Science.gov

Sample records for affect community dynamics

  1. Conceptualizing the dynamics of a drought affected agricultural community

    NASA Astrophysics Data System (ADS)

    Kuil, Linda; Carr, Gemma; Viglione, Alberto; Bloeschl, Guenter

    2015-04-01

    Climate and especially water availability and variability play an important role in the development of our societies. This can be seen through the vast investments that are made in reaching water security and the economic impact regions experience when the rains fail. However, the limit of available fresh water is increasingly felt as our population increases and the demand for water continues to rise. But how do we as society respond? Are periods of drought making us more resilient? The answer to this question is sought through the development of a stylized model that is built within the spirit of the Easter Island model by Brander and Taylor and aimed at capturing the essence of the dynamics of water supply and demand. By explicitly incorporating feedbacks, but keeping the framework simple, the model seeks to understand qualitative behavior of our socio-hydrological system as opposed to predicting exact pathways. The model shows that carrying capacity dynamics are a determining factor for continued growth. Future work will explore the underlying relationships further, among others, through examination of case studies.

  2. Temporal dynamics of a local fish community are strongly affected by immigration from the surrounding metacommunity.

    PubMed

    Stoffels, Rick J; Clarke, Kenneth Robert; Linklater, Danielle S

    2015-01-01

    A 5-year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time-lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass-effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood-induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in

  3. Temporal dynamics of a local fish community are strongly affected by immigration from the surrounding metacommunity

    PubMed Central

    Stoffels, Rick J; Clarke, Kenneth Robert; Linklater, Danielle S

    2015-01-01

    A 5-year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time-lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass-effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood-induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in

  4. A shift from exploitation to interference competition with increasing density affects population and community dynamics.

    PubMed

    Holdridge, Erica M; Cuellar-Gempeler, Catalina; terHorst, Casey P

    2016-08-01

    Intraspecific competition influences population and community dynamics and occurs via two mechanisms. Exploitative competition is an indirect effect that occurs through use of a shared resource and depends on resource availability. Interference competition occurs by obstructing access to a resource and may not depend on resource availability. Our study tested whether the strength of interference competition changes with protozoa population density. We grew experimental microcosms of protozoa and bacteria under different combinations of protozoan density and basal resource availability. We then solved a dynamic predator-prey model for parameters of the functional response using population growth rates measured in our experiment. As population density increased, competition shifted from exploitation to interference, and competition was less dependent on resource levels. Surprisingly, the effect of resources was weakest when competition was the most intense. We found that at low population densities, competition was largely exploitative and resource availability had a large effect on population growth rates, but the effect of resources was much weaker at high densities. This shift in competitive mechanism could have implications for interspecific competition, trophic interactions, community diversity, and natural selection. We also tested whether this shift in the mechanism of competition with protozoa density affected the structure of the bacterial prey community. We found that both resources and protozoa density affected the structure of the bacterial prey community, suggesting that competitive mechanism may also affect trophic interactions.

  5. Yeast Community Structures and Dynamics in Healthy and Botrytis-Affected Grape Must Fermentations▿

    PubMed Central

    Nisiotou, Aspasia A.; Spiropoulos, Apostolos E.; Nychas, George-John E.

    2007-01-01

    Indigenous yeast population dynamics during the fermentation of healthy and Botrytis-affected grape juice samples from two regions in Greece, Attica and Arcadia, were surveyed. Species diversity was evaluated by using restriction fragment length polymorphism and sequence analyses of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of cultivable yeasts. Community-level profiles were also obtained by direct analysis of fermenting samples through denaturing gradient gel electrophoresis of 26S rDNA amplicons. Both approaches revealed structural divergences in yeast communities between samples of different sanitary states or geographical origins. In all cases, Botrytis infection severely perturbed the bioprocess of fermentation by dramatically altering species heterogeneity and succession during the time course. At the beginning and middle of fermentations, Botrytis-affected samples possessed higher levels of biodiversity than their healthy counterparts, being enriched with fermentative and/or spoilage species, such as Zygosaccharomyces bailii and Issatchenkia spp. or Kluyveromyces dobzhanskii and Kazachstania sp. populations that have not been reported before for wine fermentations. Importantly, Botrytis-affected samples exposed discrete final species dominance. Selection was not species specific, and two different populations, i.e., Saccharomyces cerevisiae in samples from Arcadia and Z. bailii in samples from Attica, could be recovered at the end of Botrytis-affected fermentations. The governing of wine fermentations by Z. bailii is reported for the first time and could elucidate the origins and role of this particular spoilage microbe for the wine industry. This is the first survey to compare healthy and Botrytis-affected spontaneous fermentations by using both culture-based and -independent molecular methods in an attempt to further illuminate the complex yeast ecology of grape must fermentations. PMID:17766453

  6. Yeast community structures and dynamics in healthy and Botrytis-affected grape must fermentations.

    PubMed

    Nisiotou, Aspasia A; Spiropoulos, Apostolos E; Nychas, George-John E

    2007-11-01

    Indigenous yeast population dynamics during the fermentation of healthy and Botrytis-affected grape juice samples from two regions in Greece, Attica and Arcadia, were surveyed. Species diversity was evaluated by using restriction fragment length polymorphism and sequence analyses of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of cultivable yeasts. Community-level profiles were also obtained by direct analysis of fermenting samples through denaturing gradient gel electrophoresis of 26S rDNA amplicons. Both approaches revealed structural divergences in yeast communities between samples of different sanitary states or geographical origins. In all cases, Botrytis infection severely perturbed the bioprocess of fermentation by dramatically altering species heterogeneity and succession during the time course. At the beginning and middle of fermentations, Botrytis-affected samples possessed higher levels of biodiversity than their healthy counterparts, being enriched with fermentative and/or spoilage species, such as Zygosaccharomyces bailii and Issatchenkia spp. or Kluyveromyces dobzhanskii and Kazachstania sp. populations that have not been reported before for wine fermentations. Importantly, Botrytis-affected samples exposed discrete final species dominance. Selection was not species specific, and two different populations, i.e., Saccharomyces cerevisiae in samples from Arcadia and Z. bailii in samples from Attica, could be recovered at the end of Botrytis-affected fermentations. The governing of wine fermentations by Z. bailii is reported for the first time and could elucidate the origins and role of this particular spoilage microbe for the wine industry. This is the first survey to compare healthy and Botrytis-affected spontaneous fermentations by using both culture-based and -independent molecular methods in an attempt to further illuminate the complex yeast ecology of grape must fermentations.

  7. The Bias Associated with Amplicon Sequencing Does Not Affect the Quantitative Assessment of Bacterial Community Dynamics

    PubMed Central

    Figuerola, Eva L. M.; Erijman, Leonardo

    2014-01-01

    The performance of two sets of primers targeting variable regions of the 16S rRNA gene V1–V3 and V4 was compared in their ability to describe changes of bacterial diversity and temporal turnover in full-scale activated sludge. Duplicate sets of high-throughput amplicon sequencing data of the two 16S rRNA regions shared a collection of core taxa that were observed across a series of twelve monthly samples, although the relative abundance of each taxon was substantially different between regions. A case in point was the changes in the relative abundance of filamentous bacteria Thiothrix, which caused a large effect on diversity indices, but only in the V1–V3 data set. Yet the relative abundance of Thiothrix in the amplicon sequencing data from both regions correlated with the estimation of its abundance determined using fluorescence in situ hybridization. In nonmetric multidimensional analysis samples were distributed along the first ordination axis according to the sequenced region rather than according to sample identities. The dynamics of microbial communities indicated that V1–V3 and the V4 regions of the 16S rRNA gene yielded comparable patterns of: 1) the changes occurring within the communities along fixed time intervals, 2) the slow turnover of activated sludge communities and 3) the rate of species replacement calculated from the taxa–time relationships. The temperature was the only operational variable that showed significant correlation with the composition of bacterial communities over time for the sets of data obtained with both pairs of primers. In conclusion, we show that despite the bias introduced by amplicon sequencing, the variable regions V1–V3 and V4 can be confidently used for the quantitative assessment of bacterial community dynamics, and provide a proper qualitative account of general taxa in the community, especially when the data are obtained over a convenient time window rather than at a single time point. PMID:24923665

  8. Post-Biostimulation Biogenic U(IV) Stability and Microbial Community Structure that Affects its Dynamics

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Long, P. E.; Moon, H.; N'Guessan, L.; Peacock, A.; Sinha, M.; Tan, H.; Traub, D.; Williams, K. H.

    2010-12-01

    Flow-through sediment column experiments were conducted to determine the stability of biogenic U(IV) after biostimulation has been discontinued, and to isolate the key biogeochemical processes that affect the post-biostimulation U(IV) stability. Columns, packed with sediments from an UMTRA site (Rifle Colorado) were biostimulated for two months by injecting groundwater containing 3 mM acetate and 20 uM U(VI) at flow rates typically encountered at the Rifle site. After the biostimulation period, acetate injection was discontinued, and groundwater containing dissolved oxygen was allowed to enter the columns. Columns were then sacrificed at two week intervals to examine the sediment geochemistry and associated microbial community. Results showed that iron sulfide precipitates, that formed during the bioreduction phase, acted as a buffer to partially prevent biogenic U(IV) oxidation during the month post stimulation period. Groundwater and sediment microbial community compositions were analyzed over a period of one month post-biostimulation. The results indicate that two distinct biological processes, characterized by oxygen utilization, played important roles during this period. Within two weeks post stimulation, organisms such as Hydrogenophaga sp. and Thiobacillus sp. were observed in the columns. These bacteria, are able to use Fe(II), sulfide, or thiosulfate as their electron donor in the presence of O2. Furthermore, organisms closely related to Lysobacter sp. and Sterolibacterium sp. were also detected in the groundwater and sediment. It was suggested that these organisms may be feeding on decaying biomass and consuming O2 in the process. The presence of these oxidizing and spoilage bacteria is thought to have resulted in the consumption of oxygen, therefore protecting the biogenic U(IV) from being reoxidized in the sediment columns. To simulate the in situ U(IV) stability under post biostimulation conditions, columns bioreduced in the laboratory, as described

  9. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities.

    PubMed

    Nowlin, Weston H; González, María J; Vanni, Michael J; Stevens, M Henry H; Fields, Matthew W; Valente, Jonathon J

    2007-09-01

    Periodical cicadas emerge from below ground every 13 or 17 years in North American forests, with individual broods representing the synchronous movement of trillions of individuals across geographic regions. Due to predator satiation, most individuals escape predation, die, and become deposited as detritus. Some of this emergent biomass falls into woodland aquatic habitats (small streams and woodland ponds) and serves as a high-quality allochthonous detritus pulse in early summer. We present results of a two-part study in which we (1) quantified deposition of Brood X periodical cicada detritus into woodland ponds and low-order streams in southwestern Ohio, and (2) conducted an outdoor mesocosm experiment in which we examined the effects of deposition of different amounts of cicada detritus on food webs characteristic of forest ponds. In the mesocosm experiment, we manipulated the amount of cicada detritus input to examine if food web dynamics and stability varied with the magnitude of this allochthonous resource subsidy, as predicted by numerous theoretical models. Deposition data indicate that, during years of periodical cicada emergence, cicada carcasses can represent a sizable pulse of allochthonous detritus to forest aquatic ecosystems. In the mesocosm experiment, cicada carcass deposition rapidly affected food webs, leading to substantial increases in nutrients and organism biomass, with the magnitude of increase dependent upon the amount of cicada detritus. Deposition of cicada detritus impacted the stability of organism functional groups and populations by affecting the temporal variability and biomass minima. However, contrary to theory, stability measures were not consistently related to the size of the allochthonous pulse (i.e., the amount of cicada detritus). Our study underscores the need for theory to further explore consequences of pulsed allochthonous subsidies for food web stability.

  10. Community structure affects behavior.

    PubMed

    Jaenson, C

    1991-06-01

    AID's prevention efforts can benefit from taking into account 5 main aspects (KEPRA) of community structure identified by anthropologists: 1) kinship patterns, 2) economics, 3) politics, 4) religion, and 5) associations. For example, in Uganda among the Basoga and paternal aunt or senga is responsible for female sex education. Such culturally determined patterns need to be targeted in order to enhance education and effectiveness. Economics can reflect differing systems of family support through sexual means. The example given involves a poor family with a teenager in Thailand who exchanges a water buffalo or basic necessity for this daughter's prostitution. Politics must be considered because every society identifies people who have the power to persuade, influence, exchange resources, coerce, or in some way get people to do what is wanted. Utilizing these resources whether its ministers of health, factory owners, or peers is exemplified in the Monterey, Mexico factor floor supervisor and canteen worker introducing to workers the hows and whys of a new AID's education program. His peer status will command more respect than the director with direct authority. Religious beliefs have explanations for causes of sickness or disease, or provide instruction in sex practices. The example given is of a health workers in Uganda discussing AIDS with rural women by saying that we all know that disease and deaths are caused by spells. "But not AIDS - slim. AIDS is different." Associations can help provide educational, economic, and emotional assistance to the AID's effort or families affected.

  11. Temporal bird community dynamics are strongly affected by landscape fragmentation in a Central American tropical forest region

    USGS Publications Warehouse

    Blandón, A.C.; Perelman, S.B.; Ramírez, M.; López, A.; Javier, O.; Robbins, Chandler S.

    2016-01-01

    Habitat loss and fragmentation are considered the main causes of species extinctions, particularly in tropical ecosystems. The objective of this work was to evaluate the temporal dynamics of tropical bird communities in landscapes with different levels of fragmentation in eastern Guatemala. We evaluated five bird community dynamic parameters for forest specialists and generalists: (1) species extinction, (2) species turnover, (3) number of colonizing species, (4) relative species richness, and (5) a homogeneity index. For each of 24 landscapes, community dynamic parameters were estimated from bird point count data, for the 1998–1999 and 2008–2009 periods, accounting for species’ detection probability. Forest specialists had higher extinction rates and a smaller number of colonizing species in landscapes with higher fragmentation, thus having lower species richness in both time periods. Alternatively, forest generalists elicited a completely different pattern, showing a curvilinear association to forest fragmentation for most parameters. Thus, greater community dynamism for forest generalists was shown in landscapes with intermediate levels of fragmentation. Our study supports general theory regarding the expected negative effects of habitat loss and fragmentation on the temporal dynamics of biotic communities, particularly for forest specialists, providing strong evidence from understudied tropical bird communities.

  12. Dynamics of bacterial communities in rice field soils as affected by different long-term fertilization practices.

    PubMed

    Ahn, Jae-Hyung; Lee, Shin Ae; Kim, Jeong Myeong; Kim, Myung-Sook; Song, Jaekyeong; Weon, Hang-Yeon

    2016-11-01

    Fertilization and the response of the soil microbial community to the process significantly affect crop yield and the environment. In this study, the seasonal variation in the bacterial communities in rice field soil subjected to different fertilization treatments for more than 50 years was investigated using 16S rRNA sequencing. The simultaneous application of inorganic fertilizers and rice straw compost (CAPK) maintained the species richness of the bacterial communities at levels higher than that in the case of non-fertilization (NF) and application of inorganic fertilizers only (APK) in the initial period of rice growth. The seasonal variation in the bacterial community structure in the NF and APK plots showed cyclic behavior, suggesting that the effect of season was important; however, no such trend was observed in the CAPK plot. In the CAPK plot, the relative abundances of putative copiotrophs such as Bacteroidetes, Firmicutes, and Proteobacteria were higher and those of putative oligotrophs such as Acidobacteria and Plactomycetes were lower than those in the other plots. The relative abundances of organotrophs with respiratory metabolism, such as Actinobacteria, were lower and those of chemoautotrophs that oxidize reduced iron and sulfur compounds were higher in the CAPK plot, suggesting greater carbon storage in this plot. Increased methane emission and nitrogen deficiency, which were inferred from the higher abundances of Methylocystis and Bradyrhizobium in the CAPK plot, may be a negative effect of rice straw application; thus, a solution for these should be considered to increase the use of renewable resources in agricultural lands.

  13. Air Pollution Affects Community Health

    ERIC Educational Resources Information Center

    Shy, Carl M.; Finklea, John F.

    1973-01-01

    Community Health and Environmental Surveillance System (CHESS), a nationwide program relating community health to environmental quality, is designed to evaluate existing environmental standards, obtain health intelligence for new standards, and document health benefits of air pollution control. (BL)

  14. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    PubMed

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  15. Dynamic Synchronization of Teacher-Students Affection in Affective Instruction

    ERIC Educational Resources Information Center

    Zhang, Wenhai; Lu, Jiamei

    2011-01-01

    Based on Bower's affective network theory, the article links the dynamic analysis of affective factors in affective instruction, and presents affective instruction strategic of dynamic synchronization between teacher and students to implement the best ideal mood that promotes students' cognition and affection together. In the process of teaching,…

  16. Community dynamics in social networks

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Barabási, Albert-László; Vicsek, Tamás

    2007-06-01

    We study the statistical properties of community dynamics in large social networks, where the evolving communities are obtained from subsequent snapshots of the modular structure. Such cohesive groups of people can grow by recruiting new members, or contract by loosing members; two (or more) groups may merge into a single community, while a large enough social group can split into several smaller ones; new communities are born and old ones may disappear. We find significant difference between the behaviour of smaller collaborative or friendship circles and larger communities, eg. institutions. Social groups containing only a few members persist longer on average when the fluctuations of the members is small. In contrast, we find that the condition for stability for large communities is continuous changes in their membership, allowing for the possibility that after some time practically all members are exchanged.

  17. Dynamical detection of network communities.

    PubMed

    Quiles, Marcos G; Macau, Elbert E N; Rubido, Nicolás

    2016-05-09

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance.

  18. Dynamical detection of network communities

    PubMed Central

    Quiles, Marcos G.; Macau, Elbert E. N.; Rubido, Nicolás

    2016-01-01

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance. PMID:27158092

  19. Dynamical detection of network communities

    NASA Astrophysics Data System (ADS)

    Quiles, Marcos G.; Macau, Elbert E. N.; Rubido, Nicolás

    2016-05-01

    A prominent feature of complex networks is the appearance of communities, also known as modular structures. Specifically, communities are groups of nodes that are densely connected among each other but connect sparsely with others. However, detecting communities in networks is so far a major challenge, in particular, when networks evolve in time. Here, we propose a change in the community detection approach. It underlies in defining an intrinsic dynamic for the nodes of the network as interacting particles (based on diffusive equations of motion and on the topological properties of the network) that results in a fast convergence of the particle system into clustered patterns. The resulting patterns correspond to the communities of the network. Since our detection of communities is constructed from a dynamical process, it is able to analyse time-varying networks straightforwardly. Moreover, for static networks, our numerical experiments show that our approach achieves similar results as the methodologies currently recognized as the most efficient ones. Also, since our approach defines an N-body problem, it allows for efficient numerical implementations using parallel computations that increase its speed performance.

  20. Does distance from the sea affect a soil microarthropod community?

    NASA Astrophysics Data System (ADS)

    Wasserstrom, Haggai; Steinberger, Yosef

    2016-10-01

    Coastal sand dunes are dynamic ecosystems characterized by strong abiotic gradients from the seashore inland. Due to significant differences in the abiotic parameters in such an environment, there is great interest in biotic adaptation in these habitats. The aim of the present study, which was conducted in the northern Sharon sand-dune area of Israel, was to illustrate the spatial changes of a soil microarthropod community along a gradient from the seashore inland. Soil samples were collected from the 0-10 cm depth at five locations at different distances, from the seashore inland. Samples were taken from the bare open spaces during the wet winter and dry summer seasons. The soil microarthropod community exhibited dependence both on seasonality and sampling location across the gradient. The community was more abundant during the wet winter seasons, with an increasing trend from the shore inland, while during the dry summers, such a trend was not observed and community density was lower. The dominant groups within soil Acari were Prostigmata and Endeostigmata, groups known to have many representatives with adaptation to xeric or psammic environments. In addition, mite diversity tended to be higher at the more distant locations from the seashore, and lower at the closer locations, a trend that appeared only during the wet winters. This study demonstrated the heterogeneity of a soil microarthropod community in a coastal dune field in a Mediterranean ecosystem, indicating that the gradient abiotic parameters also affect the abundance and composition of a soil microarthropod community in sand dunes.

  1. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  2. Do alterations in mesofauna community affect earthworms?

    PubMed

    Uvarov, Alexei V; Karaban, Kamil

    2015-11-01

    Interactions between the saprotrophic animal groups that strongly control soil microbial activities and the functioning of detrital food webs, such as earthworms and mesofauna, are not well understood. Earthworm trophic and engineering activities strongly affect mesofauna abundance and diversity through various direct and indirect pathways. In contrast, mesofauna effects on earthworm populations are less evident; however, their importance may be high, considering the keystone significance of earthworms for the functioning of the soil system. We studied effects of a diverse mesofauna community of a deciduous forest on two earthworm species representing epigeic (Lumbricus rubellus) and endogeic (Aporrectodea caliginosa) ecological groups. In microcosms, the density of total mesofauna or its separate groups (enchytraeids, collembolans, gamasid mites) was manipulated (increased) and responses of earthworms and soil systems were recorded. A rise in mesofauna density resulted in a decrease of biomass and an increased mortality in L. rubellus, presumably due to competition with mesofauna for litter resources. In contrast, similar mesofauna manipulations promoted reproduction of A. caliginosa, suggesting a facilitated exploitation of litter resources due to increased mesofauna activities. Changes of microcosm respiration rates, litter organic matter content and microbial activities across the manipulation treatments indicate that mesofauna modify responses of soil systems in the presence of earthworms. However, similar mesofauna manipulations could induce different responses in soil systems with either epigeic or endogeic lumbricids, which suggests that earthworm/mesofauna interactions are species-specific. Thus, mesofauna impacts should be treated as a factor affecting the engineering activities of epigeic and endogeic earthworms in the soil.

  3. Bacterial symbionts in insects or the story of communities affecting communities.

    PubMed

    Ferrari, Julia; Vavre, Fabrice

    2011-05-12

    Bacterial symbionts are widespread in insects and other animals. Most of them are predominantly vertically transmitted, along with their hosts' genes, and thus extend the heritable genetic variation present in one species. These passengers have a variety of repercussions on the host's phenotypes: besides the cost imposed on the host for maintaining the symbiont population, they can provide fitness advantages to the host or manipulate the host's reproduction. We argue that insect symbioses are ideal model systems for community genetics. First, bacterial symbionts directly or indirectly affect the interactions with other species within a community. Examples include their involvement in modifying the use of host plants by phytophagous insects, in providing resistance to natural enemies, but also in reducing the global genetic diversity or gene flow between populations within some species. Second, one emerging picture in insect symbioses is that many species are simultaneously infected with more than one symbiont, which permits studying the factors that shape bacterial communities; for example, horizontal transmission, interactions between host genotype, symbiont genotype and the environment and interactions among symbionts. One conclusion is that insects' symbiotic complements are dynamic communities that affect and are affected by the communities in which they are embedded.

  4. Jellyfish Modulate Bacterial Dynamic and Community Structure

    PubMed Central

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom - forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish - enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to ‘jellyfish - associated’ and ‘free - living’ bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  5. Jellyfish modulate bacterial dynamic and community structure.

    PubMed

    Tinta, Tinkara; Kogovšek, Tjaša; Malej, Alenka; Turk, Valentina

    2012-01-01

    Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE) analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into possible changes in

  6. Dynamic musical communication of core affect.

    PubMed

    Flaig, Nicole K; Large, Edward W

    2014-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified "scene" that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience.

  7. Dynamic musical communication of core affect

    PubMed Central

    Flaig, Nicole K.; Large, Edward W.

    2013-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified “scene” that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience. PMID:24672492

  8. Dynamics of Affective States during Complex Learning

    ERIC Educational Resources Information Center

    D'Mello, Sidney; Graesser, Art

    2012-01-01

    We propose a model to explain the dynamics of affective states that emerge during deep learning activities. The model predicts that learners in a state of engagement/flow will experience cognitive disequilibrium and confusion when they face contradictions, incongruities, anomalies, obstacles to goals, and other impasses. Learners revert into the…

  9. Values Undergirding Policies Affecting Community Colleges.

    ERIC Educational Resources Information Center

    Townsend, Barbara K.

    2001-01-01

    Uses the examples of remedial education, K-16 initiatives, and workforce preparation to illustrate how these values influence higher education policy at community colleges. Policymakers should recognize that these values may conflict, therefore leading to controversy. States that cultural/social values dominating the development of educational…

  10. Ohmic resistance affects microbial community and ...

    EPA Pesticide Factsheets

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MXC to better comprehend anode fundamentals. Microbial community analysis using 16S rRNA illumine sequencing showed that Geobactor genus, one of the most kinetically efficient anode-respiring bacteria (ARB), was abundant (87%) only on the biofilm anode closest to a reference electrode in which current density was the highest among four anodes. In comparison, Geobacter populations were less than 11% for other three anodes more distant from the reference electrode, generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest anode, while EKA was as high as -0.134 V for the farthest anode. Our study clearly proves that ohmic resistance changes anode potential which mainly causes different biofilm communities on individual anodes and consequently influences anode kinetics. This study explored the use of multiple anodes in microelectrochemical cells and the microbial community on these anodes, as a function of the efficiency in producing hydrogen peroxide.

  11. How Do Learning Communities Affect First-Year Latino Students?

    ERIC Educational Resources Information Center

    Huerta, Juan Carlos; Bray, Jennifer J.

    2013-01-01

    Do learning communities with pedagogies of active learning, collaborative learning, and integration of course material affect the learning, achievement, and persistence of first-year Latino university students? The data for this project was obtained from a survey of 1,330 first-year students in the First-Year Learning Community Program at Texas…

  12. How have fisheries affected parasite communities?

    USGS Publications Warehouse

    Wood, Chelsea L.; Lafferty, Kevin D.

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  13. Dynamic Social Community Detection and Its Applications

    PubMed Central

    Nguyen, Nam P.; Dinh, Thang N.; Shen, Yilin; Thai, My T.

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods. PMID:24722164

  14. Dynamic social community detection and its applications.

    PubMed

    Nguyen, Nam P; Dinh, Thang N; Shen, Yilin; Thai, My T

    2014-01-01

    Community structure is one of the most commonly observed features of Online Social Networks (OSNs) in reality. The knowledge of this feature is of great advantage: it not only provides helpful insights into developing more efficient social-aware solutions but also promises a wide range of applications enabled by social and mobile networking, such as routing strategies in Mobile Ad Hoc Networks (MANETs) and worm containment in OSNs. Unfortunately, understanding this structure is very challenging, especially in dynamic social networks where social interactions are evolving rapidly. Our work focuses on the following questions: How can we efficiently identify communities in dynamic social networks? How can we adaptively update the network community structure based on its history instead of recomputing from scratch? To this end, we present Quick Community Adaptation (QCA), an adaptive modularity-based framework for not only discovering but also tracing the evolution of network communities in dynamic OSNs. QCA is very fast and efficient in the sense that it adaptively updates and discovers the new community structure based on its history together with the network changes only. This flexible approach makes QCA an ideal framework applicable for analyzing large-scale dynamic social networks due to its lightweight computing-resource requirement. To illustrate the effectiveness of our framework, we extensively test QCA on both synthesized and real-world social networks including Enron, arXiv e-print citation, and Facebook networks. Finally, we demonstrate the applicability of QCA in real applications: (1) A social-aware message forwarding strategy in MANETs, and (2) worm propagation containment in OSNs. Competitive results in comparison with other methods reveal that social-based techniques employing QCA as a community detection core outperform current available methods.

  15. Community structure affects trophic ontogeny in a predatory fish.

    PubMed

    Sánchez-Hernández, Javier; Eloranta, Antti P; Finstad, Anders G; Amundsen, Per-Arne

    2017-01-01

    While most studies have focused on the timing and nature of ontogenetic niche shifts, information is scarce about the effects of community structure on trophic ontogeny of top predators. We investigated how community structure affects ontogenetic niche shifts (i.e., relationships between body length, trophic position, and individual dietary specialization) of a predatory fish, brown trout (Salmo trutta). We used stable isotope and stomach content analyses to test how functional characteristics of lake fish community compositions (competition and prey availability) modulate niche shifts in terms of (i) piscivorous behavior, (ii) trophic position, and (iii) individual dietary specialization. Northern Scandinavian freshwater fish communities were used as a study system, including nine subarctic lakes with contrasting fish community configurations: (i) trout-only systems, (ii) two-species systems (brown trout and Arctic charr [Salvelinus alpinus] coexisting), and (iii) three-species systems (brown trout, Arctic charr, and three-spined sticklebacks [Gasterosteus aculeatus] coexisting). We expected that the presence of profitable small prey (stickleback) and mixed competitor-prey fish species (charr) supports early piscivory and high individual dietary specialization among trout in multispecies communities, whereas minor ontogenetic shifts were expected in trout-only systems. From logistic regression models, the presence of a suitable prey fish species (stickleback) emerged as the principal variable determining the size at ontogenetic niche shifts. Generalized additive mixed models indicated that fish community structure shaped ontogenetic niche shifts in trout, with the strongest positive relationships between body length, trophic position, and individual dietary specialization being observed in three-species communities. Our findings revealed that the presence of a small-sized prey fish species (stickleback) rather than a mixed competitor-prey fish species (charr) was

  16. Affective state and community integration after traumatic brain injury.

    PubMed

    Juengst, Shannon B; Arenth, Patricia M; Raina, Ketki D; McCue, Michael; Skidmore, Elizabeth R

    2014-12-01

    Previous studies investigating the relationship between affective state and community integration have focused primarily on the influence of depression and anxiety. In addition, they have focused on frequency of participation in various activities, failing to address an individual's subjective satisfaction with participation. The purpose of this study was to examine how affective state contributes to frequency of participation and satisfaction with participation after traumatic brain injury among participants with and without a current major depressive episode. Sixty-four community-dwelling participants with a history of complicated mild-to-severe traumatic brain injury participated in this cross-sectional cohort study. High positive affect contributed significantly to frequency of participation (β = 0.401, P = 0.001), and both high positive affect and low negative affect significantly contributed to better satisfaction with participation (F2,61 = 13.63, P < 0.001). Further investigation to assess the direction of these relationships may better inform effective targets for intervention. These findings highlight the importance of assessing affective state after traumatic brain injury and incorporating a subjective measure of participation when considering community integration outcomes.

  17. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  18. Global change and terrestrial plant community dynamics.

    PubMed

    Franklin, Janet; Serra-Diaz, Josep M; Syphard, Alexandra D; Regan, Helen M

    2016-04-05

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.

  19. Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species.

    PubMed

    Daleo, Pedro; Alberti, Juan; Pascual, Jesús; Canepuccia, Alejandro; Iribarne, Oscar

    2014-05-01

    Disturbance can generate heterogeneous environments and profoundly influence plant diversity by creating patches at different successional stages. Herbivores, in turn, can govern plant succession dynamics by determining the rate of species replacement, ultimately affecting plant community structure. In a south-western Atlantic salt marsh, we experimentally evaluated the role of herbivory in the recovery following disturbance of the plant community and assessed whether herbivory affects the relative importance of sexual and clonal reproduction on these dynamics. Our results show that herbivory strongly affects salt marsh secondary succession by suppressing seedlings and limiting clonal colonization of the dominant marsh grass, allowing subordinate species to dominate disturbed patches. These results demonstrate that herbivores can have an important role in salt marsh community structure and function, and can be a key force during succession dynamics.

  20. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes

    PubMed Central

    Petermann, Jana S.; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W.; Gossner, Martin M.

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  1. Forest Management Intensity Affects Aquatic Communities in Artificial Tree Holes.

    PubMed

    Petermann, Jana S; Rohland, Anja; Sichardt, Nora; Lade, Peggy; Guidetti, Brenda; Weisser, Wolfgang W; Gossner, Martin M

    2016-01-01

    Forest management could potentially affect organisms in all forest habitats. However, aquatic communities in water-filled tree-holes may be especially sensitive because of small population sizes, the risk of drought and potential dispersal limitation. We set up artificial tree holes in forest stands subject to different management intensities in two regions in Germany and assessed the influence of local environmental properties (tree-hole opening type, tree diameter, water volume and water temperature) as well as regional drivers (forest management intensity, tree-hole density) on tree-hole insect communities (not considering other organisms such as nematodes or rotifers), detritus content, oxygen and nutrient concentrations. In addition, we compared data from artificial tree holes with data from natural tree holes in the same area to evaluate the methodological approach of using tree-hole analogues. We found that forest management had strong effects on communities in artificial tree holes in both regions and across the season. Abundance and species richness declined, community composition shifted and detritus content declined with increasing forest management intensity. Environmental variables, such as tree-hole density and tree diameter partly explained these changes. However, dispersal limitation, indicated by effects of tree-hole density, generally showed rather weak impacts on communities. Artificial tree holes had higher water temperatures (on average 2°C higher) and oxygen concentrations (on average 25% higher) than natural tree holes. The abundance of organisms was higher but species richness was lower in artificial tree holes. Community composition differed between artificial and natural tree holes. Negative management effects were detectable in both tree-hole systems, despite their abiotic and biotic differences. Our results indicate that forest management has substantial and pervasive effects on tree-hole communities and may alter their structure and

  2. Coastal Bacterioplankton Community Dynamics in Response to a Natural Disturbance

    PubMed Central

    Rappé, Michael S.

    2013-01-01

    In order to characterize how disturbances to microbial communities are propagated over temporal and spatial scales in aquatic environments, the dynamics of bacterial assemblages throughout a subtropical coastal embayment were investigated via SSU rRNA gene analyses over an 8-month period, which encompassed a large storm event. During non-perturbed conditions, sampling sites clustered into three groups based on their microbial community composition: an offshore oceanic group, a freshwater group, and a distinct and persistent coastal group. Significant differences in measured environmental parameters or in the bacterial community due to the storm event were found only within the coastal cluster of sampling sites, and only at 5 of 12 locations; three of these sites showed a significant response in both environmental and bacterial community characteristics. These responses were most pronounced at sites close to the shoreline. During the storm event, otherwise common bacterioplankton community members such as marine Synechococcus sp. and members of the SAR11 clade of Alphaproteobacteria decreased in relative abundance in the affected coastal zone, whereas several lineages of Gammaproteobacteria, Betaproteobacteria, and members of the Roseobacter clade of Alphaproteobacteria increased. The complex spatial patterns in both environmental conditions and microbial community structure related to freshwater runoff and wind convection during the perturbation event leads us to conclude that spatial heterogeneity was an important factor influencing both the dynamics and the resistance of the bacterioplankton communities to disturbances throughout this complex subtropical coastal system. This heterogeneity may play a role in facilitating a rapid rebound of regions harboring distinctly coastal bacterioplankton communities to their pre-disturbed taxonomic composition. PMID:23409156

  3. Loving transgressions: Queer of color bodies, affective ties, transformative community.

    PubMed

    Carrillo Rowe, Aimee; Royster, Francesca T

    2016-09-12

    This introductory article considers the importance of queer woman of color theorizations of affect in thinking more fully the recent interdisciplinary turn to affect. The affective turn has vitally invited culture and feminist critics to interrogate emotion beyond the individual to examine the political and cultural production of emotion. Even as women of color are often associated with excessive affect, the theoretical contributions women of color make to the field of affect studies are often overlooked. Our introduction and this special issue more broadly examine how this solipsism shapes projects invested in critical knowledge production, as well as the stakes of centering a queer woman of color genealogy. For instance, we argue for the importance of retaining U.S. third-world feminist concepts-like interpellation, oppositional consciousness, and the generative force of negative affects-even as they fall out of favor within affect studies. Centering theory that emerges from the vexed spaces of queer women of color lived experiences generates a vital interdisciplinary conversation that contributes to the ongoing political task of mobilizing affect for social action as a critical praxis. In the articles that follow we see this critical praxis at work in the form of community organizing, music, poetry, and performance art.

  4. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  5. Evolutionary link community structure discovery in dynamic weighted networks

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Liu, Caihong; Wang, Jiajia; Wang, Xiang; Zhou, Bin; Zou, Peng

    2017-01-01

    Traditional community detection methods are often restricted in static network analysis. In fact, most of networks in real world obviously show dynamic characteristics with time passing. In this paper, we design a link community structure discovery algorithm in dynamic weighted networks, which can not only reveal the evolutionary link community structure, but also detect overlapping communities by mapping link communities to node communities. Meanwhile, our algorithm can also get the hierarchical structure of link communities by tuning a parameter. The proposed algorithm is based on weighted edge fitness and weighted partition density so as to determine whether to add a link to a community and whether to merge two communities to form a new link community. Experiments on both synthetic and real world networks demonstrate the proposed algorithm can detect evolutionary link community structure in dynamic weighted networks effectively.

  6. The dynamic genetic repertoire of microbial communities

    PubMed Central

    Wilmes, Paul; Simmons, Sheri L; Denef, Vincent J; Banfield, Jillian F

    2009-01-01

    Community genomic data have revealed multiple levels of variation between and within microbial consortia. This variation includes large-scale differences in gene content between ecosystems as well as within-population sequence heterogeneity. In the present review, we focus specifically on how fine-scale variation within microbial and viral populations is apparent from community genomic data. A major unresolved question is how much of the observed variation is due to neutral vs. adaptive processes. Limited experimental data hint that some of this fine-scale variation may be in part functionally relevant, whereas sequence-based and modeling analyses suggest that much of it may be neutral. While methods for interpreting population genomic data are still in their infancy, we discuss current interpretations of existing datasets in the light of evolutionary processes and models. Finally, we highlight the importance of virus–host dynamics in generating and shaping within-population diversity. PMID:19054116

  7. Deodorants and antiperspirants affect the axillary bacterial community.

    PubMed

    Callewaert, Chris; Hutapea, Prawira; Van de Wiele, Tom; Boon, Nico

    2014-10-01

    The use of underarm cosmetics is common practice in the Western society to obtain better body odor and/or to prevent excessive sweating. A survey indicated that 95 % of the young adult Belgians generally use an underarm deodorant or antiperspirant. The effect of deodorants and antiperspirants on the axillary bacterial community was examined on nine healthy subjects, who were restrained from using deodorant/antiperspirant for 1 month. Denaturing gradient gel electrophoresis was used to investigate the individual microbial dynamics. The microbial profiles were unique for every person. A stable bacterial community was seen when underarm cosmetics were applied on a daily basis and when no underarm cosmetics were applied. A distinct community difference was seen when the habits were changed from daily use to no use of deodorant/antiperspirant and vice versa. The richness was higher when deodorants and antiperspirants were applied. Especially when antiperspirants were applied, the microbiome showed an increase in diversity. Antiperspirant usage led toward an increase of Actinobacteria, which is an unfavorable situation with respect to body odor development. These initial results show that axillary cosmetics modify the microbial community and can stimulate odor-producing bacteria.

  8. Dynamic Learning Communities: An Alternative to Designed Instructional Systems.

    ERIC Educational Resources Information Center

    Wilson, Brent; Ryder, Martin

    Dynamic Learning Communities (DLCs) offer an alternative approach to the traditional Instructional Design (ID) format for learning. This paper outlines the concept of a dynamic learning community as an alternative to teacher-controlled or pre-designed instructional systems. DLCs are groups of people, who form a learning community generally…

  9. Deconstructing Interaction Dynamics in Knowledge Sharing Communities

    NASA Astrophysics Data System (ADS)

    Aji, Ablimit; Agichtein, Eugene

    Online knowledge sharing sites have recently exploded in popularity, and have began to play an important role in online information seeking. Unfortunately, many factors that influence the effectiveness of the information exchange in these communities are not well understood. This paper is an attempt to fill this gap by exploring the dynamics of information sharing in such sites - that is, identifying the factors that can explain how people respond to information requests. As a case study, we use Yahoo! Answers, one of the leading knowledge sharing portals on the web with millions of active participants. We follow the progress of thousands of questions, from posting until resolution. We examine contextual factors such as the topical area of the questions, as well as intrinsic factors of question wording, subjectivity, sentiment, and other characteristics that could influence how a community responds to an information request. Our findings could be useful for improving existing collaborative question answering systems, and for designing the next generation of knowledge sharing communities.

  10. Osmolyte cooperation affects turgor dynamics in plants

    PubMed Central

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  11. Osmolyte cooperation affects turgor dynamics in plants

    NASA Astrophysics Data System (ADS)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  12. Carers' representations of affective mental disorders in British Chinese communities.

    PubMed

    Koo, Kevin

    2012-11-01

    Infrequent use of and delayed presentation to professional services have increased the burden of mental illness in minority ethnic communities. Within the growing literature on informal carers, the Chinese remain relatively unstudied. This article reports a qualitative study of 14 carers to explore illness representations of affective disorders in British Chinese communities. Firstly, it places the study within a theoretical framework that permits an understanding of mental health and illness in different sociocultural belief systems. Next, it presents carers' narrative accounts in conceptualising mental illness, including its causes, manifestations and impact on patients and carers, and contextualises the findings within the existing literature. Finally, the article examines how the caring role may be constructed from the broader social experience of carers and their relationships within a community structure that values the group over the individual. Coping mechanisms are discussed in the context of the practice of caring as a moral obligation and of policy implications for more culturally appropriate support services for both Chinese carers and mental health patients.

  13. Can microcystins affect zooplankton structure community in tropical eutrophic reservoirs?

    PubMed

    Paes, T A S V; Costa, I A S; Silva, A P C; Eskinazi-Sant'Anna, E M

    2016-06-01

    The aim of our study was to assess whether cyanotoxins (microcystins) can affect the composition of the zooplankton community, leading to domination of microzooplankton forms (protozoans and rotifers). Temporal variations in concentrations of microcystins and zooplankton biomass were analyzed in three eutrophic reservoirs in the semi-arid northeast region of Brazil. The concentration of microcystins in water proved to be correlated with the cyanobacterial biovolume, indicating the contributions from colonial forms such as Microcystis in the production of cyanotoxins. At the community level, the total biomass of zooplankton was not correlated with the concentration of microcystin (r2 = 0.00; P > 0.001), but in a population-level analysis, the biomass of rotifers and cladocerans showed a weak positive correlation. Cyclopoid copepods, which are considered to be relatively inefficient in ingesting cyanobacteria, were negatively correlated (r2 = - 0.01; P > 0.01) with the concentration of cyanotoxins. Surprisingly, the biomass of calanoid copepods was positively correlated with the microcystin concentration (r2 = 0.44; P > 0.001). The results indicate that allelopathic control mechanisms (negative effects of microcystin on zooplankton biomass) do not seem to substantially affect the composition of mesozooplankton, which showed a constant and high biomass compared to the microzooplankton (rotifers). These results may be important to better understand the trophic interactions between zooplankton and cyanobacteria and the potential effects of allelopathic compounds on zooplankton.

  14. Are organisational factors affecting the emotional withdrawal of community nurses?

    PubMed

    Karimi, Leila; Leggat, Sandra G; Cheng, Cindy; Donohue, Lisa; Bartram, Timothy; Oakman, Jodi

    2016-12-05

    Objective The aim of the present study was to investigate the effects of work organisation on the emotional labour withdrawal behaviour of Australian community nurses.Methods Using a paper-based survey, a sample of 312 Australian community nurses reported on their emotional dissonance, withdrawal behaviours (i.e. job neglect, job dissatisfaction, stress-related presenteeism) and work organisation. A model to determine the partial mediation effect of work organisation was developed based on a literature review. The fit of the proposed model was assessed via structural equation modelling using Analysis of Moment Structures (AMOS; IMB).Results Community nurses with higher levels of emotional dissonance were less likely to be satisfied with their job and work organisation and had a higher tendency to exhibit withdrawal behaviours. Work organisational factors mediated this relationship.Conclusion Emotional dissonance can be a potential stressor for community nurses that can trigger withdrawal behaviours. Improving work organisational factors may help reduce emotional conflict and its effect on withdrawal behaviours.What is known about the topic? Although emotional labour has been broadly investigated in the literature, very few studies have addressed the effect of the quality of work organisation on nurses' withdrawal behaviours in a nursing setting.What does this paper add? This paper provides evidence that work organisation affects levels of emotional dissonance and has an effect on job neglect through stress-related presenteeism.What are the implications for practitioners? In order to minimise stress-related presenteeism and job neglect, healthcare organisations need to establish a positive working environment, designed to improve the quality of relationships with management, provide appropriate rewards, recognition and effective workload management and support high-quality relationships with colleagues.

  15. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  16. Physicochemical conditions in affecting the distribution of spring phytoplankton community

    NASA Astrophysics Data System (ADS)

    Wei, Yuqiu; Liu, Haijiao; Zhang, Xiaodong; Xue, Bing; Munir, Sonia; Sun, Jun

    2017-03-01

    To better understand the physicochemical conditions in affecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3rd and 23th May, 2010. The phytoplankton community, including Bacillariophyta (105 taxa), Pyrrophyta (54 taxa), Chrysophyta (1 taxon) and Chlorophyta (2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.

  17. Do unpaved, low-traffic roads affect bird communities?

    NASA Astrophysics Data System (ADS)

    Mammides, Christos; Kounnamas, Constantinos; Goodale, Eben; Kadis, Costas

    2016-02-01

    Unpaved, low traffic roads are often assumed to have minimal effects on biodiversity. To explore this assertion, we sampled the bird communities in fifteen randomly selected sites in Pafos Forest, Cyprus and used multiple regression to quantify the effects of such roads on the total species richness. Moreover, we classified birds according to their migratory status and their global population trends, and tested each category separately. Besides the total length of unpaved roads, we also tested: a. the site's habitat diversity, b. the coefficient of variation in habitat (patch) size, c. the distance to the nearest agricultural field, and d. the human population size of the nearest village. We measured our variables at six different distances from the bird point-count locations. We found a strong negative relationship between the total bird richness and the total length of unpaved roads. The human population size of the nearest village also had a negative effect. Habitat diversity was positively related to species richness. When the categories were tested, we found that the passage migrants were influenced more by the road network while resident breeders were influenced by habitat diversity. Species with increasing and stable populations were only marginally affected by the variables tested, but the effect of road networks on species with decreasing populations was large. We conclude that unpaved and sporadically used roads can have detrimental effects on the bird communities, especially on vulnerable species. We propose that actions are taken to limit the extent of road networks within protected areas, especially in sites designated for their rich avifauna, such as Pafos Forest, where several of the affected species are species of European and global importance.

  18. Increasing concentrations of phenol progressively affect anaerobic digestion of cellulose and associated microbial communities.

    PubMed

    Chapleur, Olivier; Madigou, Céline; Civade, Raphaël; Rodolphe, Yohan; Mazéas, Laurent; Bouchez, Théodore

    2016-02-01

    Performance stability is a key issue when managing anaerobic digesters. However it can be affected by external disturbances caused by micropollutants. In this study the influence of phenol on the methanization of cellulose was evaluated through batch toxicity assays. Special attention was given to the dynamics of microbial communities by means of automated ribosomal intergenic spacer analysis. We observed that, as phenol concentrations increased, the different steps of anaerobic cellulose digestion were unevenly and progressively affected, methanogenesis being the most sensitive: specific methanogenic activity was half-inhibited at 1.40 g/L of phenol, whereas hydrolysis of cellulose and its fermentation to VFA were observed at up to 2.00 g/L. Depending on the level of phenol, microbial communities resisted either through physiological or structural adaptation. Thus, performances at 0.50 g/L were maintained in spite of the microbial community's shift. However, the communities' ability to adapt was limited and performances decreased drastically beyond 2.00 g/L of phenol.

  19. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.; Strickler, K.

    2010-01-01

    The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.

  20. Dynamics of nitrifying bacterial communities in the Seine river and estuary as affected by changes in the treatment of Paris wastewater : a comparison of 2001-2003 vs 2012-2013 periods

    NASA Astrophysics Data System (ADS)

    Aissa Grouz, Najla; Billen, Gilles; Garnier, Josette; Mercier, Benjamin; Martinez, Anun

    2014-05-01

    The major branch of the Seine river from the confluence with the Marne river to the entrance of the estuary is deeply affected by the release of wastewater from the huge Paris agglomeration. In the first years of 2000, the largest part of the effluents were still discharged at the Seine-Aval (Achères) treatment plant with only a standard, low residence time, activated sludge treatment, thus releasing a high ammonium load. NH4 concentration as high as 7 mgN/l were frequently observed downstream from Paris agglomeration. Cébron et al. (2003, 2005) and Garnier et al. 2007 described in details how this massive reduced nitrogen concentrations triggered the growth of nitrifying bacteria, already present in the upstream Seine and Marne rivers, but also brought in large amount by the effluents of the wastewater treatment plant themselves. The decrease of ammonium concentration was slow, however, and was only completed 200 km downstream, in the upper estuarine area, where it causes a severe oxygen deficiency. Since 2007, important changes occurred in the treatment of nitrogen in the Parisian wastewater purification plants. In 2007, the Seine-Aval plant treated up to 90% of the ammonium contained in wastewater through nitrification, and 30% of the total supply of nitrates is treated by denitrification. These modifications have of course favorably affected the water quality of the Seine river: ammonium concentrations are reduced by a factor of 5 and the area of oxygen depletion in the upstream estuary is no more observed. However, nitrites, still released in the effluents, are a matter of concern for the water quality of the Seine downstream from Paris. Using measurements of potential microbial activities carried out with the same experimental protocol for the 2000-2003 and 2012-2013 periods, we here examine and model the dynamics of ammonium oxidizing and nitrite oxidizing microbial populations before and after the implementation of nitrification treatment of Paris

  1. Multilevel Dynamic Systems Affecting Introduction of HIV/STI Prevention Innovations among Chinese Women in Sex Work Establishments

    ERIC Educational Resources Information Center

    Weeks, Margaret R.; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2013-01-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the…

  2. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production

    PubMed Central

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  3. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role.

  4. Plant hybrid zones affect biodiversity: Tools for a genetic-based understanding of community structure

    SciTech Connect

    Whitham, T.G.; Martinsen, G.D.; Keim, P.; Floate, K.D.; Dungey, H.S. |; Potts, B.M.

    1999-03-01

    Plant hybrid zones are dynamic centers of ecological and evolutionary processes for plants and their associated communities. Studies in the wild and in gardens with synthetic crosses showed that hybrid eucalypts supports the greatest species richness and abundances of insect and fungal taxa. In an updated review of 152 case studies of taxa associated with diverse hybridizing systems, there were 43 (28%) cases of hybrids being more susceptible than their parent species, 7 (5%) resistant, 35 (23%) additive, 35 (23%) dominant, and 32 (21%) showed no response to hybridization. Thus, most taxa respond to hybrids in ways that result in equal or greater abundance, and hybrids tend to accumulate the taxa of their parent species. These studies suggest that genetic-based plant traits affect the distribution of many species and that the variation in hybrids can be used as tools to examine the genetic components of community structure and biodiversity.

  5. Community history affects the predictability of microbial ecosystem development.

    PubMed

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications.

  6. Deteriorating Farm Finances Affect Rural Banks and Communities.

    ERIC Educational Resources Information Center

    Milkove, Daniel L.; And Others

    1986-01-01

    Problem farm debts may translate into slow growth for rural communities, with local banks unable to offer credit even to credit worthy borrowers. Communities served by branches of large banking organizations are probably better off than communities served only by small independent banks. (Author)

  7. Community history affects the predictability of microbial ecosystem development

    PubMed Central

    Pagaling, Eulyn; Strathdee, Fiona; Spears, Bryan M; Cates, Michael E; Allen, Rosalind J; Free, Andrew

    2014-01-01

    Microbial communities mediate crucial biogeochemical, biomedical and biotechnological processes, yet our understanding of their assembly, and our ability to control its outcome, remain poor. Existing evidence presents conflicting views on whether microbial ecosystem assembly is predictable, or inherently unpredictable. We address this issue using a well-controlled laboratory model system, in which source microbial communities colonize a pristine environment to form complex, nutrient-cycling ecosystems. When the source communities colonize a novel environment, final community composition and function (as measured by redox potential) are unpredictable, although a signature of the community's previous history is maintained. However, when the source communities are pre-conditioned to their new habitat, community development is more reproducible. This situation contrasts with some studies of communities of macro-organisms, where strong selection under novel environmental conditions leads to reproducible community structure, whereas communities under weaker selection show more variability. Our results suggest that the microbial rare biosphere may have an important role in the predictability of microbial community development, and that pre-conditioning may help to reduce unpredictability in the design of microbial communities for biotechnological applications. PMID:23985743

  8. A new dynamic null model for phylogenetic community structure.

    PubMed

    Pigot, Alex L; Etienne, Rampal S

    2015-02-01

    Phylogenies are increasingly applied to identify the mechanisms structuring ecological communities but progress has been hindered by a reliance on statistical null models that ignore the historical process of community assembly. Here, we address this, and develop a dynamic null model of assembly by allopatric speciation, colonisation and local extinction. Incorporating these processes fundamentally alters the structure of communities expected due to chance, with speciation leading to phylogenetic overdispersion compared to a classical statistical null model assuming equal probabilities of community membership. Applying this method to bird and primate communities in South America we show that patterns of phylogenetic overdispersion - often attributed to negative biotic interactions - are instead consistent with a species neutral model of allopatric speciation, colonisation and local extinction. Our findings provide a new null expectation for phylogenetic community patterns and highlight the importance of explicitly accounting for the dynamic history of assembly when testing the mechanisms governing community structure.

  9. Evolution properties of the community members for dynamic networks

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Guo, Qiang; Li, Sheng-Nan; Han, Jing-Ti; Liu, Jian-Guo

    2017-03-01

    The collective behaviors of community members for dynamic social networks are significant for understanding evolution features of communities. In this Letter, we empirically investigate the evolution properties of the new community members for dynamic networks. Firstly, we separate data sets into different slices, and analyze the statistical properties of new members as well as communities they joined in for these data sets. Then we introduce a parameter φ to describe community evolution between different slices and investigate the dynamic community properties of the new community members. The empirical analyses for the Facebook, APS, Enron and Wiki data sets indicate that both the number of new members and joint communities increase, the ratio declines rapidly and then becomes stable over time, and most of the new members will join in the small size communities that is s ≤ 10. Furthermore, the proportion of new members in existed communities decreases firstly and then becomes stable and relatively small for these data sets. Our work may be helpful for deeply understanding the evolution properties of community members for social networks.

  10. Prey community structure affects how predators select for Mullerian mimicry.

    PubMed

    Ihalainen, Eira; Rowland, Hannah M; Speed, Michael P; Ruxton, Graeme D; Mappes, Johanna

    2012-06-07

    Müllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present. Owing to slower learning, the model did suffer higher mortality in complex communities when the birds were inexperienced. However, in a subsequent generalization test to potential mimics of the model prey (a continuum of signal accuracy), only birds that had foraged from simple communities selected against inaccurate mimics. Therefore, accurate mimicry is more likely to evolve in simple communities even though predator avoidance learning is slower in complex communities. For mimicry to evolve, prey species must have a common predator; the effective community consists of the predator's diet. In diverse environments, the limited diets of specialist predators could create 'simple community pockets' where accurate mimicry is selected for.

