Science.gov

Sample records for affect disease dynamics

  1. Effects of a disease affecting a predator on the dynamics of a predator-prey system.

    PubMed

    Auger, Pierre; McHich, Rachid; Chowdhury, Tanmay; Sallet, Gauthier; Tchuente, Maurice; Chattopadhyay, Joydev

    2009-06-07

    We study the effects of a disease affecting a predator on the dynamics of a predator-prey system. We couple an SIRS model applied to the predator population, to a Lotka-Volterra model. The SIRS model describes the spread of the disease in a predator population subdivided into susceptible, infected and removed individuals. The Lotka-Volterra model describes the predator-prey interactions. We consider two time scales, a fast one for the disease and a comparatively slow one for predator-prey interactions and for predator mortality. We use the classical "aggregation method" in order to obtain a reduced equivalent model. We show that there are two possible asymptotic behaviors: either the predator population dies out and the prey tends to its carrying capacity, or the predator and prey coexist. In this latter case, the predator population tends either to a "disease-free" or to a "disease-endemic" state. Moreover, the total predator density in the disease-endemic state is greater than the predator density in the "disease-free" equilibrium (DFE).

  2. Dynamic Synchronization of Teacher-Students Affection in Affective Instruction

    ERIC Educational Resources Information Center

    Zhang, Wenhai; Lu, Jiamei

    2011-01-01

    Based on Bower's affective network theory, the article links the dynamic analysis of affective factors in affective instruction, and presents affective instruction strategic of dynamic synchronization between teacher and students to implement the best ideal mood that promotes students' cognition and affection together. In the process of teaching,…

  3. Heart Disease Affects Women of All Ages

    MedlinePlus

    ... Home Current Issue Past Issues Heart Disease Affects Women of All Ages Past Issues / Winter 2007 Table ... of this page please turn Javascript on. Young Women: Lifestyle-related factors that increase heart disease risk ...

  4. Dynamics of infectious diseases.

    PubMed

    Rock, Kat; Brand, Sam; Moir, Jo; Keeling, Matt J

    2014-01-01

    Modern infectious disease epidemiology has a strong history of using mathematics both for prediction and to gain a deeper understanding. However the study of infectious diseases is a highly interdisciplinary subject requiring insights from multiple disciplines, in particular a biological knowledge of the pathogen, a statistical description of the available data and a mathematical framework for prediction. Here we begin with the basic building blocks of infectious disease epidemiology--the SIS and SIR type models--before considering the progress that has been made over the recent decades and the challenges that lie ahead. Throughout we focus on the understanding that can be developed from relatively simple models, although accurate prediction will inevitably require far greater complexity beyond the scope of this review. In particular, we focus on three critical aspects of infectious disease models that we feel fundamentally shape their dynamics: heterogeneously structured populations, stochasticity and spatial structure. Throughout we relate the mathematical models and their results to a variety of real-world problems.

  5. Affective cycling in thyroid disease

    SciTech Connect

    Tapp, A.

    1988-05-01

    Depression in an elderly man with primary recurrent unipolar depression responded to radioactive iodine treatment of a thyrotoxic nodule, without the addition of psychotropic medications. Two months later, manic symptoms developed concomitant with the termination of the hyperthyroid state secondary to the radioactive iodine treatment. Clinical implications of these findings in relation to the possible mechanism of action of thyroid hormones on affective cycling are discussed.

  6. Dynamic musical communication of core affect.

    PubMed

    Flaig, Nicole K; Large, Edward W

    2014-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified "scene" that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience.

  7. Dynamic musical communication of core affect

    PubMed Central

    Flaig, Nicole K.; Large, Edward W.

    2013-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified “scene” that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience. PMID:24672492

  8. Disease dynamics in a dynamic social network

    NASA Astrophysics Data System (ADS)

    Christensen, Claire; Albert, István; Grenfell, Bryan; Albert, Réka

    2010-07-01

    We develop a framework for simulating a realistic, evolving social network (a city) into which a disease is introduced. We compare our results to prevaccine era measles data for England and Wales, and find that they capture the quantitative and qualitative features of epidemics in populations spanning two orders of magnitude. Our results provide unique insight into how and why the social topology of the contact network influences the propagation of the disease through the population. We argue that network simulation is suitable for concurrently probing contact network dynamics and disease dynamics in ways that prior modeling approaches cannot and it can be extended to the study of less well-documented diseases.

  9. Dynamics of Affective States during Complex Learning

    ERIC Educational Resources Information Center

    D'Mello, Sidney; Graesser, Art

    2012-01-01

    We propose a model to explain the dynamics of affective states that emerge during deep learning activities. The model predicts that learners in a state of engagement/flow will experience cognitive disequilibrium and confusion when they face contradictions, incongruities, anomalies, obstacles to goals, and other impasses. Learners revert into the…

  10. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs.

    PubMed

    Monterroso, Pedro; Garrote, Germán; Serronha, Ana; Santos, Emídio; Delibes-Mateos, Miguel; Abrantes, Joana; Perez de Ayala, Ramón; Silvestre, Fernando; Carvalho, João; Vasco, Inês; Lopes, Ana M; Maio, Elisa; Magalhães, Maria J; Mills, L Scott; Esteves, Pedro J; Simón, Miguel Ángel; Alves, Paulo C

    2016-10-31

    Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60-70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs.

  11. Disease-mediated bottom-up regulation: An emergent virus affects a keystone prey, and alters the dynamics of trophic webs

    PubMed Central

    Monterroso, Pedro; Garrote, Germán; Serronha, Ana; Santos, Emídio; Delibes-Mateos, Miguel; Abrantes, Joana; Perez de Ayala, Ramón; Silvestre, Fernando; Carvalho, João; Vasco, Inês; Lopes, Ana M.; Maio, Elisa; Magalhães, Maria J.; Mills, L. Scott; Esteves, Pedro J.; Simón, Miguel Ángel; Alves, Paulo C.

    2016-01-01

    Emergent diseases may alter the structure and functioning of ecosystems by creating new biotic interactions and modifying existing ones, producing cascading processes along trophic webs. Recently, a new variant of the rabbit haemorrhagic disease virus (RHDV2 or RHDVb) arguably caused widespread declines in a keystone prey in Mediterranean ecosystems - the European rabbit (Oryctolagus cuniculus). We quantitatively assess the impact of RHDV2 on natural rabbit populations and in two endangered apex predator populations: the Iberian lynx (Lynx pardinus) and the Spanish Imperial eagle (Aquila adalberti). We found 60–70% declines in rabbit populations, followed by decreases of 65.7% in Iberian lynx and 45.5% in Spanish Imperial eagle fecundities. A revision of the web of trophic interactions among rabbits and their dependent predators suggests that RHDV2 acts as a keystone species, and may steer Mediterranean ecosystems to management-dependent alternative states, dominated by simplified mesopredator communities. This model system stresses the importance of diseases as functional players in the dynamics of trophic webs. PMID:27796353

  12. Redefining the “carrier” state for foot-and-mouth disease from the dynamics of virus persistence in endemically affected cattle populations

    PubMed Central

    Bronsvoort, Barend M. deC.; Handel, Ian G.; Nfon, Charles K.; Sørensen, Karl-Johan; Malirat, Viviana; Bergmann, Ingrid; Tanya, Vincent N.; Morgan, Kenton L.

    2016-01-01

    The foot-and-mouth disease virus (FMDV) “carrier” state was defined by van Bekkum in 1959. It was based on the recovery of infectious virus 28 days or more post infection and has been a useful construct for experimental studies. Using historic data from 1,107 cattle, collected as part of a population based study of endemic FMD in 2000, we developed a mixed effects logistic regression model to predict the probability of recovering viable FMDV by probang and culture, conditional on the animal’s age and time since last reported outbreak. We constructed a second set of models to predict the probability of an animal being probang positive given its antibody response in three common non-structural protein (NSP) ELISAs and its age. We argue that, in natural ecological settings, the current definition of a ”carrier” fails to capture the dynamics of either persistence of the virus (as measured by recovery using probangs) or the uncertainty in transmission from such animals that the term implies. In these respects it is not particularly useful. We therefore propose the first predictive statistical models for identifying persistently infected cattle in an endemic setting that captures some of the dynamics of the probability of persistence. Furthermore, we provide a set of predictive tools to use alongside NSP ELISAs to help target persistently infected cattle. PMID:27381947

  13. Rosai-Dorfman disease affecting the maxilla

    PubMed Central

    Miniello, Thaís Gimenez; Araujo, Juliane Piragine; Sugaya, Norberto Nobuo; Elias, Fernando Melhem; de Almeida, Oslei Paes

    2016-01-01

    Rosai-Dorfman disease (RDD), formerly called sinus histiocytosis with massive lymphadenopathy, is a non-neoplastic proliferative histiocytic disorder with behavior ranging from highly aggressive to spontaneous remission. Although the lymph nodes are more commonly involved, any organ can be affected. This study aimed to describe the features and the follow-up of a case of extranodal RDD. Our patient was a 39-year-old woman who was referred with an 11-month history of pain in the right maxilla. On clinical examination, some upper right teeth presented full mobility with normal appearance of the surrounding gingiva. Radiographic exams showed an extensive bone reabsorption and maxillary sinus filled with homogeneous tissue, which sometimes showed polypoid formation. An incisional biopsy demonstrated a diffuse inflammatory infiltrate rich in foamy histiocytes displaying lymphocytes emperipolesis. Immunohistochemistry showed positivity for CD68 and S-100, and negativity for CD3, CD20, and CD30. Such features were consistent with the RDD diagnosis. The patient was referred to a hematologist and corticotherapy was administrated for 6 months. RDD is an uncommon disease that rarely affects the maxilla. In the present case, the treatment was conservative, and the patient is currently asymptomatic after 5 years of follow-up. PMID:28210574

  14. Tremor: Is Parkinson's disease a dynamical disease?

    NASA Astrophysics Data System (ADS)

    Beuter, Anne; Vasilakos, Konstantinon

    1995-03-01

    Experimental evidence has shown a plethora of short-term fluctuations in patients with Parkinson's disease. We investigate these transitory events using the concept of dynamical disease. Several examples of short-term fluctuations in tremor are analyzed, and in two cases, other systemic variables (i.e., respiration and blood pressure) are examined as well. A model for tremor, based on negative feedback with delays is proposed, and the transient events are simulated. The theoretical implications of the model suggest that interactions between the central and peripheral loops, as well as interactions between the control loops and other systemic signals, can give rise to transitory events in tremor, both in the pathological and in the normal case.

  15. Treatment of affective disorders in cardiac disease.

    PubMed

    Mavrides, Nicole; Nemeroff, Charles B

    2015-06-01

    Patients with cardiovascular disease (CVD) commonly have syndromal major depression, and depression has been associated with an increased risk of morbidity and mortality. Prevalence of depression is between 17% and 47% in CVD patients. Pharmacologic and psychotherapeutic interventions have long been studied, and in general are safe and somewhat efficacious in decreasing depressive symptoms in patients with CVD. The impact on cardiac outcomes remains unclear. The evidence from randomized controlled clinical trials indicates that antidepressants, especially selective serotonin uptake inhibitors, are overwhelmingly safe, and likely to be effective in the treatment of depression in patients with CVD. This review describes the prevalence of depression in patients with CVD, the physiological links between depression and CVD, the treatment options for affective disorders, and the clinical trials that demonstrate efficacy and safety of antidepressant medications and psychotherapy in this patient population. Great progress has been made in understanding potential mediators between major depressive disorder and CVD--both health behaviors and shared biological risks such as inflammation.

  16. Treatment of affective disorders in cardiac disease

    PubMed Central

    Mavrides, Nicole; Nemeroff, Charles B.

    2015-01-01

    Patients with cardiovascular disease (CVD) commonly have syndromal major depression, and depression has been associated with an increased risk of morbidity and mortality. Prevalence of depression is between 17% and 47% in CVD patients. Pharmacologic and psychotherapeutic interventions have long been studied, and in general are safe and somewhat efficacious in decreasing depressive symptoms in patients with CVD. The impact on cardiac outcomes remains unclear. The evidence from randomized controlled clinical trials indicates that antidepressants, especially selective serotonin uptake inhibitors, are overwhelmingly safe, and likely to be effective in the treatment of depression in patients with CVD. This review describes the prevalence of depression in patients with CVD, the physiological links between depression and CVD, the treatment options for affective disorders, and the clinical trials that demonstrate efficacy and safety of antidepressant medications and psychotherapy in this patient population. Great progress has been made in understanding potential mediators between major depressive disorder and CVD—both health behaviors and shared biological risks such as inflammation. PMID:26246788

  17. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  18. Dynamic Structure of Emotions Among Individuals with Parkinson's Disease

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Nesselroade, John R.; Shifren, Kim; McArdle, John J.

    2004-01-01

    With few exceptions, the dynamics underlying the mood structures of individuals with Parkinson's Disease have consistently been overlooked. Based on 12 participants' daily self-reports over 72 days, we identified 10 participants whose covariance matrices for positive and negative affect were similar enough to warrant pooling. Dynamic factor models…

  19. Ticks and Tickborne Diseases Affecting Military Personnel

    DTIC Science & Technology

    1989-09-01

    by disease transmission. Various bacteria , rickettsiae , viruses, and protozoans are transmitted to people via tick bites (see Chapter 4). Relatively...Ticks may harbor and transmit to people various disease agents such as protozoa, viruses, bacteria , rickettsiae , and toxins. Several factors are...Natural history. The causative agent of RMSF, Rickettsia rickettsii , is transmitted to man by several species of ticks. In the U.S., 2 of the most

  20. Osmolyte cooperation affects turgor dynamics in plants

    PubMed Central

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-01-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes. PMID:27445173

  1. Osmolyte cooperation affects turgor dynamics in plants

    NASA Astrophysics Data System (ADS)

    Argiolas, Alfredo; Puleo, Gian Luigi; Sinibaldi, Edoardo; Mazzolai, Barbara

    2016-07-01

    Scientists have identified turgor-based actuation as a fundamental mechanism in plant movements. Plant cell turgor is generated by water influx due to the osmolyte concentration gradient through the cell wall and the plasma membrane behaving as an osmotic barrier. Previous studies have focused on turgor modulation with respect to potassium chloride (KCl) concentration changes, although KCl is not efficiently retained in the cell, and many other compounds, including L-glutamine (L-Gln) and D-glucose (D-Glc), are present in the cytosol. In fact, the contributions of other osmolytes to turgor dynamics remain to be elucidated. Here, we show the association of osmolytes and their consequent cooperative effects on the time-dependent turgor profile generated in a model cytosol consisting of KCl, D-Glc and L-Gln at experimentally measured plant motor/generic cell concentrations and at modified concentrations. We demonstrate the influence and association of the osmolytes using osmometry and NMR measurements. We also show, using a plant cell-inspired device we previously developed, that osmolyte complexes, rather than single osmolytes, permit to obtain higher turgor required by plant movements. We provide quantitative cues for deeper investigations of osmolyte transport for plant movement, and reveal the possibility of developing osmotic actuators exploiting a dynamically varying concentration of osmolytes.

  2. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  3. Studies of dynamical processes affecting global climate

    SciTech Connect

    Keller, C.; Cooper, D.; Eichinger, W.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development project at the Los Alamos National Laboratory (LANL). The main objective was, by a combined theoretical and observational approach, to develop improved models of dynamic processes in the oceans and atmosphere and to incorporate them into large climate codes, chiefly in four main areas: numerical physics, chemistry, water vapor, and ocean-atmosphere interactions. Main areas of investigation included studies of: cloud parameterizations for global climate codes, Lidar and the planetary boundary layer, chemistry, climate variability using coupled ocean-atmospheric models, and numerical physical methods. This project employed a unique approach that included participation of a number of University of California faculty, postdoctoral fellows and graduate students who collaborated with Los Alamos research staff on specific tasks, thus greatly enhancing the research output. Overall accomplishments during the sensing of the atmospheric planetary were: (1) first two- and three-dimensional remote sensing of the atmospheric planetary boundary layer using Lidars, (2) modeling of 20-year cycle in both pressure and sea surface temperatures in North Pacific, (3) modeling of low frequency internal variability, (4) addition of aerosols to stratosphere to simulate Pinatubo effect on ozone, (5) development of fast, comprehensive chemistry in the troposphere for urban pollution studies, (6) new prognostic cloud parameterization in global atmospheric code remedied problems with North Pacific atmospheric circulation and excessive equatorial precipitation, (7) development of a unique aerosol analysis technique, the aerosol time-of-flight mass spectrometer (ATOFMS), which allows real-time analysis of the size and chemical composition of individual aerosol particles, and (8) numerical physics applying Approximate Inertial Manifolds to ocean circulation. 14 refs., 6 figs.

  4. Swimming Dynamics of the Lyme Disease Spirochete

    NASA Astrophysics Data System (ADS)

    Vig, Dhruv K.; Wolgemuth, Charles W.

    2012-11-01

    The Lyme disease spirochete, Borrelia burgdorferi, swims by undulating its cell body in the form of a traveling flat wave, a process driven by rotating internal flagella. We study B. burgdorferi’s swimming by treating the cell body and flagella as linearly elastic filaments. The dynamics of the cell are then determined from the balance between elastic and resistive forces and moments. We find that planar, traveling waves only exist when the flagella are effectively anchored at both ends of the bacterium and that these traveling flat waves rotate as they undulate. The model predicts how the undulation frequency is related to the torque from the flagellar motors and how the stiffness of the cell body and flagella affect the undulations and morphology.

  5. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production

    PubMed Central

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  6. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role.

  7. Interfaces between mitochondrial dynamics and disease.

    PubMed

    Mishra, Prashant

    2016-09-01

    In the cellular context, mitochondria display a number of dynamic behaviors including fusion, division (or fission), directed transport, and targeted destruction (mitophagy). The relevance of these processes to human diseases has been intensively studied over the last several years, and emphasize the importance of mitochondrial dynamics to the central nervous system. Intriguingly, a common theme is that these behaviors do not function in isolation, but influence one another either directly or indirectly. Here, we review the dynamic properties of mitochondria and summarize their relationships to human diseases.

  8. Network Diversity and Affect Dynamics: The Role of Personality Traits

    PubMed Central

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals’ subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states–e.g. an increase in the positive affect state or a decrease in the negative affect state–for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being. PMID:27035904

  9. Network Diversity and Affect Dynamics: The Role of Personality Traits.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals' subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states--e.g. an increase in the positive affect state or a decrease in the negative affect state--for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being.

  10. Daily Interpersonal and Affective Dynamics in Personality Disorder

    PubMed Central

    Wright, Aidan G.C.; Hopwood, Christopher J.; Simms, Leonard J.

    2015-01-01

    In this naturalistic study we adopt the lens of interpersonal theory to examine between-and within-person differences in dynamic processes of daily affect and interpersonal behaviors among individuals (N = 101) previously diagnosed with personality disorders who completed daily diaries over the course of 100 days. Dispositional ratings of interpersonal problems and measures of daily stress were used as predictors of daily shifts in interpersonal behavior and affect in multilevel models. Results indicate that ~40%–50% of the variance in interpersonal behavior and affect is due to daily fluctuations, which are modestly related to dispositional measures of interpersonal problems but strongly related to daily stress. The findings support conceptions of personality disorders as a dynamic form of psychopathology involving the individuals interacting with and regulating in response to the contextual features of their environment. PMID:26200849

  11. [New therapies for children affected by bone diseases].

    PubMed

    Ballhausen, Diana; Dépraz, Nuria Garcia; Kern, Ilse; Unger, Sheila; Bonafé, Luisa

    2012-02-22

    Considerable progress has been achieved in recent years in treating children affected by bone diseases. Advances in the understanding of the molecular pathophysiology of genetic bone diseases have led to the development of enzyme replacement therapies for various lysosomal storage diseases, following the breakthrough initiated in treating Gaucher disease. Clinical studies are underway with tailored molecules correcting bone fragility and alleviating chronic bone pain and other manifestations of hypophosphatasia, or promoting growth of long bones in achondroplasia patients. We further report our very encouraging experience with intravenous bisphosphonate treatment in children suffering from secondary osteopenia and the high prevalence of calcium and vitamin D deficits in these severely disabled children.

  12. Affect and Self-Rated Health: A Dynamic Approach with Older Adults

    PubMed Central

    Segerstrom, Suzanne C.

    2015-01-01

    Objective Self-rated health (SRH) predicts mortality above and beyond objective health risks and as such comprises an important aspect of health. Established contributors to self-rated health include affect, age, and disease, but neither their dynamic nor their synergistic contributions to SRH have been comprehensively tested. Methods The present study employed older adults (N = 150; M age = 75 years) and a longitudinal design with 6-month waves over up to 5 years. Positive and negative affect (PA, NA), chronic disease, and SRH were assessed at each wave. Results In multilevel models with single predictors, older age, more chronic disease, and higher NA predicted worse SRH, whereas higher PA predicted better SRH. Affect predicted SRH both between and within people. In multilevel models with interactions between affect and age or disease, individual differences in NA predicted worse SRH primarily in older people. Within people, changes in NA were associated with changes in SRH, but more so in younger than in older people. Within people, changes in PA were associated with changes in SRH, but only when health was better than usual. Conclusions There were both dynamic and synergistic relationships between affect and SRH that could only emerge in a multilevel, multivariable design. In the case of NA, between-person, trait NA had the opposite relationship to SRH and age compared with within-person, state NA. Which component of this relationship predicts mortality is an important question for future research. PMID:23914813

  13. Factors affecting the dynamic response of the seated subject.

    PubMed

    Pope, M H; Broman, H; Hansson, T

    1990-06-01

    An impact method, combined with pins placed into the spinous process at L3, has been used to establish the dynamic response of the spine of the seated subject. The resonant frequency is at 4-5 Hz, due primarily to a vertical response of the buttocks-pelvis system. A maximum attenuation at 8 Hz occurs because of a second resonance due to pelvic rotation. The attenuation is also affected by additional load and by the addition of a helmet. Neck braces have no dynamic effect.

  14. Latin America: native populations affected by early onset periodontal disease.

    PubMed

    Nowzari, Hessam; Botero, Javier Enrique

    2011-06-01

    Millions of individuals are affected by early onset periodontal disease in Latin America, a continent that includes more than 20 countries. The decision-makers claim that the disease is not commonly encountered. In 2009, 280,919 authorized immigrants were registered in the United States versus 5,460,000 unauthorized (2,600,000 in California). The objective of the present article is to raise awareness about the high prevalence of the disease among Latin Americans and the good prognosis of preventive measures associated with minimal financial cost.

  15. Dynamic diseases in neurology and psychiatry

    NASA Astrophysics Data System (ADS)

    Milton, John; Black, Deborah

    1995-03-01

    Thirty-two (32) periodic diseases of the nervous system are identified in which symptoms and/or signs recur. In 10/32, the recurrence of a symptom complex is one of the defining features of the illness, whereas in 22/32 oscillatory signs occur in the setting of an ongoing nervous system disorder. We discuss the possibility that these disorders may be dynamic diseases.

  16. Alendronate affects calcium dynamics in cardiomyocytes in vitro.

    PubMed

    Kemeny-Suss, Naomi; Kasneci, Amanda; Rivas, Daniel; Afilalo, Jonathan; Komarova, Svetlana V; Chalifour, Lorraine E; Duque, Gustavo

    2009-01-01

    Therapy with bisphosphonates, including alendronate (ALN), is considered a safe and effective treatment for osteoporosis. However, recent studies have reported an unexpected increase in serious atrial fibrillation (AF) in patients treated with bisphosphonates. The mechanism that explains this side effect remains unknown. Since AF is associated with an altered sarcoendoplasmic reticulum calcium load, we studied how ALN affects cardiomyocyte calcium homeostasis and protein isoprenylation in vitro. Acute and long-term (48h) treatment of atrial and ventricular cardiomyocytes with ALN (10(-8)-10(-6)M) was performed. Changes in calcium dynamics were determined by both fluorescence measurement of cytosolic free Ca(2+) concentration and western blot analysis of calcium-regulating proteins. Finally, effect of ALN on protein farnesylation was also identified. In both atrial and ventricular cardiomyocytes, ALN treatment delayed and diminished calcium responses to caffeine. Only in atrial cells, long-term exposure to ALN-induced transitory calcium oscillations and led to the development of oscillatory component in calcium responses to caffeine. Changes in calcium dynamics were accompanied by changes in expression of proteins controlling sarcoendoplasmic reticulum calcium. In contrast, ALN minimally affected protein isoprenylation in these cells. In summary, treatment of atrial cardiomyocytes with ALN-induced abnormalities in calcium dynamics consistent with induction of a self-stimulatory, pacemaker-like behavior, which may contribute to the development of cardiac side effects associated with these drugs.

  17. Predicting when climate-driven phenotypic change affects population dynamics.

    PubMed

    McLean, Nina; Lawson, Callum R; Leech, Dave I; van de Pol, Martijn

    2016-06-01

    Species' responses to climate change are variable and diverse, yet our understanding of how different responses (e.g. physiological, behavioural, demographic) relate and how they affect the parameters most relevant for conservation (e.g. population persistence) is lacking. Despite this, studies that observe changes in one type of response typically assume that effects on population dynamics will occur, perhaps fallaciously. We use a hierarchical framework to explain and test when impacts of climate on traits (e.g. phenology) affect demographic rates (e.g. reproduction) and in turn population dynamics. Using this conceptual framework, we distinguish four mechanisms that can prevent lower-level responses from impacting population dynamics. Testable hypotheses were identified from the literature that suggest life-history and ecological characteristics which could predict when these mechanisms are likely to be important. A quantitative example on birds illustrates how, even with limited data and without fully-parameterized population models, new insights can be gained; differences among species in the impacts of climate-driven phenological changes on population growth were not explained by the number of broods or density dependence. Our approach helps to predict the types of species in which climate sensitivities of phenotypic traits have strong demographic and population consequences, which is crucial for conservation prioritization of data-deficient species.

  18. Identification of mutations in Colombian patients affected with Fabry disease.

    PubMed

    Uribe, Alfredo; Mateus, Heidi Eliana; Prieto, Juan Carlos; Palacios, Maria Fernanda; Ospina, Sandra Yaneth; Pasqualim, Gabriela; da Silveira Matte, Ursula; Giugliani, Roberto

    2015-12-15

    Fabry Disease (FD) is an X-linked inborn error of glycosphingolipid catabolism, caused by a deficiency of the lisosomal α-galactosidase A (AGAL). The disorder leads to a vascular disease secondary to the involvement of kidney, heart and the central nervous system. The mutation analysis is a valuable tool for diagnosis and genetic counseling. Although more than 600 mutations have been identified, most mutations are private. Our objective was to describe the analysis of nine Colombian patients with Fabry disease by automated sequencing of the seven exons of the GLA gene. Two novel mutations were identified in two patients affected with the classical subtype of FD, in addition to other 6 mutations previously reported. The present study confirms the heterogeneity of mutations in Fabry disease and the importance of molecular analysis for genetic counseling, female heterozygotes detection as well as therapeutic decisions.

  19. Graft-versus-host disease affecting oral cavity. A review.

    PubMed

    Margaix-Muñoz, Maria; Bagán, José V; Jiménez, Yolanda; Sarrión, María-Gracia; Poveda-Roda, Rafael

    2015-02-01

    Graft versus host disease (GVHD) is one of the most frequent and serious complications of hematopoietic stem cell transplantation, and is regarded as the leading cause of late mortality unrelated to the underlying malignant disease. GVHD is an autoimmune and alloimmune disorder that usually affects multiple organs and tissues, and exhibits a variable clinical course. It can manifest in either acute or chronic form. The acute presentation of GVHD is potentially fatal and typically affects the skin, gastrointestinal tract and liver. The chronic form is characterized by the involvement of a number of organs, including the oral cavity. Indeed, the oral cavity may be the only affected location in chronic GVHD. The clinical manifestations of chronic oral GVHD comprise lichenoid lesions, hyperkeratotic plaques and limited oral aperture secondary to sclerosis. The oral condition is usually mild, though moderate to severe erosive and ulcerated lesions may also be seen. The diagnosis is established from the clinical characteristics, though confirmation through biopsy study is sometimes needed. Local corticosteroids are the treatment of choice, offering overall response rates of close to 50%. Extracorporeal photopheresis and systemic corticosteroids in turn constitute second line treatment. Oral chronic GVHD is not considered a determinant factor for patient survival, which is close to 52% five years after diagnosis of the condition. Key words:Chronic graft-versus-host disease, oral chronic graft-versus-host disease, pathogenics, management, survival.

  20. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    PubMed

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing.

  1. Mitochondrial dynamics in mammalian health and disease.

    PubMed

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  2. Planning horizon affects prophylactic decision-making and epidemic dynamics

    PubMed Central

    Ridenhour, Benjamin J.; Krone, Stephen M.

    2016-01-01

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon—the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals’ payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adopt prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. These effects can be made stronger by increasing the behavioral decision frequency or distorting an individual’s perceived risk of infection. PMID:27843714

  3. Nucleosomal arrangement affects single-molecule transcription dynamics

    PubMed Central

    Fitz, Veronika; Shin, Jaeoh; Ehrlich, Christoph; Farnung, Lucas; Cramer, Patrick; Zaburdaev, Vasily; Grill, Stephan W.

    2016-01-01

    In eukaryotes, gene expression depends on chromatin organization. However, how chromatin affects the transcription dynamics of individual RNA polymerases has remained elusive. Here, we use dual trap optical tweezers to study single yeast RNA polymerase II (Pol II) molecules transcribing along a DNA template with two nucleosomes. The slowdown and the changes in pausing behavior within the nucleosomal region allow us to determine a drift coefficient, χ, which characterizes the ability of the enzyme to recover from a nucleosomal backtrack. Notably, χ can be used to predict the probability to pass the first nucleosome. Importantly, the presence of a second nucleosome changes χ in a manner that depends on the spacing between the two nucleosomes, as well as on their rotational arrangement on the helical DNA molecule. Our results indicate that the ability of Pol II to pass the first nucleosome is increased when the next nucleosome is turned away from the first one to face the opposite side of the DNA template. These findings help to rationalize how chromatin arrangement affects Pol II transcription dynamics. PMID:27791062

  4. Choices, beliefs, and infectious disease dynamics.

    PubMed

    Auld, M Christopher

    2003-05-01

    A dynamic model of risky behavior in the midst of an epidemic is discussed. The key result is that pessimistic expectations over the future of the epidemic induce more current risky behavior. Numerical simulation of equilibrium epidemics shows that this effect can accelerate spread of the disease in an epidemic's early stages and that the effect of policy interventions, such as preventative vaccines, may depend on whether the intervention was anticipated.

  5. The reproduction in women affected by cooley disease

    PubMed Central

    Pafumi, Carlo; Leanza, Vito; Coco, Luana; Vizzini, Stefania; Ciotta, Lilliana; Messina, Alessandra; Leanza, Gianluca; Zarbo, Giuseppe; D'Agati, Alfio; Palumbo, Marco Antonio; Iemmola, Alessandra; Gulino, Ferdinando Antonio; Teodoro, Maria Cristina; Attard, Matthew; Plesca, Alina Cristina; Soares, Catarina; Kouloubis, Nina; Chammas, Mayada

    2011-01-01

    The health background management and outcomes of 5 pregnancies in 4 women affected by Cooley Disease, from Paediatric Institute of Catania University, are described, considering the preconceptual guidances and cares for such patients. These patients were selected among a group of 100 thalassemic women divided into three subgroups, according to their first and successive menstruation characteristics: i) patients with primitive amenorrhoea, ii) patients with secondary amenorrhoea and iii) patients with normal menstruation. Only one woman, affected by primitive amenorrhoea, needed the induction of ovulation. A precise and detailed pre-pregnancy assessment was effected before each conception. This was constituted by a series of essays, including checks for diabetes and hypothyroidism, for B and C hepatitis and for blood group antibodies. Moreover were evaluated: cardiac function, rubella immunity and transaminases. Other pregnancy monitoring, and cares during labour and delivery were effected according to usual obstetrics practice. All the women were in labour when she were 38 week pregnant, and the outcome were five healthy babies born at term, weighting between 2600 and 3200gs. The only complication was the Caesarean section. The improvements of current treatments, especially in the management of iron deposits, the prolongation of survival rate, will result in a continuous increase of pregnancies in thalassemic women. Pregnancy is now a real possibility for women affected by such disease. We are furthermore studying the possibility to collect the fetus' umbilical cord blood, after the delivery, to attempt eterologus transplantation to his mother trying to get a complete marrow reconstitution. PMID:22184526

  6. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome.

    PubMed

    Zarrinpar, Amir; Chaix, Amandine; Yooseph, Shibu; Panda, Satchidananda

    2014-12-02

    The gut microbiome and daily feeding/fasting cycle influence host metabolism and contribute to obesity and metabolic diseases. However, fundamental characteristics of this relationship between the feeding/fasting cycle and the gut microbiome are unknown. Our studies show that the gut microbiome is highly dynamic, exhibiting daily cyclical fluctuations in composition. Diet-induced obesity dampens the daily feeding/fasting rhythm and diminishes many of these cyclical fluctuations. Time-restricted feeding (TRF), in which feeding is consolidated to the nocturnal phase, partially restores these cyclical fluctuations. Furthermore, TRF, which protects against obesity and metabolic diseases, affects bacteria shown to influence host metabolism. Cyclical changes in the gut microbiome from feeding/fasting rhythms contribute to the diversity of gut microflora and likely represent a mechanism by which the gut microbiome affects host metabolism. Thus, feeding pattern and time of harvest, in addition to diet, are important parameters when assessing the microbiome's contribution to host metabolism.

  7. Diet and Feeding Pattern Affect the Diurnal Dynamics of the Gut Microbiome

    PubMed Central

    Zarrinpar, Amir; Chaix, Amandine; Yooseph, Shibu; Panda, Satchidananda

    2014-01-01

    SUMMARY The gut microbiome and daily feeding/fasting cycle influence host metabolism and contributes to obesity and metabolic diseases. However, fundamental characteristics of this relationship between the feeding/fasting cycle and the gut microbiome is unknown. Our studies show that the gut microbiome is highly dynamic, exhibiting daily cyclical fluctuations in composition. Diet-induced obesity dampens the daily feeding/fasting rhythm and diminishes many of these cyclical fluctuations. Time restricted feeding (TRF), in which feeding is consolidated to the nocturnal phase, partially restores these cyclical fluctuations. Furthermore, TRF, which protects against obesity and metabolic diseases, affects bacteria shown to influence host metabolism. Cyclical changes in the gut microbiome from feeding/fasting rhythms contribute to the diversity of gut microflora and likely represent a mechanism by which the gut microbiome affects host metabolism. Thus, feeding pattern and time of harvest, in addition to diet, are important parameters when assessing the microbiome’s contribution to host metabolism. PMID:25470548

  8. Dynamics of alpha oscillations elucidate facial affect recognition in schizophrenia.

    PubMed

    Popov, Tzvetan G; Rockstroh, Brigitte S; Popova, Petia; Carolus, Almut M; Miller, Gregory A

    2014-03-01

    Impaired facial affect recognition is characteristic of schizophrenia and has been related to impaired social function, but the relevant neural mechanisms have not been fully identified. The present study sought to identify the role of oscillatory alpha activity in that deficit during the process of facial emotion recognition. Neuromagnetic brain activity was monitored while 44 schizophrenia patients and 44 healthy controls viewed 5-s videos showing human faces gradually changing from neutral to fearful or happy expressions or from the neutral face of one poser to the neutral face of another. Recognition performance was determined separately by self-report. Relative to prestimulus baseline, controls exhibited a 10- to 15-Hz power increase prior to full recognition and a 10- to 15-Hz power decrease during the postrecognition phase. These results support recent proposals about the function of alpha-band oscillations in normal stimulus evaluation. The patients failed to show this sequence of alpha power increase and decrease and also showed low 10- to 15-Hz power and high 10- to 15-Hz connectivity during the prestimulus baseline. In light of the proposal that a combination of alpha power increase and functional disconnection facilitates information intake and processing, the finding of an abnormal association of low baseline alpha power and high connectivity in schizophrenia suggests a state of impaired readiness that fosters abnormal dynamics during facial affect recognition.

  9. Mitochondrial dynamics, mitophagy and cardiovascular disease

    PubMed Central

    Vásquez‐Trincado, César; García‐Carvajal, Ivonne; Pennanen, Christian; Parra, Valentina; Hill, Joseph A.; Rothermel, Beverly A.

    2016-01-01

    Abstract Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. ‘Mitochondrial dynamics’, the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia–reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases. PMID:26537557

  10. Oral necrotizing microvasculitis in a patient affected by Kawasaki disease.

    PubMed

    Scardina, Giuseppe Alessandro; Fucà, Gerlandina; Carini, Francesco; Valenza, Vincenzo; Spicola, Michele; Procaccianti, Paolo; Messina, Pietro; Maresi, Emiliano

    2007-12-01

    Kawasaki disease (KD) was first described in 1967 by Kawasaki, who defined it as "mucocutaneous lymph node syndrome". KD is an acute systemic vasculitis, which mainly involves medium calibre arteries; its origin is unknown, and it is observed in children under the age of 5, especially in their third year. The principal presentations of KD include fever, bilateral nonexudative conjunctivitis, erythema of the lips and oral mucosa, changes in the extremities, rash, and cervical lymphadenopathy. Within KD, oral mucositis - represented by diffuse mucous membrane erythema, lip and tongue reddening and lingual papillae hypertrophy with subsequent development of strawberry tongue - can occur both in the acute stage of the disease (0-9 days), and in the convalescence stage (>25 days) as a consequence of the pharmacological treatment. KD vascular lesions are defined as systemic vasculitis instead of systemic arteritis. This study analyzed the anatomical-pathological substrata of oral mucositis in a baby affected by Kawasaki disease and suddenly deceased for cardiac tamponade caused by coronary aneurysm rupture (sudden cardiac death of a mechanical type).

  11. The Role of Caretakers in Disease Dynamics

    NASA Astrophysics Data System (ADS)

    Noble, Charleston; Bagrow, James P.; Brockmann, Dirk

    2013-08-01

    One of the key challenges in modeling the dynamics of contagion phenomena is to understand how the structure of social interactions shapes the time course of a disease. Complex network theory has provided significant advances in this context. However, awareness of an epidemic in a population typically yields behavioral changes that correspond to changes in the network structure on which the disease evolves. This feedback mechanism has not been investigated in depth. For example, one would intuitively expect susceptible individuals to avoid other infecteds. However, doctors treating patients or parents tending sick children may also increase the amount of contact made with an infecteds, in an effort to speed up recovery but also exposing themselves to higher risks of infection. We study the role of these caretaker links in an adaptive network models where individuals react to a disease by increasing or decreasing the amount of contact they make with infected individuals. We find that, for both homogeneous networks and networks possessing large topological variability, disease prevalence is decreased for low concentrations of caretakers whereas a high prevalence emerges if caretaker concentration passes a well defined critical value.

  12. Computational fluid dynamics in coronary artery disease.

    PubMed

    Sun, Zhonghua; Xu, Lei

    2014-12-01

    Computational fluid dynamics (CFD) is a widely used method in mechanical engineering to solve complex problems by analysing fluid flow, heat transfer, and associated phenomena by using computer simulations. In recent years, CFD has been increasingly used in biomedical research of coronary artery disease because of its high performance hardware and software. CFD techniques have been applied to study cardiovascular haemodynamics through simulation tools to predict the behaviour of circulatory blood flow in the human body. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of coronary artery geometry, thus, identifying risk factors for development and progression of coronary artery disease. This review aims to provide an overview of the CFD applications in coronary artery disease, including biomechanics of atherosclerotic plaques, plaque progression and rupture; regional haemodynamics relative to plaque location and composition. A critical appraisal is given to a more recently developed application, fractional flow reserve based on CFD computation with regard to its diagnostic accuracy in the detection of haemodynamically significant coronary artery disease.

  13. Dynamics of fish diseases in the lower Elbe River

    NASA Astrophysics Data System (ADS)

    Möller, H.

    1984-03-01

    As part of a survey on population dynamics and ecology of fishesin the Elbe River, seasonal and regional fluctuations of external fish diseases were studied from the open North Sea to Hamburg in 1981 1982. Clinical signs of 11 different diseases, several of them not being recorded before, were noted in 22 fish species. Averaged over all samples, the total disease prevalence was below 1 % in 16 species. Highest prevalences were found in smelt (12.7 %), eel (9.2 %), and flounder (5.5 %). The frequency of most diseases increased in larger (older) fish. High prevalences of skeletal abnormalities in cod could be related to abnormal migration habits of diseased fish. Spawning papillomatosis, skin ulceration, and fin rot in smelt occurred predominantly during the spawning season. Most diseases observed occurred at relatively high prevalences in the central Elbe estuary between Cuxhaven and Brunsbüttel. This is most obvious for lymphocystis, fin rot, skin ulceration, and bleaching syndrome in flounder, but such a tendency also seems to occur in cauliflower disease of eel, as well as spawning papillomatosis and pharyngeal granuloma in smelt. This area is less heavily polluted and less frequently affected by oxygen deficiency than the area upstream of Glückstadt, where diseases in general occurred at lower frequencies. Therefore, it is concluded that neither pollution nor lack of oxygen are the main triggers for the outbreak of diseases in Elbe fish. It is supposed that large tidal fluctuations of salinity are a major stress factor for fish in the estuary between Cuxhaven and Brunsbüttel. Flounder from this area usually are in a relatively bad nutritional state. Their condition factor increases significantly towards Hamburg, while their disease prevalence decreases in the same direction.

  14. The cohort effect in childhood disease dynamics.

    PubMed

    He, Daihai; Earn, David J D

    2016-07-01

    The structure of school terms is well known to influence seasonality of transmission rates of childhood infectious diseases in industrialized countries. A less well-studied aspect of school calendars that influences disease dynamics is that all children enter school on the same day each year. Rather than a continuous inflow, there is a sudden increase in the number of susceptible individuals in schools at the start of the school year. Based on the standard susceptible-exposed-infectious-recovered (SEIR) model, we show that school cohort entry alone is sufficient to generate a biennial epidemic pattern, similar to many observed time series of measles incidence. In addition, cohort entry causes an annual decline in the effective transmission that is evident in observed time series, but not in models without the cohort effect. Including both cohort entry and school terms yields a model fit that is significantly closer to observed measles data than is obtained with either cohort entry or school terms alone (and just as good as that obtained with Schenzle's realistic age-structured model). Nevertheless, we find that the bifurcation structure of the periodically forced SEIR model is nearly identical, regardless of whether forcing arises from cohort entry, school terms and any combination of the two. Thus, while detailed time-series fits are substantially improved by including both cohort entry and school terms, the overall qualitative dynamic structure of the SEIR model appears to be insensitive to the origin of periodic forcing.

  15. Mathematical modeling of infectious disease dynamics

    PubMed Central

    Siettos, Constantinos I.; Russo, Lucia

    2013-01-01

    Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814

  16. Coinfection Dynamics of Two Diseases in a Single Host Population.

    PubMed

    Gao, Daozhou; Porco, Travis C; Ruan, Shigui

    2016-10-01

    A susceptible-infectious-susceptible (SIS) epidemic model that describes the coinfection and cotransmission of two infectious diseases spreading through a single population is studied. The host population consists of two subclasses: susceptible and infectious, and the infectious individuals are further divided into three subgroups: those infected by the first agent/pathogen, the second agent/pathogen, and both. The basic reproduction numbers for all cases are derived which completely determine the global stability of the system if the presence of one agent/pathogen does not affect the transmission of the other. When the constraint on the transmissibility of the dually infected hosts is removed, we introduce the invasion reproduction number, compare it with two other types of reproduction number and show the uniform persistence of both diseases under certain conditions. Numerical simulations suggest that the system can display much richer dynamics such as backward bifurcation, bistability and Hopf bifurcation.

