/polishing procedure to keep the CI in place during histological processing. An insertion via the round window membrane resulted after 28 days in less tissue formation in the no seal and muscle seal condition compared to the cochleostomy approach. Between these two sealing techniques there was no difference. Sealing the cochlea with carboxylate cement resulted always in a strong new bone formation and almost total loss of residual hearing. The amount of tissue formation and the hearing loss correlated at 1-8 kHz. Consequently, the use of carboxylate cement as a sealing material in cochlear implantation should be avoided even in animal studies, whereas sealing the insertion site with a muscle graft did not induce an additional tissue growth compared to omitting a seal. For hearing preservation the round window approach should be used.

  5. Characterization of cumulus cloud fields using trajectories in the center of gravity versus water mass phase space: 1. Cloud tracking and phase space description: CENTER OF GRAVITY VERSUS WATER MASS 1

    SciTech Connect

    Heiblum, Reuven H.; Altaratz, Orit; Koren, Ilan; Feingold, Graham; Kostinski, Alexander B.; Khain, Alexander P.; Ovchinnikov, Mikhail; Fredj, Erick; Dagan, Guy; Pinto, Lital; Yaish, Ricki; Chen, Qian

    2016-06-07

    We study the evolution of warm convective cloud fields using large eddy simulations of continental and trade cumulus. Individual clouds are tracked a posteriori from formation to dissipation using a 3D cloud tracking algorithm and results are presented in the phase- space of center of gravity altitude versus cloud liquid water mass (CvM space). The CvM space is shown to contain rich information on cloud field characteristics, cloud morphology, and common cloud development pathways, together facilitating a comprehensive understanding of the cloud field. In this part we show how the meteorological (thermodynamic) conditions that determine the cloud properties are projected on the CvM phase space and how changes in the initial conditions affect the clouds' trajectories in this space. This part sets the stage for a detailed microphysical analysis that will be shown in part II.

  6. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A. P.; Gupta, Pawan; Bhartia, P. K.; Veefkind, Pepijn; Sneep, Maarten; deHaan, Johan; Polonsky, Igor; Spurr, Robert

    2011-01-01

    We have developed a relatively simple scheme for simulating retrieved cloud optical centroid pressures (OCP) from satellite solar backscatter observations. We have compared simulator results with those from more detailed retrieval simulators that more fully account for the complex radiative transfer in a cloudy atmosphere. We used this fast simulator to conduct a comprehensive evaluation of cloud OCPs from the two OMI algorithms using collocated data from CloudSat and Aqua MODIS, a unique situation afforded by the A-train formation of satellites. We find that both OMI algorithms perform reasonably well and that the two algorithms agree better with each other than either does with the collocated CloudSat data. This indicates that patchy snow/ice, cloud 3D, and aerosol effects not simulated with the CloudSat data are affecting both algorithms similarly. We note that the collocation with CloudSat occurs mainly on the East side of OMI's swath. Therefore, we are not able to address cross-track biases in OMI cloud OCP retrievals. Our fast simulator may also be used to simulate cloud OCP from output generated by general circulation models (GCM) with appropriate account of cloud overlap. We have implemented such a scheme and plan to compare OMI data with GCM output in the near future.

  7. Io's Sodium Cloud On-Chip Format (Clear and Green-Yellow Filters Superimposed)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image of Jupiter's moon Io and its surrounding sky is shown in false color. The solid state imaging (CCD) system on NASA's Galileo spacecraft originally took two images of this scene, one through a clear filter and one through a green-yellow filter. [Versions of these images have been released over the past 3 days.] This picture was created by: (i) adding green color to the image taken through the green-yellow filter, and red color to the image taken through the clear filter; (ii) superimposing the two resulting images. Thus features in this picture which are purely green (or purely red) originally appeared only in the green-yellow (or clear) filter image of this scene. Features which are yellowish appeared in both filters. North is at the top, and east is to the right.

    This image reveals several new things about this scene. For example:

    (1) The reddish emission south of Io came dominantly through the clear filter. It therefore probably represents scattered light from Io's lit crescent and Prometheus' plume, rather than emission from Io's Sodium Cloud (which came through both filters).

    (2) The roundish red spot in Io's southern hemisphere contains a small yellow spot. This means that some thermal emission from the volcano Pele was detected by the green-yellow filter (as well as by the clear filter).

    (3) The sky contains several concentrated yellowish spots which were thus seen at the same location on the sky through both filters (one such spot appears in the picture's northeast corner). These spots are almost certainly stars. By contrast, the eastern half of this image contains a number of green spots whose emission was thus detected by the green-yellow filter only. Since any star visible through the green-yellow filter would also be visible through the clear filter, these green spots are probably artifacts (e.g., cosmic ray hits on the CCD sensor).

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space

  8. Laboratory investigations of the impact of mineral dust aerosol on cold cloud formation

    NASA Astrophysics Data System (ADS)

    Koehler, K. A.; Kreidenweis, S. M.; Demott, P. J.; Petters, M. D.; Prenni, A. J.; Möhler, O.