  11. Network Diversity and Affect Dynamics: The Role of Personality Traits

    PubMed Central

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals’ subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states–e.g. an increase in the positive affect state or a decrease in the negative affect state–for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being. PMID:27035904

  12. Network Diversity and Affect Dynamics: The Role of Personality Traits.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals' subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states--e.g. an increase in the positive affect state or a decrease in the negative affect state--for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being.

  13. Daily Interpersonal and Affective Dynamics in Personality Disorder

    PubMed Central

    Wright, Aidan G.C.; Hopwood, Christopher J.; Simms, Leonard J.

    2015-01-01

    In this naturalistic study we adopt the lens of interpersonal theory to examine between-and within-person differences in dynamic processes of daily affect and interpersonal behaviors among individuals (N = 101) previously diagnosed with personality disorders who completed daily diaries over the course of 100 days. Dispositional ratings of interpersonal problems and measures of daily stress were used as predictors of daily shifts in interpersonal behavior and affect in multilevel models. Results indicate that ~40%–50% of the variance in interpersonal behavior and affect is due to daily fluctuations, which are modestly related to dispositional measures of interpersonal problems but strongly related to daily stress. The findings support conceptions of personality disorders as a dynamic form of psychopathology involving the individuals interacting with and regulating in response to the contextual features of their environment. PMID:26200849

  14. Community Violence and Youth: Affect, Behavior, Substance Use, and Academics

    ERIC Educational Resources Information Center

    Cooley-Strickland, Michele; Quille, Tanya J.; Griffin, Robert S.; Stuart, Elizabeth A.; Bradshaw, Catherine P.; Furr-Holden, Debra

    2009-01-01

    Community violence is recognized as a major public health problem (WHO, "World Report on Violence and Health," 2002) that Americans increasingly understand has adverse implications beyond inner-cities. However, the majority of research on chronic community violence exposure focuses on ethnic minority, impoverished, and/or crime-ridden communities…

  15. A Dynamic Program Assessment Framework for Learning Communities

    ERIC Educational Resources Information Center

    Kahn, Gabrielle; Calienes, Christian M.; Thompson, Tara A.

    2016-01-01

    This research builds upon Malnarich, Pettitt, and Mino's (2014) investigation of students' reflections on their learning community (LC) experiences. Adapting their Peer-to-Peer Reflection Protocol for use at Kingsborough Community College, CUNY, we present a framework for dynamic LC program assessment. To obtain feedback about theory-practice…

  16. Bacterial community dynamics in full-scale activated sludge bioreactors: operational and ecological factors driving community assembly and performance.

    PubMed

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a "structure-function" paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors' communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation.

  17. Bacterial Community Dynamics in Full-Scale Activated Sludge Bioreactors: Operational and Ecological Factors Driving Community Assembly and Performance

    PubMed Central

    Valentín-Vargas, Alexis; Toro-Labrador, Gladys; Massol-Deyá, Arturo A.

    2012-01-01

    The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation. PMID:22880016

  18. Dynamics in microbial communities: Unraveling mechanisms to identify principles

    SciTech Connect

    Konopka, Allan; Lindemann, Stephen R.; Fredrickson, Jim K.

    2015-07-01

    Diversity begets higher order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions, and it is this “system” that is the basis for higher order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions.

  19. Dynamics in microbial communities: unraveling mechanisms to identify principles

    PubMed Central

    Konopka, Allan; Lindemann, Stephen; Fredrickson, Jim

    2015-01-01

    Diversity begets higher-order properties such as functional stability and robustness in microbial communities, but principles that inform conceptual (and eventually predictive) models of community dynamics are lacking. Recent work has shown that selection as well as dispersal and drift shape communities, but the mechanistic bases for assembly of communities and the forces that maintain their function in the face of environmental perturbation are not well understood. Conceptually, some interactions among community members could generate endogenous dynamics in composition, even in the absence of environmental changes. These endogenous dynamics are further perturbed by exogenous forcing factors to produce a richer network of community interactions and it is this ‘system' that is the basis for higher-order community properties. Elucidation of principles that follow from this conceptual model requires identifying the mechanisms that (a) optimize diversity within a community and (b) impart community stability. The network of interactions between organisms can be an important element by providing a buffer against disturbance beyond the effect of functional redundancy, as alternative pathways with different combinations of microbes can be recruited to fulfill specific functions. PMID:25526370

  20. Factors affecting the dynamic response of the seated subject.

    PubMed

    Pope, M H; Broman, H; Hansson, T

    1990-06-01

    An impact method, combined with pins placed into the spinous process at L3, has been used to establish the dynamic response of the spine of the seated subject. The resonant frequency is at 4-5 Hz, due primarily to a vertical response of the buttocks-pelvis system. A maximum attenuation at 8 Hz occurs because of a second resonance due to pelvic rotation. The attenuation is also affected by additional load and by the addition of a helmet. Neck braces have no dynamic effect.

  1. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    PubMed

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools.

  2. Drought induced changes of plant belowground carbon allocation affect soil microbial community function in a subalpine meadow

    NASA Astrophysics Data System (ADS)

    Fuchslueger, L.; Bahn, M.; Fritz, K.; Hasibeder, R.; Richter, A.

    2012-12-01

    There is growing evidence that climate extremes may affect ecosystem carbon dynamics more strongly than gradual changes in temperatures or precipitation. Climate projections suggest more frequent heat waves accompanied by extreme drought periods in many parts of Europe, including the Alps. Drought is considered to decrease plant C uptake and turnover, which may in turn decrease belowground C allocation and potentially has significant consequences for microbial community composition and functioning. However, information on effects of drought on C dynamics at the plant-soil interface in real ecosystems is still scarce. Our study aimed at understanding how summer drought affects soil microbial community composition and the uptake of recently assimilated plant C by different microbial groups in grassland. We hypothesized that under drought 1) the microbial community shifts, fungi being less affected than bacteria, 2) plants decrease belowground C allocation, which further reduces C transfer to soil microbes and 3) the combined effects of belowground C allocation, reduced soil C transport due to reduced soil moisture and shift in microbial communities cause an accumulation of extractable organic C in the soil. Our study was conducted as part of a rain-exclusion experiment in a subalpine meadow in the Austrian Central Alps. After eight weeks of rain exclusion we pulse labelled drought and control plots with 13CO2 and traced C in plant biomass, extractable organic C (EOC) and soil microbial communities using phospholipid fatty acids (PLFA). Drought induced a shift of the microbial community composition: gram-positive bacteria became more dominant, whereas gram-negative bacteria were not affected by drought. Also the relative abundance of fungal biomass was not affected by drought. While total microbial biomass (as estimated by total microbial PLFA content) increased during drought, less 13C was taken up. This reduction was pronounced for bacterial biomarkers. It reflects

  3. Seasonal sediment dynamics shape temperate bedrock reef communities

    USGS Publications Warehouse

    Figurski, Jared D.; Freiwald, Jan; Lonhart, Steve I.; Storlazzi, Curt

    2016-01-01

    Mobilized seafloor sediment can impact benthic reef communities through burial, scour, and turbidity. These processes are ubiquitous in coastal oceans and, through their influence on the survival, fitness, and interactions of species, can alter the structure and function of benthic communities. In northern Monterey Bay, California, USA, as much as 30% of the seafloor is buried or exposed seasonally, making this an ideal location to test how subtidal temperate rocky reef communities vary in the presence and absence of chronic sediment-based disturbances. Designated dynamic plots were naturally inundated by sediment in summer (50 to 100% cover) and swept clean in winter, whereas designated stable plots remained free of sediment during our study. Multivariate analyses indicated significant differences in the structure of sessile and mobile communities between dynamic and stable reef habitats. For sessile species, community structure in disturbed plots was less variable in space and time than in stable plots due to the maintenance of an early successional state. In contrast, community structure of mobile species varied more in disturbed plots than in stable plots, reflecting how mobile species distribute in response to sediment dynamics. Some species were found only in these disturbed areas, suggesting that the spatial mosaic of disturbance could increase regional diversity. We discuss how the relative ability of species to tolerate disturbance at different life history stages and their ability to colonize habitat translate into community-level differences among habitats, and how this response varies between mobile and sessile communities.

  4. A novel dynamical community detection algorithm based on weighting scheme

    NASA Astrophysics Data System (ADS)

    Li, Ju; Yu, Kai; Hu, Ke

    2015-12-01

    Network dynamics plays an important role in analyzing the correlation between the function properties and the topological structure. In this paper, we propose a novel dynamical iteration (DI) algorithm, which incorporates the iterative process of membership vector with weighting scheme, i.e. weighting W and tightness T. These new elements can be used to adjust the link strength and the node compactness for improving the speed and accuracy of community structure detection. To estimate the optimal stop time of iteration, we utilize a new stability measure which is defined as the Markov random walk auto-covariance. We do not need to specify the number of communities in advance. It naturally supports the overlapping communities by associating each node with a membership vector describing the node's involvement in each community. Theoretical analysis and experiments show that the algorithm can uncover communities effectively and efficiently.

  5. SAMPLING EFFORT AFFECTS MULTIVARIATE COMPARISONS OF STREAM COMMUNITIES

    EPA Science Inventory

    The estimation of ecological trends and patterns is often dependent on the size of individual samples from each site (sample size) or spatial scale in general. Multivariate analysis is widely used for determining patterns of community structure, inferring species-environment rela...

  6. Predation and landscape characteristics independently affect reef fish community organization.

    PubMed

    Stier, Adrian C; Hanson, Katharine M; Holbrook, Sally J; Schmitt, Russell J; Brooks, Andrew J

    2014-05-01

    Trophic island biogeography theory predicts that the effects of predators on prey diversity are context dependent in heterogeneous landscapes. Specifically, models predict that the positive effect of habitat area on prey diversity should decline in the presence of predators, and that predators should modify the partitioning of alpha and beta diversity across patchy landscapes. However, experimental tests of the predicted context dependency in top-down control remain limited. Using a factorial field experiment we quantify the effects of a focal predatory fish species (grouper) and habitat characteristics (patch size, fragmentation) on the partitioning of diversity and assembly of coral reef fish communities. We found independent effects of groupers and patch characteristics on prey communities. Groupers reduced prey abundance by 50% and gamma diversity by 45%, with a disproportionate removal of rare species relative to common species (64% and 36% reduction, respectively; an oddity effect). Further, there was a 77% reduction in beta diversity. Null model analysis demonstrated that groupers increased the importance of stochastic community assembly relative to patches without groupers. With regard to patch size, larger patches contained more fishes, but a doubling of patch size led to a modest (36%) increase in prey abundance. Patch size had no effect on prey diversity; however, fragmented patches had 50% higher species richness and modified species composition relative to unfragmented patches. Our findings suggest two different pathways (i.e., habitat or predator shifts) by which natural and/or anthropogenic processes can drive variation in fish biodiversity and community assembly.

  7. Ethical Issues Affecting Human Participants in Community College Research

    ERIC Educational Resources Information Center

    Wurtz, Keith

    2011-01-01

    The increasing demand of constituents to conduct analyses in order to help inform the decision-making process has led to the need for Institutional Research (IR) guidelines for community college educators. One method of maintaining the quality of research conducted by IR staff is to include professional development about ethics. This article…

  8. How Military Service Affects Student Veteran Success at Community Colleges

    ERIC Educational Resources Information Center

    O'Rourke, Patrick C., Jr.

    2013-01-01

    Increasingly more service members are separating from the military as the United States draws down the force and moves towards a post-war era. Tens of thousands of these veterans will leverage their GI Bill tuition and housing benefits in an attempt to access Southern California community colleges and bolster their transition into mainstream…

  9. Alendronate affects calcium dynamics in cardiomyocytes in vitro.

    PubMed

    Kemeny-Suss, Naomi; Kasneci, Amanda; Rivas, Daniel; Afilalo, Jonathan; Komarova, Svetlana V; Chalifour, Lorraine E; Duque, Gustavo

    2009-01-01

    Therapy with bisphosphonates, including alendronate (ALN), is considered a safe and effective treatment for osteoporosis. However, recent studies have reported an unexpected increase in serious atrial fibrillation (AF) in patients treated with bisphosphonates. The mechanism that explains this side effect remains unknown. Since AF is associated with an altered sarcoendoplasmic reticulum calcium load, we studied how ALN affects cardiomyocyte calcium homeostasis and protein isoprenylation in vitro. Acute and long-term (48h) treatment of atrial and ventricular cardiomyocytes with ALN (10(-8)-10(-6)M) was performed. Changes in calcium dynamics were determined by both fluorescence measurement of cytosolic free Ca(2+) concentration and western blot analysis of calcium-regulating proteins. Finally, effect of ALN on protein farnesylation was also identified. In both atrial and ventricular cardiomyocytes, ALN treatment delayed and diminished calcium responses to caffeine. Only in atrial cells, long-term exposure to ALN-induced transitory calcium oscillations and led to the development of oscillatory component in calcium responses to caffeine. Changes in calcium dynamics were accompanied by changes in expression of proteins controlling sarcoendoplasmic reticulum calcium. In contrast, ALN minimally affected protein isoprenylation in these cells. In summary, treatment of atrial cardiomyocytes with ALN-induced abnormalities in calcium dynamics consistent with induction of a self-stimulatory, pacemaker-like behavior, which may contribute to the development of cardiac side effects associated with these drugs.

  10. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species.

  11. Species-abundance--seed-size patterns within a plant community affected by grazing disturbance.

    PubMed

    Wu, Gao-lin; Shang, Zhan-huan; Zhu, Yuan-jun; Ding, Lu-ming; Wang, Dong

    2015-04-01

    Seed size has been advanced as a key factor that influences the dynamics of plant communities, but there are few empirical or theoretical predictions of how community dynamics progress based on seed size patterns. Information on the abundance of adults, seedlings, soil seed banks, seed rains, and the seed mass of 96 species was collected in alpine meadows of the Qinghai-Tibetan Plateau (China), which had different levels of grazing disturbance. The relationships between seed-mass-abundance patterns for adults, seedlings, the soil seed bank, and seed rain in the plant community were evaluated using regression models. Results showed that grazing levels affected the relationship between seed size and abundance properties of adult species, seedlings, and the soil seed bank, suggesting that there is a shift in seed-size--species-abundance relationships as a response to the grazing gradient. Grazing had no effect on the pattern of seed-size-seed-rain-abundance at four grazing levels. Grazing also had little effect on the pattern of seed-size--species-abundance and pattern of seed-size--soil-seed-bank-abundance in meadows with no grazing, light grazing, and moderate grazing), but there was a significant negative effect in meadows with heavy grazing. Grazing had little effect on the pattern of seed-size--seedling-abundance with no grazing, but had significant negative effects with light, moderate, and heavy grazing, and the |r| values increased with grazing levels. This indicated that increasing grazing pressure enhanced the advantage of smaller-seeded species in terms of the abundances of adult species, seedlings, and soil seed banks, whereas only the light grazing level promoted the seed rain abundance of larger-seeded species in the plant communities. This study suggests that grazing disturbances are favorable for increasing the species abundance for smaller-seeded species but not for the larger-seeded species in an alpine meadow community. Hence, there is a clear

  12. Mathematical Modeling of Microbial Community Dynamics: A Methodological Review

    SciTech Connect

    Song, Hyun-Seob; Cannon, William R.; Beliaev, Alex S.; Konopka, Allan

    2014-10-17

    Microorganisms in nature form diverse communities that dynamically change in structure and function in response to environmental variations. As a complex adaptive system, microbial communities show higher-order properties that are not present in individual microbes, but arise from their interactions. Predictive mathematical models not only help to understand the underlying principles of the dynamics and emergent properties of natural and synthetic microbial communities, but also provide key knowledge required for engineering them. In this article, we provide an overview of mathematical tools that include not only current mainstream approaches, but also less traditional approaches that, in our opinion, can be potentially useful. We discuss a broad range of methods ranging from low-resolution supra-organismal to high-resolution individual-based modeling. Particularly, we highlight the integrative approaches that synergistically combine disparate methods. In conclusion, we provide our outlook for the key aspects that should be further developed to move microbial community modeling towards greater predictive power.

  13. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    PubMed

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing.

  14. Estimating cyanobacteria community dynamics and its relationship with environmental factors.

    PubMed

    Luo, Wenhuai; Chen, Huirong; Lei, Anping; Lu, Jun; Hu, Zhangli

    2014-01-20

    The cyanobacteria community dynamics in two eutrophic freshwater bodies (Tiegang Reservoir and Shiyan Reservoir) was studied with both a traditional microscopic counting method and a PCR-DGGE genotyping method. Results showed that cyanobacterium Phormidium tenue was the predominant species; twenty-six cyanobacteria species were identified in water samples collected from the two reservoirs, among which fourteen were identified with the morphological method and sixteen with the PCR-DGGE method. The cyanobacteria community composition analysis showed a seasonal fluctuation from July to December. The cyanobacteria population peaked in August in both reservoirs, with cell abundances of 3.78 × 10(8) cells L(-1) and 1.92 × 10(8) cells L(-1) in the Tiegang and Shiyan reservoirs, respectively. Canonical Correspondence Analysis (CCA) was applied to further investigate the correlation between cyanobacteria community dynamics and environmental factors. The result indicated that the cyanobacteria community dynamics was mostly correlated with pH, temperature and total nitrogen. This study demonstrated that data obtained from PCR-DGGE combined with a traditional morphological method could reflect cyanobacteria community dynamics and its correlation with environmental factors in eutrophic freshwater bodies.

  15. Major National Societal Trends Likely to Affect the Marin Community Colleges through the Year 2000. Societal Factors Affecting Education.

    ERIC Educational Resources Information Center

    Stetson, Nancy E.

    Societal trends likely to affect the Marin Community Colleges (MCC) through the year 2000 are examined in this study of college planning for the next 5 years. Following information on the background, significance, and procedures of the study, a review is presented of six publications, selected for their particular relevance to the community…

  16. Community violence as it affects child development: issues of definition.

    PubMed

    Trickett, Penelope K; Durán, Lorena; Horn, John L

    2003-12-01

    The state of the art of definition of community violence as it relates to child development was examined in terms of the definitions used in 23 empirical studies. In all cases community violence was defined in terms of what were assumed to be measurements obtained as linear combinations of a priori numerical weighting of responses to questions--asked either of a child or of the parent of a child--about experiencing and/or witnessing and/or hearing about instances of violence. Thus, the definitions can be seen to represent the perspectives of 2 kinds of observers--the child or the child's parent--and 3 levels of closeness to violence--experiencing, witnessing, or hearing about violence. Combining these perspectives and levels, the following 8 different definitions could be seen to be used in the practice of 1 or more of the 23 empirical studies: Child Self-Report (perception) of either (1) experiencing, or (2) witnessing, or (3) experiencing and witnessing, and hearing about violence; or Parent Report (perception) of the Child (4) experiencing, or (5) witnessing, or (6) experiencing and witnessing and hearing about violence, or (7) = (1) + (4), or (8) = (3) + (6). In almost all the examples of research definitions it was assumed implicitly and without test of the assumption that different violent events were interchangeable, and usually it was assumed (again without test) that the magnitudes of different violence events were equal. Usually, an unstated theory of stress appeared to guide the measurement definition, but in one study definitions were developed and tested in terms of a clearly-stated theory of learning. It was concluded that definition of community violence is a measurement problem; that very likely it is multidimensional; that it could be more nearly solved if better attention were given to specifying it in terms of theory that can be put to test and by attending to basic assumptions and principles of measurement.

  17. SCOUT: simultaneous time segmentation and community detection in dynamic networks

    NASA Astrophysics Data System (ADS)

    Hulovatyy, Yuriy; Milenković, Tijana

    2016-11-01

    Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging.

  18. Community, culture and sustainability in multilevel dynamic systems intervention science.

    PubMed

    Schensul, Jean J

    2009-06-01

    This paper addresses intertwined issues in the conceptualization, implementation and evaluation of multilevel dynamic systems intervention science (MDSIS). Interventions are systematically planned, conducted and evaluated social science-based cultural products intercepting the lives of people and institutions in the context of multiple additional events and processes (which also may be referred to as interventions) that may speed, slow or reduce change towards a desired outcome. Multilevel interventions address change efforts at multiple social levels in the hope that effects at each level will forge synergistic links, facilitating movement toward desired change. This paper utilizes an ecological framework that identifies macro (policy and regulatory institutions), meso (organizations and agencies with resources, and power) and micro (individuals, families and friends living in communities) interacting directly and indirectly. An MDSIS approach hypothesizes that change toward a goal will occur faster and more effectively when synchronized and supported across levels in a social system. MDSIS approaches by definition involve "whole" communities and cannot be implemented without the establishments of working community partnerships This paper takes a dynamic systems approach to science as conducted in communities, and discusses four concepts that are central to MDSIS--science, community, culture, and sustainability. These concepts are important in community based participatory research and to the targeting, refinement, and adaptation of enduring interventions. Consistency in their meaning and use can promote forward movement in the field of MDSIS, and in community-based prevention science.

  19. SCOUT: simultaneous time segmentation and community detection in dynamic networks

    PubMed Central

    Hulovatyy, Yuriy; Milenković, Tijana

    2016-01-01

    Many evolving complex real-world systems can be modeled via dynamic networks. An important problem in dynamic network research is community detection, which finds groups of topologically related nodes. Typically, this problem is approached by assuming either that each time point has a distinct community organization or that all time points share a single community organization. The reality likely lies between these two extremes. To find the compromise, we consider community detection in the context of the problem of segment detection, which identifies contiguous time periods with consistent network structure. Consequently, we formulate a combined problem of segment community detection (SCD), which simultaneously partitions the network into contiguous time segments with consistent community organization and finds this community organization for each segment. To solve SCD, we introduce SCOUT, an optimization framework that explicitly considers both segmentation quality and partition quality. SCOUT addresses limitations of existing methods that can be adapted to solve SCD, which consider only one of segmentation quality or partition quality. In a thorough evaluation, SCOUT outperforms the existing methods in terms of both accuracy and computational complexity. We apply SCOUT to biological network data to study human aging. PMID:27881879

  20. Global dynamic topography: geoscience communities requirements

    NASA Astrophysics Data System (ADS)

    Dewez, T.; Costeraste, J.

    2012-04-01

    The advent of free-of-charge global topographic data sets SRTM and Aster GDEM have enabled testing a host of geoscience hypotheses. This is because they first revealed the relief of previously unavailable earth landscapes, enabled quantitative geomorphometric analyses across entire landscapes and improved the resolution of measurements. Availability of such data is now considered standard, and though resolved at 30-m to 90-m pixel, which is amazing seeing where we come from, they are now regarded as mostly obsolete given the sub-meter imagery coming through web services like Google Earth. Geoscientists now appear to desire two additional features: field-scale-compatible elevation datasets (i.e. meter-scale digital models and sub-meter elevation precision) and dispose of regularly updated topography to retrieve earth surface changes, while retaining the key for success: data availability at no charge. A new satellite instrument is currently under phase 0 study at CNES, the French space agency, to fulfil these aims. The scientific community backing this demand is that of natural hazards, glaciology and to a lesser extent the biomass community. The system under study combines a native stereo imager and a lidar profiler. This combination provides spatially resolved elevation swaths together with absolute along-track elevation control point profiles. Data generated through this system, designed for revisit time better than a year, is intended to produce not only single acquisition digital surface models, colour orthoimages and small footprint full-wave-form lidar profiles to update existing topographic coverages, but also time series of them. This enables 3D change detection with centimetre-scale planimetric precision and metric vertical precision, in complement of classical spectral change appoaches. The purpose of this contribution, on behalf of the science team, is to present the mission concepts and philosophy and the scientific needs for such instrument including

  1. Nucleosomal arrangement affects single-molecule transcription dynamics

    PubMed Central

    Fitz, Veronika; Shin, Jaeoh; Ehrlich, Christoph; Farnung, Lucas; Cramer, Patrick; Zaburdaev, Vasily; Grill, Stephan W.

    2016-01-01

    In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics. PMID:27791062

  2. Feeding type affects microplastic ingestion in a coastal invertebrate community.

    PubMed

    Setälä, Outi; Norkko, Joanna; Lehtiniemi, Maiju

    2016-01-15

    Marine litter is one of the problems marine ecosystems face at present, coastal habitats and food webs being the most vulnerable as they are closest to the sources of litter. A range of animals (bivalves, free swimming crustaceans and benthic, deposit-feeding animals), of a coastal community of the northern Baltic Sea were exposed to relatively low concentrations of 10 μm microbeads. The experiment was carried out as a small scale mesocosm study to mimic natural habitat. The beads were ingested by all animals in all experimental concentrations (5, 50 and 250 beads mL(-1)). Bivalves (Mytilus trossulus, Macoma balthica) contained significantly higher amounts of beads compared with the other groups. Free-swimming crustaceans ingested more beads compared with the benthic animals that were feeding only on the sediment surface. Ingestion of the beads was concluded to be the result of particle concentration, feeding mode and the encounter rate in a patchy environment.

  3. How personal health budgets may affect community nursing teams.

    PubMed

    Hewitt-Taylor, Jaqui

    2008-08-01

    In social care, there has for some time been the option for individuals to use direct payments to manage their own support, and more recently individual budgets have been piloted. While this approach has not been available for healthcare payments, there is the potential for this to change. This paper outlines the implementation of direct payments and personal budgets and then discusses some of the issues which should be considered if such arrangements are introduced in healthcare. These include: preparing existing staff for such changes in funding and the implications for them; clarifying the new roles and responsibilities of community nursing teams, training opportunities for staff who are employed directly by individuals; staff recruitment and retention, and designing evaluation mechanisms which assess quality as well as cost.

  4. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator

    PubMed Central

    Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.

    2016-01-01

    Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization. PMID:27805014

  5. Microbial community dynamics in the rhizosphere of a cadmium hyper-accumulator

    NASA Astrophysics Data System (ADS)

    Wood, J. L.; Zhang, C.; Mathews, E. R.; Tang, C.; Franks, A. E.

    2016-11-01

    Phytoextraction is influenced by the indigenous soil microbial communities during the remediation of heavy metal contaminated soils. Soil microbial communities can affect plant growth, metal availability and the performance of phytoextraction-assisting inocula. Understanding the basic ecology of indigenous soil communities associated with the phytoextraction process, including the interplay between selective pressures upon the communities, is an important step towards phytoextraction optimization. This study investigated the impact of cadmium (Cd), and the presence of a Cd-accumulating plant, Carpobrotus rossii (Haw.) Schwantes, on the structure of soil-bacterial and fungal communities using automated ribosomal intergenic spacer analysis (ARISA) and quantitative PCR (qPCR). Whilst Cd had no detectable influence upon fungal communities, bacterial communities underwent significant structural changes with no reduction in 16S rRNA copy number. The presence of C. rossii influenced the structure of all communities and increased ITS copy number. Suites of operational taxonomic units (OTUs) changed in abundance in response to either Cd or C. rossii, however we found little evidence to suggest that the two selective pressures were acting synergistically. The Cd-induced turnover in bacterial OTUs suggests that Cd alters competition dynamics within the community. Further work to understand how competition is altered could provide a deeper understanding of the microbiome-plant-environment and aid phytoextraction optimization.

  6. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns

    USGS Publications Warehouse

    Haack, S.K.; Garchow, H.; Klug, M.J.; Forney, L.J.

    1995-01-01

    We determined factors that affect responses of bacterial isolates and model bacterial communities to the 95 carbon substrates in Biolog microliter plates. For isolates and communities of three to six bacterial strains, substrate oxidation rates were typically nonlinear and were delayed by dilution of the inoculum. When inoculum density was controlled, patterns of positive and negative responses exhibited by microbial communities to each of the carbon sources were reproducible. Rates and extents of substrate oxidation by the communities were also reproducible but were not simply the sum of those exhibited by community members when tested separately. Replicates of the same model community clustered when analyzed by principal- components analysis (PCA), and model communities with different compositions were clearly separated un the first PCA axis, which accounted for >60% of the dataset variation. PCA discrimination among different model communities depended on the extent to which specific substrates were oxidized. However, the substrates interpreted by PCA to be most significant in distinguishing the communities changed with reading time, reflecting the nonlinearity of substrate oxidation rates. Although whole-community substrate utilization profiles were reproducible signatures for a given community, the extent of oxidation of specific substrates and the numbers or activities of microorganisms using those substrates in a given community were not correlated. Replicate soil samples varied significantly in the rate and extent of oxidation of seven tested substrates, suggesting microscale heterogeneity in composition of the soil microbial community.

  7. Relative importance of evolutionary dynamics depends on the composition of microbial predator-prey community.

    PubMed

    Friman, Ville-Petri; Dupont, Alessandra; Bass, David; Murrell, David J; Bell, Thomas

    2016-06-01

    Community dynamics are often studied in subsets of pairwise interactions. Scaling pairwise interactions back to the community level is, however, problematic because one given interaction might not reflect ecological and evolutionary outcomes of other functionally similar species interactions or capture the emergent eco-evolutionary dynamics arising only in more complex communities. Here we studied this experimentally by exposing Pseudomonas fluorescens SBW25 prey bacterium to four different protist predators (Tetrahymena pyriformis, Tetrahymena vorax, Chilomonas paramecium and Acanthamoeba polyphaga) in all possible single-predator, two-predator and four-predator communities for hundreds of prey generations covering both ecological and evolutionary timescales. We found that only T. pyriformis selected for prey defence in single-predator communities. Although T. pyriformis selection was constrained in the presence of the intraguild predator, T. vorax, T. pyriformis selection led to evolution of specialised prey defence strategies in the presence of C. paramecium or A. polyphaga. At the ecological level, adapted prey populations were phenotypically more diverse, less stable and less productive compared with non-adapted prey populations. These results suggest that predator community composition affects the relative importance of ecological and evolutionary processes and can crucially determine when rapid evolution has the potential to change ecological properties of microbial communities.

  8. Cooperative Agreements to Support Communities Affected by the BP Oil Spill

    EPA Pesticide Factsheets

    The environmental justice cooperative agreements are designed to support communities in Alabama, Florida, Louisiana, Mississippi, and Texas that are directly affected by the Deepwater Horizon oil spill in the Gulf of Mexico.

  9. How community ecology can improve our understanding of cholera dynamics

    PubMed Central

    Constantin de Magny, Guillaume; Hasan, Nur A.; Roche, Benjamin

    2013-01-01

    Understanding the seasonal emergence and reemergence of cholera is challenging due to the complex dynamics of different protagonists. The abundance of Vibrio cholerae, the causative agent of cholera and a natural inhabitant of aquatic environments, fluctuates according to abiotic, and biotic factors. Among the biotic factors, the zooplankton community dynamics has been suggested to play a pivotal role in the survival, persistence, and natural competence of V. cholerae. However, factors regulating V. cholerae population structure and seasonal dynamics are still not fully understood. Investigation of the temporal shifts and variability in aquatic community composition in relation to the occurrence or abundance of V. cholerae appears very promising yet remained underexplored. Recent advances in metagenomics, facilitated by high-throughput ultra deep sequencing, have greatly improved our ability for a broader and deeper exploration of microbial communities including an understanding of community structure, function, as well as inter- and intra-specific competitions. Here, we discuss possible areas of research focusing how combination of community ecology and metagenomic approaches could be applied to study the cholera system. PMID:24765090

  10. Emerging Trends and Critical Issues Affecting Private Fund-Raising among Community Colleges.

    ERIC Educational Resources Information Center

    Jackson, Karen Luke; Glass, Jr., J. Conrad

    2000-01-01

    Identifies and rank orders emerging trends and critical issues affecting private fund-raising among community colleges. Development officers representing 42 North Carolina community colleges participated in the study. The greatest number of participants identified trends related to business and industry, the need for private funds, and increased…

  11. Teachers' Challenges, Strategies, and Support Needs in Schools Affected by Community Violence: A Qualitative Study

    ERIC Educational Resources Information Center

    Maring, Elisabeth F.; Koblinsky, Sally A.

    2013-01-01

    Background: Exposure to community violence compromises teacher effectiveness, student learning, and socioemotional well-being. This study examined the challenges, strategies, and support needs of teachers in urban schools affected by high levels of community violence. Methods: Twenty teachers from 3 urban middle schools with predominantly…

  12. Microbial community dynamics alleviate stoichiometric constraints during litter decay.

    PubMed

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-06-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions.

  13. Microbial community dynamics alleviate stoichiometric constraints during litter decay

    PubMed Central

    Kaiser, Christina; Franklin, Oskar; Dieckmann, Ulf; Richter, Andreas

    2014-01-01

    Under the current paradigm, organic matter decomposition and nutrient cycling rates are a function of the imbalance between substrate and microbial biomass stoichiometry. Challenging this view, we demonstrate that in an individual-based model, microbial community dynamics alter relative C and N limitation during litter decomposition, leading to a system behaviour not predictable from stoichiometric theory alone. Rather, the dynamics of interacting functional groups lead to an adaptation at the community level, which accelerates nitrogen recycling in litter with high initial C : N ratios and thus alleviates microbial N limitation. This mechanism allows microbial decomposers to overcome large imbalances between resource and biomass stoichiometry without the need to decrease carbon use efficiency (CUE), which is in contrast to predictions of traditional stoichiometric mass balance equations. We conclude that identifying and implementing microbial community-driven mechanisms in biogeochemical models are necessary for accurately predicting terrestrial C fluxes in response to changing environmental conditions. PMID:24628731

  14. PERCEIVED RACISM AND NEGATIVE AFFECT: ANALYSES OF TRAIT AND STATE MEASURES OF AFFECT IN A COMMUNITY SAMPLE.

    PubMed

    Brondolo, Elizabeth; Brady, Nisha; Thompson, Shola; Tobin, Jonathan N; Cassells, Andrea; Sweeney, Monica; McFarlane, Delano; Contrada, Richard J

    2008-02-01

    Racism is a significant psychosocial stressor that is hypothesized to have negative psychological and physical health consequences. The Reserve Capacity Model (Gallo & Matthews, 2003) suggests that low socioeconomic status may influence health through its effects on negative affect. We extend this model to study the effects of racism, examining the association of lifetime perceived racism to trait and daily negative affect. A multiethnic sample of 362 American-born Black and Latino adults completed the Perceived Ethnic Discrimination Questionnaire-Community Version (PEDQ-CV). Trait negative affect was assessed with the Positive and Negative Affect Schedule (PANAS), and state negative affect was measured using ecological momentary assessments (EMA), in the form of an electronic diary. Analyses revealed a significant relationship of lifetime perceived racism to both daily negative affect and trait negative affect, even when controlling for trait hostility and socioeconomic status. The relationship of perceived racism to negative affect was moderated by education, such that the relationships were strongest for those with less than a high school education. The findings support aspects of the Reserve Capacity Model and identify pathways through which perceived racism may affect health status.

  15. Microbial population and community dynamics on plant roots and their feedbacks on plant communities.

    PubMed

    Bever, James D; Platt, Thomas G; Morton, Elise R

    2012-01-01

    The composition of the soil microbial community can be altered dramatically due to association with individual plant species, and these effects on the microbial community can have important feedbacks on plant ecology. Negative plant-soil feedback plays primary roles in maintaining plant community diversity, whereas positive plant-soil feedback may cause community conversion. Host-specific differentiation of the microbial community results from the trade-offs associated with overcoming plant defense and the specific benefits associated with plant rewards. Accumulation of host-specific pathogens likely generates negative feedback on the plant, while changes in the density of microbial mutualists likely generate positive feedback. However, the competitive dynamics among microbes depends on the multidimensional costs of virulence and mutualism, the fine-scale spatial structure within plant roots, and active plant allocation and localized defense. Because of this, incorporating a full view of microbial dynamics is essential to explaining the dynamics of plant-soil feedbacks and therefore plant community ecology.

  16. Next generation dynamic global vegetation models: learning from community ecology

    NASA Astrophysics Data System (ADS)

    Scheiter, Simon; Higgins, Steven; Langan, Liam

    2013-04-01

    Dynamic global vegetation models are a powerful tool to project the past, current and future distribution of vegetation and associated water and carbon fluxes. However, most models are limited by how they define vegetation and by their simplistic representation of competition. We discuss how concepts from community assembly theory and coexistence theory can help to improve vegetation models. We further present a new trait- and individual-based dynamic vegetation model (the aDGVM2) that allows each individual plant to adopt a unique combination of trait values. These traits define how each individual plant grows and competes with other plants under given environmental conditions. The performance of individual plants in turn drives the assembly of a plant community. A genetic optimisation algorithm is used to simulate the inheritance of traits and different levels of reproductive isolation between individuals. Together these model properties allow the assembly of plant communities that are well adapted to a site's biotic and abiotic conditions. Simulated communities can be classified into different plant functional types or biome types by using trait data bases. We illustrate that the aDGVM2 can simulate (1) how environmental conditions and changes in these conditions influence the trait spectra of assembled plant communities, (2) that fire selects for traits that enhance fire protection and reduces trait diversity, and (3) the emergence of communities dominated by life history strategies that are suggestive of colonisation-competition trade-offs. The aDGVM2 deals with functional diversity and competition fundamentally differently from current dynamic vegetation models. We argue that this approach will yield novel insights as to how vegetation may respond to climate change and we believe that it could foster fruitful collaborations between research communities that focus on plant functional traits, plant competition, plant physiology, systems ecology and earth system

  17. Belowground Controls on the Dynamics of Plant Communities

    NASA Astrophysics Data System (ADS)

    Sivandran, G.

    2013-12-01

    Arid regions are characterized by high variability in the arrival of rainfall, and species found in these areas have adapted mechanisms to ensure the capture of this scarce resource. In particular, the rooting strategies employed by vegetation can be critical to their survival. These rooting strategies also dictate the competitive outcomes within plant communities. A dynamic rooting scheme was incorporated into tRIBS+VEGGIE (a physically-based, distributed ecohydrologic model). The dynamic rooting scheme allows vegetation the freedom to alter its rooting profile in response to changes in rainfall and soil conditions, in a way that more closely mimics observed phenotypic plasticity. A simple competition-colonization model was combined with the new dynamic root scheme to explore the role of root adaptability in plant competition and landscape evolution in semi-arid environments. The influence of model representation of rooting strategy on the long term plant community composition

  18. Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste.

    PubMed

    Supaphol, Savaporn; Jenkins, Sasha N; Intomo, Pichamon; Waite, Ian S; O'Donnell, Anthony G

    2011-03-01

    This paper identifies key components of the microbial community involved in the mesophilic anaerobic co-digestion (AD) of mixed waste at Rayong Biogas Plant, Thailand. The AD process is separated into three stages: front end treatment (FET); feed holding tank and the main anaerobic digester. The study examines how the microbial community structure was affected by the different stages and found that seeding the waste at the beginning of the process (FET) resulted in community stability. Also, co-digestion of mixed waste supported different bacterial and methanogenic pathways. Typically, acetoclastic methanogenesis was the major pathway catalysed by Methanosaeta but hydrogenotrophs were also supported. Finally, the three-stage AD process means that hydrolysis and acidogenesis is initiated prior to entering the main digester which helps improve the bioconversion efficiency. This paper demonstrates that both resource availability (different waste streams) and environmental factors are key drivers of microbial community dynamics in mesophilic, anaerobic co-digestion.

  19. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  20. Dynamics of alpha oscillations elucidate facial affect recognition in schizophrenia.

    PubMed

    Popov, Tzvetan G; Rockstroh, Brigitte S; Popova, Petia; Carolus, Almut M; Miller, Gregory A

    2014-03-01

    Impaired facial affect recognition is characteristic of schizophrenia and has been related to impaired social function, but the relevant neural mechanisms have not been fully identified. The present study sought to identify the role of oscillatory alpha activity in that deficit during the process of facial emotion recognition. Neuromagnetic brain activity was monitored while 44 schizophrenia patients and 44 healthy controls viewed 5-s videos showing human faces gradually changing from neutral to fearful or happy expressions or from the neutral face of one poser to the neutral face of another. Recognition performance was determined separately by self-report. Relative to prestimulus baseline, controls exhibited a 10- to 15-Hz power increase prior to full recognition and a 10- to 15-Hz power decrease during the postrecognition phase. These results support recent proposals about the function of alpha-band oscillations in normal stimulus evaluation. The patients failed to show this sequence of alpha power increase and decrease and also showed low 10- to 15-Hz power and high 10- to 15-Hz connectivity during the prestimulus baseline. In light of the proposal that a combination of alpha power increase and functional disconnection facilitates information intake and processing, the finding of an abnormal association of low baseline alpha power and high connectivity in schizophrenia suggests a state of impaired readiness that fosters abnormal dynamics during facial affect recognition.

  1. Community dynamics of Pleistocene coral reefs during alternative climatic regimes.

    PubMed

    Tager, Danika; Webster, Jody M; Potts, Donald C; Renema, Willem; Braga, Juan C; Pandolfi, John M

    2010-01-01

    Reef ecosystems built during successive periods of Pleistocene sea level rise have shown remarkable persistence in coral community structure, but little is known of the ecological characteristics of reef communities during periods of low sea stands or sea level falls. We sampled the relative species abundance of coral, benthic foraminifera, and calcareous red algae communities from eight submerged coral reefs in the Huon Gulf, Papua New Guinea, which formed during successive sea level fall and lowstand periods over the past approximately kyr. We found that dissimilarity in coral species composition increased significantly with increasing time between reef-building events. However, neither coral diversity nor the taxonomic composition of benthic foraminifera and calcareous red algae assemblages varied significantly over time. The taxonomic composition of coral communities from lowstand reefs was significantly different from that of highstand reefs previously reported from the nearby Huon Peninsula. We interpret the community composition and temporal dynamics of lowstand reefs as a result of shifting energy regimes in the Huon Gulf, and differences between low and highstand reefs as a result of differences in the interaction between biotic and environmental factors between the Huon Gulf and Huon Peninsula. Regardless of the exact processes driving these trends, our study represents the first glimpse into the ecological dynamics of coral reefs during low sea level stands when climatic conditions for reef growth were much different and less optimal than during previously studied highstand periods.

  2. Mesoherbivores affect grasshopper communities in a megaherbivore-dominated South African savannah.

    PubMed

    van der Plas, Fons; Olff, Han

    2014-06-01

    African savannahs are among the few places on earth where diverse communities of mega- and meso-sized ungulate grazers dominate ecosystem functioning. Less conspicuous, but even more diverse, are the communities of herbivorous insects such as grasshoppers, which share the same food. Various studies investigated the community assembly of these groups separately, but it is poorly known how ungulate communities shape grasshopper communities. Here, we investigated how ungulate species of different body size alter grasshopper communities in a South African savannah. White rhino is the most abundant vertebrate herbivore in our study site. Other common mesoherbivores include buffalo, zebra and impala. We hypothesized that white rhinos would have greater impact than mesoherbivores on grasshopper communities. Using 10-year-old exclosures, at eight sites we compared the effects of ungulates on grasshopper communities in three nested treatments: (i) unfenced plots ('control plots') with all vertebrate herbivores present, (ii) plots with a low cable fence, excluding white rhino ('megaherbivore exclosures'), and (iii) plots with tall fences, excluding all herbivores larger than rodents ('complete ungulate exclosures'). In each plot, we collected data of vegetation structure, grass and grasshopper community composition. Complete ungulate exclosures contained 30% taller vegetation than megaherbivore exclosures and they were dominated by different grass and grasshopper species. Grasshoppers in complete ungulate exclosures were on average 3.5 mm longer than grasshoppers in megaherbivore exclosures, possibly due to changes in plant communities or vegetation structure. We conclude that surprisingly, in this megaherbivore hotspot, mesoherbivores, instead of megaherbivores, most strongly affect grasshopper communities.

  3. Bacterial community dynamics in the hyporheic zone of an intermittent stream.

    PubMed

    Febria, Catherine M; Beddoes, Paul; Fulthorpe, Roberta R; Williams, D Dudley

    2012-05-01

    The dynamics of in situ bacterial communities in the hyporheic zone of an intermittent stream were described in high spatiotemporal detail. We assessed community dynamics in stream sediments and interstitial pore water over a two-year period using terminal-restriction fragment length polymorphism. Here, we show that sediments remained saturated despite months of drought and limited hydrologic connectivity. The intermittency of stream surface water affected interstitial pore water communities more than hyporheic sediment communities. Seasonal changes in bacterial community composition was significantly associated with water intermittency, phosphate concentrations, temperature, nitrate and dissolved organic carbon (DOC) concentrations. During periods of low- to no-surface water, communities changed from being rich in operational taxonomic units (OTUs) in isolated surface pools, to a few OTUs overall, including an overall decline in both common and rare taxa. Individual OTUs were compared between porewater and sediments. A total of 19% of identified OTUs existed in both porewater and sediment samples, suggesting that bacteria use hyporheic sediments as a type of refuge from dessication, transported through hydrologically connected pore spaces. Stream intermittency impacted bacterial diversity on rapid timescales (that is, within days), below-ground and in the hyporheic zone. Owing to the coupling of intermittent streams to the surrounding watershed, we stress the importance of understanding connectivity at the pore scale, consequences for below-ground and above-ground biodiversity and nutrient processing, and across both short- and long-time periods (that is, days to months to years).

  4. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  5. Forest fragmentation and bird community dynamics: inference at regional scales

    USGS Publications Warehouse

    Boulinier, T.; Nichols, J.D.; Hines, J.E.; Sauer, J.R.; Flather, C.H.; Pollock, K.H.

    2001-01-01

    With increasing fragmentation of natural areas and a dramatic reduction of forest cover in several parts of the world, quantifying the impact of such changes on species richness and community dynamics has been a subject of much concern. Here, we tested whether in more fragmented landscapes there was a lower number of area-sensitive species and higher local extinction and turnover rates, which could explain higher temporal variability in species richness. To investigate such potential landscape effects at a regional scale, we merged two independent, large-scale monitoring efforts: the North American Breeding Bird Survey (BBS) and the Land Use and Land Cover Classification data from the U.S. Geological Survey. We used methods that accounted for heterogeneity in the probability of detecting species to estimate species richness and temporal changes in the bird communities for BBS routes in three mid-Atlantic U.S. states. Forest breeding bird species were grouped prior to the analyses into area-sensitive and non-area-sensitive species according to previous studies. We tested predictions relating measures of forest structure at one point in time (1974) to species richness at that time and to parameters of forest bird community change over the following 22-yr-period (1975-1996). We used the mean size of forest patches to characterize landscape structure, as high correlations among landscape variables did not allow us to disentangle the relative roles of habitat fragmentation per se and habitat loss. As predicted, together with lower species richness for area-sensitive species on routes surrounded by landscapes with lower mean forest-patch size, we found higher mean year-to-year rates of local extinction. Moreover, the mean year-to-year rates of local turnover (proportion of locally new species) for area-sensitive species were also higher in landscapes with lower mean forest-patch size. These associations were not observed for the non-area-sensitive species group. These

  6. Subcycled dynamics in the Spectral Community Atmosphere Model, version 4

    SciTech Connect

    Taylor, Mark; Evans, Katherine J; Hack, James J; Worley, Patrick H

    2010-01-01

    To gain computational efficiency, a split explicit time integration scheme has been implemented in the CAM spectral Eulerian dynamical core. In this scheme, already present in other dynamical core options within the Community Atmosphere Model, version 4 (CAM), the fluid dynamics portion of the model is subcycled to allow a longer time step for the parameterization schemes. The physics parameterization of CAM is not subject to the stability restrictions of the fluid dynamics, and thus finer spatial resolutions of the model do not require the physics time step to be reduced. A brief outline of the subcycling algorithm implementation and resulting model efficiency improvement is presented. A discussion regarding the effect of the climate statistics derived from short model runs is provided.

  7. Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.

    PubMed

    Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S

    2014-01-01

    Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.

  8. Fungal community dynamics and driving factors during agricultural waste composting.

    PubMed

    Yu, Man; Zhang, Jiachao; Xu, Yuxin; Xiao, Hua; An, Wenhao; Xi, Hui; Xue, Zhiyong; Huang, Hongli; Chen, Xiaoyang; Shen, Alin

    2015-12-01

    This study was conducted to identify the driving factors behind fungal community dynamics during agricultural waste composting. Fungal community abundance and structure were determined by quantitative PCR and denaturing gradient gel electrophoresis analysis combined with DNA sequencing. The effects of physico-chemical parameters on fungal community abundance and structure were evaluated by least significant difference tests and redundancy analysis. The results showed that Cladosporium bruhnei, Hanseniaspora uvarum, Scytalidium thermophilum, Tilletiopsis penniseti, and Coprinopsis altramentaria were prominent during the composting process. The greatest variation in the distribution of fungal community structure was statistically explained by pile temperature and total organic carbon (TOC) (P < 0.05). A significant amount of the variation (74.6 %) was explained by these two parameters alone. Fungal community abundance was found to be significantly related to pH, while pH was significantly influenced by pile temperature and nitrate levels (P < 0.05), and these parameters were found to be the most likely to influence or be influenced by the fungal community during composting.

  9. Dynamics of social network structure for Alzheimer and Lymphoma scientific communities.

    PubMed

    Barbash, Shahar

    2015-02-20

    It is generally assumed that sociology affects scientific progress but specific examples of this assumption are hard to find. We examined this hypothesis by comparing the social network structure and its dynamics over the last 16 years, for two common human diseases; Alzheimer's disease, for which there has been very little therapeutic progress, and Lymphoma, were there has been significant therapeutic progress. We found that the Alzheimer's research community is more interlinked ('dense') and more 'cliquish' than that of Lymphoma and suggest that this could affect its scientific progress.

  10. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease

    PubMed Central

    Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina

    2012-01-01

    Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993

  11. Resolution of natural microbial community dynamics by community fingerprinting, flow cytometry, and trend interpretation analysis.

    PubMed

    Bombach, Petra; Hübschmann, Thomas; Fetzer, Ingo; Kleinsteuber, Sabine; Geyer, Roland; Harms, Hauke; Müller, Susann

    2011-01-01

    Natural microbial communities generally have an unknown structure and composition because of their still not yet cultivable members. Therefore, understanding the relationships among the bacterial members, prediction of their behaviour, and controlling their functions are difficult and often only partly successful endeavours to date. This study aims to test a new idea that allows to follow community dynamics on the basis of a simple concept. Terminal restriction fragment length polymorphism (T-RFLP) analysis of bacterial 16S ribosomal RNA genes was used to describe a community profile that we define as composition of a community. Flow cytometry and analysis of DNA contents and forward scatter characteristics of the single cells were used to describe a community profile, which we define as structure of a community. Both approaches were brought together by a non-metric multidimensional scaling (n-MDS) for trend interpretation of changes in the complex community data sets. This was done on the basis of a graphical evaluation of the cytometric data, leading to the newly developed Dalmatian plot tool, which gave an unexpected insight into the dynamics of the unknown bacterial members of the investigated natural microbial community. The approach presented here was compared with other techniques described in the literature. The microbial community investigated in this study was obtained from a BTEX contaminated anoxic aquifer. The indigenous bacteria were allowed to colonise in situ microcosms consisting of activated carbon. These microcosms were amended with benzene and one of the electron acceptors nitrate, sulphate or ferric iron to stimulate microbial growth. The data obtained in this study indicated that the composition (via T-RFLP) and structure (via flow cytometry) of the natural bacterial community were influenced by the hydro-geochemical conditions in the test site, but also by the supplied electron acceptors, which led to distinct shifts in relative abundances of

  12. The Dynamic Community of Interest and Its Realization in ZODIAC

    DTIC Science & Technology

    2009-10-01

    the ZODIAC project. ZODIAC is a network architecture that puts security first and foremost, with security broken down into confidentiality, integrity...hosts, a unified solution for MANETs will work for hosts or routers as well. DYNAMIC COMMUNITIES OF INTEREST The basis of the ZODIAC design is a new dis...whether file transfer or real time, is restrict- ed by ZODIAC mechanisms to nodes that have a need to know, and can prove it through posses- sion of

  13. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion.

    PubMed

    Baggio, Jacopo A; BurnSilver, Shauna B; Arenas, Alex; Magdanz, James S; Kofinas, Gary P; De Domenico, Manlio

    2016-11-29

    Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social-ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources.

  14. Multiplex social ecological network analysis reveals how social changes affect community robustness more than resource depletion

    PubMed Central

    BurnSilver, Shauna B.; Arenas, Alex; Magdanz, James S.; Kofinas, Gary P.

    2016-01-01

    Network analysis provides a powerful tool to analyze complex influences of social and ecological structures on community and household dynamics. Most network studies of social–ecological systems use simple, undirected, unweighted networks. We analyze multiplex, directed, and weighted networks of subsistence food flows collected in three small indigenous communities in Arctic Alaska potentially facing substantial economic and ecological changes. Our analysis of plausible future scenarios suggests that changes to social relations and key households have greater effects on community robustness than changes to specific wild food resources. PMID:27856752

  15. Population dynamics of microbial communities in the zebrafish gut

    NASA Astrophysics Data System (ADS)

    Jemielita, Matthew; Taormina, Michael; Burns, Adam; Hampton, Jennifer; Rolig, Annah; Wiles, Travis; Guillemin, Karen; Parthasarathy, Raghuveer

    2015-03-01

    The vertebrate intestine is home to a diverse microbial community, which plays a crucial role in the development and health of its host. Little is known about the population dynamics and spatial structure of this ecosystem, including mechanisms of growth and interactions between species. We have constructed an experimental model system with which to explore these issues, using initially germ-free larval zebrafish inoculated with defined communities of fluorescently tagged bacteria. Using light sheet fluorescence microscopy combined with computational image analysis we observe and quantify the entire bacterial community of the intestine during the first 24 hours of colonization, during which time the bacterial population grows from tens to tens of thousands of bacteria. We identify both individual bacteria and clusters of bacteria, and quantify the growth rate and spatial distribution of these distinct subpopulations. We find that clusters of bacteria grow considerably faster than individuals and are located in specific regions of the intestine. Imaging colonization by two species reveals spatial segregation and competition. These data and their analysis highlight the importance of spatial organization in the establishment of gut microbial communities, and can provide inputs to physical models of real-world ecological dynamics.