  17. Computational fluid dynamics in cardiovascular disease.

    PubMed

    Lee, Byoung-Kwon

    2011-08-01

    Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and

  18. Demography, disease and the devil: life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii).

    PubMed

    Lachish, Shelly; McCallum, Hamish; Jones, Menna

    2009-03-01

    1. Examining the demographic responses of populations to disease epidemics and the nature of compensatory responses to perturbation from epidemics is critical to our understanding of the processes affecting population dynamics and our ability to conserve threatened species. Such knowledge is currently available for few systems. 2. We examined changes to the demography and life-history traits of a population of Tasmanian devils (Sarcophilus harrisii) following the arrival of a debilitating infectious disease, devil facial tumour disease (DFTD), and investigated the population's ability to compensate for the severe population perturbation caused by this epizootic. 3. There was a significant change to the age structure following the arrival of DFTD to the Freycinet Peninsula. This shift to a younger population was caused by the loss of older individuals from the population as a direct consequence of DFTD-driven declines in adult survival rates. 4. Offspring sex ratios of disease mothers were more female biased than those of healthy mothers, indicating that devils may facultatively adjust offspring sex ratios in response to disease-induced changes in maternal condition. 5. We detected evidence of reproductive compensation in response to disease impacts via a reduction in the age of sexual maturity of females (an increase in precocial breeding) over time. 6. The strength of this compensatory response appeared to be limited by factors that constrain the ability of individuals to reach a critical size for sexual maturity in their first year, because of the time limit dictated by the annual breeding season. 7. The ongoing devastating impacts of this disease for adult survival and the apparent reliance of precocial breeding on rapid early growth provide the opportunity for evolution to favour of this new life-history pattern, highlighting the potential for novel infectious diseases to be strong selective forces on life-history evolution.

  19. Integrating association data and disease dynamics: an illustration using African Buffalo in Kruger National Park

    USGS Publications Warehouse

    Cross, Paul C.; James O, Lloyd-Smith; Bowers, Justin A.; Hay, Craig T.; Hofmeyr, Markus; Getz, Wayne M.

    2004-01-01

    Recognition is a prerequisite for non-random association amongst individuals. We explore how non-random association patterns (i.e. who spends time with whom) affect disease dynamics. We estimated the amount of time individuals spent together per month using radio-tracking data from African buffalo and incorporated these data into a dynamic social network model. The dynamic nature of the network has a strong influence on simulated disease dynamics particularly for diseases with shorter infectious periods. Cluster analyses of the association data demonstrated that buffalo herds were not as well defined as previously thought. Associations were more tightly clustered in 2002 than 2003, perhaps due to drier conditions in 2003. As a result, diseases may spread faster during drought conditions due to increased population mixing. Association data are often collected but this is the first use of empirical data in a network disease model in a wildlife population.

  20. A Hierarchical Latent Stochastic Differential Equation Model for Affective Dynamics

    ERIC Educational Resources Information Center

    Oravecz, Zita; Tuerlinckx, Francis; Vandekerckhove, Joachim

    2011-01-01

    In this article a continuous-time stochastic model (the Ornstein-Uhlenbeck process) is presented to model the perpetually altering states of the core affect, which is a 2-dimensional concept underlying all our affective experiences. The process model that we propose can account for the temporal changes in core affect on the latent level. The key…

  1. Dynamics of Affective Experience and Behavior in Depressed Adolescents

    ERIC Educational Resources Information Center

    Sheeber, Lisa B.; Allen, Nicholas B.; Leve, Craig; Davis, Betsy; Shortt, Joann Wu; Katz, Lynn Fainsilber

    2009-01-01

    Background: Depression is often characterized as a disorder of affect regulation. However, research focused on delineating the key dimensions of affective experience (other than valence) that are abnormal in depressive disorder has been scarce, especially in child and adolescent samples. As definitions of affect regulation center around processes…

  2. Mitochondrial dynamics and inherited peripheral nerve diseases.

    PubMed

    Pareyson, Davide; Saveri, Paola; Sagnelli, Anna; Piscosquito, Giuseppe

    2015-06-02

    Peripheral nerves have peculiar energetic requirements because of considerable length of axons and therefore correct mitochondria functioning and distribution along nerves is fundamental. Mitochondrial dynamics refers to the continuous change in size, shape, and position of mitochondria within cells. Abnormalities of mitochondrial dynamics produced by mutations in proteins involved in mitochondrial fusion (mitofusin-2, MFN2), fission (ganglioside-induced differentiation-associated protein-1, GDAP1), and mitochondrial axonal transport usually present with a Charcot-Marie-Tooth disease (CMT) phenotype. MFN2 mutations cause CMT type 2A by altering mitochondrial fusion and trafficking along the axonal microtubule system. CMT2A is an axonal autosomal dominant CMT type which in most cases is characterized by early onset and rather severe course. GDAP1 mutations also alter fission, fusion and transport of mitochondria and are associated either with recessive demyelinating (CMT4A) and axonal CMT (AR-CMT2K) and, less commonly, with dominant, milder, axonal CMT (CMT2K). OPA1 (Optic Atrophy-1) is involved in fusion of mitochondrial inner membrane, and its heterozygous mutations lead to early-onset and progressive dominant optic atrophy which may be complicated by other neurological symptoms including peripheral neuropathy. Mutations in several proteins fundamental for the axonal transport or forming the axonal cytoskeleton result in peripheral neuropathy, i.e., CMT, distal hereditary motor neuropathy (dHMN) or hereditary sensory and autonomic neuropathy (HSAN), as well as in hereditary spastic paraplegia. Indeed, mitochondrial transport involves directly or indirectly components of the kinesin superfamily (KIF5A, KIF1A, KIF1B), responsible of anterograde transport, and of the dynein complex and related proteins (DYNC1H1, dynactin, dynamin-2), implicated in retrograde flow. Microtubules, neurofilaments, and chaperones such as heat shock proteins (HSPs) also have a fundamental

  3. Spatiotemporal and species-specific patterns of diseases affecting crustose coralline algae in Curaçao

    NASA Astrophysics Data System (ADS)

    Quéré, G.; Steneck, R. S.; Nugues, M. M.

    2015-03-01

    Distribution and abundance of coral diseases have been well documented, but only a few studies considered diseases affecting crustose coralline algae (CCA), particularly at the species level. We investigated the spatiotemporal dynamics of diseases affecting CCA along the south coast of Curaçao, southern Caribbean. Two syndromes were detected: the Coralline White Band Syndrome (CWBS) previously described and the Coralline White Patch Disease (CWPD) reported here for the first time. Diseases were present at all six study sites, and our results did not reveal a relationship between disease occurrence and human influence. Both diseases were more prevalent on the shallower reef flat than on the deeper reef slope, and during the warm/rainy season than during the cold/dry season. The patterns observed were consistent with a positive link between temperature and disease occurrence. Reef flat communities were dominated by Neogoniolithon mamillare and Paragoniolithon solubile, whereas deeper habitats were dominated by Hydrolithon boergesenii. Diseases affected all the species encountered, and no preferable host was detected. There was a significant relationship between both disease occurrences and CCA cover. Monitoring of affected patches revealed that 90 % of lesions in CWBS increased in size, whereas 88 % of CWPD lesions regenerated over time. CWBS linear progression rate did not vary between seasons or species and ranged from 0.15 to 0.36 cm month-1, which is in the same order of magnitude as rates previously documented. We conclude that diseases have the potential to cause major loss in CCA cover, particularly in shallow waters. As CCA play a key role in reef ecosystems, our study suggests that the emergence of diseases affecting these algae may pose a real threat to coral reef ecosystems. The levels of disease reported here will provide a much-needed local baseline allowing future comparisons.

  4. How does smoking affect olfaction in Parkinson's disease?

    PubMed

    Moccia, Marcello; Picillo, Marina; Erro, Roberto; Vitale, Carmine; Amboni, Marianna; Palladino, Raffaele; Cioffi, Dante Luigi; Barone, Paolo; Pellecchia, Maria Teresa

    2014-05-15

    Smoke-induced upper airway damage and Parkinson's disease (PD) can be considered independent risk factors for smell impairment. Interestingly, cigarette smoking has been strongly associated with reduced risk of PD and, therefore, has been suggested to have neuroprotective effects. Our pilot study aimed to evaluate the relationship between smoking and olfaction in PD patients and matched controls. Sixty-eight PD patients and 61 healthy controls were categorized in relation to PD diagnosis and current smoking status, and evaluated by means of the Italian version of the University of Pennsylvania 40-item Smell Identification Test (UPSIT-40). ANOVA analysis with post-hoc Bonferroni correction showed that non-smoker controls presented a higher UPSIT-40 total score than smoker controls (p<0.001), non-smoker PD patients (p<0.001) and smoker PD patients (p<0.001). In this view, smoking seems to affect olfaction in controls but not in PD patients, and no significant differences were found when comparing smoker controls, smoker PD patients and non-smoker PD patients. Several epidemiological studies showed a negative effect of smoking on olfaction in the general population. Otherwise the sense of smell is similar in smoker and non-smoker PD patients. These results suggest that PD and smoking are not independent risk factors for impairment of sense of smell, but they might variably interact.

  5. Subthalamic nucleus stimulation affects incentive salience attribution in Parkinson's disease.

    PubMed

    Serranová, Tereza; Jech, Robert; Dušek, Petr; Sieger, Tomáš; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen

    2011-10-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can induce nonmotor side effects such as behavioral and mood disturbances or body weight gain in Parkinson's disease (PD) patients. We hypothesized that some of these problems could be related to an altered attribution of incentive salience (ie, emotional relevance) to rewarding and aversive stimuli. Twenty PD patients (all men; mean age ± SD, 58.3 ± 6 years) in bilateral STN DBS switched ON and OFF conditions and 18 matched controls rated pictures selected from the International Affective Picture System according to emotional valence (unpleasantness/pleasantness) and arousal on 2 independent visual scales ranging from 1 to 9. Eighty-four pictures depicting primary rewarding (erotica and food) and aversive fearful (victims and threat) and neutral stimuli were selected for this study. In the STN DBS ON condition, the PD patients attributed lower valence scores to the aversive pictures compared with the OFF condition (P < .01) and compared with controls (P < .01). The difference between the OFF condition and controls was less pronounced (P < .05). Furthermore, postoperative weight gain correlated with arousal ratings from the food pictures in the STN DBS ON condition (P < .05 compensated for OFF condition). Our results suggest that STN DBS increases activation of the aversive motivational system so that more relevance is attributed to aversive fearful stimuli. In addition, STN DBS-related sensitivity to food reward stimuli cues might drive DBS-treated patients to higher food intake and subsequent weight gain.

  6. A Review of Factors Affecting Vaccine Preventable Disease in Japan

    PubMed Central

    Ching, Michael SL

    2014-01-01

    Japan is well known as a country with a strong health record. However its incidence rates of vaccine preventable diseases (VPD) such as hepatitis B, measles, mumps, rubella, and varicella remain higher than other developed countries. This article reviews the factors that contribute to the high rates of VPD in Japan. These include historical and political factors that delayed the introduction of several important vaccines until recently. Access has also been affected by vaccines being divided into government-funded “routine” (eg, polio, pertussis) and self-pay “voluntary” groups (eg, hepatitis A and B). Routine vaccines have higher rates of administration than voluntary vaccines. Administration factors include differences in well child care schedules, the approach to simultaneous vaccination, vaccination contraindication due to fever, and vaccination spacing. Parental factors include low intention to fully vaccinate their children and misperceptions about side effects and efficacy. There are also provider knowledge gaps regarding indications, adverse effects, interval, and simultaneous vaccination. These multifactorial issues combine to produce lower population immunization rates and a higher incidence of VPD than other developed countries. This article will provide insight into the current situation of Japanese vaccinations, the issues to be addressed and suggestions for public health promotion. PMID:25628969

  7. Bipolar disorder dynamics: affective instabilities, relaxation oscillations and noise

    PubMed Central

    Geddes, John R.; Goodwin, Guy M.; Holmes, Emily A.

    2015-01-01

    Bipolar disorder is a chronic, recurrent mental illness characterized by extreme episodes of depressed and manic mood, interspersed with less severe but highly variable mood fluctuations. Here, we develop a novel mathematical approach for exploring the dynamics of bipolar disorder. We investigate how the dynamics of subjective experience of mood in bipolar disorder can be understood using a relaxation oscillator (RO) framework and test the model against mood time-series fluctuations from a set of individuals with bipolar disorder. We show that variable mood fluctuations in individuals diagnosed with bipolar disorder can be driven by the coupled effects of deterministic dynamics (captured by ROs) and noise. Using a statistical likelihood-based approach, we show that, in general, mood dynamics are described by two independent ROs with differing levels of endogenous variability among individuals. We suggest that this sort of nonlinear approach to bipolar disorder has neurobiological, cognitive and clinical implications for understanding this mental illness through a mechacognitive framework. PMID:26577592

  8. A System Dynamics Analysis of the Factors Affecting Combat Readiness

    DTIC Science & Technology

    1980-06-01

    experimental model approach to improving systems is the third foundation of system dynamics. The last foundation is the use of the digital computer to conduct...completion rate is a third order delay of the rated supplement requalification rate (RSRR). This delay represents the time period which is required...the relationships which exist in the combat readiness system, the third objective could be accomplished. The construction of a dynamic systems and

  9. Caspase-Cleaved Tau Impairs Mitochondrial Dynamics in Alzheimer's Disease.

    PubMed

    Pérez, María José; Vergara-Pulgar, Katiana; Jara, Claudia; Cabezas-Opazo, Fabian; Quintanilla, Rodrigo A

    2017-01-13

    Alzheimer's disease (AD) is characterized by the presence of aggregates of tau protein. Tau truncated by caspase-3 (D421) or tau hyperphosphorylated at Ser396/S404 might play a role in the pathogenesis of AD. Mitochondria are dynamic organelles that modify their size and function through mitochondrial dynamics. Recent studies have shown that alterations of mitochondrial dynamics affect synaptic communication. Therefore, we studied the effects of pathological forms of tau on the regulation of mitochondrial dynamics. We used primary cortical neurons from tau(-/-) knockout mice and immortalized cortical neurons (CN1.4) that were transfected with plasmids containing green fluorescent protein (GFP) or GFP with different tau forms: full-length (GFP-T4), truncated (GFP-T4C3), pseudophosphorylated (GFP-T42EC), or both truncated and pseudophosphorylated modifications of tau (GFP-T4C3-2EC). Cells expressing truncated tau showed fragmented mitochondria compared to cells that expressed full-length tau. These findings were corroborated using primary neurons from tau(-/-) knockout mice that expressed the truncated and both truncated and pseudophosphorylated forms of tau. Interestingly, mitochondrial fragmentation was accompanied by a significant reduction in levels of optic atrophy protein 1 (Opa1) in cells expressing the truncated form of tau. In addition, treatment with low concentrations of amyloid-beta (Aβ) significantly reduced mitochondrial membrane potential, cell viability, and mitochondrial length in cortical cells and primary neurons from tau(-/-) mice that express truncated tau. These results indicate that the presence of tau pathology impairs mitochondrial dynamics by reducing Opa1 levels, an event that could lead to mitochondrial impairment observed in AD.

  10. Towards a dynamic definition of health and disease.

    PubMed

    Bircher, Johannes

    2005-01-01

    A multifactorial and growing crisis of health care systems in the developed world has affected medicine. In order to provide rational responses, some central concepts of the past, such as the definitions of health and disease, need to be updated. For this purpose physicians should initiate a new debate. As a point of departure the following definitions are proposed: Health is a dynamic state of wellbeing characterized by a physical, mental and social potential, which satisfies the demands of a life commensurate with age, culture, and personal responsibility. If the potential is insufficient to satisfy these demands the state is disease. This term includes sickness, illness, ill health, and malady. The described potential is divided into a biologically given and a personally acquired partial potential. Their proportions vary throughout the life cycle. The proposed definitions render it empirically possible to diagnose persons as healthy or diseased and to apportion some of the responsibility for their state of health to individuals themselves. Treatment strategies should always consider three therapeutic routes: improvements of the biologically given and of the personally acquired partial potentials and adaptations of the demands of life. These consequences favourably contrast with those resulting from the WHO-definition of health.

  11. World Trade, disease and Florida's animal populations. The changing dynamics.

    PubMed

    Coffman, L M

    2000-01-01

    One of Florida's three leading economic industries is agriculture. Agriculture feeds and enhances the lives of millions of people in Florida, the United States, and the entire world. Agriculture in Florida results in more than $6 billion in farm cash receipts, employment for more than 60,000 people a month, more than $18 billion in farm-related economic activity and stretches from the farm gate to the state's supermarkets with an impact of nearly $45 billion. The domestic and wild animal populations of Florida, our unique relationship to the Caribbean, Atlantic Ocean, Gulf of Mexico, Central and South America, as well as tourism, diverse human population growth and immigration, all add to the complexity of an environment capable of establishing many animals, animal pests and diseases not native to the United States. Never before have the dynamics of disease control involved as much challenge and diversity. Is the balance at risk, or is the risk over-balanced? Can science, economics and politics blend to maintain this balance? How will the balance affect world trade, disease control and the animal populations of Florida?

  12. A hierarchical state space approach to affective dynamics

    PubMed Central

    Lodewyckx, Tom; Tuerlinckx, Francis; Kuppens, Peter; Allen, Nicholas; Sheeber, Lisa

    2010-01-01

    Linear dynamical system theory is a broad theoretical framework that has been applied in various research areas such as engineering, econometrics and recently in psychology. It quantifies the relations between observed inputs and outputs that are connected through a set of latent state variables. State space models are used to investigate the dynamical properties of these latent quantities. These models are especially of interest in the study of emotion dynamics, with the system representing the evolving emotion components of an individual. However, for simultaneous modeling of individual and population differences, a hierarchical extension of the basic state space model is necessary. Therefore, we introduce a Bayesian hierarchical model with random effects for the system parameters. Further, we apply our model to data that were collected using the Oregon adolescent interaction task: 66 normal and 67 depressed adolescents engaged in a conflict interaction with their parents and second-to-second physiological and behavioral measures were obtained. System parameters in normal and depressed adolescents were compared, which led to interesting discussions in the light of findings in recent literature on the links between cardiovascular processes, emotion dynamics and depression. We illustrate that our approach is flexible and general: The model can be applied to any time series for multiple systems (where a system can represent any entity) and moreover, one is free to focus on whatever component of the versatile model. PMID:21516216

  13. Space charges can significantly affect the dynamics of accelerator maps

    NASA Astrophysics Data System (ADS)

    Bountis, Tassos; Skokos, Charalampos

    2006-10-01

    Space charge effects can be very important for the dynamics of intense particle beams, as they repeatedly pass through nonlinear focusing elements, aiming to maximize the beam's luminosity properties in the storage rings of a high energy accelerator. In the case of hadron beams, whose charge distribution can be considered as “frozen” within a cylindrical core of small radius compared to the beam's dynamical aperture, analytical formulas have been recently derived [C. Benedetti, G. Turchetti, Phys. Lett. A 340 (2005) 461] for the contribution of space charges within first order Hamiltonian perturbation theory. These formulas involve distribution functions which, in general, do not lead to expressions that can be evaluated in closed form. In this Letter, we apply this theory to an example of a charge distribution, whose effect on the dynamics can be derived explicitly and in closed form, both in the case of 2-dimensional as well as 4-dimensional mapping models of hadron beams. We find that, even for very small values of the “perveance” (strength of the space charge effect) the long term stability of the dynamics changes considerably. In the flat beam case, the outer invariant “tori” surrounding the origin disappear, decreasing the size of the beam's dynamical aperture, while beyond a certain threshold the beam is almost entirely lost. Analogous results in mapping models of beams with 2-dimensional cross section demonstrate that in that case also, even for weak tune depressions, orbital diffusion is enhanced and many particles whose motion was bounded now escape to infinity, indicating that space charges can impose significant limitations on the beam's luminosity.

  14. Curvature Dynamics of α-Synuclein Familial Parkinson Disease Mutants

    PubMed Central

    Perlmutter, Jason D.; Braun, Anthony R.; Sachs, Jonathan N.

    2009-01-01

    α-Synuclein remains a protein of interest due to its propensity to form fibrillar aggregates in neurodegenerative disease and its putative function in synaptic vesicle regulation. Herein, we present a series of atomistic molecular dynamics simulations of wild-type α-synuclein and three Parkinson disease familial mutants (A30P, A53T, and E46K) in two distinct environments. First, in order to match recent NMR experiments, we have simulated each protein bound to an SDS detergent micelle. Second, in order to connect more closely to the true biological environment, we have simulated the proteins bound to a 1,2-dioleoyl-sn-glycero-3-phosphoserine lipid bilayer. In the micelle-bound case, we find that the wild type and all of the variants of α-synuclein flatten the underlying micelle, decreasing its surface area. A30P is known to lessen α-synuclein/membrane affinity and, consistent with experiment, destabilizes the simulated secondary structure. In the case of A53T, our simulations reveal a range of stabilizing hydrogen bonds that form with the threonine. In both environments, the E46K mutation, which is known to increase bilayer affinity, leads to an additional hydrogen bond between the protein and either the detergent or lipid. Simulations indicate that αS and its variants are less dynamic in the bilayer than in the micelle. Furthermore, the simulations of the mutants suggest how changes in the structure and dynamics of α-synuclein may affect its biological role. PMID:19126542

  15. Current drivers and future directions of global livestock disease dynamics

    PubMed Central

    Perry, Brian D.; Grace, Delia; Sones, Keith

    2013-01-01

    We review the global dynamics of livestock disease over the last two decades. Our imperfect ability to detect and report disease hinders assessment of trends, but we suggest that, although endemic diseases continue their historic decline in wealthy countries, poor countries experience static or deteriorating animal health and epidemic diseases show both regression and expansion. At a mesolevel, disease is changing in terms of space and host, which is illustrated by bluetongue, Lyme disease, and West Nile virus, and it is also emerging, as illustrated by highly pathogenic avian influenza and others. Major proximate drivers of change in disease dynamics include ecosystem change, ecosystem incursion, and movements of people and animals; underlying these are demographic change and an increasing demand for livestock products. We identify three trajectories of global disease dynamics: (i) the worried well in developed countries (demanding less risk while broadening the circle of moral concern), (ii) the intensifying and market-orientated systems of many developing countries, where highly complex disease patterns create hot spots for disease shifts, and (iii) the neglected cold spots in poor countries, where rapid change in disease dynamics is less likely but smallholders and pastoralists continue to struggle with largely preventable and curable livestock diseases. PMID:21576468

  16. How Does the Electron Dynamics Affect the Global Reconnection Rate

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2012-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  17. Seasonally forced disease dynamics explored as switching between attractors

    NASA Astrophysics Data System (ADS)

    Keeling, Matt J.; Rohani, Pejman; Grenfell, Bryan T.

    2001-01-01

    Biological phenomena offer a rich diversity of problems that can be understood using mathematical techniques. Three key features common to many biological systems are temporal forcing, stochasticity and nonlinearity. Here, using simple disease models compared to data, we examine how these three factors interact to produce a range of complicated dynamics. The study of disease dynamics has been amongst the most theoretically developed areas of mathematical biology; simple models have been highly successful in explaining the dynamics of a wide variety of diseases. Models of childhood diseases incorporate seasonal variation in contact rates due to the increased mixing during school terms compared to school holidays. This ‘binary’ nature of the seasonal forcing results in dynamics that can be explained as switching between two nonlinear spiral sinks. Finally, we consider the stability of the attractors to understand the interaction between the deterministic dynamics and demographic and environmental stochasticity. Throughout attention is focused on the behaviour of measles, whooping cough and rubella.

  18. Infectious diseases affect marine fisheries and aquaculture economics

    USGS Publications Warehouse

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jon M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  19. Infectious Diseases Affect Marine Fisheries and Aquaculture Economics

    NASA Astrophysics Data System (ADS)

    Lafferty, Kevin D.; Harvell, C. Drew; Conrad, Jon M.; Friedman, Carolyn S.; Kent, Michael L.; Kuris, Armand M.; Powell, Eric N.; Rondeau, Daniel; Saksida, Sonja M.

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  20. Infectious diseases affect marine fisheries and aquaculture economics.

    PubMed

    Lafferty, Kevin D; Harvell, C Drew; Conrad, Jon M; Friedman, Carolyn S; Kent, Michael L; Kuris, Armand M; Powell, Eric N; Rondeau, Daniel; Saksida, Sonja M

    2015-01-01

    Seafood is a growing part of the economy, but its economic value is diminished by marine diseases. Infectious diseases are common in the ocean, and here we tabulate 67 examples that can reduce commercial species' growth and survivorship or decrease seafood quality. These impacts seem most problematic in the stressful and crowded conditions of aquaculture, which increasingly dominates seafood production as wild fishery production plateaus. For instance, marine diseases of farmed oysters, shrimp, abalone, and various fishes, particularly Atlantic salmon, cost billions of dollars each year. In comparison, it is often difficult to accurately estimate disease impacts on wild populations, especially those of pelagic and subtidal species. Farmed species often receive infectious diseases from wild species and can, in turn, export infectious agents to wild species. However, the impact of disease export on wild fisheries is controversial because there are few quantitative data demonstrating that wild species near farms suffer more from infectious diseases than those in other areas. The movement of exotic infectious agents to new areas continues to be the greatest concern.

  1. Coordination dynamics in Parkinson's disease patients and healthy subjects quantified by the coordination dynamics recording method and sEMG.

    PubMed

    Schalow, G; Pääsuke, M; Ereline, J; Gapeyeva, H

    2003-12-01

    Coordination dynamics were measured in Parkinson's disease patients to quantify central nervous system (CNS) dysfunction. The low-load coordination dynamics in the patients were impaired by 56% for forward and 44% for backward moving in comparison to a control group of similar age. Exercising at higher load was only partly possible. When the disease preferentially affected one side of the body, the coordination dynamics were worse for the affected side. A dexterity test showed that coordination of hand and arm movements could be improved in the short-term memory when exercising on the special coordination dynamics recording and therapy device. Simultaneously taken surface EMG (sEMG) showed that the motor pattern was impaired in the Parkinson's disease patients. sEMG recordings showed further that the fast fatigable muscle fibre activation was impaired. FF-type muscle fibres were already activated for low load in one and not at all in another muscle. In conclusion, coordination between motoneuron firings and between arm and leg movements were found to be impaired in Parkinson's disease patients.

  2. FACTORS AFFECTING SUSCEPTIBILITY OF THE CORAL MONTASTRAEA FAVEOLATE TO BLACK-BAND DISEASE

    EPA Science Inventory

    Black-band disease affects many species of tropical reef-building corals, but it is unclear what factors contribute to the disease-susceptibility of individual corals or how the disease is transmitted between colonies. Studies have suggested that the ability of black-band disease...

  3. Affective Dynamics of Leadership: An Experimental Test of Affect Control Theory

    ERIC Educational Resources Information Center

    Schroder, Tobias; Scholl, Wolfgang

    2009-01-01

    Affect Control Theory (ACT; Heise 1979, 2007) states that people control social interactions by striving to maintain culturally shared feelings about the situation. The theory is based on mathematical models of language-based impression formation. In a laboratory experiment, we tested the predictive power of a new German-language ACT model with…

  4. Dynamically Tracking Anxious Individuals' Affective Response to Valenced Information.

    PubMed

    Fua, Karl C; Teachman, Bethany A

    2017-03-30

    Past research has shown that an individual's feelings at any given moment reflect currently experienced stimuli as well as internal representations of similar past experiences. However, anxious individuals' affective reactions to streams of interrelated valenced information (vs. reactions to static stimuli that are arguably less ecologically valid) are rarely tracked. The present study provided a first examination of the newly developed Tracking Affect Ratings Over Time (TAROT) task to continuously assess anxious individuals' affective reactions to streams of information that systematically change valence. Undergraduate participants (N = 141) completed the TAROT task in which they listened to narratives containing positive, negative, and neutral physically- or socially-relevant events, and indicated how positive or negative they felt about the information they heard as each narrative unfolded. The present study provided preliminary evidence for the validity and reliability of the task. Within scenarios, participants higher (vs. lower) in anxiety showed many expected negative biases, reporting more negative mean ratings and overall summary ratings, changing their pattern of responding more quickly to negative events, and responding more negatively to neutral events. Furthermore, individuals higher (vs. lower) in anxiety tended to report more negative minimums during and after positive events, and less positive maximums after negative events. Together, findings indicate that positive events were less impactful for anxious individuals, whereas negative experiences had a particularly lasting impact on future affective responses. The TAROT task is able to efficiently capture a number of different cognitive biases, and may help clarify the mechanisms that underlie anxious individuals' biased negative processing. (PsycINFO Database Record

  5. Disease and the dynamics of extinction

    PubMed Central

    McCallum, Hamish

    2012-01-01

    Invading infectious diseases can, in theory, lead to the extinction of host populations, particularly if reservoir species are present or if disease transmission is frequency-dependent. The number of historic or prehistoric extinctions that can unequivocally be attributed to infectious disease is relatively small, but gathering firm evidence in retrospect is extremely difficult. Amphibian chytridiomycosis and Tasmanian devil facial tumour disease (DFTD) are two very different infectious diseases that are currently threatening to cause extinctions in Australia. These provide an unusual opportunity to investigate the processes of disease-induced extinction and possible management strategies. Both diseases are apparently recent in origin. Tasmanian DFTD is entirely host-specific but potentially able to cause extinction because transmission depends weakly, if at all, on host density. Amphibian chytridiomycosis has a broad host range but is highly pathogenic only to some populations of some species. At present, both diseases can only be managed by attempting to isolate individuals or populations from disease. Management options to accelerate the process of evolution of host resistance or tolerance are being investigated in both cases. Anthropogenic changes including movement of diseases and hosts, habitat destruction and fragmentation and climate change are likely to increase emerging disease threats to biodiversity and it is critical to further develop strategies to manage these threats. PMID:22966138

  6. Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation.

    PubMed

    Biastoch, A; Böning, C W; Lutjeharms, J R E

    2008-11-27

    Predicting the evolution of climate over decadal timescales requires a quantitative understanding of the dynamics that govern the meridional overturning circulation (MOC). Comprehensive ocean measurement programmes aiming to monitor MOC variations have been established in the subtropical North Atlantic (RAPID, at latitude 26.5 degrees N, and MOVE, at latitude 16 degrees N) and show strong variability on intraseasonal to interannual timescales. Observational evidence of longer-term changes in MOC transport remains scarce, owing to infrequent sampling of transoceanic sections over past decades. Inferences based on long-term sea surface temperature records, however, supported by model simulations, suggest a variability with an amplitude of +/-1.5-3 Sv (1 Sv = 10(6) m(3) s(-1)) on decadal timescales in the subtropics. Such variability has been attributed to variations of deep water formation in the sub-arctic Atlantic, particularly the renewal rate of Labrador Sea Water. Here we present results from a model simulation that suggest an additional influence on decadal MOC variability having a Southern Hemisphere origin: dynamic signals originating in the Agulhas leakage region at the southern tip of Africa. These contribute a MOC signal in the tropical and subtropical North Atlantic that is of the same order of magnitude as the northern source. A complete rationalization of observed MOC changes therefore also requires consideration of signals arriving from the south.

  7. Conceptualizing the dynamics of a drought affected agricultural community

    NASA Astrophysics Data System (ADS)

    Kuil, Linda; Carr, Gemma; Viglione, Alberto; Bloeschl, Guenter

    2015-04-01

    Climate and especially water availability and variability play an important role in the development of our societies. This can be seen through the vast investments that are made in reaching water security and the economic impact regions experience when the rains fail. However, the limit of available fresh water is increasingly felt as our population increases and the demand for water continues to rise. But how do we as society respond? Are periods of drought making us more resilient? The answer to this question is sought through the development of a stylized model that is built within the spirit of the Easter Island model by Brander and Taylor and aimed at capturing the essence of the dynamics of water supply and demand. By explicitly incorporating feedbacks, but keeping the framework simple, the model seeks to understand qualitative behavior of our socio-hydrological system as opposed to predicting exact pathways. The model shows that carrying capacity dynamics are a determining factor for continued growth. Future work will explore the underlying relationships further, among others, through examination of case studies.

  8. Impaired suppressor activity in children affected by coeliac disease.

    PubMed Central

    Pignata, C; Troncone, R; Monaco, G; Ciriaco, M; Farris, E; Carminati, G; Auricchio, S

    1985-01-01

    Immunoregulatory cells were enumerated in 19 coeliac disease children on a gluten free diet by means of monoclonal antibodies that define total T lymphocytes (T3), helper/inducer T cells (T4), suppressor/cytotoxic T cells (T8) and monocytes (M1), as well as by means of surface receptors for Fc fragments of IgM and IgG (T mu and T gamma, respectively). In addition, suppressor cell function was assessed in 17 coeliac disease patients by examining the ability of concanavalin-A (Con-A)-activated suppressor cells to inhibit autologous cell response to mitogenic stimulus as compared with age-matched controls. No statistically significant differences were found in the percentages of subsets defined by monoclonal antibodies between coeliac disease patients and age-matched controls, whereas coeliac disease patients had a significant decrease of the subpopulation bearing membrane receptor for Fc fragment of IgG. Mean value was 8.5% in coeliac patients versus 13.4% in age-matched controls. In the functional assay, mononuclear cells from 10 out of 17 coeliac disease patients either totally or partially failed to suppress responder cells after Con-A-activation. This defect is not related to HLA-DR status, because no difference was found between patients-HLA-matched and unmatched normal individuals. In this assay, mononuclear cells of three coeliac disease patients with low suppressor activity were able to inhibit responder cells to the same extent as controls, when indomethacin was used to block prostaglandin production in the induction phase of Con-A-activated suppressor cells. Our results suggest that an abnormality in immunoregulation may play a role in the pathogenesis of coeliac disease. PMID:3156076

  9. Environmental factors affecting inflammatory bowel disease: have we made progress?

    PubMed

    Lakatos, Peter Laszlo

    2009-01-01

    The pathogenesis of inflammatory bowel disease (IBD) is only partially understood; various environmental and host (e.g. genetic, epithelial, immune, and nonimmune) factors are involved. The critical role for environmental factors is strongly supported by recent worldwide trends in IBD epidemiology. One important environmental factor is smoking. A meta-analysis partially confirms previous findings that smoking was found to be protective against ulcerative colitis and, after the onset of the disease, might improve its course, decreasing the need for colectomy. In contrast, smoking increases the risk of developing Crohn's disease and aggravates its course. The history of IBD is dotted by cyclic reports on the isolation of specific infectious agents responsible for Crohn's disease or ulcerative colitis. The more recently published cold chain hypothesis is providing an even broader platform by linking dietary factors and microbial agents. An additional, recent theory has suggested a breakdown in the balance between putative species of 'protective' versus 'harmful' intestinal bacteria - this concept has been termed dysbiosis resulting in decreased bacterial diversity. Other factors such as oral contraceptive use, appendectomy, dietary factors (e.g. refined sugar, fat, and fast food), perinatal events, and childhood infections have also been associated with both diseases, but their role is more controversial. Nonetheless, there is no doubt that economic development, leading to improved hygiene and other changes in lifestyle ('westernized lifestyle') may play a role in the increase in IBD. This review article focuses on the role of environmental factors in the pathogenesis and progression of IBDs.

  10. How urbanization affects the epidemiology of emerging infectious diseases

    PubMed Central

    Neiderud, Carl-Johan

    2015-01-01

    The world is becoming more urban every day, and the process has been ongoing since the industrial revolution in the 18th century. The United Nations now estimates that 3.9 billion people live in urban centres. The rapid influx of residents is however not universal and the developed countries are already urban, but the big rise in urban population in the next 30 years is expected to be in Asia and Africa. Urbanization leads to many challenges for global health and the epidemiology of infectious diseases. New megacities can be incubators for new epidemics, and zoonotic diseases can spread in a more rapid manner and become worldwide threats. Adequate city planning and surveillance can be powerful tools to improve the global health and decrease the burden of communicable diseases. PMID:26112265

  11. Lubricated wrinkles: Imposed constraints affect the dynamics of wrinkle coarsening

    NASA Astrophysics Data System (ADS)

    Kodio, Ousmane; Griffiths, Ian M.; Vella, Dominic

    2017-01-01

    We study the dynamic coarsening of wrinkles in an elastic sheet that is compressed while lying on a thin layer of viscous liquid. When the ends of the sheet are instantaneously brought together by a small distance, viscous resistance initially prevents the sheet from adopting a globally buckled shape. Instead, the sheet accommodates the compression by wrinkling. Previous scaling arguments suggested that a balance between the sheet's bending stiffness and viscous effects lead to a wrinkle wavelength λ that increases with time t according to λ ∝t1 /6 . We show that taking proper account of the compression constraint leads to a logarithmic correction of this result, λ ∝(t/logt ) 1 /6 . This correction is significant over experimentally observable time spans and leads us to reassess previously published experimental data.

  12. Concomitant gastroparesis negatively affects children with functional gallbladder disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of the present study was to determine whether concomitant gastroparesis and biliary dyskinesia (BD) occur in children, and if so, to determine whether concomitant gastroparesis affects clinical outcome in children with BD. We conducted a retrospective chart review of children with BD (ejecti...

  13. Factors Affecting the Efficacy of Recombinant Marek's Disease Vaccine Protection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many factors have the potential to influence the efficacy of Marek's disease (MD) vaccination. Some of these factors include maternal antibody, vaccine dose, age of birds at vaccination or challenge, challenge virus strain and genetic background of chickens. The objective of this study was to evalua...

  14. Early Huntington's Disease Affects Movements in Transformed Sensorimotor Mappings

    ERIC Educational Resources Information Center

    Boulet, C.; Lemay, M.; Bedard, M.A.; Chouinard, M.J.; Chouinard, S.; Richer, F.

    2005-01-01

    This study examined the effect of transformed visual feedback on movement control in Huntington's disease (HD). Patients in the early stages of HD and controls performed aiming movements towards peripheral targets on a digitizing tablet and emphasizing precision. In a baseline condition, HD patients were slower but showed few precision problems in…

  15. Semantic Trouble Sources and Their Repair in Conversations Affected by Parkinson's Disease

    ERIC Educational Resources Information Center

    Saldert, Charlotta; Ferm, Ulrika; Bloch, Steven

    2014-01-01

    Background: It is known that dysarthria arising from Parkinson's disease may affect intelligibility in conversational interaction. Research has also shown that Parkinson's disease may affect cognition and cause word-retrieval difficulties and pragmatic problems in the use of language. However, it is not known whether or how these…

  16. Tuber melanosporum, when dominant, affects fungal dynamics in truffle grounds.

    PubMed

    Napoli, Chiara; Mello, Antonietta; Borra, Ambrogio; Vizzini, Alfredo; Sourzat, Pierre; Bonfante, Paola

    2010-01-01

    The fruiting bodies of the ectomycorrhizal (ECM) fungus Tuber melanosporum are usually collected in an area devoid of vegetation which is defined as a 'burnt area' (brulé in French). Here, the soil fungal populations of inside and outside brulé were compared in order to understand whether the scanty plant cover was related to a change in fungal biodiversity. Both denaturing gradient gel electrophoresis (DGGE) and molecular cloning of the internal transcribed spacer (ITS) marker were employed on soil DNA to obtain profiles from nine truffle grounds and fungal sequences from one selected truffle ground sampled in two years. Denaturant gradient gel electrophoresis profiles from the two areas formed two distinct clusters while molecular cloning allowed 417 fungal sequences to be identified. T. melanosporum was the dominant fungus within the brulé. There were nine new haplotypes, which had never been detected in fruiting bodies. The Basidiomycota ECM fungi decreased within the brulé, indicating a competitive effect of T. melanosporum on the other ECM fungi. Among other factors, the dynamics of fungal populations seems to be correlated to brulé formation.

  17. Reheating dynamics affects non-perturbative decay of spectator fields

    SciTech Connect

    Enqvist, Kari; Lerner, Rose N.; Rusak, Stanislav E-mail: rose.lerner@helsinki.fi

    2013-11-01

    The behaviour of oscillating scalar spectator fields after inflation depends on the thermal background produced by inflaton decay. Resonant decay of the spectator is often blocked by large induced thermal masses. We account for the finite decay width of the inflaton and the protracted build-up of the thermal bath to determine the early evolution of a homogeneous spectator field σ coupled to the Higgs Boson Φ through the term g{sup 2}σ{sup 2}Φ{sup 2}, the only renormalisable coupling of a new scalar to the Standard Model. We find that for very large higgs-spectator coupling g∼>10{sup −3}, the resonance is not always blocked as was previously suggested. As a consequence, the oscillating spectator can decay quickly. For other parameter values, we find that although qualitative features of the thermal blocking still hold, the dynamics are altered compared to the instant decay case. These findings are important for curvaton models, where the oscillating field must be relatively long lived in order to produce the curvature perturbation. They are also relevant for other spectator fields, which must decay sufficiently early to avoid spoiling the predictions of baryogenesis and nucleosynthesis.

  18. Social decisions affect neural activity to perceived dynamic gaze

    PubMed Central

    Latinus, Marianne; Love, Scott A.; Rossi, Alejandra; Parada, Francisco J.; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin

    2015-01-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a ‘default mode’ that may focus on spatial information; a ‘socially aware mode’ that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified. PMID:25925272

  19. Social decisions affect neural activity to perceived dynamic gaze.

    PubMed

    Latinus, Marianne; Love, Scott A; Rossi, Alejandra; Parada, Francisco J; Huang, Lisa; Conty, Laurence; George, Nathalie; James, Karin; Puce, Aina

    2015-11-01

    Gaze direction, a cue of both social and spatial attention, is known to modulate early neural responses to faces e.g. N170. However, findings in the literature have been inconsistent, likely reflecting differences in stimulus characteristics and task requirements. Here, we investigated the effect of task on neural responses to dynamic gaze changes: away and toward transitions (resulting or not in eye contact). Subjects performed, in random order, social (away/toward them) and non-social (left/right) judgment tasks on these stimuli. Overall, in the non-social task, results showed a larger N170 to gaze aversion than gaze motion toward the observer. In the social task, however, this difference was no longer present in the right hemisphere, likely reflecting an enhanced N170 to gaze motion toward the observer. Our behavioral and event-related potential data indicate that performing social judgments enhances saliency of gaze motion toward the observer, even those that did not result in gaze contact. These data and that of previous studies suggest two modes of processing visual information: a 'default mode' that may focus on spatial information; a 'socially aware mode' that might be activated when subjects are required to make social judgments. The exact mechanism that allows switching from one mode to the other remains to be clarified.