    2010-12-01

    Dust particles represent a dominant source of particulate matter (by mass) to the atmosphere, and their emission from some source regions has been shown to be transported on regional and hemispherical scales. Dust particles' potential to interact with water vapor in the atmosphere can lead to important radiative impacts on the climate system, both direct and indirect. We have investigated this interaction for several types of dust aerosol, collected from the Southwestern United States and the Saharan region. A continuous flow diffusion chamber was operated to measure the ice nucleation ability of the dust particles in the temperature range of relevance to cirrus and mixed-phase clouds (-65

  9. Formation of a Giant Galactic Gaseous Halo: Metal-Absorption Lines and High-Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Li, Fan

    1992-04-01

    A Galactic gaseous halo formed through the interstellar disk-halo connection is simulated by means of a two-dimensional axisymmetric hydrodynamic code based upon the chimney model of the interstellar medium, a new version of the galactic fountain. Galactic rotation, heating processes by diffuse UV flux, and radiative cooling processes are taken into account. The resulting gaseous halo can be divided into three categories, i.e., wind-type halo, bound-type halo, and cooled-type halo. In this way, we try to reproduce the column densities of C IV, N V, O VI, and Si IV in the observed absorption lines of halo stars. Assuming that the radiatively cooled halo gas condenses into clouds due to thermal instabilities, we can calculate their distribution and ballistic motions in the Galactic gravitational field. These correspond to the high- and intermediate-velocity clouds observed at high Galactic latitudes. We find that a cooled-type halo with a gas temperature between 5 X 10^5 and 10^6 K and a density between 10^-3 and 10^-2 cm^-3 at the disk-halo interface can reproduce the observational facts about our Galaxy. Supposing that the metal-absorption-line systems of QSOs arise from the halos of intervening galaxies formed by similar processes, we calculate features of the Ca II, Mg II, C IV, and Si IV absorption lines in various stages of galactic evolution. We conclude that C IV systems which are greater than 50 kpc in size correspond to the wind-type halo. On the other hand, Mg II and Ca II systems can only be detected in a very restricted region ( Metaxa, SMALL FAINT CLUSTERS IN THE LMC This is a short review of the main results of my Ph.D. thesis concerning some important problems on the dynamical properties of the LMC star clusters. The topic of this thesis was to find and study the dynamical paramters (tidal radius r_t core radius r_c concentration parameters log (r_t/r_c), and total mass M) for a large sample of small LMC clusters and to define their location in the

  10. INFRARED SPECTROSCOPIC SURVEY OF THE QUIESCENT MEDIUM OF NEARBY CLOUDS. I. ICE FORMATION AND GRAIN GROWTH IN LUPUS

    SciTech Connect

    Boogert, A. C. A.; Chiar, J. E.; Knez, C.; Mundy, L. G.; Öberg, K. I.; Pendleton, Y. J.; Tielens, A. G. G. M.; Van Dishoeck, E. F.

    2013-11-01

    Infrared photometry and spectroscopy (1-25 μm) of background stars reddened by the Lupus molecular cloud complex are used to determine the properties of grains and the composition of ices before they are incorporated into circumstellar envelopes and disks. H{sub 2}O ices form at extinctions of A{sub K} = 0.25 ± 0.07 mag (A{sub V} = 2.1 ± 0.6). Such a low ice formation threshold is consistent with the absence of nearby hot stars. Overall, the Lupus clouds are in an early chemical phase. The abundance of H{sub 2}O ice (2.3 ± 0.1 × 10{sup –5} relative to N{sub H}) is typical for quiescent regions, but lower by a factor of three to four compared to dense envelopes of young stellar objects. The low solid CH{sub 3}OH abundance (<3%-8% relative to H{sub 2}O) indicates a low gas phase H/CO ratio, which is consistent with the observed incomplete CO freeze out. Furthermore it is found that the grains in Lupus experienced growth by coagulation. The mid-infrared (>5 μm) continuum extinction relative to A{sub K} increases as a function of A{sub K}. Most Lupus lines of sight are well fitted with empirically derived extinction curves corresponding to R{sub V} ∼ 3.5 (A{sub K} = 0.71) and R{sub V} ∼ 5.0 (A{sub K} = 1.47). For lines of sight with A{sub K} > 1.0 mag, the τ{sub 9.7}/A{sub K} ratio is a factor of two lower compared to the diffuse medium. Below 1.0 mag, values scatter between the dense and diffuse medium ratios. The absence of a gradual transition between diffuse and dense medium-type dust indicates that local conditions matter in the process that sets the τ{sub 9.7}/A{sub K} ratio. This process is likely related to grain growth by coagulation, as traced by the A{sub 7.4}/A{sub K} continuum extinction ratio, but not to ice mantle formation. Conversely, grains acquire ice mantles before the process of coagulation starts.

  11. ON THE FORMATION OF INTERSTELLAR WATER ICE: CONSTRAINTS FROM A SEARCH FOR HYDROGEN PEROXIDE ICE IN MOLECULAR CLOUDS

    SciTech Connect

    Smith, R. G.; Wright, C. M.; Robinson, G.; Charnley, S. B.; Pendleton, Y. J.; Maldoni, M. M. E-mail: c.wright@adfa.edu.au E-mail: Steven.B.Charnley@nasa.gov

    2011-12-20

    Recent surface chemistry experiments have shown that the hydrogenation of molecular oxygen on interstellar dust grains is a plausible formation mechanism, via hydrogen peroxide (H{sub 2}O{sub 2}), for the production of water (H{sub 2}O) ice mantles in the dense interstellar medium. Theoretical chemistry models also predict the formation of a significant abundance of H{sub 2}O{sub 2} ice in grain mantles by this route. At their upper limits, the predicted and experimental abundances are sufficiently high that H{sub 2}O{sub 2} should be detectable in molecular cloud ice spectra. To investigate this further, laboratory spectra have been obtained for H{sub 2}O{sub 2}/H{sub 2}O ice films between 2.5 and 200 {mu}m, from 10 to 180 K, containing 3%, 30%, and 97% H{sub 2}O{sub 2} ice. Integrated absorbances for all the absorption features in low-temperature H{sub 2}O{sub 2} ice have been derived from these spectra. For identifying H{sub 2}O{sub 2} ice, the key results are the presence of unique features near 3.5, 7.0, and 11.3 {mu}m. Comparing the laboratory spectra with the spectra of a group of 24 protostars and field stars, all of which have strong H{sub 2}O ice absorption bands, no absorption features are found that can definitely be identified with H{sub 2}O{sub 2} ice. In the absence of definite H{sub 2}O{sub 2} features, the H{sub 2}O{sub 2} abundance is constrained by its possible contribution to the weak absorption feature near 3.47 {mu}m found on the long-wavelength wing of the 3 {mu}m H{sub 2}O ice band. This gives an average upper limit for H{sub 2}O{sub 2}, as a percentage of H{sub 2}O, of 9% {+-} 4%. This is a strong constraint on parameters for surface chemistry experiments and dense cloud chemistry models.