  16. Fungal-fungal associations affect the assembly of endophyte communities in maize (Zea mays).

    PubMed

    Pan, Jean J; May, Georgiana

    2009-10-01

    Many factors can affect the assembly of communities, ranging from species pools to habitat effects to interspecific interactions. In microbial communities, the predominant focus has been on the well-touted ability of microbes to disperse and the environment acting as a selective filter to determine which species are present. In this study, we investigated the role of biotic interactions (e.g., competition, facilitation) in fungal endophyte community assembly by examining endophyte species co-occurrences within communities using null models. We used recombinant inbred lines (genotypes) of maize (Zea mays) to examine community assembly at multiple habitat levels, at the individual plant and host genotype levels. Both culture-dependent and culture-independent approaches were used to assess endophyte communities. Communities were analyzed using the complete fungal operational taxonomic unit (OTU) dataset or only the dominant (most abundant) OTUs in order to ascertain whether species co-occurrences were different for dominant members compared to when all members were included. In the culture-dependent approach, we found that for both datasets, OTUs co-occurred on maize genotypes more frequently than expected under the null model of random species co-occurrences. In the culture-independent approach, we found that OTUs negatively co-occurred at the individual plant level but were not significantly different from random at the genotype level for either the dominant or complete datasets. Our results showed that interspecific interactions can affect endophyte community assembly, but the effects can be complex and depend on host habitat level. To our knowledge, this is the first study to examine endophyte community assembly in the same host species at multiple habitat levels. Understanding the processes and mechanisms that shape microbial communities will provide important insights into microbial community structure and the maintenance of microbial biodiversity.

  17. Community dynamics and ecosystem simplification in a high-CO2 ocean

    PubMed Central

    Kroeker, Kristy J.; Gambi, Maria Cristina; Micheli, Fiorenza

    2013-01-01

    Disturbances are natural features of ecosystems that promote variability in the community and ultimately maintain diversity. Although it is recognized that global change will affect environmental disturbance regimes, our understanding of the community dynamics governing ecosystem recovery and the maintenance of functional diversity in future scenarios is very limited. Here, we use one of the few ecosystems naturally exposed to future scenarios of environmental change to examine disturbance and recovery dynamics. We examine the recovery patterns of marine species from a physical disturbance across different acidification regimes caused by volcanic CO2 vents. Plots of shallow rocky reef were cleared of all species in areas of ambient, low, and extreme low pH that correspond to near-future and extreme scenarios for ocean acidification. Our results illustrate how acidification decreases the variability of communities, resulting in homogenization and reduced functional diversity at a landscape scale. Whereas the recovery trajectories in ambient pH were highly variable and resulted in a diverse range of assemblages, recovery was more predictable with acidification and consistently resulted in very similar algal-dominated assemblages. Furthermore, low pH zones had fewer signs of biological disturbance (primarily sea urchin grazing) and increased recovery rates of the dominant taxa (primarily fleshy algae). Together, our results highlight how environmental change can cause ecosystem simplification via environmentally mediated changes in community dynamics in the near future, with cascading impacts on functional diversity and ecosystem function. PMID:23836638

  18. Spatial and temporal dynamics of soil moisture and salinity in typical plant communities of Sangonghe Basin

    NASA Astrophysics Data System (ADS)

    Gu, Fengxue; Chu, Yu; Zhang, Yuandong; Liu, Yongqiang; Anabiek, Subai; Ye, Qian; Pan, Xiaoling

    2003-07-01

    Soil moisture, salinity, ground water table and salt concentration were measured monthly in seven typical plant communities for one year in Sangonghe basin of Xinjiang. Temporal dynamics of soil water and salinity during growing season were compared within these communities. The dominant species in each of these communities were Suaeda physophora, Reaumuria soongorica, Anabasis aphylla and Kalidium foliatum, Tamarix ramosissima, Alhagi pseudalhagi and Haloxylon ammodendron respectively. Results show that soil water content and salinity were significantly different among all these communities. In the edge of alluvial fan and low reaches of the river, ground water table was high, soil profile was moist, and salt concentrated in the soil upper layers and surface. Soils were all saline with dominant species of T. ramosissima, A. aphylla and K. foliatum. In the plain area, communities were dominated by R. soongoricaand S. physophora Ground water table was generally low, but soil surface and up layer contained high salt concentration. Soil here belonged to strong to medium salinized soil. In ecotone, ground water table increased due to the irrigation in the nearby oasis. From soil surface to deep layers, water content increased gradually with no salt accumulation for all the layers. Vegetation in ecotone was stable and dominated by A. pseudalhagi. In intervale of desert, ground water table was very deep and soil was very dry throughout of the profile. There were no significant differences in vertical and temporal change of soil moisture. Communities were dominated by H. ammodendron. Spatial and temporal dynamics of the soil moisture and salinity caused community subrogation, and were the two main factors that affected distribution and succession of plant communities.

  19. Climate events synchronize the dynamics of a resident vertebrate community in the high Arctic.

    PubMed

    Hansen, Brage B; Grøtan, Vidar; Aanes, Ronny; Sæther, Bernt-Erik; Stien, Audun; Fuglei, Eva; Ims, Rolf A; Yoccoz, Nigel G; Pedersen, Ashild Ø

    2013-01-18

    Recently accumulated evidence has documented a climate impact on the demography and dynamics of single species, yet the impact at the community level is poorly understood. Here, we show that in Svalbard in the high Arctic, extreme weather events synchronize population fluctuations across an entire community of resident vertebrate herbivores and cause lagged correlations with the secondary consumer, the arctic fox. This synchronization is mainly driven by heavy rain on snow that encapsulates the vegetation in ice and blocks winter forage availability for herbivores. Thus, indirect and bottom-up climate forcing drives the population dynamics across all overwintering vertebrates. Icing is predicted to become more frequent in the circumpolar Arctic and may therefore strongly affect terrestrial ecosystem characteristics.

  20. Endangered light-footed clapper rail affects parasite community structure in coastal wetlands.

    PubMed

    Whitney, Kathleen L; Hechinger, Ryan F; Kuris, Armand M; Lafferty, Kevin D

    2007-09-01

    An extinction necessarily affects community members that have obligate relationships with the extinct species. Indirect or cascading effects can lead to even broader changes at the community or ecosystem level. However, it is not clear whether generalist parasites should be affected by the extinction of one of their hosts. We tested the prediction that loss of a host species could affect the structure of a generalist parasite community by investigating the role of endangered Light-footed Clapper Rails (Rallus longirostris levipes) in structuring trematode communities in four tidal wetlands in southern California, U.S.A. (Carpinteria Salt Marsh, Mugu Lagoon) and Mexico (Estero de Punta Banda, Bahia Falsa-San Quintin). We used larval trematode parasites in first intermediate host snails (Cerithidea californica) as windows into the adult trematodes that parasitize Clapper Rails. Within and among wetlands, we found positive associations between Clapper Rails and four trematode species, particularly in the vegetated marsh habitat where Clapper Rails typically occur. This suggests that further loss of Clapper Rails is likely to affect the abundance of several competitively dominant trematode species in wetlands with California horn snails, with possible indirect effects on the trematode community and changes in the impacts of these parasites on fishes and invertebrates.

  1. Stability in flux: community structure in dynamic networks.

    PubMed

    Bryden, John; Funk, Sebastian; Geard, Nicholas; Bullock, Seth; Jansen, Vincent A A

    2011-07-06

    The structure of many biological, social and technological systems can usefully be described in terms of complex networks. Although often portrayed as fixed in time, such networks are inherently dynamic, as the edges that join nodes are cut and rewired, and nodes themselves update their states. Understanding the structure of these networks requires us to understand the dynamic processes that create, maintain and modify them. Here, we build upon existing models of coevolving networks to characterize how dynamic behaviour at the level of individual nodes generates stable aggregate behaviours. We focus particularly on the dynamics of groups of nodes formed endogenously by nodes that share similar properties (represented as node state) and demonstrate that, under certain conditions, network modularity based on state compares well with network modularity based on topology. We show that if nodes rewire their edges based on fixed node states, the network modularity reaches a stable equilibrium which we quantify analytically. Furthermore, if node state is not fixed, but can be adopted from neighbouring nodes, the distribution of group sizes reaches a dynamic equilibrium, which remains stable even as the composition and identity of the groups change. These results show that dynamic networks can maintain the stable community structure that has been observed in many social and biological systems.

  2. Different degrees of plant invasion significantly affect the richness of the soil fungal community.

    PubMed

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process.

  3. Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams.

    PubMed

    Paavola, Riku; Muotka, Timo; Virtanen, Risto; Heino, Jani; Jackson, Donald; Maki-Petäys, Aki

    2006-02-01

    Owing to the lack of information about the distribution patterns of many taxonomic groups, biodiversity conservation strategies commonly rely on a surrogate taxa approach for identifying areas of maximum conservation potential. Macroinvertebrates or fish are the most likely candidates for such a role in many freshwater systems. The usefulness of the surrogate taxa depends largely on community concordance, i.e., the degree of similarity in community patterns among taxonomic groups across a set of sites. We examined the effect of the spatial scale of a. study on the strength of community concordance among macroinvertebrates, bryophytes, and fish by comparing the concordance between ordinations of these groups in 101 boreal stream sites. We specifically asked if communities spanning several drainages are more concordant than those originating from a single drainage system. Our results indicate that community concordance is affected by spatial extent, being variable and generally weak at the scale of individual drainages, but strong across multiple drainage systems and ecoregions. We attribute this finding to different taxonomic groups responding to similar environmental factors and sharing a similar latitudinal gradient of community structure when viewed across large spatial scales. We also identified a "gradient of concordance," with sites contributing disproportionately to community concordance being in relatively large streams with high microhabitat variability. Overall, our results suggest that the degree of community concordance among freshwater organism groups depends critically on the spatial extent of the study, and surrogate groups at the scale of single river systems should be used with caution.

  4. Arrival order among native plant functional groups does not affect invasibility of constructed dune communities.

    PubMed

    Mason, T J; French, K; Jolley, D

    2013-10-01

    Different arrival order scenarios of native functional groups to a site may influence both resource use during development and final community structure. Arrival order may then indirectly influence community resistance to invasion. We present a mesocosm experiment of constructed coastal dune communities that monitored biotic and abiotic responses to different arrival orders of native functional groups. Constructed communities were compared with unplanted mesocosms. We then simulated a single invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata), a dominant exotic shrub of coastal communities. We evaluated the hypothesis that plantings with simultaneous representation of grass, herb and shrub functional groups at the beginning of the experiment would more completely sequester resources and limit invasion than staggered plantings. Staggered plantings in turn would offer greater resource use and invasion resistance than unplanted mesocosms. Contrary to our expectations, there were few effects of arrival order on abiotic variables for the duration of the experiment and arrival order was unimportant in final community invasibility. All planted mesocosms supported significantly more invader germinants and significantly less invader abundance than unplanted mesocosms. Native functional group plantings may have a nurse effect during the invader germination and establishment phase and a competitive function during the invader juvenile and adult phase. Arrival order per se did not affect resource use and community invasibility in our mesocosm experiment. While grass, herb and shrub functional group plantings will not prevent invasion success in restored communities, they may limit final invader biomass.

  5. Different Degrees of Plant Invasion Significantly Affect the Richness of the Soil Fungal Community

    PubMed Central

    Si, Chuncan; Liu, Xueyan; Wang, Congyan; Wang, Lei; Dai, Zhicong; Qi, Shanshan; Du, Daolin

    2013-01-01

    Several studies have shown that soil microorganisms play a key role in the success of plant invasion. Thus, ecologists have become increasingly interested in understanding the ecological effects of biological invasion on soil microbial communities given continuing increase in the effects of invasive plants on native ecosystems. This paper aims to provide a relatively complete depiction of the characteristics of soil microbial communities under different degrees of plant invasion. Rhizospheric soils of the notorious invasive plant Wedelia trilobata with different degrees of invasion (uninvaded, low-degree, and high-degree using its coverage in the invaded ecosystems) were collected from five discrete areas in Hainan Province, P. R. China. Soil physicochemical properties and community structure of soil microorganisms were assessed. Low degrees of W. trilobata invasion significantly increased soil pH values whereas high degrees of invasion did not significantly affected soil pH values. Moreover, the degree of W. trilobata invasion exerted significant effects on soil Ca concentration but did not significantly change other indices of soil physicochemical properties. Low and high degrees of W. trilobata invasion increased the richness of the soil fungal community but did not pose obvious effects on the soil bacterial community. W. trilobata invasion also exerted obvious effects on the community structure of soil microorganisms that take part in soil nitrogen cycling. These changes in soil physicochemical properties and community structure of soil microbial communities mediated by different degrees of W. trilobata invasion may present significant functions in further facilitating the invasion process. PMID:24392015

  6. Factors affecting virus dynamics and microbial host-virus interactions in marine environments.

    PubMed

    Mojica, Kristina D A; Brussaard, Corina P D

    2014-09-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host infection and mortality, viruses affect microbial population dynamics, community composition, genetic evolution, and biogeochemical cycling. However, the field of marine viral ecology is currently limited by a lack of data regarding how different environmental factors regulate virus dynamics and host-virus interactions. The goal of the present minireview was to contribute to the evolution of marine viral ecology, through the assimilation of available data regarding the manner and degree to which environmental factors affect viral decay and infectivity as well as influence latent period and production. Considering the ecological importance of viruses in the marine ecosystem and the increasing pressure from anthropogenic activity and global climate change on marine systems, a synthesis of existing information provides a timely framework for future research initiatives in viral ecology.

  7. Predation and resource fluctuations drive eco-evolutionary dynamics of a bacterial community

    NASA Astrophysics Data System (ADS)

    Hiltunen, Teppo; Friman, Ville-Petri; Kaitala, Veijo; Mappes, Johanna; Laakso, Jouni

    2012-01-01

    Predation and temporal resource availability are among the most important factors determining prey community dynamics and composition. Both factors have been shown to affect prey diversity, but less is known about their interactive effects, especially in rapidly evolving prey communities. In a laboratory microcosm experiment, we manipulated the presence of the predatory protozoan Tetrahymena thermophila and the temporal patterns in the availability of resources for a bacterial prey community. We found that both predation and temporal fluctuations in prey resources resulted in a more even prey community, and these factors also interacted so that the effect of predation was only seen in a fluctuating environment. One possible explanation for this finding could be differences in prey species grazing resistance and resource use abilities, which likely had the greatest effect on prey community structure in fluctuating environments with periodical resource limitation. We also found that prey communities evolved to be more grazing-resistant during the experiment, and that this effect was due to a clear increase in the grazing resistance of the bacterium Serratia marcescens. Our results demonstrate that temporal variability in prey resources and predation can promote more even prey species proportions by allowing the existence of both defensive and competitive prey life-history strategies.

  8. Dynamics of bacterial and fungal communities associated with eggshells during incubation

    PubMed Central

    Grizard, Stéphanie; Dini-Andreote, Francisco; Tieleman, B Irene; Salles, Joana F

    2014-01-01

    Microorganisms are closely associated with eggs and may play a determinant role in embryo survival. Yet, the majority of studies focusing on this association relied on culture-based methodology, eventually leading to a skewed assessment of microbial communities. By targeting the 16S rRNA gene and internal transcribed spacer (ITS) region, we, respectively, described bacterial and fungal communities on eggshells of the homing pigeon Columba livia. We explored their structure, abundance, and composition. Firstly, we showed that sampling technique affected the outcome of the results. While broadly used, the egg swabbing procedure led to a lower DNA extraction efficiency and provided different profiles of bacterial communities than those based on crushed eggshell pieces. Secondly, we observed shifts in bacterial and fungal communities during incubation. At late incubation, bacterial communities showed a reduction in diversity, while their abundance increased, possibly due to the competitive advantage of some species. When compared to their bacterial counterparts, fungal communities also decreased in diversity at late incubation. In that case, however, the decline was associated with a diminution of their overall abundance. Conclusively, our results showed that although incubation might inhibit microbial growth when compared to unincubated eggs, we observed the selective growth of specific bacterial species during incubation. Moreover, we showed that fungi are a substantial component of the microbial communities associated with eggshells and require further investigations in avian ecology. Identifying the functional roles of these microorganisms is likely to provide news insights into the evolutionary strategies that control embryo survival. We aimed to describe the dynamics of bacterial and fungal communities on homing pigeon eggshell surfaces. We investigated these communities at early and late incubation stages. PMID:24772289

  9. The interaction of cannibalism and omnivory: consequences for community dynamics.

    PubMed

    Rudolf, Volker H W

    2007-11-01

    Although cannibalism is ubiquitous in food webs and frequent in systems where a predator and its prey also share a common resource (intraguild predation, IGP), its impacts on species interactions and the dynamics and structure of communities are still poorly understood. In addition, the few existing studies on cannibalism have generally focused on cannibalism in the top-predator, ignoring that it is frequent at intermediate trophic levels. A set of structured models shows that cannibalism can completely alter the dynamics and structure of three-species IGP systems depending on the trophic position where cannibalism occurs. Contrary to the expectations of simple models, the IG predator can exploit the resources more efficiently when it is cannibalistic, enabling the predator to persist at lower resource densities than the IG prey. Cannibalism in the IG predator can also alter the effect of enrichment, preventing predator-mediated extinction of the IG prey at high productivities predicted by simple models. Cannibalism in the IG prey can reverse the effect of top-down cascades, leading to an increase in the resource with decreasing IG predator density. These predictions are consistent with current data. Overall, cannibalism promotes the coexistence of the IG predator and IG prey. These results indicate that including cannibalism in current models can overcome the discrepancy between theory and empirical data. Thus, we need to measure and account for cannibalistic interactions to reliably predict the structure and dynamics of communities.

  10. Territorial occupancy dynamics in a forest raptor community.

    PubMed

    Jiménez-Franco, María V; Martínez, José E; Calvo, José F

    2011-06-01

    A Markovian modeling approach was used to explore territorial interactions among three forest raptors coexisting in a forested natural area in southeast Spain: the booted eagle (Hieraaetus pennatus), the common buzzard (Buteo buteo) and the northern goshawk (Accipiter gentilis). Using field data collected over a period of 12 years, 11 annual transition matrices were built, considering four occupancy states for each territory. The model describes transitional processes (colonization, abandonment, replacement and persistence), permits temporal variations in the transition matrix to be tested, and simulates territorial occupation for a few subsequent years. Parameters for the species and community dynamics were described in terms of turnover times and damping ratio. A perturbation analysis was performed to simulate the effects of changes in the transition probabilities on the stable state distribution. Our results indicate the existence of a stable community, largely dominated by the booted eagles, and described by a time-invariant transition matrix. Despite the stability observed, the territorial system is highly dynamic, with frequent abandonment and colonization events, although interspecific territorial interactions (the replacement of one species by another) are uncommon. Consequently, the three species appear to follow relatively independent occupancy dynamics. Simulation of potential management actions showed that substantial increases in the number of territories occupied by the less common species (goshawk and buzzard) can only be attained if relatively large increases in their reoccupation and colonization rates are considered.

  11. A Hierarchical Latent Stochastic Differential Equation Model for Affective Dynamics

    ERIC Educational Resources Information Center

    Oravecz, Zita; Tuerlinckx, Francis; Vandekerckhove, Joachim

    2011-01-01

    In this article a continuous-time stochastic model (the Ornstein-Uhlenbeck process) is presented to model the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our affective experiences. The process model that we propose can account for the temporal changes in core affect on the latent level. The key…

  12. Dynamics of Affective Experience and Behavior in Depressed Adolescents

    ERIC Educational Resources Information Center

    Sheeber, Lisa B.; Allen, Nicholas B.; Leve, Craig; Davis, Betsy; Shortt, Joann Wu; Katz, Lynn Fainsilber

    2009-01-01

    Background: Depression is often characterized as a disorder of affect regulation. However, research focused on delineating the key dimensions of affective experience (other than valence) that are abnormal in depressive disorder has been scarce, especially in child and adolescent samples. As definitions of affect regulation center around processes…

  13. Insights into the dynamics of bacterial communities during chalcopyrite bioleaching.

    PubMed

    He, Zhiguo; Gao, Fengling; Zhao, Jiancun; Hu, Yuehua; Qiu, Guanzhou

    2010-10-01

    The microbial ecology of the bioleaching of chalcopyrite ores is poorly understood and little effort has been made to handle the microbiological components of these processes. In this study, the composition and structure of microbial communities in acid mineral bioleaching systems have been studied using a PCR-based cloning approach. Denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA gene fragments from bacteria was used to evaluate the changes in the bacterial community in the process of chalcopyrite bioleaching in a shaken flask system. The results revealed that the bacterial community was disturbed after the addition of chalcopyrite. Phylogenetic analyses of 16S rRNA gene fragments revealed that the retrieved sequences clustered together with the genera Acidithiobacillus, Leptospirillum, and Acidovorax. Multidimensional scaling analysis of DGGE banding patterns revealed that the process of chalcopyrite bioleaching in 46 days was divided into four stages. In the first stage, Leptospirillum were dominant. In the second stage, Leptospirillum and Acidithiobacillus groups were mainly detected. In the third and fourth stages, the bacterial community was relatively stable and was dominated by Leptospirillum and Acidithiobacillus. These results extend our knowledge on the microbial dynamics in chalcopyrite bioleaching, a key issue required to improve commercial applications.

  14. Minimum Wage and Community College Attendance: How Economic Circumstances Affect Educational Choices

    ERIC Educational Resources Information Center

    Williams, Betsy

    2013-01-01

    How do changes in minimum wages affect community college enrollment and employment? In particular, among adults without associate's or bachelor's degrees who may earn near the minimum wage, do endowment effects of a higher minimum wage encourage school attendance? Among adults without associate's or bachelor's degrees who may earn near the minimum…

  15. Death and Grief: A Plan for Principals to Deal with Tragedy Affecting the School Community.

    ERIC Educational Resources Information Center

    Powers, Harry L.

    1987-01-01

    Spurred by the "Challenger" space shuttle tragedy, this article provides principals with guidelines for informing individual students about family deaths and dealing with grief affecting the entire school community. Thorough preparation can reduce intensity and misconceived actions associated with grief and demonstrate administrative leadership.…

  16. a New Dynamic Community Model for Social Networks

    NASA Astrophysics Data System (ADS)

    Lu, Zhe-Ming; Wu, Zhen; Guo, Shi-Ze; Chen, Zhe; Song, Guang-Hua

    2014-09-01

    In this paper, based on the phenomenon that individuals join into and jump from the organizations in the society, we propose a dynamic community model to construct social networks. Two parameters are adopted in our model, one is the communication rate Pa that denotes the connection strength in the organization and the other is the turnover rate Pb, that stands for the frequency of jumping among the organizations. Based on simulations, we analyze not only the degree distribution, the clustering coefficient, the average distance and the network diameter but also the group distribution which is closely related to their community structure. Moreover, we discover that the networks generated by the proposed model possess the small-world property and can well reproduce the networks of social contacts.

  17. Methane dynamics regulated by microbial community response to permafrost thaw.

    PubMed

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.

  18. The movement ecology and dynamics of plant communities in fragmented landscapes.

    PubMed

    Damschen, Ellen I; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Orrock, John L; Tewksbury, Joshua J

    2008-12-09

    A conceptual model of movement ecology has recently been advanced to explain all movement by considering the interaction of four elements: internal state, motion capacity, navigation capacities, and external factors. We modified this framework to generate predictions for species richness dynamics of fragmented plant communities and tested them in experimental landscapes across a 7-year time series. We found that two external factors, dispersal vectors and habitat features, affected species colonization and recolonization in habitat fragments and their effects varied and depended on motion capacity. Bird-dispersed species richness showed connectivity effects that reached an asymptote over time, but no edge effects, whereas wind-dispersed species richness showed steadily accumulating edge and connectivity effects, with no indication of an asymptote. Unassisted species also showed increasing differences caused by connectivity over time, whereas edges had no effect. Our limited use of proxies for movement ecology (e.g., dispersal mode as a proxy for motion capacity) resulted in moderate predictive power for communities and, in some cases, highlighted the importance of a more complete understanding of movement ecology for predicting how landscape conservation actions affect plant community dynamics.

  19. Supporting mental health in South African HIV-affected communities: primary health care professionals’ understandings and responses

    PubMed Central

    Burgess, Rochelle Ann

    2015-01-01

    How do practitioners respond to the mental distress of HIV-affected women and communities? And do their understandings of patients’ distress matter? The World Health Organization (WHO) along with advocates from the Movement for Global Mental Health (MGMH) champion a primary mental health care model to address burgeoning mental health needs in resource-poor HIV-affected settings. Whilst a minority of studies have begun to explore interventions to target this group of women, there is a dearth of studies that explore the broader contexts that will likely shape service outcomes, such as health sector dynamics and competing definitions of mental ill-health. This study reports on an in-depth case study of primary mental health services in a rural HIV-affected community in Northern KwaZulu-Natal. Health professionals identified as the frontline staff working within the primary mental health care model (n = 14) were interviewed. Grounded thematic analysis of interview data highlighted that practitioners employed a critical and socially anchored framework for understanding their patients’ needs. Poverty, gender and family relationships were identified as intersecting factors driving HIV-affected patients’ mental distress. In a divergence from existing evidence, practitioner efforts to act on their understandings of patient needs prioritized social responses over biomedical ones. To achieve this whilst working within a primary mental health care model, practitioners employed a series of modifications to services to increase their ability to target the sociostructural realities facing HIV-affected women with mental health issues. This article suggests that beyond attention to the crucial issues of funding and human resources that face primary mental health care, attention must also be paid to promoting the development of policies that provide practitioners with increased and more consistent opportunities to address the complex social realities that frame the mental

  20. Supporting mental health in South African HIV-affected communities: primary health care professionals' understandings and responses.

    PubMed

    Burgess, Rochelle Ann

    2015-09-01

    How do practitioners respond to the mental distress of HIV-affected women and communities? And do their understandings of patients' distress matter? The World Health Organization (WHO) along with advocates from the Movement for Global Mental Health (MGMH) champion a primary mental health care model to address burgeoning mental health needs in resource-poor HIV-affected settings. Whilst a minority of studies have begun to explore interventions to target this group of women, there is a dearth of studies that explore the broader contexts that will likely shape service outcomes, such as health sector dynamics and competing definitions of mental ill-health. This study reports on an in-depth case study of primary mental health services in a rural HIV-affected community in Northern KwaZulu-Natal. Health professionals identified as the frontline staff working within the primary mental health care model (n = 14) were interviewed. Grounded thematic analysis of interview data highlighted that practitioners employed a critical and socially anchored framework for understanding their patients' needs. Poverty, gender and family relationships were identified as intersecting factors driving HIV-affected patients' mental distress. In a divergence from existing evidence, practitioner efforts to act on their understandings of patient needs prioritized social responses over biomedical ones. To achieve this whilst working within a primary mental health care model, practitioners employed a series of modifications to services to increase their ability to target the sociostructural realities facing HIV-affected women with mental health issues. This article suggests that beyond attention to the crucial issues of funding and human resources that face primary mental health care, attention must also be paid to promoting the development of policies that provide practitioners with increased and more consistent opportunities to address the complex social realities that frame the mental distress

  1. Under the radar: community safety nets for AIDS-affected households in sub-Saharan Africa.

    PubMed

    Foster, G

    2007-01-01

    Safety nets are mechanisms to mitigate the effects of poverty on vulnerable households during times of stress. In sub-Saharan Africa, extended families, together with communities, are the most effective responses enabling access to support for households facing crises. This paper reviews literature on informal social security systems in sub-Saharan Africa, analyses changes taking place in their functioning as a result of HIV/AIDS and describes community safety net components including economic associations, cooperatives, loan providers, philanthropic groups and HIV/AIDS initiatives. Community safety nets target households in greatest need, respond rapidly to crises, are cost efficient, based on local needs and available resources, involve the specialized knowledge of community members and provide financial and psycho-social support. Their main limitations are lack of material resources and reliance on unpaid labour of women. Changes have taken place in safety net mechanisms because of HIV/AIDS, suggesting the resilience of communities rather than their impending collapse. Studies are lacking that assess the value of informal community-level transfers, describe how safety nets assist the poor or analyse modifications in response to HIV/AIDS. The role of community safety nets remains largely invisible under the radar of governments, non-governmental organizations and international bodies. External support can strengthen this system of informal social security that provides poor HIV/AIDS-affected households with significant support.

  2. The soil carbon/nitrogen ratio and moisture affect microbial community structures in alkaline permafrost-affected soils with different vegetation types on the Tibetan plateau.

    PubMed

    Zhang, Xinfang; Xu, Shijian; Li, Changming; Zhao, Lin; Feng, Huyuan; Yue, Guangyang; Ren, Zhengwei; Cheng, Guogdong

    2014-01-01

    In the Tibetan permafrost region, vegetation types and soil properties have been affected by permafrost degradation, but little is known about the corresponding patterns of their soil microbial communities. Thus, we analyzed the effects of vegetation types and their covariant soil properties on bacterial and fungal community structure and membership and bacterial community-level physiological patterns. Pyrosequencing and Biolog EcoPlates were used to analyze 19 permafrost-affected soil samples from four principal vegetation types: swamp meadow (SM), meadow (M), steppe (S) and desert steppe (DS). Proteobacteria, Acidobacteria, Bacteroidetes and Actinobacteria dominated bacterial communities and the main fungal phyla were Ascomycota, Basidiomycota and Mucoromycotina. The ratios of Proteobacteria/Acidobacteria decreased in the order: SM>M>S>DS, whereas the Ascomycota/Basidiomycota ratios increased. The distributions of carbon and nitrogen cycling bacterial genera detected were related to soil properties. The bacterial communities in SM/M soils degraded amines/amino acids very rapidly, while polymers were degraded rapidly by S/DS communities. UniFrac analysis of bacterial communities detected differences among vegetation types. The fungal UniFrac community patterns of SM differed from the others. Redundancy analysis showed that the carbon/nitrogen ratio had the main effect on bacteria community structures and their diversity in alkaline soil, whereas soil moisture was mainly responsible for structuring fungal communities. Thus, microbial communities and their functioning are probably affected by soil environmental change in response to permafrost degradation.

  3. Colonisation processes and the role of coralline algae in rocky shore community dynamics

    NASA Astrophysics Data System (ADS)

    Asnaghi, Valentina; Thrush, Simon F.; Hewitt, Judi E.; Mangialajo, Luisa; Cattaneo-Vietti, Riccardo; Chiantore, Mariachiara

    2015-01-01

    Recovery from disturbance is an important attribute of community dynamics. Temperate rocky shores will experience increases in both the type and intensity of impacts under future expected global change. To gauge the community response to these potential changes in the disturbance regime it is important to assess space occupancy and the temporal dynamics of key species over the recovery process. We experimentally disturbed replicated 1 m2 plots in the lower intertidal at 5 sites along the Ligurian rocky coast (North-western Mediterranean) and assessed early succession processes over 18 months. To identify colonisation processes and role of key species in affecting species richness on recovery trajectories, we monitored species composition at the cm-scale along fixed transects within the plots. Our results highlighted the role of a limited number of taxa in driving the recovery of species richness across sites, despite site variation in community composition. Settlement of new propagules and overgrowth were the principal pathway of space occupancy. We detected an important role for coralline algae, particularly the articulated Corallina elongata, in promoting the colonisation of a diverse range of colonists. The present study highlights the important role played by calcifying coralline macroalgae as substrate providers for later colonists, favouring recovery of biodiversity after disturbance. This pivotal role may be compromised in a future scenario of elevated cumulative disturbance, where ocean acidification will likely depress the role of coralline algae in recovery, leading to a general loss in biodiversity and community complexity.

  4. Dynamics of the microbial community during continuous methane fermentation in continuously stirred tank reactors.

    PubMed

    Tang, Yue-Qin; Shigematsu, Toru; Morimura, Shigeru; Kida, Kenji

    2015-04-01

    Methane fermentation is an attractive technology for the treatment of organic wastes and wastewaters. However, the process is difficult to control, and treatment rates and digestion efficiency require further optimization. Understanding the microbiology mechanisms of methane fermentation is of fundamental importance to improving this process. In this review, we summarize the dynamics of microbial communities in methane fermentation chemostats that are operated using completely stirred tank reactors (CSTRs). Each chemostat was supplied with one substrate as the sole carbon source. The substrates include acetate, propionate, butyrate, long-chain fatty acids, glycerol, protein, glucose, and starch. These carbon sources are general substrates and intermediates of methane fermentation. The factors that affect the structure of the microbial community are discussed. The carbon source, the final product, and the operation conditions appear to be the main factors that affect methane fermentation and determine the structure of the microbial community. Understanding the structure of the microbial community during methane fermentation will guide the design and operation of practical wastewater treatments.

  5. Management intensity at field and landscape levels affects the structure of generalist predator communities.

    PubMed

    Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara

    2014-07-01

    Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.

  6. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria.

    PubMed

    Okubo, Takashi; Liu, Dongyan; Tsurumaru, Hirohito; Ikeda, Seishi; Asakawa, Susumu; Tokida, Takeshi; Tago, Kanako; Hayatsu, Masahito; Aoki, Naohiro; Ishimaru, Ken; Ujiie, Kazuhiro; Usui, Yasuhiro; Nakamura, Hirofumi; Sakai, Hidemitsu; Hayashi, Kentaro; Hasegawa, Toshihiro; Minamisawa, Kiwamu

    2015-01-01

    A number of studies have shown that elevated atmospheric CO2 ([CO2]) affects rice yields and grain quality. However, the responses of root-associated bacteria to [CO2] elevation have not been characterized in a large-scale field study. We conducted a free-air CO2 enrichment (FACE) experiment (ambient + 200 μmol.mol(-1)) using three rice cultivars (Akita 63, Takanari, and Koshihikari) and two experimental lines of Koshihikari [chromosome segment substitution and near-isogenic lines (NILs)] to determine the effects of [CO2] elevation on the community structure of rice root-associated bacteria. Microbial DNA was extracted from rice roots at the panicle formation stage and analyzed by pyrosequencing the bacterial 16S rRNA gene to characterize the members of the bacterial community. Principal coordinate analysis of a weighted UniFrac distance matrix revealed that the community structure was clearly affected by elevated [CO2]. The predominant community members at class level were Alpha-, Beta-, and Gamma-proteobacteria in the control (ambient) and FACE plots. The relative abundance of Methylocystaceae, the major methane-oxidizing bacteria in rice roots, tended to decrease with increasing [CO2] levels. Quantitative PCR revealed a decreased copy number of the methane monooxygenase (pmoA) gene and increased methyl coenzyme M reductase (mcrA) in elevated [CO2]. These results suggest elevated [CO2] suppresses methane oxidation and promotes methanogenesis in rice roots; this process affects the carbon cycle in rice paddy fields.

  7. Bipolar disorder dynamics: affective instabilities, relaxation oscillations and noise

    PubMed Central

    Geddes, John R.; Goodwin, Guy M.; Holmes, Emily A.

    2015-01-01

    Bipolar disorder is a chronic, recurrent mental illness characterized by extreme episodes of depressed and manic mood, interspersed with less severe but highly variable mood fluctuations. Here, we develop a novel mathematical approach for exploring the dynamics of bipolar disorder. We investigate how the dynamics of subjective experience of mood in bipolar disorder can be understood using a relaxation oscillator (RO) framework and test the model against mood time-series fluctuations from a set of individuals with bipolar disorder. We show that variable mood fluctuations in individuals diagnosed with bipolar disorder can be driven by the coupled effects of deterministic dynamics (captured by ROs) and noise. Using a statistical likelihood-based approach, we show that, in general, mood dynamics are described by two independent ROs with differing levels of endogenous variability among individuals. We suggest that this sort of nonlinear approach to bipolar disorder has neurobiological, cognitive and clinical implications for understanding this mental illness through a mechacognitive framework. PMID:26577592

  8. A System Dynamics Analysis of the Factors Affecting Combat Readiness

    DTIC Science & Technology

    1980-06-01

    experimental model approach to improving systems is the third foundation of system dynamics. The last foundation is the use of the digital computer to conduct...completion rate is a third order delay of the rated supplement requalification rate (RSRR). This delay represents the time period which is required...the relationships which exist in the combat readiness system, the third objective could be accomplished. The construction of a dynamic systems and

  9. The dynamic interest in topics within the biomedical scientific community.

    PubMed

    Michon, Frederic; Tummers, Mark

    2009-08-07

    The increase in the size of the scientific community created an explosion in scientific production. We have analyzed the dynamics of biomedical scientific output during 1957-2007 by applying a bibliometric analysis of the PubMed database using different keywords representing specific biomedical topics. With the assumption that increased scientific interest will result in increased scientific output, we compared the output of specific topics to that of all scientific output. This analysis resulted in three broad categories of topics; those that follow the general trend of all scientific output, those that show highly variable output, and attractive topics which are new and grow explosively. The analysis of the citation impact of the scientific output resulted in a typical longtail distribution: the majority of journals and articles are of very low impact. This distribution has remained unchanged since 1957, although the interests of scientists must have shifted in this period. We therefore analyzed the distribution of articles in top journals and lower impact journals over time for the attractive topics. Novelty is rewarded by publication in top journals. Over time more articles are published in low impact journals progressively creating the longtail distribution, signifying acceptance of the topic by the community. There can be a gap of years between novelty and acceptance. Within topics temporary novelty is created with new subtopics. In conclusion, the longtail distribution is the foundation of the scientific output of the scientific community and can be used to examine different aspects of science practice.

  10. The Dynamic Interest in Topics within the Biomedical Scientific Community

    PubMed Central

    2009-01-01

    The increase in the size of the scientific community created an explosion in scientific production. We have analyzed the dynamics of biomedical scientific output during 1957–2007 by applying a bibliometric analysis of the PubMed database using different keywords representing specific biomedical topics. With the assumption that increased scientific interest will result in increased scientific output, we compared the output of specific topics to that of all scientific output. This analysis resulted in three broad categories of topics; those that follow the general trend of all scientific output, those that show highly variable output, and attractive topics which are new and grow explosively. The analysis of the citation impact of the scientific output resulted in a typical longtail distribution: the majority of journals and articles are of very low impact. This distribution has remained unchanged since 1957, although the interests of scientists must have shifted in this period. We therefore analyzed the distribution of articles in top journals and lower impact journals over time for the attractive topics. Novelty is rewarded by publication in top journals. Over time more articles are published in low impact journals progressively creating the longtail distribution, signifying acceptance of the topic by the community. There can be a gap of years between novelty and acceptance. Within topics temporary novelty is created with new subtopics. In conclusion, the longtail distribution is the foundation of the scientific output of the scientific community and can be used to examine different aspects of science practice. PMID:19668345

  11. The Scion/Rootstock Genotypes and Habitats Affect Arbuscular Mycorrhizal Fungal Community in Citrus

    PubMed Central

    Song, Fang; Pan, Zhiyong; Bai, Fuxi; An, Jianyong; Liu, Jihong; Guo, Wenwu; Bisseling, Ton; Deng, Xiuxin; Xiao, Shunyuan

    2015-01-01

    Citrus roots have rare root hairs and thus heavily depend on arbuscular mycorrhizal fungi (AMF) for mineral nutrient uptake. However, the AMF community structure of citrus is largely unknown. By using 454-pyrosequencing of 18S rRNA gene fragment, we investigated the genetic diversity of AMF colonizing citrus roots, and evaluated the impact of habitats and rootstock and scion genotypes on the AMF community structure. Over 7,40,000 effective sequences were obtained from 77 citrus root samples. These sequences were assigned to 75 AMF virtual taxa, of which 66 belong to Glomus, highlighting an absolute dominance of this AMF genus in symbiosis with citrus roots. The citrus AMF community structure is significantly affected by habitats and host genotypes. Interestingly, our data suggests that the genotype of the scion exerts a greater impact on the AMF community structure than that of the rootstock where the physical root-AMF association occurs. This study not only provides a comprehensive assessment for the community composition of the AMF in citrus roots under different conditions, but also sheds novel insights into how the AMF community might be indirectly influenced by the spatially separated yet metabolically connected partner—the scion—of the grafted citrus tree. PMID:26648932

  12. A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes.

    PubMed

    van der Wal, Annemieke; Geydan, Thomas D; Kuyper, Thomas W; de Boer, Wietse

    2013-07-01

    Filamentous fungi are critical to the decomposition of terrestrial organic matter and, consequently, in the global carbon cycle. In particular, their contribution to degradation of recalcitrant lignocellulose complexes has been widely studied. In this review, we focus on the functioning of terrestrial fungal decomposers and examine the factors that affect their activities and community dynamics. In relation to this, impacts of global warming and increased N deposition are discussed. We also address the contribution of fungal decomposer studies to the development of general community ecological concepts such as diversity-functioning relationships, succession, priority effects and home-field advantage. Finally, we indicate several research directions that will lead to a more complete understanding of the ecological roles of terrestrial decomposer fungi such as their importance in turnover of rhizodeposits, the consequences of interactions with other organisms and niche differentiation.

  13. Herbivore and predator diversity interactively affect ecosystem properties in an experimental marine community.

    PubMed

    Douglass, James G; Duffy, J Emmett; Bruno, John F

    2008-06-01

    Interacting changes in predator and prey diversity likely influence ecosystem properties but have rarely been experimentally tested. We manipulated the species richness of herbivores and predators in an experimental benthic marine community and measured their effects on predator, herbivore and primary producer performance. Predator composition and richness strongly affected several community and population responses, mostly via sampling effects. However, some predators survived better in polycultures than in monocultures, suggesting complementarity due to stronger intra- than interspecific interactions. Predator effects also differed between additive and substitutive designs, emphasizing that the relationship between diversity and abundance in an assemblage can strongly influence whether and how diversity effects are realized. Changing herbivore richness and predator richness interacted to influence both total herbivore abundance and predatory crab growth, but these interactive diversity effects were weak. Overall, the presence and richness of predators dominated biotic effects on community and ecosystem properties.

  14. The microbial community structure of drinking water biofilms can be affected by phosphorus availability.

    PubMed

    Keinänen, Minna M; Korhonen, Leena K; Lehtola, Markku J; Miettinen, Ilkka T; Martikainen, Pertti J; Vartiainen, Terttu; Suutari, Merja H

    2002-01-01

    Microbial communities in biofilms grown for 4 and 11 weeks under the flow of drinking water supplemented with 0, 1, 2, and 5 microg of phosphorus liter(-1) and in drinking and warm waters were compared by using phospholipid fatty acids (PLFAs) and lipopolysaccharide 3-hydroxy fatty acids (LPS 3-OH-FAs). Phosphate increased the proportion of PLFAs 16:1 omega 7c and 18:1 omega 7c and affected LPS 3-OH-FAs after 11 weeks of growth, indicating an increase in gram-negative bacteria and changes in their community structure. Differences in community structures between biofilms and drinking and warm waters can be assumed from PLFAs and LPS 3-OH-FAs, concomitantly with adaptive changes in fatty acid chain length, cyclization, and unsaturation.

  15. Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill.

    PubMed

    Alonso-Gutiérrez, Jorge; Figueras, Antonio; Albaigés, Joan; Jiménez, Núria; Viñas, Marc; Solanas, Anna M; Novoa, Beatriz

    2009-06-01

    The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution-affected

  16. An approach of community evolution based on gravitational relationship refactoring in dynamic networks

    NASA Astrophysics Data System (ADS)

    Yin, Guisheng; Chi, Kuo; Dong, Yuxin; Dong, Hongbin

    2017-04-01

    In this paper, an approach of community evolution based on gravitational relationship refactoring between the nodes in a dynamic network is proposed, and it can be used to simulate the process of community evolution. A static community detection algorithm and a dynamic community evolution algorithm are included in the approach. At first, communities are initialized by constructing the core nodes chains, the nodes can be iteratively searched and divided into corresponding communities via the static community detection algorithm. For a dynamic network, an evolutionary process is divided into three phases, and behaviors of community evolution can be judged according to the changing situation of the core nodes chain in each community. Experiments show that the proposed approach can achieve accuracy and availability in the synthetic and real world networks.

  17. A hierarchical state space approach to affective dynamics

    PubMed Central

    Lodewyckx, Tom; Tuerlinckx, Francis; Kuppens, Peter; Allen, Nicholas; Sheeber, Lisa

    2010-01-01

    Linear dynamical system theory is a broad theoretical framework that has been applied in various research areas such as engineering, econometrics and recently in psychology. It quantifies the relations between observed inputs and outputs that are connected through a set of latent state variables. State space models are used to investigate the dynamical properties of these latent quantities. These models are especially of interest in the study of emotion dynamics, with the system representing the evolving emotion components of an individual. However, for simultaneous modeling of individual and population differences, a hierarchical extension of the basic state space model is necessary. Therefore, we introduce a Bayesian hierarchical model with random effects for the system parameters. Further, we apply our model to data that were collected using the Oregon adolescent interaction task: 66 normal and 67 depressed adolescents engaged in a conflict interaction with their parents and second-to-second physiological and behavioral measures were obtained. System parameters in normal and depressed adolescents were compared, which led to interesting discussions in the light of findings in recent literature on the links between cardiovascular processes, emotion dynamics and depression. We illustrate that our approach is flexible and general: The model can be applied to any time series for multiple systems (where a system can represent any entity) and moreover, one is free to focus on whatever component of the versatile model. PMID:21516216

  18. Shift of bacterial community structure in two Thai soil series affected by silver nanoparticles using ARISA.

    PubMed

    Chunjaturas, Wariya; Ferguson, John A; Rattanapichai, Wutthida; Sadowsky, Michael J; Sajjaphan, Kannika

    2014-07-01

    In this study we examined the influence of silver nanoparticles (SNP) on the bacterial community and microbial processes in two soils from Thailand, a Ayutthaya (Ay) and Kamphaengsaen soil series (Ks). Results of this analysis revealed that SNP did not affect to pH, electrical conductivity, cation exchange capacity, and organic matter in both the Ay and Ks series. Automated ribosomal intergenic spacer analysis (ARISA) analysis profiles showed that bacterial community decreased with increasing SNP concentration. Pearson's correlation coefficient and multidimensional scaling analyses indicated that the effects of SNP on the bacterial community structure depended more on soil types than SNP application rates and incubation periods. Additionally, the results showed that SNP application rates affected on amount of CO2 emissions, while SNP application rates had no effect on N mineralization in both soil types. This study is the first investigation of the effects of SNP on bacterial community using ARISA analysis. Our results might be useful to evaluate the risk associated with the applications of SNP for consumer products and agricultural practices.

  19. Testing BOPA index in sewage affected soft-bottom communities in the north-western Mediterranean.

    PubMed

    de-la-Ossa-Carretero, J A; del-Pilar-Ruso, Y; Giménez-Casalduero, F; Sánchez-Lizaso, J L

    2009-08-01

    The implementation of the European directive (ELD) 2000/60/EC has produced the development of several biotic indices based in benthic communities. These indices try to summarise ecological quality status of different communities. However, a universal index that works in all situations is difficult to establish, because there are several sources of variation. Therefore, there is the need for testing and validation of these indices which is required for making management decisions on different scales, and in different regions and communities. In this study we test one of these indices, BOPA index, developed by Dauvin and Ruellet [Dauvin, J.C., Ruellet, T., 2007. Polychaete/amphipod ratio revisited. Marine Pollution Bulletin 55, 215-224] in five locations affected by sewage disposal. These disposals are often released via outfall into shallow subtidal habitats, leading to a common source of pollution in coastal marine environments. BOPA index provides a valuable overview of the gradient status of a benthic environment, discriminating between stations more affected by discharge. Nevertheless, BOPA index, used to establish the ecological quality status, seemed to overestimate the status and hence there is the need to calibrate the thresholds between EcoQs classes as defined for these medium-to-fine sand communities, which are characteristics of shallow sublittoral soft-bottoms of the north-western Mediterranean Sea.

  20. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

    PubMed

    Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O

    2016-05-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands.

  1. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    PubMed Central

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P < 0.001) and tree species (P < 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P < 0.04). The availability of soil nutrients (Ca [P = 0.002], Fe [P = 0.003], and P [P = 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P < 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  2. Effects of ocean acidification on population dynamics and community structure of crustose coralline algae.

    PubMed

    Ordoñez, Alexandra; Doropoulos, Christopher; Diaz-Pulido, Guillermo

    2014-06-01

    Calcification and growth of crustose coralline algae (CCA) are affected by elevated seawater pCO2 and associated changes in carbonate chemistry. However, the effects of ocean acidification (OA) on population and community-level responses of CCA have barely been investigated. We explored changes in community structure and population dynamics (size structure and reproduction) of CCA in response to OA. Recruited from an experimental flow-through system, CCA settled onto the walls of plastic aquaria and developed under exposure to one of three pCO2 treatments (control [present day, 389±6 ppm CO2], medium [753±11 ppm], and high [1267±19 ppm]). Elevated pCO2 reduced total CCA abundance and affected community structure, in particular the density of the dominant species Pneophyllum sp. and Porolithon onkodes. Meanwhile, the relative abundance of P. onkodes declined from 24% under control CO2 to 8.3% in high CO2 (65% change), while the relative abundance of Pneophyllum sp. remained constant. Population size structure of P. onkodes differed significantly across treatments, with fewer larger individuals under high CO2. In contrast, the population size structure and number of reproductive structures (conceptacles) per crust of Pneophyllum sp. was similar across treatments. The difference in the magnitude of the response of species abundance and population size structure between species may have the potential to induce species composition changes in the future. These results demonstrate that the impacts of OA on key coral reef builders go beyond declines in calcification and growth, and suggest important changes to aspects of population dynamics and community ecology.

  3. Space charges can significantly affect the dynamics of accelerator maps

    NASA Astrophysics Data System (ADS)

    Bountis, Tassos; Skokos, Charalampos

    2006-10-01

    Space charge effects can be very important for the dynamics of intense particle beams, as they repeatedly pass through nonlinear focusing elements, aiming to maximize the beam's luminosity properties in the storage rings of a high energy accelerator. In the case of hadron beams, whose charge distribution can be considered as “frozen” within a cylindrical core of small radius compared to the beam's dynamical aperture, analytical formulas have been recently derived [C. Benedetti, G. Turchetti, Phys. Lett. A 340 (2005) 461] for the contribution of space charges within first order Hamiltonian perturbation theory. These formulas involve distribution functions which, in general, do not lead to expressions that can be evaluated in closed form. In this Letter, we apply this theory to an example of a charge distribution, whose effect on the dynamics can be derived explicitly and in closed form, both in the case of 2-dimensional as well as 4-dimensional mapping models of hadron beams. We find that, even for very small values of the “perveance” (strength of the space charge effect) the long term stability of the dynamics changes considerably. In the flat beam case, the outer invariant “tori” surrounding the origin disappear, decreasing the size of the beam's dynamical aperture, while beyond a certain threshold the beam is almost entirely lost. Analogous results in mapping models of beams with 2-dimensional cross section demonstrate that in that case also, even for weak tune depressions, orbital diffusion is enhanced and many particles whose motion was bounded now escape to infinity, indicating that space charges can impose significant limitations on the beam's luminosity.

  4. Biological soil crusts across disturbance-recovery scenarios: effect of grazing regime on community dynamics

    USGS Publications Warehouse

    Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne

    2014-01-01

    Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.

  5. [Noise-reduction function and its affecting factors of urban plant communities in Shanghai].

    PubMed

    Zhang, Qing-Fei; Zheng, Si-Jun; Xia, Lei; Wu, Hai-Ping; Zhang, Ming-Li; Li, Ming-Sheng

    2007-10-01

    The factor analysis on the relationships between excess noise attenuation (decrement after noise propagating 30 m) and 8 structural characteristics of 19 urban plant communities in Shanghai showed that all the plant communities had notable effects on reducing noise, and the noise attenuation ability of the communities was significantly higher than that of lawn (P < 0.01). The plant communities could be divided into three groups base on their noise attenuation ability, i.e., those of > or = 10 dB(A), 6-10 dB(A), and < or = 6 dB(A). The main factors affecting the noise attenuation ability of the communities were leaf area index, average bifurcate height, average height, coverage, and average canopy diameter, and their correlation coefficients with noise attenuation were 0.343, 0.318, 0.285, 0.226 and 0.193, respectively. These five factors had a cumulative contribution rate of 65.47%, suggesting that they should be considered in stress when designing urban greenbelt for noise reduction.

  6. Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes.

    PubMed

    Zhang, Ximei; Johnston, Eric R; Liu, Wei; Li, Linghao; Han, Xingguo

    2016-01-01

    Both 'species fitness difference'-based deterministic processes, such as competitive exclusion and environmental filtering, and 'species fitness difference'-independent stochastic processes, such as birth/death and dispersal/colonization, can influence the assembly of soil microbial communities. However, how both types of processes are mediated by anthropogenic environmental changes has rarely been explored. Here we report a novel and general pattern that almost all anthropogenic environmental changes that took place in a grassland ecosystem affected soil bacterial community assembly primarily through promoting or restraining stochastic processes. We performed four experiments mimicking 16 types of environmental changes and separated the compositional variation of soil bacterial communities caused by each environmental change into deterministic and stochastic components, with a recently developed method. Briefly, because the difference between control and treatment communities is primarily caused by deterministic processes, the deterministic change was quantified as (mean compositional variation between treatment and control) - (mean compositional variation within control). The difference among replicate treatment communities is primarily caused by stochastic processes, so the stochastic change was estimated as (mean compositional variation within treatment) - (mean compositional variation within control). The absolute of the stochastic change was greater than that of the deterministic change across almost all environmental changes, which was robust for both taxonomic and functional-based criterion. Although the deterministic change may become more important as environmental changes last longer, our findings showed that changes usually occurred through mediating stochastic processes over 5 years, challenging the traditional determinism-dominated view.

  7. Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood

    PubMed Central

    Valentín, Lara; Rajala, Tiina; Peltoniemi, Mikko; Heinonsalo, Jussi; Pennanen, Taina; Mäkipää, Raisa

    2014-01-01

    Hundreds of wood-inhabiting fungal species are now threatened, principally due to a lack of dead wood in intensively managed forests, but the consequences of reduced fungal diversity on ecosystem functioning are not known. Several experiments have shown that primary productivity is negatively affected by a loss of species, but the effects of microbial diversity on decomposition are less studied. We studied the relationship between fungal diversity and the in vitro decomposition rate of slightly, moderately and heavily decayed Picea abies wood with indigenous fungal communities that were diluted to examine the influence of diversity. Respiration rate, wood-degrading hydrolytic enzymes and fungal community structure were assessed during a 16-week incubation. The number of observed OTUs in DGGE was used as a measure of fungal diversity. Respiration rate increased between early- and late-decay stages. Reduced fungal diversity was associated with lower respiration rates during intermediate stages of decay, but no effects were detected at later stages. The activity of hydrolytic enzymes varied among decay stages and fungal dilutions. Our results suggest that functioning of highly diverse communities of the late-decay stage were more resistant to the loss of diversity than less diverse communities of early decomposers. This indicates the accumulation of functional redundancy during the succession of the fungal community in decomposing substrates. PMID:24904544

  8. Trophic dynamics in an aquatic community: interactions among primary producers, grazers, and a pathogenic fungus.

    PubMed

    Buck, Julia C; Scholz, Katharina I; Rohr, Jason R; Blaustein, Andrew R

    2015-05-01

    Free-living stages of parasites are consumed by a variety of predators, which might have important consequences for predators, parasites, and hosts. For example, zooplankton prey on the infectious stage of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen responsible for amphibian population declines and extinctions worldwide. Predation on parasites is predicted to influence community structure and function, and affect disease risk, but relatively few studies have explored its consequences empirically. We investigated interactions among Rana cascadae tadpoles, zooplankton, and Bd in a fully factorial experiment in outdoor mesocosms. We measured growth, development, survival, and infection of amphibians and took weekly measurements of the abundance of zooplankton, phytoplankton (suspended algae), and periphyton (attached algae). We hypothesized that zooplankton might have positive indirect effects on tadpoles by consuming Bd zoospores and by consuming phytoplankton, thus reducing the shading of a major tadpole resource, periphyton. We also hypothesized that zooplankton would have negative effects on tadpoles, mediated by competition for algal resources. Mixed-effects models, repeated-measures ANOVAs, and a structural equation model revealed that zooplankton significantly reduced phytoplankton but had no detectable effects on Bd or periphyton. Hence, the indirect positive effects of zooplankton on tadpoles were negligible when compared to the indirect negative effect mediated by competition for phytoplankton. We conclude that examination of host-pathogen dynamics within a community context may be necessary to elucidate complex community dynamics.