  20. Dietary modulation of the microbiome affects autoinflammatory disease

    PubMed Central

    Lukens, John R.; Gurung, Prajwal; Vogel, Peter; Johnson, Gordon R.; Carter, Robert A.; McGoldrick, Daniel J.; Bandi, Srinivasa R.A.O.; Calabrese, Christopher R.; Walle, Lieselotte Vande; Lamkanfi, Mohamed; Kanneganti, Thirumala-Devi

    2014-01-01

    The incidences of chronic inflammatory disorders have increased significantly over the past three decades1. Recent shifts in dietary consumption are believed to have contributed importantly to this surge, but how dietary consumption modulates inflammatory disease is poorly defined. Pstpip2cmo mice that express a homozygous L98P missense mutation in the Pombe Cdc15 homology (PCH) family proline-serine-threonine phosphatase interacting protein 2 (PSTPIP2) phosphatase spontaneously develop osteomyelitis that resembles chronic recurrent multifocal osteomyelitis (CRMO) in humans2-4. Recent reports demonstrated osteomyelitis to critically rely on IL-1β, but deletion of the inflammasome components caspase-1 and NLRP3 failed to rescue Pstpip2cmo mice from inflammatory bone disease5,6. Thus, the upstream mechanisms controlling IL-1β production in Pstpip2cmo mice remain to be identified. In addition, the environmental factors driving IL-1β-dependent inflammatory bone erosion are unknown. Here, we show that the intestinal microbiota of diseased Pstpip2cmo mice was characterized by an outgrowth of Prevotella. Notably, Pstpip2cmo mice that were fed a diet rich in fat and cholesterol maintained a normal body weight, but were markedly protected against inflammatory bone disease and bone erosion. Diet-induced protection against osteomyelitis was accompanied by marked reductions in intestinal Prevotella levels and significantly reduced proIL-1β expression in distant neutrophils. Furthermore, proIL-1β expression was also decreased in antibiotics-treated Pstpip2cmo mice, and in wildtype mice that were kept under germfree conditions. We further demonstrated that combined deletion of caspases 1 and 8 was required for protection against IL-1β-dependent inflammatory bone disease, whereas deletion of each caspase alone, elastase or neutrophil proteinase-3 failed to prevent inflammatory disease. Collectively, this work reveals diet-associated changes in the intestinal microbiome as a

  1. Rapid and Progressive Regional Brain Atrophy in CLN6 Batten Disease Affected Sheep Measured with Longitudinal Magnetic Resonance Imaging

    PubMed Central

    Sawiak, Stephen J.; Perumal, Sunthara Rajan; Rudiger, Skye R.; Matthews, Loren; Mitchell, Nadia L.; McLaughlan, Clive J.; Bawden, C. Simon; Palmer, David N.; Kuchel, Timothy; Morton, A. Jennifer

    2015-01-01

    Variant late-infantile Batten disease is a neuronal ceroid lipofuscinosis caused by mutations in CLN6. It is a recessive genetic lysosomal storage disease characterised by progressive neurodegeneration. It starts insidiously and leads to blindness, epilepsy and dementia in affected children. Sheep that are homozygous for a natural mutation in CLN6 have an ovine form of Batten disease Here, we used in vivo magnetic resonance imaging to track brain changes in 4 unaffected carriers and 6 affected Batten disease sheep. We scanned each sheep 4 times, between 17 and 22 months of age. Cortical atrophy in all sheep was pronounced at the baseline scan in all affected Batten disease sheep. Significant atrophy was also present in other brain regions (caudate, putamen and amygdala). Atrophy continued measurably in all of these regions during the study. Longitudinal MRI in sheep was sensitive enough to measure significant volume changes over the relatively short study period, even in the cortex, where nearly 40% of volume was already lost at the start of the study. Thus longitudinal MRI could be used to study the dynamics of progression of neurodegenerative changes in sheep models of Batten disease, as well as to assess therapeutic efficacy. PMID:26161747

  2. Issues affecting minority participation in research studies of Alzheimer disease.

    PubMed

    Welsh, Kathleen A; Ballard, Edna; Nash, Florence; Raiford, Kate; Harrell, Lindy

    1994-01-01

    Despite the need for minority subjects in research studies of Alzheimer disease (AD), the successful involvement of minority patients in such studies has been difficult. This report discusses the many societal, economic, logistical, and attitudinal barriers that have inhibited the participation of minority patients and their families in medical research programs of AD. Special consideration is given to the unique cultural issues that arise when conducting studies involving African-American elderly subjects. Methods are considered for overcoming the barriers to participation gleaned from the national study CERAD (Consortium to Establish a Registry of Alzheimer Disease) and other investigations of AD. Recommendations are made for future research programs targeted on the specific health care needs and concerns of the minority segments of our population.

  3. Major viral diseases affecting fish aquaculture in Spain.

    PubMed

    Pérez, S I; Rodríguez, S

    1997-06-01

    The number of viruses isolated from fish has grown in the last few years as a reflection of the increasing interest in fish diseases, particularly those occurring in aquaculture facilities. Of all the described viruses, only a few are considered to be of serious concern and economic importance; they are described in this review, drawing special attention to the four families of viruses (Birnaviridae, Rhabdoviridae, Iridoviridae and Reoviridae) that have been reported in Spanish aquaculture. Infectious pancreatic necrosis virus, a member of the first family, is the most spread virus with a prevalence of 39%. Viral diseases are untreatable and because effective and safe vaccines for fish are not yet commercially available, a great care needs to be exercised when moving fish or eggs from one site or country to another. Some fish health control regulations have been legislated in Europe and USA.

  4. Facets of dynamic positive affect: differentiating joy, interest, and activation in the positive and negative affect schedule (PANAS).

    PubMed

    Egloff, Boris; Schmukle, Stefan C; Burns, Lawrence R; Kohlmann, Carl-Walter; Hock, Michael

    2003-09-01

    This article proposes the differentiation of Joy, Interest, and Activation in the Positive Affect (PA) scale of the Positive and Negative Affect Schedule (PANAS; D. Watson, L. A. Clark, & A. Tellegen, 1988). Study 1 analyzed the dynamic course of PA before, during, and after an exam and established the differentiation of the three facets. Study 2 used a multistate-multitrait analysis to confirm this structure. Studies 3-5 used success-failure experiences, speaking tasks, and feedback of exam results to further examine PA facets in affect-arousing settings. All studies provide convincing evidence for the benefit of differentiating three facets of PA in the PANAS: Joy, Interest, and Activation do have distinct and sometimes even opposite courses that make their separation meaningful and rewarding.

  5. How Fear of Future Outcomes Affects Social Dynamics

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Jusup, Marko; Wang, Zhen; Stanley, H. Eugene

    2016-11-01

    Mutualistic relationships among the different species are ubiquitous in nature. To prevent mutualism from slipping into antagonism, a host often invokes a "carrot and stick" approach towards symbionts with a stabilizing effect on their symbiosis. In open human societies, a mutualistic relationship arises when a native insider population attracts outsiders with benevolent incentives in hope that the additional labor will improve the standard of all. A lingering question, however, is the extent to which insiders are willing to tolerate outsiders before mutualism slips into antagonism. To test the assertion by Karl Popper that unlimited tolerance leads to the demise of tolerance, we model a society under a growing incursion from the outside. Guided by their traditions of maintaining the social fabric and prizing tolerance, the insiders reduce their benevolence toward the growing subpopulation of outsiders but do not invoke punishment. This reduction of benevolence intensifies as less tolerant insiders (e.g., "radicals") openly renounce benevolence. Although more tolerant insiders maintain some level of benevolence, they may also tacitly support radicals out of fear for the future. If radicals and their tacit supporters achieve a critical majority, herd behavior ensues and the relation between the insider and outsider subpopulations turns antagonistic. To control the risk of unwanted social dynamics, we map the parameter space within which the tolerance of insiders is in balance with the assimilation of outsiders, the tolerant insiders maintain a sustainable majority, and any reduction in benevolence occurs smoothly. We also identify the circumstances that cause the relations between insiders and outsiders to collapse or that lead to the dominance of the outsiders.

  6. Spreading dynamics and synchronization behavior of periodic diseases on complex networks

    NASA Astrophysics Data System (ADS)

    Xu, Degang; Xu, Xiyang; Yang, Chunhua; Gui, Weihua

    2017-01-01

    A new discrete-susceptible-infected-recovered-susceptible (DSIRS) model is introduced in this paper to investigate the disease spreading dynamics and synchronization behavior on complex networks. In the model, every node is considered independently rather than as a part of one group that has a common node state in complex networks. The synchronization phenomenon of epidemic spreading based on the model in random networks and scale-free networks is analyzed. Synchronization is affected by the infection duration, the complete cycle duration and the topological network structure, which affects the immune strategy. Accordingly, immune strategies including the maximum degree immune strategy and the nearest immune strategy are proposed to prevent disease propagating.

  7. ALS mutant SOD1 interacts with G3BP1 and affects stress granule dynamics.

    PubMed

    Gal, Jozsef; Kuang, Lisha; Barnett, Kelly R; Zhu, Brian Z; Shissler, Susannah C; Korotkov, Konstantin V; Hayward, Lawrence J; Kasarskis, Edward J; Zhu, Haining

    2016-10-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Mutations in Cu/Zn superoxide dismutase (SOD1) are responsible for approximately 20 % of the familial ALS cases. ALS-causing SOD1 mutants display a gain-of-toxicity phenotype, but the nature of this toxicity is still not fully understood. The Ras GTPase-activating protein-binding protein G3BP1 plays a critical role in stress granule dynamics. Alterations in the dynamics of stress granules have been reported in several other forms of ALS unrelated to SOD1. To our surprise, the mutant G93A SOD1 transgenic mice exhibited pathological cytoplasmic inclusions that co-localized with G3BP1-positive granules in spinal cord motor neurons. The co-localization was also observed in fibroblast cells derived from familial ALS patient carrying SOD1 mutation L144F. Mutant SOD1, unlike wild-type SOD1, interacted with G3BP1 in an RNA-independent manner. Moreover, the interaction is specific for G3BP1 since mutant SOD1 showed little interaction with four other RNA-binding proteins implicated in ALS. The RNA-binding RRM domain of G3BP1 and two particular phenylalanine residues (F380 and F382) are critical for this interaction. Mutant SOD1 delayed the formation of G3BP1- and TIA1-positive stress granules in response to hyperosmolar shock and arsenite treatment in N2A cells. In summary, the aberrant mutant SOD1-G3BP1 interaction affects stress granule dynamics, suggesting a potential link between pathogenic SOD1 mutations and RNA metabolism alterations in ALS.

  8. Postnatal Infections and Immunology Affecting Chronic Lung Disease of Prematurity

    PubMed Central

    Pryhuber, Gloria S.

    2015-01-01

    Synopsis Premature infants suffer significant respiratory morbidity during infancy with long-term negative consequences on health, quality of life, and health care costs. Enhanced susceptibility to a variety of infections and inflammation play a large role in early and prolonged lung disease following premature birth, though the mechanisms of susceptibility and immune dysregulation are active areas of research. This chapter will review aspects of host-pathogen interactions and immune responses that are altered by preterm birth and that impact chronic respiratory morbidity in these children. PMID:26593074

  9. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  10. Vector-borne pathogens: New and emerging arboviral diseases affecting public health

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dengue and Zika have quickly become two of the most important vector-borne diseases affecting Public health around the world. This presentation will introduce vector-borne diseases and all the vectors implicated. A focus will be made on the most important arboviral diseases (Zika and dengue) describ...

  11. Chronic Ischemic Heart Disease Affects Health Related Quality of Life

    PubMed Central

    Goreishi, Abolfazl; Shajari, Zahra; Mohammadi, Zeinab

    2012-01-01

    Background Chronic diseases endanger not only physical health but also psychological and social health of patient. Thus, evaluation of such patients for psychological treatment decisions is very important. Method This is a descriptive study that was performed with 50 chronic patients (ischemic heart disease) selected from Valiasr and Mousavi at cardiac wards in Zanjan Province. They were given three types of questionnaire: demographic, WHOQOL, and Zung depression and anxiety index. The information was statically analyzed by frequency chart, central indexes, dispersion, Chi-Square and t tests, Pearson’s correlation index (P < 0.05). Results The average of quality of life in all patients were calculated as was respectively 12.19, 11.98, 12.08, and 12.4 in physical, psychological, social and environmental domains respectively, 68 percent of total number of the patients had various degrees of anxiety and 78 percent of them had various degrees of depression. There was a significant relationship between the life quality average in all domains and anxiety intensity and depression intensity (P < 0.05) and there was a significant relationship between life quality average in all domains and income (P < 0.05). Conclusion As the level of depression and anxiety goes up, quality of life decreases pointing out that they have a reverse relationship. Depression and anxiety are one of the most significant factors of quality of life among other variables. Regarding specific conditions of the treatment, it is necessary to pay special attention to psychological aspects.

  12. The dynamic role of personality states in mediating the relationship between extraversion and positive affect.

    PubMed

    Wilt, Joshua; Noftle, Erik E; Fleeson, William; Spain, Jana S

    2012-10-01

    One of the most noteworthy and robust findings in personality psychology is the relationship between extraversion and positive affect. Existing theories have debated the origins and nature of this relationship, offering both structural/fixed and environmental/dynamic explanations. We tested the novel and straightforward dynamic hypothesis that part of the reason trait extraversion predicts trait positive affect is through an increased propensity to enact extraverted states, which in turn leads to experiencing more positive affect states. We report 5 experience sampling studies (and a meta-analysis of primary studies) conducted in natural environments and laboratory settings in which undergraduate participants (N = 241) provided ratings of trait extraversion, trait positive affect, extraversion states, and positive affect states. Results of primary studies and the meta-analysis showed that relationships between trait extraversion and trait positive affect were partially mediated by aggregated extraversion states and aggregated positive affect states. The results supported our dynamic hypothesis and suggested that dynamic explanations of the relationship between trait extraversion and trait positive affect are compatible with structural explanations. An important implication of these findings is that individuals might be able to increase their happiness by self-regulating their extraverted states.

  13. The Dynamic Role of Personality States in Mediating the Relationship between Extraversion and Positive Affect

    PubMed Central

    Wilt, Joshua; Noftle, Erik E.; Fleeson, William; Spain, Jana S.

    2012-01-01

    Objective One of the most noteworthy and robust findings in personality psychology is the relationship between extraversion and positive affect. Existing theories have debated the origins and nature of this relationship, offering both structural/fixed and environmental/dynamic explanations. We tested the novel and straightforward dynamic hypothesis that part of the reason trait extraversion predicts trait positive affect is through an increased propensity to enact extraverted states, which in turn leads to experiencing more positive affect states. Method We report five experience sampling studies (and a meta-analysis of primary studies) conducted in natural environments and laboratory settings in which undergraduate participants (N = 241) provided ratings of trait extraversion, trait positive affect, extraversion states, and positive affect states. Results Results of primary studies and the meta analysis showed that relationships between trait extraversion and trait positive affect were partially mediated by aggregated extraversion states and aggregated positive affect states. Conclusions The results supported our dynamic hypothesis and suggested that dynamic explanations of the relationship between trait extraversion and trait positive affect are compatible with structural explanations. An important implication of these findings is that individuals might be able to increase their happiness by self-regulating their extraverted states. PMID:22092066

  14. Infectious, inflammatory, and metabolic diseases affecting the athlete's spine.

    PubMed

    Metz, Lionel N; Wustrack, Rosanna; Lovell, Alberto F; Sawyer, Aenor J

    2012-07-01

    Sports and weight-bearing activities can have a positive effect on bone health in the growing, mature, or aging athlete. However, certain athletic activities and training regimens may place the athlete at increased risk for stress fractures in the spine. In addition, some athletes have an underlying susceptibility to fracture due to either systemic or focal abnormalities. It is important to identify and treat these athletes in order to prevent stress fractures and reduce the risk of osteoporosis in late adulthood. Therefore, the pre-participation physical examination offers a unique opportunity to screen athletes for metabolic bone disease through the history and physical examination. Positive findings warrant a thorough workup including a metabolic bone laboratory panel, and possibly a DEXA scan, which includes a lateral spine view.

  15. Adaptive autophagy in Alexander disease-affected astrocytes.

    PubMed

    Tang, Guomei; Yue, Zhenyu; Tallóczy, Zsolt; Goldman, James E

    2008-07-01

    The ubiquitin-proteasome and autophagy-lysosomal pathways are the two main routes of protein and organelle clearance in eukaryotic cells. The proteasome system is responsible for unfolded, short-lived proteins, which precludes the clearance of oligomeric and aggregated proteins, whereas macroautophagy, a process generally referred to as autophagy, mediates mainly the bulk degradation of long-lived cytoplasmic proteins, large protein complexes or organelles.(1) Recently, the autophagy-lysosomal pathway has been implicated in neurodegenerative disorders as an important pathway for the clearance of abnormally accumulated intracellular proteins, such as huntingtin, tau, and mutant and modified α-synuclein.(1-6) Our recent study illustrated the induction of adaptive autophagy in response to mutant glial fibrillary acidic protein (GFAP) accumulation in astrocytes, in the brains of patients with Alexander disease (AxD), and in mutant GFAP knock-in mouse brains.(7) This autophagic response is negatively regulated by mammalian target of rapamycin (mTOR). The activation of p38 MAPK by GFAP accumulation is responsible for mTOR inactivation and the induction of autophagy. We also found that the accumulation of GFAP impairs proteasome activity.(8) In this commentary we discuss the potential compensatory relationship between an impaired proteasome and activated autophagy, and propose that the MLK-MAPK (mixed lineage kinase-mitogen-activated protein kinase) cascade is a regulator of this crosstalk. Addendum to: Tang G, Yue Z, Talloczy, Z, Hagemann T, Cho W, Sulzer D, Messing A, Goldman JE. Alexander disease-mutant GFAP accumulation stimulates autophagy through p38 MAPK and mTOR signaling pathways. Hum Mol Genetics 2008; In press.

  16. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease

    PubMed Central

    Cárdenas, Anny; Rodriguez-R, Luis M; Pizarro, Valeria; Cadavid, Luis F; Arévalo-Ferro, Catalina

    2012-01-01

    Coral reefs are deteriorating at an alarming rate mainly as a consequence of the emergence of coral diseases. The white plague disease (WPD) is the most prevalent coral disease in the southwestern Caribbean, affecting dozens of coral species. However, the identification of a single causal agent has proved problematic. This suggests more complex etiological scenarios involving alterations in the dynamic interaction between environmental factors, the coral immune system and the symbiotic microbial communities. Here we compare the microbiome of healthy and WPD-affected corals from the two reef-building species Diploria strigosa and Siderastrea siderea collected at the Tayrona National Park in the Caribbean of Colombia. Microbiomes were analyzed by combining culture-dependent methods and pyrosequencing of 16S ribosomal DNA (rDNA) V5-V6 hypervariable regions. A total of 20 410 classifiable 16S rDNA sequences reads were obtained including all samples. No significant differences in operational taxonomic unit diversity were found between healthy and affected tissues; however, a significant increase of Alphaproteobacteria and a concomitant decrease in the Beta- and Gammaproteobacteria was observed in WPD-affected corals of both species. Significant shifts were also observed in the orders Rhizobiales, Caulobacteriales, Burkholderiales, Rhodobacterales, Aleteromonadales and Xanthomonadales, although they were not consistent between the two coral species. These shifts in the microbiome structure of WPD-affected corals suggest a loss of community-mediated growth control mechanisms on bacterial populations specific for each holobiont system. PMID:21955993

  17. Diagnosis of Paracardiac Castleman Disease by Dynamic Gadolinium-Enhanced First Pass Perfusion Magnetic Resonance Imaging

    PubMed Central

    Crean, Andrew; Paul, Narinder; Merchant, Naeem; Singer, Lianne; Provost, Yves

    2008-01-01

    Summary Castleman disease is an uncommon disorder affecting the lymphatic system and is characterised by atypical lymphocyte proliferation. The usual clinical presentation is of a solitary mass lesion, frequently within the thorax. A number of different imaging findings have been reported on CT and MRI. We present a case of paracardiac Castleman disease where the diagnosis was suggested by dramatic enhancement of the tumour mass during a dynamic MR perfusion sequence. To our knowledge this is the first report of the use of a first pass bolus tracking technique in the diagnosis of Castleman disease. PMID:24179362

  18. Affect dynamics in relation to depressive symptoms: variable, unstable or inert?

    PubMed

    Koval, Peter; Pe, Madeline L; Meers, Kristof; Kuppens, Peter

    2013-12-01

    Depression not only involves disturbances in prevailing affect, but also in how affect fluctuates over time. Yet, precisely which patterns of affect dynamics are associated with depressive symptoms remains unclear; depression has been linked with increased affective variability and instability, but also with greater resistance to affective change (inertia). In this paper, we argue that these paradoxical findings stem from a number of neglected methodological/analytical factors, which we address using a novel paradigm and analytic approach. Participants (N = 99), preselected to represent a wide range of depressive symptoms, watched a series of emotional film clips and rated their affect at baseline and following each film clip. We also assessed participants' affect in daily life over 1 week using experience sampling. When controlling for overlap between different measures of affect dynamics, depressive symptoms were independently associated with higher inertia of negative affect in the lab, and with greater negative affect variability both in the lab and in daily life. In contrast, depressive symptoms were not independently related to higher affective instability either in daily life or in the lab.

  19. Does Parkinson's disease affect judgement about another person's action?

    PubMed

    Poliakoff, E; Galpin, A J; Dick, J P R; Tipper, S P

    2010-07-01

    The observer's motor system has been shown to be involved in observing the actions of another person. Recent findings suggest that people with Parkinson's disease do not show the same motor facilitatory effects when observing the actions of another person. We studied whether Parkinson's patients were able to make unspeeded judgements about another person's action. Participants were asked to watch video clips of an actor lifting a box containing different weights (100, 200, 300 or 400 g) and to guess the weight that was being lifted on a 9-point scale. We compared the performance of 16 patients with PD with 16 healthy age-matched controls. Both groups were able to do the task, showing a significant relationship between the real weight and the guessed weight, albeit with a tendency to overestimate the lowest weight and underestimate the heaviest weight. The PD patients, however, showed a reduced slope value. These results show that despite their own motor deficits, PD patients are still able to judge the weight being lifted by another person, albeit with a slight reduction in accuracy. Further research will be required to determine whether PD patients use a motor simulation or a visual compensatory strategy to achieve this.

  20. Dynamics of epidemic diseases on a growing adaptive network

    NASA Astrophysics Data System (ADS)

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-02-01

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.

  1. Dynamics of epidemic diseases on a growing adaptive network

    PubMed Central

    Demirel, Güven; Barter, Edmund; Gross, Thilo

    2017-01-01

    The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists. PMID:28186146

  2. Coupled disease-behavior dynamics on complex networks: A review.

    PubMed

    Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  3. Coupled disease-behavior dynamics on complex networks: A review

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.

    2015-12-01

    It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.

  4. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.

    PubMed

    Grenfell, B T; Kleczkowski, A; Gilligan, C A; Bolker, B M

    1995-06-01

    There is currently considerable interest in the role of nonlinear phenomena in the population dynamics of infectious diseases. Childhood diseases such as measles are particularly well documented dynamically, and have recently been the subject of analyses (of both models and notification data) to establish whether the pattern of epidemics is chaotic. Though the spatial dynamics of measles have also been extensively studied, spatial and nonlinear dynamics have only recently been brought together. The present review concentrates mainly on describing this synthesis. We begin with a general review of the nonlinear dynamics of measles models, in a spatially homogeneous environment. Simple compartmental models (specifically the SEIR model) can behave chaotically, under the influence of strong seasonal 'forcing' of infection rate associated with patterns of schooling. However, adding observed heterogeneities such as age structure can simplify the deterministic dynamics back to limit cycles. By contrast all current strongly seasonally forced stochastic models show large amplitude irregular fluctuations, with many more 'fadeouts' of infection that is observed in real communities of similar size. This indicates that (social and/or geographical) spatial heterogeneity is needed in the models. We review the exploration of this problem with nonlinear spatiotemporal models. The few studies to date indicate that spatial heterogeneity can help to increase the realism of models. However, a review of nonlinear analyses of spatially subdivided measles data show that more refinements of the models (particularly in representing the impact of human demographic changes on infection dynamics) are required. We conclude with a discussion of the implication of these results for the dynamics of infectious diseases in general and, in particular, the possibilities of cross fertilization between human disease epidemiology and the study of plant and animal diseases.

  5. Desmosomes: differentiation, development, dynamics and disease.

    PubMed

    Garrod, D; Chidgey, M; North, A

    1996-10-01

    Recent evidence on the distribution of desmosomal glycoprotein isoforms that shows their combined expression in individual desmosomes has strengthened the belief that the latter are involved in epithelial differentiation and morphogenesis. It has been shown that cellular interactions and protein kinase C can modulate the adhesive properties of desmosomes in epithelial cell sheets. Genetic studies indicate the involvement of desmosomal components in cancer and epidermal diseases.

  6. Highly dynamic animal contact network and implications on disease transmission

    PubMed Central

    Chen, Shi; White, Brad J.; Sanderson, Michael W.; Amrine, David E.; Ilany, Amiyaal; Lanzas, Cristina

    2014-01-01

    Contact patterns among hosts are considered as one of the most critical factors contributing to unequal pathogen transmission. Consequently, networks have been widely applied in infectious disease modeling. However most studies assume static network structure due to lack of accurate observation and appropriate analytic tools. In this study we used high temporal and spatial resolution animal position data to construct a high-resolution contact network relevant to infectious disease transmission. The animal contact network aggregated at hourly level was highly variable and dynamic within and between days, for both network structure (network degree distribution) and individual rank of degree distribution in the network (degree order). We integrated network degree distribution and degree order heterogeneities with a commonly used contact-based, directly transmitted disease model to quantify the effect of these two sources of heterogeneity on the infectious disease dynamics. Four conditions were simulated based on the combination of these two heterogeneities. Simulation results indicated that disease dynamics and individual contribution to new infections varied substantially among these four conditions under both parameter settings. Changes in the contact network had a greater effect on disease dynamics for pathogens with smaller basic reproduction number (i.e. R0 < 2). PMID:24667241

  7. Mathematical modeling of microtubule dynamics: insights into physiology and disease.

    PubMed

    Buxton, Gavin A; Siedlak, Sandra L; Perry, George; Smith, Mark A

    2010-12-01

    Computer models of microtubule dynamics have provided the basis for many of the theories on the cellular mechanics of the microtubules, their polymerization kinetics, and the diffusion of tubulin and tau. In the three-dimensional model presented here, we include the effects of tau concentration and the hydrolysis of GTP-tubulin to GDP-tubulin and observe the emergence of microtubule dynamic instability. This integrated approach simulates the essential physics of microtubule dynamics in a cellular environment. The model captures the structure of the microtubules as they undergo steady state dynamic instabilities in this simplified geometry, and also yields the average number, length, and cap size of the microtubules. The model achieves realistic geometries and simulates cellular structures found in degenerating neurons in disease states such as Alzheimer disease. Further, this model can be used to simulate microtubule changes following the addition of antimitotic drugs which have recently attracted attention as chemotherapeutic agents.

  8. Parameter on systemic conditions affected by periodontal diseases. American Academy of Periodontology.

    PubMed

    2000-05-01

    The American Academy of Periodontology has developed the following parameter on systemic conditions affected by periodontal diseases. It is well known that systemic conditions may affect the onset, progression, and treatment of such diseases (see Parameter on Periodontitis Associated With Systemic Conditions, pages 876-879). The concept of periodontal diseases as localized entities affecting only the teeth and supporting apparatus is increasingly being questioned. Periodontal diseases may have widespread systemic effects. While these effects may be limited in some individuals, periodontal infections may significantly impact systemic health in others, and may serve as risk indicators for certain systemic diseases or conditions. As part of the approach to establishing and maintaining health, patients should be informed of the possible effects of periodontal infection on their overall well-being. Given this information, patients should then be able to make informed decisions regarding their periodontal therapy.

  9. Evolutionary dynamics of Newcastle disease virus

    SciTech Connect

    Miller, Patti J.; Kim, L. Mia; Ip, Hon S.; Afonso, Claudio L.

    2009-08-15

    A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution.

  10. Transient dynamics in motor control of patients with Parkinson's disease

    NASA Astrophysics Data System (ADS)

    Beuter, Anne; Labrie, Christiane; Vasilakos, Konstantinon

    1991-10-01

    Experimental observations of movement disorders including tremor and voluntary microdisplacements recorded in patients with Parkinson's disease (PD) during a simple visuomotor tracking task are analyzed. The performance of patients with PD having a very large amplitude tremor is characterized either by the intermittent appearance of transient dynamics or by the presence of sudden transitions in the amplitude or frequency of the signal. The need to develop new tools to characterize changes in dynamics (i.e., transitions) and to redefine neurological degeneration, such as Parkinson's disease, in terms of qualitative changes in oscillatory behaviors is emphasized.

  11. Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species.

    PubMed

    Daleo, Pedro; Alberti, Juan; Pascual, Jesús; Canepuccia, Alejandro; Iribarne, Oscar

    2014-05-01

    Disturbance can generate heterogeneous environments and profoundly influence plant diversity by creating patches at different successional stages. Herbivores, in turn, can govern plant succession dynamics by determining the rate of species replacement, ultimately affecting plant community structure. In a south-western Atlantic salt marsh, we experimentally evaluated the role of herbivory in the recovery following disturbance of the plant community and assessed whether herbivory affects the relative importance of sexual and clonal reproduction on these dynamics. Our results show that herbivory strongly affects salt marsh secondary succession by suppressing seedlings and limiting clonal colonization of the dominant marsh grass, allowing subordinate species to dominate disturbed patches. These results demonstrate that herbivores can have an important role in salt marsh community structure and function, and can be a key force during succession dynamics.

  12. Decision Aids for Multiple-Decision Disease Management as Affected by Weather Input Errors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many disease management decision support systems (DSS) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation or estimation from off-site sources, may affect model calculations and manage...

  13. Evolutionary dynamics of Newcastle disease virus

    USGS Publications Warehouse

    Miller, P.J.; Kim, L.M.; Ip, H.S.; Afonso, C.L.

    2009-01-01

    A comprehensive dataset of NDV genome sequences was evaluated using bioinformatics to characterize the evolutionary forces affecting NDV genomes. Despite evidence of recombination in most genes, only one event in the fusion gene of genotype V viruses produced evolutionarily viable progenies. The codon-associated rate of change for the six NDV proteins revealed that the highest rate of change occurred at the fusion protein. All proteins were under strong purifying (negative) selection; the fusion protein displayed the highest number of amino acids under positive selection. Regardless of the phylogenetic grouping or the level of virulence, the cleavage site motif was highly conserved implying that mutations at this site that result in changes of virulence may not be favored. The coding sequence of the fusion gene and the genomes of viruses from wild birds displayed higher yearly rates of change in virulent viruses than in viruses of low virulence, suggesting that an increase in virulence may accelerate the rate of NDV evolution. ?? 2009 Elsevier Inc.

  14. Koala Retroviruses: Evolution and Disease Dynamics.

    PubMed

    Xu, Wenqin; Eiden, Maribeth V

    2015-11-01

    A retroviral etiology for malignant neoplasias in koalas has long been suspected. Evidence for retroviral involvement was bolstered in 2000 by the isolation of a koala retrovirus (KoRV), now termed KoRV-A. KoRV-A is an endogenous retrovirus-a retrovirus that infects germ cells-a feature that makes it a permanent resident of the koala genome. KoRV-A lacks the genetic diversity of an exogenous retrovirus, a quality associated with the ability of a retrovirus to cause neoplasias. In 2013, a second KoRV isolate, KoRV-B, was obtained from koalas with lymphomas in the Los Angeles Zoo. Unlike KoRV-A, which is present in the genomes of all koalas in the United States, KoRV-B is restricted in its distribution and is associated with host pathology (neoplastic disease). Here, our current understanding of the evolution of endogenous and exogenous KoRVs, and the relationship between them, is reviewed to build a perspective on the future impact of these viruses on koala sustainability.

  15. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis

    PubMed Central

    Lohr, Kathryn E.; Cameron, Caitlin M.; Williams, Dana E.; Peters, Esther C.

    2014-01-01

    The threatened status (both ecologically and legally) of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1) excision of apparently healthy branch tips from a diseased colony, and (2) placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL). Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys. PMID:25210660

  16. Differences in the dynamics of affective and cognitive processing - An ERP study.

    PubMed

    Mueller, Christina J; Fritsch, Nathalie; Hofmann, Markus J; Kuchinke, Lars

    2017-01-15

    A controversy in emotion research concerns the question of whether affective or cognitive primacy are evident in processing affective stimuli and the factors contributing to each alternative. Using electrophysiological recordings in an adapted visual oddball paradigm allowed tracking the dynamics of affective and cognitive effects. Stimuli consisted of face pictures displaying affective expressions with rare oddballs differing from frequent stimuli in either affective expression, structure (while frequent stimuli were shown frontally these deviants were turned sideways) or they differed on both dimensions, i.e. in affective expression and structure. Results revealed a defined sequence of differences in ERP amplitudes: For stimuli deviating in their affective expression only, P1 modulations ~100ms were evident, while affective differences of structure deviants were not evident before the N170 time window. All three types of deviants differed in P300 amplitudes, indicating integration of affective and structural information. These results encompass evidence for both, cognitive and affective primacy depending on stimulus properties. Specifically affective primacy is only visible when the respective facial features can be extracted with ease. When structural differences make face processing harder, however, cognitive primacy is brought forward.

  17. Changing facial affect recognition in schizophrenia: effects of training on brain dynamics.

    PubMed

    Popova, Petia; Popov, Tzvetan G; Wienbruch, Christian; Carolus, Almut M; Miller, Gregory A; Rockstroh, Brigitte S

    2014-01-01

    Deficits in social cognition including facial affect recognition and their detrimental effects on functional outcome are well established in schizophrenia. Structured training can have substantial effects on social cognitive measures including facial affect recognition. Elucidating training effects on cortical mechanisms involved in facial affect recognition may identify causes of dysfunctional facial affect recognition in schizophrenia and foster remediation strategies. In the present study, 57 schizophrenia patients were randomly assigned to (a) computer-based facial affect training that focused on affect discrimination and working memory in 20 daily 1-hour sessions, (b) similarly intense, targeted cognitive training on auditory-verbal discrimination and working memory, or (c) treatment as usual. Neuromagnetic activity was measured before and after training during a dynamic facial affect recognition task (5 s videos showing human faces gradually changing from neutral to fear or to happy expressions). Effects on 10-13 Hz (alpha) power during the transition from neutral to emotional expressions were assessed via MEG based on previous findings that alpha power increase is related to facial affect recognition and is smaller in schizophrenia than in healthy subjects. Targeted affect training improved overt performance on the training tasks. Moreover, alpha power increase during the dynamic facial affect recognition task was larger after affect training than after treatment-as-usual, though similar to that after targeted perceptual-cognitive training, indicating somewhat nonspecific benefits. Alpha power modulation was unrelated to general neuropsychological test performance, which improved in all groups. Results suggest that specific neural processes supporting facial affect recognition, evident in oscillatory phenomena, are modifiable. This should be considered when developing remediation strategies targeting social cognition in schizophrenia.

  18. Contact structure, mobility, environmental impact and behaviour: the importance of social forces to infectious disease dynamics and disease ecology.

    PubMed

    Arthur, Ronan F; Gurley, Emily S; Salje, Henrik; Bloomfield, Laura S P; Jones, James H

    2017-05-05

    Human factors, including contact structure, movement, impact on the environment and patterns of behaviour, can have significant influence on the emergence of novel infectious diseases and the transmission and amplification of established ones. As anthropogenic climate change alters natural systems and global economic forces drive land-use and land-cover change, it becomes increasingly important to understand both the ecological and social factors that impact infectious disease outcomes for human populations. While the field of disease ecology explicitly studies the ecological aspects of infectious disease transmission, the effects of the social context on zoonotic pathogen spillover and subsequent human-to-human transmission are comparatively neglected in the literature. The social sciences encompass a variety of disciplines and frameworks for understanding infectious diseases; however, here we focus on four primary areas of social systems that quantitatively and qualitatively contribute to infectious diseases as social-ecological systems. These areas are social mixing and structure, space and mobility, geography and environmental impact, and behaviour and behaviour change. Incorporation of these social factors requires empirical studies for parametrization, phenomena characterization and integrated theoretical modelling of social-ecological interactions. The social-ecological system that dictates infectious disease dynamics is a complex system rich in interacting variables with dynamically significant heterogeneous properties. Future discussions about infectious disease spillover and transmission in human populations need to address the social context that affects particular disease systems by identifying and measuring qualitatively important drivers.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'.

  19. Complex Ecological Dynamics and Eradicability of the Vector Borne Macroparasitic Disease, Lymphatic Filariasis

    PubMed Central

    Gambhir, Manoj; Michael, Edwin

    2008-01-01

    Background The current global efforts to control the morbidity and mortality caused by infectious diseases affecting developing countries—such as HIV/AIDS, polio, tuberculosis, malaria and the Neglected Tropical Diseases (NTDs)—have led to an increasing focus on the biological controllability or eradicability of disease transmission by management action. Here, we use an age-structured dynamical model of lymphatic filariasis transmission to show how a quantitative understanding of the dynamic processes underlying infection persistence and extinction is key to evaluating the eradicability of this macroparasitic disease. Methodology/Principal Findings We investigated the persistence and extinction dynamics of lymphatic filariasis by undertaking a numerical equilibrium analysis of a deterministic model of parasite transmission, based on varying values of the initial L3 larval density in the system. The results highlighted the likely occurrence of complex dynamics in parasite transmission with three major outcomes for the eradicability of filariasis. First, both vector biting and worm breakpoint thresholds are shown to be complex dynamic entities with values dependent on the nature and magnitude of vector-and host specific density-dependent processes and the degree of host infection aggregation prevailing in endemic communities. Second, these thresholds as well as the potential size of the attractor domains and hence system resilience are strongly dependent on peculiarities of infection dynamics in different vector species. Finally, the existence of multiple stable states indicates the presence of hysteresis nonlinearity in the filariasis system dynamics in which infection thresholds for infection invasion are lower but occur at higher biting rates than do the corresponding thresholds for parasite elimination. Conclusions/Significance The variable dynamic nature of thresholds and parasite system resilience reflecting both initial conditions and vector species

  20. Microgeodic Disease Affecting the Fingers and Toes in Childhood: A Case Report

    PubMed Central

    Tetsunaga, Tomonori; Endo, Hirosuke; Fujiwara, Kazuo; Tetsunaga, Tomoko; Ozaki, Toshifumi

    2016-01-01

    Microgeodic disease is a disease of unknown etiology that affects the fingers and toes of children, with ≥ 90% of cases involving the fingers alone. We present a rare case of microgeodic disease affecting an index finger and two toes simultaneously in a 7-year-old girl. X-ray and magnetic resonance imaging (MRI) showed multiple small areas of osteolysis in the middle phalanges of the left index finger, hallux, and second toe. Microgeodic disease was diagnosed from X-ray and MRI findings, and conservative therapy involving rest and avoidance of cold stimuli was provided. Although pathological fractures occurred in the course of conservative treatment, the affected finger healed under splinting without any deformity of the finger. PMID:27843512

  1. Abnormal Mitochondrial Dynamics in the Pathogenesis of Alzheimer's Disease

    PubMed Central

    Zhu, Xiongwei; Perry, George; Smith, Mark A.; Wang, Xinglong

    2014-01-01

    Mitochondrial dysfunction is one of the most early and prominent features in vulnerable neurons in the brain of Alzheimer's disease (AD) patients. Recent studies suggest that mitochondria are highly dynamic organelles characterized by a delicate balance of fission and fusion, a concept that has revolutionized our basic understanding of the regulation of mitochondrial structure and function which has far-reaching significance in studies of health and disease. Tremendous progress has been made in studying changes in mitochondrial dynamics in AD brain and models and the potential underlying mechanisms. This review highlights the recent work demonstrating abnormal mitochondrial dynamics and distribution in AD models and discusses how these abnormalities may contribute to various aspects of mitochondrial dysfunction and the pathogenesis of AD. PMID:22531428

  2. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Earl, David J.; Deem, Michael W.

    2005-09-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self-antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely, gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system’s search for antibodies, a balance has evolved between binding affinity and specificity.

  3. Detecting lower extremity vascular dynamics in patients with peripheral artery disease using diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Khalil, Michael A.; Kim, Hyun-Keol K.; Kim, In-Kyong; Dayal, Rajeev; Hielscher, Andreas H.

    2011-02-01

    Peripheral Artery Disease (PAD) affects over 10 million Americans and is associated with significant morbidity and mortality. While in many cases the ankle-brachial index (ABI) can be used for diagnosing the disease, this parameter is not dependable in the diabetic and elderly population. These populations tend to have calcified arteries, which leads to elevated ABI values. Dynamic optical tomography (DDOT) promises to overcome the limitations of the current diagnostic techniques and has the potential to initiate a paradigm shift in the diagnosis of vascular disease. We have performed initial pilot studies involving 5 PAD patients and 3 healthy volunteers. The time traces and tomographic reconstruction obtained from measurements on the feet show significant differences between healthy and affected vasculatures. In addition, we found that DOT is capable of identifying PAD in diabetic patients, who are misdiagnosed by the traditional ABI screening.

  4. Investigating the Effects of Sweat Therapy on Group Dynamics and Affect

    ERIC Educational Resources Information Center

    Colmant, Stephen A.; Eason, Evan A.; Winterowd, Carrie L.; Jacobs, Sue C.; Cashel, Chris

    2005-01-01

    In this study, we examined the effects of sweat therapy on group dynamics and affect. Sweat therapy is the combination of intense heat exposure with psychotherapy or counseling (Colmant & Merta, 1999; 2000). Twenty-four undergraduates were separated by sex and randomly assigned to eight sessions of either a sweat or non-sweat group counseling…

  5. Imperfect or Perfect Dynamic Bipolarity? The Case of Antonymous Affective Judgments

    ERIC Educational Resources Information Center

    Vautier, Stephane; Steyer, Rolf; Jmel, Said; Raufaste, Eric

    2005-01-01

    How is affective change rated with positive adjectives such as good related to change rated with negative adjectives such as bad? Two nested perfect and imperfect forms of dynamic bipolarity are defined using latent change structural equation models based on tetrads of items. Perfect bipolarity means that latent change scores correlate -1.…

  6. The Dynamic Nature of Leisure Experience: An Application of Affect Control Theory.

    ERIC Educational Resources Information Center

    Lee, BongKoo; Shafer, C. Scott

    2002-01-01

    Applied Affect Control Theory (ACT) to investigate the interaction process between leisure participants and their environment. Surveys of people on an urban, multiple-use trail indicated that most exhibited a dynamic emotional experience even though they were in the setting a short time. Respondents exhibited different emotions across events.…

  7. School Factors Explaining Achievement on Cognitive and Affective Outcomes: Establishing a Dynamic Model of Educational Effectiveness

    ERIC Educational Resources Information Center

    Creemers, Bert; Kyriakides, Leonidas

    2010-01-01

    The dynamic model of educational effectiveness defines school level factors associated with student outcomes. Emphasis is given to the two main aspects of policy, evaluation, and improvement in schools which affect quality of teaching and learning at both the level of teachers and students: a) teaching and b) school learning environment. Five…

  8. Environmental Factors Affecting Computer Assisted Language Learning Success: A Complex Dynamic Systems Conceptual Model

    ERIC Educational Resources Information Center

    Marek, Michael W.; Wu, Wen-Chi Vivian

    2014-01-01

    This conceptual, interdisciplinary inquiry explores Complex Dynamic Systems as the concept relates to the internal and external environmental factors affecting computer assisted language learning (CALL). Based on the results obtained by de Rosnay ["World Futures: The Journal of General Evolution", 67(4/5), 304-315 (2011)], who observed…

  9. Factors that Affect Synergies in Mergers, at Banking Sector: Simulation with a Dynamic Model

    NASA Astrophysics Data System (ADS)

    Yiannis, Triantafyllopoulos; Sakas, Damianos P.; Konstantopoulos, Nikolaos

    2007-12-01

    This article examines the factors that affect the intended synergy following an M&A, as they have emerged from the study of the M&A's that have taken place as yet in the Bank Sector of an EU country. On the basis of quality research, dynamic simulation models have been created for two out of the five factors.