  12. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest.

    PubMed

    Berry, Z Carter; White, Joseph C; Smith, William K

    2014-05-01

    In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected.

  13. A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station - experimental versus modelled formation rates

    NASA Astrophysics Data System (ADS)

    Bianco, A.; Passananti, M.; Perroux, H.; Voyard, G.; Mouchel-Vallon, C.; Chaumerliac, N.; Mailhot, G.; Deguillaume, L.; Brigante, M.

    2015-08-01

    The oxidative capacity of the cloud aqueous phase is investigated during three field campaigns from 2013 to 2014 at the top of the puy de Dôme station (PUY) in France. A total of 41 cloud samples are collected and the corresponding air masses are classified as highly marine, marine and continental. Hydroxyl radical (HO•) formation rates (RHO•f) are determined using a photochemical setup (xenon lamp that can reproduce the solar spectrum) and a chemical probe coupled with spectroscopic analysis that can trap all of the generated radicals for each sample. Using this method, the obtained values correspond to the total formation of HO• without its chemical sinks. These formation rates are correlated with the concentrations of the naturally occurring sources of HO•, including hydrogen peroxide, nitrite, nitrate and iron. The total hydroxyl radical formation rates are measured as ranging from approximately 2 × 10-11 to 4 × 10-10 M s-1, and the hydroxyl radical quantum yield formation (ΦHO•) is estimated between 10-4 and 10-2. Experimental values are compared with modelled formation rates calculated by the model of multiphase cloud chemistry (M2C2), considering only the chemical sources of the hydroxyl radicals. The comparison between the experimental and the modelled results suggests that the photoreactivity of the iron species as a source of HO• is overestimated by the model, and H2O2 photolysis represents the most important source of this radical (between 70 and 99 %) for the cloud water sampled at the PUY station (primarily marine and continental).

  14. Star Formation in the Galactic Center: Radial Cloud Orbits via Feedback and Radiative Losses

    NASA Astrophysics Data System (ADS)

    Frazer, Chris; Heitsch, Fabian

    2015-01-01

    Simulations of misaligned gas streamers in the vicinity of supermassive black holes indicate that highly radial molecular flows are marked precursors of star formation in the Galactic Center (GC), yet the manner by which cold gas can adopt such orbits remains unclear. Through hydrodynamic models of the circumnuclear disk (CND), we investigate the development of such trajectories due to catastrophic angular momentum redistribution driven by stellar feedback (supernovae). For an improved equation of state, a prescription for optically thin cooling is included and heating arising from black hole X-ray radiation, interstellar radiation fields, and cosmic ray ionization is used in agreement with dust and gas measurements of the GC. Compared to adiabatic simulations, models with full thermal physics show density enhancements of a few orders of magnitude. Furthermore, the filaments forming in these simulations are characterized by lower angular momentum orbits. Combined, these effects suggest that fragmentation of the CND can provide an avenue for the development of highly radial molecular gas in-fall and the subsequent formation of stars.

  15. [Factors affecting formation of THMs during dissolved organic nitrogen acetamide chlorination in drinking water].

    PubMed

    Chu, Wen-Hai; Gao, Nai-Yun; Zhao, Shi-Jia; Li, Qing-Song

    2009-05-15

    Chlorination disinfection greatly reduced bacteria and virus in drinking water. However, there is an unintended consequence of disinfection, the generation of chemical disinfection by-products (DBPs). Dissolved organic nitrogen (DON) as the important precursor of DBPs is of current concern. As acetamide (AcAm) occur in important bimolecular, we studied formation pathways for THMs during chlorination of model AcAm. The experiments are designed by Plackett-Burman and Box-Behnken methods. Factors affecting formation of THMs such as AcAm initial concentration, chlorine dosage, pH, temperature, Br(-) concentration and contact time were investigated. The results indicate that AcAm initial concentration, pH and temperature have little effects on formation of THMs. On the contrary, three other factors have important effects on formation of THMs, especially Br(-) concentration. The capacity of THMs generation varies very little when Br(-) has a constant concentration. Generation amount of THMs attach maximum under the condition that dosage of active chlorine, Br(-) concentration and contact time is 8.77 mg/L, 0.77 mg/L and 6.20 h respectively. Bromine ion plays a catalysis role on THMs formation. Controlling the concentration of bromine ion can reduce total generation amount of THMs via AcAm. Bromine partition coefficient tends to increasing along with contact time lapse. Controlling chlorination reaction time can lower the cancer risk. At last, the pathway is proposed for THMs formation via AcAm, and the catalysis mechanism of Br(-) was addressed.

  16. A detailed view of a molecular cloud in the far outer disk of M 33. Molecular cloud formation in M 33

    NASA Astrophysics Data System (ADS)

    Braine, J.; Gratier, P.; Contreras, Y.; Schuster, K. F.; Brouillet, N.