  9. How Does the Electron Dynamics Affect the Global Reconnection Rate

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2012-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  10. Habitat dynamics, marine reserve status, and the decline and recovery of coral reef fish communities.

    PubMed

    Williamson, David H; Ceccarelli, Daniela M; Evans, Richard D; Jones, Geoffrey P; Russ, Garry R

    2014-02-01

    Severe climatic disturbance events often have major impacts on coral reef communities, generating cycles of decline and recovery, and in some extreme cases, community-level phase shifts from coral-to algal-dominated states. Benthic habitat changes directly affect reef fish communities, with low coral cover usually associated with low fish diversity and abundance. No-take marine reserves (NTRs) are widely advocated for conserving biodiversity and enhancing the sustainability of exploited fish populations. Numerous studies have documented positive ecological and socio-economic benefits of NTRs; however, the ability of NTRs to ameliorate the effects of acute disturbances on coral reefs has seldom been investigated. Here, we test these factors by tracking the dynamics of benthic and fish communities, including the important fishery species, coral trout (Plectropomus spp.), over 8 years in both NTRs and fished areas in the Keppel Island group, Great Barrier Reef, Australia. Two major disturbances impacted the reefs during the monitoring period, a coral bleaching event in 2006 and a freshwater flood plume in 2011. Both disturbances generated significant declines in coral cover and habitat complexity, with subsequent declines in fish abundance and diversity, and pronounced shifts in fish assemblage structure. Coral trout density also declined in response to the loss of live coral, however, the approximately 2:1 density ratio between NTRs and fished zones was maintained over time. The only post-disturbance refuges for coral trout spawning stocks were within the NTRs that escaped the worst effects of the disturbances. Although NTRs had little discernible effect on the temporal dynamics of benthic or fish communities, it was evident that the post-disturbance refuges for coral trout spawning stocks within some NTRs may be critically important to regional-scale population persistence and recovery.

  11. Exercise intervention designed to improve strength and dynamic balance among community-dwelling older adults.

    PubMed

    DiBrezzo, Ro; Shadden, Barbara B; Raybon, Blake H; Powers, Melissa

    2005-04-01

    Loss of balance and falling are critical concerns for older adults. Physical activity can improve balance and decrease the risk of falling. The purpose of this study was to evaluate a simple, low-cost exercise program for community-dwelling older adults. Sixteen senior adults were evaluated using the Senior Fitness Test for measures of functional strength, aerobic endurance, dynamic balance and agility, and flexibility. In addition, measures of height, weight, resting blood pressure, blood lipids, and cognitive function were obtained. Participants then attended a 10-week exercise class including stretching, strengthening, and balance-training exercises. At the completion of the program, significant improvements were observed in tests measuring dynamic balance and agility, lower and upper extremity strength, and upper extremity flexibility. The results indicate that exercise programs such as this are an effective, low-cost solution to improving health and factors that affect falling risk among older adults.

  12. [Annual dynamics of cladocera community structure in Backshore Wetland of Expo Garden, Shanghai].

    PubMed

    Chen, Li-Jing; Wu, Yan-Fang; Jing, Yu-Xiang; Wang, Cong; Zhang, Yin-Jiang

    2012-10-01

    The Backshore Wetland of Expo Garden, Shanghai was one of the key parts of the World Expo construction project in 2010. From September 2009 to August 2010, a monthly investigation was conducted to understand the spatiotemporal dynamics of cladocera community structure (including species composition and standing crop) and related main affecting factors in the Backshore Wetland. A total of 36 cladocera species in 13 genera of 5 families were identified through the year. There were 12 dominant species, mainly Chydorus sphaericus, C. ovalis, Diaphanosoma leuchtenbergianum, and Sida crystalline. The mean annual abundance and biomass of the cladocera were 5.7 ind x L(-1) and 0.3559 mg x L(-1), respectively, and the annual dynamics of the standing crop showed bimodal, with the main peak in April and July, and the second peak in July and May, respectively. The Shannon index, Pielou index, and Margelf index were high in summer and autumn, but low in winter and spring. The canonical correspondence analysis (CCA) showed that water temperature, pH, dissolved oxygen, and nitrite nitrogen were the main factors affecting the community structure of cladocera in the Backshore Wetland.

  13. Interspecies interactions are an integral determinant of microbial community dynamics

    PubMed Central

    Aziz, Fatma A. A.; Suzuki, Kenshi; Ohtaki, Akihiro; Sagegami, Keita; Hirai, Hidetaka; Seno, Jun; Mizuno, Naoko; Inuzuka, Yuma; Saito, Yasuhisa; Tashiro, Yosuke; Hiraishi, Akira; Futamata, Hiroyuki

    2015-01-01

    This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and “interspecies interaction,” were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, “interspecies interaction,” a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem. PMID:26539177

  14. Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer

    PubMed Central

    Lin, Xueju; McKinley, James; Resch, Charles T; Kaluzny, Rachael; Lauber, Christian L; Fredrickson, James; Knight, Rob; Konopka, Allan

    2012-01-01

    Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater bacteria and archaea over 10 months within three well clusters separated by ∼30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained three wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all nine wells over the 10-month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated with river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper zone in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (for example, methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment but also by top-down biological control. PMID:22456444

  15. Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer

    SciTech Connect

    Lin, Xueju; McKinley, James P.; Resch, Charles T.; Kaluzny, Rachael M.; Lauber, C.; Fredrickson, Jim K.; Knight, Robbie C.; Konopka, Allan

    2012-03-29

    Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater Bacteria and Archaea over 10 months within 3 well clusters separated by ~30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained 3 wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all 9 wells over the 10 month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated to river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (e.g.methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment, but also by top-down biological control.

  16. Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer.

    PubMed

    Lin, Xueju; McKinley, James; Resch, Charles T; Kaluzny, Rachael; Lauber, Christian L; Fredrickson, James; Knight, Rob; Konopka, Allan

    2012-09-01

    Pyrosequencing analysis of 16S rRNA genes was used to study temporal dynamics of groundwater bacteria and archaea over 10 months within three well clusters separated by ~30 m and located 250 m from the Columbia River on the Hanford Site, WA. Each cluster contained three wells screened at different depths ranging from 10 to 17 m that differed in hydraulic conductivities. Representative samples were selected for analyses of prokaryotic 16S and eukaryotic 18S rRNA gene copy numbers. Temporal changes in community composition occurred in all nine wells over the 10-month sampling period. However, there were particularly strong effects near the top of the water table when the seasonal rise in the Columbia River caused river water intrusion at the top of the aquifer. The occurrence and disappearance of some microbial assemblages (such as Actinobacteria ACK-M1) were correlated with river water intrusion. This seasonal impact on microbial community structure was greater in the shallow saturated zone than deeper zone in the aquifer. Spatial and temporal patterns for several 16S rRNA gene operational taxonomic units associated with particular physiological functions (for example, methane oxidizers and metal reducers) suggests dynamic changes in fluxes of electron donors and acceptors over an annual cycle. In addition, temporal dynamics in eukaryotic 18S rRNA gene copies and the dominance of protozoa in 18S clone libraries suggest that bacterial community dynamics could be affected not only by the physical and chemical environment but also by top-down biological control.

  17. Late-quaternary vegetational dynamics and community stability reconsidered

    NASA Astrophysics Data System (ADS)

    Delcourt, Paul A.; Delcourt, Hazel R.

    1983-03-01

    Defining the spatial and temporal limits of vegetational processes such as migration and invasion of established communities is a prerequisite to evaluating the degree of stability in plant communities through the late Quaternary. The interpretation of changes in boundaries of major vegetation types over the past 20,000 yr offers a complementary view to that provided by migration maps for particular plant taxa. North of approximately 43°N in eastern North America, continual vegetational disequilibrium has resulted from climatic change, soil development, and species migrations during postglacial times. Between 33° and 39°N, stable full-glacial vegetation was replaced by a relatively unstable vegetation during late-glacial climatic amelioration; stable interglacial vegetation developed there after about 9000 yr B.P. Late-Quaternary vegetation has been in dynamic equilibrium, with a relatively constant flora, south of 33°N on upland interfluves along the northern Gulf Coastal Plain, peninsular Florida, and west-central Mexico.

  18. Affective Dynamics of Leadership: An Experimental Test of Affect Control Theory

    ERIC Educational Resources Information Center

    Schroder, Tobias; Scholl, Wolfgang

    2009-01-01

    Affect Control Theory (ACT; Heise 1979, 2007) states that people control social interactions by striving to maintain culturally shared feelings about the situation. The theory is based on mathematical models of language-based impression formation. In a laboratory experiment, we tested the predictive power of a new German-language ACT model with…

  19. Dynamically Tracking Anxious Individuals' Affective Response to Valenced Information.

    PubMed

    Fua, Karl C; Teachman, Bethany A

    2017-03-30

    Past research has shown that an individual's feelings at any given moment reflect currently experienced stimuli as well as internal representations of similar past experiences. However, anxious individuals' affective reactions to streams of interrelated valenced information (vs. reactions to static stimuli that are arguably less ecologically valid) are rarely tracked. The present study provided a first examination of the newly developed Tracking Affect Ratings Over Time (TAROT) task to continuously assess anxious individuals' affective reactions to streams of information that systematically change valence. Undergraduate participants (N = 141) completed the TAROT task in which they listened to narratives containing positive, negative, and neutral physically- or socially-relevant events, and indicated how positive or negative they felt about the information they heard as each narrative unfolded. The present study provided preliminary evidence for the validity and reliability of the task. Within scenarios, participants higher (vs. lower) in anxiety showed many expected negative biases, reporting more negative mean ratings and overall summary ratings, changing their pattern of responding more quickly to negative events, and responding more negatively to neutral events. Furthermore, individuals higher (vs. lower) in anxiety tended to report more negative minimums during and after positive events, and less positive maximums after negative events. Together, findings indicate that positive events were less impactful for anxious individuals, whereas negative experiences had a particularly lasting impact on future affective responses. The TAROT task is able to efficiently capture a number of different cognitive biases, and may help clarify the mechanisms that underlie anxious individuals' biased negative processing. (PsycINFO Database Record

  20. Effects of nutrient supplementation on host-pathogen dynamics of the amphibian chytrid fungus: a community approach

    PubMed Central

    BUCK, JULIA C.; ROHR, JASON R.; BLAUSTEIN, ANDREW R.

    2016-01-01

    SUMMARY Anthropogenic stressors may influence hosts and their pathogens directly or may alter host–pathogen dynamics indirectly through interactions with other species. For example, in aquatic ecosystems, eutrophication may be associated with increased or decreased disease risk. Conversely, pathogens can influence community structure and function and are increasingly recognised as important members of the ecological communities in which they exist.In outdoor mesocosms, we experimentally manipulated nutrients (nitrogen and phosphorus) and the presence of a fungal pathogen, Batrachochytrium dendrobatidis (Bd), and examined the effects on Bd abundance on larval amphibian hosts (Pseudacris regilla: Hylidae), amphibian traits and community dynamics. We predicted that resource supplementation would mitigate negative effects of Bd on tadpole growth and development and that indirect effects of treatments would propagate through the community.Nutrient additions caused changes in algal growth, which benefitted tadpoles through increased mass, development and survival. Bd-exposed tadpoles metamorphosed sooner than unexposed individuals, but their mass at metamorphosis was not affected by Bd exposure. We detected additive rather than interactive effects of nutrient supplementation and Bd in this experiment.Nutrient supplementation was not a significant predictor of infection load of larval amphibians. However, a structural equation model revealed that resource supplementation and exposure of amphibians to Bd altered the structure of the aquatic community. This is the first demonstration that sublethal effects of Bd on amphibians can alter aquatic community dynamics. PMID:25432573

  1. Do phages impact microbial dynamics, prokaryotic community structure and nutrient dynamics in Lake Bourget?

    PubMed Central

    Meunier, Antony; Jacquet, Stéphan

    2015-01-01

    ABSTRACT Phages are the most abundant and diversified biological entities in aquatic ecosystems. Understanding their functional role requires laboratory experiments on a short time-scale. Using samples of surface waters of Lake Bourget, we studied whether viruses impact (i) the abundance patterns of the bacterial and phytoplankton communities, (ii) a part of the prokaryotic community composition (both for Eubacteria and Archaea), and (iii) the recycling of nutrients and/or organic matter. Three experiments were performed (one each in February, March and April) at the transition between winter and spring in 2013. The experiment reduced or increased the abundance of virus-like particles in samples containing only the picoplanktonic fraction. Viral and cellular abundances, bacterial and archaeal community structures as well as nutrient concentrations were analysed every 24 h for 3 days. Some of the results reveal that increasing the phage abundance increased the diversity of the eubacterial community. Consistent with the ‘killing the winner’ concept, viruses are thus likely to significantly change the composition of the bacterial community. This suggests a positive association between viral abundance and bacterial diversity. In contrast, the composition of the archaeal community did not seem to be affected by phage abundance, suggesting the absence of viral control on this community or the inability to observe it at this period of year, either based on the time scale of the investigation or because the archaeal virus titre was too low to induce a significant and visible effect. Lastly, we were unable to demonstrate viruses driving the cycling of nutrients or the response of plankton to nutrient concentration changes in a significant way, suggesting that the role of viruses may be subtle or difficult to assess through the use of such experimental procedures. PMID:26500223

  2. Microbial Community Analysis of a Coastal Salt Marsh Affected by the Deepwater Horizon Oil Spill

    PubMed Central

    Beazley, Melanie J.; Martinez, Robert J.; Rajan, Suja; Powell, Jessica; Piceno, Yvette M.; Tom, Lauren M.; Andersen, Gary L.; Hazen, Terry C.; Van Nostrand, Joy D.; Zhou, Jizhong; Mortazavi, Behzad; Sobecky, Patricia A.

    2012-01-01

    Coastal salt marshes are highly sensitive wetland ecosystems that can sustain long-term impacts from anthropogenic events such as oil spills. In this study, we examined the microbial communities of a Gulf of Mexico coastal salt marsh during and after the influx of petroleum hydrocarbons following the Deepwater Horizon oil spill. Total hydrocarbon concentrations in salt marsh sediments were highest in June and July 2010 and decreased in September 2010. Coupled PhyloChip and GeoChip microarray analyses demonstrated that the microbial community structure and function of the extant salt marsh hydrocarbon-degrading microbial populations changed significantly during the study. The relative richness and abundance of phyla containing previously described hydrocarbon-degrading bacteria (Proteobacteria, Bacteroidetes, and Actinobacteria) increased in hydrocarbon-contaminated sediments and then decreased once hydrocarbons were below detection. Firmicutes, however, continued to increase in relative richness and abundance after hydrocarbon concentrations were below detection. Functional genes involved in hydrocarbon degradation were enriched in hydrocarbon-contaminated sediments then declined significantly (p<0.05) once hydrocarbon concentrations decreased. A greater decrease in hydrocarbon concentrations among marsh grass sediments compared to inlet sediments (lacking marsh grass) suggests that the marsh rhizosphere microbial communities could also be contributing to hydrocarbon degradation. The results of this study provide a comprehensive view of microbial community structural and functional dynamics within perturbed salt marsh ecosystems. PMID:22815990

  3. Plant radiation history affects community assembly: evidence from the New Zealand alpine.

    PubMed

    Lee, William G; Tanentzap, Andrew J; Heenan, Peter B

    2012-08-23

    The hypothesis that early plant radiations on islands dampen diversification and reduce habitat occupancy of later radiations via niche pre-emption has never, to our knowledge, been tested. We investigated clade-level dynamics in plant radiations in the alpine zone, New Zealand. Our aim was to determine whether radiations from older colonizations influenced diversification and community dominance of species from later colonizations within a common bioclimatic zone over the past ca 10 Myr. We used stem ages derived from the phylogenies of 17 genera represented in alpine plant communities in the Murchison Mountains, Fiordland, and assessed their presence and cover in 262 (5 × 5 m) vegetation plots. Our results show clear age-related community assembly effects, whereby congenerics from older colonizing genera co-occur more frequently and with greater cover per unit area than those from younger colonizing genera. However, we find no evidence of increased species richness with age of colonization in the alpine zone. The data support priority effects via niche pre-emption among plant radiations influencing community assembly.

  4. Dynamic Root Distribution in the Community Land Model

    NASA Astrophysics Data System (ADS)

    Drewniak, B. A.

    2015-12-01

    Roots are responsible for water and nutrient uptake for plant needs, functioning to couple the above and belowground ecosystems as a photosynthesis driver. Roots respond to their environment with foraging strategies to maximize nutrient acquisition. However, roots have one of the simplest representations in Earth System Models (ESMs). Most root algorithms in ESMs consist of a fixed rooting depth and distribution, which varies only with plant functional type (PFT). Although this method works in general for many ecosystems, there are several regions (e.g., arid, boreal) where root distribution is either overestimated or underestimated resulting in plant stress induced lost productivity. In order to allow ecosystems to respond to changes in environment such as from climate change, roots require a time varying structure to adapt to heterogeneity of water and nitrogen in the soil. This work presents a new approach to representing roots in the Community Land Model. The methodology is designed to optimize root distribution for both water and nitrogen uptake, with a priority given to plant water needs. The roots can respond to the soil vertical profile of nutrients, influencing the plant extractable resources and therefore the above ground vegetation dynamics. The dynamic root profile results in an increase in gross primary productivity and crop yield.

  5. Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation.

    PubMed

    Biastoch, A; Böning, C W; Lutjeharms, J R E

    2008-11-27

    Predicting the evolution of climate over decadal timescales requires a quantitative understanding of the dynamics that govern the meridional overturning circulation (MOC). Comprehensive ocean measurement programmes aiming to monitor MOC variations have been established in the subtropical North Atlantic (RAPID, at latitude 26.5 degrees N, and MOVE, at latitude 16 degrees N) and show strong variability on intraseasonal to interannual timescales. Observational evidence of longer-term changes in MOC transport remains scarce, owing to infrequent sampling of transoceanic sections over past decades. Inferences based on long-term sea surface temperature records, however, supported by model simulations, suggest a variability with an amplitude of +/-1.5-3 Sv (1 Sv = 10(6) m(3) s(-1)) on decadal timescales in the subtropics. Such variability has been attributed to variations of deep water formation in the sub-arctic Atlantic, particularly the renewal rate of Labrador Sea Water. Here we present results from a model simulation that suggest an additional influence on decadal MOC variability having a Southern Hemisphere origin: dynamic signals originating in the Agulhas leakage region at the southern tip of Africa. These contribute a MOC signal in the tropical and subtropical North Atlantic that is of the same order of magnitude as the northern source. A complete rationalization of observed MOC changes therefore also requires consideration of signals arriving from the south.

  6. Ocean acidification affects competition for space: projections of community structure using cellular automata

    PubMed Central

    2016-01-01

    Historical ecological datasets from a coastal marine community of crustose coralline algae (CCA) enabled the documentation of ecological changes in this community over 30 years in the Northeast Pacific. Data on competitive interactions obtained from field surveys showed concordance between the 1980s and 2013, yet also revealed a reduction in how strongly species interact. Here, we extend these empirical findings with a cellular automaton model to forecast ecological dynamics. Our model suggests the emergence of a new dominant competitor in a global change scenario, with a reduced role of herbivory pressure, or trophic control, in regulating competition among CCA. Ocean acidification, due to its energetic demands, may now instead play this role in mediating competitive interactions and thereby promote species diversity within this guild. PMID:26936244

  7. Ocean acidification affects competition for space: projections of community structure using cellular automata.

    PubMed

    McCoy, Sophie J; Allesina, Stefano; Pfister, Catherine A

    2016-03-16

    Historical ecological datasets from a coastal marine community of crustose coralline algae (CCA) enabled the documentation of ecological changes in this community over 30 years in the Northeast Pacific. Data on competitive interactions obtained from field surveys showed concordance between the 1980s and 2013, yet also revealed a reduction in how strongly species interact. Here, we extend these empirical findings with a cellular automaton model to forecast ecological dynamics. Our model suggests the emergence of a new dominant competitor in a global change scenario, with a reduced role of herbivory pressure, or trophic control, in regulating competition among CCA. Ocean acidification, due to its energetic demands, may now instead play this role in mediating competitive interactions and thereby promote species diversity within this guild.

  8. Seasonality Affects Macroalgal Community Response to Increases in pCO2

    PubMed Central

    Baggini, Cecilia; Salomidi, Maria; Voutsinas, Emanuela; Bray, Laura; Krasakopoulou, Eva; Hall-Spencer, Jason M.

    2014-01-01

    Ocean acidification is expected to alter marine systems, but there is uncertainty about its effects due to the logistical difficulties of testing its large-scale and long-term effects. Responses of biological communities to increases in carbon dioxide can be assessed at CO2 seeps that cause chronic exposure to lower seawater pH over localised areas of seabed. Shifts in macroalgal communities have been described at temperate and tropical pCO2 seeps, but temporal and spatial replication of these observations is needed to strengthen confidence our predictions, especially because very few studies have been replicated between seasons. Here we describe the seawater chemistry and seasonal variability of macroalgal communities at CO2 seeps off Methana (Aegean Sea). Monitoring from 2011 to 2013 showed that seawater pH decreased to levels predicted for the end of this century at the seep site with no confounding gradients in Total Alkalinity, salinity, temperature or wave exposure. Most nutrient levels were similar along the pH gradient; silicate increased significantly with decreasing pH, but it was not limiting for algal growth at all sites. Metal concentrations in seaweed tissues varied between sites but did not consistently increase with pCO2. Our data on the flora are consistent with results from laboratory experiments and observations at Mediterranean CO2 seep sites in that benthic communities decreased in calcifying algal cover and increased in brown algal cover with increasing pCO2. This differs from the typical macroalgal community response to stress, which is a decrease in perennial brown algae and proliferation of opportunistic green algae. Cystoseira corniculata was more abundant in autumn and Sargassum vulgare in spring, whereas the articulated coralline alga Jania rubens was more abundant at reference sites in autumn. Diversity decreased with increasing CO2 regardless of season. Our results show that benthic community responses to ocean acidification are

  9. Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    SciTech Connect

    Mosher, Jennifer J.; Drake, Meghan M.; Carroll, Susan L.; Yang, Zamin K.; Schadt, Christopher W.; Brown, Stephen D.; Podar, Mircea; Hazen, Terry C.; Arkin, Adam P.; Phelps, Tommy J.; Palumbo, Anthony V.; Faybishenko, Boris A.; Elias, Dwayne A.

    2010-05-01

    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which

  10. Characterizing the Seasonal Dynamics of Plant Community Photosynthesis Across a Range of Vegetation Types

    SciTech Connect

    Gu, Lianhong; Post, Wilfred M; Baldocchi, Dennis; Black, Andy; Suyker, A.E.,; Verma, Shashi; Vesala, Timo; Wofsy, Steve

    2009-01-01

    found that while the growing season length affected how much carbon dioxide could be potentially assimilated by a plant community over the course of a growing season, other factors that affect canopy photosynthetic capacity (e.g. nutrients, water) could be more important at this time scale. These results and insights demonstrate that the proposed method of analysis and system of terminology can serve as a foundation for studying the dynamics of plant community photosynthesis and such studies can be fruitful.

  11. Lubricated wrinkles: Imposed constraints affect the dynamics of wrinkle coarsening

    NASA Astrophysics Data System (ADS)

    Kodio, Ousmane; Griffiths, Ian M.; Vella, Dominic

    2017-01-01

    We study the dynamic coarsening of wrinkles in an elastic sheet that is compressed while lying on a thin layer of viscous liquid. When the ends of the sheet are instantaneously brought together by a small distance, viscous resistance initially prevents the sheet from adopting a globally buckled shape. Instead, the sheet accommodates the compression by wrinkling. Previous scaling arguments suggested that a balance between the sheet's bending stiffness and viscous effects lead to a wrinkle wavelength λ that increases with time t according to λ ∝t1 /6 . We show that taking proper account of the compression constraint leads to a logarithmic correction of this result, λ ∝(t/logt ) 1 /6 . This correction is significant over experimentally observable time spans and leads us to reassess previously published experimental data.

  12. Initial phylogenetic relatedness of saprotrophic fungal communities affects subsequent litter decomposition rates.

    PubMed

    Kivlin, Stephanie N; Treseder, Kathleen K

    2015-05-01

    Ecosystem-level consequences of biodiversity loss of macroorganisms are well understood, while the repercussions of species extirpation in microbial systems are not. We manipulated species richness and phylogenetic relatedness of saprotrophic fungi in situ in a boreal forest to address this issue. Litter decomposition rates (as total mass loss) after 2 months were significantly higher in the least phylogenetically related fungal assemblages. Likewise, cellulose loss was also highest in the most distantly related treatments after 1 year. There were marginal effects of species richness on mass loss that only affected decomposition after 2 months. At the end of 1 year of decomposition, most fungal communities had collapsed from their original diversity to two species, mainly in the Penicillium or Hypocrea clades. Two concurrent processes may explain these results: competition between closely related fungal taxa and phylogenetic conservation in cellulose decomposition. Our results suggest that phylogenetic relatedness of fungal communities may be a more appropriate metric than species richness or community composition to predict functional responses of fungal communities to global change.

  13. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  14. Salinity affects compositional traits of epibacterial communities on the brown macroalga Fucus vesiculosus.

    PubMed

    Stratil, Stephanie B; Neulinger, Sven C; Knecht, Henrik; Friedrichs, Anette K; Wahl, Martin

    2014-05-01

    Epibiotic biofilms have the potential to control major aspects of the biology and ecology of their hosts. Their composition and function may thus be essential for the health of the host. We tested the influence of salinity on the composition of epibacterial communities associated with the brown macroalga Fucus vesiculosus. Algal individuals were incubated at three salinities (5, 19, and 25) for 14 days and nonliving reference substrata (stones) were included in the experiment. Subsequently, the composition of their surface-associated bacterial communities was analyzed by 454 pyrosequencing of 16S rRNA gene sequences. Redundancy analysis revealed that the composition of epiphytic and epilithic communities significantly differed and were both affected by salinity. We found that 5% of 2494 epiphytic operational taxonomic units at 97% sequence similarity were responsible for the observed shifts. Epibacterial α-diversity was significantly lower at salinity 5 but did not differ between substrata. Our results indicate that salinity is an important factor in structuring alga-associated epibacterial communities with respect to composition and/or diversity. Whether direct or indirect mechanisms (via altered biotic interactions) may have been responsible for the observed shifts is discussed.

  15. Lichen-Associated Fungal Community in Hypogymnia hypotrypa (Parmeliaceae, Ascomycota) Affected by Geographic Distribution and Altitude

    PubMed Central

    Wang, Yanyan; Zheng, Yong; Wang, Xinyu; Wei, Xinli; Wei, Jiangchun

    2016-01-01

    Lichen-associated fungal species have already been investigated in almost all the main growth forms of lichens, however, whether or not they are homogeneous and constant within each lichen species are still inconclusive. Moreover, the related ecological factors to affect and structure the fungal composition have been poorly studied. In order to answer these questions, we took Hypogymnia hypotrypa as a model to study the relationship between the lichen-associated fungal composition and two ecological factors, i.e., site and altitude, using the method of IlluminaMiSeq sequencing. Four different sites and two levels of altitude were included in this study, and the effects of site and altitude on fungal community composition were assessed at three levels, i.e., operational taxonomic unit (OTU), class and phylum. The results showed that a total of 50 OTUs were identified and distributed in 4 phyla, 13 classes, and 20 orders. The lichen-associated fungal composition within H. hypotrypa were significantly affected by both site and altitude at OTU and class levels, while at the phylum level, it was only affected by altitude. While the lichen associated fungal communities were reported to be similar with endophytic fungi of the moss, our results indicated the opposite results in some degree. But whether there exist specific OTUs within this lichen species corresponding to different sites and altitudes is still open. More lichen species and ecological factors would be taken into the integrated analyses to address these knowledge gaps in the near future. PMID:27547204

  16. Multilevel dynamic systems affecting introduction of HIV/STI prevention innovations among Chinese women in sex work establishments.

    PubMed

    Weeks, Margaret R; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2013-10-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the advantage of using empirically documented contextual factors and processes of change in a real-world and real-time setting that can then be tested in the same and other settings. System dynamics modeling offers great promise for addressing persistent problems like HIV and other sexually transmitted epidemics, particularly in complex rapidly developing countries such as China. We generated a system dynamics model of a multilevel intervention we conducted to promote female condoms for HIV/sexually transmitted infection (STI) prevention among Chinese women in sex work establishments. The model reflects factors and forces affecting the study's intervention, implementation, and effects. To build this conceptual model, we drew on our experiences and findings from this intensive, longitudinal mixed-ethnographic and quantitative four-town comparative case study (2007-2012) of the sex work establishments, the intervention conducted in them, and factors likely to explain variation in process and outcomes in the four towns. Multiple feedback loops in the sex work establishments, women's social networks, and the health organization responsible for implementing HIV/STI interventions in each town and at the town level directly or indirectly influenced the female condom intervention. We present the conceptual system dynamics model and discuss how further testing in this and other settings can inform future community interventions to reduce HIV and STIs.

  17. Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities.

    PubMed

    Zaller, Johann G; Heigl, Florian; Grabmaier, Andrea; Lichtenegger, Claudia; Piller, Katja; Allabashi, Roza; Frank, Thomas; Drapela, Thomas

    2011-01-01

    Both earthworms and arbuscular mycorrhizal fungi (AMF) are important ecosystem engineers co-occurring in temperate grasslands. However, their combined impacts during grassland establishment are poorly understood and have never been studied. We used large mesocosms to study the effects of different functional groups of earthworms (i.e., vertically burrowing anecics vs. horizontally burrowing endogeics) and a mix of four AMF taxa on the establishment, diversity and productivity of plant communities after a simulated seed rain of 18 grassland species comprising grasses, non-leguminous forbs and legumes. Moreover, effects of earthworms and/or AMF on water infiltration and leaching of ammonium, nitrate and phosphate were determined after a simulated extreme rainfall event (40 l m(-2)). AMF colonisation of all three plant functional groups was altered by earthworms. Seedling emergence and diversity was reduced by anecic earthworms, however only when AMF were present. Plant density was decreased in AMF-free mesocosms when both anecic and endogeic earthworms were active; with AMF also anecics reduced plant density. Plant shoot and root biomass was only affected by earthworms in AMF-free mesocosms: shoot biomass increased due to the activity of either anecics or endogeics; root biomass increased only when anecics were active. Water infiltration increased when earthworms were present in the mesocosms but remained unaffected by AMF. Ammonium leaching was increased only when anecics or a mixed earthworm community was active but was unaffected by AMF; nitrate and phosphate leaching was neither affected by earthworms nor AMF. Ammonium leaching decreased with increasing plant density, nitrate leaching decreased with increasing plant diversity and density. In order to understand the underlying processes of these interactions further investigations possibly under field conditions using more diverse belowground communities are required. Nevertheless, this study demonstrates that

  18. Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds.

    PubMed

    Napoli, Chiara; Mello, Antonietta; Borra, Ambrogio; Vizzini, Alfredo; Sourzat, Pierre; Bonfante, Paola

    2010-01-01

    The fruiting bodies of the ectomycorrhizal (ECM) fungus Tuber melanosporum are usually collected in an area devoid of vegetation which is defined as a 'burnt area' (brulé in French). Here, the soil fungal populations of inside and outside brulé were compared in order to understand whether the scanty plant cover was related to a change in fungal biodiversity. Both denaturing gradient gel electrophoresis (DGGE) and molecular cloning of the internal transcribed spacer (ITS) marker were employed on soil DNA to obtain profiles from nine truffle grounds and fungal sequences from one selected truffle ground sampled in two years. Denaturant gradient gel electrophoresis profiles from the two areas formed two distinct clusters while molecular cloning allowed 417 fungal sequences to be identified. T. melanosporum was the dominant fungus within the brulé. There were nine new haplotypes, which had never been detected in fruiting bodies. The Basidiomycota ECM fungi decreased within the brulé, indicating a competitive effect of T. melanosporum on the other ECM fungi. Among other factors, the dynamics of fungal populations seems to be correlated to brulé formation.

  19. Planning horizon affects prophylactic decision-making and epidemic dynamics

    PubMed Central

    Ridenhour, Benjamin J.; Krone, Stephen M.

    2016-01-01

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon—the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals’ payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adopt prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. These effects can be made stronger by increasing the behavioral decision frequency or distorting an individual’s perceived risk of infection. PMID:27843714

  20. Reheating dynamics affects non-perturbative decay of spectator fields

    SciTech Connect

    Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav E-mail: rose.lerner@helsinki.fi

    2013-11-01

    The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field σ coupled to the Higgs Boson Φ through the term g{sup 2}σ{sup 2}Φ{sup 2}, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling g∼>10{sup −3}, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.

  1. Social decisions affect neural activity to perceived dynamic gaze

    PubMed Central

    Latinus, Marianne; Love, Scott A.; Rossi, Alejandra; Parada, Francisco J.; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin

    2015-01-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a ‘default mode’ that may focus on spatial information; a ‘socially aware mode’ that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified. PMID:25925272

  2. Social decisions affect neural activity to perceived dynamic gaze.

    PubMed

    Latinus, Marianne; Love, Scott A; Rossi, Alejandra; Parada, Francisco J; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin; Puce, Aina

    2015-11-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a 'default mode' that may focus on spatial information; a 'socially aware mode' that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified.

  3. Comparing factors of vulnerability and resilience of mountain communities affected by landslides in Eastern Nepal

    NASA Astrophysics Data System (ADS)

    Sudmeier-Rieux, Karen; Dubois, Jerome; Jaboyedoff, Michel

    2010-05-01

    This paper describes a methodology for assessing and quantifying vulnerability and resilience of mountain communities in Eastern Nepal increasingly affected by landslides and flooding. We are interested in improving our understanding of the complex interactions between land use, landslides and multiple dimensions of risk, vulnerability and resilience to better target risk management strategies. Our approach is based on assessing underlying social, ecological and physical factors that cause vulnerability and on the other hand, those resources and capacities that increase resilience. Increasing resilience to disasters is frequently used by NGOs, governments and donors as the main goal of disaster risk reduction policies and practices. If we are to increase resilience to disasters, we need better guidance and tools for defining, assessing and monitoring its parameters. To do so, we are establishing a methodology for quantifying and mapping an index of resilience to compare resilience factors between households and communities based on interdisciplinary research methods: remote sensing, GIS, qualitative and quantitative risk assessments, participatory risk mapping, household questionnaires and focus groups discussions. Our study applied this methodology to several communities in Eastern Nepal where small, frequent landslides are greatly affecting rural lives and livelihoods. These landslides are not captured by headlines or official statistics but are examples of cumulative, hidden disasters, which are impacting everyday life and rural poverty in the Himalayas. Based on experience, marginalized populations are often aware of the physical risks and the limitations of their land. However, they continue to live in dangerous places out of necessity and for the economic or infrastructure opportunities offered. We compare two communities in Nepal, both affected by landslides but with different land use, migration patterns, education levels, social networks, risk reduction

  4. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  5. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions.

  6. Do Amplitudes of Water Level Fluctuations Affect the Growth and Community Structure of Submerged Macrophytes?

    PubMed Central

    Wang, Mo-Zhu; Liu, Zheng-Yuan; Luo, Fang-Li; Lei, Guang-Chun; Li, Hong-Li

    2016-01-01

    Submerged macrophytes are subjected to potential mechanical stresses associated with fluctuating water levels in natural conditions. However, few experimental studies have been conducted to further understand the effects of water level fluctuating amplitude on submerged macrophyte species and their assemblages or communities. We designed a controlled experiment to investigate the responses of three submerged macrophyte species (Hydrilla verticillata, Ceratophyllum demersum and Elodea nuttallii) and their combinations in communities to three amplitudes (static, ± 30 cm, ± 60 cm) of water level fluctuations. Results showed that water level fluctuating amplitude had little effects on the community performance and the three tested species responded differently. H. verticillata exhibited more growth in static water and it was negatively affected by either of the water level fluctuations amplitude, however, growth parameters of H. verticillata in two fluctuating water level treatments (i.e., ± 30 cm, ± 60 cm) were not significantly different. On the other hand, the growth of C. demersum was not significantly correlated with different amplitude treatments. However, it became more abundant when water levels fluctuated. E. nuttallii was inhibited by the two fluctuating water level treatments, and was less in growth parameters compared to the other species especially in water level fluctuating conditions. The inherent differences in the adaptive capabilities of the tested species indicate that C. demersum or other species with similar responses may be dominant species to restore submerged macrophyte communities with great fluctuating water levels. Otherwise, H. verticillata, E. nuttallii or other species with similar responses could be considered for constructing the community in static water conditions. PMID:26735689

  7. Facets of dynamic positive affect: differentiating joy, interest, and activation in the positive and negative affect schedule (PANAS).

    PubMed

    Egloff, Boris; Schmukle, Stefan C; Burns, Lawrence R; Kohlmann, Carl-Walter; Hock, Michael

    2003-09-01

    This article proposes the differentiation of Joy, Interest, and Activation in the Positive Affect (PA) scale of the Positive and Negative Affect Schedule (PANAS; D. Watson, L. A. Clark, & A. Tellegen, 1988). Study 1 analyzed the dynamic course of PA before, during, and after an exam and established the differentiation of the three facets. Study 2 used a multistate-multitrait analysis to confirm this structure. Studies 3-5 used success-failure experiences, speaking tasks, and feedback of exam results to further examine PA facets in affect-arousing settings. All studies provide convincing evidence for the benefit of differentiating three facets of PA in the PANAS: Joy, Interest, and Activation do have distinct and sometimes even opposite courses that make their separation meaningful and rewarding.

  8. How has the economic downturn affected communities and implementation of science-based prevention in the randomized trial of communities that care?

    PubMed

    Kuklinski, Margaret R; Hawkins, J David; Plotnick, Robert D; Abbott, Robert D; Reid, Carolina K

    2013-06-01

    This study examined implications of the economic downturn that began in December 2007 for the Community Youth Development Study (CYDS), a longitudinal randomized controlled trial of the Communities That Care (CTC) prevention system. The downturn had the potential to affect the internal validity of the CYDS research design and implementation of science-based prevention in study communities. We used archival economic indicators and community key leader reports of economic conditions to assess the extent of the economic downturn in CYDS communities and potential internal validity threats. We also examined whether stronger economic downturn effects were associated with a decline in science-based prevention implementation. Economic indicators suggested the downturn affected CYDS communities to different degrees. We found no evidence of systematic differences in downturn effects in CTC compared to control communities that would threaten internal validity of the randomized trial. The Community Economic Problems scale was a reliable measure of community economic conditions, and it showed criterion validity in relation to several objective economic indicators. CTC coalitions continued to implement science-based prevention to a significantly greater degree than control coalitions 2 years after the downturn began. However, CTC implementation levels declined to some extent as unemployment, the percentage of students qualifying for free lunch, and community economic problems worsened. Control coalition implementation levels were not related to economic conditions before or after the downturn, but mean implementation levels of science-based prevention were also relatively low in both periods.

  9. How Fear of Future Outcomes Affects Social Dynamics

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Jusup, Marko; Wang, Zhen; Stanley, H. Eugene

    2016-11-01

    Mutualistic relationships among the different species are ubiquitous in nature. To prevent mutualism from slipping into antagonism, a host often invokes a "carrot and stick" approach towards symbionts with a stabilizing effect on their symbiosis. In open human societies, a mutualistic relationship arises when a native insider population attracts outsiders with benevolent incentives in hope that the additional labor will improve the standard of all. A lingering question, however, is the extent to which insiders are willing to tolerate outsiders before mutualism slips into antagonism. To test the assertion by Karl Popper that unlimited tolerance leads to the demise of tolerance, we model a society under a growing incursion from the outside. Guided by their traditions of maintaining the social fabric and prizing tolerance, the insiders reduce their benevolence toward the growing subpopulation of outsiders but do not invoke punishment. This reduction of benevolence intensifies as less tolerant insiders (e.g., "radicals") openly renounce benevolence. Although more tolerant insiders maintain some level of benevolence, they may also tacitly support radicals out of fear for the future. If radicals and their tacit supporters achieve a critical majority, herd behavior ensues and the relation between the insider and outsider subpopulations turns antagonistic. To control the risk of unwanted social dynamics, we map the parameter space within which the tolerance of insiders is in balance with the assimilation of outsiders, the tolerant insiders maintain a sustainable majority, and any reduction in benevolence occurs smoothly. We also identify the circumstances that cause the relations between insiders and outsiders to collapse or that lead to the dominance of the outsiders.

  10. Interactions between specific phytoplankton and bacteria affect lake bacterial community succession.

    PubMed

    Paver, Sara F; Hayek, Kevin R; Gano, Kelsey A; Fagen, Jennie R; Brown, Christopher T; Davis-Richardson, Austin G; Crabb, David B; Rosario-Passapera, Richard; Giongo, Adriana; Triplett, Eric W; Kent, Angela D

    2013-09-01

    Time-series observations and a phytoplankton manipulation experiment were combined to test the hypothesis that phytoplankton succession effects changes in bacterial community composition. Three humic lakes were sampled weekly May-August and correlations between relative abundances of specific phytoplankton and bacterial operational taxonomic units (OTUs) in each time series were determined. To experimentally characterize the influence of phytoplankton, bacteria from each lake were incubated with phytoplankton from one of the three lakes or no phytoplankton. Following incubation, variation in bacterial community composition explained by phytoplankton treatment increased 65%, while the variation explained by bacterial source decreased 64%. Free-living bacteria explained, on average, over 60% of the difference between phytoplankton and corresponding no-phytoplankton control treatments. Fourteen out of the 101 bacterial OTUs that exhibited positively correlated patterns of abundance with specific algal populations in time-series observations were enriched in mesocosms following incubation with phytoplankton, and one out of 59 negatively correlated bacterial OTUs was depleted in phytoplankton treatments. Bacterial genera enriched in mesocosms containing specific phytoplankton assemblages included Limnohabitans (clade betI-A), Bdellovibrio and Mitsuaria. These results suggest that effects of phytoplankton on certain bacterial populations, including bacteria tracking seasonal changes in algal-derived organic matter, result in correlations between algal and bacterial community dynamics.

  11. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  12. Climate warming and agricultural stressors interact to determine stream macroinvertebrate community dynamics.

    PubMed

    Piggott, Jeremy J; Townsend, Colin R; Matthaei, Christoph D

    2015-05-01

    Global climate change is likely to modify the ecological consequences of currently acting stressors, but potentially important interactions between climate warming and land-use related stressors remain largely unknown. Agriculture affects streams and rivers worldwide, including via nutrient enrichment and increased fine sediment input. We manipulated nutrients (simulating agricultural run-off) and deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6°C above ambient) simultaneously in 128 streamside mesocosms to determine the individual and combined effects of the three stressors on macroinvertebrate community dynamics (community composition and body size structure of benthic, drift and insect emergence assemblages). All three stressors had pervasive individual effects, but in combination often produced additive or antagonistic outcomes. Changes in benthic community composition showed a complex interplay among habitat quality (with or without sediment), resource availability (with or without nutrient enrichment) and the behavioural/physiological tendency to drift or emerge as temperature rose. The presence of sediment and raised temperature both resulted in a community of smaller organisms. Deposited fine sediment strongly increased the propensity to drift. Stressor effects were most prominent in the benthic assemblage, frequently reflected by opposite patterns in individuals quitting the benthos (in terms of their propensity to drift or emerge). Of particular importance is that community measures of stream health routinely used around the world (taxon richness, EPT richness and diversity) all showed complex three-way interactions, with either a consistently stronger temperature response or a reversal of its direction when one or both agricultural stressors were also in operation. The negative effects of added fine sediment, which were often stronger at raised temperatures, suggest that streams already

  13. Microbial community dynamics in the forefield of glaciers.

    PubMed

    Bradley, James A; Singarayer, Joy S; Anesio, Alexandre M

    2014-11-22

    Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.

  14. Microbial community dynamics in the forefield of glaciers

    PubMed Central

    Bradley, James A.; Singarayer, Joy S.; Anesio, Alexandre M.

    2014-01-01

    Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat. PMID:25274358

  15. The dynamic role of personality states in mediating the relationship between extraversion and positive affect.

    PubMed

    Wilt, Joshua; Noftle, Erik E; Fleeson, William; Spain, Jana S

    2012-10-01

    One of the most noteworthy and robust findings in personality psychology is the relationship between extraversion and positive affect. Existing theories have debated the origins and nature of this relationship, offering both structural/fixed and environmental/dynamic explanations. We tested the novel and straightforward dynamic hypothesis that part of the reason trait extraversion predicts trait positive affect is through an increased propensity to enact extraverted states, which in turn leads to experiencing more positive affect states. We report 5 experience sampling studies (and a meta-analysis of primary studies) conducted in natural environments and laboratory settings in which undergraduate participants (N = 241) provided ratings of trait extraversion, trait positive affect, extraversion states, and positive affect states. Results of primary studies and the meta-analysis showed that relationships between trait extraversion and trait positive affect were partially mediated by aggregated extraversion states and aggregated positive affect states. The results supported our dynamic hypothesis and suggested that dynamic explanations of the relationship between trait extraversion and trait positive affect are compatible with structural explanations. An important implication of these findings is that individuals might be able to increase their happiness by self-regulating their extraverted states.

  16. The Dynamic Role of Personality States in Mediating the Relationship between Extraversion and Positive Affect

    PubMed Central

    Wilt, Joshua; Noftle, Erik E.; Fleeson, William; Spain, Jana S.

    2012-01-01

    Objective One of the most noteworthy and robust findings in personality psychology is the relationship between extraversion and positive affect. Existing theories have debated the origins and nature of this relationship, offering both structural/fixed and environmental/dynamic explanations. We tested the novel and straightforward dynamic hypothesis that part of the reason trait extraversion predicts trait positive affect is through an increased propensity to enact extraverted states, which in turn leads to experiencing more positive affect states. Method We report five experience sampling studies (and a meta-analysis of primary studies) conducted in natural environments and laboratory settings in which undergraduate participants (N = 241) provided ratings of trait extraversion, trait positive affect, extraversion states, and positive affect states. Results Results of primary studies and the meta analysis showed that relationships between trait extraversion and trait positive affect were partially mediated by aggregated extraversion states and aggregated positive affect states. Conclusions The results supported our dynamic hypothesis and suggested that dynamic explanations of the relationship between trait extraversion and trait positive affect are compatible with structural explanations. An important implication of these findings is that individuals might be able to increase their happiness by self-regulating their extraverted states. PMID:22092066

  17. Does human pressure affect the community structure of surf zone fish in sandy beaches?

    NASA Astrophysics Data System (ADS)

    Costa, Leonardo Lopes; Landmann, Júlia G.; Gaelzer, Luiz R.; Zalmon, Ilana R.

    2017-01-01

    Intense tourism and human activities have resulted in habitat destruction in sandy beach ecosystems with negative impacts on the associated communities. To investigate whether urbanized beaches affect surf zone fish communities, fish and their benthic macrofaunal prey were collected during periods of low and high human pressure at two beaches on the Southeastern Brazilian coast. A BACI experimental design (Before-After-Control-Impact) was adapted for comparisons of tourism impact on fish community composition and structure in urbanized, intermediate and non-urbanized sectors of each beach. At the end of the summer season, we observed a significant reduction in fish richness, abundance, and diversity in the high tourist pressure areas. The negative association between visitors' abundance and the macrofaunal density suggests that urbanized beaches are avoided by surf zone fish due to higher human pressure and the reduction of food availability. Our results indicate that surf zone fish should be included in environmental impact studies in sandy beaches, including commercial species, e.g., the bluefish Pomatomus saltatrix. The comparative results from the less urbanized areas suggest that environmental zoning and visitation limits should be used as effective management and preservation strategies on beaches with high conservation potential.

  18. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level

    PubMed Central

    Einzmann, Helena J. R.; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2015-01-01

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ13C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests. PMID:25392188

  19. Host tree phenology affects vascular epiphytes at the physiological, demographic and community level.

    PubMed

    Einzmann, Helena J R; Beyschlag, Joachim; Hofhansl, Florian; Wanek, Wolfgang; Zotz, Gerhard

    2014-11-11

    The processes that govern diverse tropical plant communities have rarely been studied in life forms other than trees. Structurally dependent vascular epiphytes, a major part of tropical biodiversity, grow in a three-dimensional matrix defined by their hosts, but trees differ in their architecture, bark structure/chemistry and leaf phenology. We hypothesized that the resulting seasonal differences in microclimatic conditions in evergreen vs. deciduous trees would affect epiphytes at different levels, from organ physiology to community structure. We studied the influence of tree leaf phenology on vascular epiphytes on the Island of Barro Colorado, Panama. Five tree species were selected, which were deciduous, semi-deciduous or evergreen. The crowns of drought-deciduous trees, characterized by sunnier and drier microclimates, hosted fewer individuals and less diverse epiphyte assemblages. Differences were also observed at a functional level, e.g. epiphyte assemblages in deciduous trees had larger proportions of Crassulacean acid metabolism species and individuals. At the population level a drier microclimate was associated with lower individual growth and survival in a xerophytic fern. Some species also showed, as expected, lower specific leaf area and higher δ(13)C values when growing in deciduous trees compared with evergreen trees. As hypothesized, host tree leaf phenology influences vascular epiphytes at different levels. Our results suggest a cascading effect of tree composition and associated differences in tree phenology on the diversity and functioning of epiphyte communities in tropical lowland forests.

  20. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    PubMed

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions.

  1. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities.

    PubMed

    Lumini, Erica; Vallino, Marta; Alguacil, Maria M; Romani, Marco; Bianciotto, Valeria

    2011-07-01

    Arbuscular mycorrhizal fungi (AMF) comprise one of the main components of soil microbiota in most agroecosystems. These obligate mutualistic symbionts colonize the roots of most plants, including crop plants. Many papers have indicated that different crop management practices could affect AMF communities and their root colonization. However, there is little knowledge available on the influence of conventional and low-input agriculture on root colonization and AMF molecular diversity in rice fields. Two different agroecosystems (continuous conventional high-input rice monocropping and organic farming with a five-year crop rotation) and two different water management regimes have been considered in this study. Both morphological and molecular analyses were performed. The soil mycorrhizal potential, estimated using clover trap cultures, was high and similar in the two agroecosystems. The diversity of the AMF community in the soil, calculated by means of PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) and 18S rDNA sequencing on clover trap cultures roots, was higher for the organic cultivation. The rice roots cultivated in the conventional agrosystem or under permanent flooding showed no AMF colonization, while the rice plants grown under the organic agriculture system showed typical mycorrhization patterns. Considered together, our data suggest that a high-input cropping system and conventional flooding depress AMF colonization in rice roots and that organic managements could help maintain a higher diversity of AMF communities in soil.

  2. Water level changes affect carbon turnover and microbial community composition in lake sediments

    PubMed Central

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-01-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  3. A case study for assessment of microbial community dynamics in genetically modified Bt cotton crop fields.

    PubMed

    Kapur, Manisha; Bhatia, Ranjana; Pandey, Gunjan; Pandey, Janmejay; Paul, Debarati; Jain, Rakesh K

    2010-08-01

    Bt cotton was the first genetically modified crop approved for use in India. However, only a few studies have been conducted to assess the feasibility of its commercial application. Bt cotton is genetically modified to express a proteinaceous endotoxin (Cry) encoded by cry gene of Bacillus thuringiensis that has specific insecticidal activity against bollworms. Therefore, the amount of pesticides used for growing Bt cotton is postulated to be considerably low as compared to their non-Bt counterparts. Alternatively, it is also speculated that application of a genetically modified crop may alter the bio-geochemical balance of the agriculture field(s). Microbial community composition and dynamics is an important descriptor for assessment of such alterations. In the present study, we have assessed the culturable and non-culturable microbial diversities in Bt cotton and non-Bt cotton soils to determine the ecological consequences of application of Bt cotton. The analyses of microbial community structures indicated that cropping of Bt cotton did not adversely affect the diversity of the microbial communities.

  4. The magnitude of behavioral isolation is affected by characteristics of the mating community

    PubMed Central

    Matute, Daniel R

    2014-01-01

    Gene exchange between species occurs in areas of secondary contact, where two species have the opportunity to hybridize. If heterospecific males are more common than conspecific males, females will experience more encounters with males of other species. These encounters might increase the likelihood of heterospecific matings, and lead to the production of hybrid progeny. I studied the mating behavior of two pairs of sibling species endemic to Africa: Drosophila yakuba/Drosophila santomea and Drosophila simulans/Drosophila sechellia. Drosophila yakuba and D. simulans are cosmopolitan species widely distributed in the African continent, while D. santomea and D. sechellia are island endemics. These pairs of species hybridize in nature and have the potential to exchange genes in natural conditions. I used these two pairs of Drosophila species, and constructed mating communities of different size and different heterospecific:conspecific composition. I found that both the total number of potential mates and the relative frequency of conspecific versus heterospecific males affect female mating decisions in the cosmopolitan species but not in the island endemics. These results suggest that the population characteristics, in which mating occurs, may affect the magnitude of premating isolation. Community composition might thus facilitate, or impair, gene flow between species. PMID:25165530

  5. Factors affecting the performance of community health workers in India: a multi-stakeholder perspective

    PubMed Central

    Sharma, Reetu; Webster, Premila; Bhattacharyya, Sanghita

    2014-01-01

    Background Community health workers (CHWs) form a vital link between the community and the health department in several countries. In India, since 2005 this role is largely being played by Accredited Social Health Activists (ASHAs), who are village-level female workers. Though ASHAs primarily work for the health department, in a model being tested in Rajasthan they support two government departments. Focusing on the ASHA in this new role as a link worker between two departments, this paper examines factors associated with her work performance from a multi-stakeholder perspective. Design The study was done in 16 villages from two administrative blocks of Udaipur district in Rajasthan. The findings are based on 63 in-depth interviews with ASHAs, their co-workers and representatives from the two departments. The interviews were conducted using interview guides. An inductive approach with open coding was used for manual data analysis. Results This study shows that an ASHA's motivation and performance are affected by a variety of factors that emerge from the complex context in which she works. These include various personal (e.g. education), professional (e.g. training, job security), and organisational (e.g. infrastructure) factors along with others that emerge from external work environment. The participants suggested various ways to address these challenges. Conclusion In order to improve the performance of ASHAs, apart from taking corrective actions at the professional and organisational front on a priority basis, it is equally essential to promote cordial work relationships amongst ASHAs and other community-level workers from the two departments. This will also have a positive impact on community health. PMID:25319596

  6. Game theory and extremal optimization for community detection in complex dynamic networks.

    PubMed

    Lung, Rodica Ioana; Chira, Camelia; Andreica, Anca

    2014-01-01

    The detection of evolving communities in dynamic complex networks is a challenging problem that recently received attention from the research community. Dynamics clearly add another complexity dimension to the difficult task of community detection. Methods should be able to detect changes in the network structure and produce a set of community structures corresponding to different timestamps and reflecting the evolution in time of network data. We propose a novel approach based on game theory elements and extremal optimization to address dynamic communities detection. Thus, the problem is formulated as a mathematical game in which nodes take the role of players that seek to choose a community that maximizes their profit viewed as a fitness function. Numerical results obtained for both synthetic and real-world networks illustrate the competitive performance of this game theoretical approach.