  10. [McArdle disease or glycogen storage disease type v: Should it affect anaesthetic management?].

    PubMed

    Ayerza-Casas, V; Ferreira-Laso, L; Alloza-Fortun, M C; Fraile-Jimenez, A E

    2015-02-01

    McArdle disease is a metabolic myopathy that can may lead to severe perioperative problems. A case is reported of a woman with a history of McArdle disease, who was scheduled for a mastectomy. An understanding of the physiology and pathology, and the application of appropriate preventive measures can avoid complications. A overview of the complications and the management are described.

  11. Using GPS technology to quantify human mobility, dynamic contacts and infectious disease dynamics in a resource-poor urban environment.

    PubMed

    Vazquez-Prokopec, Gonzalo M; Bisanzio, Donal; Stoddard, Steven T; Paz-Soldan, Valerie; Morrison, Amy C; Elder, John P; Ramirez-Paredes, Jhon; Halsey, Eric S; Kochel, Tadeusz J; Scott, Thomas W; Kitron, Uriel

    2013-01-01

    Empiric quantification of human mobility patterns is paramount for better urban planning, understanding social network structure and responding to infectious disease threats, especially in light of rapid growth in urbanization and globalization. This need is of particular relevance for developing countries, since they host the majority of the global urban population and are disproportionally affected by the burden of disease. We used Global Positioning System (GPS) data-loggers to track the fine-scale (within city) mobility patterns of 582 residents from two neighborhoods from the city of Iquitos, Peru. We used ∼2.3 million GPS data-points to quantify age-specific mobility parameters and dynamic co-location networks among all tracked individuals. Geographic space significantly affected human mobility, giving rise to highly local mobility kernels. Most (∼80%) movements occurred within 1 km of an individual's home. Potential hourly contacts among individuals were highly irregular and temporally unstructured. Only up to 38% of the tracked participants showed a regular and predictable mobility routine, a sharp contrast to the situation in the developed world. As a case study, we quantified the impact of spatially and temporally unstructured routines on the dynamics of transmission of an influenza-like pathogen within an Iquitos neighborhood. Temporally unstructured daily routines (e.g., not dominated by a single location, such as a workplace, where an individual repeatedly spent significant amount of time) increased an epidemic's final size and effective reproduction number by 20% in comparison to scenarios modeling temporally structured contacts. Our findings provide a mechanistic description of the basic rules that shape human mobility within a resource-poor urban center, and contribute to the understanding of the role of fine-scale patterns of individual movement and co-location in infectious disease dynamics. More generally, this study emphasizes the need for

  12. Using GPS Technology to Quantify Human Mobility, Dynamic Contacts and Infectious Disease Dynamics in a Resource-Poor Urban Environment

    PubMed Central

    Vazquez-Prokopec, Gonzalo M.; Bisanzio, Donal; Stoddard, Steven T.; Paz-Soldan, Valerie; Morrison, Amy C.; Elder, John P.; Ramirez-Paredes, Jhon; Halsey, Eric S.; Kochel, Tadeusz J.; Scott, Thomas W.; Kitron, Uriel

    2013-01-01

    Empiric quantification of human mobility patterns is paramount for better urban planning, understanding social network structure and responding to infectious disease threats, especially in light of rapid growth in urbanization and globalization. This need is of particular relevance for developing countries, since they host the majority of the global urban population and are disproportionally affected by the burden of disease. We used Global Positioning System (GPS) data-loggers to track the fine-scale (within city) mobility patterns of 582 residents from two neighborhoods from the city of Iquitos, Peru. We used ∼2.3 million GPS data-points to quantify age-specific mobility parameters and dynamic co-location networks among all tracked individuals. Geographic space significantly affected human mobility, giving rise to highly local mobility kernels. Most (∼80%) movements occurred within 1 km of an individual’s home. Potential hourly contacts among individuals were highly irregular and temporally unstructured. Only up to 38% of the tracked participants showed a regular and predictable mobility routine, a sharp contrast to the situation in the developed world. As a case study, we quantified the impact of spatially and temporally unstructured routines on the dynamics of transmission of an influenza-like pathogen within an Iquitos neighborhood. Temporally unstructured daily routines (e.g., not dominated by a single location, such as a workplace, where an individual repeatedly spent significant amount of time) increased an epidemic’s final size and effective reproduction number by 20% in comparison to scenarios modeling temporally structured contacts. Our findings provide a mechanistic description of the basic rules that shape human mobility within a resource-poor urban center, and contribute to the understanding of the role of fine-scale patterns of individual movement and co-location in infectious disease dynamics. More generally, this study emphasizes the need

  13. Fluctuations in Electronic Energy Affecting Singlet Fission Dynamics and Mixing with Charge-Transfer State: Quantum Dynamics Study.

    PubMed

    Fujihashi, Yuta; Ishizaki, Akihito

    2016-02-04

    Singlet fission is a spin-allowed process by which a singlet excited state is converted to two triplet states. To understand mechanisms of the ultrafast fission via a charge transfer (CT) state, one has investigated the dynamics through quantum-dynamical calculations with the uncorrelated fluctuation model; however, the electronic states are expected to experience the same fluctuations induced by the surrounding molecules because the electronic structure of the triplet pair state is similar to that of the singlet state except for the spin configuration. Therefore, the fluctuations in the electronic energies could be correlated, and the 1D reaction coordinate model may adequately describe the fission dynamics. In this work we develop a model for describing the fission dynamics to explain the experimentally observed behaviors. We also explore impacts of fluctuations in the energy of the CT state on the fission dynamics and the mixing with the CT state. The overall behavior of the dynamics is insensitive to values of the reorganization energy associated with the transition from the singlet state to the CT state, although the coherent oscillation is affected by the fluctuations. This result indicates that the mixing with the CT state is rather robust under the fluctuations in the energy of the CT state as well as the high-lying CT state.

  14. Patient affect experiencing following therapist interventions in short-term dynamic psychotherapy.

    PubMed

    Town, Joel M; Hardy, Gillian E; McCullough, Leigh; Stride, Chris

    2012-01-01

    The aim of this research was to examine the relationship between therapist interventions and patient affect responses in Short-Term Dynamic Psychotherapy (STDP). The Affect Experiencing subscale from the Achievement of Therapeutic Objectives Scale (ATOS) was adapted to measure individual immediate affect experiencing (I-AES) responses in relation to therapist interventions coded within the preceding speaking turn, using the Psychotherapy Interaction Coding (PIC) system. A hierarchical linear modelling procedure was used to assess the change in affect experiencing and the relationship between affect experiencing and therapist interventions within and across segments of therapy. Process data was taken from six STDP cases; in total 24 hours of video-taped sessions were examined. Therapist interventions were found to account for a statistically significant amount of variance in immediate affect experiencing. Higher levels of immediate affect experiencing followed the therapist's use of Confrontation, Clarification and Support compared to Questions, Self-disclosure and Information interventions. Therapist Confrontation interventions that attempted to direct pressure towards either the visceral experience of affect or a patient's defences against feelings led to the highest levels of immediate affect experiencing. The type of therapist intervention accounts for a small but significant amount of the variation observed in a patient's immediate emotional arousal. Empirical findings support clinical theory in STDP that suggests strategic verbal responses promote the achievement of this specific therapeutic objective.

  15. Differential phenolic production in leaves of Vitis vinifera cv. Alvarinho affected with esca disease.

    PubMed

    Lima, Marta R M; Felgueiras, Mafalda L; Cunha, Ana; Chicau, Gisela; Ferreres, Federico; Dias, Alberto C P

    2017-03-01

    Esca is a destructive disease of complex etiology affecting grapevines worldwide. A major constraint to the study and control of esca is that the disease is not diagnosed until external leaf and/or fruit symptoms are visible; however external symptoms usually appear several years after infection onset. We studied the phenolic content of V. vinifera cv. Alvarinho leaves using high performance liquid chromatography-diode array detection-mass spectrometry (HPLC-DAD-MS)/LC-MS. Leaves from affected cordons with and without visible symptoms (diseased and apparently healthy leaves, respectively) and leaves from asymptomatic cordons (healthy leaves) were analyzed. Application of principal components analysis (PCA) to HPLC data showed a clear separation between diseased, apparently healthy, and healthy leaves, with the apparently healthy leaves clustered in a medial position. Several compounds were highly correlated with diseased leaves indicating a differential phenolic production due to esca disease in V. vinifera cv. Alvarinho leaves. Total phenolic production was shown to significantly increase in diseased leaves, compared to healthy leaves, with apparently healthy leaves containing a medial amount. Trans-caffeoyltartaric acid, trans-coumaroyl-tartaric acid, quercetin-3-O-glucoside, quercetin-3-O-galactoside, kaempferol-3-glucoside and myricetin were identified among the compounds associated with disease and their content shown to change similarly to total phenolic production. This study shows that it is possible to discriminate between diseased, healthy and apparently healthy leaves by applying PCA to HPLC data.

  16. Glassy Dynamics in the Adaptive Immune Response Prevents Autoimmune Disease

    NASA Astrophysics Data System (ADS)

    Sun, Jun; Deem, Michael

    2006-03-01

    The immune system normally protects the human host against death by infection. However, when an immune response is mistakenly directed at self antigens, autoimmune disease can occur. We describe a model of protein evolution to simulate the dynamics of the adaptive immune response to antigens. Computer simulations of the dynamics of antibody evolution show that different evolutionary mechanisms, namely gene segment swapping and point mutation, lead to different evolved antibody binding affinities. Although a combination of gene segment swapping and point mutation can yield a greater affinity to a specific antigen than point mutation alone, the antibodies so evolved are highly cross-reactive and would cause autoimmune disease, and this is not the chosen dynamics of the immune system. We suggest that in the immune system a balance has evolved between binding affinity and specificity in the mechanism for searching the amino acid sequence space of antibodies. Our model predicts that chronic infection may lead to autoimmune disease as well due to cross-reactivity and suggests a broad distribution for the time of onset of autoimmune disease due to chronic exposure. The slow search of antibody sequence space by point mutation leads to the broad of distribution times.

  17. An investigation of factors affecting elementary school students' BMI values based on the system dynamics modeling.

    PubMed

    Lan, Tian-Syung; Chen, Kai-Ling; Chen, Pin-Chang; Ku, Chao-Tai; Chiu, Pei-Hsuan; Wang, Meng-Hsiang

    2014-01-01

    This study used system dynamics method to investigate the factors affecting elementary school students' BMI values. The construction of the dynamic model is divided into the qualitative causal loop and the quantitative system dynamics modeling. According to the system dynamics modeling, this study consisted of research on the four dimensions: student's personal life style, diet-relevant parenting behaviors, advocacy and implementation of school nutrition education, and students' peer interaction. The results of this study showed that students with more adequate health concepts usually have better eating behaviors and consequently have less chance of becoming obese. In addition, this study also verified that educational attainment and socioeconomic status of parents have a positive correlation with students' amounts of physical activity, and nutrition education has a prominent influence on changing students' high-calorie diets.

  18. PARKINSON'S DISEASE PATIENTS WITH DOMINANT HEMIBODY AFFECTED BY THE DISEASE RELY MORE ON VISION TO MAINTAIN UPRIGHT POSTURAL CONTROL.

    PubMed

    Lahr, Juliana; Pereira, Marcelo Pinto; Pelicioni, Paulo Henrique Silva; De Morais, Luana Carolina; Gobbi, Lilian Teresa Bucken

    2015-12-01

    This study assesses the association between disease onset side (dominant or non-dominant) and vision on postural control of Parkinson's disease patients. Patient volunteers composed two groups, according to the onset side affected: Dominant group (n=9; M age=66.1 yr., SD=7.2; 6 women, 3 men) and Non-dominant group (n=9; M age=67.4 yr., SD=6.4; 6 women, 3 men). The groups' postural control was assessed by posturography during quiet upright stance in two conditions, Eyes open and Eyes closed. Two-way analyses of variance (ANOVAs; group×condition) with repeated measures for the second factor assessed the differences associated with affected hemibody and vision on postural control. Analyses indicated that patients with the dominant side affected also presented significantly greater variation in center of pressure than those with the non-dominant side affected, mainly in the Eyes closed condition. The results demonstrate a higher reliance on vision in the dominant side, possibly to compensate somatosensory system impairments. These results also highlight the importance of analyzing the hemibody affected by the disease when postural control is assessed in this population.

  19. Dynamics of adrenal glucocorticoid steroidogenesis in health and disease.

    PubMed

    Spiga, Francesca; Lightman, Stafford L

    2015-06-15

    The activity of the hypothalamic-pituitary-adrenal (HPA) axis is characterized by an ultradian (pulsatile) pattern of hormone secretion. Pulsatility of glucocorticoids has been found critical for optimal transcriptional, neuroendocrine and behavioral responses. This review will focus on the mechanisms underlying the origin of the glucocorticoid ultradian rhythm. Our recent research shows that the ultradian rhythm of glucocorticoids depends on highly dynamic processes within adrenocortical steroidogenic cells. Furthermore, we have evidence that disruption of these dynamics leads to abnormal glucocorticoid secretion observed in disease and critical illness in both humans and rats.

  20. The dynamic nature of the stress appraisal process and the infusion of affect.

    PubMed

    Eschleman, Kevin J; Alarcon, Gene M; Lyons, Joseph B; Stokes, Charlene K; Schneider, Tamera

    2012-05-01

    Very little is known about the process in which people reappraise a stressful environment or the factors that may influence this process. In the current study, we address the several limitations to previous research regarding stress reappraisals and explore the role of affect on this process. A total of 320 participants (mean age = 20 years, 60% male) completed an increasingly demanding team-based coordination task. Mood and stress appraisals were assessed at three time points using self-report surveys during four different waves of data collection. The longitudinal design enabled us to assess primary and secondary reappraisals (change in appraisals during the experiment), task-irrelevant affect (affect assessed prior to experiment participation), and task-relevant affect (change in affect experienced during the experiment). Guided by the Transactional Theory of Stress, we argue that the relationship between primary reappraisal and secondary reappraisal is an accurate representation of a dynamic stress appraisal process. We found that participants were more likely to engage in the stress appraisal process when they experienced less task-irrelevant positive affect and greater task-relevant positive affect. Both task-irrelevant and task-relevant negative affect were not found to influence the stress appraisal process.

  1. Dynamic association between negative affect and alcohol lapses following alcohol treatment.

    PubMed

    Witkiewitz, Katie; Villarroel, Nadia Aracelliz

    2009-08-01

    Clinical research has found a strong association between negative affect and returning to alcohol use after a period of abstinence. Yet little is known about the probability of a lapse given a particular level of negative affect or whether there is a reciprocal relationship between negative affect and alcohol use across time. The goal of the current study was to examine the association between negative affect and drinking behavior in the 1st year following alcohol treatment. The authors applied an associative latent transition analysis to the Project MATCH outpatient data (n = 952) and then replicated the model in the Project MATCH aftercare data (n = 774). Changes in drinking following treatment were significantly associated with current and prior changes in negative affect, and changes in negative affect were related to prior changes in drinking (effect size range = 0.13-0.33). The results supported the hypothesis that negative affect and alcohol lapses are dynamically linked and suggest that targeting the relationship between negative affect and alcohol use could greatly decrease the probability of lapses and improve alcohol treatment outcomes.

  2. Identifying Core Affect in Individuals from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli.

    PubMed

    Kim, Jongwan; Wang, Jing; Wedell, Douglas H; Shinkareva, Svetlana V

    2016-01-01

    Recent research has demonstrated that affective states elicited by viewing pictures varying in valence and arousal are identifiable from whole brain activation patterns observed with functional magnetic resonance imaging (fMRI). Identification of affective states from more naturalistic stimuli has clinical relevance, but the feasibility of identifying these states on an individual trial basis from fMRI data elicited by dynamic multimodal stimuli is unclear. The goal of this study was to determine whether affective states can be similarly identified when participants view dynamic naturalistic audiovisual stimuli. Eleven participants viewed 5s audiovisual clips in a passive viewing task in the scanner. Valence and arousal for individual trials were identified both within and across participants based on distributed patterns of activity in areas selectively responsive to audiovisual naturalistic stimuli while controlling for lower level features of the stimuli. In addition, the brain regions identified by searchlight analyses to represent valence and arousal were consistent with previously identified regions associated with emotion processing. These findings extend previous results on the distributed representation of affect to multimodal dynamic stimuli.

  3. Identifying Core Affect in Individuals from fMRI Responses to Dynamic Naturalistic Audiovisual Stimuli

    PubMed Central

    Kim, Jongwan; Wang, Jing; Wedell, Douglas H.

    2016-01-01

    Recent research has demonstrated that affective states elicited by viewing pictures varying in valence and arousal are identifiable from whole brain activation patterns observed with functional magnetic resonance imaging (fMRI). Identification of affective states from more naturalistic stimuli has clinical relevance, but the feasibility of identifying these states on an individual trial basis from fMRI data elicited by dynamic multimodal stimuli is unclear. The goal of this study was to determine whether affective states can be similarly identified when participants view dynamic naturalistic audiovisual stimuli. Eleven participants viewed 5s audiovisual clips in a passive viewing task in the scanner. Valence and arousal for individual trials were identified both within and across participants based on distributed patterns of activity in areas selectively responsive to audiovisual naturalistic stimuli while controlling for lower level features of the stimuli. In addition, the brain regions identified by searchlight analyses to represent valence and arousal were consistent with previously identified regions associated with emotion processing. These findings extend previous results on the distributed representation of affect to multimodal dynamic stimuli. PMID:27598534

  4. Dynamics of the human gut microbiome in inflammatory bowel disease.

    PubMed

    Halfvarson, Jonas; Brislawn, Colin J; Lamendella, Regina; Vázquez-Baeza, Yoshiki; Walters, William A; Bramer, Lisa M; D'Amato, Mauro; Bonfiglio, Ferdinando; McDonald, Daniel; Gonzalez, Antonio; McClure, Erin E; Dunklebarger, Mitchell F; Knight, Rob; Jansson, Janet K

    2017-02-13

    Inflammatory bowel disease (IBD) is characterized by flares of inflammation with a periodic need for increased medication and sometimes even surgery. The aetiology of IBD is partly attributed to a deregulated immune response to gut microbiome dysbiosis. Cross-sectional studies have revealed microbial signatures for different IBD subtypes, including ulcerative colitis, colonic Crohn's disease and ileal Crohn's disease. Although IBD is dynamic, microbiome studies have primarily focused on single time points or a few individuals. Here, we dissect the long-term dynamic behaviour of the gut microbiome in IBD and differentiate this from normal variation. Microbiomes of IBD subjects fluctuate more than those of healthy individuals, based on deviation from a newly defined healthy plane (HP). Ileal Crohn's disease subjects deviated most from the HP, especially subjects with surgical resection. Intriguingly, the microbiomes of some IBD subjects periodically visited the HP then deviated away from it. Inflammation was not directly correlated with distance to the healthy plane, but there was some correlation between observed dramatic fluctuations in the gut microbiome and intensified medication due to a flare of the disease. These results will help guide therapies that will redirect the gut microbiome towards a healthy state and maintain remission in IBD.

  5. Elevated depressive affect is associated with adverse cardiovascular outcomes among African Americans with chronic kidney disease.

    PubMed

    Fischer, Michael J; Kimmel, Paul L; Greene, Tom; Gassman, Jennifer J; Wang, Xuelei; Brooks, Deborah H; Charleston, Jeanne; Dowie, Donna; Thornley-Brown, Denyse; Cooper, Lisa A; Bruce, Marino A; Kusek, John W; Norris, Keith C; Lash, James P

    2011-09-01

    This study was designed to examine the impact of elevated depressive affect on health outcomes among participants with hypertensive chronic kidney disease in the African-American Study of Kidney Disease and Hypertension (AASK) Cohort Study. Elevated depressive affect was defined by Beck Depression Inventory II (BDI-II) thresholds of 11 or more, above 14, and by 5-Unit increments in the score. Cox regression analyses were used to relate cardiovascular death/hospitalization, doubling of serum creatinine/end-stage renal disease, overall hospitalization, and all-cause death to depressive affect evaluated at baseline, the most recent annual visit (time-varying), or average from baseline to the most recent visit (cumulative). Among 628 participants at baseline, 42% had BDI-II scores of 11 or more and 26% had a score above 14. During a 5-year follow-up, the cumulative incidence of cardiovascular death/hospitalization was significantly greater for participants with baseline BDI-II scores of 11 or more compared with those with scores <11. The baseline, time-varying, and cumulative elevated depressive affect were each associated with a significant higher risk of cardiovascular death/hospitalization, especially with a time-varying BDI-II score over 14 (adjusted HR 1.63) but not with the other outcomes. Thus, elevated depressive affect is associated with unfavorable cardiovascular outcomes in African Americans with hypertensive chronic kidney disease.

  6. Responses of horses affected with chronic obstructive pulmonary disease to inhalation challenges with mould antigens.

    PubMed

    McGorum, B C; Dixon, P M; Halliwell, R E

    1993-07-01

    Eight control and 8 asymptomatic COPD-affected horses were given, on separate occasions, inhalation challenges with extracts of Micropolyspora faeni, Aspergillus fumigatus and Thermoactinomyces vulgaris. All horses were also given nebulised phosphate-buffered saline (PBS) challenges and 'natural challenges' (NCs), i.e. exposure to hay and straw, as control challenges. Responses were assessed by clinical, pulmonary mechanics, arterial blood gas tensions, arterial blood pH and bronchoalveolar lavage fluid cytological examinations. PBS challenges had no effect on control or COPD-affected horses, while NC induced COPD only in the COPD-affected horses. Pulmonary disease, similar to naturally occurring COPD, was induced, only in the COPD-affected horses, by M. faeni and A. fumigatus challenges, thus implicating these organisms in the aetiology of equine COPD. The role of T. vulgaris in the aetiology of equine COPD could not, however, be determined because the T. vulgaris challenges, in addition to inducing pulmonary disease in 4 COPD-affected horses, induced pulmonary disease in 2 control horses which had been unaffected by NC. The absence of pulmonary disease in control horses after M. faeni, A. fumigatus and NC challenges suggests that equine COPD is a pulmonary hypersensitivity, rather than a non-specific toxic response.

  7. Does Vitamin D Affect Risk of Developing Autoimmune Disease?: A Systematic Review

    PubMed Central

    Kriegel, Martin A.; Manson, JoAnn E.; Costenbader, Karen H.

    2010-01-01

    Objectives We evaluated the epidemiologic evidence that vitamin D may be related to human autoimmune disease risk. Methods PubMed limited to English from inception through April 2010 was searched using keywords: “vitamin D”, “autoimmune” and autoimmune disease names. We summarized in vitro, animal, and genetic association studies of vitamin D in autoimmune disease pathogenesis. We sorted studies by design and disease and performed a systematic review of: a) cross-sectional data concerning vitamin D level and autoimmune disease; b) interventional data on vitamin D supplementation in autoimmune diseases and c) prospective data linking vitamin D level or intake to autoimmune disease risk. Results Vitamin D has effects on innate and acquired immune systems and vitamin D receptor polymorphisms have been associated with various autoimmune diseases. In experimental animal models, vitamin D supplementation can prevent or forestall autoimmune disease. We identified 76 studies in which vitamin D levels were studied in autoimmune disease patients, particularly with active disease, and compared to controls. Nineteen observational or interventional studies assessed the effect of vitamin D supplementation as therapy for various autoimmune diseases (excluding psoriasis and vitiligo) with a range of study approaches and results. The few prospective human studies performed conflict as to whether vitamin D level or intake is associated with autoimmune disease risk. No interventional trials have investigated whether vitamin D affects human autoimmune disease risk. Conclusions Cross-sectional data point to a potential role of vitamin D in autoimmune disease prevention, but prospective interventional evidence in humans is still lacking. PMID:21047669

  8. Translational neurophysiology in sheep: measuring sleep and neurological dysfunction in CLN5 Batten disease affected sheep

    PubMed Central

    Perentos, Nicholas; Martins, Amadeu Q.; Watson, Thomas C.; Bartsch, Ullrich; Mitchell, Nadia L.; Palmer, David N.; Jones, Matthew W.

    2015-01-01

    Creating valid mouse models of slowly progressing human neurological diseases is challenging, not least because the short lifespan of rodents confounds realistic modelling of disease time course. With their large brains and long lives, sheep offer significant advantages for translational studies of human disease. Here we used normal and CLN5 Batten disease affected sheep to demonstrate the use of the species for studying neurological function in a model of human disease. We show that electroencephalography can be used in sheep, and that longitudinal recordings spanning many months are possible. This is the first time such an electroencephalography study has been performed in sheep. We characterized sleep in sheep, quantifying characteristic vigilance states and neurophysiological hallmarks such as sleep spindles. Mild sleep abnormalities and abnormal epileptiform waveforms were found in the electroencephalographies of Batten disease affected sheep. These abnormalities resemble the epileptiform activity seen in children with Batten disease and demonstrate the translational relevance of both the technique and the model. Given that both spontaneous and engineered sheep models of human neurodegenerative diseases already exist, sheep constitute a powerful species in which longitudinal in vivo studies can be conducted. This will advance our understanding of normal brain function and improve our capacity for translational research into neurological disorders. PMID:25724202

  9. On the dynamic covariation between interpersonal behavior and affect: prediction from neuroticism, extraversion, and agreeableness.

    PubMed

    Côté, S; Moskowitz, D S

    1998-10-01

    It was posited that the traits of Neuroticism, Extraversion, and Agreeableness are predictors of dynamic intraindividual processes involving interpersonal behavior and affect. Hypotheses derived from the behavioral concordance model that individuals with high scores on a trait would experience more positively valenced affect when engaging in behavior concordant with that trait than individuals with low scores on the trait were tested. Participants completed a questionnaire measure of the traits and reported on behavior and affect during interpersonal interactions using event-contingent sampling forms approximately 6 times a day for 20 days. Trait scores were related to indexes of the association between each dimension of interpersonal behavior and affect calculated for each individual. Previous findings concerning the trait of Agreeableness were replicated, and results strongly supported the behavioral concordance model for the trait of Neuroticism. Thus, at least some traits can provide information about intraindividual processes that vary over time.

  10. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1985-01-01

    Work performed as part of an investigation of noise affecting instrumentation in a tethered subsatellite, was studied. The following specific topics were addressed during the reporting period: a method for stabilizing the subsatellite against the rotational effects of atmospheric perturbation was developed; a variety of analytic studies of tether dynamics aimed at elucidating dynamic noise processes were performed; a novel mechanism for coupling longitudinal and latitudinal oscillations of the tether was discovered, and random vibration analysis for modeling the tethered subsatellite under atmospheric perturbation were studied.

  11. A knowledge network for a dynamic taxonomy of psychiatric disease.

    PubMed

    Krishnan, Ranga R

    2015-03-01

    Current taxonomic approaches in medicine and psychiatry are limited in validity and utility. They do serve simple communication purposes for medical coding, teaching, and reimbursement, but they are not suited for the modern era with its rapid explosion of knowledge from the "omics" revolution. The National Academy of Sciences published a report entitled Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease. The authors advocate a new taxonomy that would integrate molecular data, clinical data, and health outcomes in a dynamic, iterative fashion, bringing together research, public health, and health-care delivery with the interlinked goals of advancing our understanding of disease pathogenesis and thereby improving health. As the need for an information hub and a knowledge network with a dynamic taxonomy based on integration of clinical and research data is vital, and timely, this proposal merits consideration.

  12. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease

    USGS Publications Warehouse

    Williams, Gareth J.; Price, Nichole N.; Ushijima, Blake; Aeby, Greta S.; Callahan, Sean M.; Davy, Simon K.; Gove, Jamison M.; Johnson, Maggie D.; Knapp, Ingrid S.; Shore-Maggio, Amanda; Smith, Jennifer E.; Videau, Patrick; Work, Thierry M.

    2014-01-01

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.

  13. Ocean warming and acidification have complex interactive effects on the dynamics of a marine fungal disease.

    PubMed

    Williams, Gareth J; Price, Nichole N; Ushijima, Blake; Aeby, Greta S; Callahan, Sean; Davy, Simon K; Gove, Jamison M; Johnson, Maggie D; Knapp, Ingrid S; Shore-Maggio, Amanda; Smith, Jennifer E; Videau, Patrick; Work, Thierry M

    2014-03-07

    Diseases threaten the structure and function of marine ecosystems and are contributing to the global decline of coral reefs. We currently lack an understanding of how climate change stressors, such as ocean acidification (OA) and warming, may simultaneously affect coral reef disease dynamics, particularly diseases threatening key reef-building organisms, for example crustose coralline algae (CCA). Here, we use coralline fungal disease (CFD), a previously described CCA disease from the Pacific, to examine these simultaneous effects using both field observations and experimental manipulations. We identify the associated fungus as belonging to the subphylum Ustilaginomycetes and show linear lesion expansion rates on individual hosts can reach 6.5 mm per day. Further, we demonstrate for the first time, to our knowledge, that ocean-warming events could increase the frequency of CFD outbreaks on coral reefs, but that OA-induced lowering of pH may ameliorate outbreaks by slowing lesion expansion rates on individual hosts. Lowered pH may still reduce overall host survivorship, however, by reducing calcification and facilitating fungal bio-erosion. Such complex, interactive effects between simultaneous extrinsic environmental stressors on disease dynamics are important to consider if we are to accurately predict the response of coral reef communities to future climate change.

  14. Dynamic population flow based risk analysis of infectious disease propagation in a metropolis.

    PubMed

    Zhang, Nan; Huang, Hong; Duarte, Marlyn; Zhang, Junfeng Jim

    2016-09-01

    Knowledge on the characteristics of infectious disease propagation in metropolises plays a critical role in guiding public health intervention strategies to reduce death tolls, disease incidence, and possible economic losses. Based on the SIR model, we established a comprehensive spatiotemporal risk assessment model to compute infectious disease propagation within an urban setting using Beijing, China as a case study. The model was developed for a dynamic population distribution using actual data on location, density of residences and offices, and means of public transportation (e.g., subways, buses and taxis). We evaluated four influencing factors including biological, behavioral, environmental parameters and infectious sources. The model output resulted in a set of maps showing how the four influencing factors affected the trend and characteristics of airborne infectious disease propagation in Beijing. We compared the scenarios for the long-term dynamic propagation of infectious disease without governmental interventions versus scenarios with government intervention and hospital coordinated emergency responses. Lastly, the sensitivity of the average number of people at different location in spreading infections is analyzed. Based on our results, we provide valuable recommendations to governmental agencies and the public in order to minimize the disease propagation.

  15. Dynamic self-guiding analysis of Alzheimer's disease

    PubMed Central

    Kurakin, Alexei; Bredesen, Dale E.

    2015-01-01

    We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease. PMID:26041885

  16. The effects of exposure to dynamic expressions of affect on 5-month-olds' memory.

    PubMed

    Flom, Ross; Janis, Rebecca B; Garcia, Darren J; Kirwan, C Brock

    2014-11-01

    The purpose of this study was to examine the behavioral effects of adults' communicated affect on 5-month-olds' visual recognition memory. Five-month-olds were exposed to a dynamic and bimodal happy, angry, or neutral affective (face-voice) expression while familiarized to a novel geometric image. After familiarization to the geometric image and exposure to the affective expression, 5-month-olds received either a 5-min or 1-day retention interval. Following the 5-min retention interval, infants exposed to the happy affective expressions showed a reliable preference for a novel geometric image compared to the recently familiarized image. Infants exposed to the neutral or angry affective expression failed to show a reliable preference following a 5-min delay. Following the 1-day retention interval, however, infants exposed to the neutral expression showed a reliable preference for the novel geometric image. These results are the first to demonstrate that 5-month-olds' visual recognition memory is affected by the presentation of affective information at the time of encoding.

  17. Types and concentrations of metal ions affect local structure and dynamics of RNA

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Xiao, Yi

    2016-10-01

    The roles that metal ions play in the structure and dynamics of RNA molecules are long-standing problems that have been studied extensively but are still not well understood. Here we show that metal ions have distributions around RNA molecules that strongly depend on the types and concentrations of the metal ions and also the electrostatic surface of the molecule. In particular, the ion distributions may not balance all the local electronegativity of the molecule. These ion distributions do not only greatly affect local structures but also lead to different local dynamics of RNA. We studied the effects of different ion solutions on the structure and dynamics of RNA by taking the pre Q1 riboswitch aptamer domain as an illustrative example and using molecular dynamics simulations. Since the local structures and dynamics of RNAs are important to their functions, our results also indicate that the selection of proper ion conditions is necessary to model them correctly, in contrast to the use of diverse ion solutions in current molecular dynamics simulations.

  18. Activity of Crohn's disease assessed by colour Doppler ultrasound analysis of the affected loops.

    PubMed

    Esteban, J M; Maldonado, L; Sanchiz, V; Minguez, M; Benages, A

    2001-01-01

    The aim of this study was to evaluate with colour Doppler ultrasound the vascular changes in the wall of the loops affected by Crohn's disease, and to establish whether these changes reflects clinical or biochemical activity of Crohn's disease. Seventy-nine patients with Crohn's disease (44 with active disease and 35 inactive patients) were studied with frequency- and amplitude-encoded duplex Doppler sonography. A group of 35 healthy volunteers were also included. The exam consisted of the search for colour signals in the walls of the loops affected by Crohn's disease, classifying the degree of vascularity with a simple scoring system into three groups: absence of colour signal (score of 0); weak or scattered colour signals (score of 1); and multiple colour signals or clear identification of vessels in the loops walls (score of 2). Doppler curves were obtained of the detected vessels with measurement of the resistive index (RI). There was a visible increase in the gut walls' vascularity in the active patients compared with those with inactive disease. The mean RI was statistically significantly lower in the gut wall vessels of the patients with active illness than that obtained in the inactive patients. Colour Doppler ultrasound is a useful tool in the assessment of activity in Crohn's disease.

  19. Mutant Huntingtin Does Not Affect the Intrinsic Phenotype of Human Huntington's Disease T Lymphocytes.

    PubMed

    Miller, James R C; Träger, Ulrike; Andre, Ralph; Tabrizi, Sarah J

    2015-01-01

    Huntington's disease is a fatal neurodegenerative condition caused by a CAG repeat expansion in the huntingtin gene. The peripheral innate immune system is dysregulated in Huntington's disease and may contribute to its pathogenesis. However, it is not clear whether or to what extent the adaptive immune system is also involved. Here, we carry out the first comprehensive investigation of human ex vivo T lymphocytes in Huntington's disease, focusing on the frequency of a range of T lymphocyte subsets, as well as analysis of proliferation, cytokine production and gene transcription. In contrast to the innate immune system, the intrinsic phenotype of T lymphocytes does not appear to be affected by the presence of mutant huntingtin, with Huntington's disease T lymphocytes exhibiting no significant functional differences compared to control cells. The transcriptional profile of T lymphocytes also does not appear to be significantly affected, suggesting that peripheral immune dysfunction in Huntington's disease is likely to be mediated primarily by the innate rather than the adaptive immune system. This study increases our understanding of the effects of Huntington's disease on peripheral tissues, while further demonstrating the differential effects of the mutant protein on different but related cell types. Finally, this study suggests that the potential use of novel therapeutics aimed at modulating the Huntington's disease innate immune system should not be extended to include the adaptive immune system.

  20. The affect of infectious bursal disease virus on avian influenza virus vaccine efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunosuppressive viruses are known to affect vaccinal immunity, however the impact of virally induced immunosuppression on avian influenza vaccine efficacy has not been quantified. In order to determine the effect of exposure to infectious bursal disease virus (IBDV) on vaccinal immunity to highly ...

  1. The impact of climate on the disease dynamics of cholera.

    PubMed

    Koelle, K

    2009-01-01

    The size of infectious disease outbreaks frequently depends on climate influences as well as on the level of immunity in the host population. This is particularly the case with vectorborne and waterborne diseases, for which pathogen transmissibility critically depends on ecological conditions. Here, a mathematical model that was applied to the bacterium Vibrio cholerae to understand its disease dynamics in Bangladesh is reviewed. When interfaced with empirical case data on cholera, the model shows that climate plays a pivotal role in modulating the size of outbreaks, with local, regional, and global indices of climate variability showing a link with pathogen transmissibility. Furthermore, the incidence of cholera may occasionally be surprisingly low at times when climate seems to favour cholera transmission.

  2. [The White man's burden - a case study caught between bipolar affective disorder and Huntington's disease].

    PubMed

    Nowidi, K; Kunisch, R; Bouna-Pyrrou, P; Meißner, D; Hennig-Fast, K; Weindl, A; Förster, S; Neuhann, T M; Falkai, P; Berger, M; Musil, R

    2013-06-01

    We report upon a case of a 55 year old patient with a bipolar affective disorder, presenting herself with a depressive symptomatology in addition to a severe motor perturbation. The main emphasis upon admittance was perfecting and improving her latest medication. Four weeks prior to her stay at our clinic a thorough neurological examination had taken place in terms of an invalidity pension trial which did not result in any diagnostic findings. Therefore a neurological disease seemed at first highly unlikely. Even though the prior testing was negative, the ensuing neurological examination at our clinic resulted in movement disorders very much indicative of Huntington's Disease. A detailed investigation in regards to the particular family history of the patient was positive for Huntington's Disease. However, whether the patient's mother had also been a genetic carrier of Huntington's Disease was still unknown at the time the patient was admitted to our clinic. It was nevertheless discovered that her mother had also suffered from a bipolar affective disorder. A genetic testing that followed the neurological examination of the patient proved positive for Huntington's Disease. Neuro-imaging resulted in a bicaudate-index of 2.4 (the critical value is 1.8). In a clinical psychological test battery the ensuing results were highly uncommon for patients with solely a bipolar affective disorder people. Under the medical regimen of Quetiapine, Citalopram and Tiaprid the patient's mood could be stabilized and there was some improvement of her motor pertubation.

  3. Fractal Dynamics of Heartbeat Interval Fluctuations in Health and Disease

    NASA Astrophysics Data System (ADS)

    Meyer, M.; Marconi, C.; Rahmel, A.; Grassi, B.; Ferretti, G.; Skinner, J. E.; Cerretelli, P.

    The dynamics of heartbeat interval time series were studied by a modified random walk analysis recently introduced as Detrended Fluctuation Analysis. In this analysis, the intrinsic fractal long-range power-law correlation properties of beat-to-beat fluctuations generated by the dynamical system (i.e. cardiac rhythm generator), after decomposition from extrinsic uncorrelated sources, can be quantified by the scaling exponent which, in healthy subjects, is about 1.0. The finding of a scaling coefficient of 1.0, indicating scale-invariant long-range power-law correlations (1/ƒnoise) of heartbeat fluctuations, would reflect a genuinely self-similar fractal process that typically generates fluctuations on a wide range of time scales. Lack of a characteristic time scale suggests that the neuroautonomic system underlying the control of heart rate dynamics helps prevent excessive mode-locking (error tolerance) that would restrict its functional responsiveness (plasticity) to environmental stimuli. The 1/ƒ dynamics of heartbeat interval fluctuations are unaffected by exposure to chronic hypoxia suggesting that the neuroautonomic cardiac control system is preadapted to hypoxia. Functional (hypothermia, cardiac disease) and/or structural (cardiac transplantation, early cardiac development) inactivation of neuroautonomic control is associated with the breakdown or absence of fractal complexity reflected by anticorrelated random walk-like dynamics, indicating that in these conditions the heart is unadapted to its environment.

  4. Rhythm is it: effects of dynamic body feedback on affect and attitudes

    PubMed Central

    Koch, Sabine C.

    2014-01-01

    Body feedback is the proprioceptive feedback that denominates the afferent information from position and movement of the body to the central nervous system. It is crucial in experiencing emotions, in forming attitudes and in regulating emotions and behavior. This paper investigates effects of dynamic body feedback on affect and attitudes, focusing on the impact of movement rhythms with smooth vs. sharp reversals as one basic category of movement qualities. It relates those qualities to already explored effects of approach vs. avoidance motor behavior as one basic category of movement shape. Studies 1 and 2 tested the effects of one of two basic movement qualities (smooth vs. sharp rhythms) on affect and cognition. The third study tested those movement qualities in combination with movement shape (approach vs. avoidance motor behavior) and the effects of those combinations on affect and attitudes toward initially valence-free stimuli. Results suggest that movement rhythms influence affect (studies 1 and 2), and attitudes (study 3), and moderate the impact of approach and avoidance motor behavior on attitudes (study 3). Extending static body feedback research with a dynamic account, findings indicate that movement qualities – next to movement shape – play an important role, when movement of the lived body is an independent variable. PMID:24959153

  5. Young children's affective responses to another's distress: dynamic and physiological features.

    PubMed

    Fink, Elian; Heathers, James A J; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children's affective responses (sadness and interest-worry) to another's distress. In two samples (N(study1) = 75; N(study2) = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy.

  6. Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features

    PubMed Central

    Fink, Elian; Heathers, James A. J.; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (Nstudy1 = 75; Nstudy2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  7. Ecosystem screening approach for pathogen-associated microorganisms affecting host disease.

    PubMed

    Galiana, Eric; Marais, Antoine; Mura, Catherine; Industri, Benoît; Arbiol, Gilles; Ponchet, Michel

    2011-09-01

    The microbial community in which a pathogen evolves is fundamental to disease outcome. Species interacting with a pathogen on the host surface shape the distribution, density, and genetic diversity of the inoculum, but the role of these species is rarely determined. The screening method developed here can be used to characterize pathogen-associated species affecting disease. This strategy involves three steps: (i) constitution of the microbial community, using the pathogen as a trap; (ii) community selection, using extracts from the pathogen as the sole nutrient source; and (iii) molecular identification and the screening of isolates focusing on their effects on the growth of the pathogen in vitro and host disease. This approach was applied to a soilborne plant pathogen, Phytophthora parasitica, structured in a biofilm, for screening the microbial community from the rhizosphere of Nicotiana tabacum (the host). Two of the characterized eukaryotes interfered with the oomycete cycle and may affect the host disease. A Vorticella species acted through a mutualistic interaction with P. parasitica, disseminating pathogenic material by leaving the biofilm. A Phoma species established an amensal interaction with P. parasitica, strongly suppressing disease by inhibiting P. parasitica germination. This screening method is appropriate for all nonobligate pathogens. It allows the definition of microbial species as promoters or suppressors of a disease for a given biotope. It should also help to identify important microbial relationships for ecology and evolution of pathogens.