    2012-12-01

    The amount of H2 present in spiral galaxies remains uncertain, particularly in the dim outer regions and in low-metallicity environments. We present high-resolution CO(1-0) observations with the Plateau de Bure interferometer of the most distant molecular cloud in the local group galaxy M 33. The cloud is a single entity rather than a set of smaller clouds within the broad beam of the original single-dish observations. The interferometer and single-dish fluxes are very similar and the line widths are indistinguishable, despite the difference in beamsize. At a spatial resolution of 10 pc, beyond the optical radius of the M 33, the CO brightness temperature reaches 2.4 Kelvins. A virial mass estimate for the cloud yields a mass of 4.3 × 104 M⊙ and a ratio N(H2)/ICO(1-0) ≃ 3.5 × 1020 cm-2/(K km s-1). While no velocity gradient is seen where the emission is strong, the velocity is redshifted to the extreme SW and blue-shifted to the far NE. If the orientation of the cloud is along the plane of the disk (i.e. not perpendicular), then these velocities correspond to slow infall or accretion. The rather modest infall rate would be about 2 × 10-4 M⊙ yr-1. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Data cube in FITS files is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/548/A52

  17. Factors Affecting the Nucleation Kinetics of Microporosity Formation in Aluminum Alloy A356

    NASA Astrophysics Data System (ADS)

    Yao, Lu; Cockcroft, Steve; Reilly, Carl; Zhu, Jindong

    2012-03-01

    Metal cleanliness is one of the most critical parameters affecting microporosity formation in aluminum alloy castings. It is generally acknowledged that oxide inclusions in the melt promote microporosity formation by facilitating pore nucleation. In this study, microporosity formation under different casting conditions, which aimed to manipulate the tendency to form and entrain oxide films in small directionally cast A356 samples was investigated. Castings were prepared with and without the aid of argon gas shielding and with a varying pour surface area. Two alloy variants of A356 were tested in which the main difference was Sr content. Porous disc filtration analysis was used to assess the melt cleanliness and identify the inclusions in the castings. The porosity volume fraction and size distribution were measured using X-ray micro-tomography analysis. The measurements show a clear increment in the volume fraction, number density, and pore size in a manner consistent with an increasing tendency to form and entrain oxide films during casting. By fitting the experimental results with a comprehensive pore formation model, an estimate of the pore nucleation population has been made. The model predicts that increasing the tendency to form oxide films increases both the number of nucleation sites and reduces the supersaturation necessary for pore nucleation in A356 castings. Based on the model predictions, Sr modification impacts both the nucleation kinetics and the pore growth kinetics via grain structure.

  18. Numerical simulation of precipitation formation in the case orographically induced convective cloud: Comparison of the results of bin and bulk microphysical schemes

    NASA Astrophysics Data System (ADS)

    Sarkadi, N.; Geresdi, I.; Thompson, G.

    2016-11-01

    In this study, results of bulk and bin microphysical schemes are compared in the case of idealized simulations of pre-frontal orographic clouds with enhanced embedded convection. The description graupel formation by intensive riming of snowflakes was improved compared to prior versions of each scheme. Two methods of graupel melting coincident with collisions with water drops were considered: (1) all simulated melting and collected water drops increase the amount of melted water on the surface of graupel particles with no shedding permitted; (2) also no shedding permitted due to melting, but the collision with the water drops can induce shedding from the surface of the graupel particles. The results of the numerical experiments show: (i) The bin schemes generate graupel particles more efficiently by riming than the bulk scheme does; the intense riming of snowflakes was the most dominant process for the graupel formation. (ii) The collision-induced shedding significantly affects the evolution of the size distribution of graupel particles and water drops below the melting level. (iii) The three microphysical schemes gave similar values for the domain integrated surface precipitation, but the patterns reveal meaningful differences. (iv) Sensitivity tests using the bulk scheme show that the depth of the melting layer is sensitive to the description of the terminal velocity of the melting snow. (v) Comparisons against Convair-580 flight measurements suggest that the bin schemes simulate well the evolution of the pristine ice particles and liquid drops, while some inaccuracy can occur in the description of snowflakes riming. (vi) The bin scheme with collision-induced shedding reproduced well the quantitative characteristics of the observed bright band.

  19. Fear memory formation can affect a different memory: fear conditioning affects the extinction, but not retrieval, of conditioned taste aversion (CTA) memory

    PubMed Central

    Joels, Gil; Lamprecht, Raphael

    2014-01-01

    The formation of fear memory to a specific stimulus leads to subsequent fearful response to that stimulus. However, it is not apparent whether the formation of fear memory can affect other memories. We study whether specific fearful experience leading to fear memory affects different memories formation and extinction. We revealed that cued fear conditioning, but not unpaired or naïve training, inhibited the extinction of conditioned taste aversion (CTA) memory that was formed after fear conditioning training in rats. Fear conditioning had no effect on retrieval of CTA memory but specifically impaired its extinction. Extinguished fear memory, after fear extinction training, had no effect on future CTA memory extinction. Fear conditioning had no effect on CTA memory extinction if CTA memory was formed before fear conditioning. Conditioned taste aversion had no effect on fear conditioning memory extinction. We conclude that active cued fear conditioning memory can affect specifically the extinction, but not the formation, of future different memory. PMID:25324744

  20. Do I Know You? How Individual Recognition Affects Group Formation and Structure

    PubMed Central

    2017-01-01

    Groups in nature can be formed by interactions between individuals, or by external pressures like predation. It is reasonable to assume that groups formed by internal and external conditions have different dynamics and structures. We propose a computational model to investigate the effects of individual recognition on the formation and structure of animal groups. Our model is composed of agents that can recognize each other and remember previous interactions, without any external pressures, in order to isolate the effects of individual recognition. We show that individual recognition affects the number and size of groups, and the modularity of the social networks. This model can be used as a null model to investigate the effects of external factors on group formation and persistence. PMID:28125708

  1. The sensitivity of oxidant formation rates to uncertainties in temperature, water vapor, and cloud cover

    SciTech Connect

    Walcek, C.J.; Yuan, H.H.