  7. A novel dynamics combination model reveals the hidden information of community structure

    NASA Astrophysics Data System (ADS)

    Li, Hui-Jia; Li, Huiying; Jia, Chuanliang

    2015-09-01

    The analysis of the dynamic details of community structure is an important question for scientists from many fields. In this paper, we propose a novel Markov-Potts framework to uncover the optimal community structures and their stabilities across multiple timescales. Specifically, we model the Potts dynamics to detect community structure by a Markov process, which has a clear mathematical explanation. Then the local uniform behavior of spin values revealed by our model is shown that can naturally reveal the stability of hierarchical community structure across multiple timescales. To prove the validity, phase transition of stochastic dynamic system is used to indicate that the stability of community structure we proposed is able to describe the significance of community structure based on eigengap theory. Finally, we test our framework on some example networks and find it does not have resolute limitation problem at all. Results have shown the model we proposed is able to uncover hierarchical structure in different scales effectively and efficiently.

  8. Mapping, monitoring, and modeling Western Gateway Community landscape dynamics

    USGS Publications Warehouse

    Hester, David J.

    2013-01-01

    Federal public lands in the western United States are becoming increasingly surrounded by Gateway Communities. These communities are undergoing landscape change due to population growth, economic growth, and the resulting land-use development. Socioeconomic, demographic, and land-use changes in Gateway Communities are often perceived as threats to Federal land resources, natural amenities, cultural resources, and recreational opportunities. However, land-surface disturbances on Federal public lands, such as conventional and alternative energy development (which impact surrounding Gateway Communities), are also environmental and societal issues that Federal land and adjacent regional community planners need to consider in their long-range land-use planning.

  9. Affect dynamics in relation to depressive symptoms: variable, unstable or inert?

    PubMed

    Koval, Peter; Pe, Madeline L; Meers, Kristof; Kuppens, Peter

    2013-12-01

    Depression not only involves disturbances in prevailing affect, but also in how affect fluctuates over time. Yet, precisely which patterns of affect dynamics are associated with depressive symptoms remains unclear; depression has been linked with increased affective variability and instability, but also with greater resistance to affective change (inertia). In this paper, we argue that these paradoxical findings stem from a number of neglected methodological/analytical factors, which we address using a novel paradigm and analytic approach. Participants (N = 99), preselected to represent a wide range of depressive symptoms, watched a series of emotional film clips and rated their affect at baseline and following each film clip. We also assessed participants' affect in daily life over 1 week using experience sampling. When controlling for overlap between different measures of affect dynamics, depressive symptoms were independently associated with higher inertia of negative affect in the lab, and with greater negative affect variability both in the lab and in daily life. In contrast, depressive symptoms were not independently related to higher affective instability either in daily life or in the lab.

  10. Seasonal dynamics of bacterial community structure and composition in cold and hot drinking water derived from surface water reservoirs.

    PubMed

    Henne, Karsten; Kahlisch, Leila; Höfle, Manfred G; Brettar, Ingrid

    2013-10-01

    In temperate regions, seasonal variability of environmental factors affects the bacterial community in source water and finished drinking water. Therefore, the bacterial core community and its seasonal variability in cold and the respective hot drinking water was investigated. The bacterial core community was studied by 16S rRNA-based SSCP fingerprint analyses and band sequencing of DNA and RNA extracts of cold and hot water (60 °C). The bacterial communities of cold and hot drinking water showed a highly different structure and phylogenetic composition both for RNA and DNA extracts. For cold drinking water substantial seasonal dynamics of the bacterial community was observed related to environmental factors such as temperature and precipitation affecting source and drinking water. Phylogenetic analyses of the cold water community indicated that the majority of phylotypes were very closely affiliated with those detected in former studies of the same drinking water supply system (DWSS) in the preceding 6 years, indicating a high stability over time. The hot water community was very stable over time and seasons and highly distinct from the cold water with respect to structure and composition. The hot water community displayed a lower diversity and its phylotypes were mostly affiliated with bacteria of high temperature habitats with high growth rates indicated by their high RNA content. The conversion of the cold to the hot water bacterial community is considered as occurring within a few hours by the following two processes, i) by decay of most of the cold water bacteria due to heating, and ii) rapid growth of the high temperature adapted bacteria present in the hot water (co-heated with the cold water in the same device) using the nutrients released from the decaying cold water bacteria. The high temperature adapted bacteria originated partially from low abundant but beforehand detected members of the cold water; additionally, the rare members ("seed bank ") of the

  11. Habitat heterogeneity and activity of an omnivorous ecosystem engineer control stream community dynamics.

    PubMed

    Brown, Bryan L; Lawson, Raven L

    2010-06-01

    All communities vary through time. This variability originates from both intrinsic and extrinsic sources. Intrinsic sources are due to actions of organisms in a community, i.e., population dynamics and species interactions, while extrinsic variability is variability created by elements of habitat or environmental change. There is a growing appreciation that these two sources may interact, producing patterns of community variability that cannot be predicted or explained by focusing on a single source. We performed a field experiment that simultaneously manipulated trophic structure (intrinsic) and habitat heterogeneity (extrinsic) in order to examine the interaction between sources of variability in a South Carolina (USA) stream macroinvertebrate community. To manipulate trophic structure, we experimentally altered local abundances of crayfish which are keystone species and ecosystem engineers, while our manipulation of habitat was to alter stream substrate heterogeneity. We focused on two types of community variability as responses to our manipulations: aggregate variability (i.e., variability of summed species) and compositional variability (i.e., variability in relative abundances of species) by monitoring community composition through a 10-week experiment. We found that community dynamics shifted from patterns in variability indicative of synchrony (high aggregate variability + low compositional) to variability indicative of compensation (low aggregate variability + high compositional) along a gradient of increasing habitat heterogeneity. However, the shift in community dynamics only occurred when crayfish were present in the community. Supporting evidence from the experiment suggested that sediment engineering effects of crayfish acted as a community-wide perturbation in low-heterogeneity habitat creating synchronous dynamics. However, in high-heterogeneity enclosures, crayfish effects were moderated by refugia provided by a more complex substratum. The switch

  12. Long-term dynamics of winter and summer annual communities in the Chihuahuan Desert

    USGS Publications Warehouse

    Guo, Q.; Brown, J.H.; Valone, T.J.

    2002-01-01

    Using 15 years of census data from permanent quadrats, this paper compared the characteristics and temporal dynamics of these two distinct, spatially coexistent but temporally segregated communities. Although the total number of summer annual species recorded during our 15 years observation was higher than winter annuals, the average number of species observed each year was higher in the winter community. The winter community exhibited lower temporal variation in total plant abundance and populations of individual species, lower species turnover rate and higher evenness than the summer community. The higher seasonal species diversity (i.e., number of species observed in each season) in winters rather than the overall special pool (over 15 yrs) may be responsible for the greater community stability of winter annuals. The difference in long-term community dynamics between the two communities of annuals plants are likely due to the differences in total species pool, life history traits (e.g., seed size), and seasonal climatic regimes.

  13. Factors affecting incidence of dry socket: a prospective community-based study.

    PubMed

    Parthasarathi, Krishnan; Smith, Andrew; Chandu, Arun

    2011-07-01

    Dry socket, or alveolar osteitis, can occur because of the removal of teeth. No clear etiology has been acknowledged; however, numerous risk factors have been proposed and tested. We report on the results of a prospective, multicenter study of the incidence and factors affecting the occurrence of alveolar osteitis at the Royal Dental Hospital of Melbourne and Community Dental Clinics in Melbourne, Australia. Ethics approval was gained from the University of Melbourne and Dental Health Services Victoria. The data were analyzed in a descriptive fashion, and the factors affecting alveolar osteitis were assessed using logistic regression analysis. The incidence of alveolar osteitis was 2.3% of all teeth extracted, with 4.2% of all patients experiencing alveolar osteitis in a public dental setting. Multivariate analysis revealed operator experience, perioperative crown and root fractures, periodontal disease, posterior teeth, and, interestingly, the use of mental health medications to be significant independent risk factors for the development of alveolar osteitis. No alveolar osteitis was reported in patients taking antibiotics, the oral contraceptive pill, bisphosphonates, or oral steroid drugs. Smoking and extraction technique (either operative or nonoperative) were also not found to significantly affect the development of alveolar osteitis.

  14. Wildfires Dynamics in Mid-Siberian Larch Dominated Communities

    NASA Technical Reports Server (NTRS)

    Kharuk, V. I.; Ranson. K. J.; Dvinskaya, M. L.

    2003-01-01

    The longterm wildfire dynamics, including fire return interval (FRI), in Siberian larch communities were examined. A wildfire chronology encompassing the 15th through the 20th centuries was developed from analyzing tree stem fire scars. Two methods were used to calculate the time interval between fires: 1) direct counting of annual tree growth rings between stem fire scars and 2) the next earlier fire date was estimated from growth ring analysis and added to the first estimate. Average FRI determined from stem fire scar dating was 82 plus or minus 7 using Method I or 95 plus or minus 7 when age of the next earlier fire was inferred from observed larch regeneration structure (Method II). FRI was also found to be dependent on site topography. FRI on north-east facing slopes was 86 plus or minus 11 years (105 plus or minus 12). FRI on south-west facing slopes was significantly less at 61 plus or minus 8 (73 plus ot minus 8) years. Flat terrain showed little difference between methods 68 plus or minus 14 (70 plus or minus 13). This was also the case for bogs, but FRI was much longer; 139 plus or minus 17 (138 plus ot minus 18). The maximum number of annual fires occurred with periods of 36 and 82 years on average. The temporal trend in the FRI decreased from 101 years in the 19 th century to 65 years in the 20th century. The effect of post-fire forest recovery on depth to permafrost was also estimated. After initial melting from increased local temperatures permafrost depth decreased at a rate of 0.3 cm/yr on average as forest canopies developed.

  15. Species composition, community and population dynamics of two gallery forests from the Brazilian Cerrado domain

    PubMed Central

    Almado, Roosevelt P; Miazaki, Angela S; Diniz, Écio S; Moreira, Luis C B; Meira-Neto, João A.A.

    2016-01-01

    Abstract Background To understand the impacts of global changes on future community compositions, knowledge of community dynamics is of crucial importance. To improve our knowledge of community composition, biomass stock and maintenance of gallery forests in the Brazilian Cerrado, we provide two datasets from the 0.5 ha Corrego Fazendinha Gallery Forest Dynamics Plot and the Corrego Fundo Gallery Forest Dynamics Plot situated in the Bom Despacho region, Minas Gerais, Southeastern Brazil. New information We report diameter at breast height, basal area and height measurements of 3417 trees and treelets identified during three censuses in both areas. PMID:27660529

  16. Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague

    USGS Publications Warehouse

    Augustine, D.J.; Matchett, M.R.; Toombs, T.P.; Cully, J.F.; Johnson, T.L.; Sidle, John G.

    2008-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are a key component of the disturbance regime in semi-arid grasslands of central North America. Many studies have compared community and ecosystem characteristics on prairie dog colonies to grasslands without prairie dogs, but little is known about landscape-scale patterns of disturbance that prairie dog colony complexes may impose on grasslands over long time periods. We examined spatiotemporal dynamics in two prairie dog colony complexes in southeastern Colorado (Comanche) and northcentral Montana (Phillips County) that have been strongly influenced by plague, and compared them to a complex unaffected by plague in northwestern Nebraska (Oglala). Both plague-affected complexes exhibited substantial spatiotemporal variability in the area occupied during a decade, in contrast to the stability of colonies in the Oglala complex. However, the plague-affected complexes differed in spatial patterns of colony movement. Colonies in the Comanche complex in shortgrass steppe shifted locations over a decade. Only 10% of the area occupied in 1995 was still occupied by prairie dogs in 2006. In 2005 and 2006 respectively, 74 and 83% of the total area of the Comanche complex occurred in locations that were not occupied in 1995, and only 1% of the complex was occupied continuously over a decade. In contrast, prairie dogs in the Phillips County complex in mixed-grass prairie and sagebrush steppe primarily recolonized previously occupied areas after plague-induced colony declines. In Phillips County, 62% of the area occupied in 1993 was also occupied by prairie dogs in 2004, and 12% of the complex was occupied continuously over a decade. Our results indicate that plague accelerates spatiotemporal movement of prairie dog colonies, and have significant implications for landscape-scale effects of prairie dog disturbance on grassland composition and productivity. These findings highlight the need to combine landscape-scale measures of

  17. Dynamic community detection based on network structural perturbation and topological similarity

    NASA Astrophysics Data System (ADS)

    Wang, Peizhuo; Gao, Lin; Ma, Xiaoke

    2017-01-01

    Community detection in dynamic networks has been extensively studied since it sheds light on the structure-function relation of the overall complex systems. Recently, it has been demonstrated that the structural perturbation in static networks is excellent in characterizing the topology. In order to investigate the perturbation structural theory in dynamic networks, we extend the theory by considering the dynamic variation information between networks of consecutive time. Then a novel similarity is proposed by combing structural perturbation and topological features. Finally, we present an evolutionary clustering algorithm to detect dynamic communities under the temporal smoothness framework. Experimental results on both artificial and real dynamic networks demonstrate that the proposed similarity is promising in dynamic community detection since it improves the clustering accuracy compared with state-of-the-art methods, indicating the superiority of the presented similarity measure.

  18. Seasonal Dynamics of Ant Community Structure in the Moroccan Argan Forest

    PubMed Central

    Keroumi, Abderrahim El; Naamani, Khalid; Soummane, Hassna; Dahbi, Abdallah

    2012-01-01

    In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems. PMID:23421815

  19. Seasonal dynamics of ant community structure in the Moroccan Argan Forest.

    PubMed

    El Keroumi, Abderrahim; Naamani, Khalid; Soummane, Hassna; Dahbi, Abdallah

    2012-01-01

    In this study we describe the structure and composition of ant communities in the endemic Moroccan Argan forest, using pitfall traps sampling technique throughout the four seasons between May 2006 and February 2007. The study focused on two distinct climatic habitats within the Essaouira Argan forest, a semi-continental site at Lahssinate, and a coastal site at Boutazarte. Thirteen different ant species were identified, belonging to seven genera. Monomorium subopacum Smith and Tapinoma simrothi Krausse-Heldrungen (Hymenoptera: Formicidae) were the most abundant and behaviorally dominant ant species in the arganeraie. In addition, more specimens were captured in the semi-continental site than in the coastal area. However, no significant difference was observed in species richness, evenness, or diversity between both sites. Composition and community structure showed clear seasonal dynamics. The number of species, their abundance, their diversity, and their evenness per Argan tree were significantly dissimilar among seasons. The richness (except between summer and autumn), and the abundance and the evenness of ant species among communities, showed a significant difference between the dry period (summer and spring) and the rainy period (winter and autumn). Higher abundance and richness values occurred in the dry period of the year. Ant species dominance and seasonal climatic variations in the arganeraie might be among the main factors affecting the composition, structure, and foraging activity of ant communities. This study, together with recent findings on ant predation behavior below Argan trees, highlights the promising use of dominant ant species as potential agents of Mediterranean fruit fly bio-control in the Argan forest and surrounding ecosystems.

  20. Key players of methane dynamics in alpine fens: interaction of vascular plants and microbial communities

    NASA Astrophysics Data System (ADS)

    Cheema, S.; Zeyer, J. A.; Henneberger, R.

    2014-12-01

    Natural wetlands are important emitters of the potent greenhouse gas methane (CH4), contributing an estimated 26 - 42% to the global emissions. In these habitats CH4 is generated by methanogenic archaea mediating the terminal steps of organic matter degradation under anoxic conditions. The produced CH4 is partly oxidized by methanotrophic bacteria in oxic zones, thereby mitigating CH4 release. Various factors can influence CH4 emissions from wetlands, including the presence of vascular plants, as their aerenchyma can serve as conduits for CH4 release to the atmosphere. In the present study, we investigated the CH4 dynamics in two Swiss alpine fens (1900 - 2300 m a.s.l), and sampling locations within these fens were characterized by distinct dominant vascular plants, namely Carex spp. and Eriophorum spp.. Analyses of the microbial communities present in the fen soils were complemented by in situ measurements of CH4 emissions and analyses of physico-chemical pore water properties. Methane emissions and pore water concentrations varied depending on fen and dominating plant species, with generally higher CH4 emissions observed from the Carex dominated locations. Active methanotrophic and methanogenic microorganisms (transcripts of specific marker genes) were detected at different depths, independent of O2 and CH4 pore water concentrations. The expected separation of oxic methanotrophic and anoxic methanogenic zones was not observed. Yet, composition analyses of the different communities showed a clear clustering according to fen and dominating plant species. Within each location, variation of composition with depth was only observed for the methanogenic communities. Detailed profiling of CH4 emissions with respect to changes in light and temperature is currently being carried out. Our results represent a comprehensive in situ study on factors affecting CH4 emissions from alpine fens, highlighting the influence of vascular plants on the microbial communities involved.

  1. Information dynamics algorithm for detecting communities in networks

    NASA Astrophysics Data System (ADS)

    Massaro, Emanuele; Bagnoli, Franco; Guazzini, Andrea; Lió, Pietro

    2012-11-01

    The problem of community detection is relevant in many scientific disciplines, from social science to statistical physics. Given the impact of community detection in many areas, such as psychology and social sciences, we have addressed the issue of modifying existing well performing algorithms by incorporating elements of the domain application fields, i.e. domain-inspired. We have focused on a psychology and social network-inspired approach which may be useful for further strengthening the link between social network studies and mathematics of community detection. Here we introduce a community-detection algorithm derived from the van Dongen's Markov Cluster algorithm (MCL) method [4] by considering networks' nodes as agents capable to take decisions. In this framework we have introduced a memory factor to mimic a typical human behavior such as the oblivion effect. The method is based on information diffusion and it includes a non-linear processing phase. We test our method on two classical community benchmark and on computer generated networks with known community structure. Our approach has three important features: the capacity of detecting overlapping communities, the capability of identifying communities from an individual point of view and the fine tuning the community detectability with respect to prior knowledge of the data. Finally we discuss how to use a Shannon entropy measure for parameter estimation in complex networks.

  2. Mental health status of vulnerable tsunami-affected communities: a survey in Aceh Province, Indonesia.

    PubMed

    Souza, Renato; Bernatsky, Sasha; Reyes, Rosalie; de Jong, Kaz

    2007-06-01

    The authors determined the prevalence of severe emotional distress and depressive symptoms using the Hopkins Symptoms Checklist-25 (HSCL; Derogatis, Lipman, Rickels, Uhlenhuth, & Covi, 1974) in tsunami-affected communities that had experienced armed conflict arising from the ongoing independence movement in Aceh Province, Indonesia. We also evaluated determinants of severe emotional distress. The data were collected for the purposes of a mental health assessment. In our sample (N = 262), 83.6% demonstrated severe emotional distress, and 77.1% demonstrated depressive symptoms. In multivariate regression models, severe emotional distress was positively associated with the number of tsunami-related deaths among household members. Our data suggests a need for effective interventions in this vulnerable population.

  3. Overwintered Bullfrog tadpoles negatively affect Salamanders and Anurans in native amphibian communities

    USGS Publications Warehouse

    Boone, M.D.; Little, E.E.; Semlitsch, R.D.

    2004-01-01

    We examined the interactive effects of overwintered Bullfrog (Rana catesbeiana) tadpoles and pond hydroperiod on a community of larval amphibians in outdoor mesocosms including American Toads (Bufo americanus), Southern Leopard Frogs (Rana sphenocephala), and Spotted Salamanders (Ambystoma maculatum) - species within the native range of Bullfrogs. Spotted Salamanders and Southern Leopard Frogs were negatively influenced by the presence of overwintered Bullfrogs. Spotted Salamanders had shorter larval periods and slightly smaller masses at metamorphosis, and Southern Leopard Frogs had smaller masses at metamorphosis when reared with Bullfrogs than without. Presence of overwintered Bullfrogs, however, did not significantly affect American Toads. Longer pond hydroperiods resulted in greater survival, greater size at metamorphosis, longer larval periods, and later time until emergence of the first metamorphs for Southern Leopard Frog tadpoles and Spotted Salamander larvae. Our study demonstrated that overwintered Bullfrog tadpoles can respond to changing pond hydroperiods and can negatively impact metamorphosis of native amphibians.

  4. Soil contamination with olive mill wastes negatively affects microbial communities, invertebrates and plants.

    PubMed

    Hentati, Olfa; Oliveira, Vanessa; Sena, Clara; Bouji, Mohamed Seddik Mahmoud; Wali, Ahmed; Ksibi, Mohamed

    2016-10-01

    The aim of the present study was to evaluate the ecotoxicological effects of olive mill waste (OMW) on soil habitat function. To this end, soil samples from OMW evaporating ponds (S1-S5) located at Agareb (Sfax, Tunisia) and a reference soil (R) were collected. The effects of OMW on the springtails Folsomia candida (F.c.), the earthworm species Eisenia fetida (E.f.), Enchytraeus crypticus (E.c.) reproduction and on the soil living microbial communities were investigated. E.f. reproduction and tomato growth assays were performed in the reference soil amended with 0.43 to 7.60 % (wOMW/wref-soil) mass ratios of dried OMW. Changes in microbial function diversity were explored using sole-carbon-source utilization profiles (BiologEcoPlates(®)). E.f. absolutely avoided (100 %) the most polluted soil (S4) while the F.c. moderately avoided (37.5 ± 7.5 %) the same soil. E.c. reproduction in S4 was significantly lower than in S1, S2, S3 and S5, and was the highest in R soil. Estimated effect concentration EC50 for juveniles' production by E.f., and for tomato fresh weight and chlorophyll content were 0.138, 0.6 and 1.13 %, respectively. Community level physiological profiles (CLPPs) were remarkably different in R and S4 and a higher similarity was observed between soils S1, S2, S3 and S5. Principal component analysis (PCA) revealed that differences between soil microbial functional diversity were mainly due to high polyphenol concentrations, while the salinity negatively affected E.c. reproduction in OMW contaminated soils. These results clearly reflect the high toxicity of dried OMW when added to agricultural soils, causing severe threats to terrestrial ecosystem functions and services provided by invertebrates and microbial communities.

  5. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    PubMed

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities.

  6. Factors affecting collaboration between general practitioners and community pharmacists: a qualitative study

    PubMed Central

    2012-01-01

    Background Although general practitioners (GPs) and community pharmacists (CPs) are encouraged to collaborate, a true collaborative relationship does not exist between them. Our objective was to identify and analyze factors affecting GP-CP collaboration. Methods This was a descriptive-exploratory qualitative study carried out in two Spanish regions: Catalonia (Barcelona) and Balearic Islands (Mallorca). Face-to-face semi-structured interviews were conducted with GPs and CPs from Barcelona and Mallorca (January 2010-February 2011). Analysis was conducted using Colaizzi’s method. Results Thirty-seven interviews were conducted. The factors affecting the relationship were different depending on timing: 1) Before collaboration had started (prior to collaboration) and 2) Once the collaboration had been initiated (during collaboration). Prior to collaboration, four key factors were found to affect it: the perception of usefulness; the Primary Care Health Center (PCHC) manager’s interest; the professionals’ attitude; and geography and legislation. These factors were affected by economic and organizational aspects (i.e. resources or PCHC management styles) and by professionals’ opinions and beliefs (i.e. perception of the existence of a public-private conflict). During collaboration, the achievement of objectives and the changes in the PCHC management were the key factors influencing continued collaboration. The most relevant differences between regions were due to the existence of privately-managed PCHCs in Barcelona that facilitated the implementation of collaboration. In comparison with the group with experience in collaboration, some professionals without experience reported a skeptical attitude towards it, reporting that it might not be necessary. Conclusions Factors related to economic issues, management and practitioners’ attitudes and perceptions might be crucial for triggering collaboration. Interventions and strategies derived from these identified

  7. Benthic macroinvertebrate communities affected by multiple stressors within tidal creeks in northeastern USA harbors

    SciTech Connect

    Papageorgis, C.; Murray, M.; Danis, C.; Yates, L.

    1995-12-31

    Surveys of water quality, substrate quality and benthic macroinvertebrates were conducted in a variety of tidal creeks located in the vicinity of a municipal solid waste landfill prior to the construction of a leachate collection system. In-Situ water quality data indicated high water temperatures and low dissolved oxygen values along with high turbidites. Sediment chemistry data indicated that all sediment within the study area exceed USEPA heavy metal criteria. Grain size and salinity data indicate that the study area lies within the Mesohaline Mud habitat class. Water quality data remained within similar concentrations with respect to indicators of leachate. The benthic macroinvertebrate community was consistently dominated by opportunistic Polychaete and Oligochaete worms. Both Shannon diversity and Rarefaction curves were used to evaluate trends in species diversity over time. The study includes a comparison to data obtained by USEPA R-EMAP monitoring programs. While large scale biomonitoring programs do not focus on small tidal creeks this study provides useful data regarding baseline benthic communities within tidal creeks affected by multiple stressors to include previous exposure and potential exposure to oil spills, continued point and non-point municipal and industrial wastewater discharges and physical stressors such as elevated water temperatures, homogeneous silt/clay substrate, and depressed dissolved oxygen values.

  8. Predator density and timing of arrival affect reef fish community assembly.

    PubMed

    Stier, Adrian C; Geange, Shane W; Hanson, Kate M; Bolker, Benjamin M

    2013-05-01

    Most empirical studies of predation use simple experimental approaches to quantify the effects of predators on prey (e.g., using constant densities of predators, such as ambient vs. zero). However, predator densities vary in time, and these effects may not be well represented by studies that use constant predator densities. Although studies have independently examined the importance of predator density, temporal variability, and timing of arrival (i.e., early or late relative to prey), the relative contribution of these different predator regimes on prey abundance, diversity, and composition remains poorly understood. The hawkfish (Paracirrhites arcatus), a carnivorous coral reef fish, exhibits substantial variability in patch occupancy, density, and timing of arrival to natural reefs. Our field experiments demonstrated that effects of hawkfish on prey abundance depended on both hawkfish density and the timing of their arrival, but not on variability in hawkfish density. Relative to treatments without hawkfish, hawkfish presence reduced prey abundance by 50%. This effect increased with a doubling of hawkfish density (an additional 33% reduction), and when hawkfish arrived later during community development (a 34% reduction). Hawkfish did not affect within-patch diversity (species richness), but they increased between-patch diversity (beta) based on species incidence (22%), and caused shifts in species composition. Our results suggest that the timing of predator arrival can be as important as predator density in modifying prey abundance and community composition.

  9. Assets and Affect in the Study of Social Capital in Rural Communities

    PubMed Central

    Phillips, Martin

    2015-01-01

    Abstract Shucksmith (2012) has recently suggested that rural research might be refreshed by incorporating theoretical insights that have emerged through a renewal of class analysis. This article seeks to advance this proposed research agenda by exploring the concept of asset‐based class analysis and its association with the concept of social capital. The article explores connections between social capital, class analysis and understandings of community, noting how all have been associated with long running and unresolved debates. Attention is drawn to the problems of modernist legislative approaches to these debates and the value of adopting more interpretive perspectives. A distinction between ‘infrastructural’ and ‘culturalist’ interpretations of social capital is explored in relation to ‘asset‐based’ theorisations of class and culture. It is argued that an infrastructural conception of social capital might usefully be employed in association with a disaggregated conception of cultural capital that includes consideration of emotion and affect, as well as institutional, objectified and technical assets. These arguments are explored using studies of rural communities, largely within Britain. PMID:27563158

  10. Nano-TiO2 affects Cu speciation, extracellular enzyme activity, and bacterial communities in sediments.

    PubMed

    Fan, Wenhong; Liu, Tong; Li, Xiaomin; Peng, Ruishuang; Zhang, Yilin

    2016-11-01

    In aquatic ecosystems, titanium dioxide nanoparticles (nano-TiO2) coexist with heavy metals and influence the existing forms and toxicities of the metal in water. However, limited information is available regarding the ecological risk of this coexistence in sediments. In this study, the effect of nano-TiO2 on Cu speciation in sediments was investigated using sequential extraction. The microcosm approach was also employed to analyze the effects of the coexistence of nano-TiO2 and Cu on extracellular enzyme activity and bacterial communities in sediments. Results showed that nano-TiO2 decreased the organic matter-bound fraction of Cu and increased the corresponding residual fraction Cu. As a result, speciation of exogenous Cu in sediments changed. During the course of the 30-day experiment, the presence of nano-TiO2 did not affect Cu-induced changes in bacterial community structure. However, the coexistence of nano-TiO2 and Cu restrained the activity of bacterial extracellular enzymes, such as alkaline phosphatase and β-glucosidase. The degree of inhibition also varied because of the different properties of extracellular enzymes. This research highlighted the importance of understanding and predicting the effects of the coexistence of nanomaterials and other pollutants in sediments.

  11. Light availability affects stream biofilm bacterial community composition and function, but not diversity

    PubMed Central

    Wagner, Karoline; Besemer, Katharina; Burns, Nancy R.; Battin, Tom J.

    2015-01-01

    Summary Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s−1 m−2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911

  12. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L.).

    PubMed

    Chen, Mingna; Li, Xiao; Yang, Qingli; Chi, Xiaoyuan; Pan, Lijuan; Chen, Na; Yang, Zhen; Wang, Tong; Wang, Mian; Yu, Shanlin

    2014-01-01

    Plant health and soil fertility are affected by plant-microbial interactions in soils. Peanut is an important oil crop worldwide and shows considerable adaptability, but growth and yield are negatively affected by continuous cropping. In this study, 16S rRNA gene clone library analyses were used to study the succession of soil bacterial communities under continuous peanut cultivation. Six libraries were constructed for peanut over three continuous cropping cycles and during its seedling and pod-maturing growth stages. Cluster analyses indicated that soil bacterial assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. The diversity of bacterial sequences identified in each growth stage library of the three peanut cropping cycles was high and these sequences were affiliated with 21 bacterial groups. Eight phyla: Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Planctomycetes, Proteobacteria and Verrucomicrobia were dominant. The related bacterial phylotypes dynamic changed during continuous cropping progress of peanut. This study demonstrated that the bacterial populations especially the beneficial populations were positively selected. The simplification of the beneficial microbial communities such as the phylotypes of Alteromonadales, Burkholderiales, Flavobacteriales, Pseudomonadales, Rhizobiales and Rhodospirillales could be important factors contributing to the decline in peanut yield under continuous cropping. The microbial phylotypes that did not successively changed with continuous cropping, such as populations related to Rhizobiales and Rhodospirillales, could potentially resist stress due to continuous cropping and deserve attention. In addition, some phylotypes, such as Acidobacteriales, Chromatiales and Gemmatimonadales, showed a contrary tendency, their abundance or diversity increased with continuous peanut cropping progress. Some bacterial phylotypes including Acidobacteriales

  13. Osmotic membrane bioreactor for wastewater treatment and the effect of salt accumulation on system performance and microbial community dynamics.

    PubMed

    Qiu, Guanglei; Ting, Yen-Peng

    2013-12-01

    An osmotic membrane bioreactor was developed for wastewater treatment. The effects of salt accumulation on system performance and microbial community dynamics were investigated. Evident deterioration of biological activity, especially nitrification, was observed, which resulted in significant accumulation of organic matter and NH4(+)-N within the bioreactor. Arising from the elevation of salinity, almost all the dominant species was taken over by high salt-tolerant species. Significant succession among different species of Nitromonas was observed for ammonia-oxidizing bacteria. For nitrite-oxidizing bacteria, Nitrospira was not evidently affected, whereas Nitrobacter was eliminated from the system. Salt accumulation also caused significant shifts in denitrifying bacterial community from α- to γ-Proteobacteria members. Overall, the microbial community adapted to the elevated salinity conditions and brought about a rapid recovery of the biological activity. Membrane fouling occurred but was insignificant. Biofouling and inorganic scaling coexisted, with magnesium/calcium phosphate/carbonate compounds identified as the inorganic foulants.

  14. The Dynamics of Team Characteristics within Professional Learning Communities

    ERIC Educational Resources Information Center

    Morr, Shelly D.

    2010-01-01

    Purpose: The purpose of this study was to determine if Professional Learning Communities in elementary schools that have strong evidence of the five dimensions of a Professional Learning Community have a higher degree of teamness than those schools that do not have strong evidence. Methodology: Using a descriptive and ex post facto study, the…

  15. Communities of Inquiry: Politics, Power and Group Dynamics

    ERIC Educational Resources Information Center

    Burgh, Gilbert; Yorshansky, Mor

    2011-01-01

    The notion of a community of inquiry has been treated by many of its proponents as being an exemplar of democracy in action. We argue that the assumptions underlying this view present some practical and theoretical difficulties, particularly in relation to distribution of power among the members of a community of inquiry. We identify two…

  16. Community Discovery in Dynamic, Rich-Context Social Networks

    ERIC Educational Resources Information Center

    Lin, Yu-Ru

    2010-01-01

    My research interest has been in understanding the human communities formed through interpersonal social activities. Participation in online communities on social network sites such as Twitter has been observed to influence people's behavior in diverse ways including financial decision-making and political choices, suggesting the rich potential…

  17. POPULATION DYNAMICS OF AMBIENT AND ALTERED EARTHWORM COMMUNITIES IN ROW-CROP AGROECOSYSTEMS IN OHIO, USA

    EPA Science Inventory

    Although earthworms are known to influence agroecosystem processes, there are relatively few long-term studies addressing population dynamics under cropping systems in which earthworm populations were intentionally altered. We assessed earthworm communities from fall 1994 to spr...

  18. Multi-Relational Characterization of Dynamic Social Network Communities

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Ru; Sundaram, Hari; Kelliher, Aisling

    The emergence of the mediated social web - a distributed network of participants creating rich media content and engaging in interactive conversations through Internet-based communication technologies - has contributed to the evolution of powerful social, economic and cultural change. Online social network sites and blogs, such as Facebook, Twitter, Flickr and LiveJournal, thrive due to their fundamental sense of "community". The growth of online communities offers both opportunities and challenges for researchers and practitioners. Participation in online communities has been observed to influence people's behavior in diverse ways ranging from financial decision-making to political choices, suggesting the rich potential for diverse applications. However, although studies on the social web have been extensive, discovering communities from online social media remains challenging, due to the interdisciplinary nature of this subject. In this article, we present our recent work on characterization of communities in online social media using computational approaches grounded on the observations from social science.

  19. Factors Affecting Parent's Perception on Air Quality-From the Individual to the Community Level.

    PubMed

    Guo, Yulin; Liu, Fengfeng; Lu, Yuanan; Mao, Zongfu; Lu, Hanson; Wu, Yanyan; Chu, Yuanyuan; Yu, Lichen; Liu, Yisi; Ren, Meng; Li, Na; Chen, Xi; Xiang, Hao

    2016-05-12

    The perception of air quality significantly affects the acceptance of the public of the government's environmental policies. The aim of this research is to explore the relationship between the perception of the air quality of parents and scientific monitoring data and to analyze the factors that affect parents' perceptions. Scientific data of air quality were obtained from Wuhan's environmental condition reports. One thousand parents were investigated for their knowledge and perception of air quality. Scientific data show that the air quality of Wuhan follows an improving trend in general, while most participants believed that the air quality of Wuhan has deteriorated, which indicates a significant difference between public perception and reality. On the individual level, respondents with an age of 40 or above (40 or above: OR = 3.252; 95% CI: 1.170-9.040), a higher educational level (college and above: OR = 7.598; 95% CI: 2.244-25.732) or children with poor healthy conditions (poor: OR = 6.864; 95% CI: 2.212-21.302) have much more negative perception of air quality. On the community level, industrial facilities, vehicles and city construction have major effects on parents' perception of air quality. Our investigation provides baseline information for environmental policy researchers and makers regarding the public's perception and expectation of air quality and the benefits to the environmental policy completing and enforcing.

  20. An investigation on pharmacy functions and services affecting satisfaction of patients with prescriptions in community pharmacies.

    PubMed

    Sakurai, Hidehiko; Nakajima, Fumio; Tada, Yuichirou; Yoshikawa, Emi; Iwahashi, Yoshiki; Fujita, Kenji; Hayase, Yukitoshi

    2009-05-01

    Various functions expected by patient expects are needed with progress in the system for separation of dispensing and prescribing functions. In this investigation, the relationship between patient satisfaction and pharmacy function were analyzed quantitatively. A questionnaire survey was conducted in 178 community pharmacies. Questions on pharmacy functions and services totaled 87 items concerning information service, amenities, safety, personnel training, etc. The questionnaires for patients had five-grade scales and composed 11 items (observed variables). Based on the results, "the percentage of satisfied patients" was determined. Multivariate analysis was performed to investigate the relationship between patient satisfaction and pharmacy functions or services provided, to confirm patient's evaluation of the pharmacy, and how factors affected comprehensive satisfaction. In correlation analysis, "the number of pharmacists" and "comprehensive satisfaction" had a negative correlation. Other interesting results were obtained. As a results of factor analysis, three latent factors were obtained: the "human factor," "patients' convenience," and "environmental factor," Multiple regression analysis showed that the "human factor" affected "comprehensive satisfaction" the most. Various pharmacy functions and services influence patient satisfaction, and improvement in their quality increases patient satisfaction. This will result in the practice of patient-centered medicine.

  1. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    PubMed

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding.

  2. Realistic diversity loss and variation in soil depth independently affect community-level plant nitrogen use.

    PubMed

    Selmants, Paul C; Zavaleta, Erika S; Wolf, Amelia A

    2014-01-01

    Numerous experiments have demonstrated that diverse plant communities use nitrogen (N) more completely and efficiently, with implications for how species conservation efforts might influence N cycling and retention in terrestrial ecosystems. However, most such experiments have randomly manipulated species richness and minimized environmental heterogeneity, two design aspects that may reduce applicability to real ecosystems. Here we present results from an experiment directly comparing how realistic and randomized plant species losses affect plant N use across a gradient of soil depth in a native-dominated serpentine grassland in California. We found that the strength of the species richness effect on plant N use did not increase with soil depth in either the realistic or randomized species loss scenarios, indicating that the increased vertical heterogeneity conferred by deeper soils did not lead to greater complementarity among species in this ecosystem. Realistic species losses significantly reduced plant N uptake and altered N-use efficiency, while randomized species losses had no effect on plant N use. Increasing soil depth positively affected plant N uptake in both loss order scenarios but had a weaker effect on plant N use than did realistic species losses. Our results illustrate that realistic species losses can have functional consequences that differ distinctly from randomized losses, and that species diversity effects can be independent of and outweigh those of environmental heterogeneity on ecosystem functioning. Our findings also support the value of conservation efforts aimed at maintaining biodiversity to help buffer ecosystems against increasing anthropogenic N loading.

  3. Differences in the dynamics of affective and cognitive processing - An ERP study.

    PubMed

    Mueller, Christina J; Fritsch, Nathalie; Hofmann, Markus J; Kuchinke, Lars

    2017-01-15

    A controversy in emotion research concerns the question of whether affective or cognitive primacy are evident in processing affective stimuli and the factors contributing to each alternative. Using electrophysiological recordings in an adapted visual oddball paradigm allowed tracking the dynamics of affective and cognitive effects. Stimuli consisted of face pictures displaying affective expressions with rare oddballs differing from frequent stimuli in either affective expression, structure (while frequent stimuli were shown frontally these deviants were turned sideways) or they differed on both dimensions, i.e. in affective expression and structure. Results revealed a defined sequence of differences in ERP amplitudes: For stimuli deviating in their affective expression only, P1 modulations ~100ms were evident, while affective differences of structure deviants were not evident before the N170 time window. All three types of deviants differed in P300 amplitudes, indicating integration of affective and structural information. These results encompass evidence for both, cognitive and affective primacy depending on stimulus properties. Specifically affective primacy is only visible when the respective facial features can be extracted with ease. When structural differences make face processing harder, however, cognitive primacy is brought forward.

  4. Factors Affecting Students' Evaluation in a Community Service-Learning Program

    ERIC Educational Resources Information Center

    Leung, Kai-Kuen; Liu, Wen-Jing; Wang, Wei-Dan; Chen, Ching-Yu

    2007-01-01

    A community service-learning curriculum was established to give students opportunities to understand the interrelationship between family and community health, the differences between community and hospital medicine, and to be able to identify and solve community health problems. Students were divided into small groups to participate in community…

  5. Top predators affect the composition of naive protist communities, but only in their early-successional stage.

    PubMed

    Zander, Axel; Gravel, Dominique; Bersier, Louis-Félix; Gray, Sarah M

    2016-02-01

    Introduced top predators have the potential to disrupt community dynamics when prey species are naive to predation. The impact of introduced predators may also vary depending on the stage of community development. Early-succession communities are likely to have small-bodied and fast-growing species, but are not necessarily good at defending against predators. In contrast, late-succession communities are typically composed of larger-bodied species that are more predator resistant relative to small-bodied species. Yet, these aspects are greatly neglected in invasion studies. We therefore tested the effect of top predator presence on early- and late-succession communities that were either naive or non-naive to top predators. We used the aquatic community held within the leaves of Sarracenia purpurea. In North America, communities have experienced the S. purpurea top predator and are therefore non-naive. In Europe, this predator is not present and its niche has not been filled, making these communities top-predator naive. We collected early- and late-succession communities from two non-naive and two naive sites, which are climatically similar. We then conducted a common-garden experiment, with and without the presence of the top predator, in which we recorded changes in community composition, body size spectra, bacterial density, and respiration. We found that the top predator had no statistical effect on global measures of community structure and functioning. However, it significantly altered protist composition, but only in naive, early-succession communities, highlighting that the state of community development is important for understanding the impact of invasion.

  6. Sound Links: Exploring the Social, Cultural and Educational Dynamics of Musical Communities in Australia

    ERIC Educational Resources Information Center

    Bartleet, Brydie-Leigh

    2009-01-01

    "Sound Links" examines the dynamics of community music in Australia, and the models it represents for informal music learning and teaching. This involves researching a selection of vibrant musical communities across the country, exploring their potential for complementarity and synergy with music in schools. This article focuses on the…

  7. Changing facial affect recognition in schizophrenia: effects of training on brain dynamics.

    PubMed

    Popova, Petia; Popov, Tzvetan G; Wienbruch, Christian; Carolus, Almut M; Miller, Gregory A; Rockstroh, Brigitte S

    2014-01-01

    Deficits in social cognition including facial affect recognition and their detrimental effects on functional outcome are well established in schizophrenia. Structured training can have substantial effects on social cognitive measures including facial affect recognition. Elucidating training effects on cortical mechanisms involved in facial affect recognition may identify causes of dysfunctional facial affect recognition in schizophrenia and foster remediation strategies. In the present study, 57 schizophrenia patients were randomly assigned to (a) computer-based facial affect training that focused on affect discrimination and working memory in 20 daily 1-hour sessions, (b) similarly intense, targeted cognitive training on auditory-verbal discrimination and working memory, or (c) treatment as usual. Neuromagnetic activity was measured before and after training during a dynamic facial affect recognition task (5 s videos showing human faces gradually changing from neutral to fear or to happy expressions). Effects on 10-13 Hz (alpha) power during the transition from neutral to emotional expressions were assessed via MEG based on previous findings that alpha power increase is related to facial affect recognition and is smaller in schizophrenia than in healthy subjects. Targeted affect training improved overt performance on the training tasks. Moreover, alpha power increase during the dynamic facial affect recognition task was larger after affect training than after treatment-as-usual, though similar to that after targeted perceptual-cognitive training, indicating somewhat nonspecific benefits. Alpha power modulation was unrelated to general neuropsychological test performance, which improved in all groups. Results suggest that specific neural processes supporting facial affect recognition, evident in oscillatory phenomena, are modifiable. This should be considered when developing remediation strategies targeting social cognition in schizophrenia.

  8. Toward Understanding the Dynamics of Microbial Communities in an Estuarine System

    PubMed Central

    Wang, Yong; Lee, On On; Yang, Jiangke; Chan, Colin; Song, Xingyu; Qian, Pei-Yuan

    2014-01-01

    Community assembly theories such as species sorting theory provide a framework for understanding the structures and dynamics of local communities. The effect of theoretical mechanisms can vary with the scales of observation and effects of specific environmental factors. Based on 16S rRNA gene tag pyrosequencing, different structures and temporal succession patterns were discovered between the surface sediments and bottom water microbial communities in the Pearl River Estuary (PRE). The microbial communities in the surface sediment samples were more diverse than those in the bottom water samples, and several genera were specific for the water or sediment communities. Moreover, water temperature was identified as the main variable driving community dynamics and the microbial communities in the sediment showed a greater temporal change. We speculate that nutrient-based species sorting and bacterial plasticity to the temperature contribute to the variations observed between sediment and water communities in the PRE. This study provides a more comprehensive understanding of the microbial community structures in a highly dynamic estuarine system and sheds light on the applicability of ecological theoretical mechanisms. PMID:24732211

  9. Seasonal dynamics of microbial community composition and function in oak canopy and open grassland soils

    USGS Publications Warehouse

    Waldrop, M.P.; Firestone, M.K.

    2006-01-01

    Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling

  10. Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics.

    PubMed

    Drigo, Barbara; Kowalchuk, George A; Knapp, Brigitte A; Pijl, Agata S; Boschker, Henricus T S; van Veen, Johannes A

    2013-02-01

    Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short-term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil-borne microbial community. Long-term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by (13) C pulse-chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA-stable isotope probing (RNA-SIP), in combination with real-time PCR and PCR-DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the (13) C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.

  11. Investigating the Effects of Sweat Therapy on Group Dynamics and Affect

    ERIC Educational Resources Information Center

    Colmant, Stephen A.; Eason, Evan A.; Winterowd, Carrie L.; Jacobs, Sue C.; Cashel, Chris

    2005-01-01

    In this study, we examined the effects of sweat therapy on group dynamics and affect. Sweat therapy is the combination of intense heat exposure with psychotherapy or counseling (Colmant & Merta, 1999; 2000). Twenty-four undergraduates were separated by sex and randomly assigned to eight sessions of either a sweat or non-sweat group counseling…

  12. Imperfect or Perfect Dynamic Bipolarity? The Case of Antonymous Affective Judgments

    ERIC Educational Resources Information Center

    Vautier, Stephane; Steyer, Rolf; Jmel, Said; Raufaste, Eric

    2005-01-01

    How is affective change rated with positive adjectives such as good related to change rated with negative adjectives such as bad? Two nested perfect and imperfect forms of dynamic bipolarity are defined using latent change structural equation models based on tetrads of items. Perfect bipolarity means that latent change scores correlate -1.…

  13. The Dynamic Nature of Leisure Experience: An Application of Affect Control Theory.

    ERIC Educational Resources Information Center

    Lee, BongKoo; Shafer, C. Scott

    2002-01-01

    Applied Affect Control Theory (ACT) to investigate the interaction process between leisure participants and their environment. Surveys of people on an urban, multiple-use trail indicated that most exhibited a dynamic emotional experience even though they were in the setting a short time. Respondents exhibited different emotions across events.…

  14. School Factors Explaining Achievement on Cognitive and Affective Outcomes: Establishing a Dynamic Model of Educational Effectiveness

    ERIC Educational Resources Information Center

    Creemers, Bert; Kyriakides, Leonidas

    2010-01-01

    The dynamic model of educational effectiveness defines school level factors associated with student outcomes. Emphasis is given to the two main aspects of policy, evaluation, and improvement in schools which affect quality of teaching and learning at both the level of teachers and students: a) teaching and b) school learning environment. Five…

  15. Environmental Factors Affecting Computer Assisted Language Learning Success: A Complex Dynamic Systems Conceptual Model

    ERIC Educational Resources Information Center

    Marek, Michael W.; Wu, Wen-Chi Vivian

    2014-01-01

    This conceptual, interdisciplinary inquiry explores Complex Dynamic Systems as the concept relates to the internal and external environmental factors affecting computer assisted language learning (CALL). Based on the results obtained by de Rosnay ["World Futures: The Journal of General Evolution", 67(4/5), 304-315 (2011)], who observed…

  16. Factors that Affect Synergies in Mergers, at Banking Sector: Simulation with a Dynamic Model

    NASA Astrophysics Data System (ADS)

    Yiannis, Triantafyllopoulos; Sakas, Damianos P.; Konstantopoulos, Nikolaos

    2007-12-01

    This article examines the factors that affect the intended synergy following an M&A, as they have emerged from the study of the M&A's that have taken place as yet in the Bank Sector of an EU country. On the basis of quality research, dynamic simulation models have been created for two out of the five factors.

  17. High-Resolution Dynamics of Microbial Communities during Dissimilatory Selenate Reduction in Anoxic Soil.

    PubMed

    Navarro, Ronald R; Aoyagi, Tomo; Kimura, Makoto; Itoh, Hideomi; Sato, Yuya; Kikuchi, Yoshitomo; Ogata, Atsushi; Hori, Tomoyuki

    2015-07-07

    Selenate is one of the most common toxic metal compounds in contaminated soils. Its redox status can be changed by microbial activity, thus affecting its water solubility and soil mobility. However, current knowledge of microbial dynamics has been limited by the low sensitivity of past isolation and identification protocols. Here, high-throughput Illumina sequencing of 16S rRNA genes was applied to monitor the shift of the microorganisms in an anoxic contaminated soil after Se(VI) and acetate amendment. An autoclaved soil with both chemicals and a live soil with acetate alone were used as controls. Preliminary chemical analysis clearly showed the occurrence of biological selenate reduction coupled with acetate oxidation. Principal coordinate analysis and diversity indices of Illumina-derived sequence data showed dynamic succession and diversification of the microbial community in response to selenate reduction. High-resolution phylogenetic analysis revealed that the relative frequency of an operational taxonomic unit (OTU) from the genus Dechloromonas increased remarkably from 0.2% to 36% as a result of Se(VI) addition. Multiple OTUs representing less abundant microorganisms from the Rhodocyclaceae and Comamonadaceae families had significant increases as well. This study demonstrated that these microorganisms are concertedly involved in selenate reduction of the employed contaminated soil under anoxic conditions.

  18. Issues Affecting Rural Communities (II). Proceedings of the International Conference [on] Rural Communities & Identities in the Global Millennium (Nanaimo, British Columbia, Canada, May 1-5, 2000).

    ERIC Educational Resources Information Center

    Montgomery, Jim C., Ed.; Kitchenham, Andrew D., Ed.

    This proceedings of a conference held in May 2000 at Malaspina University-College (British Columbia) contains approximately 63 conference papers, abstracts of papers, and keynote speeches. The conference examined issues affecting rural communities, with major themes being rural education, health, human services, families, and the sustainability of…

  19. Building a Community of Research Practice: Intragroup Team Social Dynamics in Interdisciplinary Mixed Methods

    ERIC Educational Resources Information Center

    Hemmings, Annette; Beckett, Gulbahar; Kennerly, Susan; Yap, Tracey

    2013-01-01

    This article explicates the intragroup social dynamics and work of a nursing and education research team as a community of research practice interested in organizational cultures and occupational subcultures. Dynamics were characterized by processes of socialization through reeducation and group social identity formation that enabled members to…

  20. Phytoplankton community structure and dynamics in the North Atlantic subtropical gyre

    NASA Astrophysics Data System (ADS)

    Cáceres, Carlos; Rivera, Antonella; González, Sonia; Anadón, Ricardo

    2017-02-01

    Phytoplankton fuel epipelagic ecosystems and affect global biogeochemical cycles. Nevertheless, there is still a lack of quantitative information about the factors that determine both phytoplankton community structure and dynamics, particularly in subtropical gyres. Here, we estimated size fractionated phytoplankton growth (μ) and microzooplankton grazing rates (m) along a transect in the subtropical North Atlantic, from the island of Hispaniola to the Iberian Peninsula, by conducting dilution experiments and fitting mixed models. We also examined the relationship between nutrient availability and the differences in both phytoplankton community structure and size fractionated phytoplankton growth rates at two spatial scales (i.e. subtropical gyre and within-province spatial scale). Our results revealed high values for both phytoplankton growth and microzooplankton grazing rates. Phytoplankton growth (0.00-1.19 d-1) displayed higher variability among stations, biogeochemical provinces and size fractions than the microzooplankton grazing rate (0.32-0.74 d-1). Differences in phytoplankton community structure were associated with dissolved inorganic nitrogen (0.72-5.85 μM; R2 = 0.19) and squared Brunt-Väisälä frequency (R2 = 0.21) at the whole gyre scale. Conversely, the differences in phytoplankton growth rate showed a weak relationship with those properties (R2 ⩽ 0.05) at that scale, but a stronger relationship at the within province scale (R2 ⩾ 0.07). These results support the idea that phytoplankton grow at high rates in oligotrophic subtropical gyres, this is likely due to the selection of phytoplankton groups with functional traits suited to exploit low nutrient availability. Thus, shedding new, multi-scale knowledge on the commonly misunderstood "ocean deserts".

  1. Fluctuations in Electronic Energy Affecting Singlet Fission Dynamics and Mixing with Charge-Transfer State: Quantum Dynamics Study.