  8. Temporal dynamics of a local fish community are strongly affected by immigration from the surrounding metacommunity.

    PubMed

    Stoffels, Rick J; Clarke, Kenneth Robert; Linklater, Danielle S

    2015-01-01

    A 5-year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time-lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass-effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood-induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in

  9. Temporal dynamics of a local fish community are strongly affected by immigration from the surrounding metacommunity

    PubMed Central

    Stoffels, Rick J; Clarke, Kenneth Robert; Linklater, Danielle S

    2015-01-01

    A 5-year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time-lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass-effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood-induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in

  10. How do economic crises affect migrants’ risk of infectious disease? A systematic-narrative review

    PubMed Central

    Karanikolos, Marina; Williams, Gemma; Mladovsky, Philipa; King, Lawrence; Pharris, Anastasia; Suk, Jonathan E.; Hatzakis, Angelos; McKee, Martin; Noori, Teymur; Stuckler, David

    2015-01-01

    Background: It is not well understood how economic crises affect infectious disease incidence and prevalence, particularly among vulnerable groups. Using a susceptible-infected-recovered framework, we systematically reviewed literature on the impact of the economic crises on infectious disease risks in migrants in Europe, focusing principally on HIV, TB, hepatitis and other STIs. Methods: We conducted two searches in PubMed/Medline, Web of Science, Cochrane Library, Google Scholar, websites of key organizations and grey literature to identify how economic changes affect migrant populations and infectious disease. We perform a narrative synthesis in order to map critical pathways and identify hypotheses for subsequent research. Results: The systematic review on links between economic crises and migrant health identified 653 studies through database searching; only seven met the inclusion criteria. Fourteen items were identified through further searches. The systematic review on links between economic crises and infectious disease identified 480 studies through database searching; 19 met the inclusion criteria. Eight items were identified through further searches. The reviews show that migrant populations in Europe appear disproportionately at risk of specific infectious diseases, and that economic crises and subsequent responses have tended to exacerbate such risks. Recessions lead to unemployment, impoverishment and other risk factors that can be linked to the transmissibility of disease among migrants. Austerity measures that lead to cuts in prevention and treatment programmes further exacerbate infectious disease risks among migrants. Non-governmental health service providers occasionally stepped in to cater to specific populations that include migrants. Conclusions: There is evidence that migrants are especially vulnerable to infectious disease during economic crises. Ring-fenced funding of prevention programs, including screening and treatment, is important for

  11. Defoliation by pastoralists affects savanna tree seedling dynamics by limiting the facilitative role of canopy cover.

    PubMed

    Bufford, Jennifer L; Gaoue, Orou G

    2015-07-01

    Recurrent tree defoliation by pastoralists, akin to herbivory, can negatively affect plant reproduction and population dynamics. However, our understanding of the indirect role of defoliation in seedling recruitment and tree-grass dynamics in tropical savanna is limited. In West African savanna, Fulani pastoralists frequently defoliate several fodder tree species to feed livestock in the dry season. We investigated the direct and indirect effects of recurrent defoliation of African mahogany (Khaya senegalensis) by Fulani people on seedling (< 2 cm basal diameter) and sapling dynamics in West Africa using four years of demographic data on seedling and sapling density, growth, and survival, coupled with fruit production and microhabitat data over the same time period. Tree canopy cover facilitated seedlings but had negative effects on sapling growth possibly via intraspecific competition with adult plants. Interspecific competition with grasses strongly reduced seedling survival but had a weak effect on sapling growth. Fire reduced seedling survival and weakly reduced growth of seedlings and saplings, but did not affect sapling survival. These results indicate that the effect of fire on seedlings and saplings is distinct, a mechanism suitable for an episodic recruitment of seedlings into the sapling stage and consistent with predictions from the demographic bottleneck model. Defoliation affected seedling density and sapling growth through changes in canopy cover, but had no effect on seedling growth and sapling survival. In the moist region, sapling density was higher in sites with low-intensity defoliation, indicating that defoliation may strengthen the tree recruitment bottleneck. Our study suggests that large-scale defoliation can alter the facilitative role of nurse trees on seedling dynamics and tree-sapling competition. Given that tree defoliation by local people is a widespread activity throughout savanna-forest systems in West Africa, it has the potential to

  12. How volatilities nonlocal in time affect the price dynamics in complex financial systems.

    PubMed

    Tan, Lei; Zheng, Bo; Chen, Jun-Jie; Jiang, Xiong-Fei

    2015-01-01

    What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time.

  13. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-06-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension.

  14. How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems

    PubMed Central

    Tan, Lei; Zheng, Bo; Chen, Jun-Jie; Jiang, Xiong-Fei

    2015-01-01

    What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time. PMID:25723154

  15. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    PubMed Central

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-01-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension. PMID:27357966

  16. Transient lactose malabsorption in patients affected by symptomatic uncomplicated diverticular disease of the colon.

    PubMed

    Tursi, Antonio; Brandimarte, Giovanni; Giorgetti, Gian Marco; Elisei, Walter

    2006-03-01

    Lactose malabsorption (LM) may be secondary to several small bowel diseases, and small intestinal overgrowth (SIBO) may be one of them. We looked for a correlation between symptomatic diverticular disease of the colon and LM and assessed whether this correlation may be related to SIBO. Ninety consecutive patients (pts; 39 males, 51 females; mean age, 67.2 years; range, 32-91 years) affected by symptomatic uncomplicated diverticular disease of the colon were evaluated to assess orocecal transit time (OCTT), SIBO, and LM by lactulose and lactose H2 breath test (H2-BT) at entry and after 8 weeks of treatment. OCTT was delayed in 67 of 90 pts (74.44%). Fifty-three of 90 pts (58.88%) showed SIBO, and OCTT was normal in 23 of 90 pts (25.56%). LM was diagnosed in 59 of 90 pts (65.55%): 49 of 59 (71.74%) were simultaneously affected by SIBO and delayed OCTT (and thus 49 of 53 pts [92.45%] with delayed OCTT and SIBO were affected by LM); 3 of 59 pts (5.09%) showed only delayed OCTT; 7 of 59 pts (11.86%) did not show either SIBO or delayed OCTT. The association of LM and SIBO was statistically significant (P < 0.001). Seventy-nine of 86 pts (91.86%) showed normal OCTT, while OCTT remained prolonged but shorter in the remaining 7 pts (8.14%). SIBO was eradicated in all pts completing the study, while a new lactulose H2-BT showed persistence of SIBO in one pt with recurrence of symptomatic diverticular disease. Forty-seven of 59 pts (79.66%) had a normal lactose H2-BT (P < 0.002), while 12 of 59 pts (20.34%) showed persistence of LM. LM disappeared in 46 of 49 pts (93.88%) concurrently with normalization of OCTT and eradication of SIBO (P < 0.002); it also disappeared in 1 of 3 pts (33.33%) previously affected by delayed OCTT (without SIBO) and LM concurrently with normalization of OCTT. On the contrary, it persisted in all pts with normal OCTT and absence of SIBO. Moreover, it persisted also in the pt with recurrence of symptomatic diverticular disease and persistence of SIBO

  17. A shift from exploitation to interference competition with increasing density affects population and community dynamics.

    PubMed

    Holdridge, Erica M; Cuellar-Gempeler, Catalina; terHorst, Casey P

    2016-08-01

    Intraspecific competition influences population and community dynamics and occurs via two mechanisms. Exploitative competition is an indirect effect that occurs through use of a shared resource and depends on resource availability. Interference competition occurs by obstructing access to a resource and may not depend on resource availability. Our study tested whether the strength of interference competition changes with protozoa population density. We grew experimental microcosms of protozoa and bacteria under different combinations of protozoan density and basal resource availability. We then solved a dynamic predator-prey model for parameters of the functional response using population growth rates measured in our experiment. As population density increased, competition shifted from exploitation to interference, and competition was less dependent on resource levels. Surprisingly, the effect of resources was weakest when competition was the most intense. We found that at low population densities, competition was largely exploitative and resource availability had a large effect on population growth rates, but the effect of resources was much weaker at high densities. This shift in competitive mechanism could have implications for interspecific competition, trophic interactions, community diversity, and natural selection. We also tested whether this shift in the mechanism of competition with protozoa density affected the structure of the bacterial prey community. We found that both resources and protozoa density affected the structure of the bacterial prey community, suggesting that competitive mechanism may also affect trophic interactions.

  18. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    PubMed

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  19. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    PubMed Central

    Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  20. The effects of dopaminergic medication on dynamic decision making in Parkinson's disease.

    PubMed

    Osman, Magda; Ryterska, Agata; Karimi, Kash; Tu, LingLing; Obeso, Ignacio; Speekenbrink, Maarten; Jahanshahi, Marjan

    2014-01-01

    In the present study we address the following questions: (1) How is performance affected when patients with Parkinson's Disease (PD) perform a dynamic decision making task? (2) Does dopaminergic medication differentially affect dynamic decision making? To address these questions participants were trained with different goals during learning: either they made intervention-based decisions or prediction-based decisions during learning. The findings show that overall there is an advantage for those trained to intervene over those trained to predict. In addition, the results are the first demonstration that PD patients 'ON' (N=20) compared to 'OFF' L-Dopa (N=15) medication and also relative to healthy age matched controls (N=16) showed lower levels of relative improvement in the accuracy of their decisions in a dynamic decision making task, and tended to use sub-optimal strategies. These findings provide support for the 'Dopamine Overdose' hypothesis using a novel decision making task, and suggest that executive functions such as decision making can be adversely affected by dopaminergic medication in PD.

  1. Dynamics of DNA methylation in aging and Alzheimer's disease.

    PubMed

    Irier, Hasan A; Jin, Peng

    2012-10-01

    Gene expression is modulated by epigenetic factors that come in varying forms, such as DNA methylation, histone modifications, microRNAs, and long noncoding RNAs. Recent studies reveal that these epigenetic marks are important regulatory factors in brain function. In particular, DNA methylation dynamics are found to be essential components of epigenetic regulation in the mammalian central nervous system. In this review, we provide an overview of the literature on DNA methylation in neurodegenerative diseases, with a special focus on methylation of 5-position of cytosine base (5mC) and hydroxymethylation of 5-position of cytosine base (5hmC) in the context of neurodegeneration associated with aging and Alzheimer's disease.

  2. Dynamic network communication as a unifying neural basis for cognition, development, aging, and disease.

    PubMed

    Voytek, Bradley; Knight, Robert T

    2015-06-15

    Perception, cognition, and social interaction depend upon coordinated neural activity. This coordination operates within noisy, overlapping, and distributed neural networks operating at multiple timescales. These networks are built upon a structural scaffolding with intrinsic neuroplasticity that changes with development, aging, disease, and personal experience. In this article, we begin from the perspective that successful interregional communication relies upon the transient synchronization between distinct low-frequency (<80 Hz) oscillations, allowing for brief windows of communication via phase-coordinated local neuronal spiking. From this, we construct a theoretical framework for dynamic network communication, arguing that these networks reflect a balance between oscillatory coupling and local population spiking activity and that these two levels of activity interact. We theorize that when oscillatory coupling is too strong, spike timing within the local neuronal population becomes too synchronous; when oscillatory coupling is too weak, spike timing is too disorganized. Each results in specific disruptions to neural communication. These alterations in communication dynamics may underlie cognitive changes associated with healthy development and aging, in addition to neurological and psychiatric disorders. A number of neurological and psychiatric disorders-including Parkinson's disease, autism, depression, schizophrenia, and anxiety-are associated with abnormalities in oscillatory activity. Although aging, psychiatric and neurological disease, and experience differ in the biological changes to structural gray or white matter, neurotransmission, and gene expression, our framework suggests that any resultant cognitive and behavioral changes in normal or disordered states or their treatment are a product of how these physical processes affect dynamic network communication.

  3. Ranking landscape development scenarios affecting natterjack toad (Bufo calamita) population dynamics in Central Poland.

    PubMed

    Franz, Kamila W; Romanowski, Jerzy; Johst, Karin; Grimm, Volker

    2013-01-01

    When data are limited it is difficult for conservation managers to assess alternative management scenarios and make decisions. The natterjack toad (Bufo calamita) is declining at the edges of its distribution range in Europe and little is known about its current distribution and abundance in Poland. Although different landscape management plans for central Poland exist, it is unclear to what extent they impact this species. Based on these plans, we investigated how four alternative landscape development scenarios would affect the total carrying capacity and population dynamics of the natterjack toad. To facilitate decision-making, we first ranked the scenarios according to their total carrying capacity. We used the software RAMAS GIS to determine the size and location of habitat patches in the landscape. The estimated carrying capacities were very similar for each scenario, and clear ranking was not possible. Only the reforestation scenario showed a marked loss in carrying capacity. We therefore simulated metapopulation dynamics with RAMAS taking into account dynamical processes such as reproduction and dispersal and ranked the scenarios according to the resulting species abundance. In this case, we could clearly rank the development scenarios. We identified road mortality of adults as a key process governing the dynamics and separating the different scenarios. The renaturalisation scenario clearly ranked highest due to its decreased road mortality. Taken together our results suggest that road infrastructure development might be much more important for natterjack toad conservation than changes in the amount of habitat in the semi-natural river valley. We gained these insights by considering both the resulting metapopulation structure and dynamics in the form of a PVA. We conclude that the consideration of dynamic processes in amphibian conservation management may be indispensable for ranking management scenarios.

  4. Ranking Landscape Development Scenarios Affecting Natterjack Toad (Bufo calamita) Population Dynamics in Central Poland

    PubMed Central

    Franz, Kamila W.; Romanowski, Jerzy; Johst, Karin; Grimm, Volker

    2013-01-01

    When data are limited it is difficult for conservation managers to assess alternative management scenarios and make decisions. The natterjack toad (Bufo calamita) is declining at the edges of its distribution range in Europe and little is known about its current distribution and abundance in Poland. Although different landscape management plans for central Poland exist, it is unclear to what extent they impact this species. Based on these plans, we investigated how four alternative landscape development scenarios would affect the total carrying capacity and population dynamics of the natterjack toad. To facilitate decision-making, we first ranked the scenarios according to their total carrying capacity. We used the software RAMAS GIS to determine the size and location of habitat patches in the landscape. The estimated carrying capacities were very similar for each scenario, and clear ranking was not possible. Only the reforestation scenario showed a marked loss in carrying capacity. We therefore simulated metapopulation dynamics with RAMAS taking into account dynamical processes such as reproduction and dispersal and ranked the scenarios according to the resulting species abundance. In this case, we could clearly rank the development scenarios. We identified road mortality of adults as a key process governing the dynamics and separating the different scenarios. The renaturalisation scenario clearly ranked highest due to its decreased road mortality. Taken together our results suggest that road infrastructure development might be much more important for natterjack toad conservation than changes in the amount of habitat in the semi-natural river valley. We gained these insights by considering both the resulting metapopulation structure and dynamics in the form of a PVA. We conclude that the consideration of dynamic processes in amphibian conservation management may be indispensable for ranking management scenarios. PMID:23734223

  5. A neurodegenerative disease affecting synaptic connections in Drosophila mutant for the tumor suppressor morphogen Patched

    PubMed Central

    Gazi, Michal; Shyamala, Baragur V.; Bhat, Krishna Moorthi

    2009-01-01

    The tumor-suppressor morphogen, Patched (Ptc), has extensive homology to the Niemann-Pick-C 1 (NPC1) protein. The NPC disease is a paediatric, progressive and fatal neurodegenerative disorder thought to be due to an abnormal accumulation of cholesterol in neurons. Here, we report that patched mutant adults develop a progressive neurodegenerative disease and their brain contains membranous and lamellar inclusions. There is also a significant reduction in the number of synaptic terminals in the brain of the mutant adults. Interestingly, feeding cholesterol to wild type flies generates inclusions in the brain, but does not cause the disease. However, feeding cholesterol to mutant flies increases synaptic connections and suppresses the disease. Our results suggest that sequestration of cholesterol in the mutant brain in the form of membranous material and inclusions affects available pool of cholesterol for cellular functions. This, in turn, negatively affects the synaptic number and contributes to the disease-state. Consistent with this, in ptc mutants there is a reduction in the pool of cholesterol esters, and cholesterol-mediated suppression of the disease accompanies an increase in cholesterol esters. We further show that Ptc does not function directly in this process since gain-of-function for Hedgehog also induces the same disease with a reduction in the level of cholesterol esters. We believe that loss of function for ptc causes neurodegeneration via two distinct ways: de-repression of genes that interfere with lipid trafficking, and de-repression of genes outside of the lipid trafficking; the functions of both classes of genes ultimately converge on synaptic connections. PMID:19635474

  6. Factors affecting poor nutritional status after small bowel resection in patients with Crohn disease.

    PubMed

    Jang, Ki Ung; Yu, Chang Sik; Lim, Seok-Byung; Park, In Ja; Yoon, Yong Sik; Kim, Chan Wook; Lee, Jong Lyul; Yang, Suk-Kyun; Ye, Byong Duk; Kim, Jin Cheon

    2016-07-01

    In Crohn disease, bowel-preserving surgery is necessary to prevent short bowel syndrome due to repeated operations. This study aimed to determine the remnant small bowel length cut-off and to evaluate the clinical factors related to nutritional status after small bowel resection in Crohn disease.We included 394 patients (69.3% male) who underwent small bowel resection for Crohn disease between 1991 and 2012. Patients who were classified as underweight (body mass index < 17.5) or at high risk of nutrition-related problems (modified nutritional risk index < 83.5) were regarded as having a poor nutritional status. Preliminary remnant small bowel length cut-offs were determined using receiver operating characteristic curves. Variables associated with poor nutritional status were assessed retrospectively using Student t tests, chi-squared tests, Fisher exact tests, and logistic regression analyses.The mean follow-up period was 52.9 months and the mean patient ages at the time of the last bowel surgery and last follow-up were 31.2 and 35.7 years, respectively. The mean remnant small bowel length was 331.8 cm. Forty-three patients (10.9%) underwent ileostomy, 309 (78.4%) underwent combined small bowel and colon resection, 111 (28.2%) had currently active disease, and 105 (26.6%) underwent at least 2 operations for recurrent disease. The mean body mass index and modified nutritional risk index were 20.6 and 100.8, respectively. The independent factors affecting underweight status were remnant small bowel length ≤240 cm (odds ratio: 4.84, P < 0.001), ileostomy (odds ratio: 4.70, P < 0.001), and currently active disease (odds ratio: 4.16, P < 0.001). The independent factors affecting high nutritional risk were remnant small bowel length ≤230 cm (odds ratio: 2.84, P = 0.012), presence of ileostomy (odds ratio: 3.36, P = 0.025), and currently active disease (odds ratio: 4.90, P < 0.001).Currently active disease, ileostomy, and remnant small

  7. Factors affecting poor nutritional status after small bowel resection in patients with Crohn disease

    PubMed Central

    Jang, Ki Ung; Yu, Chang Sik; Lim, Seok-Byung; Park, In Ja; Yoon, Yong Sik; Kim, Chan Wook; Lee, Jong Lyul; Yang, Suk-Kyun; Ye, Byong Duk; Kim, Jin Cheon

    2016-01-01

    Abstract In Crohn disease, bowel-preserving surgery is necessary to prevent short bowel syndrome due to repeated operations. This study aimed to determine the remnant small bowel length cut-off and to evaluate the clinical factors related to nutritional status after small bowel resection in Crohn disease. We included 394 patients (69.3% male) who underwent small bowel resection for Crohn disease between 1991 and 2012. Patients who were classified as underweight (body mass index < 17.5) or at high risk of nutrition-related problems (modified nutritional risk index < 83.5) were regarded as having a poor nutritional status. Preliminary remnant small bowel length cut-offs were determined using receiver operating characteristic curves. Variables associated with poor nutritional status were assessed retrospectively using Student t tests, chi-squared tests, Fisher exact tests, and logistic regression analyses. The mean follow-up period was 52.9 months and the mean patient ages at the time of the last bowel surgery and last follow-up were 31.2 and 35.7 years, respectively. The mean remnant small bowel length was 331.8 cm. Forty-three patients (10.9%) underwent ileostomy, 309 (78.4%) underwent combined small bowel and colon resection, 111 (28.2%) had currently active disease, and 105 (26.6%) underwent at least 2 operations for recurrent disease. The mean body mass index and modified nutritional risk index were 20.6 and 100.8, respectively. The independent factors affecting underweight status were remnant small bowel length ≤240 cm (odds ratio: 4.84, P < 0.001), ileostomy (odds ratio: 4.70, P < 0.001), and currently active disease (odds ratio: 4.16, P < 0.001). The independent factors affecting high nutritional risk were remnant small bowel length ≤230 cm (odds ratio: 2.84, P = 0.012), presence of ileostomy (odds ratio: 3.36, P = 0.025), and currently active disease (odds ratio: 4.90, P < 0.001). Currently active disease, ileostomy, and

  8. Metatranscriptomic Analysis of Pycnopodia helianthoides (Asteroidea) Affected by Sea Star Wasting Disease.

    PubMed

    Gudenkauf, Brent M; Hewson, Ian

    2015-01-01

    Sea star wasting disease (SSWD) describes a suite of symptoms reported in asteroids of the North American Pacific Coast. We performed a metatranscriptomic survey of asymptomatic and symptomatic sunflower star (Pycnopodia helianthoides) body wall tissues to understand holobiont gene expression in tissues affected by SSWD. Metatranscriptomes were highly variable between replicate libraries, and most differentially expressed genes represented either transcripts of associated microorganisms (particularly Pseudomonas and Vibrio relatives) or low-level echinoderm transcripts of unknown function. However, the pattern of annotated host functional genes reflects enhanced apoptotic and tissue degradation processes and decreased energy metabolism, while signalling of death-related proteins was greater in asymptomatic and symptomatic tissues. Our results suggest that the body wall tissues of SSWD-affected asteroids may undergo structural changes during disease progression, and that they are stimulated to undergo autocatalytic cell death processes.

  9. Metatranscriptomic Analysis of Pycnopodia helianthoides (Asteroidea) Affected by Sea Star Wasting Disease

    PubMed Central

    Gudenkauf, Brent M.; Hewson, Ian

    2015-01-01

    Sea star wasting disease (SSWD) describes a suite of symptoms reported in asteroids of the North American Pacific Coast. We performed a metatranscriptomic survey of asymptomatic and symptomatic sunflower star (Pycnopodia helianthoides) body wall tissues to understand holobiont gene expression in tissues affected by SSWD. Metatranscriptomes were highly variable between replicate libraries, and most differentially expressed genes represented either transcripts of associated microorganisms (particularly Pseudomonas and Vibrio relatives) or low-level echinoderm transcripts of unknown function. However, the pattern of annotated host functional genes reflects enhanced apoptotic and tissue degradation processes and decreased energy metabolism, while signalling of death-related proteins was greater in asymptomatic and symptomatic tissues. Our results suggest that the body wall tissues of SSWD-affected asteroids may undergo structural changes during disease progression, and that they are stimulated to undergo autocatalytic cell death processes. PMID:26020776

  10. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis.

    PubMed

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-07-28

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant-wild-type and 16 matched SNP--wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation.

  11. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  12. Inertial forces affect fluid front displacement dynamics in a pore-throat network model.

    PubMed

    Moebius, Franziska; Or, Dani

    2014-08-01

    The seemingly regular and continuous motion of fluid displacement fronts in porous media at the macroscopic scale is propelled by numerous (largely invisible) pore-scale abrupt interfacial jumps and pressure bursts. Fluid fronts in porous media are characterized by sharp phase discontinuities and by rapid pore-scale dynamics that underlie their motion; both attributes challenge standard continuum theories of these flow processes. Moreover, details of pore-scale dynamics affect front morphology and subsequent phase entrapment behind a front and thereby shape key macroscopic transport properties of the unsaturated zone. The study presents a pore-throat network model that focuses on quantifying interfacial dynamics and interactions along fluid displacement fronts. The porous medium is represented by a lattice of connected pore throats capable of detaining menisci and giving rise to fluid-fluid interfacial jumps (the study focuses on flow rate controlled drainage). For each meniscus along the displacement front we formulate a local inertial, capillary, viscous, and hydrostatic force balance that is then solved simultaneously for the entire front. The model enables systematic evaluation of the role of inertia and boundary conditions. Results show that while displacement patterns are affected by inertial forces mainly by invasion of throats with higher capillary resistance, phase entrapment (residual saturation) is largely unaffected by inertia, limiting inertial effects on hydrological properties behind a front. Interfacial jump velocities are often an order of magnitude larger than mean front velocity, are strongly dependent on geometrical throat dimensions, and become less predictable (more scattered) when inertia is considered. Model simulations of the distributions of capillary pressure fluctuations and waiting times between invasion events follow an exponential distribution and are in good agreement with experimental results. The modeling approach provides insights

  13. Factors affecting the haptic filled-space illusion for dynamic touch.

    PubMed

    Sanders, Abram F J; Kappers, Astrid M L

    2009-02-01

    In the haptic filled-space illusion for active dynamic touch, observers move their fingertip across an unfilled extent or an extent filled with intermediate stimulations. Previous researchers have reported lengths of filled extents to be overestimated, but the parameters affecting the strength of the illusion are still largely unknown. In the current research, we show that the illusion persists when intermediate stimulations do not provide information about the extent's length. In addition, the results show that the strength of the illusion increases with the number of filler elements. In contrast with earlier research, we control for movement speed differences between filled and unfilled extents. The results suggest that the strength of the illusion is independent of the overall average movement speed. Insight into factors affecting the strength of the illusion may provide a better understanding of the kinematic mechanisms underlying haptic length perception.

  14. Does Coral Disease Affect Symbiodinium? Investigating the Impacts of Growth Anomaly on Symbiont Photophysiology

    PubMed Central

    Burns, John Henrik Robert; Gregg, Toni Makani; Takabayashi, Misaki

    2013-01-01

    Growth anomaly (GA) is a commonly observed coral disease that impairs biological functions of the affected tissue. GA is prevalent at Wai ‘ōpae tide pools, southeast Hawai ‘i Island. Here two distinct forms of this disease, Type A and Type B, affect the coral, Montiporacapitata. While the effects of GA on biology and ecology of the coral host are beginning to be understood, the impact of this disease on the photophysiology of the dinoflagellate symbiont, Symbiodinium spp., has not been investigated. The GA clearly alters coral tissue structure and skeletal morphology and density. These tissue and skeletal changes are likely to modify not only the light micro-environment of the coral tissue, which has a direct impact on the photosynthetic potential of Symbiodinium spp., but also the physiological interactions within the symbiosis. This study utilized Pulse amplitude modulation fluorometry (PAM) to characterize the photophysiology of healthy and GA-affected M. capitata tissue. Overall, endosymbionts within GA-affected tissue exhibit reduced photochemical efficiency. Values of both Fv/Fm and ΔF/ Fm’ were significantly lower (p<0.01) in GA tissue compared to healthy and unaffected tissues. Tracking the photophysiology of symbionts over a diurnal time period enabled a comparison of symbiont responses to photosynthetically available radiation (PAR) among tissue conditions. Symbionts within GA tissue exhibited the lowest values of ΔF/Fm’ as well as the highest pressure over photosystem II (p<0.01). This study provides evidence that the symbionts within GA-affected tissue are photochemically compromised compared to those residing in healthy tissue. PMID:23967301

  15. The effects of radioactive pollution on the dynamics of infectious diseases in wildlife.

    PubMed

    Morley, N J

    2012-04-01

    The interactions between infectious diseases and chemical pollution are well known and recognised as important factors in regulating the way wild animals respond to contaminant exposure. However, the impact of ionising radiation and radionuclides has often been overlooked when assessing host-pathogen interactions in polluted habitats, despite often occurring together with chemical contamination. Nevertheless, a comprehensive body of literature exists from laboratory and field studies on host-pathogen relationships under radiation exposure, and with a renewed interest in radioecology developing; an evaluation of infectious disease dynamics under these conditions would be timely. The present study assesses the impact of external ionising radiation and radionuclides on animal hosts and pathogens (viruses, bacteria, protozoans, helminths, arthropods) in laboratory studies and collates the data from field studies, including the large number of investigations undertaken after the Chernobyl accident. It is apparent that radiation exposure has substantial effects on host-pathogen relationships. Although damage to the host immune system is a major factor other variables, such as damage to host tissue barriers and inhibition of pathogen viability are also important in affecting the prevalence and intensity of parasitic diseases. Field studies indicate that the occurrence of host-pathogen associations in radioactively contaminated sites is complex with a variety of biotic and abiotic factors influencing both pathogen and host(s), resulting in changes to the dynamics of infectious diseases.

  16. Computational fluid dynamics modelling of left valvular heart diseases during atrial fibrillation

    PubMed Central

    Saglietto, Andrea; Gaita, Fiorenzo; Ridolfi, Luca; Anselmino, Matteo

    2016-01-01

    Background: Although atrial fibrillation (AF), a common arrhythmia, frequently presents in patients with underlying valvular disease, its hemodynamic contributions are not fully understood. The present work aimed to computationally study how physical conditions imposed by pathologic valvular anatomy act on AF hemodynamics. Methods: We simulated AF with different severity grades of left-sided valvular diseases and compared the cardiovascular effects that they exert during AF, compared to lone AF. The fluid dynamics model used here has been recently validated for lone AF and relies on a lumped parameterization of the four heart chambers, together with the systemic and pulmonary circulation. The AF modelling involves: (i) irregular, uncorrelated and faster heart rate; (ii) atrial contractility dysfunction. Three different grades of severity (mild, moderate, severe) were analyzed for each of the four valvulopathies (AS, aortic stenosis, MS, mitral stenosis, AR, aortic regurgitation, MR, mitral regurgitation), by varying–through the valve opening angle–the valve area. Results: Regurgitation was hemodynamically more relevant than stenosis, as the latter led to inefficient cardiac flow, while the former introduced more drastic fluid dynamics variation. Moreover, mitral valvulopathies were more significant than aortic ones. In case of aortic valve diseases, proper mitral functioning damps out changes at atrial and pulmonary levels. In the case of mitral valvulopathy, the mitral valve lost its regulating capability, thus hemodynamic variations almost equally affected regions upstream and downstream of the valve. In particular, the present study revealed that both mitral and aortic regurgitation strongly affect hemodynamics, followed by mitral stenosis, while aortic stenosis has the least impact among the analyzed valvular diseases. Discussion: The proposed approach can provide new mechanistic insights as to which valvular pathologies merit more aggressive treatment of

  17. Mesenchymal stem cells derived from adipose tissue are not affected by renal disease.

    PubMed

    Roemeling-van Rhijn, Marieke; Reinders, Marlies E J; de Klein, Annelies; Douben, Hannie; Korevaar, Sander S; Mensah, Fane K F; Dor, Frank J M F; IJzermans, Jan N M; Betjes, Michiel G H; Baan, Carla C; Weimar, Willem; Hoogduijn, Martin J

    2012-10-01

    Mesenchymal stem cells are a potential therapeutic agent in renal disease and kidney transplantation. Autologous cell use in kidney transplantation is preferred to avoid anti-HLA reactivity; however, the influence of renal disease on mesenchymal stem cells is unknown. To investigate the feasibility of autologous cell therapy in patients with renal disease, we isolated these cells from subcutaneous adipose tissue of healthy controls and patients with renal disease and compared them phenotypically and functionally. The mesenchymal stem cells from both groups showed similar morphology and differentiation capacity, and were both over 90% positive for CD73, CD105, and CD166, and negative for CD31 and CD45. They demonstrated comparable population doubling times, rates of apoptosis, and were both capable of inhibiting allo-antigen- and anti-CD3/CD28-activated peripheral blood mononuclear cell proliferation. In response to immune activation they both increased the expression of pro-inflammatory and anti-inflammatory factors. These mesenchymal stem cells were genetically stable after extensive expansion and, importantly, were not affected by uremic serum. Thus, mesenchymal stem cells of patients with renal disease have similar characteristics and functionality as those from healthy controls. Hence, our results indicate the feasibility of their use in autologous cell therapy in patients with renal disease.

  18. Imaging of vascular dynamics within the foot using dynamic diffuse optical tomography to diagnose peripheral arterial disease

    NASA Astrophysics Data System (ADS)

    Khalil, M. A.; Kim, H. K.; Hoi, J. W.; Kim, I.; Dayal, R.; Shrikande, G.; Hielscher, A. H.

    2013-03-01

    Peripheral Arterial Disease (PAD) is the narrowing of the functional area of the artery generally due to atherosclerosis. It affects between 8-12 million people in the United States and if untreated this can lead to ulceration, gangrene and ultimately amputation. The current diagnostic method for PAD is the ankle-brachial index (ABI). The ABI is a ratio of the patient's systolic blood pressure in the foot to that of the brachial artery in the arm, a ratio below 0.9 is indicative of affected vasculature. However, this method is ineffective in patients with calcified arteries (diabetic and end-stage renal failure patients), which falsely elevates the ABI recording resulting in a false negative reading. In this paper we present our results in a pilot study to deduce optical tomography's ability to detect poor blood perfusion in the foot. We performed an IRB approved 30 patient study, where we imaged the feet of the enrolled patients during a five stage dynamic imaging sequence. The patients were split up into three groups: 10 healthy subjects, 10 PAD patients and 10 PAD patients with diabetes and they were imaged while applying a pressure cuff to their thigh. Differences in the magnitude of blood pooling in the foot and rate at which the blood pools in the foot are all indicative of arterial disease.

  19. Exploring the role of microorganisms in the disease-like syndrome affecting the sponge Ianthella basta.

    PubMed

    Luter, Heidi M; Whalan, Steve; Webster, Nicole S

    2010-09-01

    A disease-like syndrome is currently affecting a large percentage of the Ianthella basta populations from the Great Barrier Reef and central Torres Strait. Symptoms of the syndrome include discolored, necrotic spots leading to tissue degradation, exposure of the skeletal fibers, and disruption of the choanocyte chambers. To ascertain the role of microbes in the disease process, a comprehensive comparison of bacteria, viruses, fungi, and other eukaryotes was performed in healthy and diseased sponges using multiple techniques. A low diversity of microbes was observed in both healthy and diseased sponge communities, with all sponges dominated by an Alphaproteobacteria, a Gammaproteobacteria, and a group I crenarchaeota. Bacterial cultivation, community analysis by denaturing gradient gel electrophoresis (Bacteria and Eukarya), sequencing of 16S rRNA clone libraries (Bacteria and Archaea), and direct visual assessment by electron microscopy failed to reveal any putative pathogens. In addition, infection assays could not establish the syndrome in healthy sponges even after direct physical contact with affected tissue. These results suggest that microbes are not responsible for the formation of brown spot lesions and necrosis in I. basta.

  20. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease.

    PubMed

    Uranga, José Antonio; López-Miranda, Visitación; Lombó, Felipe; Abalo, Raquel

    2016-08-01

    Inflammatory bowel diseases (ulcerative colitis; Crohn's disease) are debilitating relapsing inflammatory disorders affecting the gastrointestinal tract, with deleterious effect on quality of life, and increasing incidence and prevalence. Mucosal inflammation, due to altered microbiota, increased intestinal permeability and immune system dysfunction underlies the symptoms and may be caused in susceptible individuals by different factors (or a combination of them), including dietary habits and components. In this review we describe the influence of the Western diet, obesity, and different nutraceuticals/functional foods (bioactive peptides, phytochemicals, omega 3-polyunsaturated fatty acids, vitamin D, probiotics and prebiotics) on the course of IBD, and provide some hints that could be useful for nutritional guidance. Hopefully, research will soon offer enough reliable data to slow down the spread of the disease and to make diet a cornerstone in IBD therapy.

  1. Disease in a dynamic landscape: host behavior and wildfire reduce amphibian chytrid infection

    USGS Publications Warehouse

    Hossack, Blake R.; Lowe, Winsor H.; Ware, Joy L.; Corn, Paul Stephen

    2013-01-01

    Disturbances are often expected to magnify effects of disease, but these effects may depend on the ecology, behavior, and life history of both hosts and pathogens. In many ecosystems, wildfire is the dominant natural disturbance and thus could directly or indirectly affect dynamics of many diseases. To determine how probability of infection by the aquatic fungus Batrachochytrium dendrobatidis (Bd) varies relative to habitat use by individuals, wildfire, and host characteristics, we sampled 404 boreal toads (Anaxyrus boreas boreas) across Glacier National Park, Montana (USA). Bd causes chytridiomycosis, an emerging infectious disease linked with widespread amphibian declines, including the boreal toad. Probability of infection was similar for females and the combined group of males and juveniles. However, only 9% of terrestrial toads were infected compared to >30% of aquatic toads, and toads captured in recently burned areas were half as likely to be infected as toads in unburned areas. We suspect these large differences in infection reflect habitat choices by individuals that affect pathogen exposure and persistence, especially in burned forests where warm, arid conditions could limit Bd growth. Our results show that natural disturbances such as wildfire and the resulting diverse habitats can influence infection across large landscapes, potentially maintaining local refuges and host behaviors that facilitate evolution of disease resistance.

  2. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  3. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock

    USGS Publications Warehouse

    Kamath, Pauline L.; Foster, Jeffrey T.; Drees, Kevin P.; Luikart, Gordon; Quance, Christine; Anderson, Neil J.; Clarke, P. Ryan; Cole, Eric K.; Drew, Mark L.; Edwards, William H.; Rhyan, Jack C.; Treanor, John J.; Wallen, Rick L.; White, Patrick J.; Robbe-Austerman, Suelee; Cross, Paul C.

    2016-01-01

    Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (B3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations.

  4. Cold winter temperatures condition the egg-hatching dynamics of a grape disease vector.

    PubMed

    Chuche, Julien; Thiéry, Denis

    2009-07-01

    The leafhopper Scaphoideus titanus is the vector of a major phytoplasma grapevine disease, Flavescence dorée. The vector's distribution is in Eastern and Northern Europe, and its population dynamics varies as a function of vineyard latitude. We tested the hypothesis that hatching dynamics are cued by cold temperatures observed in winter. We exposed eggs from a natural population to simulated "cold" and "mild" winters and varied the exposure time at 5 degrees C from 0 to 63 days. We show that temperature cooling mainly affected the onset of hatching and is negatively correlated to the cold time exposure. The majority of hatchings occurred more quickly in cold rather than in mild winter simulated conditions, but there was no significant difference between the duration of hatching of eggs whatever the cold time exposure. In agreement with the Northern American origin of the vector, the diapause termination and thus the timing regulation of egg hatching require cold winters.

  5. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock.

    PubMed

    Kamath, Pauline L; Foster, Jeffrey T; Drees, Kevin P; Luikart, Gordon; Quance, Christine; Anderson, Neil J; Clarke, P Ryan; Cole, Eric K; Drew, Mark L; Edwards, William H; Rhyan, Jack C; Treanor, John J; Wallen, Rick L; White, Patrick J; Robbe-Austerman, Suelee; Cross, Paul C

    2016-05-11

    Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (∼3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations.

  6. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock

    PubMed Central

    Kamath, Pauline L.; Foster, Jeffrey T.; Drees, Kevin P.; Luikart, Gordon; Quance, Christine; Anderson, Neil J.; Clarke, P. Ryan; Cole, Eric K.; Drew, Mark L.; Edwards, William H.; Rhyan, Jack C.; Treanor, John J.; Wallen, Rick L.; White, Patrick J.; Robbe-Austerman, Suelee; Cross, Paul C.

    2016-01-01

    Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (∼3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations. PMID:27165544

  7. Factors affecting virus dynamics and microbial host-virus interactions in marine environments.

    PubMed

    Mojica, Kristina D A; Brussaard, Corina P D

    2014-09-01

    Marine microorganisms constitute the largest percentage of living biomass and serve as the major driving force behind nutrient and energy cycles. While viruses only comprise a small percentage of this biomass (i.e., 5%), they dominate in numerical abundance and genetic diversity. Through host infection and mortality, viruses affect microbial population dynamics, community composition, genetic evolution, and biogeochemical cycling. However, the field of marine viral ecology is currently limited by a lack of data regarding how different environmental factors regulate virus dynamics and host-virus interactions. The goal of the present minireview was to contribute to the evolution of marine viral ecology, through the assimilation of available data regarding the manner and degree to which environmental factors affect viral decay and infectivity as well as influence latent period and production. Considering the ecological importance of viruses in the marine ecosystem and the increasing pressure from anthropogenic activity and global climate change on marine systems, a synthesis of existing information provides a timely framework for future research initiatives in viral ecology.

  8. Environmental temperature affects the dynamics of ingestion in the nectivorous ant Camponotus mus.

    PubMed

    Falibene, Agustina; Josens, Roxana

    2014-12-01

    Environmental temperature influences physiology and behavior in animals in general and is particularly determinant in ectotherms. Not least because temperature defines metabolism and body temperature, muscle activity in insects also strongly depends on this factor. Here, we analyzed how environmental temperature influences the dynamics of ingestion due to its effect on the sucking pump muscles in the nectivorous ants Camponotus mus. Feeding behavior and sucking pump activity during sucrose solution ingestion were first recorded in a natural environment in an urban setting throughout the day and in different seasons. Then, controlled temperature experiments were performed in the laboratory. In both situations, feeding time decreased and pumping frequency increased with temperature. However, different pumping frequencies under a same temperature were also observed in different seasons. Besides, in the laboratory, the volume of solution ingested increased with temperature. Consequently, intake rate increased when temperature rose. This change was exclusively promoted by a variation in the pumping frequency while volume taken in per pump contraction was not affected by temperature. In summary, environmental temperature modified the dynamics of ingestion and feeding behavior by directly affecting pumping frequency.

  9. Dynamic Probabilistic CCA for Analysis of Affective Behavior and Fusion of Continuous Annotations.

    PubMed

    Nicolaou, Mihalis A; Pavlovic, Vladimir; Pantic, Maja

    2014-07-01

    Fusing multiple continuous expert annotations is a crucial problem in machine learning and computer vision, particularly when dealing with uncertain and subjective tasks related to affective behavior. Inspired by the concept of inferring shared and individual latent spaces in Probabilistic Canonical Correlation Analysis (PCCA), we propose a novel, generative model that discovers temporal dependencies on the shared/individual spaces (Dynamic Probabilistic CCA, DPCCA). In order to accommodate for temporal lags, which are prominent amongst continuous annotations, we further introduce a latent warping process, leading to the DPCCA with Time Warpings (DPCTW) model. Finally, we propose two supervised variants of DPCCA/DPCTW which incorporate inputs (i.e., visual or audio features), both in a generative (SG-DPCCA) and discriminative manner (SD-DPCCA). We show that the resulting family of models (i) can be used as a unifying framework for solving the problems of temporal alignment and fusion of multiple annotations in time, (ii) can automatically rank and filter annotations based on latent posteriors or other model statistics, and (iii) that by incorporating dynamics, modeling annotation-specific biases, noise estimation, time warping and supervision, DPCTW outperforms state-of-the-art methods for both the aggregation of multiple, yet imperfect expert annotations as well as the alignment of affective behavior.

  10. Dynamic Bayesian Testing of Sets of Variants in Complex Diseases

    PubMed Central

    Zhang, Yu; Ghosh, Soumitra; Hakonarson, Hakon

    2014-01-01

    Rare genetic variants have recently been studied for genome-wide associations with human complex diseases. Existing rare variant methods are based on the hypothesis-testing framework that predefined variant sets need to be tested separately. The power of those methods is contingent upon accurate selection of variants for testing, and frequently, common variants are left out for separate testing. In this article, we present a novel Bayesian method for simultaneous testing of all genome-wide variants across the whole frequency range. The method allows for much more flexible grouping of variants and dynamically combines them for joint testing. The method accounts for correlation among variant sets, such that only direct associations with the disease are reported, whereas indirect associations due to linkage disequilibrium are not. Consequently, the method can obtain much improved power and flexibility and simultaneously pinpoint multiple disease variants with high resolution. Additional covariates of categorical, discrete, and continuous values can also be added. We compared our method with seven existing categories of approaches for rare variant mapping. We demonstrate that our method achieves similar power to the best methods available to date when testing very rare variants in small SNP sets. When moderately rare or common variants are included, or when testing a large collection of variants, however, our method significantly outperforms all existing methods evaluated in this study. We further demonstrate the power and the usage of our method in a whole-genome resequencing study of type 1 diabetes. PMID:25217050

  11. Nine challenges in incorporating the dynamics of behaviour in infectious diseases models.

    PubMed

    Funk, Sebastian; Bansal, Shweta; Bauch, Chris T; Eames, Ken T D; Edmunds, W John; Galvani, Alison P; Klepac, Petra

    2015-03-01

    Traditionally, the spread of infectious diseases in human populations has been modelled with static parameters. These parameters, however, can change when individuals change their behaviour. If these changes are themselves influenced by the disease dynamics, there is scope for mechanistic models of behaviour to improve our understanding of this interaction. Here, we present challenges in modelling changes in behaviour relating to disease dynamics, specifically: how to incorporate behavioural changes in models of infectious disease dynamics, how to inform measurement of relevant behaviour to parameterise such models, and how to determine the impact of behavioural changes on observed disease dynamics.