    1994-12-31

    Photochemical reaction mechanisms have been used for several decades to understand the formation of acids, oxidants, and other pollutants in the atmosphere. With complex chemical reaction mechanisms, it is useful to perform sensitivity studies to identify the most important or uncertain components within the system of reactions. In this study, we quantify the sensitivity of a chemical reaction mechanism to changes in three meteorological factors: temperature, relative humidity, and sunlight intensity. We perform these sensitivity studies over a wide range of nitrogen oxides (NO{sub x} = NO + NO{sub 2}) and nonmethane hydrocarbon (NMHC) concentrations, since these two chemicals are the dominant controllable pollutants that influence the chemical reactivity of the atmosphere.

  2. The Formation and Evolution of the Large Magellanic Cloud from Selected Clusters and Star Fields

    NASA Astrophysics Data System (ADS)

    Olsen, Knut Anders Grova

    We have obtained deep Hubble Space Telescope color-magnitude diagrams of fields centered on the six old LMC globular clusters NGC 1754, NGC 1835, WGC 1898, NGC 1916, NGC 2005, and NGC 2019. The data have been carefully calibrated and the effects of crowding on the photometric accuracy have been thoroughly investigated. The observations have been used to produce V-I,V color-magnitude diagrams of the clusters and of the background field stars, which we have separated from each other through a statistical cleaning technique. The cluster color-magnitude diagrams show that the clusters are old, with main sequence turnoffs at V~ 22.5 and well-developed horizontal branches. We used the slopes of the red giant branches to measure the abundances, which we find to be 0.3 dex higher, on average, than previously measured spectroscopic abundances. In two cases there is significant variable reddening across at least part of the image, but only for NGC 1916 does differential reddening preclude accurate measurements of the CMD characteristics. The mean reddenings of the clusters, measured both from the color of the red giant branch and through comparison with Milky Way clusters, are <=0.10 magnitudes in E(B-V) in all cases. By matching tbe color-magnitude diagrams of the clusters to fiducial sequences of the Milky Way globular clusters M3, M5, and M55, we find that the mean difference of the LMC and Milky Way cluster ages is 1.0 ± 1.2 Gyr, calculated such that a positive difference indicates that the LMC clusters are older. Through Monte Carlo simulations, errors in the individual measurements of the ages relative to Milky Way clusters are found to be ~<1.0 Gyr. We find a similar chronology by comparing the horizontal branch morphologies and abundances with HB evolutionary tracks, assuming that age is the 'second parameter'. These results imply that the LMC formed at the same time as the Milky Way Galaxy. The evolution of the LMC following its formation has been studied through

  3. Skyrmion formation and optical spin-Hall effect in an expanding coherent cloud of indirect excitons.

    PubMed

    Vishnevsky, D V; Flayac, H; Nalitov, A V; Solnyshkov, D D; Gippius, N A; Malpuech, G

    2013-06-14

    We provide a theoretical description of the polarization pattern and phase singularities experimentally evidenced recently in a condensate of indirect excitons [H. High et al., Nature 483, 584 (2012)]. We show that the averaging of the electron and hole orbital motion leads to a comparable spin-orbit interaction for both types of carriers. We demonstrate that the interplay between a radial coherent flux of bright indirect excitons and the Dresselhaus spin-orbit interaction results in the formation of spin domains and of topological defects similar to Skyrmions. We reproduce qualitatively all the features of the experimental data and obtain a polarization pattern as in the optical spin-Hall effect despite the different symmetry of the spin-orbit interactions.

  4. Modeling SOAaq Formation: Explicit Organic Chemistry in Cloud Droplets with CMAQ

    NASA Astrophysics Data System (ADS)

    Carlton, A. G.; Sareen, N.; Fahey, K.; Hutzell, W. T.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere has a substantial impact on climate and can lead to air quality changes that adversely impact human health and the environment. The chemistry is complex because of the variety of compounds present in the atmosphere and the phase transitions associated with multiphase reactions. These reactions can lead to the formation of secondary organic aerosols (SOAAQ) in the atmosphere. When included, current photochemical models typically use a simple parameterization to describe SOAAQ formation. Here, we discuss the implementation of explicit aqueous SOA chemistry in a box model of the CMAQ 5.0.1 aqueous phase chemistry mechanism using the Kinetic PreProcessor (KPP). The expanded chemistry model includes reactions of glyoxal, methylglyoxal, and glycolaldehyde as precursors to form SOAAQ and is based on the mechanism from Lim et. al. 2010. The current aqueous phase chemistry module in CMAQ uses a forward Euler method to solve the system of oxidation equations, estimating the pH with a bisection method assuming electroneutrality, and multiphase processes are solved sequentially. This is not robust for systems with large dynamic range (e.g., multiphase systems), and inhibits expansion of the aqueous phase chemical mechanism to adequately incorporate the growing body of literature that describes multiphase organic chemistry. The KPP solver allows for all processes to be solved simultaneously and facilitates expansion of the current mechanism. Addition of explicit organic reactions and H2O2 photolysis in the KPP box model results in increased mass of organic aerosol and more realistic predictions. For particulate matter focused air quality management strategies to be effective, it is important that models move away from the yield-based approach currently used and expand to include more explicit organic chemistry.

  5. Retinoic Acid Signaling Is Essential for Valvulogenesis by Affecting Endocardial Cushions Formation in Zebrafish Embryos.