    PubMed

    Fujihashi, Yuta; Ishizaki, Akihito

    2016-02-04

    Singlet fission is a spin-allowed process by which a singlet excited state is converted to two triplet states. To understand mechanisms of the ultrafast fission via a charge transfer (CT) state, one has investigated the dynamics through quantum-dynamical calculations with the uncorrelated fluctuation model; however, the electronic states are expected to experience the same fluctuations induced by the surrounding molecules because the electronic structure of the triplet pair state is similar to that of the singlet state except for the spin configuration. Therefore, the fluctuations in the electronic energies could be correlated, and the 1D reaction coordinate model may adequately describe the fission dynamics. In this work we develop a model for describing the fission dynamics to explain the experimentally observed behaviors. We also explore impacts of fluctuations in the energy of the CT state on the fission dynamics and the mixing with the CT state. The overall behavior of the dynamics is insensitive to values of the reorganization energy associated with the transition from the singlet state to the CT state, although the coherent oscillation is affected by the fluctuations. This result indicates that the mixing with the CT state is rather robust under the fluctuations in the energy of the CT state as well as the high-lying CT state.

  2. Local community detection as pattern restoration by attractor dynamics of recurrent neural networks.

    PubMed

    Okamoto, Hiroshi

    2016-08-01

    Densely connected parts in networks are referred to as "communities". Community structure is a hallmark of a variety of real-world networks. Individual communities in networks form functional modules of complex systems described by networks. Therefore, finding communities in networks is essential to approaching and understanding complex systems described by networks. In fact, network science has made a great deal of effort to develop effective and efficient methods for detecting communities in networks. Here we put forward a type of community detection, which has been little examined so far but will be practically useful. Suppose that we are given a set of source nodes that includes some (but not all) of "true" members of a particular community; suppose also that the set includes some nodes that are not the members of this community (i.e., "false" members of the community). We propose to detect the community from this "imperfect" and "inaccurate" set of source nodes using attractor dynamics of recurrent neural networks. Community detection by the proposed method can be viewed as restoration of the original pattern from a deteriorated pattern, which is analogous to cue-triggered recall of short-term memory in the brain. We demonstrate the effectiveness of the proposed method using synthetic networks and real social networks for which correct communities are known.

  3. Seasonal bacterial community dynamics in a full-scale enhanced biological phosphorus removal plant.

    PubMed

    Flowers, Jason J; Cadkin, Tracey A; McMahon, Katherine D

    2013-12-01

    Activated sludge is one of the most abundant and effective wastewater treatment process used to treat wastewater, and has been used in developed countries for nearly a century. In all that time, several hundreds of studies have explored the bacterial communities responsible for treatment, but most studies were based on a handful of samples and did not consider temporal dynamics. In this study, we used the DNA fingerprinting technique called automated ribosomal intergenic spacer region analysis (ARISA) to study bacterial community dynamics over a two-year period in two different treatment trains. We also used quantitative PCR to measure the variation of five phylogenetically-defined clades within the Accumulibacter lineage, which is a model polyphosphate accumulating organism. The total bacterial community exhibited seasonal patterns of change reminiscent of those observed in lakes and oceans. Surprisingly, all five Accumulibacter clades were present throughout the study, and the total Accumulibacter community was relatively stable. However, the abundance of each clade did fluctuate through time. Clade IIA dynamics correlated positively with temperature (ρ = 0.65, p < 0.05) while Clade IA dynamics correlated negatively with temperature (ρ = -0.35, p < 0.05). This relationship with temperature hints at the mechanisms that may be driving the seasonal patterns in overall bacterial community dynamics and provides further evidence for ecological differentiation among clades within the Accumulibacter lineage. This work provides a valuable baseline for activated sludge bacterial community variation.

  4. Pollution-induced community tolerance to non-steroidal anti-inflammatory drugs (NSAIDs) in fluvial biofilm communities affected by WWTP effluents.

    PubMed

    Corcoll, Natàlia; Acuña, Vicenç; Barceló, Damià; Casellas, Maria; Guasch, Helena; Huerta, Belinda; Petrovic, Mira; Ponsatí, Lidia; Rodríguez-Mozaz, Sara; Sabater, Sergi

    2014-10-01

    We assessed the tolerance acquired by stream biofilms to two non-steroidal anti-inflammatory-drugs (NSAIDs), ibuprofen and diclofenac. Biofilms came from a stream system receiving the effluent of a wastewater treatment plant (WWTP). The response of biofilms from a non-polluted site (upstream the WWTP) was compared to that of others downstream with relevant and decreasing levels of NSAIDs. Experiments performed in the laboratory following the pollution-induced community tolerance (PICT) approach determined that both algae and microbial communities from biofilms of the sites exposed at the highest concentrations of ibuprofen and diclofenac acquired tolerance to the mixture of these NSAIDs occurring at the sites. It was also observed that the chronic pollution by the WWTP effluent affected the microbial metabolic profile, as well as the structure of the algal community. The low (at ng L(-1) level) but chronic inputs of pharmaceuticals to the river ecosystem result in tolerant communities of lower diversity and altered microbial metabolism.

  5. Direct and indirect effects of giant kelp determine benthic community structure and dynamics.

    PubMed

    Arkema, Katie K; Reed, Daniel C; Schroeter, Stephen C

    2009-11-01

    Indirect facilitation can occur when a species positively affects another via the suppression of a shared competitor. In giant kelp forests, shade from the canopy of the giant kelp, Macrocystis pyrifera, negatively affects understory algae, which compete with sessile invertebrates for space. This raises the possibility that giant kelp indirectly facilitates sessile invertebrates, via suppression of understory algae. We evaluated the effect of giant kelp on the relative abundance of algae and invertebrates by experimentally manipulating kelp abundance on large artificial reefs located off San Clemente, California, USA. The experiments revealed a negative effect of giant kelp on both light availability and understory algal abundance and a positive effect on the abundance of sessile invertebrates, which was consistent with an indirect effect mediated by shade from the kelp canopy. The importance of these processes to temporal variability in benthic community structure was evaluated at 16 locations on natural reefs off Santa Barbara, California, over an eight-year period. Interannual variability in the abundance of understory algae and in the abundance of sessile invertebrates was significantly and positively related to interannual variability in the abundance of giant kelp. Analysis of these observational data using Structural Equation Modeling (SEM) indicated that the magnitude of the indirect effect of giant kelp on invertebrates was six times larger than the direct effect on invertebrates. Results suggest that the dynamics of this system are driven by variability in the abundance of a single structure-forming species that has indirect positive, as well as direct negative, effects on associated species.

  6. A Tale of Two Communities: Group Dynamics and Community Building in a Spanish-English Telecollaboration

    ERIC Educational Resources Information Center

    Darhower, Mark

    2007-01-01

    This study provides a theory-driven account of community building in a bilingual telecollaborative chat setting. A symmetrical arrangement of 70 L1 English learners of Spanish and L1 Spanish learners of English engaged in weekly Internet chat sessions in small groups. The learning metaphors of community and participation serve as the theoretical…

  7. Long-term dynamics of winter and summer annual communities in the Chihuahuan Desert

    USGS Publications Warehouse

    Guo, Q.; Brown, J.H.; Valone, T.J.

    2002-01-01

    Winter and summer annuals in the Chihuahuan Desert have been intensively studied in recent years but little is known about the similarities and differences in the dynamics between these two communities. Using 15 yr of census data from permanent quadrats, this paper compared the characteristics and temporal dynamics of these two distinct, spatially co-existent but temporally segregated communities. Although the total number of summer annual species recorded during our 15 yr of observation was higher than winter annuals, the mean number of species observed each year was higher in the winter community. The winter community exhibited lower temporal variation in total plant abundance and populations of individual species, lower species turnover rate and higher evenness than the summer community. The rank abundances of species in winter were significantly positively correlated for a period of up to 7 yr while in summer significant positive correlations in rank abundance disappeared after 2 to 3 yr. The higher seasonal species diversity (i.e. number of species observed in each season) in winter rather than the overall special pool (over 15 yr) may be responsible for the greater community stability of winter annuals. The difference in long-term community dynamics between the two communities of annual plants are likely due to the differences in total species pool, life history traits (e.g. seed size), and seasonal climatic regimes.

  8. Patient affect experiencing following therapist interventions in short-term dynamic psychotherapy.

    PubMed

    Town, Joel M; Hardy, Gillian E; McCullough, Leigh; Stride, Chris

    2012-01-01

    The aim of this research was to examine the relationship between therapist interventions and patient affect responses in Short-Term Dynamic Psychotherapy (STDP). The Affect Experiencing subscale from the Achievement of Therapeutic Objectives Scale (ATOS) was adapted to measure individual immediate affect experiencing (I-AES) responses in relation to therapist interventions coded within the preceding speaking turn, using the Psychotherapy Interaction Coding (PIC) system. A hierarchical linear modelling procedure was used to assess the change in affect experiencing and the relationship between affect experiencing and therapist interventions within and across segments of therapy. Process data was taken from six STDP cases; in total 24 hours of video-taped sessions were examined. Therapist interventions were found to account for a statistically significant amount of variance in immediate affect experiencing. Higher levels of immediate affect experiencing followed the therapist's use of Confrontation, Clarification and Support compared to Questions, Self-disclosure and Information interventions. Therapist Confrontation interventions that attempted to direct pressure towards either the visceral experience of affect or a patient's defences against feelings led to the highest levels of immediate affect experiencing. The type of therapist intervention accounts for a small but significant amount of the variation observed in a patient's immediate emotional arousal. Empirical findings support clinical theory in STDP that suggests strategic verbal responses promote the achievement of this specific therapeutic objective.

  9. Defoliation negatively affects plant growth and the ectomycorrhizal community of Pinus pinaster in Spain.

    PubMed

    Pestaña, Montserrat; Santolamazza-Carbone, Serena

    2011-03-01

    In this work, by artificially reproducing severe (75%) and moderate (25%) defoliation on maritime pines Pinus pinaster in NW Spain, we investigated, under natural conditions, the consequences of foliage loss on reproduction, abundance, diversity and richness of the fungal symbionts growing belowground and aboveground. The effect of defoliation on tree growth was also assessed. Mature needles were clipped during April 2007 and 2008. Root samples were collected in June-July 2007 and 2008. Collection of sporocarps was performed weekly from April 2007 to April 2009. Taxonomic identity of ectomycorrhizal fungi was assessed by using the internal transcribed spacer (ITS) regions of rDNA through the polymerase chain reaction (PCR) method, subsequent direct sequencing and BLAST search. Ectomycorrhizal colonization was significantly reduced (from 54 to 42%) in 2008 by 75% defoliation, accompanied with a decline in species richness and diversity. On the other hand, sporocarp abundance, richness and diversity were not affected by foliage loss. Some ECM fungal symbionts, which are assumed to have a higher carbon cost according to the morphotypes structure, were reduced due to severe (75%) defoliation. Furthermore, 75% foliage loss consistently depressed tree growth, which in turn affected the ectomycorrhizal growth pattern. Defoliation impact on ECM symbionts largely depends on the percentage of foliage removal and on the number of defoliation bouts. Severe defoliation (75%) in the short term (2 years) changed the composition of the ECM community likely because root biomass would be adjusted to lower levels in parallel with the depletion of the aboveground plant biomass, which probably promoted the competition among mycorrhizal types for host resources. The persistence of fungal biomass in mycorrhizal roots would be crucial for nutrient up-take and recovery from defoliation stress of the host plants.

  10. Community dynamics of coagulase-negative staphylococci during spontaneous artisan-type meat fermentations differ between smoking and moulding treatments.

    PubMed

    Janssens, M; Myter, N; De Vuyst, L; Leroy, F

    2013-08-16

    Coagulase-negative staphylococci (CNS) that are naturally present in the raw meat batter of fermented sausages or that originate from the addition of a starter culture play a role in flavour development. A wide species diversity of CNS can be present in fermented meats, but it is not fully clear yet how specific process parameters select for specific CNS by affecting their community dynamics. Therefore, the influence of smoking and moulding treatments on the CNS community dynamics in spontaneously fermented, artisan-type sausages was investigated. During the fermentation stage, the meat batter was in all cases dominated by Staphylococcus saprophyticus, in addition to Lactobacillus sakei as governing lactic acid bacterium. Following fermentation, the bacterial communities were not perturbed by the smoking treatment, since both L. sakei and S. saprophyticus remained dominant throughout the ripening stage and prevailed in the end-products. Yet, when fermentation was followed by a moulding step with Penicillium nalgiovense, a shift of the CNS communities towards dominance by Staphyloccocus equorum was seen, despite a similar evolution of L. sakei. This effect was possibly due to a pH rise caused by the mould, a hypothesis which was reinforced by the finding that the isolated strain S. equorum DBX-S-17 was more sensitive to low pH than the isolated strain S. saprophyticus DFL-S-12 during growth experiments in brain heart infusion (BHI). Differences in CNS communities may affect sausage flavour, due to intraspecies variations in metabolic conversions of, for instance, amino acids. The fact that 3-methyl-butanal was only found in the moulded sausage, which was dominated by S. equorum, may be related to the finding that the isolated strain of this species was able to produce this compound in BHI medium, whereas the isolated strain of S. saprophyticus was not.

  11. A multi-similarity spectral clustering method for community detection in dynamic networks.

    PubMed

    Qin, Xuanmei; Dai, Weidi; Jiao, Pengfei; Wang, Wenjun; Yuan, Ning

    2016-08-16

    Community structure is one of the fundamental characteristics of complex networks. Many methods have been proposed for community detection. However, most of these methods are designed for static networks and are not suitable for dynamic networks that evolve over time. Recently, the evolutionary clustering framework was proposed for clustering dynamic data, and it can also be used for community detection in dynamic networks. In this paper, a multi-similarity spectral (MSSC) method is proposed as an improvement to the former evolutionary clustering method. To detect the community structure in dynamic networks, our method considers the different similarity metrics of networks. First, multiple similarity matrices are constructed for each snapshot of dynamic networks. Then, a dynamic co-training algorithm is proposed by bootstrapping the clustering of different similarity measures. Compared with a number of baseline models, the experimental results show that the proposed MSSC method has better performance on some widely used synthetic and real-world datasets with ground-truth community structure that change over time.

  12. A multi-similarity spectral clustering method for community detection in dynamic networks

    PubMed Central

    Qin, Xuanmei; Dai, Weidi; Jiao, Pengfei; Wang, Wenjun; Yuan, Ning

    2016-01-01

    Community structure is one of the fundamental characteristics of complex networks. Many methods have been proposed for community detection. However, most of these methods are designed for static networks and are not suitable for dynamic networks that evolve over time. Recently, the evolutionary clustering framework was proposed for clustering dynamic data, and it can also be used for community detection in dynamic networks. In this paper, a multi-similarity spectral (MSSC) method is proposed as an improvement to the former evolutionary clustering method. To detect the community structure in dynamic networks, our method considers the different similarity metrics of networks. First, multiple similarity matrices are constructed for each snapshot of dynamic networks. Then, a dynamic co-training algorithm is proposed by bootstrapping the clustering of different similarity measures. Compared with a number of baseline models, the experimental results show that the proposed MSSC method has better performance on some widely used synthetic and real-world datasets with ground-truth community structure that change over time. PMID:27528179

  13. A multi-similarity spectral clustering method for community detection in dynamic networks

    NASA Astrophysics Data System (ADS)

    Qin, Xuanmei; Dai, Weidi; Jiao, Pengfei; Wang, Wenjun; Yuan, Ning

    2016-08-01

    Community structure is one of the fundamental characteristics of complex networks. Many methods have been proposed for community detection. However, most of these methods are designed for static networks and are not suitable for dynamic networks that evolve over time. Recently, the evolutionary clustering framework was proposed for clustering dynamic data, and it can also be used for community detection in dynamic networks. In this paper, a multi-similarity spectral (MSSC) method is proposed as an improvement to the former evolutionary clustering method. To detect the community structure in dynamic networks, our method considers the different similarity metrics of networks. First, multiple similarity matrices are constructed for each snapshot of dynamic networks. Then, a dynamic co-training algorithm is proposed by bootstrapping the clustering of different similarity measures. Compared with a number of baseline models, the experimental results show that the proposed MSSC method has better performance on some widely used synthetic and real-world datasets with ground-truth community structure that change over time.

  14. Immigration, local dispersal limitation, and the repeatability of community composition under neutral and niche dynamics.

    PubMed

    Ai, Dexiecuo; Desjardins-Proulx, Philippe; Chu, Chengjin; Wang, Gang

    2012-01-01

    Repeatability of community composition has been a critical aspect for community structure, which is closely associated with community stability, predictability, conservation biology and ecological restoration. It has been shown that both immigration and local dispersal limitation can affect the community composition in both neutral and niche model. Hence, we use a spatially explicit individual-based model to investigate the potential influence of immigration rate and strength of local dispersal limitation on repeatability in both neutral and niche models. Similarity measures are used to quantify repeatability. We examine the repeatability of community composition among replicate communities (which means the same community repeats many times), and between niche and neutral replicate communities. We find the correlation between repeatability and immigration rate is positive in the neutral model and an inverted unimodal in the niche model. The correlation between repeatability and local dispersal distance is positive in the niche model and negative in the neutral model. High repeatability between niche communities and neutral communities is observed with high immigration rates or when high local dispersal distance appears in the niche model or low local dispersal distance in the neutral model. Our results show that repeatability of community composition is not only dependent on the types of community models (niche vs. neutrality) but also strongly determined by immigration rates and local dispersal limitation.

  15. Interspecific interactions between primates, birds, bats, and squirrels may affect community composition on Borneo.

    PubMed

    Beaudrot, Lydia; Struebig, Matthew J; Meijaard, Erik; van Balen, Sebastianus; Husson, Simon; Young, Carson F; Marshall, Andrew J

    2013-02-01

    For several decades, primatologists have been interested in understanding how sympatric primate species are able to coexist. Most of our understanding of primate community ecology derives from the assumption that these animals interact predominantly with other primates. In this study, we investigate to what extent multiple community assembly hypotheses consistent with this assumption are supported when tested with communities of primates in isolation versus with communities of primates, birds, bats, and squirrels together. We focus on vertebrate communities on the island of Borneo, where we examine the determinants of presence or absence of species, and how these communities are structured. We test for checkerboard distributions, guild proportionality, and Fox's assembly rule for favored states, and predict that statistical signals reflecting interactions between ecologically similar species will be stronger when nonprimate taxa are included in analyses. We found strong support for checkerboard distributions in several communities, particularly when taxonomic groups were combined, and after controlling for habitat effects. We found evidence of guild proportionality in some communities, but did not find significant support for Fox's assembly rule in any of the communities examined. These results demonstrate the presence of vertebrate community structure that is ecologically determined rather than randomly generated, which is a finding consistent with the interpretation that interactions within and between these taxonomic groups may have shaped species composition in these communities. This research highlights the importance of considering the broader vertebrate communities with which primates co-occur, and so we urge primatologists to explicitly consider nonprimate taxa in the study of primate ecology.

  16. Dysbiotic Bacterial and Fungal Communities Not Restricted to Clinically Affected Skin Sites in Dandruff

    PubMed Central

    Soares, Renan C.; Camargo-Penna, Pedro H.; de Moraes, Vanessa C. S.; De Vecchi, Rodrigo; Clavaud, Cécile; Breton, Lionel; Braz, Antonio S. K.; Paulino, Luciana C.

    2016-01-01

    Dandruff is a prevalent chronic inflammatory skin condition of the scalp that has been associated with Malassezia yeasts. However, the microbial role has not been elucidated yet, and the etiology of the disorder remains poorly understood. Using high-throughput 16S rDNA and ITS1 sequencing, we characterized cutaneous bacterial and fungal microbiotas from healthy and dandruff subjects, comparing scalp and forehead (lesional and non-lesional skin sites). Bacterial and fungal communities from dandruff analyzed at genus level differed in comparison with healthy ones, presenting higher diversity and greater intragroup variation. The microbial shift was observed also in non-lesional sites from dandruff subjects, suggesting that dandruff is related to a systemic process that is not restricted to the site exhibiting clinical symptoms. In contrast, Malassezia microbiota analyzed at species level did not differ according to health status. A 2-step OTU assignment using combined databases substantially increased fungal assigned sequences, and revealed the presence of highly prevalent uncharacterized Malassezia organisms (>37% of the reads). Although clinical symptoms of dandruff manifest locally, microbial dysbiosis beyond clinically affected skin sites suggests that subjects undergo systemic alterations, which could be considered for redefining therapeutic approaches. PMID:27909689

  17. Dysbiotic Bacterial and Fungal Communities Not Restricted to Clinically Affected Skin Sites in Dandruff.

    PubMed

    Soares, Renan C; Camargo-Penna, Pedro H; de Moraes, Vanessa C S; De Vecchi, Rodrigo; Clavaud, Cécile; Breton, Lionel; Braz, Antonio S K; Paulino, Luciana C

    2016-01-01

    Dandruff is a prevalent chronic inflammatory skin condition of the scalp that has been associated with Malassezia yeasts. However, the microbial role has not been elucidated yet, and the etiology of the disorder remains poorly understood. Using high-throughput 16S rDNA and ITS1 sequencing, we characterized cutaneous bacterial and fungal microbiotas from healthy and dandruff subjects, comparing scalp and forehead (lesional and non-lesional skin sites). Bacterial and fungal communities from dandruff analyzed at genus level differed in comparison with healthy ones, presenting higher diversity and greater intragroup variation. The microbial shift was observed also in non-lesional sites from dandruff subjects, suggesting that dandruff is related to a systemic process that is not restricted to the site exhibiting clinical symptoms. In contrast, Malassezia microbiota analyzed at species level did not differ according to health status. A 2-step OTU assignment using combined databases substantially increased fungal assigned sequences, and revealed the presence of highly prevalent uncharacterized Malassezia organisms (>37% of the reads). Although clinical symptoms of dandruff manifest locally, microbial dysbiosis beyond clinically affected skin sites suggests that subjects undergo systemic alterations, which could be considered for redefining therapeutic approaches.

  18. Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice.

    PubMed

    Chen, Si; Li, Xingxing; Lavoie, Michel; Jin, Yujian; Xu, Jiahui; Fu, Zhengwei; Qian, Haifeng

    2017-01-01

    Diclofop-methyl (DM), a widely used herbicide in food crops, may partly contaminate the soil surface of natural ecosystems in agricultural area and exert toxic effects at low dose to nontarget plants. Even though rhizosphere microorganisms strongly interact with root cells, little is known regarding their potential modulating effect on herbicide toxicity in plants. Here we exposed rice seedlings (Xiushui 63) to 100μg/L DM for 2 to 8days and studied the effects of DM on rice rhizosphere microorganisms, rice systemic acquired resistance (SAR) and rice-microorganisms interactions. The results of metagenomic 16S rDNA Illumina tags show that DM increases bacterial biomass and affects their community structure in the rice rhizosphere. After DM treatment, the relative abundance of the bacterium genera Massilia and Anderseniella increased the most relative to the control. In parallel, malate and oxalate exudation by rice roots increased, potentially acting as a carbon source for several rhizosphere bacteria. Transcriptomic analyses suggest that DM induced SAR in rice seedlings through the salicylic acid (but not the jasmonic acid) signal pathway. This response to DM stress conferred resistance to infection by a pathogenic bacterium, but was not influenced by the presence of bacteria in the rhizosphere since SAR transcripts did not change significantly in xenic and axenic plant roots exposed to DM. The present study provides new insights on the response of rice and its associated microorganisms to DM stress.

  19. An investigation of factors affecting elementary school students' BMI values based on the system dynamics modeling.

    PubMed

    Lan, Tian-Syung; Chen, Kai-Ling; Chen, Pin-Chang; Ku, Chao-Tai; Chiu, Pei-Hsuan; Wang, Meng-Hsiang

    2014-01-01

    This study used system dynamics method to investigate the factors affecting elementary school students' BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student's personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students' peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students' amounts of physical activity, and nutrition education has a prominent influence on changing students' high-calorie diets.

  20. Bacterial Invasion Dynamics in Zebrafish Gut Microbial Communities

    NASA Astrophysics Data System (ADS)

    Logan, Savannah; Jemielita, Matthew; Wiles, Travis; Schlomann, Brandon; Hammer, Brian; Guillemin, Karen; Parthasarathy, Raghuveer

    Microbial communities residing in the vertebrate intestine play an important role in host development and health. These communities must be in part shaped by interactions between microbial species as they compete for resources in a physically constrained system. To better understand these interactions, we use light sheet microscopy and zebrafish as a model organism to image established gut microbial communities as they are invaded by robustly-colonizing challengers. We demonstrate that features of the challenger, including motility and spatial distribution, impact success in invasion and in outcompeting the original community. We also show that physical characteristics of the host, such as the motility of the gut, play important roles in mediating inter-species competition. Finally, we examine the influence of the contact-dependent type VI secretion system (T6SS), which is used by specific bacteria to cause cell lysis by injecting toxic effector proteins into competitors. Our findings provide insights into the determinants of microbial success in the complex ecosystems found in the gut.

  1. The Dynamics of Social Relationships in Student Communities

    ERIC Educational Resources Information Center

    AlKandari, Nabila; AlShallal, Khalid

    2008-01-01

    This study discusses the nature of social relationships in student communities at Kuwait University. Three hundred seventy-two students participated. A survey of 22 items was designed to describe students' social relationships. The study revealed that students have affirmative social relationships. The students do not feel desolation on campus;…

  2. Community Colleges and Adult Needs: Organizational Dynamics, Models, Change Strategies.

    ERIC Educational Resources Information Center

    Hummel, Mary

    Very little research literature exists on organizational change and resistance in student services. In this study six community colleges were selected with two from each of the three size of population categories: small (1,000-2,999), medium (3,000-8,999), and large (9,000 and above). In each size category two institutions were matched, one…

  3. Actinobacterial community dynamics in long term managed grasslands.

    PubMed

    Jenkins, Sasha N; Waite, Ian S; Blackburn, Adrian; Husband, Rebecca; Rushton, Steven P; Manning, David C; O'Donnell, Anthony G

    2009-05-01

    Palace Leas, a long-term experiment at Cockle Park Farm, Northumberland, UK was established in winter 1896-1897 since when the 13 plots have received regular and virtually unchanged mineral fertiliser and farm yard manure inputs. Fertilisers have had a profound impact on soil pH with the organically fertilised plots showing a significantly higher pH than those receiving mineral fertiliser where ammonium sulphate has led to soil acidification. Here, we investigate the impact of organic and mineral fertilisers on the actinobacterial community structure of these soils using terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene analysis. To differentiate fertiliser effects from seasonal variation, soils were sampled three times over one growing season between May and September 2004 and January 2005. Community profiles obtained using T-RFLP were analysed using multivariate statistics to investigate the relationship between community structure, seasonality and fertiliser management. Soil pH was shown to be the most significant edaphic factor influencing actinobacterial communities. Canonical correspondence analysis, used to investigate the relationship between the 16S rRNA gene community profiles and the environmental parameters, showed that actinobacterial communities also responded to soil water content with major changes evident over the summer months between May and September. Quantitative PCR of the actinobacterial and fungal 16S and 18S rRNA genes, respectively suggested that fungal rRNA gene copy numbers were negatively correlated (P = 0.0131) with increasing actinobacterial signals. A similar relationship (P = 0.000365) was also evident when fatty acid methyl esters indicative of actinobacterial biomass (10-methyloctadecanoic acid) were compared with the amounts of fungal octadecadienoic acid (18:2omega9,12). These results show clearly that soil pH is a major driver of change in actinobacterial communities and that genera such as

  4. Unscrambling Cyanobacteria Community Dynamics Related to Environmental Factors

    PubMed Central

    Bertos-Fortis, Mireia; Farnelid, Hanna M.; Lindh, Markus V.; Casini, Michele; Andersson, Agneta; Pinhassi, Jarone; Legrand, Catherine

    2016-01-01

    Future climate scenarios in the Baltic Sea project an increase of cyanobacterial bloom frequency and duration, attributed to eutrophication and climate change. Some cyanobacteria can be toxic and their impact on ecosystem services is relevant for a sustainable sea. Yet, there is limited understanding of the mechanisms regulating cyanobacterial diversity and biogeography. Here we unravel successional patterns and changes in cyanobacterial community structure using a 2-year monthly time- series during the productive season in a 100 km coastal-offshore transect using microscopy and high-throughput sequencing of 16S rRNA gene fragments. A total of 565 cyanobacterial OTUs were found, of which 231 where filamentous/colonial and 334 picocyanobacterial. Spatial differences in community structure between coastal and offshore waters were minor. An “epidemic population structure” (dominance of asingle cluster) was found for Aphanizomenon/Dolichospermum within the filamentous/colonial cyanobacterial community. In summer, this clusters imultaneously occurred with opportunistic clusters/OTUs, e.g., Nodularia spumigena and Pseudanabaena. Picocyanobacteria, Synechococcus/Cyanobium, formeda consistent but highly diverse group. Overall, the potential drivers structuring summer cyanobacterial communities were temperature and salinity. However, the different responses to environmental factors among and within genera suggest high niche specificity for individual OTUs. The recruitment and occurrence of potentially toxic filamentous/colonial clusters was likely related to disturbance such as mixing events and short-term shifts in salinity, and not solely dependent on increasing temperature and nitrogen-limiting conditions. Nutrients did not explain further the changes in cyanobacterial community composition. Novel occurrence patterns were identified as a strong seasonal succession revealing a tight coupling between the emergence of opportunistic picocynobacteria and the bloom

  5. The dynamic nature of the stress appraisal process and the infusion of affect.

    PubMed

    Eschleman, Kevin J; Alarcon, Gene M; Lyons, Joseph B; Stokes, Charlene K; Schneider, Tamera

    2012-05-01

    Very little is known about the process in which people reappraise a stressful environment or the factors that may influence this process. In the current study, we address the several limitations to previous research regarding stress reappraisals and explore the role of affect on this process. A total of 320 participants (mean age = 20 years, 60% male) completed an increasingly demanding team-based coordination task. Mood and stress appraisals were assessed at three time points using self-report surveys during four different waves of data collection. The longitudinal design enabled us to assess primary and secondary reappraisals (change in appraisals during the experiment), task-irrelevant affect (affect assessed prior to experiment participation), and task-relevant affect (change in affect experienced during the experiment). Guided by the Transactional Theory of Stress, we argue that the relationship between primary reappraisal and secondary reappraisal is an accurate representation of a dynamic stress appraisal process. We found that participants were more likely to engage in the stress appraisal process when they experienced less task-irrelevant positive affect and greater task-relevant positive affect. Both task-irrelevant and task-relevant negative affect were not found to influence the stress appraisal process.

  6. Dynamic association between negative affect and alcohol lapses following alcohol treatment.

    PubMed

    Witkiewitz, Katie; Villarroel, Nadia Aracelliz

    2009-08-01

    Clinical research has found a strong association between negative affect and returning to alcohol use after a period of abstinence. Yet little is known about the probability of a lapse given a particular level of negative affect or whether there is a reciprocal relationship between negative affect and alcohol use across time. The goal of the current study was to examine the association between negative affect and drinking behavior in the 1st year following alcohol treatment. The authors applied an associative latent transition analysis to the Project MATCH outpatient data (n = 952) and then replicated the model in the Project MATCH aftercare data (n = 774). Changes in drinking following treatment were significantly associated with current and prior changes in negative affect, and changes in negative affect were related to prior changes in drinking (effect size range = 0.13-0.33). The results supported the hypothesis that negative affect and alcohol lapses are dynamically linked and suggest that targeting the relationship between negative affect and alcohol use could greatly decrease the probability of lapses and improve alcohol treatment outcomes.

  7. Identifying Core Affect in Individuals from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli.

    PubMed

    Kim, Jongwan; Wang, Jing; Wedell, Douglas H; Shinkareva, Svetlana V

    2016-01-01

    Recent research has demonstrated that affective states elicited by viewing pictures varying in valence and arousal are identifiable from whole brain activation patterns observed with functional magnetic resonance imaging (fMRI). Identification of affective states from more naturalistic stimuli has clinical relevance, but the feasibility of identifying these states on an individual trial basis from fMRI data elicited by dynamic multimodal stimuli is unclear. The goal of this study was to determine whether affective states can be similarly identified when participants view dynamic naturalistic audiovisual stimuli. Eleven participants viewed 5s audiovisual clips in a passive viewing task in the scanner. Valence and arousal for individual trials were identified both within and across participants based on distributed patterns of activity in areas selectively responsive to audiovisual naturalistic stimuli while controlling for lower level features of the stimuli. In addition, the brain regions identified by searchlight analyses to represent valence and arousal were consistent with previously identified regions associated with emotion processing. These findings extend previous results on the distributed representation of affect to multimodal dynamic stimuli.

  8. Identifying Core Affect in Individuals from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli

    PubMed Central

    Kim, Jongwan; Wang, Jing; Wedell, Douglas H.

    2016-01-01

    Recent research has demonstrated that affective states elicited by viewing pictures varying in valence and arousal are identifiable from whole brain activation patterns observed with functional magnetic resonance imaging (fMRI). Identification of affective states from more naturalistic stimuli has clinical relevance, but the feasibility of identifying these states on an individual trial basis from fMRI data elicited by dynamic multimodal stimuli is unclear. The goal of this study was to determine whether affective states can be similarly identified when participants view dynamic naturalistic audiovisual stimuli. Eleven participants viewed 5s audiovisual clips in a passive viewing task in the scanner. Valence and arousal for individual trials were identified both within and across participants based on distributed patterns of activity in areas selectively responsive to audiovisual naturalistic stimuli while controlling for lower level features of the stimuli. In addition, the brain regions identified by searchlight analyses to represent valence and arousal were consistent with previously identified regions associated with emotion processing. These findings extend previous results on the distributed representation of affect to multimodal dynamic stimuli. PMID:27598534

  9. On the dynamic covariation between interpersonal behavior and affect: prediction from neuroticism, extraversion, and agreeableness.

    PubMed

    Côté, S; Moskowitz, D S

    1998-10-01

    It was posited that the traits of Neuroticism, Extraversion, and Agreeableness are predictors of dynamic intraindividual processes involving interpersonal behavior and affect. Hypotheses derived from the behavioral concordance model that individuals with high scores on a trait would experience more positively valenced affect when engaging in behavior concordant with that trait than individuals with low scores on the trait were tested. Participants completed a questionnaire measure of the traits and reported on behavior and affect during interpersonal interactions using event-contingent sampling forms approximately 6 times a day for 20 days. Trait scores were related to indexes of the association between each dimension of interpersonal behavior and affect calculated for each individual. Previous findings concerning the trait of Agreeableness were replicated, and results strongly supported the behavioral concordance model for the trait of Neuroticism. Thus, at least some traits can provide information about intraindividual processes that vary over time.

  10. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1985-01-01

    Work performed as part of an investigation of noise affecting instrumentation in a tethered subsatellite, was studied. The following specific topics were addressed during the reporting period: a method for stabilizing the subsatellite against the rotational effects of atmospheric perturbation was developed; a variety of analytic studies of tether dynamics aimed at elucidating dynamic noise processes were performed; a novel mechanism for coupling longitudinal and latitudinal oscillations of the tether was discovered, and random vibration analysis for modeling the tethered subsatellite under atmospheric perturbation were studied.

  11. Detectability Thresholds and Optimal Algorithms for Community Structure in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Ghasemian, Amir; Zhang, Pan; Clauset, Aaron; Moore, Cristopher; Peel, Leto

    2016-07-01

    The detection of communities within a dynamic network is a common means for obtaining a coarse-grained view of a complex system and for investigating its underlying processes. While a number of methods have been proposed in the machine learning and physics literature, we lack a theoretical analysis of their strengths and weaknesses, or of the ultimate limits on when communities can be detected. Here, we study the fundamental limits of detecting community structure in dynamic networks. Specifically, we analyze the limits of detectability for a dynamic stochastic block model where nodes change their community memberships over time, but where edges are generated independently at each time step. Using the cavity method, we derive a precise detectability threshold as a function of the rate of change and the strength of the communities. Below this sharp threshold, we claim that no efficient algorithm can identify the communities better than chance. We then give two algorithms that are optimal in the sense that they succeed all the way down to this threshold. The first uses belief propagation, which gives asymptotically optimal accuracy, and the second is a fast spectral clustering algorithm, based on linearizing the belief propagation equations. These results extend our understanding of the limits of community detection in an important direction, and introduce new mathematical tools for similar extensions to networks with other types of auxiliary information.

  12. Resilience in a Community Sample of Children of Alcoholics: Its Prevalence and Relation to Internalizing Symptomatology and Positive Affect

    ERIC Educational Resources Information Center

    Carle, Adam C.; Chassin, Laurie

    2004-01-01

    Data from an ongoing longitudinal study examined resilience (competent performance under adverse conditions) in a community sample of children of alcoholics (COAs n=216) and matched controls (n=201). The study examined the prevalence of competence and whether the relation of competence to internalizing and positive affect differed for COAs and…

  13. The Multigenerational Workforce within Two-Year Public Community Colleges: A Study of Generational Factors Affecting Employee Learning and Interaction

    ERIC Educational Resources Information Center

    Starks, Florida Elizabeth

    2014-01-01

    The purpose of this quantitative study is to broaden multigenerational workforce research involving factors affecting employee learning and interaction by using a population of Baby Boomer, Generation X, and Millennial faculty and staff age cohorts employed at two-year public community college organizations. Researchers have studied…

  14. Affect and Self-Rated Health: A Dynamic Approach with Older Adults

    PubMed Central

    Segerstrom, Suzanne C.

    2015-01-01

    Objective Self-rated health (SRH) predicts mortality above and beyond objective health risks and as such comprises an important aspect of health. Established contributors to self-rated health include affect, age, and disease, but neither their dynamic nor their synergistic contributions to SRH have been comprehensively tested. Methods The present study employed older adults (N = 150; M age = 75 years) and a longitudinal design with 6-month waves over up to 5 years. Positive and negative affect (PA, NA), chronic disease, and SRH were assessed at each wave. Results In multilevel models with single predictors, older age, more chronic disease, and higher NA predicted worse SRH, whereas higher PA predicted better SRH. Affect predicted SRH both between and within people. In multilevel models with interactions between affect and age or disease, individual differences in NA predicted worse SRH primarily in older people. Within people, changes in NA were associated with changes in SRH, but more so in younger than in older people. Within people, changes in PA were associated with changes in SRH, but only when health was better than usual. Conclusions There were both dynamic and synergistic relationships between affect and SRH that could only emerge in a multilevel, multivariable design. In the case of NA, between-person, trait NA had the opposite relationship to SRH and age compared with within-person, state NA. Which component of this relationship predicts mortality is an important question for future research. PMID:23914813

  15. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    PubMed

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  16. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  17. Laughing it off? Humour, affect and emotion work in communities living with nuclear risk.

    PubMed

    Parkhill, K A; Henwood, K L; Pidgeon, N F; Simmons, P

    2011-06-01

    Over the past two decades, an increasing number of risk researchers have recognized that risks are not simply objective hazards but that the meanings of risk are discursively negotiated, dynamic and embedded within the wider social relations that constitute everyday life. A growing interest in the complexity and nuances of risk subjectivities has alerted sociocultural researchers not only to what is said in a risk situation, but also to how it is said and to what is unsaid and even, in a particular context, unsayable; to the intangible qualities of discourse that communicate additional meanings. Humour is both an intangible and marks such intangible meanings, yet it has largely been ignored and insufficiently theorized by risk researchers. In this paper, we draw upon insights from the humour literature - suspending the belief that humour is inherently good - to analyse and theorize humour as a way of examining the meanings and functions of risk. We show how humour can both mask and carefully reveal affectively charged states about living with nuclear risk. As such, it helps risk subjects to live with risk by suppressing vulnerabilities, enabling the negotiation of what constitutes a threat, and engendering a sense of empowerment. We conclude that humorous talk can be serious talk which can enrich our understandings of the lived experience of risk and of risk subjectivities.

  18. Bacterial diversity differences along an epigenic cave stream reveal evidence of community dynamics, succession, and stability

    PubMed Central

    Brannen-Donnelly, Kathleen; Engel, Annette S.

    2015-01-01

    Unchanging physicochemical conditions and nutrient sources over long periods of time in cave and karst subsurface habitats, particularly aquifers, can support stable ecosystems, termed autochthonous microbial endokarst communities (AMEC). AMEC existence is unknown for other karst settings, such as epigenic cave streams. Conceptually, AMEC should not form in streams due to faster turnover rates and seasonal disturbances that have the capacity to transport large quantities of water and sediment and to change allochthonous nutrient and organic matter sources. Our goal was to investigate whether AMEC could form and persist in hydrologically active, epigenic cave streams. We analyzed bacterial diversity from cave water, sediments, and artificial substrates (Bio-Traps®) placed in the cave at upstream and downstream locations. Distinct communities existed for the water, sediments, and Bio-Trap® samplers. Throughout the study period, a subset of community members persisted in the water, regardless of hydrological disturbances. Stable habitat conditions based on flow regimes resulted in more than one contemporaneous, stable community throughout the epigenic cave stream. However, evidence for AMEC was insufficient for the cave water or sediments. Community succession, specifically as predictable exogenous heterotrophic microbial community succession, was evident from decreases in community richness from the Bio-Traps®, a peak in Bio-Trap® community biomass, and from changes in the composition of Bio-Trap® communities. The planktonic community was compositionally similar to Bio-Trap® initial colonizers, but the downstream Bio-Trap® community became more similar to the sediment community at the same location. These results can help in understanding the diversity of planktonic and attached microbial communities from karst, as well as microbial community dynamics, stability, and succession during disturbance or contamination responses over time. PMID:26257715

  19. Decomposition-Based Multiobjective Evolutionary Algorithm for Community Detection in Dynamic Social Networks

    PubMed Central

    Ma, Jingjing; Liu, Jie; Ma, Wenping; Gong, Maoguo; Jiao, Licheng

    2014-01-01

    Community structure is one of the most important properties in social networks. In dynamic networks, there are two conflicting criteria that need to be considered. One is the snapshot quality, which evaluates the quality of the community partitions at the current time step. The other is the temporal cost, which evaluates the difference between communities at different time steps. In this paper, we propose a decomposition-based multiobjective community detection algorithm to simultaneously optimize these two objectives to reveal community structure and its evolution in dynamic networks. It employs the framework of multiobjective evolutionary algorithm based on decomposition to simultaneously optimize the modularity and normalized mutual information, which quantitatively measure the quality of the community partitions and temporal cost, respectively. A local search strategy dealing with the problem-specific knowledge is incorporated to improve the effectiveness of the new algorithm. Experiments on computer-generated and real-world networks demonstrate that the proposed algorithm can not only find community structure and capture community evolution more accurately, but also be steadier than the two compared algorithms. PMID:24723806

  20. The effects of exposure to dynamic expressions of affect on 5-month-olds' memory.

    PubMed

    Flom, Ross; Janis, Rebecca B; Garcia, Darren J; Kirwan, C Brock

    2014-11-01

    The purpose of this study was to examine the behavioral effects of adults' communicated affect on 5-month-olds' visual recognition memory. Five-month-olds were exposed to a dynamic and bimodal happy, angry, or neutral affective (face-voice) expression while familiarized to a novel geometric image. After familiarization to the geometric image and exposure to the affective expression, 5-month-olds received either a 5-min or 1-day retention interval. Following the 5-min retention interval, infants exposed to the happy affective expressions showed a reliable preference for a novel geometric image compared to the recently familiarized image. Infants exposed to the neutral or angry affective expression failed to show a reliable preference following a 5-min delay. Following the 1-day retention interval, however, infants exposed to the neutral expression showed a reliable preference for the novel geometric image. These results are the first to demonstrate that 5-month-olds' visual recognition memory is affected by the presentation of affective information at the time of encoding.

  1. Psychosocial care to affected citizens and communities in case of CBRN incidents: a systematic review.

    PubMed

    Gouweloos, Juul; Dückers, Michel; te Brake, Hans; Kleber, Rolf; Drogendijk, Annelieke

    2014-11-01

    Disasters are associated with a substantial psychosocial burden for affected individuals (including first responders) and communities. Knowledge about how to address these risks and problems is valuable for societies worldwide. Decades of research into post-disaster psychosocial care has resulted in various recommendations and general guidelines. However, as CBRN (chemical, biological, radiological, nuclear) events form a distinctive theme in emergency planning and disaster preparedness, it is important to systematically explore their implications for psychosocial care. The aim of this study is to answer two questions: 1). To what extent does psychosocial care in the case of CBRN events differ from other types of events? 2). How strong is the scientific evidence for the effectiveness of psychosocial care interventions in the context of a CBRN event? A systematic literature review was conducted. Searches were performed in Medline, PsychINFO, Embase and PILOTS. Studies since January 2000 were included and evaluated by independent reviewers. The 39 included studies contain recommendations, primarily based on unsystematic literature reviews, qualitative research and expert opinions. Recommendations address: 1) public risk- and crisis communication, 2) training, education and exercise of responders, 3) support, and 4) psychosocial counselling and care to citizens and responders. Although none of the studies meet the design criteria for effectiveness research, a substantial amount of consensus exists on aspects relevant to CBRN related psychosocial care. Recommendations are similar or complementary to general post-disaster psychosocial care guidelines. Notable differences are the emphasis on risk communication and specific preparation needs. Relevant recurring topics are uncertainty about contamination and health effects, how people will overwhelm health care systems, and the possibility that professionals are less likely to respond. However, the lack of evidence on

  2. Denitrifying Bacterial Communities Affect Current Production and Nitrous Oxide Accumulation in a Microbial Fuel Cell

    PubMed Central

    Vilar-Sanz, Ariadna; Puig, Sebastià; García-Lledó, Arantzazu; Trias, Rosalia; Balaguer, M. Dolors; Colprim, Jesús; Bañeras, Lluís

    2013-01-01

    The biocathodic reduction of nitrate in Microbial Fuel Cells (MFCs) is an alternative to remove nitrogen in low carbon to nitrogen wastewater and relies entirely on microbial activity. In this paper the community composition of denitrifiers in the cathode of a MFC is analysed in relation to added electron acceptors (nitrate and nitrite) and organic matter in the cathode. Nitrate reducers and nitrite reducers were highly affected by the operational conditions and displayed high diversity. The number of retrieved species-level Operational Taxonomic Units (OTUs) for narG, napA, nirS and nirK genes was 11, 10, 31 and 22, respectively. In contrast, nitrous oxide reducers remained virtually unchanged at all conditions. About 90% of the retrieved nosZ sequences grouped in a single OTU with a high similarity with Oligotropha carboxidovorans nosZ gene. nirS-containing denitrifiers were dominant at all conditions and accounted for a significant amount of the total bacterial density. Current production decreased from 15.0 A·m−3 NCC (Net Cathodic Compartment), when nitrate was used as an electron acceptor, to 14.1 A·m−3 NCC in the case of nitrite. Contrarily, nitrous oxide (N2O) accumulation in the MFC was higher when nitrite was used as the main electron acceptor and accounted for 70% of gaseous nitrogen. Relative abundance of nitrite to nitrous oxide reducers, calculated as (qnirS+qnirK)/qnosZ, correlated positively with N2O emissions. Collectively, data indicate that bacteria catalysing the initial denitrification steps in a MFC are highly influenced by main electron acceptors and have a major influence on current production and N2O accumulation. PMID:23717427

  3. Belowground induction by Delia radicum or phytohormones affect aboveground herbivore communities on field-grown broccoli

    PubMed Central

    Pierre, S. P.; Dugravot, S.; Hervé, M. R.; Hassan, H. M.; van Dam, N. M.; Cortesero, A. M.

    2013-01-01

    Induced plant defence in response to phytophagous insects is a well described phenomenon. However, so far little is known about the effect of induced plant responses on subsequently colonizing herbivores in the field. Broccoli plants were induced in the belowground compartment using (i) infestation by the root-herbivore Delia radicum, (ii) root application of jasmonic acid (JA) or (iii) root application of salicylic acid (SA). The abundance of D. radicum and six aboveground herbivores displaying contrasting levels of host specialization were surveyed for 5 weeks. Our study showed that the response of herbivores was found to differ from one another, depending on the herbivore species, its degree of specialization and the root treatment. The abundance of the root herbivore D. radicum and particularly the number of emerging adults was decreased by both phytohormone treatments, while the number of D. radicum eggs was increased on conspecific infested plants. The root infestation exhibited moderate effects on the aboveground community. The abundance of the aphid Brevicoryne brassicae was strongly increased on D. radicum infested plants, but the other species were not impacted. Root hormone applications exhibited a strong effect on the abundance of specialist foliar herbivores. A higher number of B. brassicae and Pieris brassicae and a lower number of Plutella xylostella were found on JA treated plants. On SA treated plants we observed a decrease of the abundance of B. brassicae, Pi. rapae, and P. xylostella. Surprisingly, generalist species, Mamestra brassicae and Myzus persicae were not affected by root induction treatments. Finally, root treatments had no significant effect on either glucosinolate (GLS) profiles of the heads or on plant quality parameters. These results are discussed from the perspective of below- aboveground interactions and adaptations of phytophagous insects to induced plant responses according to their trophic specialization level. PMID:23970888

  4. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling.

  5. The diversity of coral associated bacteria and the environmental factors affect their community variation.

    PubMed

    Zhang, Yan-Ying; Ling, Juan; Yang, Qing-Song; Wang, You-Shao; Sun, Cui-Ci; Sun, Hong-Yan; Feng, Jing-Bin; Jiang, Yu-Feng; Zhang, Yuan-Zhou; Wu, Mei-Lin; Dong, Jun-De

    2015-10-01

    Coral associated bacterial community potentially has functions relating to coral health, nutrition and disease. Culture-free, 16S rRNA based techniques were used to compare the bacterial community of coral tissue, mucus and seawater around coral, and to investigate the relationship between the coral-associated bacterial communities and environmental variables. The diversity of coral associated bacterial communities was very high, and their composition different from seawater. Coral tissue and mucus had a coral associated bacterial community with higher abundances of Gammaproteobacteria. However, bacterial community in seawater had a higher abundance of Cyanobacteria. Different populations were also found in mucus and tissue from the same coral fragment, and the abundant bacterial species associated with coral tissue was very different from those found in coral mucus. The microbial diversity and OTUs of coral tissue were much higher than those of coral mucus. Bacterial communities of corals from more human activities site have higher diversity and evenness; and the structure of bacterial communities were significantly different from the corals collected from other sites. The composition of bacterial communities associated with same coral species varied with season's changes, geographic differences, and coastal pollution. Unique bacterial groups found in the coral samples from more human activities location were significant positively correlated to chemical oxygen demand. These coral specific bacteria lead to coral disease or adjust to form new function structure for the adaption of different surrounding needs further research.

  6. Types and concentrations of metal ions affect local structure and dynamics of RNA

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xiao, Yi

    2016-10-01

    The roles that metal ions play in the structure and dynamics of RNA molecules are long-standing problems that have been studied extensively but are still not well understood. Here we show that metal ions have distributions around RNA molecules that strongly depend on the types and concentrations of the metal ions and also the electrostatic surface of the molecule. In particular, the ion distributions may not balance all the local electronegativity of the molecule. These ion distributions do not only greatly affect local structures but also lead to different local dynamics of RNA. We studied the effects of different ion solutions on the structure and dynamics of RNA by taking the pre Q1 riboswitch aptamer domain as an illustrative example and using molecular dynamics simulations. Since the local structures and dynamics of RNAs are important to their functions, our results also indicate that the selection of proper ion conditions is necessary to model them correctly, in contrast to the use of diverse ion solutions in current molecular dynamics simulations.

  7. Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: Microbial community dynamics and process resilience

    SciTech Connect

    Niu, Qigui; Takemura, Yasuyuki; Kubota, Kengo; Li, Yu-You

    2015-09-15

    Highlights: • Microbial community dynamics and process functional resilience were investigated. • The threshold of TAN in mesophilic reactor was higher than the thermophilic reactor. • The recoverable archaeal community dynamic sustained the process resilience. • Methanosarcina was more sensitive than Methanoculleus on ammonia inhibition. • TAN and FA effects the dynamic of hydrolytic and acidogenic bacteria obviously. - Abstract: While methane fermentation is considered as the most successful bioenergy treatment for chicken manure, the relationship between operational performance and the dynamic transition of archaeal and bacterial communities remains poorly understood. Two continuous stirred-tank reactors were investigated under thermophilic and mesophilic conditions feeding with 10%TS. The tolerance of thermophilic reactor on total ammonia nitrogen (TAN) was found to be 8000 mg/L with free ammonia (FA) 2000 mg/L compared to 16,000 mg/L (FA1500 mg/L) of mesophilic reactor. Biomethane production was 0.29 L/gV S{sub in} in the steady stage and decreased following TAN increase. After serious inhibition, the mesophilic reactor was recovered successfully by dilution and washing stratagem compared to the unrecoverable of thermophilic reactor. The relationship between the microbial community structure, the bioreactor performance and inhibitors such as TAN, FA, and volatile fatty acid was evaluated by canonical correspondence analysis. The performance of methanogenic activity and substrate removal efficiency were changed significantly correlating with the community evenness and phylogenetic structure. The resilient archaeal community was found even after serious inhibition in both reactors. Obvious dynamics of bacterial communities were observed in acidogenic and hydrolytic functional bacteria following TAN variation in the different stages.

  8. Appalachian Bridges to the Baccalaureate: How Community Colleges Affect Transfer Success

    ERIC Educational Resources Information Center

    Decker, Amber K.

    2011-01-01

    Statement of the problem. Too few community college students who intend to transfer and earn a baccalaureate degree actually do. This is a problem because postsecondary education is a key factor in economic mobility, and community colleges enroll a disproportionate number of nontraditional, part-time and low-income students. Although individual…

  9. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    PubMed

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  10. An Exploration of Cultural Factors Affecting Use of Communities of Practice

    DTIC Science & Technology

    2004-03-01

    of Practice: Principles and Practices of the GIsML Community. Teaching and Teacher Education , 14, 5-19. Pasmore, W., & Sherwood, J. (1977...Associates, Inc. Pugach, M. (1999). The Professional Development of Teachers From A "Communities of Practice" Perspective. Teacher Education and

  11. Individual and Service Factors Affecting Deinstitutionalization and Community Use of People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Baker, Peter A.

    2007-01-01

    Background: The aim was to evaluate the effect of the closure of a small intellectual disability hospital on the community use of those people involved. In addition, the study sought to identify those factors that might influence the community use of people with intellectual disabilities. Methods: The impact of resettlement was investigated using…

  12. Next generation barcode tagged sequencing for monitoring microbial community dynamics.

    PubMed

    Breakwell, Katy; Tetu, Sasha G; Elbourne, Liam D H

    2014-01-01

    Microbial identification using 16S rDNA variable regions has become increasingly popular over the past decade. The application of next-generation amplicon sequencing to these regions allows microbial communities to be sequenced in far greater depth than previous techniques, as well as allowing for the identification of unculturable or rare organisms within a sample. Multiplexing can be used to sequence multiple samples in tandem through the use of sample-specific identification sequences which are attached to each amplicon, making this a cost-effective method for large-scale microbial identification experiments.