  12. [Effect of 3-oxypyridine and succinic acid derivatives on affective status in recrudescence of inflammatory diseases of uterus and its appendages].

    PubMed

    Volchegorskiĭ, I A; Pravdin, E V; Uzlova, T V

    2012-01-01

    Short-term, prospective placebo-controlled simple blind randomized study of the effects of 3-oxypyridine and succinic acid derivatives (emoxipin, reamberin, mexidol) on the affective status of females with recrudescence of the inflammatory diseases of uterus and its appendages (IDUA) in comparison to changes of systemic inflammatory response (SIR) markers level in the blood has been conducted. It is established that the inclusion of emoxipin, reamberin and mexidol in complex treatment of IDUA recrudescence reduce depression, anxiety and SIR laboratory signs. Mexidol being both 3-oxypyridine and succinic acid derivative showed the best influence on the dynamics of affective disorders and SIR changes.

  13. Cholinesterase affects dynamic transduction properties from vagal stimulation to heart rate.

    PubMed

    Nakahara, T; Kawada, T; Sugimachi, M; Miyano, H; Sato, T; Shishido, T; Yoshimura, R; Miyashita, H; Sunagawa, K

    1998-08-01

    Recent investigations in our laboratory using a Gaussian white noise technique showed that the transfer function representing the dynamic properties of transduction from vagus nerve activity to heart rate had characteristics of a first-order low-pass filter. However, the physiological determinants of those characteristics remain to be elucidated. In this study, we stimulated the vagus nerve according to a Gaussian white noise pattern to estimate the transfer function from vagal stimulation to the heart rate response in anesthetized rabbits and examined how changes in acetylcholine kinetics affected the transfer function. We found that although increases in the mean frequency of vagal stimulation from 5 to 10 Hz did not change the characteristics of the transfer function, administration of neostigmine (30 microg . kg-1 . h-1 iv), a cholinesterase inhibitor, increased the dynamic gain from 8.19 +/- 3.66 to 11.7 +/- 4.88 beats . min-1 . Hz-1 (P < 0.05), decreased the corner frequency from 0.12 +/- 0.05 to 0.04 +/- 0.01 Hz (P < 0.01), and increased the lag time from 0.17 +/- 0.12 to 0.27 +/- 0.08 s (P < 0.05). These results suggest that the rate of acetylcholine degradation at the neuroeffector junction, rather than the amount of available acetylcholine, plays a key role in determining the dynamic properties of transduction from vagus nerve activity to heart rate.

  14. Neuronal uptake affects dynamic characteristics of heart rate response to sympathetic stimulation.

    PubMed

    Nakahara, T; Kawada, T; Sugimachi, M; Miyano, H; Sato, T; Shishido, T; Yoshimura, R; Miyashita, H; Inagaki, M; Alexander, J; Sunagawa, K

    1999-07-01

    Recently, studies in our laboratory involving the use of a Gaussian white noise technique demonstrated that the transfer function from sympathetic stimulation frequency to heart rate (HR) response showed dynamic characteristics of a second-order low-pass filter. However, determinants for the characteristics remain to be established. We examined the effect of an increase in mean sympathetic stimulation frequency and that of a blockade of the neuronal uptake mechanism on the transfer function in anesthetized rabbits. We found that increasing mean sympathetic stimulation frequency from 1 to 4 Hz significantly (P < 0.01) decreased the dynamic gain of the transfer function without affecting other parameters, such as the natural frequency, lag time, or damping coefficient. In contrast, the administration of desipramine (0.3 mg/kg iv), a neuronal uptake blocking agent, significantly (P < 0.01) decreased both the dynamic gain and the natural frequency and prolonged the lag time. These results suggest that the removal rate of norepinephrine at the neuroeffector junction, rather than the amount of available norepinephrine, plays an important role in determining the low-pass filter characteristics of the HR response to sympathetic stimulation.

  15. Yeast Community Structures and Dynamics in Healthy and Botrytis-Affected Grape Must Fermentations▿

    PubMed Central

    Nisiotou, Aspasia A.; Spiropoulos, Apostolos E.; Nychas, George-John E.

    2007-01-01

    Indigenous yeast population dynamics during the fermentation of healthy and Botrytis-affected grape juice samples from two regions in Greece, Attica and Arcadia, were surveyed. Species diversity was evaluated by using restriction fragment length polymorphism and sequence analyses of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of cultivable yeasts. Community-level profiles were also obtained by direct analysis of fermenting samples through denaturing gradient gel electrophoresis of 26S rDNA amplicons. Both approaches revealed structural divergences in yeast communities between samples of different sanitary states or geographical origins. In all cases, Botrytis infection severely perturbed the bioprocess of fermentation by dramatically altering species heterogeneity and succession during the time course. At the beginning and middle of fermentations, Botrytis-affected samples possessed higher levels of biodiversity than their healthy counterparts, being enriched with fermentative and/or spoilage species, such as Zygosaccharomyces bailii and Issatchenkia spp. or Kluyveromyces dobzhanskii and Kazachstania sp. populations that have not been reported before for wine fermentations. Importantly, Botrytis-affected samples exposed discrete final species dominance. Selection was not species specific, and two different populations, i.e., Saccharomyces cerevisiae in samples from Arcadia and Z. bailii in samples from Attica, could be recovered at the end of Botrytis-affected fermentations. The governing of wine fermentations by Z. bailii is reported for the first time and could elucidate the origins and role of this particular spoilage microbe for the wine industry. This is the first survey to compare healthy and Botrytis-affected spontaneous fermentations by using both culture-based and -independent molecular methods in an attempt to further illuminate the complex yeast ecology of grape must fermentations. PMID:17766453

  16. Yeast community structures and dynamics in healthy and Botrytis-affected grape must fermentations.

    PubMed

    Nisiotou, Aspasia A; Spiropoulos, Apostolos E; Nychas, George-John E

    2007-11-01

    Indigenous yeast population dynamics during the fermentation of healthy and Botrytis-affected grape juice samples from two regions in Greece, Attica and Arcadia, were surveyed. Species diversity was evaluated by using restriction fragment length polymorphism and sequence analyses of the 5.8S internal transcribed spacer and the D1/D2 ribosomal DNA (rDNA) regions of cultivable yeasts. Community-level profiles were also obtained by direct analysis of fermenting samples through denaturing gradient gel electrophoresis of 26S rDNA amplicons. Both approaches revealed structural divergences in yeast communities between samples of different sanitary states or geographical origins. In all cases, Botrytis infection severely perturbed the bioprocess of fermentation by dramatically altering species heterogeneity and succession during the time course. At the beginning and middle of fermentations, Botrytis-affected samples possessed higher levels of biodiversity than their healthy counterparts, being enriched with fermentative and/or spoilage species, such as Zygosaccharomyces bailii and Issatchenkia spp. or Kluyveromyces dobzhanskii and Kazachstania sp. populations that have not been reported before for wine fermentations. Importantly, Botrytis-affected samples exposed discrete final species dominance. Selection was not species specific, and two different populations, i.e., Saccharomyces cerevisiae in samples from Arcadia and Z. bailii in samples from Attica, could be recovered at the end of Botrytis-affected fermentations. The governing of wine fermentations by Z. bailii is reported for the first time and could elucidate the origins and role of this particular spoilage microbe for the wine industry. This is the first survey to compare healthy and Botrytis-affected spontaneous fermentations by using both culture-based and -independent molecular methods in an attempt to further illuminate the complex yeast ecology of grape must fermentations.

  17. Molecular dynamics simulation of heat-affected zone of copper metal ablated with femtosecond laser

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoichi; Obara, Minoru

    2005-03-01

    Femtosecond laser ablation of materials with high thermal conductivity is of paramount importance, because the chemical composition and properties of the area ablated with femtosecond laser are kept unchanged. The material processing by femtosecond laser can well control the heat-affected zone, compared to nanosecond laser ablation. We report on the heat-affected zone of crystalline copper (Cu) by use of femtosecond laser experimentally and theoretically. Laser ablation of Cu is investigated theoretically by two temperature model and molecular dynamics (MD) simulation. The MD simulation takes into account of electron temperature and thermal diffusion length calculated by two temperature model. The dependence of lattice temperature on time and depth is calculated by the MD simulation and two temperature model. The heat-affected zone estimated from the temperature is mainly studied and calculated to be 3 nm at 0.02 J/cm2 which is below the threshold fluence of 0.137 J/cm2. In addition, the thickness of heat-affected zone of copper crystal ablated with femtosecond Ti:sapphire laser is experimentally studied. As a result of X-ray diffraction (XRD) of the ablated surface, the surface crystallinity is partially changed into disordered structure from crystal form. The residual energy left in the metal, which is not used for ablation, will induce liquid phase, leading to the amorphous phase of the metal during resolidification. The thickness of heat-affected zone depends on laser fluence and is experimentally measured to be less than 1 μm at higher laser fluences than the ablation threshold.

  18. Dynamic loading affects the mechanical properties and failure site of porcine spines.

    PubMed

    Yingling, Vanessa R; Callaghan, Jack P; McGill, Stuart M

    1997-07-01

    OBJECTIVE: The purpose of this study was to investigate the effect of load rate on the mechanical characteristics of spinal motion segments under compressive loading. DESIGN: An in vitro experiment using a porcine model which ensured a homogeneous population for age, weight, genetic background and physical activity. BACKGROUND: Spinal motion segments comprise of viscoelastic materials, and as a result the rate of loading will modulate mechanical characteristics and fracture patterns of the segments. METHODS: Twenty-six cervical porcine spines were excised immediately post-mortem with all soft tissue intact. Spines were then separated into two specimens each consisting of three vertebral bodies and the two intervening intervertebral discs (C2-C4 and C5-C7) and loaded to failure under five loading rates (100, 1000, 3000, 10 000 and 16 000 N s(-1)). After the specimens failed, they were dissected to determine the mode of failure. RESULTS: Dynamic loading increases the ultimate load compared with quasi-static loading (100 N s(-1)), whereas the magnitude of dynamic loading (1000-16 000 N s(-1)) appears not to have a significant affect. Stiffness behaved in a similar manner. The displacement to failure of specimens decreased as load rate increased, although there was a diminishing effect at high load rates. Furthermore, failure at low load rates occurred exclusively in the endplate, whereas failure of the vertebral body appeared with greater frequency at higher load rates. CONCLUSIONS: The mechanical characteristics and resulting injuries of porcine spinal motion segments were affected as the loading rates changed from quasi-static to dynamic. The modulating factors of the mechanical characteristics of the spine need to be understood if valid models are to be designed which will increase the understanding of spinal function, and are important for choosing better injury prevention and rehabilitation programmes.

  19. Can ocean acidification affect population dynamics of the barnacle Semibalanus balanoides at its southern range edge?

    PubMed

    Findlay, Helen S; Burrows, Michael T; Kendall, Michael A; Spicer, John I; Widdicombe, Stephen

    2010-10-01

    The global ocean and atmosphere are warming. There is increasing evidence suggesting that, in addition to other environmental factors, climate change is affecting species distributions and local population dynamics. Additionally, as a consequence of the growing levels of atmospheric carbon dioxide (CO2), the oceans are taking up increasing amounts of this CO2, causing ocean pH to decrease (ocean acidification). The relative impacts of ocean acidification on population dynamics have yet to be investigated, despite many studies indicating that there will be at least a sublethal impact on many marine organisms, particularly key calcifying organisms. Using empirical data, we forced a barnacle (Semibalanus balanoides) population model to investigate the relative influence of sea surface temperature (SST) and ocean acidification on a population nearing the southern limit of its geographic distribution. Hindcast models were compared to observational data from Cellar Beach (southwestern United Kingdom). Results indicate that a declining pH trend (-0.0017 unit/yr), indicative of ocean acidification over the past 50 years, does not cause an observable impact on the population abundance relative to changes caused by fluctuations in temperature. Below the critical temperature (here T(crit) = 13.1 degrees C), pH has a more significant affect on population dynamics at this southern range edge. However, above this value, SST has the overriding influence. At lower SST, a decrease in pH (according to the National Bureau of Standards, pHNBs) from 8.2 to 7.8 can significantly decrease the population abundance. The lethal impacts of ocean acidification observed in experiments on early life stages reduce cumulative survival by approximately 25%, which again will significantly alter the population level at this southern limit. Furthermore, forecast predictions from this model suggest that combined acidification and warming cause this local population to die out 10 years earlier than

  20. Hereditary retinal eye diseases in childhood and youth affecting the central retina.

    PubMed

    Nentwich, Martin M; Rudolph, Guenther

    2013-09-01

    Hereditary dystrophies affecting the central retina represent a heterogeneous group of diseases. Mutations in different genes may be responsible for changes of the choroid (choroideremia), of the retinal pigment epithelium [RPE] (Best's disease), of the photoreceptor outer segments (Stargardt's disease) and of the bipolar and Mueller cells (x-linked retinoschisis). The correct diagnosis of hereditary retinal dystrophies is important, even though therapeutic options are limited at the moment, as every patient should get a diagnosis and be informed about the expected prognosis. Furthermore, specific gene therapy of a number of diseases such as Leber congenital amaurosis, choroideremia, Stargardt's disease, Usher Syndrome and achromatopsia is being evaluated at present. Classic examinations for patients suffering from hereditary retinal dystrophies of the central retina are funduscopy - also using red-free light - visual-field tests, electrophysiologic tests as electro-retinogram [ERG] and multifocal ERG and tests evaluating color vision. Recently, new imaging modalities have been introduced into the clinical practice. The significance of these new methods such as high-resolution spectral-domain optic coherence tomography [SD-OCT] and fundus autofluorescence will be discussed as well as "next generation sequencing" as a new method for the analysis of genetic mutations in a larger number of patients.

  1. How glyphosate affects plant disease development: it is more than enhanced susceptibility.

    PubMed

    Hammerschmidt, Ray

    2017-01-09

    Glyphosate has been shown to affect the development of plant disease in several ways. Plants utilize phenolic and other shikimic acid pathway-derived compounds as part of their defense against pathogens, and glyphosate inhibits the biosynthesis of these compounds via its mode of action. Several studies have shown a correlation between enhanced disease and suppression of phenolic compound production after glyphosate. Glyphosate-resistant crop plants have also been studied for changes in resistance as a result of carrying the glyphosate resistance trait. The evidence indicates that neither the resistance trait nor application of glyphosate to glyphosate-resistant plants increases susceptibility to disease. The only exceptions to this are cases where glyphosate has been shown to reduce rust diseases on glyphosate-resistant crops, supporting a fungicidal role for this chemical. Finally, glyphosate treatment of weeds or volunteer crops can cause a temporary increase in soil-borne pathogens that may result in disease development if crops are planted too soon after glyphosate application. © 2017 Society of Chemical Industry.

  2. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence.

    PubMed

    Xiao, Yanni; Zhao, Tingting; Tang, Sanyi

    2013-04-01

    This paper proposes and analyzes a mathematical model on an infectious disease system with a piecewise smooth incidence rate concerning media/psychological effect. The proposed models extend the classic models with media coverage by including a piecewise smooth incidence rate to represent that the reduction factor because of media coverage depends on both the number of cases and the rate of changes in case number. On the basis of properties of Lambert W function the implicitly defined model has been converted into a piecewise smooth system with explicit definition, and the global dynamic behavior is theoretically examined. The disease-free is globally asymptotically stable when a certain threshold is less than unity, while the endemic equilibrium is globally asymptotically stable for otherwise. The media/psychological impact although does not affect the epidemic threshold, delays the epidemic peak and results in a lower size of outbreak (or equilibrium level of infected individuals).

  3. Emerging roles of tRNA in adaptive translation, signalling dynamics and disease.

    PubMed

    Kirchner, Sebastian; Ignatova, Zoya

    2015-02-01

    tRNAs, nexus molecules between mRNAs and proteins, have a central role in translation. Recent discoveries have revealed unprecedented complexity of tRNA biosynthesis, modification patterns, regulation and function. In this Review, we present emerging concepts regarding how tRNA abundance is dynamically regulated and how tRNAs (and their nucleolytic fragments) are centrally involved in stress signalling and adaptive translation, operating across a wide range of timescales. Mutations in tRNAs or in genes affecting tRNA biogenesis are also linked to complex human diseases with surprising heterogeneity in tissue vulnerability, and we highlight cell-specific aspects that modulate the disease penetrance of tRNA-based pathologies.

  4. Decision aids for multiple-decision disease management as affected by weather input errors.

    PubMed

    Pfender, W F; Gent, D H; Mahaffee, W F; Coop, L B; Fox, A D

    2011-06-01

    Many disease management decision support systems (DSSs) rely, exclusively or in part, on weather inputs to calculate an indicator for disease hazard. Error in the weather inputs, typically due to forecasting, interpolation, or estimation from off-site sources, may affect model calculations and management decision recommendations. The extent to which errors in weather inputs affect the quality of the final management outcome depends on a number of aspects of the disease management context, including whether management consists of a single dichotomous decision, or of a multi-decision process extending over the cropping season(s). Decision aids for multi-decision disease management typically are based on simple or complex algorithms of weather data which may be accumulated over several days or weeks. It is difficult to quantify accuracy of multi-decision DSSs due to temporally overlapping disease events, existence of more than one solution to optimizing the outcome, opportunities to take later recourse to modify earlier decisions, and the ongoing, complex decision process in which the DSS is only one component. One approach to assessing importance of weather input errors is to conduct an error analysis in which the DSS outcome from high-quality weather data is compared with that from weather data with various levels of bias and/or variance from the original data. We illustrate this analytical approach for two types of DSS, an infection risk index for hop powdery mildew and a simulation model for grass stem rust. Further exploration of analysis methods is needed to address problems associated with assessing uncertainty in multi-decision DSSs.

  5. Mastoid vibration affects dynamic postural control during gait in healthy older adults

    PubMed Central

    Chien, Jung Hung; Mukherjee, Mukul; Kent, Jenny; Stergiou, Nicholas

    2017-01-01

    Vestibular disorders are difficult to diagnose early due to the lack of a systematic assessment. Our previous work has developed a reliable experimental design and the result shows promising results that vestibular sensory input while walking could be affected through mastoid vibration (MV) and changes are in the direction of motion. In the present paper, we wanted to extend this work to older adults and investigate how manipulating sensory input through mastoid vibration (MV) could affect dynamic postural control during walking. Three levels of MV (none, unilateral, and bilateral) applied via vibrating elements placed on the mastoid processes were combined with the Locomotor Sensory Organization Test (LSOT) paradigm to challenge the visual and somatosensory systems. We hypothesized that the MV would affect sway variability during walking in older adults. Our results revealed that MV significantly not only increased the amount of sway variability but also decreased the temporal structure of sway variability only in anterior-posterior direction. Importantly, the bilateral MV stimulation generally produced larger effects than the unilateral. This is an important finding that confirmed our experimental design and the results produced could guide a more reliable screening of vestibular system deterioration. PMID:28128341

  6. Mastoid vibration affects dynamic postural control during gait in healthy older adults

    NASA Astrophysics Data System (ADS)

    Chien, Jung Hung; Mukherjee, Mukul; Kent, Jenny; Stergiou, Nicholas

    2017-01-01

    Vestibular disorders are difficult to diagnose early due to the lack of a systematic assessment. Our previous work has developed a reliable experimental design and the result shows promising results that vestibular sensory input while walking could be affected through mastoid vibration (MV) and changes are in the direction of motion. In the present paper, we wanted to extend this work to older adults and investigate how manipulating sensory input through mastoid vibration (MV) could affect dynamic postural control during walking. Three levels of MV (none, unilateral, and bilateral) applied via vibrating elements placed on the mastoid processes were combined with the Locomotor Sensory Organization Test (LSOT) paradigm to challenge the visual and somatosensory systems. We hypothesized that the MV would affect sway variability during walking in older adults. Our results revealed that MV significantly not only increased the amount of sway variability but also decreased the temporal structure of sway variability only in anterior-posterior direction. Importantly, the bilateral MV stimulation generally produced larger effects than the unilateral. This is an important finding that confirmed our experimental design and the results produced could guide a more reliable screening of vestibular system deterioration.

  7. Dynamic modulation of inflammatory pain-related affective and sensory symptoms by optical control of amygdala metabotropic glutamate receptor 4.

    PubMed

    Zussy, C; Gómez-Santacana, X; Rovira, X; De Bundel, D; Ferrazzo, S; Bosch, D; Asede, D; Malhaire, F; Acher, F; Giraldo, J; Valjent, E; Ehrlich, I; Ferraguti, F; Pin, J-P; Llebaria, A; Goudet, C

    2016-12-20

    Contrary to acute pain, chronic pain does not serve as a warning signal and must be considered as a disease per se. This pathology presents a sensory and psychological dimension at the origin of affective and cognitive disorders. Being largely refractory to current pharmacotherapies, identification of endogenous systems involved in persistent and chronic pain is crucial. The amygdala is a key brain region linking pain sensation with negative emotions. Here, we show that activation of a specific intrinsic neuromodulatory system within the amygdala associated with type 4 metabotropic glutamate receptors (mGlu4) abolishes sensory and affective symptoms of persistent pain such as hypersensitivity to pain, anxiety- and depression-related behaviors, and fear extinction impairment. Interestingly, neuroanatomical and synaptic analysis of the amygdala circuitry suggests that the effects of mGlu4 activation occur outside the central nucleus via modulation of multisensory thalamic inputs to lateral amygdala principal neurons and dorso-medial intercalated cells. Furthermore, we developed optogluram, a small diffusible photoswitchable positive allosteric modulator of mGlu4. This ligand allows the control of endogenous mGlu4 activity with light. Using this photopharmacological approach, we rapidly and reversibly inhibited behavioral symptoms associated with persistent pain through optical control of optogluram in the amygdala of freely behaving animals. Altogether, our data identify amygdala mGlu4 signaling as a mechanism that bypasses central sensitization processes to dynamically modulate persistent pain symptoms. Our findings help to define novel and more precise therapeutic interventions for chronic pain, and exemplify the potential of optopharmacology to study the dynamic activity of endogenous neuromodulatory mechanisms in vivo.Molecular Psychiatry advance online publication, 20 December 2016; doi:10.1038/mp.2016.223.

  8. Life Experiences of People Affected by Crohn's Disease and Their Support Networks: Scoping Review.

    PubMed

    García-Sanjuán, Sofía; Lillo-Crespo, Manuel; Sanjuán-Quiles, Ángela; Gil-González, Diana; Richart-Martínez, Miguel

    2016-02-01

    This scoping review identifies and describes relevant studies related to the evidence published on life experiences and perceived social support of people affected by Crohn's disease. Twenty-three studies were definitely selected and analyzed for the topics explored. The overall findings show patients' needs and perceptions. There is a lack of evidence about patients' perceived needs as well as the understanding of social support that has contributed to improve their life experiences with that chronic illness. Lack of energy, loss of body control, body image damaged due to different treatments and surgeries, symptoms related to fear of disease, feeling burdened loss related to independence, and so on are some of the concerns with having to live with those affected by the Crohn. To underline those experiences through this scoping review provides valuable data for health care teams, especially for the nursing profession, considered by those affected as one of the main roles along the whole pathological process. This review provides the basis for developing broader research on the relatively underexplored topics and consequently improves specific programs that could address patients' needs.

  9. Crumbs affects protein dynamics in anterior regions of the developing Drosophila embryo.

    PubMed

    Firmino, João; Tinevez, Jean-Yves; Knust, Elisabeth

    2013-01-01

    Maintenance of apico-basal polarity is essential for epithelial integrity and requires particular reinforcement during tissue morphogenesis, when cells are reorganised, undergo shape changes and remodel their junctions. It is well established that epithelial integrity during morphogenetic processes depends on the dynamic exchange of adherens junction components, but our knowledge on the dynamics of other proteins and their dynamics during these processes is still limited. The early Drosophila embryo is an ideal system to study membrane dynamics during morphogenesis. Here, morphogenetic activities differ along the anterior-posterior axis, with the extending germband showing a high degree of epithelial remodelling. We developed a Fluorescence Recovery After Photobleaching (FRAP) assay with a higher temporal resolution, which allowed the distinction between a fast and a slow component of recovery of membrane proteins during the germband extension stage. We show for the first time that the recovery kinetics of a general membrane marker, SpiderGFP, differs in the anterior and posterior parts of the embryo, which correlates well with the different morphogenetic activities of the respective embryonic regions. Interestingly, absence of crumbs, a polarity regulator essential for epithelial integrity in the Drosophila embryo, decreases the fast component of SpiderGFP and of the apical marker Stranded at Second-Venus specifically in the anterior region. We suggest that the defects in kinetics observed in crumbs mutant embryos are the first signs of tissue instability in this region, explaining the earlier breakdown of the head epidermis in comparison to that of the trunk, and that diffusion in the plasma membrane is affected by the absence of Crumbs.

  10. Multilevel Dynamic Systems Affecting Introduction of HIV/STI Prevention Innovations among Chinese Women in Sex Work Establishments

    ERIC Educational Resources Information Center

    Weeks, Margaret R.; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2013-01-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the…

  11. Histone methylation: a dynamic mark in health, disease and inheritance

    PubMed Central

    Greer, Eric L.; Shi, Yang

    2014-01-01

    Organisms require an appropriate balance of stability and reversibility in gene expression programs, to maintain cell identity or to enable responses to stimuli; epigenetic regulation is integral to this dynamic control. Post-translational modification of histones by methylation is an important and widespread type of chromatin modification that is known to influence biological processes in the context of development and cellular responses. We provide a broad overview of how histone methylation is regulated and leads to biological outcomes, to evaluate how histone methylation contributes to stable or reversible control. The importance of maintaining or reprogramming histone methylation appropriately is illustrated by links to disease and aging, or possibly transmission of traits across generations. PMID:22473383

  12. Dynamic diffuse optical tomography imaging of peripheral arterial disease.

    PubMed

    Khalil, Michael A; Kim, Hyun K; Kim, In-Kyong; Flexman, Molly; Dayal, Rajeev; Shrikhande, Gautam; Hielscher, Andreas H

    2012-09-01

    Peripheral arterial disease (PAD) is the narrowing of arteries due to plaque accumulation in the vascular walls. This leads to insufficient blood supply to the extremities and can ultimately cause cell death. Currently available methods are ineffective in diagnosing PAD in patients with calcified arteries, such as those with diabetes. In this paper we investigate the potential of dynamic diffuse optical tomography (DDOT) as an alternative way to assess PAD in the lower extremities. DDOT is a non-invasive, non-ionizing imaging modality that uses near-infrared light to create spatio-temporal maps of oxy- and deoxy-hemoglobin in tissue. We present three case studies in which we used DDOT to visualize vascular perfusion of a healthy volunteer, a PAD patient and a diabetic PAD patient with calcified arteries. These preliminary results show significant differences in DDOT time-traces and images between all three cases, underscoring the potential of DDOT as a new diagnostic tool.

  13. Deep brain stimulation for neurodegenerative disease: a computational blueprint using dynamic causal modeling.

    PubMed

    Moran, Rosalyn

    2015-01-01

    Advances in deep brain stimulation (DBS) therapeutics for neurological and psychiatric disorders represent a new clinical avenue that may potentially augment or adjunct traditional pharmacological approaches to disease treatment. Using modern molecular biology and genomics, pharmacological development proceeds through an albeit lengthy and expensive pipeline from candidate compound to preclinical and clinical trials. Such a pathway, however, is lacking in the field of neurostimulation, with developments arising from a selection of early sources and motivated by diverse fields including surgery and neuroscience. In this chapter, I propose that biophysical models of connected brain networks optimized using empirical neuroimaging data from patients and healthy controls can provide a principled computational pipeline for testing and developing neurostimulation interventions. Dynamic causal modeling (DCM) provides such a computational framework, serving as a method to test effective connectivity between and within regions of an active brain network. Importantly, the methodology links brain dynamics with behavior by directly assessing experimental task effects under different behavioral or cognitive sets. Therefore, healthy brain dynamics in circuits of interest can be defined mathematically with stimulation interventions in pathological counterparts simulated with the goal of restoring normal functionality. In this chapter, I outline the dynamic characterization of brain circuits using DCM and propose a blueprint for testing in silico, the effects of stimulation in neurodegenerative disorders affecting cognition. In particular, the models can be simulated to test whether neuroimaging correlates of nondiseased brain dynamics can be reinstantiated in a pathological setting using DBS. Thus, the key advantage of this framework is that distributed effects of DBS on neural circuitry and network connectivity can be predicted in silico. The chapter also includes a review of how

  14. Calf and disease factors affecting growth in female Holstein calves in Florida, USA.

    PubMed

    Donovan, G A; Dohoo, I R; Montgomery, D M; Bennett, F L

    1998-01-01

    A prospective cohort study was undertaken to determine calf-level factors that affect performance (growth) between birth and 14 months of age in a convenience sample of approximately 3300 female Holstein calves born in 1991 on two large Florida dairy farms. Data collected on each calf at birth included farm of origin, birth date, weight, height at the pelvis, and serum total protein (a measure of colostral immunoglobulin absorption). Birth season was dichotomized into summer and winter using meteorological data collected by University of Florida Agricultural Research Stations. Data collected at approximately 6 and 14 months of age included age, weight, height at the pelvis, and height at the withers. Growth in weight and stature (height) was calculated for each growth period; growth period 1 (GP1) = birth to 6 months, and growth period 2 (GP2) = 6 to 14 months. Health data collected included data of initial treatment and number of treatments for the diseases diarrhea, omphalitis, septicemia, pneumonia and keratoconjunctivitis. After adjusting for disease occurrence, passive transfer of colostral immunoglobulins had no significant effect on body weight gain or pelvic height growth. Season of birth and occurrence of diarrhea, septicemia and respiratory disease were significant variables decreasing heifer growth (height and weight) in GP1. These variables plus farm, birth weight and exact age when '6 month' data were collected explained 20% and 31% of the variation in body weight gain and pelvic height growth, respectively, in GP1. The number of days treated for pneumonia before 6 months of age significantly decreased average daily weight gain in GP2 (P < 0.025), but did not affect stature growth. Treatment for pneumonia after 6 months of age did not significantly affect weight or height gain after age 6 months. Neither omphalitis nor keratoconjunctivitis explained variability in growth in either of the growth periods.

  15. Emotion Risk-Factor in Patients With Cardiac Diseases: The Role of Cognitive Emotion Regulation Strategies, Positive Affect and Negative Affect (A Case-Control Study)

    PubMed Central

    Bahremand, Mostafa; Alikhani, Mostafa; Zakiei, Ali; Janjani, Parisa; Aghaei, Abbas

    2016-01-01

    Application of psychological interventions is essential in classic treatments for patient with cardiac diseases. The present study compared cognitive emotion regulation strategies, positive affect, and negative affect for cardiac patients with healthy subjects. This study was a case-control study. Fifty subjects were selected using convenient sampling method from cardiac (coronary artery disease) patients presenting in Imam Ali medical center of Kermanshah, Iran in the spring 2013. Fifty subjects accompanied the patients to the medical center, selected as control group, did not have any history of cardiac diseases. For collecting data, the cognitive emotion regulation questionnaire and positive and negative affect scales were used. For data analysis, multivariate analysis of variance (MANOVA) was applied using the SPSS statistical software (ver. 19.0). In all cognitive emotion regulation strategies, there was a significant difference between the two groups. A significant difference was also detected regarding positive affect between the two groups, but no significant difference was found regarding negative affect. We found as a result that, having poor emotion regulation strategies is a risk factor for developing heart diseases. PMID:26234976

  16. On the Identifiability of Transmission Dynamic Models for Infectious Diseases

    PubMed Central

    Lintusaari, Jarno; Gutmann, Michael U.; Kaski, Samuel; Corander, Jukka

    2016-01-01

    Understanding the transmission dynamics of infectious diseases is important for both biological research and public health applications. It has been widely demonstrated that statistical modeling provides a firm basis for inferring relevant epidemiological quantities from incidence and molecular data. However, the complexity of transmission dynamic models presents two challenges: (1) the likelihood function of the models is generally not computable, and computationally intensive simulation-based inference methods need to be employed, and (2) the model may not be fully identifiable from the available data. While the first difficulty can be tackled by computational and algorithmic advances, the second obstacle is more fundamental. Identifiability issues may lead to inferences that are driven more by prior assumptions than by the data themselves. We consider a popular and relatively simple yet analytically intractable model for the spread of tuberculosis based on classical IS6110 fingerprinting data. We report on the identifiability of the model, also presenting some methodological advances regarding the inference. Using likelihood approximations, we show that the reproductive value cannot be identified from the data available and that the posterior distributions obtained in previous work have likely been substantially dominated by the assumed prior distribution. Further, we show that the inferences are influenced by the assumed infectious population size, which generally has been kept fixed in previous work. We demonstrate that the infectious population size can be inferred if the remaining epidemiological parameters are already known with sufficient precision. PMID:26739450

  17. On the Identifiability of Transmission Dynamic Models for Infectious Diseases.

    PubMed

    Lintusaari, Jarno; Gutmann, Michael U; Kaski, Samuel; Corander, Jukka

    2016-03-01

    Understanding the transmission dynamics of infectious diseases is important for both biological research and public health applications. It has been widely demonstrated that statistical modeling provides a firm basis for inferring relevant epidemiological quantities from incidence and molecular data. However, the complexity of transmission dynamic models presents two challenges: (1) the likelihood function of the models is generally not computable, and computationally intensive simulation-based inference methods need to be employed, and (2) the model may not be fully identifiable from the available data. While the first difficulty can be tackled by computational and algorithmic advances, the second obstacle is more fundamental. Identifiability issues may lead to inferences that are driven more by prior assumptions than by the data themselves. We consider a popular and relatively simple yet analytically intractable model for the spread of tuberculosis based on classical IS6110 fingerprinting data. We report on the identifiability of the model, also presenting some methodological advances regarding the inference. Using likelihood approximations, we show that the reproductive value cannot be identified from the data available and that the posterior distributions obtained in previous work have likely been substantially dominated by the assumed prior distribution. Further, we show that the inferences are influenced by the assumed infectious population size, which generally has been kept fixed in previous work. We demonstrate that the infectious population size can be inferred if the remaining epidemiological parameters are already known with sufficient precision.

  18. The translational machinery is an optimized molecular network that affects cellular homoeostasis and disease.

    PubMed

    Kazana, Eleanna; von der Haar, Tobias

    2014-02-01

    Translation involves interactions between mRNAs, ribosomes, tRNAs and a host of translation factors. Emerging evidence on the eukaryotic translational machinery indicates that these factors are organized in a highly optimized network, in which the levels of the different factors are finely matched to each other. This optimal factor network is essential for producing proteomes that result in optimal fitness, and perturbations to the optimal network that significantly affect translational activity therefore result in non-optimal proteomes, fitness losses and disease. On the other hand, experimental evidence indicates that translation and cell growth are relatively robust to perturbations, and viability can be maintained even upon significant damage to individual translation factors. How the eukaryotic translational machinery is optimized, and how it can maintain optimization in the face of changing internal parameters, are open questions relevant to the interaction between translation and cellular disease states.

  19. The dynamics of finger tremor in multiple sclerosis is affected by whole body position.

    PubMed

    Morrison, S; Sosnoff, J J; Sandroff, B M; Pula, J H; Motl, R W

    2013-01-15

    Multiple sclerosis (MS) is a disease that results in widespread damage to the nervous system. One consequence of this disease is the emergence of enhanced tremor. This study was designed to (1) compare the tremor responses of persons with MS to that of healthy adults and to (2) examine the impact of whole body position (i.e., seated/standing) on tremor. Bilateral postural tremor was recorded using accelerometers attached to each index finger. Results revealed some similarity of tremor between groups in regard to the principal features (e.g., presence of peaks in similar frequency ranges). However, significant differences were observed with tremor for the MS persons being of greater amplitude, more regular (lower ApEn) and more strongly coupled across limbs compared to the elderly. The effects of body position were consistent across all subjects, with tremor increasing significantly from sitting-to-standing. However, the tremor increase for the MS group was greater than the elderly. Overall, the tremor for MS group was negatively affected by both this disease process and the nature of the task being performed. This latter result indicates that tremor does not simply reflect the feed-forward output of the neuromotor system but that it is influenced by the task constraints.

  20. Evaluation of Neurodevelopment and Factors Affecting it in Children With Acyanotic Congenital Cardiac Disease

    PubMed Central

    Ozmen, Ayten; Terlemez, Semiha; Tunaoglu, Fatma Sedef; Soysal, Sebnem; Pektas, Ayhan; Cilsal, Erman; Koca, Ulker; Kula, Serdar; Deniz Oguz, Ayse

    2016-01-01

    Background: The rate of congenital heart disease is 0.8% in all live births. The majority of this, however, is acyanotic congenital heart disease. The survival rate of children with cardiac disease has increased with the developments provided in recent years and their lifetime is extended. Objectives: This study aims to evaluate neurodevelopment of children with uncomplicated acyanotic congenital heart disease in preschool period and determine the factors affecting their neurodevelopmental process. Patients and Methods: 132 children with acyanotic congenital heart disease aged 6 - 72 months were involved in the study. Mental development and intelligence levels of patients under 2 years old were assessed by using Bayley Development Scale-III, and Stanford Binet Intelligence test was employed for patients over 2 years old. Denver Developmental Screening Test II was applied to all patients for their personal-social, fine motor, gross motor and language development. Results: The average age of patients (67 girls, 65 boys) included in the study was 35.2 ± 19.6 months. It was determined that there were subnormal mental level in 13 (10%) patients and at least one specific developmental disorder in 33 (25%) patients. Bayley Mental Development Scale score of patients who had received incubator care in perinatal period was found significantly low (88 ± 4.2) compared to those with no incubator care (93.17 ± 8.5) (P = 0.028). Low educational level of father was established to be linked with low mental development scores at the age of 2 and following that age (P < 0.05). Iron deficiency anemia was discovered to be related to low psychometric test scores at every age (P < 0.05). Conclusions: Neurodevelopmental problems in children with acyanotic congenital heart disease were found higher compared to those in society. Mental development and intelligence levels of patients were determined to be closely associated with receiving incubator care, father’s educational level and

  1. Predicting acute affective symptoms after deep brain stimulation surgery in Parkinson's disease.

    PubMed

    Schneider, Frank; Reske, Martina; Finkelmeyer, Andreas; Wojtecki, Lars; Timmermann, Lars; Brosig, Timo; Backes, Volker; Amir-Manavi, Atoosa; Sturm, Volker; Habel, Ute; Schnitzler, Alfons

    2010-01-01

    The current study aimed to investigate predictive markers for acute symptoms of depression and mania following deep brain stimulation (DBS) surgery of the subthalamic nucleus for the treatment of motor symptoms in Parkinson's disease (PD). Fourteen patients with PD (7 males) were included in a prospective longitudinal study. Neuropsychological tests, psychopathology scales and tests of motor functions were administered at several time points prior to and after neurosurgery. Pre-existing psychopathological and motor symptoms predicted postoperative affective side effects of DBS surgery. As these can easily be assessed, they should be considered along with other selection criteria for DBS surgery.

  2. Dietary magnesium and copper affect survival time and neuroinflammation in chronic wasting disease

    PubMed Central

    Nichols, Tracy A.; Spraker, Terry R.; Gidlewski, Thomas; Cummings, Bruce; Hill, Dana; Kong, Qingzhong; Balachandran, Aru; VerCauteren, Kurt C.; Zabel, Mark D.

    2016-01-01

    ABSTRACT Chronic wasting disease (CWD), the only known wildlife prion disease, affects deer, elk and moose. The disease is an ongoing and expanding problem in both wild and captive North American cervid populations and is difficult to control in part due to the extreme environmental persistence of prions, which can transmit disease years after initial contamination. The role of exogenous factors in CWD transmission and progression is largely unexplored. In an effort to understand the influence of environmental and dietary constituents on CWD, we collected and analyzed water and soil samples from CWD-negative and positive captive cervid facilities, as well as from wild CWD-endozootic areas. Our analysis revealed that, when compared with CWD-positive sites, CWD-negative sites had a significantly higher concentration of magnesium, and a higher magnesium/copper (Mg/Cu) ratio in the water than that from CWD-positive sites. When cevidized transgenic mice were fed a custom diet devoid of Mg and Cu and drinking water with varied Mg/Cu ratios, we found that higher Mg/Cu ratio resulted in significantly longer survival times after intracerebral CWD inoculation. We also detected reduced levels of inflammatory cytokine gene expression in mice fed a modified diet with a higher Mg/Cu ratio compared to those on a standard rodent diet. These findings indicate a role for dietary Mg and Cu in CWD pathogenesis through modulating inflammation in the brain. PMID:27216881

  3. Analysis of Newcastle disease virus quasispecies and factors affecting the emergence of virulent virus.

    PubMed

    Kattenbelt, Jacqueline A; Stevens, Matthew P; Selleck, Paul W; Gould, Allan R

    2010-10-01

    Genome sequence analysis of a number of avirulent field isolates of Newcastle disease virus revealed the presence of viruses (within their quasispecies) that contained virulent F0 sequences. Detection of these virulent sequences below the ~1% level, using standard cloning and sequence analysis, proved difficult, and thus a more sensitive reverse-transcription real-time PCR procedure was developed to detect both virulent and avirulent NDV F0 sequences. Reverse-transcription real-time PCR analysis of the quasispecies of a number of Newcastle disease virus field isolates, revealed variable ratios (approximately 1:4-1:4,000) of virulent to avirulent viral F0 sequences. Since the ratios of these sequences generally remained constant in the quasispecies population during replication, factors that could affect the balance of virulent to avirulent sequences during viral infection of birds were investigated. It was shown both in vitro and in vivo that virulent virus present in the quasispecies did not emerge from the "avirulent background" unless a direct selection pressure was placed on the quasispecies, either by growth conditions or by transient immunosuppression. The effect of a prior infection of the host by infectious bronchitis virus or infectious bursal disease virus on the subsequent emergence of virulent Newcastle disease virus was examined.