    PubMed

    Li, Junbo; Yue, Yunyun; Zhao, Qingshun

    2016-02-01

    Retinoic acid (RA) plays important roles in many stages of heart morphogenesis. Zebrafish embryos treated with exogenous RA display defective atrio-ventricular canal (AVC) specification. However, whether endogenous RA signaling takes part in cardiac valve formation remains unknown. Herein, we investigated the role of RA signaling in cardiac valve development by knocking down aldh1a2, the gene encoding an enzyme that is mainly responsible for RA synthesis during early development, in zebrafish embryos. The results showed that partially knocking down aldh1a2 caused defective formation of primitive cardiac valve leaflets at 108 hpf (hour post-fertilization). Inhibiting endogenous RA signaling by 4-diethylaminobenzal-dehyde revealed that 16-26 hpf was a key time window when RA signaling affects the valvulogenesis. The aldh1a2 morphants had defective formation of endocardial cushion (EC) at 76 hpf though they had almost normal hemodynamics and cardiac chamber specification at early development. Examining the expression patterns of AVC marker genes including bmp4, bmp2b, nppa, notch1b, and has2, we found the morphants displayed abnormal development of endocardial AVC but almost normal development of myocardial AVC at 50 hpf. Being consistent with the reduced expression of notch1b in endocardial AVC, the VE-cadherin gene cdh5, the downstream gene of Notch signaling, was ectopically expressed in AVC of aldh1a2 morphants at 50 hpf, and overexpression of cdh5 greatly affected the formation of EC in the embryos at 76 hpf. Taken together, our results suggest that RA signaling plays essential roles in zebrafish cardiac valvulogenesis.

  6. OLD MAIN-SEQUENCE TURNOFF PHOTOMETRY IN THE SMALL MAGELLANIC CLOUD. II. STAR FORMATION HISTORY AND ITS SPATIAL GRADIENTS

    SciTech Connect

    Noel, Noelia E. D.; Gallart, Carme; Hidalgo, Sebastian L.; Aparicio, Antonio; Costa, Edgardo; Mendez, Rene A. E-mail: carme@iac.e E-mail: antapaj@iac.e E-mail: rmendez@das.uchile.c

    2009-11-10

    We present a quantitative analysis of the star formation history (SFH) of 12 fields in the Small Magellanic Cloud (SMC) based on unprecedented deep [(B - R), R] color-magnitude diagrams (CMDs). Our fields reach down to the oldest main-sequence turnoff with a high photometric accuracy, which is vital for obtaining accurate SFHs, particularly at intermediate and old ages. We use the IAC-pop code to obtain the SFH, using synthetic CMDs generated with IAC-star. We obtain the SFH as a function psi(t, z) of age and metallicity. We also consider several auxiliary functions: the initial mass function (IMF), phi(m), and a function accounting for the frequency and relative mass distribution of binary stars, beta(f, q). We find that there are several main periods of enhancement of star formation: a young one peaked at approx0.2-0.5 Gyr old, only present in the eastern and in the central-most fields; two at intermediate ages present in all fields: a conspicuous one peaked at approx4-5 Gyr, and a less significant one peaked at approx1.5-2.5; and an old one, peaked at approx10 Gyr in all fields but the western ones. In the western fields, this old enhancement splits into two, one peaked at approx8 Gyr old and another at approx12 Gyr old. This 'two-enhancement' zone is unaffected by our choice of stellar evolutionary library but more data covering other fields of the SMC are necessary in order to ascertain its significancy. Correlation between star formation rate enhancements and SMC-Milky Way encounters is not clear. Some correlation could exist with encounters taken from the orbit determination of Kallivayalil et al. But our results would also fit in a first pericenter passage scenario like the one claimed by Besla et al. For SMC-Large Magellanic Cloud encounters, we find a correlation only for the most recent encounter approx0.2 Gyr ago. This coincides with the youngest psi(t) enhancement peaked at these ages in our eastern fields. The population younger than 1 Gyr represents

  7. Hidden Star Formation in High-Velocity Gas Clouds in Clump 2 near the Edge of the CMZ

    NASA Astrophysics Data System (ADS)

    Tolls, Volker; Smith, Howard Alan; Stark, Antony A.; Martin, Christopher L.; HIGGS Team

    2016-01-01

    The inner Galaxy can be divided into two main regions, the Central Molecular Zone (CMZ; Morris and Serabyn 1996) and the Galactic Bar region. Gas and dust moves from the end points of the Galactic Bar on dust lanes towards the CMZ, where it merges with the gas and dust located on a 100-pc molecular ring. The stream of gas and dust on the dust lanes is not continuous, but fragments into irregularly separated clumps of varying sizes. One of the most significant aggregations of clumps is the Clump 2 region (Roogour 1964, Bania 1977). Although the gas and dust clouds in this region are very dense, they were always considered quiet with no ongoing star formation. Selected regions of Clump 2 were the targets of Herschel HIFI and PACS observations of CO J=7-6, CI, CII, OI, NII, and OIII as part of the Herschel Inner Galactic Gas Survey (HIGGS). This poster will present an update of the ongoing data analysis, which may have yielded some surprising results.

  8. A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation

    NASA Astrophysics Data System (ADS)

    Hoffmann, Lars; Spang, Reinhold; Orr, Andrew; Alexander, M. Joan; Holt, Laura A.; Stein, Olaf

    2017-02-01

    Atmospheric gravity waves yield substantial small-scale temperature fluctuations that can trigger the formation of polar stratospheric clouds (PSCs). This paper introduces a new satellite record of gravity wave activity in the polar lower stratosphere to investigate this process. The record is comprised of observations of the Atmospheric Infrared Sounder (AIRS) aboard NASA's Aqua satellite from January 2003 to December 2012. Gravity wave activity is measured in terms of detrended and noise-corrected 15 µm brightness temperature variances, which are calculated from AIRS channels that are the most sensitive to temperature fluctuations at about 17-32 km of altitude. The analysis of temporal patterns in the data set revealed a strong seasonal cycle in wave activity with wintertime maxima at mid- and high latitudes. The analysis of spatial patterns indicated that orography as well as jet and storm sources are the main causes of the observed waves. Wave activity is closely correlated with 30 hPa zonal winds, which is attributed to the AIRS observational filter. We used the new data set to evaluate explicitly resolved temperature fluctuations due to gravity waves in the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis. It was found that the analysis reproduces orographic and non-orographic wave patterns in the right places, but that wave amplitudes are typically underestimated by a factor of 2-3. Furthermore, in a first survey of joint AIRS and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) satellite observations, nearly 50 gravity-wave-induced PSC formation events were identified. The survey shows that the new AIRS data set can help to better identify such events and more generally highlights the importance of the process for polar ozone chemistry.