  13. The effects of the psychiatric drug carbamazepine on freshwater invertebrate communities and ecosystem dynamics.

    PubMed

    Jarvis, Amanda L; Bernot, Melody J; Bernot, Randall J

    2014-10-15

    Freshwater ecosystems are persistently exposed to pharmaceutical pollutants, including carbamazepine. Despite the ubiquity and recalcitrance of carbamazepine, the effects of this pharmaceutical on freshwater ecosystems and communities are unclear. To better understand how carbamazepine influences the invertebrate community and ecosystem dynamics in freshwaters, we conducted a mesocosm experiment utilizing environmentally relevant concentrations of carbamazepine (200 and 2000 ng/L). Mesocosms were populated with four gastropod taxa (Elimia, Physa, Lymnaea and Helisoma), zooplankton, filamentous algae and phytoplankton. After a 31 d experimental duration, structural equation modeling (SEM) was used to relate changes in the community structure and ecosystem dynamics to carbamazepine exposure. Invertebrate diversity increased in the presence of carbamazepine. Additionally, carbamazepine altered the biomass of Helisoma and Elimia, induced a decline in Daphnia pulex abundance and shifted the zooplankton community toward copepod dominance. Lastly, carbamazepine decreased the decomposition of organic matter and indirectly altered primary production and dissolved nutrient concentrations. Changes in the invertebrate community occurred through both direct (i.e., exposure to carbamazepine) and indirect pathways (i.e., changes in food resource availability). These data indicate that carbamazepine may alter freshwater community structure and ecosystem dynamics and could have profound effects on natural systems.

  14. Abrupt community transitions and cyclic evolutionary dynamics in complex food webs☆

    PubMed Central

    Takahashi, Daisuke; Brännström, Åke; Mazzucco, Rupert; Yamauchi, Atsushi; Dieckmann, Ulf

    2013-01-01

    Understanding the emergence and maintenance of biodiversity ranks among the most fundamental challenges in evolutionary ecology. While processes of community assembly have frequently been analyzed from an ecological perspective, their evolutionary dimensions have so far received less attention. To elucidate the eco-evolutionary processes underlying the long-term build-up and potential collapse of community diversity, here we develop and examine an individual-based model describing coevolutionary dynamics driven by trophic interactions and interference competition, of a pair of quantitative traits determining predator and prey niches. Our results demonstrate the (1) emergence of communities with multiple trophic levels, shown here for the first time for stochastic models with linear functional responses, and (2) intermittent and cyclic evolutionary transitions between two alternative community states. In particular, our results indicate that the interplay of ecological and evolutionary dynamics often results in extinction cascades that remove the entire trophic level of consumers from a community. Finally, we show the (3) robustness of our results under variations of model assumptions, underscoring that processes of consumer collapse and subsequent rebound could be important elements of understanding biodiversity dynamics in natural communities. PMID:23948552

  15. Agricultural management and labile carbon additions affect soil microbial community structure and interact with carbon and nitrogen cycling.

    PubMed

    Berthrong, Sean T; Buckley, Daniel H; Drinkwater, Laurie E

    2013-07-01

    We investigated how conversion from conventional agriculture to organic management affected the structure and biogeochemical function of soil microbial communities. We hypothesized the following. (1) Changing agricultural management practices will alter soil microbial community structure driven by increasing microbial diversity in organic management. (2) Organically managed soil microbial communities will mineralize more N and will also mineralize more N in response to substrate addition than conventionally managed soil communities. (3) Microbial communities under organic management will be more efficient and respire less added C. Soils from organically and conventionally managed agroecosystems were incubated with and without glucose ((13)C) additions at constant soil moisture. We extracted soil genomic DNA before and after incubation for TRFLP community fingerprinting of soil bacteria and fungi. We measured soil C and N pools before and after incubation, and we tracked total C respired and N mineralized at several points during the incubation. Twenty years of organic management altered soil bacterial and fungal community structure compared to continuous conventional management with the bacterial differences caused primarily by a large increase in diversity. Organically managed soils mineralized twice as much NO3 (-) as conventionally managed ones (44 vs. 23 μg N/g soil, respectively) and increased mineralization when labile C was added. There was no difference in respiration, but organically managed soils had larger pools of C suggesting greater efficiency in terms of respiration per unit soil C. These results indicate that the organic management induced a change in community composition resulting in a more diverse community with enhanced activity towards labile substrates and greater capacity to mineralize N.

  16. Rhythm is it: effects of dynamic body feedback on affect and attitudes

    PubMed Central

    Koch, Sabine C.

    2014-01-01

    Body feedback is the proprioceptive feedback that denominates the afferent information from position and movement of the body to the central nervous system. It is crucial in experiencing emotions, in forming attitudes and in regulating emotions and behavior. This paper investigates effects of dynamic body feedback on affect and attitudes, focusing on the impact of movement rhythms with smooth vs. sharp reversals as one basic category of movement qualities. It relates those qualities to already explored effects of approach vs. avoidance motor behavior as one basic category of movement shape. Studies 1 and 2 tested the effects of one of two basic movement qualities (smooth vs. sharp rhythms) on affect and cognition. The third study tested those movement qualities in combination with movement shape (approach vs. avoidance motor behavior) and the effects of those combinations on affect and attitudes toward initially valence-free stimuli. Results suggest that movement rhythms influence affect (studies 1 and 2), and attitudes (study 3), and moderate the impact of approach and avoidance motor behavior on attitudes (study 3). Extending static body feedback research with a dynamic account, findings indicate that movement qualities – next to movement shape – play an important role, when movement of the lived body is an independent variable. PMID:24959153

  17. Young children's affective responses to another's distress: dynamic and physiological features.

    PubMed

    Fink, Elian; Heathers, James A J; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children's affective responses (sadness and interest-worry) to another's distress. In two samples (N(study1) = 75; N(study2) = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy.

  18. Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features

    PubMed Central

    Fink, Elian; Heathers, James A. J.; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (Nstudy1 = 75; Nstudy2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  19. Functional traits explain phytoplankton community structure and seasonal dynamics in a marine ecosystem.

    PubMed

    Edwards, Kyle F; Litchman, Elena; Klausmeier, Christopher A

    2013-01-01

    A fundamental yet elusive goal of ecology is to predict the structure of communities from the environmental conditions they experience. Trait-based approaches to terrestrial plant communities have shown that functional traits can help reveal the mechanisms underlying community assembly, but such approaches have not been tested on the microbes that dominate ecosystem processes in the ocean. Here, we test whether functional traits can explain community responses to seasonal environmental fluctuation, using a time series of the phytoplankton of the English Channel. We show that interspecific variation in response to major limiting resources, light and nitrate, can be well-predicted by lab-measured traits characterising light utilisation, nitrate utilisation and maximum growth rate. As these relationships were predicted a priori, using independently measured traits, our results show that functional traits provide a strong mechanistic foundation for understanding the structure and dynamics of ecological communities.

  20. Microbial community dynamics in Inferno Crater Lake, a thermally fluctuating geothermal spring.

    PubMed

    Ward, Laura; Taylor, Michael W; Power, Jean F; Scott, Bradley J; McDonald, Ian R; Stott, Matthew B

    2017-01-10

    Understanding how microbial communities respond and adjust to ecosystem perturbation is often difficult to interpret due to multiple and often simultaneous variations in observed conditions. In this research, we investigated the microbial community dynamics of Inferno Crater Lake, an acidic geothermal spring in New Zealand with a unique thermal cycle that varies between 30 and 80 °C over a period of 40-60 days. Using a combination of next-generation sequencing, geochemical analysis and quantitative PCR we found that the microbial community composition was predominantly chemolithotrophic and strongly associated with the thermal cycle. At temperatures >65 °C, the microbial community was dominated almost exclusively by sulphur-oxidising archaea (Sulfolobus-like spp.). By contrast, at mesophilic temperatures the community structure was more mixed, comprising both archaea and bacteria but dominated primarily by chemolithotrophic sulphur and hydrogen oxidisers. Multivariate analysis of physicochemical data confirmed that temperature was the only significant variable associated with community turnover. This research contributes to our understanding of microbial community dynamics in variable environments, using a naturally alternating system as a model and extends our limited knowledge of acidophile ecology in geothermal habitats.The ISME Journal advance online publication, 10 January 2017; doi:10.1038/ismej.2016.193.

  1. Temporal dynamics of microbial communities in microcosms in response to pollutants.

    PubMed

    Jiao, Shuo; Zhang, Zhengqing; Yang, Fan; Lin, Yanbing; Chen, Weimin; Wei, Gehong

    2017-02-01

    Elucidating the mechanisms underlying microbial succession is a major goal of microbial ecology research. Given the increasing human pressure on the environment and natural resources, responses to the repeated introduction of organic and inorganic pollutants are of particular interest. To investigate the temporal dynamics of microbial communities in response to pollutants, we analysed the microbial community structure in batch microcosms that were inoculated with soil bacteria following exposure to individual or combined pollutants (phenanthrene, n-octadecane, phenanthrene + n-octadecane and phenanthrene + n-octadecane + CdCl2 ). Subculturing was performed at 10-day intervals, followed by high-throughput sequencing of 16S rRNA genes. The dynamics of microbial communities in response to different pollutants alone and in combination displayed similar patterns during enrichment. Specifically, the repression and induction of microbial taxa were dominant, and the fluctuation was not significant. The rate of appearance for new taxa and the temporal turnover within microbial communities were higher than the rates reported in other studies of microbial communities in air, water and soil samples. In addition, conditionally rare taxa that were specific to the treatments exhibited higher betweenness centrality values in the co-occurrence network, indicating a strong influence on other interactions in the community. These results suggest that the repeated introduction of pollutants could accelerate microbial succession in microcosms, resulting in the rapid re-equilibration of microbial communities.

  2. Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space.

    PubMed

    Leibold, Mathew A; Loeuille, Nicolas

    2015-12-01

    Metacommunity theory indicates that variation in local community structure can be partitioned into components including those related to local environmental conditions vs. spatial effects and that these can be quantified using statistical methods based on variation partitioning. It has been hypothesized that joint associations of community composition with environment and space could be due to patch dynamics involving colonization-extinction processes in environmentally heterogeneous landscapes but this has yet to be theoretically shown. We develop a two-patch, type-two, species competition model in such a "harlequin" landscape (where different patches have different environments) to evaluate how composition is related to environmental and spatial effects as a function of background extinction rate. Using spatially implicit analytical models, we find that the environmental association of community composition declines with extinction rate as expected. Using spatially explicit simulation models, we further find that there is an increase in the spatial structure with extinction due to spatial patterning into clusters that are not related to environmental conditions but that this increase is limited. Natural metacommunities often show both environment and spatial determination even under conditions of relatively high isolation and these could be more easily explained by our model than alternative metacommunity models.

  3. Affective Disorders, Psychosis and Dementia in a Community Sample of Older Men with and without Parkinson’s Disease

    PubMed Central

    Almeida, Osvaldo P.; McCaul, Kieran; Hankey, Graeme J.; Yeap, Bu B.; Golledge, Jonathan; Flicker, Leon

    2016-01-01

    Background Dementia and affective and psychotic symptoms are commonly associated with Parkinson’s disease, but information about their prevalence and incidence in community representative samples remains sparse. Methods We recruited a community-representative sample 38173 older men aged 65–85 years in 1996 and used data linkage to ascertain the presence of PD, affective disorders, psychotic disorders and dementia. Diagnoses followed the International Classification of Disease coding system. Age was recorded in years. Follow up data were available until December 2011. Results The mean age of participants was 72.5 years and 333 men (0.9%) had PD at study entry. Affective and psychotic disorders and dementia were more frequent in men with than without PD (respective odds ratios: 6.3 [95%CI = 4.7, 8.4]; 14.2 [95%CI = 8.4, 24.0] and 18.2 [95%CI = 13.4, 24.6]). Incidence rate ratios of affective and psychotic disorders were higher among men with than without PD, although ratios decreased with increasing age. The age-adjusted hazard ratio (HR) of an affective episode associated with PD was 5.0 (95%CI = 4.2, 5.9). PD was associated with an age-adjusted HR of 8.6 (95%CI = 6.1, 12.0) for psychotic disorders and 6.1 (95%CI = 5.5, 6.8) for dementia. PD and dementia increased the HR of depressive and psychotic disorders. Conclusions PD increases the risk of affective and psychotic disorders, as well as dementia, among community dwelling older men. The risk of a recorded diagnosis of affective and psychotic disorders decreases with increasing age. PMID:27689715

  4. Structural issues affecting creation of a community action and advocacy board

    PubMed Central

    Weeks, M. R.; Abbott, M.; Hilario, H.; Radda, K.; Medina, Z.; Prince, M.; Li, J.; Kaplan, C.

    2013-01-01

    The most effective woman-initiated method to prevent HIV/sexually transmitted infections is the female condom (FC). Yet, FCs are often difficult to find and denigrated or ignored by community health and service providers. Evidence increasingly supports the need to develop and test theoretically driven, multilevel interventions using a community-empowerment framework to promote FCs in a sustained way. We conducted a study in a midsized northeastern US city (2009–2013) designed to create, mobilize and build capacity of a community group to develop and implement multilevel interventions to increase availability, accessibility and support for FCs in their city. The Community Action and Advocacy Board (CAAB) designed and piloted interventions concurrently targeting community, organizational and individual levels. Ethnographic observation of the CAAB training and intervention planning and pilot implementation sessions documented the process, preliminary successes, challenges and limitations of this model. The CAAB demonstrated ability to conceptualize, plan and initiate multilevel community change. However, challenges in group decision-making and limitations in members’ availability or personal capacity constrained CAAB processes and intervention implementation. Lessons from this experience could inform similar efforts to mobilize, engage and build capacity of community coalitions to increase access to and support for FCs and other novel effective prevention options for at-risk women. PMID:23660461

  5. Strengths amidst vulnerabilities: the paradox of resistance in a mining-affected community in Guatemala.

    PubMed

    Caxaj, C Susana; Berman, Helene; Ray, Susan L; Restoule, Jean-Paul; Varcoe, Coleen

    2014-11-01

    The influence of large-scale mining on the psychosocial wellbeing and mental health of diverse Indigenous communities has attracted increased attention. In previous reports, we have discussed the influence of a gold mining operation on the health of a community in the Western highlands of Guatemala. Here, we discuss the community strengths, and acts of resistance of this community, that is, community processes that promoted mental health amidst this context. Using an anti-colonial narrative methodology that incorporated participatory action research principles, we developed a research design in collaboration with community leaders and participants. Data collection involved focus groups, individual interviews and photo-sharing with 54 men and women between the ages of 18 and 67. Data analysis was guided by iterative and ongoing conversations with participants and McCormack's narrative lenses. Study findings revealed key mechanisms and sources of resistance, including a shared cultural identity, a spiritual knowing and being, 'defending our rights, defending our territory,' and, speaking truth to power. These overlapping strengths were identified by participants as key protective factors in facing challenges and adversity. Yet ultimately, these same strengths were often the most eroded or endangered due the influence of large-scale mining operations in the region. These community strengths and acts of resistance reveal important priorities for promoting mental health and wellbeing for populations impacted by large-scale mining operations. Mental health practitioners must attend to both the strengths and parallel vulnerabilities that may be occasioned by large-scale projects of this nature.

  6. Does socioeconomic status affect lengthy wait time in Canada? Evidence from Canadian Community Health Surveys.

    PubMed

    Hajizadeh, Mohammad

    2017-04-07

    Reasonable access to health services without financial or other barriers is a primary objective of the Canadian health system. Notwithstanding such concern about accessibility of services, long waiting times for health services have been a prominent health policy issue in recent years. Using pooled data from four nationally representative Canadian Community Health Surveys (CCHSs, 2000/01, 2003, 2005 and 2010; n = 266,962) we examine socioeconomic inequality in lengthy wait time (LWT) to health care among adults (aged 18-65) in Canada. The relative and absolute concentration indices (RC and AC, respectively) are used to quantify income-related inequality in LWT in Canada and for its provinces. Additionally, we decompose the RC and AC indices to identify factors affecting income-related inequality in LWT. Our descriptive results show that, on average, 5% of Canadian adults experienced LWT to access health services in the past 12 months. While 3% of the residents of British Columbia and Saskatchewan reported LWT to access health care services, this figure was 7% in Quebec. Our findings also demonstrated that LWT was mainly concentrated among the poor in Canada [RC = -0.039; 95% confidence interval (CI) -0.049 to -0.028 and AC = -0.067; CI -0.086 to -0.049]. The RC and AC suggested statistically significant pro-rich inequality of LWT in Nova Scotia, New Brunswick, Quebec, Manitoba, Saskatchewan and British Columbia. Decomposition analyses indicate that, besides income itself, health status (measured by a set of 15 chronic condition indicators), immigration status and geographical factors were the most important factors contributing to the concentration of LWT among the poor in Canada. These results provide some evidence that low-income individuals tend to have lengthier wait times for publicly-funded health care in Canada in comparison to their high-income counterparts. The observed negative gradient between income and long waiting time may be interpreted as

  7. The spectral element dynamical core in the Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Taylor, Mark

    2013-11-01

    I will describe our work developing CAM-SE, a highly scalable version of the Community Atmosphere Model (CAM). CAM-SE solves the hydrostatic equations with a spectral element horizontal descritization and the hybrid coordinate Simmons & Burridge (1981) vertical discretization. It uses a mimetic formulation of spectral elements which preserves the adjoint and annihilator properties of the divergence, gradient and curl operations. These mimetic properties result in local conservation (to machine precision) of mass, tracer mass and (2D) potential vorticity, and semi-discrete conservation (exact with exact time-discretization) of total energy. Hyper-viscsoity is used for all numerical dissipation. The spectral element method naturally supports unstructured/variable resolution grids. We are using this capability to perform simulations with 1/8 degree resolution over the central U.S., transitioning to 1 degree over most of the globe. This is a numerically efficient way to study the resolution sensitivity of CAM's many subgrid parameterizations.

  8. Metagenomic insights into the dynamics of microbial communities in food.

    PubMed

    Kergourlay, Gilles; Taminiau, Bernard; Daube, Georges; Champomier Vergès, Marie-Christine

    2015-11-20

    Metagenomics has proven to be a powerful tool in exploring a large diversity of natural environments such as air, soil, water, and plants, as well as various human microbiota (e.g. digestive tract, lungs, skin). DNA sequencing techniques are becoming increasingly popular and less and less expensive. Given that high-throughput DNA sequencing approaches have only recently started to be used to decipher food microbial ecosystems, there is a significant growth potential for such technologies in the field of food microbiology. The aim of this review is to present a survey of recent food investigations via metagenomics and to illustrate how this approach can be a valuable tool in the better characterization of foods and their transformation, storage and safety. Traditional food in particular has been thoroughly explored by global approaches in order to provide information on multi-species and multi-organism communities.

  9. Oceanographic gradients and seabird prey community dynamics in glacial fjords

    USGS Publications Warehouse

    Arimitsu, Mayumi L.; Piatt, John F.; Madison, Erica N.; Conaway, Jeff; Hillgruber, N.

    2012-01-01

    Glacial fjord habitats are undergoing rapid change as a result of contemporary global warming, yet little is known about how glaciers influence marine ecosystems. These ecosystems provide important feeding, breeding and rearing grounds for a wide variety of marine organisms, including seabirds of management concern. To characterize ocean conditions and marine food webs near tidewater glaciers, we conducted monthly surveys of oceanographic variables, plankton, fish and seabirds in Kenai Fjords, Alaska, from June to August of 2007 and 2008. We also measured tidal current velocities near glacial features. We found high sediment load from glacial river runoff played a major role in structuring the fjord marine ecosystem. Submerged moraines (sills) isolated cool, fresh, stratified and silt-laden inner fjord habitats from oceanic influence. Near tidewater glaciers, surface layers of turbid glacial runoff limited availability of light to phytoplankton, but macrozooplankton were abundant in surface waters, perhaps due to the absence of a photic cue for diel migration. Fish and zooplankton community structure varied along an increasing temperature gradient throughout the summer. Acoustic measurements indicated that low density patches of fish and zooplankton were available in the surface waters near glacial river outflows. This is the foraging habitat occupied most by Kittlitz's murrelet (Brachyramphus brevirostris), a rare seabird that appears to be specialized for life in glacially influenced environments. Kittlitz's murrelets were associated with floating glacial ice, and they were more likely to occur near glaciers, in deeper water, and in areas with high acoustic backscatter. Kittlitz's murrelet at-sea distribution was limited to areas influenced by turbid glacial outflows, and where prey was concentrated near the surface in waters with low light penetration. Tidewater glaciers impart unique hydrographic characteristics that influence marine plankton and fish

  10. Building Responsive Health Systems to Help Communities Affected by Migration: An International Delphi Consensus.

    PubMed

    Pottie, Kevin; Hui, Charles; Rahman, Prinon; Ingleby, David; Akl, Elie A; Russell, Grant; Ling, Li; Wickramage, Kolitha; Mosca, Davide; Brindis, Claire D

    2017-02-03

    Persons affected by migration require health systems that are responsive and adaptable to the needs of both disadvantaged migrants and non-migrant populations. The objective of this study is to support health systems for populations affected by migration.

  11. Modeling susceptible infective recovered dynamics and plague persistence in California rodent-flea communities.

    PubMed

    Foley, Patrick; Foley, Janet

    2010-01-01

    Plague persists as an enzootic in several very different rodent-flea communities around the world. In California, a diversity of rodent-flea communities maintains the disease, and a single-host reservoir seems unlikely. Logistic regression of plague presence on climate and topographic variables predicts plague in many localities where it is absent. Thus, a dynamic community-based analysis was needed. Deterministic Susceptible Infective Recovered (SIR) models were adapted for plague and analyzed with an eye for insights concerning disease persistence. An R simulation program, Plaguesirs, was developed incorporating multihost and multivector SIR dynamics, demographic and environmental stochasticity, density dependence, and seasonal variation in birth and death. Flea-rodent utilization matrices allowed us to get transmission rates as well as flea carrying capacities. Rodent densities allowed us to estimate host carrying capacities, while maximum birth rates were mainly approximated through an examination of litter phenology and demography. We ran a set of simulations to assess the role of community structure in maintaining plague in a simulated version of Chuchupate campground in Ventura County. Although the actual campground comprises 10 rodent and 19 flea species, we focused on a subset suspected to act as a reservoir community. This included the vole Microtus californicus, the deer mouse Peromyscus maniculatus, the Ceratophyllid fleas Aetheca wagneri and Malareus telchinum, and the Leptopsyllid flea Peromyscopsylla hesperomys. The dynamics of 21 subsets of this community were simulated for 20 years. Single-rodent communities showed much lower disease persistence than two-rodent communities. However, so long as Malareus was present, endemicity was enhanced; removal of the other two fleas slightly increased disease persistence. Two critical features improved disease persistence: (1) host breeding season heterogeneity and (2) host population augmentation (due to two

  12. Functional Richness and Identity Do Not Strongly Affect Invasibility of Constructed Dune Communities.

    PubMed

    Mason, Tanya J; French, Kristine; Jolley, Dianne F

    2017-01-01

    Biotic effects are often used to explain community structure and invasion resistance. We evaluated the contribution of functional richness and identity to invasion resistance and abiotic resource availability using a mesocosm experiment. We predicted that higher functional richness would confer greater invasion resistance through greater resource sequestration. We also predicted that niche pre-emption and invasion resistance would be higher in communities which included functional groups similar to the invader than communities where all functional groups were distinct from the invader. We constructed communities of different functional richness and identity but maintained constant species richness and numbers of individuals in the resident community. The constructed communities represented potential fore dune conditions following invader control activities along the Australian east coast. We then simulated an invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata DC. Norl.), a South African shrub invader. We used the same bitou propagule pressure across all treatments and monitored invasion success and resource availability for 13 months. Contrary to our predictions, we found that functional richness did not mediate the number of bitou individuals or bitou cover and functional identity had little effect on invasion success: there was a trend for the grass single functional group treatment to supress bitou individuals, but this trend was obscured when grasses were in multi functional group treatments. We found that all constructed communities facilitated bitou establishment and suppressed bitou cover relative to unplanted mesocosms. Abiotic resource use was either similar among planted communities, or differences did not relate to invasion success (with the exception of light availability). We attribute invasion resistance to bulk plant biomass across planted treatments rather than their functional group arrangement.

  13. Functional Richness and Identity Do Not Strongly Affect Invasibility of Constructed Dune Communities

    PubMed Central

    Mason, Tanya J.; French, Kristine; Jolley, Dianne F.

    2017-01-01

    Biotic effects are often used to explain community structure and invasion resistance. We evaluated the contribution of functional richness and identity to invasion resistance and abiotic resource availability using a mesocosm experiment. We predicted that higher functional richness would confer greater invasion resistance through greater resource sequestration. We also predicted that niche pre-emption and invasion resistance would be higher in communities which included functional groups similar to the invader than communities where all functional groups were distinct from the invader. We constructed communities of different functional richness and identity but maintained constant species richness and numbers of individuals in the resident community. The constructed communities represented potential fore dune conditions following invader control activities along the Australian east coast. We then simulated an invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata DC. Norl.), a South African shrub invader. We used the same bitou propagule pressure across all treatments and monitored invasion success and resource availability for 13 months. Contrary to our predictions, we found that functional richness did not mediate the number of bitou individuals or bitou cover and functional identity had little effect on invasion success: there was a trend for the grass single functional group treatment to supress bitou individuals, but this trend was obscured when grasses were in multi functional group treatments. We found that all constructed communities facilitated bitou establishment and suppressed bitou cover relative to unplanted mesocosms. Abiotic resource use was either similar among planted communities, or differences did not relate to invasion success (with the exception of light availability). We attribute invasion resistance to bulk plant biomass across planted treatments rather than their functional group arrangement. PMID:28072854

  14. Defoliation by pastoralists affects savanna tree seedling dynamics by limiting the facilitative role of canopy cover.

    PubMed

    Bufford, Jennifer L; Gaoue, Orou G

    2015-07-01

    Recurrent tree defoliation by pastoralists, akin to herbivory, can negatively affect plant reproduction and population dynamics. However, our understanding of the indirect role of defoliation in seedling recruitment and tree-grass dynamics in tropical savanna is limited. In West African savanna, Fulani pastoralists frequently defoliate several fodder tree species to feed livestock in the dry season. We investigated the direct and indirect effects of recurrent defoliation of African mahogany (Khaya senegalensis) by Fulani people on seedling (< 2 cm basal diameter) and sapling dynamics in West Africa using four years of demographic data on seedling and sapling density, growth, and survival, coupled with fruit production and microhabitat data over the same time period. Tree canopy cover facilitated seedlings but had negative effects on sapling growth possibly via intraspecific competition with adult plants. Interspecific competition with grasses strongly reduced seedling survival but had a weak effect on sapling growth. Fire reduced seedling survival and weakly reduced growth of seedlings and saplings, but did not affect sapling survival. These results indicate that the effect of fire on seedlings and saplings is distinct, a mechanism suitable for an episodic recruitment of seedlings into the sapling stage and consistent with predictions from the demographic bottleneck model. Defoliation affected seedling density and sapling growth through changes in canopy cover, but had no effect on seedling growth and sapling survival. In the moist region, sapling density was higher in sites with low-intensity defoliation, indicating that defoliation may strengthen the tree recruitment bottleneck. Our study suggests that large-scale defoliation can alter the facilitative role of nurse trees on seedling dynamics and tree-sapling competition. Given that tree defoliation by local people is a widespread activity throughout savanna-forest systems in West Africa, it has the potential to

  15. Environmental Factors Influencing the Structural Dynamics of Soil Microbial Communities During Assisted Phytostabilization of Acid-Generating Mine Tailings: a Mesocosm Experiment

    PubMed Central

    Valentín-Vargas, Alexis; Root, Robert A.; Neilson, Julia W; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  16. pH affects bacterial community composition in soils across the Huashan Watershed, China.

    PubMed

    Huang, Rui; Zhao, Dayong; Zeng, Jin; Shen, Feng; Cao, Xinyi; Jiang, Cuiling; Huang, Feng; Feng, Jingwei; Yu, Zhongbo; Wu, Qinglong L

    2016-09-01

    To investigate soil bacterial richness and diversity and to determine the correlations between bacterial communities and soil properties, 8 soil samples were collected from the Huashan watershed in Anhui, China. Subsequently, 454 high-throughput pyrosequencing and bioinformatics analyses were performed to examine the soil bacterial community compositions. The operational taxonomic unit richness of the bacterial community ranged from 3664 to 5899, and the diversity indices, including Chao1, Shannon-Wiener, and Faith's phylogenetic diversity ranged from 7751 to 15 204, 7.386 to 8.327, and 415.77 to 679.11, respectively. The 2 most dominant phyla in the soil samples were Actinobacteria and Proteobacteria. The richness and diversity of the bacterial community were positively correlated with soil pH. The Mantel test revealed that the soil pH was the dominant factor influencing the bacterial community. The positive modular structure of co-occurrence patterns at the genus level was discovered by network analysis. The results obtained in this study provide useful information that enhances our understanding of the effects of soil properties on the bacterial communities.

  17. HRT and nutrients affect bacterial communities grown on recirculation aquaculture system effluents.

    PubMed

    Schneider, Oliver; Chabrillon-Popelka, Mariana; Smidt, Hauke; Haenen, Olga; Sereti, Vasiliki; Eding, Ep H; Verreth, Johan A J

    2007-05-01

    In a recirculation aquaculture system the drumfilter effluent can be used as substrate for heterotrophic bacterial production, which can be recycled as feed. Because the bacteria might contain pathogens, which could reduce its suitability as feed, it is important to characterize these communities. Bacteria were produced in growth reactors under different conditions: 7 h hydraulic retention time (HRT) vs. 2 h, sodium acetate vs. molasses, and ammonia vs. nitrate. The community of the drumfilter effluent was different from those found in the reactors. However, all major community components were present in the effluent and reactor broths. HRT influenced the bacteria community, resulting in a DGGE profile dominated by a band corresponding to an Acinetobacter sp.-related population at 2 h HRT compared to 7 h HRT, where bands indicative of alpha-proteobacterial populations most closely related to Rhizobium and Shinella spp. were most abundant. Molasses influenced the bacterial community. It was dominated by an Aquaspirillum serpens-related population. Providing total ammonia nitrogen (TAN) in addition to nitrate led to the occurrence of bacteria close to Sphaerotilus spp., Flavobacterium mizutaii and Jonesia spp. It was concluded from these results that a 6-7 h HRT is recommended, and that the type of substrate is less important, and results in communities with a comparably low pathogenic risk.

  18. Bioinformatic Amplicon Read Processing Strategies Strongly Affect Eukaryotic Diversity and the Taxonomic Composition of Communities

    PubMed Central

    Majaneva, Markus; Hyytiäinen, Kirsi; Varvio, Sirkka Liisa; Nagai, Satoshi; Blomster, Jaanika

    2015-01-01

    Amplicon read sequencing has revolutionized the field of microbial diversity studies. The technique has been developed for bacterial assemblages and has undergone rigorous testing with mock communities. However, due to the great complexity of eukaryotes and the numbers of different rDNA copies, analyzing eukaryotic diversity is more demanding than analyzing bacterial or mock communities, so studies are needed that test the methods of analyses on taxonomically diverse natural communities. In this study, we used 20 samples collected from the Baltic Sea ice, slush and under-ice water to investigate three program packages (UPARSE, mothur and QIIME) and 18 different bioinformatic strategies implemented in them. Our aim was to assess the impact of the initial steps of bioinformatic strategies on the results when analyzing natural eukaryotic communities. We found significant differences among the strategies in resulting read length, number of OTUs and estimates of diversity as well as clear differences in the taxonomic composition of communities. The differences arose mainly because of the variable number of chimeric reads that passed the pre-processing steps. Singleton removal and denoising substantially lowered the number of errors. Our study showed that the initial steps of the bioinformatic amplicon read processing strategies require careful consideration before applying them to eukaryotic communities. PMID:26047335

  19. How volatilities nonlocal in time affect the price dynamics in complex financial systems.

    PubMed

    Tan, Lei; Zheng, Bo; Chen, Jun-Jie; Jiang, Xiong-Fei

    2015-01-01

    What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time.

  20. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-06-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension.

  1. How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems

    PubMed Central

    Tan, Lei; Zheng, Bo; Chen, Jun-Jie; Jiang, Xiong-Fei

    2015-01-01

    What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time. PMID:25723154

  2. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    PubMed Central

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-01-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension. PMID:27357966

  3. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    PubMed

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  4. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    PubMed Central

    Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  5. Bacterial Communities from Shoreline Environments (Costa da Morte, Northwestern Spain) Affected by the Prestige Oil Spill▿ †

    PubMed Central

    Alonso-Gutiérrez, Jorge; Figueras, Antonio; Albaigés, Joan; Jiménez, Núria; Viñas, Marc; Solanas, Anna M.; Novoa, Beatriz

    2009-01-01

    The bacterial communities in two different shoreline matrices, rocks and sand, from the Costa da Morte, northwestern Spain, were investigated 12 months after being affected by the Prestige oil spill. Culture-based and culture-independent approaches were used to compare the bacterial diversity present in these environments with that at a nonoiled site. A long-term effect of fuel on the microbial communities in the oiled sand and rock was suggested by the higher proportion of alkane and polyaromatic hydrocarbon (PAH) degraders and the differences in denaturing gradient gel electrophoresis patterns compared with those of the reference site. Members of the classes Alphaproteobacteria and Actinobacteria were the prevailing groups of bacteria detected in both matrices, although the sand bacterial community exhibited higher species richness than the rock bacterial community did. Culture-dependent and -independent approaches suggested that the genus Rhodococcus could play a key role in the in situ degradation of the alkane fraction of the Prestige fuel together with other members of the suborder Corynebacterineae. Moreover, other members of this suborder, such as Mycobacterium spp., together with Sphingomonadaceae bacteria (mainly Lutibacterium anuloederans), were related as well to the degradation of the aromatic fraction of the Prestige fuel. The multiapproach methodology applied in the present study allowed us to assess the complexity of autochthonous microbial communities related to the degradation of heavy fuel from the Prestige and to isolate some of their components for a further physiological study. Since several Corynebacterineae members related to the degradation of alkanes and PAHs were frequently detected in this and other supralittoral environments affected by the Prestige oil spill along the northwestern Spanish coast, the addition of mycolic acids to bioremediation amendments is proposed to favor the presence of these degraders in long-term fuel pollution-affected

  6. Lichen physiological traits and growth forms affect communities of associated invertebrates.

    PubMed

    Bokhorst, Stef; Asplund, Johan; Kardol, Paul; Wardle, David A

    2015-09-01

    While there has been much interest in the relationships between traits of primary producers and composition of associated invertebrate consumer communities, our knowledge is largely based on studies from vascular plants, while other types of functionally important producers, such as lichens, have rarely been considered. To address how physiological traits of lichens drive community composition of invertebrates, we collected thalli from 27 lichen species from southern Norway and quantified the communities of associated springtails, mites, and nematodes. For each lichen species, we measured key physiological thallus traits and determined whether invertebrate communities were correlated with these traits. We also explored whether invertebrate communities differed among lichen groups, categorized according to nitrogen-fixing ability, growth form, and substratum. Lichen traits explained up to 39% of the variation in abundances of major invertebrate groups. For many invertebrate groups, abundance was positively correlated with lichen N and P concentrations, N:P ratio, and the percentage of water content on saturation (WC), but had few relationships with concentrations of carbon-based secondary compounds. Diversity and taxonomic richness of invertebrate groups were sometimes also correlated with lichen N and N:P ratios. Nitrogen-fixing lichens showed higher abundance and diversity of some invertebrate groups than did non-N-fixing lichens. However, this emerged in part because most N-fixing lichens have a foliose growth form that benefits invertebrates, through, improving the microclimate, independently of N concentration. Furthermore, invertebrate communities associated with terricolous lichens were determined more by their close proximity to the soil invertebrate pool than by lichen traits. Overall, our results reveal that differences between lichen species have a large impact on the invertebrate communities that live among the thalli. Different invertebrate groups show

  7. Spatiotemporal dynamics and correlation networks of bacterial and fungal communities in a membrane bioreactor.

    PubMed

    Jeong, So-Yeon; Yi, Taewoo; Lee, Chung-Hak; Kim, Tae Gwan

    2016-11-15

    To systematically study biofilm communities responsible for biofouling in membrane bioreactors (MBRs), we characterized the spatiotemporal dynamics of bacterial and fungal biofilm communities, and their networks, in a pilot-scale flat-sheet MBR treating actual municipal wastewater. Activated sludge (AS) and membrane samples were collected on days 4 and 8. The membranes were cut into 18 tiles, and bacterial and fungal communities were analyzed using next generation sequencing. Nonmetric multidimensional scaling (NMDS) plots revealed significant temporal variations in bacterial and fungal biofilm communities due to changes in the abundances of a few dominant members. Although the experimental conditions and inoculum species pools remained constant, variogram plots of bacterial and fungal communities revealed decay in local community similarity with geographic distance at each sampling time. Variogram modeling (exponential rise to maximum, R(2) ≥ 0.79) revealed that decay patterns of both communities were different between days 4 and 8. In addition, networks of bacteria or fungi alone were distinct in network composition between days 4 and 8. The day-8 networks were more compact and clustered than those of the earlier time point. Bacteria-fungi networks show that the number of inter-domain associations decreased from 113 to 40 with time, confirming that membrane biofilm is a complex consortium of bacteria and fungi. Spatiotemporal succession in biofilm communities may be common on MBR membranes, resulting from different geographic distributions of initial microbial populations and their priority effects.

  8. Networks of energetic and metabolic interactions define dynamics in microbial communities

    PubMed Central

    Embree, Mallory; Liu, Joanne K.; Al-Bassam, Mahmoud M.; Zengler, Karsten

    2015-01-01

    Microorganisms form diverse communities that have a profound impact on the environment and human health. Recent technological advances have enabled elucidation of community diversity at high resolution. Investigation of microbial communities has revealed that they often contain multiple members with complementing and seemingly redundant metabolic capabilities. An understanding of the communal impacts of redundant metabolic capabilities is currently lacking; specifically, it is not known whether metabolic redundancy will foster competition or motivate cooperation. By investigating methanogenic populations, we identified the multidimensional interspecies interactions that define composition and dynamics within syntrophic communities that play a key role in the global carbon cycle. Species-specific genomes were extracted from metagenomic data using differential coverage binning. We used metabolic modeling leveraging metatranscriptomic information to reveal and quantify a complex intertwined system of syntrophic relationships. Our results show that amino acid auxotrophies create additional interdependencies that define community composition and control carbon and energy flux through the system while simultaneously contributing to overall community robustness. Strategic use of antimicrobials further reinforces this intricate interspecies network. Collectively, our study reveals the multidimensional interactions in syntrophic communities that promote high species richness and bolster community stability during environmental perturbations. PMID:26621749

  9. Networks of energetic and metabolic interactions define dynamics in microbial communities.

    PubMed

    Embree, Mallory; Liu, Joanne K; Al-Bassam, Mahmoud M; Zengler, Karsten

    2015-12-15

    Microorganisms form diverse communities that have a profound impact on the environment and human health. Recent technological advances have enabled elucidation of community diversity at high resolution. Investigation of microbial communities has revealed that they often contain multiple members with complementing and seemingly redundant metabolic capabilities. An understanding of the communal impacts of redundant metabolic capabilities is currently lacking; specifically, it is not known whether metabolic redundancy will foster competition or motivate cooperation. By investigating methanogenic populations, we identified the multidimensional interspecies interactions that define composition and dynamics within syntrophic communities that play a key role in the global carbon cycle. Species-specific genomes were extracted from metagenomic data using differential coverage binning. We used metabolic modeling leveraging metatranscriptomic information to reveal and quantify a complex intertwined system of syntrophic relationships. Our results show that amino acid auxotrophies create additional interdependencies that define community composition and control carbon and energy flux through the system while simultaneously contributing to overall community robustness. Strategic use of antimicrobials further reinforces this intricate interspecies network. Collectively, our study reveals the multidimensional interactions in syntrophic communities that promote high species richness and bolster community stability during environmental perturbations.

  10. The Dynamics of an Online Community of Practice Involving Teachers and Researchers

    ERIC Educational Resources Information Center

    Marques, Margarida Morais; Loureiro, Maria João; Marques, Luís

    2016-01-01

    In the literature, communities of practice (CoPs) are recognised as having potential to promote teachers' professional development. However, the study of the dynamics of CoPs with teachers and researchers, and their impact on teachers' professional development, is still scarce. Contributing to fill this gap, this paper presents a single case study…

  11. The adaptive dynamic community detection algorithm based on the non-homogeneous random walking

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Xie, Zhi-Qiang; Yang, Jing

    2016-05-01

    With the changing of the habit and custom, people's social activity tends to be changeable. It is required to have a community evolution analyzing method to mine the dynamic information in social network. For that, we design the random walking possibility function and the topology gain function to calculate the global influence matrix of the nodes. By the analysis of the global influence matrix, the clustering directions of the nodes can be obtained, thus the NRW (Non-Homogeneous Random Walk) method for detecting the static overlapping communities can be established. We design the ANRW (Adaptive Non-Homogeneous Random Walk) method via adapting the nodes impacted by the dynamic events based on the NRW. The ANRW combines the local community detection with dynamic adaptive adjustment to decrease the computational cost for ANRW. Furthermore, the ANRW treats the node as the calculating unity, thus the running manner of the ANRW is suitable to the parallel computing, which could meet the requirement of large dataset mining. Finally, by the experiment analysis, the efficiency of ANRW on dynamic community detection is verified.

  12. Symbiont dynamics during ecosystem succession: co-occurring plant and arbuscular mycorrhizal fungal communities.

    PubMed

    García de León, David; Moora, Mari; Öpik, Maarja; Neuenkamp, Lena; Gerz, Maret; Jairus, Teele; Vasar, Martti; Bueno, C Guillermo; Davison, John; Zobel, Martin

    2016-07-01

    Although mycorrhizas are expected to play a key role in community assembly during ecological succession, little is known about the dynamics of the symbiotic partners in natural systems. For instance, it is unclear how efficiently plants and arbuscular mycorrhizal (AM) fungi disperse into early successional ecosystems, and which, if either, symbiotic partner drives successional dynamics. This study describes the dynamics of plant and AM fungal communities, assesses correlation in the composition of plant and AM fungal communities and compares dispersal limitation of plants and AM fungi during succession. We studied gravel pits 20 and 50 years post abandonment and undisturbed grasslands in Western Estonia. The composition of plant and AM fungal communities was strongly correlated, and the strength of the correlation remained unchanged as succession progressed, indicating a stable dependence among mycorrhizal plants and AM fungi. A relatively high proportion of the AM fungal taxon pool was present in early successional sites, in comparison with the respective fraction of plants. These results suggest that AM fungi arrived faster than plants and may thus drive vegetation dynamics along secondary vegetation succession.

  13. Examining the Dynamics of Networked E-Learning Groups and Communities

    ERIC Educational Resources Information Center

    McConnell, David

    2005-01-01

    The organisation of students into groups (or communities) for learning purposes is an established pedagogic method in higher education. Teachers are now using group methods in networked e-learning contexts, albeit without a full understanding of the dynamics of group work in these settings. This is a new and evolving arena in higher education. In…

  14. pH Dynamics and Bacterial Community Composition in the Rumen of Lactating Dairy Cows

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of pH dynamics on ruminal bacterial community composition (BCC) was studied in 8 ruminally cannulated Holstein cows fitted with indwelling electrodes that recorded pH at 10-min intervals over a 2.4-d period. Cows were fed a silage-based TMR supplemented with monensin. Ruminal samples wer...

  15. From Static Content to Dynamic Communities: The Evolution of Networked Educational Resources.

    ERIC Educational Resources Information Center

    Jacobs, Neil; Huxley, Lesly

    2002-01-01

    Discusses Web-based educational resources in the United Kingdom, focusing on current challenges of linking content with community and static information with dynamic news. Describes the evolution of three social sciences resources and examines sustainability, the need for collaboration, and data protection and privacy concerns. (Author/LRW)

  16. Mussel dynamics model: A hydroinformatics tool for analyzing the effects of different stressors on the dynamics of freshwater mussel communities

    USGS Publications Warehouse

    Morales, Y.; Weber, L.J.; Mynett, A.E.; Newton, T.J.

    2006-01-01

    A model for simulating freshwater mussel population dynamics is presented. The model is a hydroinformatics tool that integrates principles from ecology, river hydraulics, fluid mechanics and sediment transport, and applies the individual-based modelling approach for simulating population dynamics. The general model layout, data requirements, and steps of the simulation process are discussed. As an illustration, simulation results from an application in a 10 km reach of the Upper Mississippi River are presented. The model was used to investigate the spatial distribution of mussels and the effects of food competition in native unionid mussel communities, and communities infested by Dreissena polymorpha, the zebra mussel. Simulation results were found to be realistic and coincided with data obtained from the literature. These results indicate that the model can be a useful tool for assessing the potential effects of different stressors on long-term population dynamics, and consequently, may improve the current understanding of cause and effect relationships in freshwater mussel communities. ?? 2006 Elsevier B.V. All rights reserved.

  17. Ranking landscape development scenarios affecting natterjack toad (Bufo calamita) population dynamics in Central Poland.

    PubMed

    Franz, Kamila W; Romanowski, Jerzy; Johst, Karin; Grimm, Volker

    2013-01-01

    When data are limited it is difficult for conservation managers to assess alternative management scenarios and make decisions. The natterjack toad (Bufo calamita) is declining at the edges of its distribution range in Europe and little is known about its current distribution and abundance in Poland. Although different landscape management plans for central Poland exist, it is unclear to what extent they impact this species. Based on these plans, we investigated how four alternative landscape development scenarios would affect the total carrying capacity and population dynamics of the natterjack toad. To facilitate decision-making, we first ranked the scenarios according to their total carrying capacity. We used the software RAMAS GIS to determine the size and location of habitat patches in the landscape. The estimated carrying capacities were very similar for each scenario, and clear ranking was not possible. Only the reforestation scenario showed a marked loss in carrying capacity. We therefore simulated metapopulation dynamics with RAMAS taking into account dynamical processes such as reproduction and dispersal and ranked the scenarios according to the resulting species abundance. In this case, we could clearly rank the development scenarios. We identified road mortality of adults as a key process governing the dynamics and separating the different scenarios. The renaturalisation scenario clearly ranked highest due to its decreased road mortality. Taken together our results suggest that road infrastructure development might be much more important for natterjack toad conservation than changes in the amount of habitat in the semi-natural river valley. We gained these insights by considering both the resulting metapopulation structure and dynamics in the form of a PVA. We conclude that the consideration of dynamic processes in amphibian conservation management may be indispensable for ranking management scenarios.

  18. Ranking Landscape Development Scenarios Affecting Natterjack Toad (Bufo calamita) Population Dynamics in Central Poland

    PubMed Central

    Franz, Kamila W.; Romanowski, Jerzy; Johst, Karin; Grimm, Volker

    2013-01-01

    When data are limited it is difficult for conservation managers to assess alternative management scenarios and make decisions. The natterjack toad (Bufo calamita) is declining at the edges of its distribution range in Europe and little is known about its current distribution and abundance in Poland. Although different landscape management plans for central Poland exist, it is unclear to what extent they impact this species. Based on these plans, we investigated how four alternative landscape development scenarios would affect the total carrying capacity and population dynamics of the natterjack toad. To facilitate decision-making, we first ranked the scenarios according to their total carrying capacity. We used the software RAMAS GIS to determine the size and location of habitat patches in the landscape. The estimated carrying capacities were very similar for each scenario, and clear ranking was not possible. Only the reforestation scenario showed a marked loss in carrying capacity. We therefore simulated metapopulation dynamics with RAMAS taking into account dynamical processes such as reproduction and dispersal and ranked the scenarios according to the resulting species abundance. In this case, we could clearly rank the development scenarios. We identified road mortality of adults as a key process governing the dynamics and separating the different scenarios. The renaturalisation scenario clearly ranked highest due to its decreased road mortality. Taken together our results suggest that road infrastructure development might be much more important for natterjack toad conservation than changes in the amount of habitat in the semi-natural river valley. We gained these insights by considering both the resulting metapopulation structure and dynamics in the form of a PVA. We conclude that the consideration of dynamic processes in amphibian conservation management may be indispensable for ranking management scenarios. PMID:23734223

  19. Microbial Community-Level Physiological Profiles (CLPP) and herbicide mineralization potential in groundwater affected by agricultural land use

    NASA Astrophysics Data System (ADS)

    Janniche, Gry Sander; Spliid, Henrik; Albrechtsen, Hans-Jørgen

    2012-10-01

    Diffuse groundwater pollution from agricultural land use may impact the microbial groundwater community, which was investigated as Community-Level Physiological Profiles (CLPP) using EcoPlate™. Water was sampled from seven piezometers and a spring in a small agricultural catchment with diffuse herbicide and nitrate pollution. Based on the Shannon-Wiener and Simpson's diversity indices the diversity in the microbial communities was high. The response from the EcoPlates™ showed which substrates support groundwater bacteria, and all 31 carbon sources were utilized by organisms from at least one water sample. However, only nine carbon sources were utilized by all water samples: D-Mannitol, N-acetyl-D-glucosamine, putrescine, D-galacturonic acid, itaconic acid, 4-hydroxy benzoic acid, tween 40, tween 80, and L-asparagine. In all water samples the microorganisms preferred D-mannitol, D-galacturonic acid, tween 40, and 4-hydroxy benzoic acid as substrates, whereas none preferred 2-hydroxy benzoic acid, α-D-lactose, D,L-α-glycerol phosphate, α-ketobutyric acid, L-threonine and glycyl-L-glutamic acid. Principal Component Analysis of the CLPP's clustered the most agriculturally affected groundwater samples, indicating that the agricultural land use affects the groundwater microbial communities. Furthermore, the ability to mineralize atrazine and isoproturon, which have been used in the catchment, was also associated with this cluster.

  20. [Dynamics of parasite communities in an age series of Arctic Cisco Coregonus migratorius (Georgi, 1775)].

    PubMed

    Dugarov, Zh N; Pronin, N M

    2013-01-01

    Parasite communities of Arctic cisco from Chivyrkui Bay of Lake Baikal have been analyzed at levels of a host individual (infracommunity), a individual age group of a host-(assemblages of infracommunities), and a host population (component community). Significant positive correlations of parameters of species richness (number of parasite species, Margalef and Menhinick indices) with the age of Arctic cisco were recorded only at the level of parasite inffacommunities. The absence of linear positive correlations between the parameters of species richness and the age of Arctic cisco at the level of assemblages of parasite infracommunities were revealed for the first time for fish of Lake Baikal. The peculiarity of the dynamics of parasite communities of. Arctic cisco is determined by specific features of the host physiology and ecology, primarily by the age dynamics of the feeding spectrum.

  1. A neutral theory with environmental stochasticity explains static and dynamic properties of ecological communities.

    PubMed

    Kalyuzhny, Michael; Kadmon, Ronen; Shnerb, Nadav M

    2015-06-01

    Understanding the forces shaping ecological communities is crucial to basic science and conservation. Neutral theory has made considerable progress in explaining static properties of communities, like species abundance distributions (SADs), with a simple and generic model, but was criticised for making unrealistic predictions of fundamental dynamic patterns and for being sensitive to interspecific differences in fitness. Here, we show that a generalised neutral theory incorporating environmental stochasticity may resolve these limitations. We apply the theory to real data (the tropical forest of Barro Colorado Island) and demonstrate that it much better explains the properties of short-term population fluctuations and the decay of compositional similarity with time, while retaining the ability to explain SADs. Furthermore, the predictions are considerably more robust to interspecific fitness differences. Our results suggest that this integration of niches and stochasticity may serve as a minimalistic framework explaining fundamental static and dynamic characteristics of ecological communities.

  2. Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning.

    PubMed

    Dini-Andreote, Francisco; de Cássia Pereira e Silva, Michele; Triadó-Margarit, Xavier; Casamayor, Emilio O; van Elsas, Jan Dirk; Salles, Joana Falcão

    2014-10-01

    The mechanisms underlying community assembly and promoting temporal succession are often overlooked in microbial ecology. Here, we studied an undisturbed salt marsh chronosequence, spanning over a century of ecosystem development, to understand bacterial succession in soil. We used 16S rRNA gene-based quantitative PCR to determine bacterial abundance and multitag 454 pyrosequencing for community composition and diversity analyses. Despite 10-fold lower 16S rRNA gene abundances, the initial stages of soil development held higher phylogenetic diversities than the soil at late succession. Temporal variations in phylogenetic β-diversity were greater at initial stages of soil development, possibly as a result of the great dynamism imposed by the daily influence of the tide, promoting high immigration rates. Allogenic succession of bacterial communities was mostly driven by shifts in the soil physical structure, as well as variations in pH and salinity, which collectively explained 84.5% of the variation concerning community assemblage. The community assembly data for each successional stage were integrated into a network co-occurrence analysis, revealing higher complexity at initial stages, coinciding with great dynamism in turnover and environmental variability. Contrary to a spatial niche-based perspective of bacterial community assembly, we suggest temporal niche partitioning as the dominant mechanism of assembly (promoting more phylotype co-occurrence) in the initial stages of succession, where continuous environmental change results in the existence of multiple niches over short periods of time.

  3. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics.

    PubMed

    Shade, Ashley; Jones, Stuart E; McMahon, Katherine D

    2008-04-01

    Multiple forces structure natural microbial communities, but the relative roles and interactions of these drivers are poorly understood. Gradients of physical and chemical parameters can be especially influential. In traditional ecological theory, variability in environmental conditions across space and time represents habitat heterogeneity, which may shape communities. Here we used aquatic microbial communities as a model to investigate the relationship between habitat heterogeneity and community composition and dynamics. We defined spatial habitat heterogeneity as vertical temperature and dissolved oxygen (DO) gradients in the water column, and temporal habitat heterogeneity as variation throughout the open-water season in these environmental parameters. Seasonal lake mixing events contribute to temporal habitat heterogeneity by destroying and re-creating these gradients. Because of this, we selected three lakes along a range of annual mixing frequency (polymictic, dimictic, meromictic) for our study. We found that bacterial community composition (BCC) was distinct between the epilimnion and hypolimnion within stratified lakes, and also more variable within the epilimnia through time. We found stark differences in patterns of epilimnion and hypolimnion dynamics over time and across lakes, suggesting that specific drivers have distinct relative importance for each community.