  4. CFH Variants Affect Structural and Functional Brain Changes and Genetic Risk of Alzheimer's Disease.

    PubMed

    Zhang, Deng-Feng; Li, Jin; Wu, Huan; Cui, Yue; Bi, Rui; Zhou, He-Jiang; Wang, Hui-Zhen; Zhang, Chen; Wang, Dong; Kong, Qing-Peng; Li, Tao; Fang, Yiru; Jiang, Tianzi; Yao, Yong-Gang

    2016-03-01

    The immune response is highly active in Alzheimer's disease (AD). Identification of genetic risk contributed by immune genes to AD may provide essential insight for the prognosis, diagnosis, and treatment of this neurodegenerative disease. In this study, we performed a genetic screening for AD-related top immune genes identified in Europeans in a Chinese cohort, followed by a multiple-stage study focusing on Complement Factor H (CFH) gene. Effects of the risk SNPs on AD-related neuroimaging endophenotypes were evaluated through magnetic resonance imaging scan, and the effects on AD cerebrospinal fluid biomarkers (CSF) and CFH expression changes were measured in aged and AD brain tissues and AD cellular models. Our results showed that the AD-associated top immune genes reported in Europeans (CR1, CD33, CLU, and TREML2) have weak effects in Chinese, whereas CFH showed strong effects. In particular, rs1061170 (P(meta)=5.0 × 10(-4)) and rs800292 (P(meta)=1.3 × 10(-5)) showed robust associations with AD, which were confirmed in multiple world-wide sample sets (4317 cases and 16 795 controls). Rs1061170 (P=2.5 × 10(-3)) and rs800292 (P=4.7 × 10(-4)) risk-allele carriers have an increased entorhinal thickness in their young age and a higher atrophy rate as the disease progresses. Rs800292 risk-allele carriers have higher CSF tau and Aβ levels and severe cognitive decline. CFH expression level, which was affected by the risk-alleles, was increased in AD brains and cellular models. These comprehensive analyses suggested that CFH is an important immune factor in AD and affects multiple pathological changes in early life and during disease progress.

  5. Diminished glucose transport and phosphorylation in Alzheimer`s disease determined by dynamic FDG-PET

    SciTech Connect

    Piert, M.; Koeppe, R.A.; Giordani, B.; Berent, S.; Kuhl, D.E.

    1996-02-01

    Using dynamic [{sup 18}F] fluorodeoxyglucose (FDG) and PET, kinetic rate constants that describe influx (K{sub 1}) and efflux (k{sub 2}) of FDG as well s phosphorylation (k{sub 3}) and dephosphorylation (k{sub 4}) were determined in patients with probable Alzheimer`s disease and similarly aged normal controls. The regional cerebral metabolic rate for glucose (CMR{sub glu}) was calculated from individually fitted rate constants in frontal, temporal, parietal and occipital cerebral cortex, caudate nucleus, putamen, thalamus and cerebellar cortex. Dynamic PET scans were obtained in normal controls (n = 10, mean age = 67) and Alzheimer`s disease patients (n = 8, mean age = 67) for 60 min following injection of 10 mCi of FDG. The Alzheimer`s disease group was characterized by decreases of the CMR{sub glu} ranging from 13.3% in the frontal to 40.9% in the parietal cortex, which achieved significance in all regions except the thalamus. K{sub 1} was significantly reduced in the parietal (p < 0.01) and temporal cortices (p < 0.005), temporal and occipital cortex, and in the putamen and cerebellum (p < 0.05). The rate constants k{sub 2} and k{sub 4} were unchanged in the Alzheimer`s disease group. These data suggest that hypometabolism in Alzheimer`s disease is related to reduced glucose phosphorylation activity as well as diminished glucose transport, particularly in the most metabolically affected areas of the brain, the parietal and temporal cortex. 60 refs., 2 figs., 2 tabs.

  6. InxGa1-xP Nanowire Growth Dynamics Strongly Affected by Doping Using Diethylzinc.

    PubMed

    Otnes, Gaute; Heurlin, Magnus; Zeng, Xulu; Borgström, Magnus T

    2017-02-08

    Semiconductor nanowires are versatile building blocks for optoelectronic devices, in part because nanowires offer an increased freedom in material design due to relaxed constraints on lattice matching during the epitaxial growth. This enables the growth of ternary alloy nanowires in which the bandgap is tunable over a large energy range, desirable for optoelectronic devices. However, little is known about the effects of doping in the ternary nanowire materials, a prerequisite for applications. Here we present a study of p-doping of InxGa1-xP nanowires and show that the growth dynamics are strongly affected when diethylzinc is used as a dopant precursor. Specifically, using in situ optical reflectometry and high-resolution transmission electron microscopy we show that the doping results in a smaller nanowire diameter, a more predominant zincblende crystal structure, a more Ga-rich composition, and an increased axial growth rate. We attribute these effects to changes in seed particle wetting angle and increased TMGa pyrolysis efficiency upon introducing diethylzinc. Lastly, we demonstrate degenerate p-doping levels in InxGa1-xP nanowires by the realization of an Esaki tunnel diode. Our findings provide insights into the growth dynamics of ternary alloy nanowires during doping, thus potentially enabling the realization of such nanowires with high compositional homogeneity and controlled doping for high-performance optoelectronics devices.

  7. The Dynamical Response of Dark Matter to Galaxy Evolution Affects Direct-Detection Experiments

    NASA Astrophysics Data System (ADS)

    Petersen, Michael; Katz, Neal; Weinberg, Martin

    2017-01-01

    Over a handful of rotation periods, dynamical processes in barred galaxies induce non-axisymmetric structure in dark matter halos. Using n-body simulations of a Milky Way-like barred galaxy, we identify both a trapped dark-matter component, a shadow bar, and a strong response wake in the dark-matter distribution that affects the predicted dark-matter detection rates for current and future experiments. We find that the magnitude of the combined stellar and shadow bar evolution makes a 30% increase in disk-plane density. This is significantly larger that of previously claimed deviations from the standard halo model. The dark-matter density and kinematic wakes driven by the Milky Way bar increase the detectability of dark matter overall, especially for the experiments with higher minimum velocities. These astrophysical features increase the detection rate by more than a factor of two when compared to the standard halo model and by a factor of ten for experiments with high minimum recoil energy thresholds. These same features increase (decrease) the annual modulation for low (high) minimum recoil energy experiments. We present physical arguments for why these dynamics are generic for barred galaxies such as the Milky Way rather than contingent on a specific galaxy model.

  8. Modeling Heterogeneity in Momentary Interpersonal and Affective Dynamic Processes in Borderline Personality Disorder

    PubMed Central

    Wright, Aidan G. C.; Hallquist, Michael N.; Stepp, Stephanie D.; Scott, Lori N.; Beeney, Joseph E.; Lazarus, Sophie A.; Pilkonis, Paul A.

    2016-01-01

    Borderline personality disorder (BPD) is a diagnosis defined by impairments in several dynamic processes (e.g., interpersonal relating, affect regulation, behavioral control). Theories of BPD emphasize that these impairments appear in specific contexts, and emerging results confirm this view. At the same time, BPD is a complex construct that encompasses individuals with heterogeneous pathology. These features—dynamic processes, situational specificity, and individual heterogeneity—pose significant assessment challenges. In the current study, we demonstrate assessment and analytic methods that capture both between-person differences and within-person changes over time. Twenty-five participants diagnosed with BPD completed event-contingent, ambulatory assessment protocols over 21 days. We used p-technique factor analyses to identify person-specific psychological structures consistent with clinical theories of personality. Five exemplar cases are selected and presented in detail to showcase the potential utility of these methods. The presented cases' factor structures reflect not only heterogeneity but also suggest points of convergence. The factors also demonstrated significant associations with important clinical targets (self-harm, interpersonal violence). PMID:27317561

  9. Dendritic diameters affect the spatial variability of intracellular calcium dynamics in computer models

    PubMed Central

    Anwar, Haroon; Roome, Christopher J.; Nedelescu, Hermina; Chen, Weiliang; Kuhn, Bernd; De Schutter, Erik

    2014-01-01

    There is growing interest in understanding calcium dynamics in dendrites, both experimentally and computationally. Many processes influence these dynamics, but in dendrites there is a strong contribution of morphology because the peak calcium levels are strongly determined by the surface to volume ratio (SVR) of each branch, which is inversely related to branch diameter. In this study we explore the predicted variance of dendritic calcium concentrations due to local changes in dendrite diameter and how this is affected by the modeling approach used. We investigate this in a model of dendritic calcium spiking in different reconstructions of cerebellar Purkinje cells and in morphological analysis of neocortical and hippocampal pyramidal neurons. We report that many published models neglect diameter-dependent effects on calcium concentration and show how to implement this correctly in the NEURON simulator, both for phenomenological pool based models and for implementations using radial 1D diffusion. More detailed modeling requires simulation of 3D diffusion and we demonstrate that this does not dissipate the local concentration variance due to changes of dendritic diameter. In many cases 1D diffusion of models of calcium buffering give a good approximation provided an increased morphological resolution is implemented. PMID:25100945

  10. Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation.

    PubMed

    Bar-Sinai, Yohai; Spatschek, Robert; Brener, Efim A; Bouchbinder, Eran

    2015-01-19

    Frictional interfaces abound in natural and man-made systems, yet their dynamics are not well-understood. Recent extensive experimental data have revealed that velocity-strengthening friction, where the steady-state frictional resistance increases with sliding velocity over some range, is a generic feature of such interfaces. This physical behavior has very recently been linked to slow stick-slip motion. Here we elucidate the importance of velocity-strengthening friction by theoretically studying three variants of a realistic friction model, all featuring identical logarithmic velocity-weakening friction at small sliding velocities, but differ in their higher velocity behaviors. By quantifying energy partition (e.g. radiation and dissipation), the selection of interfacial rupture fronts and rupture arrest, we show that the presence or absence of strengthening significantly affects the global interfacial resistance and the energy release during frictional instabilities. Furthermore, we show that different forms of strengthening may result in events of similar magnitude, yet with dramatically different dissipation and radiation rates. This happens because the events are mediated by rupture fronts with vastly different propagation velocities, where stronger velocity-strengthening friction promotes slower rupture. These theoretical results may have significant implications on our understanding of frictional dynamics.

  11. Spatial mapping of dynamic cerebral autoregulation by multichannel near-infrared spectroscopy in high-grade carotid artery disease

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthias; Schumacher, F. Konrad; Rutsch, Sebastian; Oeinck, Maximilian; Timmer, Jens; Mader, Irina; Schelter, Björn; Weiller, Cornelius; Kaller, Christoph P.

    2014-09-01

    The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for noninvasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bilateral frontal cortex were assessed from changes in oxyhemoglobin concentration using 52-channel NIRS (spatial resolution ˜2 cm). Dynamic autoregulation was graded by the phase shift between respiratory-induced 0.1 Hz oscillations of blood pressure and oxyhemoglobin. Ten of 15 patients showed regular phase values in the expected (patho) physiological range. Five patients had clearly outlying irregular phase values mostly due to artifacts. In patients with a regular phase pattern, a significant side-to-side difference of dynamic autoregulation was observed for the cortical border zone area between the middle and anterior cerebral artery (p<0.05). In conclusion, dynamic cerebral autoregulation can be spatially assessed from slow hemodynamic oscillations with mcNIRS. In high-grade carotid artery disease, cortical dynamic autoregulation is affected mostly in the vascular border zone. Spatial mapping of dynamic autoregulation may serve as a powerful tool for identifying brain regions at specific risks for hemodynamic infarction.

  12. Alzheimer's disease: relevant molecular and physiopathological events affecting amyloid-β brain balance and the putative role of PPARs.

    PubMed

    Zolezzi, Juan M; Bastías-Candia, Sussy; Santos, Manuel J; Inestrosa, Nibaldo C

    2014-01-01

    Alzheimer's disease (AD) is the most common form of age-related dementia. With the expected aging of the human population, the estimated morbidity of AD suggests a critical upcoming health problem. Several lines of research are focused on understanding AD pathophysiology, and although the etiology of the disease remains a matter of intense debate, increased brain levels of amyloid-β (Aβ) appear to be a critical event in triggering a wide range of molecular alterations leading to AD. It has become evident in recent years that an altered balance between production and clearance is responsible for the accumulation of brain Aβ. Moreover, Aβ clearance is a complex event that involves more than neurons and microglia. The status of the blood-brain barrier (BBB) and choroid plexus, along with hepatic functionality, should be considered when Aβ balance is addressed. Furthermore, it has been proposed that exposure to sub-toxic concentrations of metals, such as copper, could both directly affect these secondary structures and act as a seeding or nucleation core that facilitates Aβ aggregation. Recently, we have addressed peroxisomal proliferator-activated receptors (PPARs)-related mechanisms, including the direct modulation of mitochondrial dynamics through the PPARγ-coactivator-1α (PGC-1α) axis and the crosstalk with critical aging- and neurodegenerative-related cellular pathways. In the present review, we revise the current knowledge regarding the molecular aspects of Aβ production and clearance and provide a physiological context that gives a more complete view of this issue. Additionally, we consider the different structures involved in AD-altered Aβ brain balance, which could be directly or indirectly affected by a nuclear receptor (NR)/PPAR-related mechanism.

  13. Oral impacts affecting daily performance in a low dental disease Thai population.

    PubMed

    Adulyanon, S; Vourapukjaru, J; Sheiham, A

    1996-12-01

    The aim of the study was to measure incidence of oral impacts on daily performances and their related features in a low dental disease population. 501 people aged 35-44 years in 16 rural villages in Ban Phang district, Khon Kaen, Thailand, were interviewed about oral impacts on nine physical, psychological and social aspects of performance during the past 6 months, and then had an oral examination. The clinical and behavioural data showed that the sample had low caries (DMFT = 2.7) and a low utilization of dental services. 73.6% of all subjects had at least one daily performance affected by an oral impact. The highest incidence of performances affected were Eating (49.7%), Emotional stability (46.5%) and Smiling (26.1%). Eating, Emotional stability and Cleaning teeth performances had a high frequency or long duration of impacts, but a low severity. The low frequency performances; Physical activities, Major role activity and Sleeping were rated as high severity. Pain and discomfort were mainly perceived as the causes of impacts (40.1%) for almost every performance except Smiling. Toothache was the major causal oral condition (32.7%) of almost all aspects of performance. It was concluded that this low caries people have as high an incidence of oral impacts as industrialized, high dental disease populations. Frequency and severity presented the paradoxical effect on different performances and should both be taken into account for overall estimation of impacts.

  14. N dynamics of Inner Mongolia typical steppe as affected by grazing

    NASA Astrophysics Data System (ADS)

    Giese, M.; Gao, Y. Z.; Brueck, H.; Butterbach-Bahl, K.

    2012-04-01

    For large areas of Inner Mongolian semi-arid grasslands, as for many regions of the Eurasian steppe belt, substantial land degradation was reported as a consequence of excessive overgrazing during the last decades. Nitrogen is considered as a key element for ecosystem functions and therefore, a comprehensive analysis of the system's N balance and cycle as affected by land-use change is of fundamental importance to maintain, improve or restore ecosystem services such as forage production, carbon sequestration and diversity conservation. In this comprehensive case study of a Chinese typical steppe, we present an in-depth analysis of N dynamics including the balance of N gains and losses, and N cycling. N pools and fluxes were simultaneously quantified on three grassland sites of contrasting grazing intensity. Our N balances indicated the ungrazed site as N sink with annual net N input of up to 3 g N m-2, mainly due to N input by dust deposition, whereas the heavily grazed site must be considered as N source with net losses of up to 1.7 g m-2. Mayor N losses occurred via dust emissions and excrement export from grazing sites, the latter as a consequence of the common practice of keeping sheep in paddocks overnight. Compared to these fluxes, gaseous N losses, export of animal products (live weight and wool) and biological N2 fixation were of minor relevance. Heavy grazing reduced pool sizes of both topsoil organic N, and above- and belowground biomass N. Furthermore, grazing reduced N fluxes with regard to N uptake, decomposition, gross microbial N turnover, and immobilization. Most N-related processes were more intensive in seasons of higher water availability indicating complex interactions between land-use intensity and climate variability. The projected increase of annual atmospheric N wet deposition and changes in rainfall pattern will likely affect the N sink-source pathways and N flux dynamics, indicating high potential impact of future N enrichment and climate

  15. Meal size and frequency affect neuronal plasticity and vulnerability to disease: cellular and molecular mechanisms.

    PubMed

    Mattson, Mark P; Duan, Wenzhen; Guo, Zhihong

    2003-02-01

    Although all cells in the body require energy to survive and function properly, excessive calorie intake over long time periods can compromise cell function and promote disorders such as cardiovascular disease, type-2 diabetes and cancers. Accordingly, dietary restriction (DR; either caloric restriction or intermittent fasting, with maintained vitamin and mineral intake) can extend lifespan and can increase disease resistance. Recent studies have shown that DR can have profound effects on brain function and vulnerability to injury and disease. DR can protect neurons against degeneration in animal models of Alzheimer's, Parkinson's and Huntington's diseases and stroke. Moreover, DR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which may increase the ability of the brain to resist aging and restore function following injury. Interestingly, increasing the time interval between meals can have beneficial effects on the brain and overall health of mice that are independent of cumulative calorie intake. The beneficial effects of DR, particularly those of intermittent fasting, appear to be the result of a cellular stress response that stimulates the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors such as brain-derived neurotrophic factor (BDNF), protein chaperones such as heat-shock proteins, and mitochondrial uncoupling proteins. Some beneficial effects of DR can be achieved by administering hormones that suppress appetite (leptin and ciliary neurotrophic factor) or by supplementing the diet with 2-deoxy-d-glucose, which may act as a calorie restriction mimetic. The profound influences of the quantity and timing of food intake on neuronal function and vulnerability to disease have revealed novel molecular and cellular mechanisms whereby diet affects the nervous system, and are leading to novel preventative and

  16. Reduced short term adaptation to robot generated dynamic environment in children affected by Cerebral Palsy

    PubMed Central

    2011-01-01

    Background It is known that healthy adults can quickly adapt to a novel dynamic environment, generated by a robotic manipulandum as a structured disturbing force field. We suggest that it may be of clinical interest to evaluate to which extent this kind of motor learning capability is impaired in children affected by cerebal palsy. Methods We adapted the protocol already used with adults, which employs a velocity dependant viscous field, and compared the performance of a group of subjects affected by Cerebral Palsy (CP group, 7 subjects) with a Control group of unimpaired age-matched children. The protocol included a familiarization phase (FA), during which no force was applied, a force field adaptation phase (CF), and a wash-out phase (WO) in which the field was removed. During the CF phase the field was shut down in a number of randomly selected "catch" trials, which were used in order to evaluate the "learning index" for each single subject and the two groups. Lateral deviation, speed and acceleration peaks and average speed were evaluated for each trajectory; a directional analysis was performed in order to inspect the role of the limb's inertial anisotropy in the different experimental phases. Results During the FA phase the movements of the CP subjects were more curved, displaying greater and variable directional error; over the course of the CF phase both groups showed a decreasing trend in the lateral error and an after-effect at the beginning of the wash-out, but the CP group had a non significant adaptation rate and a lower learning index, suggesting that CP subjects have reduced ability to learn to compensate external force. Moreover, a directional analysis of trajectories confirms that the control group is able to better predict the force field by tuning the kinematic features of the movements along different directions in order to account for the inertial anisotropy of arm. Conclusions Spatial abnormalities in children affected by cerebral palsy may be

  17. Butyrylcholinesterase K and apolipoprotein ε4 affect cortical thickness and neuropsychiatric symptoms in Alzheimer's disease.

    PubMed

    Yoo, Hye B; Lee, Hae W; Shin, Sue; Park, Sun-Won; Choi, Jung S; Jung, Hee Y; Cha, Jungho; Lee, Jong-Min; Lee, Jun-Young

    2014-02-01

    Two major genotypes are known to affect the development and progression of Alzheimer's disease (AD) and its response to cholinesterase inhibitors: the apolipoprotein E (ApoE) and butyrylcholinesterase genes (BChE). This study analyzed the effects of the BChE and ApoE genotypes on the cortical thickness of patients with AD and examined how these genotypes affect the neuropsychiatric symptoms of AD. AD-drug-naïve patients who met the probable AD criteria proposed by the National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association were recruited. Of 96 patients with AD, 65 were eligible for cortical thickness analysis. 3D T1-weighted images were acquired, and the cortical regions were segmented using the constrained Laplacian-based automated segmentation with proximities (CLASP) algorithm. Neuropsychiatric symptoms were measured by Neuropsychiatric Inventory (NPI) scores. BChE wild-type carriers (BChE-W) showed more thinning in the left dorsolateral prefrontal cortex, including the lateral premotor regions and anterior cingulate cortex, than did BChE-K variant carriers (BChE-K). ApoE-ε4 carriers had a thinner left medial prefrontal cortex, left superior frontal cortex, and left posterior cingulate cortex than did ApoE-ε4 non-carriers. Statistical analyses revealed that BChE-K carriers showed significantly less severe aberrant motor behavioral symptoms and that ε4 non-carriers showed less severe anxiety and indifference symptoms. The current findings show that, similar to ApoE-ε4 non-carriers, BChE-K carriers are protected from the pathological detriments of AD that affect frontal cortical thickness and neuropsychiatric symptoms. This study visually demonstrated the effects of the BChE-K and ApoE genotypes on the structural degeneration and complex aspects of the symptoms of AD.

  18. Social-adaptive and psychological functioning of patients affected by Fabry disease.

    PubMed

    Laney, Dawn Alyssia; Gruskin, Daniel J; Fernhoff, Paul M; Cubells, Joseph F; Ousley, Opal Y; Hipp, Heather; Mehta, Ami J

    2010-12-01

    Fabry disease (FD) is an X-linked lysosomal storage disorder caused by the deficiency of alpha-galactosidase A. In addition to the debilitating physical symptoms of FD, there are also under-recognized and poorly characterized psychiatric features. As a first step toward characterizing psychiatric features of FD, we administered the Achenbach adult self report questionnaire to 30 FD patients and the Achenbach adult behavior checklist questionnaire to 28 partners/parents/friends of FD patients. Data from at least one of the questionnaires were available on 33 subjects. Analysis focused on social-adaptive functioning in various aspects of daily life and on criteria related to the Diagnostic and statistical manual of mental disorders IV (DSM-IV). Adaptive functioning scale values, which primarily measure social and relationship functioning and occupational success, showed that eight FD patients (six female and two male) had mean adaptive functioning deficits as compared to population norms. Greater rates of depression (P < 0.01), anxiety (P = 0.05), depression and anxiety (P = 0.03), antisocial personality (P < 0.001), attention-deficit/hyperactivity (AD/H; P < 0.01), hyperactivity-impulsivity (P < 0.01), and aggressive behavior (P = 0.03) were associated with poorer adaptive functioning. Decreased social-adaptive functioning in this study was not statistically significantly associated to disease severity, pain, or level of vitality. This study shows for the first time that FD patients, particularly women, are affected by decreased social-adaptive functioning. Comprehensive treatment plans for FD should consider assessments and interventions to evaluate and improve social, occupational, and psychological functioning. Attention to the behavioral aspects of FD could lead to improved treatment outcome and improved quality of life. Individuals affected by Fabry disease exhibited social-adaptive functioning deficits that were significantly correlated with anxiety

  19. The Use of Kosher Phenotyping for Mapping QTL Affecting Susceptibility to Bovine Respiratory Disease

    PubMed Central

    Eitam, Harel; Yishay, Moran; Schiavini, Fausta; Soller, Morris; Bagnato, Alessandro; Shabtay, Ariel

    2016-01-01

    Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle, caused by multiple pathogens that become more virulent in response to stress. As clinical signs often go undetected and various preventive strategies failed, identification of genes affecting BRD is essential for selection for resistance. Selective DNA pooling (SDP) was applied in a genome wide association study (GWAS) to map BRD QTLs in Israeli Holstein male calves. Kosher scoring of lung adhesions was used to allocate 122 and 62 animals to High (Glatt Kosher) and Low (Non-Kosher) resistant groups, respectively. Genotyping was performed using the Illumina BovineHD BeadChip according to the Infinium protocol. Moving average of -logP was used to map QTLs and Log drop was used to define their boundaries (QTLRs). The combined procedure was efficient for high resolution mapping. Nineteen QTLRs distributed over 13 autosomes were found, some overlapping previous studies. The QTLRs contain polymorphic functional and expression candidate genes to affect kosher status, with putative immunological and wound healing activities. Kosher phenotyping was shown to be a reliable means to map QTLs affecting BRD morbidity. PMID:27077383

  20. The Use of Kosher Phenotyping for Mapping QTL Affecting Susceptibility to Bovine Respiratory Disease.

    PubMed

    Lipkin, Ehud; Strillacci, Maria Giuseppina; Eitam, Harel; Yishay, Moran; Schiavini, Fausta; Soller, Morris; Bagnato, Alessandro; Shabtay, Ariel

    2016-01-01

    Bovine respiratory disease (BRD) is the leading cause of morbidity and mortality in feedlot cattle, caused by multiple pathogens that become more virulent in response to stress. As clinical signs often go undetected and various preventive strategies failed, identification of genes affecting BRD is essential for selection for resistance. Selective DNA pooling (SDP) was applied in a genome wide association study (GWAS) to map BRD QTLs in Israeli Holstein male calves. Kosher scoring of lung adhesions was used to allocate 122 and 62 animals to High (Glatt Kosher) and Low (Non-Kosher) resistant groups, respectively. Genotyping was performed using the Illumina BovineHD BeadChip according to the Infinium protocol. Moving average of -logP was used to map QTLs and Log drop was used to define their boundaries (QTLRs). The combined procedure was efficient for high resolution mapping. Nineteen QTLRs distributed over 13 autosomes were found, some overlapping previous studies. The QTLRs contain polymorphic functional and expression candidate genes to affect kosher status, with putative immunological and wound healing activities. Kosher phenotyping was shown to be a reliable means to map QTLs affecting BRD morbidity.

  1. Dynamics of Sylvatic Chagas Disease Vectors in Coastal Ecuador Is Driven by Changes in Land Cover

    PubMed Central

    Grijalva, Mario J.; Terán, David; Dangles, Olivier

    2014-01-01

    Background Chagas disease is a serious public health problem in Latin America where about ten million individuals show Trypanosoma cruzi infection. Despite significant success in controlling domiciliated triatomines, sylvatic populations frequently infest houses after insecticide treatment which hampers long term control prospects in vast geographical areas where vectorial transmission is endemic. As a key issue, the spatio-temporal dynamics of sylvatic populations is likely influenced by landscape yet evidence showing this effect is rare. The aim of this work is to examine the role of land cover changes in sylvatic triatomine ecology, based on an exhaustive field survey of pathogens, vectors, hosts, and microhabitat characteristics' dynamics. Methodology and Principal Findings The study was performed in agricultural landscapes of coastal Ecuador as a study model. Over one year, a spatially-randomized sampling design (490 collection points) allowed quantifying triatomine densities in natural, cultivated and domestic habitats. We also assessed infection of the bugs with trypanosomes, documented their microhabitats and potential hosts, and recorded changes in landscape characteristics. In total we collected 886 individuals, mainly represented by nymphal stages of one triatomine species Rhodnius ecuadoriensis. As main results, we found that 1) sylvatic triatomines had very high T. cruzi infection rates (71%) and 2) densities of T. cruzi-infected sylvatic triatomines varied predictably over time due to changes in land cover and occurrence of associated rodent hosts. Conclusion We propose a framework for identifying the factors affecting the yearly distribution of sylvatic T. cruzi vectors. Beyond providing key basic information for the control of human habitat colonization by sylvatic vector populations, our framework highlights the importance of both environmental and sociological factors in shaping the spatio-temporal population dynamics of triatomines. A better

  2. Predicting Subnational Ebola Virus Disease Epidemic Dynamics from Sociodemographic Indicators

    PubMed Central

    Valeri, Linda; Patterson-Lomba, Oscar; Gurmu, Yared; Ablorh, Akweley; Bobb, Jennifer; Townes, F. William; Harling, Guy

    2016-01-01

    Background The recent Ebola virus disease (EVD) outbreak in West Africa has spread wider than any previous human EVD epidemic. While individual-level risk factors that contribute to the spread of EVD have been studied, the population-level attributes of subnational regions associated with outbreak severity have not yet been considered. Methods To investigate the area-level predictors of EVD dynamics, we integrated time series data on cumulative reported cases of EVD from the World Health Organization and covariate data from the Demographic and Health Surveys. We first estimated the early growth rates of epidemics in each second-level administrative district (ADM2) in Guinea, Sierra Leone and Liberia using exponential, logistic and polynomial growth models. We then evaluated how these growth rates, as well as epidemic size within ADM2s, were ecologically associated with several demographic and socio-economic characteristics of the ADM2, using bivariate correlations and multivariable regression models. Results The polynomial growth model appeared to best fit the ADM2 epidemic curves, displaying the lowest residual standard error. Each outcome was associated with various regional characteristics in bivariate models, however in stepwise multivariable models only mean education levels were consistently associated with a worse local epidemic. Discussion By combining two common methods—estimation of epidemic parameters using mathematical models, and estimation of associations using ecological regression models—we identified some factors predicting rapid and severe EVD epidemics in West African subnational regions. While care should be taken interpreting such results as anything more than correlational, we suggest that our approach of using data sources that were publicly available in advance of the epidemic or in real-time provides an analytic framework that may assist countries in understanding the dynamics of future outbreaks as they occur. PMID:27732614

  3. CSF clearance in Alzheimer Disease measured with dynamic PET.

    PubMed

    de Leon, Mony J; Li, Yi; Okamura, Nobuyuki; Tsui, Wai H; Saint Louis, Les A; Glodzik, Lidia; Osorio, Ricardo S; Fortea, Juan; Butler, Tracy; Pirraglia, Elizabeth; Fossati, Silvia; Kim, Hee-Jin; Carare, Roxana O; Nedergaard, Maiken; Benveniste, Helene; Rusinek, Henry

    2017-03-16

    Evidence supporting the hypothesis that reduced cerebrospinal fluid (CSF) clearance is involved in the pathophysiology of Alzheimer's disease (AD) comes from primarily from rodent models. However, unlike rodents where predominant extra-cranial CSF egress is via olfactory nerves traversing the cribriform plate, human CSF clearance pathways are not well characterized. Using dynamic Positron Emission Tomography (PET) with (18)F-THK5117 a tracer for tau pathology, the ventricular CSF time activity was used as a biomarker for CSF clearance. We tested three hypotheses: 1. Extra-cranial CSF is detected at the superior turbinates; 2. CSF clearance is reduced in AD; and 3. CSF clearance is inversely associated with amyloid deposition. Methods: 15 subjects, 8 with AD and 7 normal control volunteers were examined with (18)F-THK5117. 10 subjects additionally received (11)C-PiB PET scans and 8 were PiB positive. Ventricular time activity curves (TAC) of (18)F-THK5117 were used to identify highly correlated TAC from extra-cranial voxels. Results: For all subjects, the greatest density of CSF positive extra-cranial voxels was in the nasal turbinates. Tracer concentration analyses validated the superior nasal turbinate CSF signal intensity. AD patients showed ventricular tracer clearance reduced by 23% and 66% fewer superior turbinate CSF egress sites. Ventricular CSF clearance was inversely associated with amyloid deposition. Conclusion: The human nasal turbinate is part of the CSF clearance system. Lateral ventricle and superior nasal turbinates CSF clearance abnormalities are found in AD. Ventricular CSF clearance reductions are associated with increased brain amyloid depositions. These data suggest that PET measured CSF clearance is a biomarker of potential interest in AD and other neurodegenerative diseases.

  4. Modeling the Dynamic Transmission of Dengue Fever: Investigating Disease Persistence

    PubMed Central

    de Castro Medeiros, Líliam César; Castilho, César Augusto Rodrigues; Braga, Cynthia; de Souza, Wayner Vieira; Regis, Leda; Monteiro, Antonio Miguel Vieira

    2011-01-01

    Background Dengue is a disease of great complexity, due to interactions between humans, mosquitoes and various virus serotypes as well as efficient vector survival strategies. Thus, understanding the factors influencing the persistence of the disease has been a challenge for scientists and policy makers. The aim of this study is to investigate the influence of various factors related to humans and vectors in the maintenance of viral transmission during extended periods. Methodology/Principal Findings We developed a stochastic cellular automata model to simulate the spread of dengue fever in a dense community. Each cell can correspond to a built area, and human and mosquito populations are individually monitored during the simulations. Human mobility and renewal, as well as vector infestation, are taken into consideration. To investigate the factors influencing the maintenance of viral circulation, two sets of simulations were performed: (1st) varying human renewal rates and human population sizes and (2nd) varying the house index (fraction of infested buildings) and vector per human ratio. We found that viral transmission is inhibited with the combination of small human populations with low renewal rates. It is also shown that maintenance of viral circulation for extended periods is possible at low values of house index. Based on the results of the model and on a study conducted in the city of Recife, Brazil, which associates vector infestation with Aedes aegytpi egg counts, we question the current methodology used in calculating the house index, based on larval survey. Conclusions/Significance This study contributed to a better understanding of the dynamics of dengue subsistence. Using basic concepts of metapopulations, we concluded that low infestation rates in a few neighborhoods ensure the persistence of dengue in large cities and suggested that better strategies should be implemented to obtain measures of house index values, in order to improve the dengue

  5. Lower temperature during the dark cycle affects disease development on Lygodium microphyllum (Old World climbing fern) by Bipolaris sacchari

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth chamber studies were conducted to examine environmental parameters affecting disease development by the indigenous pathogen Bipolaris sacchari isolate LJB-1L on the invasive weed Lygodium microphyllum (Old World climbing fern). Initial studies examined three different temperature regimes (20...

  6. Population dynamics of dechlorinators and factors affecting the level and products of PCB dechlorination in sediments

    SciTech Connect

    Kim, J.S.; Sokol, R.C.; Liu, X.; Bethoney, C.M.; Rhee, G.Y.

    1996-12-31

    Microbial dechlorination of polychlorinated biphenyls (PCBs) often stops although a significant number of removable chlorines remain. To determine the reason for the cessation, we investigated the limitation of organic carbon, PCB bioavailability, and inhibition by metabolic products. Enrichment with carbon sources did not induce additional chlorination, indicating the plateau was not due to depletion of organic carbon. The bioavailability was not limiting, since a subcritical micelle concentration of the surfactant, which enhanced desorption without inhibiting dechlorinating microorganisms, failed to lower the plateau. Neither was it due to accumulation of metabolites, since no additional dechlorination was detected when plateau sediments were incubated with fresh medium. Similarly, dechlorination was not inhibited in freshly spiked sediment slurries. Dechlorination ended up at the same level with nearly identical congener profiles, regardless of treatment. These results indicate that cessation of dechlorination was due to the accumulation of daughter congeners, which cannot be used as electron acceptors by microbes. To determine whether the decreasing availability affected the microorganisms, we determined the population dynamics of dechlorinators using the most probable number technique. The growth dynamics of the dechlorinators mirrored the time course of dechlorination. It started when the population increased by two orders of magnitude. Once dechlorination stopped the dechlorinating population also began to decrease. When dechlorinators were inoculated into PCB-free sediments, the population decreased over time. The decrease of the population as dechlorination ceased confirms that the diminishing availability of congeners was the reason for the incomplete dechlorination. Recent findings have shown that a second phase of dechlorination of certain congeners can occur after a long lag. 45 refs., 8 figs.

  7. Land use affects the resistance and resilience of carbon dynamics of mountain grassland to extreme drought

    NASA Astrophysics Data System (ADS)

    Ingrisch, Johannes; Karlowsky, Stefan; Hasibeder, Roland; Anadon-Rosell, Alba; Augusti, Angela; Scheld, Sarah; König, Alexander; Gleixner, Gerd; Bahn, Michael

    2015-04-01

    Climatic extremes like droughts are expected to occur more frequently and to be more severe in a future climate and have been shown to strongly affect the carbon (C) cycle. Few studies have so far explored how the management intensity of ecosystems and land-use changes alter C cycle responses to extreme climatic events. In many mountain areas land-use changes have been taking place at a rapid pace and have altered plant species composition and biogeochemical cycles. It is still unknown whether and how abandonment of mountain grasslands affects the resistance and the resilience of carbon dynamics to extreme drought. We carried out an in situ experiment to test the hypothesis that abandonment increases the resistance of grassland C dynamics to extreme drought, but decreases its resilience (i.e. post-drought recovery). In a common garden experiment at a mountain meadow in the Austrian Central Alps we exposed large intact monoliths from the meadow and a nearby abandoned grassland to extreme drought conditions during the main growth period in late spring. We measured above- and belowground productivity and net ecosystem exchange and its components over the course of the drought and during the recovery to assess and quantify their resistance and resilience. Furthermore, we analysed the coupling of the two major ecosystem CO2 fluxes, photosynthesis and soil respiration, as based on 13CO2 pulse labelling campaigns at peak drought and during post-drought recovery using isotope laser spectroscopy. Four weeks of early season drought induced a strong decrease of aboveground biomass at the mountain meadow, whereas no effect was observed for the abandoned grassland. At peak drought gross primary productivity was reduced at both grasslands compared to the respective controls, but with a stronger decrease at the meadow (80%) compared to the abandoned grassland (60%). The same pattern was observed for ecosystem respiration. However, the effect was less pronounced compared to carbon

  8. Soil organic matter dynamics under Beech and Hornbeam as affected by soil biological activity

    NASA Astrophysics Data System (ADS)

    Kooijman, A. M.; Cammeraat, L. H.

    2009-04-01

    Organic matter dynamics are highly affected both the soil fauna as well as the source of organic matter, having important consequences for the spatial heterogeneity of organic matter storage and conversion. We studied oldgrowth mixed deciduous forests in Central-Luxemburg on decalcified dolomitic marl, dominated by high-degradable hornbeam (Carpinus betulus L.) or low-degradable beech (Fagus sylvatica L.). Decomposition was measured both in the laboratory and in the field. Litter decomposition was higher for hornbeam than for beech under laboratory conditions, but especially in the field, which is mainly to be attributed to macro-fauna activity, specifically to earthworms (Lumbricus terrestris and Allolobophora species). We also investigated differences between beech and hornbeam with regard to litter input and habitat conditions. Total litter input was the same, but contribution of beech and hornbeam litter clearly differed between the two species. Also, mass of the ectorganic horizon and soil C:N ratio were significantly higher for beech, which was reflected in clear differences in the development of ectorganic profiles on top of the soil. Under beech a mull-moder was clearly present with a well developed fermentation and litter horizon, whereas under hornbeam all litter is incorporated into the soil, leaving the mineral soil surface bear in late summer (mull-type of horizon). In addition to litter quality, litter decomposition was affected by pH and soil moisture. Both pH and soil moisture were higher under hornbeam than under beech, which may reflect differences in soil development and litter quality effects over longer time scales. Under beech, dense layers of low-degradable litter may prevent erosion, and increase clay eluviation and leaching of base cations, leading to acid and dry conditions, which further decrease litter decay. Under hornbeam, the soil is not protected by a litter layer, and clay eluviation and acidification may be counteracted by erosion

  9. Postprandial lipaemia does not affect resting haemodynamic responses but does influence cardiovascular reactivity to dynamic exercise.

    PubMed

    Rontoyanni, Victoria G; Chowienczyk, Philip J; Sanders, Thomas A B

    2010-09-01

    Postprandial lipaemia impairs endothelial function, possibly by changes in oxidative stress, but whether this affects cardiac output and/or systemic vascular resistance (SVR) at rest and in response to dynamic exercise remains uncertain. The present study set out to investigate the effects of a high-fat meal (HFM) v. a low-fat, high-carbohydrate meal (HCM) on cardiac output and SVR. A HFM (50 g fat) and an isoenergetic HCM (5 g fat) were randomly fed to thirty healthy adults using a crossover design. Cardiac output, heart rate and blood pressure (BP) were measured, and stroke volume and SVR were calculated over a 3 h rest following the meal, during exercise 3 h postprandially and for 45 min post-exercise. Blood samples were collected at fasting, 3 h postprandially and immediately post-exercise. Plasma TAG increased by 63.8 % 3 h following the HFM, and NEFA fell by 94.1% 3 h after the HCM. There was a 9.8% rise in plasma 8-isoprostane-F2alpha concentration following the HFM, and a 6.2% fall following the HCM. Cardiac output increased postprandially, but the difference between meals at rest or exercise was not statistically significant. The HFM resulted in a 3.2 mmHg (95% CI 0.7, 5.7) smaller increase in exercise mean arterial BP compared with the HCM due to a greater fall in exercise SVR. Postprandial lipaemia induced by a HFM does not affect cardiac output and/or SVR at rest, but it blunts the increase in BP during exercise.

  10. Allochthonous subsidy of periodical cicadas affects the dynamics and stability of pond communities.

    PubMed

    Nowlin, Weston H; González, María J; Vanni, Michael J; Stevens, M Henry H; Fields, Matthew W; Valente, Jonathon J

    2007-09-01

    Periodical cicadas emerge from below ground every 13 or 17 years in North American forests, with individual broods representing the synchronous movement of trillions of individuals across geographic regions. Due to predator satiation, most individuals escape predation, die, and become deposited as detritus. Some of this emergent biomass falls into woodland aquatic habitats (small streams and woodland ponds) and serves as a high-quality allochthonous detritus pulse in early summer. We present results of a two-part study in which we (1) quantified deposition of Brood X periodical cicada detritus into woodland ponds and low-order streams in southwestern Ohio, and (2) conducted an outdoor mesocosm experiment in which we examined the effects of deposition of different amounts of cicada detritus on food webs characteristic of forest ponds. In the mesocosm experiment, we manipulated the amount of cicada detritus input to examine if food web dynamics and stability varied with the magnitude of this allochthonous resource subsidy, as predicted by numerous theoretical models. Deposition data indicate that, during years of periodical cicada emergence, cicada carcasses can represent a sizable pulse of allochthonous detritus to forest aquatic ecosystems. In the mesocosm experiment, cicada carcass deposition rapidly affected food webs, leading to substantial increases in nutrients and organism biomass, with the magnitude of increase dependent upon the amount of cicada detritus. Deposition of cicada detritus impacted the stability of organism functional groups and populations by affecting the temporal variability and biomass minima. However, contrary to theory, stability measures were not consistently related to the size of the allochthonous pulse (i.e., the amount of cicada detritus). Our study underscores the need for theory to further explore consequences of pulsed allochthonous subsidies for food web stability.

  11. Soil organic carbon dynamics as affected by topography in southern California hillslopes systems

    NASA Astrophysics Data System (ADS)

    Fissore, C.; Dalzell, B. J.; Berhe, A. A.; Evans, M.; Voegtle, M.; Wu, A. M.