  9. How important are glassy SOA ice nuclei for the formation of cirrus clouds?

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Penner, J. E.; Lin, G.; Liu, X.; Wang, M.

    2014-12-01

    Extremely low ice numbers (i.e. 5 - 100 / L) have been observed in the tropical troposphere layer (TTL) in a variety of field campaigns. Various mechanisms have been proposed to explain these low numbers, including the effect of glassy secondary organic aerosol acting as heterogeneous ice nuclei (IN). In this study, we explored these effects using the CAM5.3 model. SOA fields were provided by an offline version of the University of Michigan-IMPACT model, which has a detailed process-based mechanism that describes aerosol microphysics and SOA formation through both gas phase and multiphase reactions. The transition criterion of SOA to glassy heterogeneous IN follows the parameterization developed by Wang et al. 2012. With this parameterization, glassy SOA IN form mainly when the temperature (T) is lower than 210K. In the default CAM5.3 set-up in which only the fraction of Aitken mode sulfate aerosols with diameter larger than 100nm participate in the ice nucleation (Liu and Penner 2005 parameterization), glassy SOA IN are shown to decrease the ice number (Ni) by suppressing some of the homogeneous freezing at low temperatures thereby leading to an improved representation of the relationship between Ni and T compared to the observations summarized by Kramer et al. 2009. However, when we allow the total number of the Aitken mode sulfate particles to participate in homogeneous freezing, glassy SOA IN have only a small impact on the relationship between Ni and T. If the subgrid updraft velocity is decreased to 0.1 m/s (compared to 0.2 m/s in the default set-up), there is a large decrease of Ni, since homogeneous freezing is more easily suppressed by glassy SOA IN at these updrafts. We also present the effects of glassy SOA IN using an alternative ice nucleation scheme (Barahona and Nenes, 2009).

  10. Formation of the Dust Cloud Caused by the Impact of Small Cosmic Body on Mars

    NASA Astrophysics Data System (ADS)

    Rybakov, V. A.; Artemiev, V. I.; Nemtchinov, I. V.; Shuvalov, V. V.; Medveduk, S. A.

    1996-03-01

    A hypothesis has been proposed in that the impacts of small cosmic bodies on the planet's; surface may trigger local sand storms due to the formation of a heated layer over the ground under thermal radiation. The interaction of the shock wave with the heated layer leads to initiation of large-scale vortex flow and high-speed jets moving along the surface. This flow may be responsible for the intense dust lifting even in the case when a small cosmic body does not directly hit the ground and creates an explosion above the surface. Several other factors of the impact can also facilitate a dust rising: outgassing of the porous surface layer under heating by the radiation impulse; intrusion of the shock-compressed atmospheric gas into the regolith and subsequent blow-off in the rarefaction wave; steep erosion by blast-generated high-velocity winds. The generation of large-scale vortex flows in interaction of the blast wave with the ballistic wave and the wake behind a falling body may also cause a lifting of dust particles to high altitude and its long-distant transport. All these effects are especially effective for the impact on Mars when the luminous performance and the fireball size highly exceed these for the impacts on the Earth or Venus. A thorough investigation of the possible impact origin of local sand storms on Mars becomes even more interesting if we keep in mind that now there is no well and widely recognized mechanism of dust rising. We have made studies on impact-generated dust lifting and transport in numerical simulations and laboratory experiments.

  11. Klebsiella pneumoniae yfiRNB operon affects biofilm formation, polysaccharide production and drug susceptibility.

    PubMed

    Huertas, Mónica G; Zárate, Lina; Acosta, Iván C; Posada, Leonardo; Cruz, Diana P; Lozano, Marcela; Zambrano, María M

    2014-12-01

    Klebsiella pneumoniae is an opportunistic pathogen important in hospital-acquired infections, which are complicated by the rise of drug-resistant strains and the capacity of cells to adhere to surfaces and form biofilms. In this work, we carried out an analysis of the genes in the K. pneumoniae yfiRNB operon, previously implicated in biofilm formation. The results indicated that in addition to the previously reported effect on type 3 fimbriae expression, this operon also affected biofilm formation due to changes in cellulose as part of the extracellular matrix. Deletion of yfiR resulted in enhanced biofilm formation and an altered colony phenotype indicative of cellulose overproduction when grown on solid indicator media. Extraction of polysaccharides and treatment with cellulase were consistent with the presence of cellulose in biofilms. The enhanced cellulose production did not, however, correlate with virulence as assessed using a Caenorhabditis elegans assay. In addition, cells bearing mutations in genes of the yfiRNB operon varied with respect to the WT control in terms of susceptibility to the antibiotics amikacin, ciprofloxacin, imipenem and meropenem. These results indicated that the yfiRNB operon is implicated in the production of exopolysaccharides that alter cell surface characteristics and the capacity to form biofilms--a phenotype that does not necessarily correlate with properties related with survival, such as resistance to antibiotics.