  4. Factors affecting recruitment and retention of community health workers in a newborn care intervention in Bangladesh

    PubMed Central

    2010-01-01

    Background Well-trained and highly motivated community health workers (CHWs) are critical for delivery of many community-based newborn care interventions. High rates of CHW attrition undermine programme effectiveness and potential for implementation at scale. We investigated reasons for high rates of CHW attrition in Sylhet District in north-eastern Bangladesh. Methods Sixty-nine semi-structured questionnaires were administered to CHWs currently working with the project, as well as to those who had left. Process documentation was also carried out to identify project strengths and weaknesses, which included in-depth interviews, focus group discussions, review of project records (i.e. recruitment and resignation), and informal discussion with key project personnel. Results Motivation for becoming a CHW appeared to stem primarily from the desire for self-development, to improve community health, and for utilization of free time. The most common factors cited for continuing as a CHW were financial incentive, feeling needed by the community, and the value of the CHW position in securing future career advancement. Factors contributing to attrition included heavy workload, night visits, working outside of one's home area, familial opposition and dissatisfaction with pay. Conclusions The framework presented illustrates the decision making process women go through when deciding to become, or continue as, a CHW. Factors such as job satisfaction, community valuation of CHW work, and fulfilment of pre-hire expectations all need to be addressed systematically by programs to reduce rates of CHW attrition. PMID:20438642

  5. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.

    PubMed

    Moebius, Franziska; Or, Dani

    2014-08-01

    The seemingly regular and continuous motion of fluid displacement fronts in porous media at the macroscopic scale is propelled by numerous (largely invisible) pore-scale abrupt interfacial jumps and pressure bursts. Fluid fronts in porous media are characterized by sharp phase discontinuities and by rapid pore-scale dynamics that underlie their motion; both attributes challenge standard continuum theories of these flow processes. Moreover, details of pore-scale dynamics affect front morphology and subsequent phase entrapment behind a front and thereby shape key macroscopic transport properties of the unsaturated zone. The study presents a pore-throat network model that focuses on quantifying interfacial dynamics and interactions along fluid displacement fronts. The porous medium is represented by a lattice of connected pore throats capable of detaining menisci and giving rise to fluid-fluid interfacial jumps (the study focuses on flow rate controlled drainage). For each meniscus along the displacement front we formulate a local inertial, capillary, viscous, and hydrostatic force balance that is then solved simultaneously for the entire front. The model enables systematic evaluation of the role of inertia and boundary conditions. Results show that while displacement patterns are affected by inertial forces mainly by invasion of throats with higher capillary resistance, phase entrapment (residual saturation) is largely unaffected by inertia, limiting inertial effects on hydrological properties behind a front. Interfacial jump velocities are often an order of magnitude larger than mean front velocity, are strongly dependent on geometrical throat dimensions, and become less predictable (more scattered) when inertia is considered. Model simulations of the distributions of capillary pressure fluctuations and waiting times between invasion events follow an exponential distribution and are in good agreement with experimental results. The modeling approach provides insights

  6. Factors affecting the haptic filled-space illusion for dynamic touch.

    PubMed

    Sanders, Abram F J; Kappers, Astrid M L

    2009-02-01

    In the haptic filled-space illusion for active dynamic touch, observers move their fingertip across an unfilled extent or an extent filled with intermediate stimulations. Previous researchers have reported lengths of filled extents to be overestimated, but the parameters affecting the strength of the illusion are still largely unknown. In the current research, we show that the illusion persists when intermediate stimulations do not provide information about the extent's length. In addition, the results show that the strength of the illusion increases with the number of filler elements. In contrast with earlier research, we control for movement speed differences between filled and unfilled extents. The results suggest that the strength of the illusion is independent of the overall average movement speed. Insight into factors affecting the strength of the illusion may provide a better understanding of the kinematic mechanisms underlying haptic length perception.

  7. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome.

    PubMed

    Zarrinpar, Amir; Chaix, Amandine; Yooseph, Shibu; Panda, Satchidananda

    2014-12-02

    The gut microbiome and daily feeding/fasting cycle influence host metabolism and contribute to obesity and metabolic diseases. However, fundamental characteristics of this relationship between the feeding/fasting cycle and the gut microbiome are unknown. Our studies show that the gut microbiome is highly dynamic, exhibiting daily cyclical fluctuations in composition. Diet-induced obesity dampens the daily feeding/fasting rhythm and diminishes many of these cyclical fluctuations. Time-restricted feeding (TRF), in which feeding is consolidated to the nocturnal phase, partially restores these cyclical fluctuations. Furthermore, TRF, which protects against obesity and metabolic diseases, affects bacteria shown to influence host metabolism. Cyclical changes in the gut microbiome from feeding/fasting rhythms contribute to the diversity of gut microflora and likely represent a mechanism by which the gut microbiome affects host metabolism. Thus, feeding pattern and time of harvest, in addition to diet, are important parameters when assessing the microbiome's contribution to host metabolism.

  8. Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome

    PubMed Central

    Zarrinpar, Amir; Chaix, Amandine; Yooseph, Shibu; Panda, Satchidananda

    2014-01-01

    SUMMARY The gut microbiome and daily feeding/fasting cycle influence host metabolism and contributes to obesity and metabolic diseases. However, fundamental characteristics of this relationship between the feeding/fasting cycle and the gut microbiome is unknown. Our studies show that the gut microbiome is highly dynamic, exhibiting daily cyclical fluctuations in composition. Diet-induced obesity dampens the daily feeding/fasting rhythm and diminishes many of these cyclical fluctuations. Time restricted feeding (TRF), in which feeding is consolidated to the nocturnal phase, partially restores these cyclical fluctuations. Furthermore, TRF, which protects against obesity and metabolic diseases, affects bacteria shown to influence host metabolism. Cyclical changes in the gut microbiome from feeding/fasting rhythms contribute to the diversity of gut microflora and likely represent a mechanism by which the gut microbiome affects host metabolism. Thus, feeding pattern and time of harvest, in addition to diet, are important parameters when assessing the microbiome’s contribution to host metabolism. PMID:25470548

  9. Intraspecific variation in a predator affects community structure and cascading trophic interactions.

    PubMed

    Post, David M; Palkovacs, Eric P; Schielke, Erika G; Dodson, Stanley I

    2008-07-01

    Intraspecific phenotypic variation in ecologically important traits is widespread and important for evolutionary processes, but its effects on community and ecosystem processes are poorly understood. We use life history differences among populations of alewives, Alosa pseudoharengus, to test the effects of intraspecific phenotypic variation in a predator on pelagic zooplankton community structure and the strength of cascading trophic interactions. We focus on the effects of differences in (1) the duration of residence in fresh water (either seasonal or year-round) and (2) differences in foraging morphology, both of which may strongly influence interactions between alewives and their prey. We measured zooplankton community structure, algal biomass, and spring total phosphorus in lakes that contained landlocked, anadromous, or no alewives. Both the duration of residence and the intraspecific variation in foraging morphology strongly influenced zooplankton community structure. Lakes with landlocked alewives had small-bodied zooplankton year-round, and lakes with no alewives had large-bodied zooplankton year-round. In contrast, zooplankton communities in lakes with anadromous alewives cycled between large-bodied zooplankton in the winter and spring and small-bodied zooplankton in the summer. In summer, differences in feeding morphology of alewives caused zooplankton biomass to be lower and body size to be smaller in lakes with anadromous alewives than in lakes with landlocked alewives. Furthermore, intraspecific variation altered the strength of the trophic cascade caused by alewives. Our results demonstrate that intraspecific phenotypic variation of predators can regulate community structure and ecosystem processes by modifying the form and strength of complex trophic interactions.

  10. Plant toxicity, adaptive herbivory, and plant community dynamics

    USGS Publications Warehouse

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  11. In-Well Sediment Incubators to Evaluate Microbial Community Stability and Dynamics following Bioimmobilization of Uranium

    SciTech Connect

    Baldwin, Brett R.; Peacock, Aaron D.; Gan, M.; Resch, Charles T.; Arntzen, Evan V.; Smithgall, A. N.; Pfiffner, S.; Freifeld, Barry M.; White, D. C.; Long, Philip E.

    2009-09-23

    An in-situ incubation device (ISI) was developed in order to investigate the stability and dynamics of sediment associated microbial communities to prevailing subsurface oxidizing or reducing conditions. Here we describe the use of these devices at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site. During the 7 month deployment oxidized Rifle aquifer background sediments (RABS) were deployed in previously biostimulated wells under iron reducing conditions, cell densities of known iron reducing bacteria including Geobacteraceae increased significantly showing the microbial community response to local subsurface conditions. PLFA profiles of RABS following in situ deployment were strikingly similar to those of adjacent sediment cores suggesting ISI results could be extrapolated to the native material of the test plots. Results for ISI deployed reduced sediments showed only slight changes in community composition and pointed toward the ability of the ISIs to monitor microbial community stability and response to subsurface conditions.

  12. Bayesian Modeling of the Effects of Extreme Flooding and the Grazer Community on Algal Biomass Dynamics in a Monsoonal Taiwan Stream.

    PubMed

    Chiu, Ming-Chih; Kuo, Mei-Hwa; Chang, Hao-Yen; Lin, Hsing-Juh

    2016-08-01

    The effects of grazing and climate change on primary production have been studied widely, but seldom with mechanistic models. We used a Bayesian model to examine the effects of extreme weather and the invertebrate grazer community on epilithic algal biomass dynamics over 10 years (from January 2004 to August 2013). Algal biomass and the invertebrate grazer community were monitored in the upstream drainage of the Dajia River in Taiwan, where extreme floods have been becoming more frequent. The biomass of epilithic algae changed, both seasonally and annually, and extreme flooding changed the growth and resistance to flow detachment of the algae. Invertebrate grazing pressure changes with the structure of the invertebrate grazer community, which, in turn, is affected by the flow regime. Invertebrate grazer community structure and extreme flooding both affected the dynamics of epilithic algae, but in different ways. Awareness of the interactions between algal communities and grazers/abiotic factors can help with the design of future studies and could facilitate the development of management programs for stream ecosystems.

  13. Environmental Factors Affecting Microbiota Dynamics during Traditional Solid-state Fermentation of Chinese Daqu Starter.

    PubMed

    Li, Pan; Lin, Weifeng; Liu, Xiong; Wang, Xiaowen; Luo, Lixin

    2016-01-01

    In this study, we investigated the microbiota dynamics during two industrial-scale traditional solid-state fermentation (SSF) processes of Daqu starters. Similar evolution profiles of environmental parameters, enzymatic activities, microbial amounts, and communities were observed during the medium temperature SSF (MTSSF) and low temperature SSF (LTSSF) processes. Orders of Rickettsiales and Streptophyta only dominated the initial 2 days, and Eurotiales only predominated from days 10 to 24, however, phylotypes of Enterobacteriales, Lactobacillales, Bacillales, Saccharomycetales, and Mucorales both prevailed throughout the MTSSF and LTSSF processes. Nevertheless, the pH in MTSSF process on day 5 were 5.28, while in LTSSF process (4.87) significantly lower (P < 0.05). The glucoamylase activities in MTSSF process dropped from 902.71 to 394.33 mg glucose g(-1) h(-1) on days 5 to 24, while significantly lower (P < 0.05) in LTSSF process and decreased from 512.25 to 268.69 mg glucose g(-1) h(-1). The relative abundance of Enterobacteriales and Lactobacillales in MTSSF process constituted from 10.30 to 71.73% and 2.34 to 16.68%, while in LTSSF process ranged from 3.16 to 41.06% and 8.43 to 57.39%, respectively. The relative abundance of Eurotiales in MTSSF process on days 10 to 24 decreased from 36.10 to 28.63%, while obviously higher in LTSSF process and increased from 52.00 to 72.97%. Furthermore, lower bacterial richness but higher fungal richness were displayed, markedly differences in bacterial communities but highly similarities in fungal communities were exhibited, during MTSSF process comparatively to the LTSSF process. Canonical correspondence analysis revealed microbial structure transition happened at thermophilic stages under environmental stress of moisture, pH, acidity, and pile temperature. These profound understanding might help to effectively control the traditional Daqu SSF process by adjusting relevant environmental parameters.

  14. Environmental Factors Affecting Microbiota Dynamics during Traditional Solid-state Fermentation of Chinese Daqu Starter

    PubMed Central

    Li, Pan; Lin, Weifeng; Liu, Xiong; Wang, Xiaowen; Luo, Lixin

    2016-01-01

    In this study, we investigated the microbiota dynamics during two industrial-scale traditional solid-state fermentation (SSF) processes of Daqu starters. Similar evolution profiles of environmental parameters, enzymatic activities, microbial amounts, and communities were observed during the medium temperature SSF (MTSSF) and low temperature SSF (LTSSF) processes. Orders of Rickettsiales and Streptophyta only dominated the initial 2 days, and Eurotiales only predominated from days 10 to 24, however, phylotypes of Enterobacteriales, Lactobacillales, Bacillales, Saccharomycetales, and Mucorales both prevailed throughout the MTSSF and LTSSF processes. Nevertheless, the pH in MTSSF process on day 5 were 5.28, while in LTSSF process (4.87) significantly lower (P < 0.05). The glucoamylase activities in MTSSF process dropped from 902.71 to 394.33 mg glucose g-1 h-1 on days 5 to 24, while significantly lower (P < 0.05) in LTSSF process and decreased from 512.25 to 268.69 mg glucose g-1 h-1. The relative abundance of Enterobacteriales and Lactobacillales in MTSSF process constituted from 10.30 to 71.73% and 2.34 to 16.68%, while in LTSSF process ranged from 3.16 to 41.06% and 8.43 to 57.39%, respectively. The relative abundance of Eurotiales in MTSSF process on days 10 to 24 decreased from 36.10 to 28.63%, while obviously higher in LTSSF process and increased from 52.00 to 72.97%. Furthermore, lower bacterial richness but higher fungal richness were displayed, markedly differences in bacterial communities but highly similarities in fungal communities were exhibited, during MTSSF process comparatively to the LTSSF process. Canonical correspondence analysis revealed microbial structure transition happened at thermophilic stages under environmental stress of moisture, pH, acidity, and pile temperature. These profound understanding might help to effectively control the traditional Daqu SSF process by adjusting relevant environmental parameters. PMID:27540378

  15. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  16. Rare but active taxa contribute to community dynamics of benthic biofilms in glacier-fed streams.

    PubMed

    Wilhelm, Linda; Besemer, Katharina; Fasching, Christina; Urich, Tim; Singer, Gabriel A; Quince, Christopher; Battin, Tom J

    2014-08-01

    Glaciers harbour diverse microorganisms, which upon ice melt can be released downstream. In glacier-fed streams microorganisms can attach to stones or sediments to form benthic biofilms. We used 454-pyrosequencing to explore the bulk (16S rDNA) and putatively active (16S rRNA) microbial communities of stone and sediment biofilms across 26 glacier-fed streams. We found differences in community composition between bulk and active communities among streams and a stronger congruence between biofilm types. Relative abundances of rRNA and rDNA were positively correlated across different taxa and taxonomic levels, but at lower taxonomic levels, the higher abundance in either the active or the bulk communities became more apparent. Here, environmental variables played a minor role in structuring active communities. However, we found a large number of rare taxa with higher relative abundances in rRNA compared with rDNA. This suggests that rare taxa contribute disproportionately to microbial community dynamics in glacier-fed streams. Our findings propose that high community turnover, where taxa repeatedly enter and leave the 'seed bank', contributes to the maintenance of microbial biodiversity in harsh ecosystems with continuous environmental perturbations, such as glacier-fed streams.

  17. [Spatial and temporal dynamics of the weed community in the Zoysia matrella lawn].

    PubMed

    Liu, Jia-Qi; Li, You-Han; Zeng, Ying; Xie, Xin-Ming

    2014-02-01

    The heterogeneity of species composition is one of the main attributes in weed community dynamics. Based on species frequency and power law, this paper studied the variations of weed community species composition and spatial heterogeneity in a Zoysia matrella lawn in Guangzhou at different time. The results showed that there were 43 weed species belonging to 19 families in the Z. matrella lawn from 2007 to 2009, in which Gramineae, Compositae, Cyperaceae and Rubiaceae had a comparative advantage. Perennial weeds accounted for the largest proportion of weeds and increased gradually in the three years. Weed communities distributed in higher heterogeneity than in a random model. Dominant weeds varied with season and displayed regularity in the order of 'dicotyledon-monocotyledon-dicotyledon weeds' and 'perennial-annual-perennial weeds'. The spatial heterogeneity of weed community in Z. matrella lawn was higher in summer than in winter. The diversity and evenness of weed community were higher in summer and autumn than in winter and spring. The number of weed species with high heterogeneity in summer was higher than in the other seasons. The spatial heterogeneity and diversity of weed community had no significant change in the three years, while the evenness of weed community had the tendency to decline gradually.

  18. Microbial community structure and dynamics during anaerobic digestion of various agricultural waste materials.

    PubMed

    Ziganshin, Ayrat M; Liebetrau, Jan; Pröter, Jürgen; Kleinsteuber, Sabine

    2013-06-01

    The influence of the feedstock type on the microbial communities involved in anaerobic digestion was investigated in laboratory-scale biogas reactors fed with different agricultural waste materials. Community composition and dynamics over 2 months of reactors' operation were investigated by amplicon sequencing and profiling terminal restriction fragment length polymorphisms of 16S rRNA genes. Major bacterial taxa belonged to the Clostridia and Bacteroidetes, whereas the archaeal community was dominated by methanogenic archaea of the orders Methanomicrobiales and Methanosarcinales. Correlation analysis revealed that the community composition was mainly influenced by the feedstock type with the exception of a temperature shift from 38 to 55 °C which caused the most pronounced community shifts. Bacterial communities involved in the anaerobic digestion of conventional substrates such as maize silage combined with cattle manure were relatively stable and similar to each other. In contrast, special waste materials such as chicken manure or Jatropha press cake were digested by very distinct and less diverse communities, indicating partial ammonia inhibition or the influence of other inhibiting factors. Anaerobic digestion of chicken manure relied on syntrophic acetate oxidation as the dominant acetate-consuming process due to the inhibition of aceticlastic methanogenesis. Jatropha as substrate led to the enrichment of fiber-degrading specialists belonging to the genera Actinomyces and Fibrobacter.

  19. [Community structure characteristics of phytoplankton and related affecting factors in Hengshan Reservoir, Zhejiang, China].

    PubMed

    Yang, Liang-Jie; Yu, Peng-Fei; Zhu, Jun-Quan; Xu, Zhen; Lü, Guang-Han; Jin, Chun-Hua

    2014-02-01

    In order to reveal the community structure characteristics of phytoplankton and the relationships with environmental factors in Hengshan Reservoir, the phytoplankton species composition, abundance, biomass and 12 environmental factors at 4 sampling sites were analyzed from March 2011 to February 2012. A total of 246 phytoplankton species were identified, which belong to 78 genera and 7 phyla. The dominant species were Melosira varians, M. granulate, Cyclotella meneghiniana, Asterianella formosa, Synedra acus, Achnanthes exigua, Ankistrodesmus falcatus, Oscillatoria lacustris, Cryptomonas erosa, Chroomonas acuta, Phormidium tenue and Microcystis aeruginosa, etc. Seasonal variations of species were obvious. The annual abundance and biomass of the phytoplankton were 0.51 x 10(5)-14.22 x 10(5) ind x L(-1) and 0.07-1.27 mg x L(-1), respectively. The values of the Margelef index, Pielou index and Shannon index of the phytoplankton community were 1.10-3.33, 0.26-0.81 and 0.51-2.38, respectively. The phytoplankton community structure was of Bacillariophyta-Cryptophyta type in spring and winter, of Chlorophyta-Cyanophyta type in summer, and of Bacillariophyta type in autumn. Canonical correlation analysis (CCA) showed that temperature, transparency, chemical oxygen demand and pH had the closest relationships with the phytoplankton community structure in the reservoir. Water quality evaluation showed that Hengshan Reservoir was in a secondary pollution with a meso-trophic level.

  20. Methyl fluoride affects methanogenesis rather than community composition of methanogenic archaea in a rice field soil.

    PubMed

    Daebeler, Anne; Gansen, Martina; Frenzel, Peter

    2013-01-01

    The metabolic pathways of methane formation vary with environmental conditions, but whether this can also be linked to changes in the active archaeal community structure remains uncertain. Here, we show that the suppression of aceticlastic methanogenesis by methyl fluoride (CH(3)F) caused surprisingly little differences in community composition of active methanogenic archaea from a rice field soil. By measuring the natural abundances of carbon isotopes we found that the effective dose for a 90% inhibition of aceticlastic methanogenesis in anoxic paddy soil incubations was <0.75% CH(3)F (v/v). The construction of clone libraries as well as t-RFLP analysis revealed that the active community, as indicated by mcrA transcripts (encoding the α subunit of methyl-coenzyme M reductase, a key enzyme for methanogenesis), remained stable over a wide range of CH(3)F concentrations and represented only a subset of the methanogenic community. More precisely, Methanocellaceae were of minor importance, but Methanosarcinaceae dominated the active population, even when CH(3)F inhibition only allowed for aceticlastic methanogenesis. In addition, we detected mcrA gene fragments of a so far unrecognised phylogenetic cluster. Transcription of this phylotype at methyl fluoride concentrations suppressing aceticlastic methanogenesis suggests that the respective organisms perform hydrogenotrophic methanogenesis. Hence, the application of CH(3)F combined with transcript analysis is not only a useful tool to measure and assign in situ acetate usage, but also to explore substrate usage by as yet uncultivated methanogens.

  1. Building a Successful Communications Program Based on the Needs and Characteristics of the Affected Communities - 13152

    SciTech Connect

    Herod, Judy; Mahabir, Alexandra; Holmes, Sandy

    2013-07-01

    Over 200 local residents streamed through the doors of the Port Hope Lions Centre to see the detailed plans for the historic low-level radioactive waste clean-up project about to take place in their community. The event had a congenial atmosphere as people walked through the hall taking in rows of display panels that explained each element of the project, asked questions of project staff stationed around the room and chatted with friends and neighbours over light refreshments. Later that year, the results of the Port Hope Area Initiative (PHAI) 10. annual public attitude survey revealed an all-time high in community awareness of the project (94%) and the highest levels of confidence (84%) recorded since surveying began. Today, as the PHAI transitions from a decade of scientific and technical studies to implementation, the success of its communications program - as evidenced by the above examples - offers room for cautious encouragement. The PHAI has spent the past 10 years developing relationships with the southern Ontario communities of Port Hope and Port Granby in preparation for Canada's largest low-level radioactive waste environmental restoration project. These relationships have been built around a strong understanding of the communities' individual needs and characteristics and on the PHAI's efforts to consider and respond to these needs. The successes of the past, as well as the lessons learned, will inform the next stage of communications as the projects move into waste excavation and transportation and building of the long-term waste management facilities. (authors)

  2. Manure Refinement Affects Apple Rhizosphere Bacterial Community Structure: A Study in Sandy Soil

    PubMed Central

    Zhang, Qiang; Sun, Jian; Liu, Songzhong; Wei, Qinping

    2013-01-01

    We used DNA-based pyrosequencing to characterize the bacterial community structure of the sandy soil of an apple orchard with different manure ratios. Five manure percentages (5%, 10%, 15%, 20% and 25%) were examined. More than 10,000 valid reads were obtained for each replicate. The communities were composed of five dominant groups (Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria and Bacteroidetes), of which Proteobacteria content gradually decreased from 41.38% to 37.29% as manure ratio increased from 0% to 25%, respectively. Redundancy analysis showed that 37 classes were highly correlated with manure ratio, 18 of which were positively correlated. Clustering revealed that the rhizosphere samples were grouped into three components: low manure (control, 5%) treatment, medium manure (10%, 15%) treatment and high manure (20%, 25%) treatment. Venn analysis of species types of these three groups revealed that the bacteria community difference was primarily reflected by quantity ratio rather than species variety. Although greater manure content led to higher soil organic matter content, the medium manure improved soil showed the highest urease activity and saccharase activity, while 5% to 20% manure ratio improvement also resulted in higher bacteria diversity than control and 25% manure ratio treatment. Our experimental results suggest that the use of a proper manure ratio results in significantly higher soil enzyme activity and different bacteria community patterns, whereas the use of excessive manure amounts has negative effect on soil quality. PMID:24155909

  3. Bioaugmentation of Hydrogenispora ethanolica LX-B affects hydrogen production through altering indigenous bacterial community structure.

    PubMed

    Yang, Zhiman; Guo, Rongbo; Shi, Xiaoshuang; He, Shuai; Wang, Lin; Dai, Meng; Qiu, Yanling; Dang, Xiaoxiao

    2016-07-01

    Bioaugmentation can facilitate hydrogen production from complex organic substrates, but it still is unknown how indigenous microbial communities respond to the added bacteria. Here, using a Hydrogenispora ethanolica LX-B (named as LX-B) bioaugmentation experiments, the distribution of metabolites and the responses of indigenous bacterial communities were investigated via batch cultivation (BC) and repeated batch cultivation (RBC). In BC the LX-B/sludge ratio of 0.12 achieved substantial high hydrogen yield, which was over twice that of control. In RBC one-time bioaugmentation and repeated batch bioaugmentation of LX-B resulted in the hydrogen yield that was average 1.2-fold and 0.8-fold higher than that in control, respectively. This improved hydrogen production performance mainly benefited from a shift in composition of the indigenous bacterial community caused by LX-B bioaugmentation. The findings represented an important step in understanding the relationship between bioaugmentation, a shift in bacterial communities, and altered bioreactor performance.

  4. How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests?

    PubMed

    Krashevska, Valentyna; Maraun, Mark; Scheu, Stefan

    2012-06-01

    Litter quality and diversity are major factors structuring decomposer communities. However, little is known on the relationship between litter quality and the community structure of soil protists in tropical forests. We analyzed the diversity, density, and community structure of a major group of soil protists of tropical montane rainforests, that is, testate amoebae. Litterbags containing pure and mixed litter of two abundant tree species at the study sites (Graffenrieda emarginata and Purdiaea nutans) differing in nitrogen concentrations were exposed in the field for 12 months. The density and diversity of testate amoebae were higher in the nitrogen-rich Graffenrieda litter suggesting that nitrogen functions as an important driving factor for soil protist communities. No additive effects of litter mixing were found, rather density of testate amoebae was reduced in litter mixtures as compared to litterbags with Graffenrieda litter only. However, adding of high-quality litter to low-quality litter markedly improved habitat quality, as evaluated by the increase in diversity and density of testate amoebae. The results suggest that local factors, such as litter quality, function as major forces shaping the structure and density of decomposer microfauna that likely feed back to decomposition processes.

  5. Water Reform and the Resilience of Small Business People in Drought-Affected Agricultural Communities

    ERIC Educational Resources Information Center

    Schwarz, Imogen; Williams, Pam McRae

    2009-01-01

    The impact of drought on rural communities in Australia has been the subject of considerable research. Less well understood are the impacts of drought on rural small businesses and the mechanisms they use to adapt or cope through extended dry periods. In this study, strategies these businesses draw upon to manage this adversity are identified and…

  6. Bacterial community and proteome analysis of fresh-cut lettuce as affected by packaging.

    PubMed

    Di Carli, Mariasole; De Rossi, Patrizia; Paganin, Patrizia; Del Fiore, Antonella; Lecce, Francesca; Capodicasa, Cristina; Bianco, Linda; Perrotta, Gaetano; Mengoni, Alessio; Bacci, Giovanni; Daroda, Lorenza; Dalmastri, Claudia; Donini, Marcello; Bevivino, Annamaria

    2016-01-01

    With the growing demand of fresh-cut vegetables, a variety of packaging films are produced specifically to improve safety and quality of the fresh vegetables over the storage period. The aim of our work was to evaluate the influence of different packaging films on the quality of fresh-cut lettuce analyzing changes in bacterial community composition and modifications at the proteome level, by means of culture-dependent/culture-independent methods and differential gel electrophoresis combined with mass spectrometry analysis. Total viable counts indicated the presence of a highly variable and complex microbial flora, around a mean value of 6.26 log10 CFU g(-1). Analysis of terminal-restriction fragment length polymorphism data indicated that bacterial communities changed with packaging films and time, showing differences in community composition and diversity indices between the commercially available package (F) and the new packages (A and C), in the first days after packaging. Also proteomic analysis revealed significant changes, involving proteins related to energy metabolism, photosynthesis, plant defense and oxidative stress processes, between F and A/C packages. In conclusion, microbiological and proteomic analysis have proved to be powerful tools to provide new insights into both the composition of leaf-associated bacterial communities and protein content of fresh-cut lettuce during the shelf-life storage process.

  7. Risk and Resilience in Orphaned Adolescents Living in a Community Affected by AIDS

    ERIC Educational Resources Information Center

    Wild, Lauren G.; Flisher, Alan J.; Robertson, Brian A.

    2013-01-01

    The AIDS pandemic has resulted in a dramatic rise in the number of orphans in South Africa. This study was designed to investigate the associations between family, peer, and community factors and resilience in orphaned adolescents. Self-report questionnaires were administered verbally to 159 parentally bereaved adolescents (aged 10-19) in an…

  8. How Outpatient Substance Abuse Treatment Unit Director Activities May Affect Provision of Community Outreach Services

    ERIC Educational Resources Information Center

    Chuang, Emmeline; Wells, Rebecca; Alexander, Jeffrey; Green, Sherri

    2013-01-01

    Aims: Community outreach services play an important role in infectious disease prevention and engaging drug users not currently in treatment. However, fewer than half of US substance abuse treatment units provide these services and many have little financial incentive to do so. Unit directors generally have latitude about scope of services,…

  9. Barriers Affecting Physical Activity in Rural Communities: Perceptions of Parents and Children

    ERIC Educational Resources Information Center

    McWhinney, Sharon; McDonald, Andrea; Dawkins-Moultin, Lenna; Outley, Corliss; McKyer, E. Lisako; Thomas, Audrene

    2011-01-01

    A comprehensive understanding of the barriers inhibiting physical activity among children is critical in the fight against childhood obesity. This qualitative interview study examined parents' and children's perceptions of the barriers to physical activity in rural communities of low socioeconomic status. Parents and children concurred that the…

  10. An Examination of Factors Affecting Organizational Commitment of Developmental Math Faculty at Florida Community Colleges

    ERIC Educational Resources Information Center

    Austin-Hickey, Rachel

    2013-01-01

    Community colleges play an important role in the accessibility of higher education to the American population and developmental coursework is of vital importance to college degree attainment. The large demand for student remediation in math requires optimal commitment of developmental math faculty members. Increased organizational commitment has…

  11. Factors Affecting Part-Time Faculty Job Satisfaction in the Colorado Community College System

    ERIC Educational Resources Information Center

    Cashwell, Allison L.

    2009-01-01

    How do part-time faculty members in community colleges view their roles? Data from part-time faculty responses regarding their experiences in higher education vary. Valadez and Antony (2001) analyzed data from 6,811 part-time faculty collected from the National Center for Education Statistics' (NCES) 1992-1993 National Survey of Postsecondary…

  12. Biofilm bacterial community structure in streams affected by acid mine drainage.

    PubMed

    Lear, Gavin; Niyogi, Dev; Harding, Jon; Dong, Yimin; Lewis, Gillian

    2009-06-01

    We examined the bacterial communities of epilithic biofilms in 17 streams which represented a gradient ranging from relatively pristine streams to streams highly impacted by acid mine drainage (AMD). A combination of automated ribosomal intergenic spacer analysis with multivariate analysis and ordination provided a sensitive, high-throughput method to monitor the impact of AMD on stream bacterial communities. Significant differences in community structure were detected among neutral to alkaline (pH 6.7 to 8.3), acidic (pH 3.9 to 5.7), and very acidic (pH 2.8 to 3.5) streams. DNA sequence analysis revealed that the acidic streams were generally dominated by bacteria related to the iron-oxidizing genus Gallionella, while the organisms in very acidic streams were less diverse and included a high proportion of acidophilic eukaryotes, including taxa related to the algal genera Navicula and Klebsormidium. Despite the presence of high concentrations of dissolved metals (e.g., Al and Zn) and deposits of iron hydroxide in some of the streams studied, pH was the most important determinant of the observed differences in bacterial community variability. These findings confirm that any restoration activities in such systems must focus on dealing with pH as the first priority.

  13. High Concentrations of Methyl Fluoride Affect the Bacterial Community in a Thermophilic Methanogenic Sludge

    PubMed Central

    Hao, Liping; Lü, Fan; Wu, Qing; Shao, Liming; He, Pinjing

    2014-01-01

    To precisely control the application of methyl fluoride (CH3F) for analysis of methanogenic pathways, the influence of 0–10% CH3F on bacterial and archaeal communities in a thermophilic methanogenic sludge was investigated. The results suggested that CH3F acts specifically on acetoclastic methanogenesis. The inhibitory effect stabilized at an initial concentration of 3–5%, with around 90% of the total methanogenic activity being suppressed, and a characteristic of hydrogenotrophic pathway in isotope fractionation was demonstrated under this condition. However, extended exposure (12 days) to high concentrations of CH3F (>3%) altered the bacterial community structure significantly, resulting in increased diversity and decreased evenness, which can be related to acetate oxidation and CH3F degradation. Bacterial clone library analysis showed that syntrophic acetate oxidizing bacteria Thermacetogenium phaeum were highly enriched under the suppression of 10% CH3F. However, the methanogenic community did not change obviously. Thus, excessive usage of CH3F over the long term can change the composition of the bacterial community. Therefore, data from studies involving the use of CH3F as an acetoclast inhibitor should be interpreted with care. Conversely, CH3F has been suggested as a factor to stimulate the enrichment of syntrophic acetate oxidizing bacteria. PMID:24658656

  14. Factors That Affect Willingness to Borrow Student Loans among Community College Students

    ERIC Educational Resources Information Center

    Menges, Kathleen K.; Leonhard, Christoph

    2016-01-01

    Research suggests that student loan borrowing has increased at the community college level. This trend is worrisome to many, as research is inconclusive regarding whether loans are positively correlated with achieving a college degree. Many also contend that choosing not to borrow a student loan due to loan aversion can negatively impact a…

  15. Switchgrass (Panicum virgatum) Intercropping within Managed Loblolly Pine (Pinus taeda) Does Not Affect Wild Bee Communities

    PubMed Central

    Campbell, Joshua W.; Miller, Darren A.; Martin, James A.

    2016-01-01

    Intensively-managed pine (Pinus spp.) have been shown to support diverse vertebrate communities, but their ability to support invertebrate communities, such as wild bees, has not been well-studied. Recently, researchers have examined intercropping switchgrass (Panicum virgatum), a native perennial, within intensively managed loblolly pine (P. taeda) plantations as a potential source for cellulosic biofuels. To better understand potential effects of intercropping on bee communities, we investigated visitation of bees within three replicates of four treatments of loblolly pine in Mississippi, U.S.A.: 3–4 year old pine plantations and 9–10 year old pine plantations with and without intercropped switchgrass. We used colored pan traps to capture bees during the growing seasons of 2013 and 2014. We captured 2507 bees comprised of 18 different genera during the two-year study, with Lasioglossum and Ceratina being the most common genera captured. Overall, bee abundances were dependent on plantation age and not presence of intercropping. Our data suggests that switchgrass does not negatively impact or promote bee communities within intensively-managed loblolly pine plantations. PMID:27827916

  16. Influence of dynamic vegetation on carbon-nitrogen cycle feedback in the Community Land Model (CLM4)

    NASA Astrophysics Data System (ADS)

    Sakaguchi, K.; Zeng, X.; Leung, LR; Shao, P.

    2016-12-01

    Land carbon sensitivity to atmospheric CO2 concentration (βL) and climate warming (γL) is a crucial part of carbon-climate feedbacks that affect the magnitude of future warming. Although these sensitivities can be estimated by earth system models, their dependence on model representation of land carbon dynamics and the inherent model assumptions has rarely been investigated. Using the widely used Community Land Model version 4 as an example, we examine how βL and γL vary with prescribed versus dynamic vegetation covers. Both sensitivities are found to be larger with dynamic compared to prescribed vegetation on decadal timescale in the late twentieth century, with a more robust difference in γL. The latter is a result of dynamic vegetation model deficiencies in representing the competitions between deciduous versus evergreen trees and tree versus grass over the tropics and subtropics. The biased vegetation cover changes the regional characteristics of carbon-nitrogen cycles such that plant productivity responds less strongly to the enhancement of nitrogen mineralization with warming, so more carbon is lost to the atmosphere with rising temperature. The result calls for systematic evaluations of land carbon sensitivities with varying assumptions for land cover representations to help prioritize development effort and constrain uncertainties in carbon-climate feedbacks.

  17. Connecting art and science: An interdisciplinary strategy and its impact on the affective domain of community college human anatomy students

    NASA Astrophysics Data System (ADS)

    Petti, Kevin

    Educational objectives are often described within the framework of a three-domain taxonomy: cognitive, affective and psychomotor. While most of the research on educational objectives has focused on the cognitive domain, the research that has been conducted on the affective domain, which speaks to emotions, attitudes, and values, has identified a number of positive outcomes. One approach to enhancing the affective domain is that of interdisciplinary education. Science education research in the realm of interdisciplinary education and affective outcomes is limited; especially research conducted on community college students of human anatomy. This project investigated the relationship between an interdisciplinary teaching strategy and the affective domain in science education by utilizing an interdisciplinary lecture in a human anatomy class. Subjects were anatomy students in a California community college who listened to a one-hour lecture describing the cultural, historical and scientific significance of selected pieces of art depicting human dissection in European medieval and Renaissance universities. The focus was on how these renderings represent the state of anatomy education during their respective eras. After listening to the lecture, subjects were administered a 35-question survey that was composed of 14 demographic questions and 21 Likert-style statements that asked respondents to rate the extent to which the intervention influenced their affective domain. Descriptive statistics were then used to determine which component of the affective domain was most influenced, and multiple regression analysis was used to examine the extent to which individual differences along the affective continuum were explained by select demographic measures such as gender, race/ethnicity, education level, and previous exposure to science courses. Results indicate that the interdisciplinary intervention had a positive impact on every component of the affective domain hierarchy

  18. Roads in northern hardwood forests affect adjacent plant communities and soil chemistry in proportion to the maintained roadside area.

    PubMed

    Neher, Deborah A; Asmussen, David; Lovell, Sarah Taylor

    2013-04-01

    The spatial extent of the transported materials from three road types was studied in forest soil and vegetative communities in Vermont. Hypotheses were two-fold: 1) soil chemical concentrations above background environment would reflect traffic volume and road type (highway>2-lane paved>gravel), and 2) plant communities close to the road and near roads with greater traffic will be disturbance-tolerant and adept at colonization. Soil samples were gathered from 12 randomly identified transects for each of three road types classified as "highway," "two-lane paved," and "gravel." Using GIS mapping, transects were constructed perpendicular to the road, and samples were gathered at the shoulder, ditch, backslope, 10 m from the edge of the forest, and 50 m from road center. Sample locations were analyzed for a suite of soil elements and parameters, as well as percent area coverage by plant species. The main effects from roads depended on the construction modifications required for a roadway (i.e., vegetation clearing and topography modification). The cleared area defined the type of plant community and the distance that road pollutants travel. Secondarily, road presence affected soil chemistry. Metal concentrations (e.g., Pb, Cd, Cu, and Zn) correlated positively with road type. Proximity to all road types made the soils more alkaline (pH 7.7) relative to the acidic soil of the adjacent native forest (pH 5.6). Roadside microtopography had marked effects on the composition of plant communities based on the direction of water flow. Ditch areas supported wetland plant species, greater soil moisture and sulfur content, while plant communities closer to the road were characteristic of drier upland zones. The area beyond the edge of the forest did not appear to be affected chemically or physically by any of the road types, possibly due to the dense vegetation that typically develops outside of the managed right-of-way.

  19. Individual and Community Level Risk-Factors for Alcohol Use Disorder among Conflict-Affected Persons in Georgia

    PubMed Central

    Roberts, Bayard; Murphy, Adrianna; Chikovani, Ivdity; Makhashvili, Nino; Patel, Vikram; McKee, Martin

    2014-01-01

    Background The evidence on alcohol use disorder among conflict-affected civilian populations remains extremely weak, despite a number of potential risk-factors. The aim of this study is to examine patterns of alcohol use disorder among conflict-affected persons in the Republic of Georgia. Methods A cross-sectional survey of 3600 randomly selected internally displaced persons (IDPs) and former IDPs. Two alcohol use disorder outcomes were measured: (i) having at least hazardous alcohol use (AUDIT score ≥8); (ii) episodic heavy drinking (consuming >60 grams of pure alcohol per drinking session at least once a week). Individual level demographic and socio-economic characteristics were also recorded, including mental disorders. Community level alcohol environment characteristics relating to alcohol availability, marketing and pricing were recorded in the respondents' communities and a factor analysis conducted to produce a summary alcohol environment factor score. Logistic regression analyses examined associations between individual and community level factors with the alcohol use disorder outcomes (among men only). Results Of the total sample, 71% of men and 16% of women were current drinkers. Of the current drinkers (N = 1386), 28% of men and 1% of women were classified as having at least hazardous alcohol use; and 12% of men and 2% of women as episodic heavy drinkers. Individual characteristics significantly associated with both outcomes were age and experiencing a serious injury, while cumulative trauma events and depression were also associated with having at least hazardous alcohol use. For the community level analysis, a one unit increase in the alcohol environment factor was associated with a 1.27 fold increase in episodic heavy drinking among men (no significant association with hazardous alcohol use). Conclusion The findings suggest potential synergies for treatment responses for alcohol use disorder and depression among conflict-affected populations in

  20. Agave salmiana Plant Communities in Central Mexico as Affected by Commercial Use

    NASA Astrophysics Data System (ADS)

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal ( Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha-1) in the short-use areas and less (892 plants ha-1) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha-1) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  1. Agave salmiana plant communities in central Mexico as affected by commercial use.

    PubMed

    Martínez Salvador, Martin; Mata-González, Ricardo; Morales Nieto, Carlos; Valdez-Cepeda, Ricardo

    2012-01-01

    Agave salmiana is a native plant species harvested for the commercial production of mezcal (Agave spirits) in the highlands of central Mexico. The objective of this study was to identify vegetation changes in natural communities where A. salmiana has been differentially harvested for commercial purposes. Three plant community categories were identified in the state of Zacatecas based on their history of A. salmiana utilization: short (less than 10 years of use), moderate (about 25 years), and long (60 or more years). Species cover, composition, and density were evaluated in field surveys by use category. A gradient of vegetation structure of the communities parallels the duration of A. salmiana use. A. salmiana density was greatest (3,125 plants ha(-1)) in the short-use areas and less (892 plants ha(-1)) in the moderate-use areas, associated with markedly greater density of shrubs (200%) and Opuntia spp. (50%) in moderate-use areas. The main shrubs were Larrea tridentata, Mimosa biuncifera, Jatropha dioica and Buddleia scordioides while the main Opuntia species were Opuntia leucotricha and Opuntia robusta. A. salmiana density was least (652 plants ha(-1)) in the long-use areas where shrubs were less abundant but Opuntia spp. density was 25% higher than in moderate-use areas. We suggest that shrubs may increase with moderate use creating an intermediate successional stage that facilitates the establishment of Opuntia spp. Long-term Agave use is generating new plant communities dominated by Opuntia spp. (nopaleras) as a replacement of the original communities dominated by A. salmiana (magueyeras).

  2. Restructuring of the Aquatic Bacterial Community by Hydric Dynamics Associated with Superstorm Sandy

    PubMed Central

    Ulrich, Nikea; Rosenberger, Abigail; Brislawn, Colin; Wright, Justin; Kessler, Collin; Toole, David; Solomon, Caroline; Strutt, Steven; McClure, Erin

    2016-01-01

    ABSTRACT Bacterial community composition and longitudinal fluctuations were monitored in a riverine system during and after Superstorm Sandy to better characterize inter- and intracommunity responses associated with the disturbance associated with a 100-year storm event. High-throughput sequencing of the 16S rRNA gene was used to assess microbial community structure within water samples from Muddy Creek Run, a second-order stream in Huntingdon, PA, at 12 different time points during the storm event (29 October to 3 November 2012) and under seasonally matched baseline conditions. High-throughput sequencing of the 16S rRNA gene was used to track changes in bacterial community structure and divergence during and after Superstorm Sandy. Bacterial community dynamics were correlated to measured physicochemical parameters and fecal indicator bacteria (FIB) concentrations. Bioinformatics analyses of 2.1 million 16S rRNA gene sequences revealed a significant increase in bacterial diversity in samples taken during peak discharge of the storm. Beta-diversity analyses revealed longitudinal shifts in the bacterial community structure. Successional changes were observed, in which Betaproteobacteria and Gammaproteobacteria decreased in 16S rRNA gene relative abundance, while the relative abundance of members of the Firmicutes increased. Furthermore, 16S rRNA gene sequences matching pathogenic bacteria, including strains of Legionella, Campylobacter, Arcobacter, and Helicobacter, as well as bacteria of fecal origin (e.g., Bacteroides), exhibited an increase in abundance after peak discharge of the storm. This study revealed a significant restructuring of in-stream bacterial community structure associated with hydric dynamics of a storm event. IMPORTANCE In order to better understand the microbial risks associated with freshwater environments during a storm event, a more comprehensive understanding of the variations in aquatic bacterial diversity is warranted. This study

  3. Environmental temperature affects the dynamics of ingestion in the nectivorous ant Camponotus mus.

    PubMed

    Falibene, Agustina; Josens, Roxana

    2014-12-01

    Environmental temperature influences physiology and behavior in animals in general and is particularly determinant in ectotherms. Not least because temperature defines metabolism and body temperature, muscle activity in insects also strongly depends on this factor. Here, we analyzed how environmental temperature influences the dynamics of ingestion due to its effect on the sucking pump muscles in the nectivorous ants Camponotus mus. Feeding behavior and sucking pump activity during sucrose solution ingestion were first recorded in a natural environment in an urban setting throughout the day and in different seasons. Then, controlled temperature experiments were performed in the laboratory. In both situations, feeding time decreased and pumping frequency increased with temperature. However, different pumping frequencies under a same temperature were also observed in different seasons. Besides, in the laboratory, the volume of solution ingested increased with temperature. Consequently, intake rate increased when temperature rose. This change was exclusively promoted by a variation in the pumping frequency while volume taken in per pump contraction was not affected by temperature. In summary, environmental temperature modified the dynamics of ingestion and feeding behavior by directly affecting pumping frequency.

  4. Dynamic Probabilistic CCA for Analysis of Affective Behavior and Fusion of Continuous Annotations.

    PubMed

    Nicolaou, Mihalis A; Pavlovic, Vladimir; Pantic, Maja

    2014-07-01

    Fusing multiple continuous expert annotations is a crucial problem in machine learning and computer vision, particularly when dealing with uncertain and subjective tasks related to affective behavior. Inspired by the concept of inferring shared and individual latent spaces in Probabilistic Canonical Correlation Analysis (PCCA), we propose a novel, generative model that discovers temporal dependencies on the shared/individual spaces (Dynamic Probabilistic CCA, DPCCA). In order to accommodate for temporal lags, which are prominent amongst continuous annotations, we further introduce a latent warping process, leading to the DPCCA with Time Warpings (DPCTW) model. Finally, we propose two supervised variants of DPCCA/DPCTW which incorporate inputs (i.e., visual or audio features), both in a generative (SG-DPCCA) and discriminative manner (SD-DPCCA). We show that the resulting family of models (i) can be used as a unifying framework for solving the problems of temporal alignment and fusion of multiple annotations in time, (ii) can automatically rank and filter annotations based on latent posteriors or other model statistics, and (iii) that by incorporating dynamics, modeling annotation-specific biases, noise estimation, time warping and supervision, DPCTW outperforms state-of-the-art methods for both the aggregation of multiple, yet imperfect expert annotations as well as the alignment of affective behavior.

  5. Dynamical origins of the community structure of an online multi-layer society

    NASA Astrophysics Data System (ADS)

    Klimek, Peter; Diakonova, Marina; Eguíluz, Víctor M.; San Miguel, Maxi; Thurner, Stefan

    2016-08-01

    Social structures emerge as a result of individuals managing a variety of different social relationships. Societies can be represented as highly structured dynamic multiplex networks. Here we study the dynamical origins of the specific community structures of a large-scale social multiplex network of a human society that interacts in a virtual world of a massive multiplayer online game. There we find substantial differences in the community structures of different social actions, represented by the various layers in the multiplex network. Community sizes distributions are either fat-tailed or appear to be centered around a size of 50 individuals. To understand these observations we propose a voter model that is built around the principle of triadic closure. It explicitly models the co-evolution of node- and link-dynamics across different layers of the multiplex network. Depending on link and node fluctuation probabilities, the model exhibits an anomalous shattered fragmentation transition, where one layer fragments from one large component into many small components. The observed community size distributions are in good agreement with the predicted fragmentation in the model. This suggests that several detailed features of the fragmentation in societies can be traced back to the triadic closure processes.

  6. The dynamic bacterial communities of a melting High Arctic glacier snowpack

    PubMed Central

    Hell, Katherina; Edwards, Arwyn; Zarsky, Jakub; Podmirseg, Sabine M; Girdwood, Susan; Pachebat, Justin A; Insam, Heribert; Sattler, Birgit

    2013-01-01

    Snow environments can occupy over a third of land surface area, but little is known about the dynamics of snowpack bacteria. The effect of snow melt on bacterial community structure and diversity of surface environments of a Svalbard glacier was examined using analyses of 16S rRNA genes via T-RFLP, qPCR and 454 pyrosequencing. Distinct community structures were found in different habitat types, with changes over 1 week apparent, in particular for the dominant bacterial class present, Betaproteobacteria. The differences observed were consistent with influences from depositional mode (snowfall vs aeolian dusts), contrasting snow with dust-rich snow layers and near-surface ice. Contrary to that, slush as the decompositional product of snow harboured distinct lineages of bacteria, further implying post-depositional changes in community structure. Taxa affiliated to the betaproteobacterial genus Polaromonas were particularly dynamic, and evidence for the presence of betaproteobacterial ammonia-oxidizing bacteria was uncovered, inviting the prospect that the dynamic bacterial communities associated with snowpacks may be active in supraglacial nitrogen cycling and capable of rapid responses to changes induced by snowmelt. Furthermore the potential of supraglacial snowpack ecosystems to respond to transient yet spatially extensive melting episodes such as that observed across most of Greenland's ice sheet in 2012 merits further investigation. PMID:23552623

  7. The dynamic bacterial communities of a melting High Arctic glacier snowpack.

    PubMed

    Hell, Katherina; Edwards, Arwyn; Zarsky, Jakub; Podmirseg, Sabine M; Girdwood, Susan; Pachebat, Justin A; Insam, Heribert; Sattler, Birgit

    2013-09-01

    Snow environments can occupy over a third of land surface area, but little is known about the dynamics of snowpack bacteria. The effect of snow melt on bacterial community structure and diversity of surface environments of a Svalbard glacier was examined using analyses of 16S rRNA genes via T-RFLP, qPCR and 454 pyrosequencing. Distinct community structures were found in different habitat types, with changes over 1 week apparent, in particular for the dominant bacterial class present, Betaproteobacteria. The differences observed were consistent with influences from depositional mode (snowfall vs aeolian dusts), contrasting snow with dust-rich snow layers and near-surface ice. Contrary to that, slush as the decompositional product of snow harboured distinct lineages of bacteria, further implying post-depositional changes in community structure. Taxa affiliated to the betaproteobacterial genus Polaromonas were particularly dynamic, and evidence for the presence of betaproteobacterial ammonia-oxidizing bacteria was uncovered, inviting the prospect that the dynamic bacterial communities associated with snowpacks may be active in supraglacial nitrogen cycling and capable of rapid responses to changes induced by snowmelt. Furthermore the potential of supraglacial snowpack ecosystems to respond to transient yet spatially extensive melting episodes such as that observed across most of Greenland's ice sheet in 2012 merits further investigation.

  8. The interaction of disturbances and small mammal community dynamics in a lowland forest in Belize.

    PubMed

    Klinger, R

    2006-11-01

    1. Three floods (July 2000, August 2002, September 2003) and a hurricane (October 2001) that occurred in a lowland forest in the southern Maya Mountains of Belize presented an opportunity to evaluate the influence of these disturbances on the structure of a small mammal assemblage. 2. Four terrestrial and four primarily scansorial/arboreal species were trapped July 2000-March 2005 in six grids over 14 irregularly spaced trapping periods. 3. Community dynamics were characterized more by changes in species composition than changes in diversity. The dynamics were driven by species-specific variation in abundance, with changes in composition generally, but not exclusively, due to the occurrence or disappearance of species at low abundance. Despite the disturbances, species richness remained relatively constant. Evenness within the assemblage was consistently low, primarily as a result of dominance by one species, Heteromys desmarestianus. 4. Effects of flooding on community structure were direct but relatively brief (< 1 year), and varied with the duration and intensity of flooding. Effects from the hurricane were indirect but long-lasting and strongly related to severely reduced food resources. 5. This study suggests that long-term dynamics in the structure of many animal communities in the tropics often results from interactions between direct and indirect effects of disturbance. It also suggests that community resistance will depend on variation in disturbance type and regime, but resilience will be determined by the life-history characteristics of each species.

  9. Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in Panama.

    PubMed

    Kress, W John; Erickson, David L; Jones, F Andrew; Swenson, Nathan G; Perez, Rolando; Sanjur, Oris; Bermingham, Eldredge

    2009-11-03

    The assembly of DNA barcode libraries is particularly relevant within species-rich natural communities for which accurate species identifications will enable detailed ecological forensic studies. In addition, well-resolved molecular phylogenies derived from these DNA barcode sequences have the potential to improve investigations of the mechanisms underlying community assembly and functional trait evolution. To date, no studies have effectively applied DNA barcodes sensu strictu in this manner. In this report, we demonstrate that a three-locus DNA barcode when applied to 296 species of woody trees, shrubs, and palms found within the 50-ha Forest Dynamics Plot on Barro Colorado Island (BCI), Panama, resulted in >98% correct identifications. These DNA barcode sequences are also used to reconstruct a robust community phylogeny employing a supermatrix method for 281 of the 296 plant species in the plot. The three-locus barcode data were sufficient to reliably reconstruct evolutionary relationships among the plant taxa in the plot that are congruent with the broadly accepted phylogeny of flowering plants (APG II). Earlier work on the phylogenetic structure of the BCI forest dynamics plot employing less resolved phylogenies reveals significant differences in evolutionary and ecological inferences compared with our data and suggests that unresolved community phylogenies may have increased type I and type II errors. These results illustrate how highly resolved phylogenies based on DNA barcode sequence data will enhance research focused on the interface between community ecology and evolution.

  10. Atlantic Salmon (Salmo salar L.) Gastrointestinal Microbial Community Dynamics in Relation to Digesta Properties and Diet.

    PubMed

    Zarkasi, Kamarul Zaman; Taylor, Richard S; Abell, Guy C J; Tamplin, Mark L; Glencross, Brett D; Bowman, John P

    2016-04-01

    To better unde