  12. Biofilm Formation by the Fish Pathogen Flavobacterium columnare: Development and Parameters Affecting Surface Attachment

    PubMed Central

    Cai, Wenlong; De La Fuente, Leonardo

    2013-01-01

    Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems. PMID:23851087

  13. Density of founder cells affects spatial pattern formation and cooperation in Bacillus subtilis biofilms.

    PubMed

    van Gestel, Jordi; Weissing, Franz J; Kuipers, Oscar P; Kovács, Akos T

    2014-10-01

    In nature, most bacteria live in surface-attached sedentary communities known as biofilms. Biofilms are often studied with respect to bacterial interactions. Many cells inhabiting biofilms are assumed to express 'cooperative traits', like the secretion of extracellular polysaccharides (EPS). These traits can enhance biofilm-related properties, such as stress resilience or colony expansion, while being costly to the cells that express them. In well-mixed populations cooperation is difficult to achieve, because non-cooperative individuals can reap the benefits of cooperation without having to pay the costs. The physical process of biofilm growth can, however, result in the spatial segregation of cooperative from non-cooperative individuals. This segregation can prevent non-cooperative cells from exploiting cooperative neighbors. Here we examine the interaction between spatial pattern formation and cooperation in Bacillus subtilis biofilms. We show, experimentally and by mathematical modeling, that the density of cells at the onset of biofilm growth affects pattern formation during biofilm growth. At low initial cell densities, co-cultured strains strongly segregate in space, whereas spatial segregation does not occur at high initial cell densities. As a consequence, EPS-producing cells have a competitive advantage over non-cooperative mutants when biofilms are initiated at a low density of founder cells, whereas EPS-deficient cells have an advantage at high cell densities. These results underline the importance of spatial pattern formation for competition among bacterial strains and the evolution of microbial cooperation.

  14. Biofilm formation by the fish pathogen Flavobacterium columnare: development and parameters affecting surface attachment.

    PubMed

    Cai, Wenlong; De La Fuente, Leonardo; Arias, Covadonga R

    2013-09-01

    Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems.

  15. Assimilation of Cloud- and Land-Affected TOVS/ATOVS Level 1B Radiances in DAO's Next Generation Finite-Volume Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Joiner, J.; daSilva, A.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The Physical-space/Finite-volume Data Assimilation System (fvDAS) is the next generation global atmospheric data assimilation system in development at the Data Assimilation Office (DAO) at NASA's Goddard Space Flight Center. It is based on a new finite-volume general circulation model jointly developed by NASA and NCAR, and on the Physical-Space Statistical Analysis System (PSAS) developed at the DAO. In this talk we will focus on the assimilation of data from the (Advanced) TIROS Operational Vertical Sounder (ATOVS), with emphasis on the impact of cloud- and land-affected level 1B radiances. Recently, it has been shown that the use of observations from satellite-borne microwave and infrared radiometers in data assimilation systems consistently increases forecast skill. Considerable effort has been expended over the past two decades, particularly with the (Advanced) TIROS Operational Vertical Sounder (ATOVS), to achieve this result. The positive impact on forecast skill has resulted from improvements in quality control algorithms, systematic error correction schemes, and more sophisticated data assimilation algorithms. Despite these advances, there are still many issues regarding the use of satellite data in data assimilation systems that remain unresolved. In particular, most operational centers still do not assimilate cloud- and land-affected TOVS data. In this study, we evaluate the impact of assimilating cloud-and land-affected TOVS/ATOVS level 1B data in DAO's next generation fvDAS, using a 1D variational scheme. We will discuss the impact of these data on both tropospheric and stratospheric forecasts, as well as on the general aspects of the earth climate system.

  16. Effect of vehicular traffic, remote sources and new particle formation on the activation properties of cloud condensation nuclei in the megacity of São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Souto-Oliveira, Carlos Eduardo; de Fátima Andrade, Maria; Kumar, Prashant; Juliano da Silva Lopes, Fábio; Babinski, Marly; Landulfo, Eduardo

    2016-11-01

    Atmospheric aerosol is the primary source of cloud condensation nuclei (CCN). The microphysics and chemical composition of aerosols can affect cloud development and the precipitation process. Among studies conducted in Latin America, only a handful have reported the impact of urban aerosol on CCN activation parameters such as activation ratio (AR) and activation diameter (Dact). With over 20 million inhabitants, the Metropolitan Area of São Paulo (MASP) is the largest megacity in South America. To our knowledge, this is the first study to assess the impact that remote sources and new particle formation (NPF) events have on CCN activation properties in a South American megacity. The measurements were conducted in the MASP between August and September 2014. We measured the CCN within the 0.2-1.0 % range of supersaturation, together with particle number concentration (PNC) and particle number distribution (PND), as well as trace-element concentrations and black carbon (BC). NPF events were identified on 35 % of the sampling days. Combining multivariate analysis in the form of positive matrix factorization (PMF) with an aerosol profile from lidar and HYSPLIT model analyses allowed us to identify the main contribution of vehicular traffic on all days and sea salt and biomass burning from remote regions on 28 and 21 % of the sampling days, respectively. The AR and Dact parameters showed distinct patterns for daytime with intense vehicular traffic and nighttime periods. For example, CCN activation was lower during the daytime than during the nighttime periods, a pattern that was found to be associated mainly with local road-traffic emissions. A decrease in CCN activation was observed on the NPF event days, mainly due to high concentrations of particles with smaller diameters. We also found that aerosols from sea salt, industrial emissions, and biomass burning had minor effects on Dact. For example, nights with biomass burning and vehicular emissions showed slightly lower

  17. Impacts of oxidation aging on secondary organic aerosol formation, particle growth rate, cloud condensation nuclei abundance, and aerosol climate forcing

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.

    2014-12-01

    Particle composition measurements indicate that organic aerosol (OA) makes up ~20-90% of submicron particulate mass and secondary OA (SOA) accounts for a large fraction (~ 72 ±21%) of these OA masses at many locations around the globe. The volatility changes of secondary organic gases (SOG) associated with oxidation aging as well as the contribution of highly oxidized low volatile SOG (LV-SOG) to the condensational growth of secondary particles have been found to be important in laboratory and field measurements but are poorly represented in global models. A novel scheme to extend the widely used two-product SOA formation model, by adding a third