    2015-12-01

    Active topography is a predominant feature of Southern California's landscapes where intense erosion and depositional processes can influence SOC translocation and accumulation and where changes in chemical, physical, and topographic conditions may affect long-term stability of SOC. Considering the large variability in SOC content across areas with active topography, it is necessary to develop landscape-scale stratifications of sampling that capture SOC variability due to erosion and deposition processes at different topographic locations. To achieve this goal, landscape SOC needs to be assessed based on more than just slope position by taking into account specific topographic indices, such as slope class, curvature, and catchment area. In this work, we used a series of analytical approaches, including total and water extractable C fractions, ultraviolet absorbance, infrared spectroscopy and a radio-isotope tracer (137Cs) in combination with GIS and digital terrain attributes analyses to investigate the quality and distribution of SOC along the sloping landscape of Puente Hills Preserve, in Whittier, CA. The complex interaction of terrain attributes on erosion and depositional processes was evident from 137Cs analysis, which allowed us to identify depositional and eroding areas. Our findings indicate that greater SOC accumulation is associated with concave profile and plane curvature, when combined with low slope class. Slope appears to be the terrain attribute that most affects SOC content and slope effects persist at depth. Ultraviolet absorbance of water extractable OC and infrared spectroscopy of SOC allowed the identification of different levels of aromaticity and distribution of SOC moieties that have been correlated to rates of mineralization. Southern California, like other Mediterranean regions around the world, is expected to experience increasingly severe droughts, more intense erosion and more frequent fire perturbation - which can exacerbate erosion

  12. Late-onset Tay-Sachs disease: the spectrum of peripheral neuropathy in 30 affected patients.

    PubMed

    Shapiro, Barbara E; Logigian, Eric L; Kolodny, Edwin H; Pastores, Gregory M

    2008-08-01

    Late-onset Tay-Sachs (LOTS) disease is a chronic, progressive, lysosomal storage disorder caused by a partial deficiency of beta-hexosaminidase A (HEXA) activity. Deficient levels of HEXA result in the intracellular accumulation of GM2-ganglioside, resulting in toxicity to nerve cells. Clinical manifestations primarily involve the central nervous system (CNS) and lower motor neurons, and include ataxia, weakness, spasticity, dysarthria, dysphagia, dystonia, seizures, psychosis, mania, depression, and cognitive decline. The prevalence of peripheral nervous system (PNS) involvement in LOTS has not been well documented, but it has traditionally been thought to be very low. We examined a cohort of 30 patients with LOTS who underwent clinical and electrophysiologic examination, and found evidence of a predominantly axon loss polyneuropathy affecting distal nerve segments in the lower and upper extremities in eight patients (27%).

  13. Susceptibility to Ticks and Lyme Disease Spirochetes Is Not Affected in Mice Coinfected with Nematodes

    PubMed Central

    Maaz, Denny; Rausch, Sebastian; Richter, Dania; Krücken, Jürgen; Kühl, Anja A.; Demeler, Janina; Blümke, Julia; Matuschka, Franz-Rainer; von Samson-Himmelstjerna, Georg

    2016-01-01

    Small rodents serve as reservoir hosts for tick-borne pathogens, such as the spirochetes causing Lyme disease. Whether natural coinfections with other macroparasites alter the success of tick feeding, antitick immunity, and the host's reservoir competence for tick-borne pathogens remains to be determined. In a parasitological survey of wild mice in Berlin, Germany, approximately 40% of Ixodes ricinus-infested animals simultaneously harbored a nematode of the genus Heligmosomoides. We therefore aimed to analyze the immunological impact of the nematode/tick coinfection as well as its effect on the tick-borne pathogen Borrelia afzelii. Hosts experimentally coinfected with Heligmosomoides polygyrus and larval/nymphal I. ricinus ticks developed substantially stronger systemic type 2 T helper cell (Th2) responses, on the basis of the levels of GATA-3 and interleukin-13 expression, than mice infected with a single pathogen. During repeated larval infestations, however, anti-tick Th2 reactivity and an observed partial immunity to tick feeding were unaffected by concurrent nematode infections. Importantly, the strong systemic Th2 immune response in coinfected mice did not affect susceptibility to tick-borne B. afzelii. An observed trend for decreased local and systemic Th1 reactivity against B. afzelii in coinfected mice did not result in a higher spirochete burden, nor did it facilitate bacterial dissemination or induce signs of immunopathology. Hence, this study indicates that strong systemic Th2 responses in nematode/tick-coinfected house mice do not affect the success of tick feeding and the control of the causative agent of Lyme disease. PMID:26883594

  14. Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague

    USGS Publications Warehouse

    Augustine, D.J.; Matchett, M.R.; Toombs, T.P.; Cully, J.F.; Johnson, T.L.; Sidle, John G.

    2008-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are a key component of the disturbance regime in semi-arid grasslands of central North America. Many studies have compared community and ecosystem characteristics on prairie dog colonies to grasslands without prairie dogs, but little is known about landscape-scale patterns of disturbance that prairie dog colony complexes may impose on grasslands over long time periods. We examined spatiotemporal dynamics in two prairie dog colony complexes in southeastern Colorado (Comanche) and northcentral Montana (Phillips County) that have been strongly influenced by plague, and compared them to a complex unaffected by plague in northwestern Nebraska (Oglala). Both plague-affected complexes exhibited substantial spatiotemporal variability in the area occupied during a decade, in contrast to the stability of colonies in the Oglala complex. However, the plague-affected complexes differed in spatial patterns of colony movement. Colonies in the Comanche complex in shortgrass steppe shifted locations over a decade. Only 10% of the area occupied in 1995 was still occupied by prairie dogs in 2006. In 2005 and 2006 respectively, 74 and 83% of the total area of the Comanche complex occurred in locations that were not occupied in 1995, and only 1% of the complex was occupied continuously over a decade. In contrast, prairie dogs in the Phillips County complex in mixed-grass prairie and sagebrush steppe primarily recolonized previously occupied areas after plague-induced colony declines. In Phillips County, 62% of the area occupied in 1993 was also occupied by prairie dogs in 2004, and 12% of the complex was occupied continuously over a decade. Our results indicate that plague accelerates spatiotemporal movement of prairie dog colonies, and have significant implications for landscape-scale effects of prairie dog disturbance on grassland composition and productivity. These findings highlight the need to combine landscape-scale measures of

  15. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics

    PubMed Central

    Brum, Jennifer R; Hurwitz, Bonnie L; Schofield, Oscar; Ducklow, Hugh W; Sullivan, Matthew B

    2016-01-01

    Rapid warming in the highly productive western Antarctic Peninsula (WAP) region of the Southern Ocean has affected multiple trophic levels, yet viral influences on microbial processes and ecosystem function remain understudied in the Southern Ocean. Here we use cultivation-independent quantitative ecological and metagenomic assays, combined with new comparative bioinformatic techniques, to investigate double-stranded DNA viruses during the WAP spring–summer transition. This study demonstrates that (i) temperate viruses dominate this region, switching from lysogeny to lytic replication as bacterial production increases, and (ii) Southern Ocean viral assemblages are genetically distinct from lower-latitude assemblages, primarily driven by this temperate viral dominance. This new information suggests fundamentally different virus–host interactions in polar environments, where intense seasonal changes in bacterial production select for temperate viruses because of increased fitness imparted by the ability to switch replication strategies in response to resource availability. Further, temperate viral dominance may provide mechanisms (for example, bacterial mortality resulting from prophage induction) that help explain observed temporal delays between, and lower ratios of, bacterial and primary production in polar versus lower-latitude marine ecosystems. Together these results suggest that temperate virus–host interactions are critical to predicting changes in microbial dynamics brought on by warming in polar marine systems. PMID:26296067

  16. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics.

    PubMed

    Brum, Jennifer R; Hurwitz, Bonnie L; Schofield, Oscar; Ducklow, Hugh W; Sullivan, Matthew B

    2016-02-01

    Rapid warming in the highly productive western Antarctic Peninsula (WAP) region of the Southern Ocean has affected multiple trophic levels, yet viral influences on microbial processes and ecosystem function remain understudied in the Southern Ocean. Here we use cultivation-independent quantitative ecological and metagenomic assays, combined with new comparative bioinformatic techniques, to investigate double-stranded DNA viruses during the WAP spring-summer transition. This study demonstrates that (i) temperate viruses dominate this region, switching from lysogeny to lytic replication as bacterial production increases, and (ii) Southern Ocean viral assemblages are genetically distinct from lower-latitude assemblages, primarily driven by this temperate viral dominance. This new information suggests fundamentally different virus-host interactions in polar environments, where intense seasonal changes in bacterial production select for temperate viruses because of increased fitness imparted by the ability to switch replication strategies in response to resource availability. Further, temperate viral dominance may provide mechanisms (for example, bacterial mortality resulting from prophage induction) that help explain observed temporal delays between, and lower ratios of, bacterial and primary production in polar versus lower-latitude marine ecosystems. Together these results suggest that temperate virus-host interactions are critical to predicting changes in microbial dynamics brought on by warming in polar marine systems.

  17. A dynamic evolution model of human opinion as affected by advertising

    NASA Astrophysics Data System (ADS)

    Luo, Gui-Xun; Liu, Yun; Zeng, Qing-An; Diao, Su-Meng; Xiong, Fei

    2014-11-01

    We propose a new model to investigate the dynamics of human opinion as affected by advertising, based on the main idea of the CODA model and taking into account two practical factors: one is that the marginal influence of an additional friend will decrease with an increasing number of friends; the other is the decline of memory over time. Simulations show several significant conclusions for both advertising agencies and the general public. A small difference of advertising’s influence on individuals or advertising coverage will result in significantly different advertising effectiveness within a certain interval of value. Compared to the value of advertising’s influence on individuals, the advertising coverage plays a more important role due to the exponential decay of memory. Meanwhile, some of the obtained results are in accordance with people’s daily cognition about advertising. The real key factor in determining the success of advertising is the intensity of exchanging opinions, and people’s external actions always follow their internal opinions. Negative opinions also play an important role.

  18. Rapid and Quantitative Assay of Amyloid-Seeding Activity in Human Brains Affected with Prion Diseases

    PubMed Central

    Takatsuki, Hanae; Satoh, Katsuya; Sano, Kazunori; Fuse, Takayuki; Nakagaki, Takehiro; Mori, Tsuyoshi; Ishibashi, Daisuke; Mihara, Ban; Takao, Masaki; Iwasaki, Yasushi; Yoshida, Mari; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    The infectious agents of the transmissible spongiform encephalopathies are composed of amyloidogenic prion protein, PrPSc. Real-time quaking-induced conversion can amplify very small amounts of PrPSc seeds in tissues/body fluids of patients or animals. Using this in vitro PrP-amyloid amplification assay, we quantitated the seeding activity of affected human brains. End-point assay using serially diluted brain homogenates of sporadic Creutzfeldt–Jakob disease patients demonstrated that 50% seeding dose (SD50) is reached approximately 1010/g brain (values varies 108.79–10.63/g). A genetic case (GSS-P102L) yielded a similar level of seeding activity in an autopsy brain sample. The range of PrPSc concentrations in the samples, determined by dot-blot assay, was 0.6–5.4 μg/g brain; therefore, we estimated that 1 SD50 unit was equivalent to 0.06–0.27 fg of PrPSc. The SD50 values of the affected brains dropped more than three orders of magnitude after autoclaving at 121°C. This new method for quantitation of human prion activity provides a new way to reduce the risk of iatrogenic prion transmission. PMID:26070208

  19. Executive dysfunction affects word list recall performance: Evidence from amyotrophic lateral sclerosis and other neurodegenerative diseases.

    PubMed

    Consonni, Monica; Rossi, Stefania; Cerami, Chiara; Marcone, Alessandra; Iannaccone, Sandro; Francesco Cappa, Stefano; Perani, Daniela

    2017-03-01

    The Rey Auditory Verbal Learning Test (RAVLT) is widely used in clinical practice to evaluate verbal episodic memory. While there is evidence that RAVLT performance can be influenced by executive dysfunction, the way executive disorders affect the serial position curve (SPC) has not been yet explored. To this aim, we analysed immediate and delayed recall performances of 13 non-demented amyotrophic lateral sclerosis (ALS) patients with a specific mild executive dysfunction (ALSci) and compared their performances to those of 48 healthy controls (HC) and 13 cognitively normal patients with ALS. Moreover, to control for the impact of a severe dysexecutive syndrome and a genuine episodic memory deficit on the SPC, we enrolled 15 patients with a diagnosis of behavioural variant of frontotemporal dementia (bvFTD) and 18 patients with probable Alzheimer's disease (AD). Results documented that, compared to cognitively normal subjects, ALSci patients had a selective mid-list impairment for immediate recall scores. The bvFTD group obtained low performances with a selectively increased forgetting rate for terminal items, whereas the AD group showed a disproportionately large memory loss on the primary and middle part of the SPC for immediate recall scores and were severely impaired in the delayed recall trial. These results suggested that subtle executive dysfunctions might influence the recall of mid-list items, possibly reflecting deficiency in control strategies at retrieval of word lists, whereas severer dysexecutive syndrome might also affect the recall of terminal items possibly due to attention deficit or retroactive interference.

  20. Simulating the Effects of Dopamine Imbalance on Cognition: From Positive Affect to Parkinson’s Disease

    PubMed Central

    Hélie, Sébastien; Paul, Erick J.; Ashby, F. Gregory

    2012-01-01

    Cools (2006) suggested that prefrontal dopamine levels are related to cognitive stability whereas striatal dopamine levels are related to cognitive plasticity. With such a wide ranging role, almost all cognitive activities should be affected by dopamine levels in the brain. Not surprisingly, factors influencing brain dopamine levels have been shown to improve/worsen performance in many behavioral experiments. On the one hand, Nadler and her colleagues (2010) showed that positive affect (which is thought to increase cortical dopamine levels) improves a type of categorization that depends on explicit reasoning (rule-based) but not a type that depends on procedural learning (information-integration). On the other hand, Parkinson’s disease (which is known to decrease dopamine levels in both the striatum and cortex) produces proactive interference in the odd-man-out task (Flowers & Robertson, 1985) and renders subjects insensitive to negative feedback during reversal learning (Cools et al., 2006). This article uses the COVIS model of categorization to simulate the effects of different dopamine levels in categorization, reversal learning, and the odd-man-out task. The results show a good match between the simulated and human data, which suggests that the role of dopamine in COVIS can account for several cognitive enhancements and deficits related to dopamine levels in healthy and patient populations. PMID:22402326

  1. Proteomics of juvenile senegal sole (Solea senegalensis) affected by gas bubble disease in hyperoxygenated ponds.

    PubMed

    Salas-Leiton, E; Cánovas-Conesa, B; Zerolo, R; López-Barea, J; Cañavate, J P; Alhama, J

    2009-01-01

    Solea senegalensis is a commercial flat fish traditionally farmed in earth ponds in coastal wetlands that might also become important to more intensive aquaculture. Gas bubble disease (GBD) is a potential risk for outdoor fish farming, particularly in certain periods of the year, related to improper management leading to macroalgae blooms. Physical-chemical conditions inducing hyperoxia, including radiation, temperature, and high levels of dissolved oxygen, have been monitored in fish affected by GBD together with observed symptoms. Exophthalmia, subcutaneous emphysemas, obstruction of gill lamellae, hemorrhages, and anomalous swimming were the main effects of oxygen supersaturation. A proteomic study was carried out for the first time under aquaculture conditions and protein expression changes are described for fish that were subject to hyperoxic conditions. Proteins identified in gill of GBD-affected fish are related to oxidative alteration of cytoskeleton structure/function (beta-tubulin, beta-actin), motility (light myosin chain, alpha-tropomyosin), or regulatory pathways (calmodulin, Raf kinase inhibitor protein), reflecting the central role of gill in oxygen exchange. Hepatic proteins identified are related to protein oxidative damages (beta-globin, FABPs), protection from oxidative stress (DCXR, GNMT), and inflammatory response (C3), in agreement with the predominant metabolic role of liver. Comparison of protein expression patterns and protein identification are suggested as potentially specific hyperoxia biomarkers that would facilitate prevention of GBD outbreaks.

  2. The effect of cognitive status and visuospatial performance on affective theory of mind in Parkinson's disease.

    PubMed

    McKinlay, Audrey; Albicini, Michelle; Kavanagh, Phillip S

    2013-01-01

    It is now well accepted that theory of mind (ToM) functioning is impaired in Parkinson's disease (PD) patients. However, what remain unknown are the functions that underlie this impairment. It has been suggested that cognitive skills may be key in this area of functioning; however, many of the cognitive tests used to assess this have relied on intact visuospatial abilities. This study aimed to examine whether deficits in ToM were generated by cognitive or visuospatial dysfunction and the mediating effect of visuospatial function on ToM performance. Fifty PD patients (31 male, 19 female; mean age = 66.34 years) and 49 healthy controls (16 male, 33 female; mean age = 67.29 years) completed a ToM task (reading the mind in the eyes) and visuospatial task (line orientation). The results revealed that current cognitive status was a significant predictor for performance on the ToM task, and that 54% of the total effect of cognitive status on ToM was mediated by visuospatial abilities. It was concluded that visuospatial functioning plays an important mediating role for the relationship between executive dysfunction and affective ToM deficits in PD patients, and that visuospatial deficits may directly contribute to the presence of affective ToM difficulties seen in individuals with PD.

  3. The temporal dynamics of ambivalence: changes in positive and negative affect in relation to consumption of an "emotionally charged" food.

    PubMed

    Hormes, Julia M; Rozin, Paul

    2011-08-01

    Ambivalence is thought to impact consumption of food, alcohol and drugs, possibly via influences on craving, with cravers often being simultaneously drawn toward and repelled from ingestion. So far, little is known about the temporal dynamics of ambivalence, especially as it varies in relationship to consumption. Participants (n=482, 56.8% female) completed the Positive and Negative Affect Schedule prior to, immediately and 30 min after the opportunity to eat a bar of chocolate. Affective ambivalence was calculated based on the relative strengths of and discrepancy between ratings of positive and negative affect. Ambivalence peaked prior to a decision about consumption and subsequently decreased, whether or not the decision was in favor of or against consuming. Decreasing ambivalence was driven by a drop in positive affect over time; positivity decreased more rapidly in those who consumed chocolate. Findings represent a first step in characterizing the dynamics of ambivalence in interactions with a target stimulus.

  4. Detection of Border disease antigen in tissues of affected sheep and in cell cultures by immunofluorescence.

    PubMed

    Terpstra, C

    1978-11-01

    An account is presented of the distribution of fluorescence in cryostat sections of tissues from eight lambs with Border disease (BD). In young lambs fluorescence was observed in almost every organ, indicating a generalised infection with BD virus. Fluorescence was most prominent in the secretory glands of the alimentary and respiratory tracts, the basal cell layers of the epidermis and mucous membranes, and in the medullary rays of the kidneys. Abomasum, pancreas, kidneys, testicles and thyroid were most consistently affected. Although the number of fluorescing tissues decreased with age, viral antigen could still be detected in two sheep of 22 and 52 weeks old. Border disease viral antigen was demonstrated in cell cultures derived from the brain, kidney and testicle of six out of seven lambs despite the presence of neutralising antibody against bovine virus diarrhoea virus in three of them. The presence of the virus in the skin, the vascular walls and the endocrine system is discussed in relation to the aberrant development of fetal hair follicles, periarteritis and growth retardation respectively.

  5. Microvillus inclusion disease: a genetic defect affecting apical membrane protein traffic in intestinal epithelium.

    PubMed

    Ameen, N A; Salas, P J

    2000-01-01

    The striking similarities between microvillus inclusions (MIs) in enterocytes in microvillus inclusion disease (MID) and vacuolar apical compartment in tissue culture epithelial cells, led us to analyze endoscopic biopsies of duodenal mucosa of a patient after the samples were used for diagnostic procedures. Samples from another patient with an unrelated disease were used as controls. The MID enterocytes showed a decrease in the thickness of the apical F-actin layer, and normal microtubules. The immunofluorescence analysis of the distribution of five apical membrane markers (sucrase isomaltase, alkaline phosphatase, NHE-3 Na+/H+ exchanger, cGMP-dependent protein kinase, and cystic fibrosis trans-membrane conductance regulator), showed low levels of these proteins in their standard localization at the apical membrane as compared with normal duodenal epithelium processed in parallel. Instead, four of these markers were found in a diffuse distribution in the apical cytoplasm, below the terminal web (as indicated by co-localization with F-actin and cytokeratin 19), and in MIs as well. The basolateral protein Na(+)-K+ATPase, in contrast, was normally localized. These results support the hypothesis that MID may represent the first genetic defect affecting apical membrane traffic, possibly in a late step of apical exocytosis.

  6. Dermatoses affecting desmosomes in animals: a mechanistic review of acantholytic blistering skin diseases.

    PubMed

    Olivry, Thierry; Linder, Keith E

    2009-10-01

    Failure of desmosomal adhesion with ensuing keratinocyte separation - a phenomenon called acantholysis - can result from genetic, autoimmune or infectious proteolytic causes. Rare hereditary disorders of desmosomal formation have been identified in animals. Familial acantholysis of Angus calves and hereditary suprabasal acantholytic mechanobullous dermatosis of buffaloes appear to be similar to acantholytic epidermolysis bullosa of human beings. A genetic acantholytic dermatosis resembling human Darier disease has been rarely recognized in dogs. In autoimmune blistering dermatoses, circulating autoantibodies bind to the extracellular segments of desmosomal proteins and induce acantholysis. Autoantibodies against desmoglein-3 are found in canine pemphigus vulgaris and paraneoplastic pemphigus. Autoantibodies against desmoglein-1 have been rarely detected in dogs with pemphigus foliaceus. When circulating autoantibodies target desmogleins-1 and -3, mucocutaneous pemphigus vulgaris develops in dogs. Finally, several infectious agents can release proteases that cleave desmosomal bonds. In superficial pustular dermatophytosis of dogs and horses, Trichophyton hyphae colonize the stratum corneum, and acantholysis presumably develops because of proteases secreted by the dermatophytes. In exudative epidermitis of piglets, Staphylococcus bacteria - usually Staphylococcus hyicus- release exfoliatin toxins that bind to and specifically cleave desmoglein-1. Any of the above mechanisms can result in impairment of desmosomal function with subsequent acantholysis. The end point of adhesion failure is identical among these diseases: there is cleft formation where desmosomes are affected. The similarity of mechanisms explains why clinical and microscopic skin lesions overlap between entities, thus leaving clinicians and dermatopathologists with the conundrum of determining whether the acantholysis is of genetic, autoimmune or infectious origin.

  7. Analysis of optical neural stimulation effects on neural networks affected by neurodegenerative diseases

    NASA Astrophysics Data System (ADS)

    Zverev, M.; Fanjul-Vélez, F.; Salas-García, I.; Ortega-Quijano, N.; Arce-Diego, J. L.

    2016-03-01

    The number of people in risk of developing a neurodegenerative disease increases as the life expectancy grows due to medical advances. Multiple techniques have been developed to improve patient's condition, from pharmacological to invasive electrodes approaches, but no definite cure has yet been discovered. In this work Optical Neural Stimulation (ONS) has been studied. ONS stimulates noninvasively the outer regions of the brain, mainly the neocortex. The relationship between the stimulation parameters and the therapeutic response is not totally clear. In order to find optimal ONS parameters to treat a particular neurodegenerative disease, mathematical modeling is necessary. Neural networks models have been employed to study the neural spiking activity change induced by ONS. Healthy and pathological neocortical networks have been considered to study the required stimulation to restore the normal activity. The network consisted of a group of interconnected neurons, which were assigned 2D spatial coordinates. The optical stimulation spatial profile was assumed to be Gaussian. The stimulation effects were modeled as synaptic current increases in the affected neurons, proportional to the stimulation fluence. Pathological networks were defined as the healthy ones with some neurons being inactivated, which presented no synaptic conductance. Neurons' electrical activity was also studied in the frequency domain, focusing specially on the changes of the spectral bands corresponding to brain waves. The complete model could be used to determine the optimal ONS parameters in order to achieve the specific neural spiking patterns or the required local neural activity increase to treat particular neurodegenerative pathologies.

  8. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease.

    PubMed

    Siciliano, Angela; Turrini, Franco; Bertoldi, Mariarita; Matte, Alessandro; Pantaleo, Antonella; Olivieri, Oliviero; De Franceschi, Lucia

    2010-04-15

    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder related to the production of a defective form of hemoglobin, hemoglobin S (HbS). One of the hallmarks of SCD is the presence of dense, dehydrate highly adhesive sickle red blood cells (RBCs) that result from persistent membrane damage associated with HbS polymerization, abnormal activation of membrane cation transports and generation of distorted and rigid red cells with membrane perturbation and cytoskeleton dysfunction. Although modulation of phosphorylation state of the proteins from membrane and cytoskeleton networks has been proposed to participate in red cell homeostasis, much still remains to be investigated in normal and diseased red cells. Here, we report that tyrosine (Tyr-) phosphoproteome of sickle red cells was different from normal controls and was affected by deoxygenation. We found proteins, p55 and band 4.1, from the junctional complex, differently Tyr-phosphorylated in SCD RBCs compared to normal RBCs under normoxia and modulated by deoxygenation, while band 4.2 was similarly Tyr-phosphorylated in both conditions. In SCD RBCs we identified the phosphopeptides for protein 4.1R located in the protein FERM domain (Tyr-13) and for alpha-spectrin located near or in a linker region (Tyr-422 and Tyr-1498) involving protein areas crucial for their functions in the context of red cell membrane properties, suggesting that Tyr-phosphorylation may be part of the events involved in maintaining membrane mechanical stability in SCD red cells.

  9. Recombination affects accumulation of damaging and disease-associated mutations in human populations.

    PubMed

    Hussin, Julie G; Hodgkinson, Alan; Idaghdour, Youssef; Grenier, Jean-Christophe; Goulet, Jean-Philippe; Gbeha, Elias; Hip-Ki, Elodie; Awadalla, Philip

    2015-04-01

    Many decades of theory have demonstrated that, in non-recombining systems, slightly deleterious mutations accumulate non-reversibly, potentially driving the extinction of many asexual species. Non-recombining chromosomes in sexual organisms are thought to have degenerated in a similar fashion; however, it is not clear the extent to which damaging mutations accumulate along chromosomes with highly variable rates of crossing over. Using high-coverage sequencing data from over 1,400 individuals in the 1000 Genomes and CARTaGENE projects, we show that recombination rate modulates the distribution of putatively deleterious variants across the entire human genome. Exons in regions of low recombination are significantly enriched for deleterious and disease-associated variants, a signature varying in strength across worldwide human populations with different demographic histories. Regions with low recombination rates are enriched for highly conserved genes with essential cellular functions and show an excess of mutations with demonstrated effects on health, a phenomenon likely affecting disease susceptibility in humans.

  10. α-Synuclein and Its A30P Mutant Affect Actin Cytoskeletal Structure and Dynamics

    PubMed Central

    Sousa, Vítor L.; Bellani, Serena; Giannandrea, Maila; Yousuf, Malikmohamed; Valtorta, Flavia; Meldolesi, Jacopo

    2009-01-01

    The function of α-synuclein, a soluble protein abundant in the brain and concentrated at presynaptic terminals, is still undefined. Yet, α-synuclein overexpression and the expression of its A30P mutant are associated with familial Parkinson's disease. Working in cell-free conditions, in two cell lines as well as in primary neurons we demonstrate that α-synuclein and its A30P mutant have different effects on actin polymerization. Wild-type α-synuclein binds actin, slows down its polymerization and accelerates its depolymerization, probably by monomer sequestration; A30P mutant α-synuclein increases the rate of actin polymerization and disrupts the cytoskeleton during reassembly of actin filaments. Consequently, in cells expressing mutant α-synuclein, cytoskeleton-dependent processes, such as cell migration, are inhibited, while exo- and endocytic traffic is altered. In hippocampal neurons from mice carrying a deletion of the α-synuclein gene, electroporation of wild-type α-synuclein increases actin instability during remodeling, with growth of lamellipodia-like structures and apparent cell enlargement, whereas A30P α-synuclein induces discrete actin-rich foci during cytoskeleton reassembly. In conclusion, α-synuclein appears to play a major role in actin cytoskeletal dynamics and various aspects of microfilament function. Actin cytoskeletal disruption induced by the A30P mutant might alter various cellular processes and thereby play a role in the pathogenesis of neurodegeneration. PMID:19553474

  11. Identification and Functional Characterization of GAA Mutations in Colombian Patients Affected by Pompe Disease.

    PubMed

    Niño, Mónica Yasmín; Mateus, Heidi Eliana; Fonseca, Dora Janeth; Kroos, Marian A; Ospina, Sandra Yaneth; Mejía, Juan Fernando; Uribe, Jesús Alfredo; Reuser, Arnold J J; Laissue, Paul

    2013-01-01

    Pompe disease (PD) is a recessive metabolic disorder characterized by acid α-glucosidase (GAA) deficiency, which results in lysosomal accumulation of glycogen in all tissues, especially in skeletal muscles. PD clinical course is mainly determined by the nature of the GAA mutations. Although ~400 distinct GAA sequence variations have been described, the genotype-phenotype correlation is not always evident.In this study, we describe the first clinical and genetic analysis of Colombian PD patients performed in 11 affected individuals. GAA open reading frame sequencing revealed eight distinct mutations related to PD etiology including two novel missense mutations, c.1106 T > C (p.Leu369Pro) and c.2236 T > C (p.Trp746Arg). In vitro functional studies showed that the structural changes conferred by both mutations did not inhibit the synthesis of the 110 kD GAA precursor form but affected the processing and intracellular transport of GAA. In addition, analysis of previously described variants located at this position (p.Trp746Gly, p.Trp746Cys, p.Trp746Ser, p.Trp746X) revealed new insights in the molecular basis of PD. Notably, we found that p.Trp746Cys mutation, which was previously described as a polymorphism as well as a causal mutation, displayed a mild deleterious effect. Interestingly and by chance, our study argues in favor of a remarkable Afro-American and European ancestry of the Colombian population. Taken together, our report provides valuable information on the PD genotype-phenotype correlation, which is expected to facilitate and improve genetic counseling of affected individuals and their families.

  12. Sequential induction of MHC antigens on autochthonous cells of ileum affected by Crohn's disease.

    PubMed Central

    Koretz, K.; Momburg, F.; Otto, H. F.; Möller, P.

    1987-01-01

    Changes were examined in the expression of Class I and II major histocompatibility complex (MHC) antigens by autochthonous cells of the terminal ileum affected by Crohn's disease. The study was based on the analysis of transmural specimens from terminal ileum segments obtained in the course of ileocolectomy for colon cancer and Crohn's disease. Serial sections were immunostained using monoclonal antibodies directed against monomorphic determinants of HLA-A,B,C, DR, DP, DQ, and the invariant chain (Ii) associated with Class II molecules. Compared with the normal state, the only change in Class I antigen expression occurring in Crohn's disease was the induction of HLA-A,B,C antigens in lymphatic endothelium. Changes in Class II antigen expression were more substantial. Enhancement of HLA-DR expression was found in enterocytes; DR induction was observed in glial cells of the visceral nervous plexus and in venular and venous endothelium. HLA-DP and DQ antigens were induced in enterocytes, glial cells, and capillary and venular endothelium, although this induction was restricted to areas of moderate or high inflammatory activity. The tissue distribution of Ii closely resembled that of HLA-DR, although this association was not strict: on the one hand, arterial endothelium contained low amounts of Ii in the absence of DR antigens; on the other hand, glial cells expressed Class II molecules in the absence of Ii. The extent of local enhancement/induction of MHC antigens was positively correlated with the local density of the cellular infiltrate. These data suggest that altered MHC antigen expression by autochthonous structures might be mediated by factors released from the lymphohistiocytic infiltrate, which is itself attracted by an unknown signal. In conjunction with an unknown antigen, the enhanced expression of Class II antigens might trigger an autoaggressive immune response. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:3425689

  13. A Dynamic molecular basis for malfunction in disease mutants of p97/VCP

    PubMed Central

    Schuetz, Anne K; Kay, Lewis E

    2016-01-01

    p97/VCP is an essential, abundant AAA+ ATPase that is conserved throughout eukaryotes, with central functions in diverse processes ranging from protein degradation to DNA damage repair and membrane fusion. p97 has been implicated in the etiology of degenerative diseases and in cancer. Using Nuclear Magnetic Resonance spectroscopy we reveal how disease-causing mutations in p97 deregulate dynamics of the N-terminal domain that binds adaptor proteins involved in controlling p97 function. Our results provide a molecular basis for understanding how malfunction occurs whereby mutations shift the ADP-bound form of the enzyme towards an ATP-like state in a manner that correlates with disease severity. This deregulation interferes with the two-pronged binding of an adaptor that affects p97 function in lysosomal degradation of substrates. Subtle structural changes propagate from mutation sites to regions distal in space, defining allosteric networks that facilitate inter-domain communication, with potential implications for modulation of enzyme activity by drug molecules. DOI: http://dx.doi.org/10.7554/eLife.20143.001 PMID:27828775

  14. Quantification of Diaphragm Mechanics in Pompe Disease Using Dynamic 3D MRI

    PubMed Central

    Mogalle, Katja; Perez-Rovira, Adria; Ciet, Pierluigi; Wens, Stephan C. A.; van Doorn, Pieter A.; Tiddens, Harm A. W. M.; van der Ploeg, Ans T.; de Bruijne, Marleen

    2016-01-01

    Background Diaphragm weakness is the main reason for respiratory dysfunction in patients with Pompe disease, a progressive metabolic myopathy affecting respiratory and limb-girdle muscles. Since respiratory failure is the major cause of death among adult patients, early identification of respiratory muscle involvement is necessary to initiate treatment in time and possibly prevent irreversible damage. In this paper we investigate the suitability of dynamic MR imaging in combination with state-of-the-art image analysis methods to assess respiratory muscle weakness. Methods The proposed methodology relies on image registration and lung surface extraction to quantify lung kinematics during breathing. This allows for the extraction of geometry and motion features of the lung that characterize the independent contribution of the diaphragm and the thoracic muscles to the respiratory cycle. Results Results in 16 3D+t MRI scans (10 Pompe patients and 6 controls) of a slow expiratory maneuver show that kinematic analysis from dynamic 3D images reveals important additional information about diaphragm mechanics and respiratory muscle involvement when compared to conventional pulmonary function tests. Pompe patients with severely reduced pulmonary function showed severe diaphragm weakness presented by minimal motion of the diaphragm. In patients with moderately reduced pulmonary function, cranial displacement of posterior diaphragm parts was reduced and the diaphragm dome was oriented more horizontally at full inspiration compared to healthy controls. Conclusion Dynamic 3D MRI provides data for analyzing the contribution of both diaphragm and thoracic muscles independently. The proposed image analysis method has the potential to detect less severe diaphragm weakness and could thus be used to determine the optimal start of treatment in adult patients with Pompe disease in prospect of increased treatment response. PMID:27391236

  15. Actin dynamics and cofilin-actin rods in Alzheimer disease

    PubMed Central

    Bamburg, James R.; Bernstein, Barbara W.

    2017-01-01

    Cytoskeletal abnormalities and synaptic loss, typical of both familial and sporadic Alzheimer disease (AD), are induced by diverse stresses such as neuroinflammation, oxidative stress, and energetic stress, each of which may be initiated or enhanced by proinflammatory cytokines or amyloid-β (Aβ) peptides. Extracellular Aβ-containing plaques and intracellular phospho-tau-containing neurofibrillary tangles are postmortem pathologies required to confirm AD and have been the focus of most studies. However, AD brain, but not normal brain, also have increased levels of cytoplasmic rod-shaped bundles of filaments composed of ADF/cofilin-actin in a 1:1 complex (rods). Cofilin, the major ADF/cofilin isoform in mammalian neurons, severs actin filaments at low cofilin/actin ratios and stabilizes filaments at high cofilin/actin ratios. It binds cooperatively to ADP-actin subunits in F-actin. Cofilin is activated by dephosphorylation and may be oxidized in stressed neurons to form disulfide-linked dimers, required for bundling cofilin-actin filaments into stable rods. Rods form within neurites causing synaptic dysfunction by sequestering cofilin, disrupting normal actin dynamics, blocking transport, and exacerbating mitochondrial membrane potential loss. Aβ and proinflammatory cytokines induce rods through a cellular prion protein-dependent activation of NADPH oxidase and production of reactive oxygen species. Here we review recent advances in our understanding of cofilin biochemistry, rod formation, and the development of cognitive deficits. We will then discuss rod formation as a molecular pathway for synapse loss that may be common between all three prominent current AD hypotheses, thus making rods an attractive therapeutic target. PMID:26873625

  16. Spectral quality affects disease development of three pathogens on hydroponically grown plants

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  17. Spectral quality affects disease development of three pathogens on hydroponically grown plants.

    PubMed

    Schuerger, A C; Brown, C S

    1997-02-01

    Plants were grown under light-emitting diode (LED) arrays with various spectra to determine the effects of light quality on the development of diseases caused by tomato mosaic virus (ToMV) on pepper (Capsicum annuum L.), powdery mildew [Sphaerotheca fuliginea (Schlectend:Fr.) Pollaci] on cucumber (Cucumis sativus L.), and bacterial wilt (Pseudomonas solanacearum Smith) on tomato (Lycopersicon esculentum Mill.). One LED (660) array supplied 99% red light at 660 nm (25 nm bandwidth at half-peak height) and 1% far-red light between 700 to 800 nm. A second LED (660/735) array supplied 83% red light at 660 nm and 17% far-red light at 735 nm (25 nm bandwidth at half-peak height). A third LED (660/BF) array supplied 98% red light at 660 nm, 1% blue light (BF) between 350 to 550 nm, and 1% far-red light between 700 to 800 nm. Control plants were grown under broad-spectrum metal halide (MH) lamps. Plants were grown at a mean photon flux (300 to 800 nm) of 330 micromoles m-2 s-1 under a 12-h day/night photoperiod. Spectral quality affected each pathosystem differently. In the ToMV/pepper pathosystem, disease symptoms developed slower and were less severe in plants grown under light sources that contained blue and UV-A wavelengths (MH and 660/BF treatments) compared to plants grown under light sources that lacked blue and UV-A wavelengths (660 and 660/735 LED arrays). In contrast, the number of colonies per leaf was highest and the mean colony diameters of S. fuliginea on cucumber plants were largest on leaves grown under the MH lamp (highest amount of blue and UV-A light) and least on leaves grown under the 660 LED array (no blue or UV-A light). The addition of far-red irradiation to the primary light source in the 660/735 LED array increased the colony counts per leaf in the S. fuliginea/cucumber pathosystem compared to the red-only (660) LED array. In the P. solanacearum/tomato pathosystem, disease symptoms were less severe in plants grown under the 660 LED array, but the

  18. Analysis of factors affecting containment with extracted partial enclosures using computational fluid dynamics.

    PubMed

    Batt, Rachel L; Kelsey, Adrian

    2014-03-01

    The Health and Safety Executive's (HSE's) COSHH Essentials (HSE, 2002, COSHH Essentials: easy steps to control chemicals HSG193. 2nd edn. ISBN 0 71762737 3. Available at http://www.coshh-essentials.org.uk. Accessed 30 October 2013) provides guidance on identifying the approaches required to control exposure to chemicals in the workplace. The control strategies proposed in COSHH Essentials are grouped into four control approaches: general ventilation, engineering control, containment, or to seek specialist advice. We report the use of experimental measurements and computational fluid dynamics (CFD) modelling to examine the performance of an engineering control approach and a containment control approach. The engineering control approach simulated was an extracted partial enclosure, based on the COSHH Essentials G200, for which simulations were compared with data from experiments. The containment approach simulated was of drum filling (in an extracted partial enclosure), based on the COSHH Essentials G305. The influence of the following factors on containment was examined: face velocity, size and location of face opening, and movement and ventilation flows. CFD predictions of the engineering control approach agreed well with the majority of the experimental measurements demonstrating confidence in the modelling approach used. The results show that the velocity distribution at the face of the enclosure is not uniform and the location and size of the opening are significant factors affecting the flow field and hence the containment performance. The simulations of drum filling show the effect on containment of the movement of a drum through the face of an enclosure. Analysis of containment performance, using a tracer, showed that containment was affected by the interaction between the ventilation flow direction and drum movement and spacing. Validated CFD simulations are shown to be a useful tool for gaining insight into the flows in control strategies for exposure

  19. Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion

    PubMed Central

    Yang, Seo-Yun; Lee, Jae-Jin; Lee, Jin-Hee; Lee, Kyungeun; Oh, Seung Hoon; Lim, Yu-Mi; Lee, Myung-Shik; Lee, Kong-Joo

    2016-01-01

    Secretagogin (SCGN), a Ca2+-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca2+-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretion in NIT-1 insulinoma cells. To determine whether SCGN influences the first or second phase of insulin secretion, we examined how SCGN affects the kinetics of insulin secretion in NIT-1 cells. We found that silencing SCGN suppressed the second phase of insulin secretion induced by glucose and H2O2, but not the first phase induced by KCl stimulation. Recruitment of insulin granules in the second phase of insulin secretion was significantly impaired by knocking down SCGN in NIT-1 cells. In addition, we found that SCGN interacts with the actin cytoskeleton in the plasma membrane and regulates actin remodelling in a glucose-dependent manner. Since actin dynamics are known to regulate focal adhesion, a critical step in the second phase of insulin secretion, we examined the effect of silencing SCGN on focal adhesion molecules, including FAK (focal adhesion kinase) and paxillin, and the cell survival molecules ERK1/2 (extracellular-signal-regulated kinase 1/2) and Akt. We found that glucose- and H2O2-induced activation of FAK, paxillin, ERK1/2 and Akt was significantly blocked by silencing SCGN. We conclude that SCGN controls glucose-stimulated insulin secretion and thus may be useful in the therapy of Type 2 diabetes. PMID:27095850

  20. Rotational diffusion affects the dynamical self-assembly pathways of patchy particles.

    PubMed

    Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G

    2015-12-15

    Predicting the self-assembly kinetics of particles with anisotropic interactions, such as colloidal patchy particles or proteins with multiple binding sites, is important for the design of novel high-tech materials, as well as for understanding biological systems, e.g., viruses or regulatory networks. Often stochastic in nature, such self-assembly processes are fundamentally governed by rotational and translational diffusion. Whereas the rotational diffusion constant of particles is usually considered to be coupled to the translational diffusion via the Stokes-Einstein relation, in the past decade it has become clear that they can be independently altered by molecular crowding agents or via external fields. Because virus capsids naturally assemble in crowded environments such as the cell cytoplasm but also in aqueous solution in vitro, it is important to investigate how varying the rotational diffusion with respect to transitional diffusion alters the kinetic pathways of self-assembly. Kinetic trapping in malformed or intermediate structures often impedes a direct simulation approach of a kinetic network by dramatically slowing down the relaxation to the designed ground state. However, using recently developed path-sampling techniques, we can sample and analyze the entire self-assembly kinetic network of simple patchy particle systems. For assembly of a designed cluster of patchy particles we find that changing the rotational diffusion does not change the equilibrium constants, but significantly affects the dynamical pathways, and enhances (suppresses) the overall relaxation process and the yield of the target structure, by avoiding (encountering) frustrated states. Besides insight, this finding provides a design principle for improved control of nanoparticle self-assembly.

  1. Rotational diffusion affects the dynamical self-assembly pathways of patchy particles

    PubMed Central

    Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.

    2015-01-01

    Predicting the self-assembly kinetics of particles with anisotropic interactions, such as colloidal patchy particles or proteins with multiple binding sites, is important for the design of novel high-tech materials, as well as for understanding biological systems, e.g., viruses or regulatory networks. Often stochastic in nature, such self-assembly processes are fundamentally governed by rotational and translational diffusion. Whereas the rotational diffusion constant of particles is usually considered to be coupled to the translational diffusion via the Stokes–Einstein relation, in the past decade it has become clear that they can be independently altered by molecular crowding agents or via external fields. Because virus capsids naturally assemble in crowded environments such as the cell cytoplasm but also in aqueous solution in vitro, it is important to investigate how varying the rotational diffusion with respect to transitional diffusion alters the kinetic pathways of self-assembly. Kinetic trapping in malformed or intermediate structures often impedes a direct simulation approach of a kinetic network by dramatically slowing down the relaxation to the designed ground state. However, using recently developed path-sampling techniques, we can sample and analyze the entire self-assembly kinetic network of simple patchy particle systems. For assembly of a designed cluster of patchy particles we find that changing the rotational diffusion does not change the equilibrium constants, but significantly affects the dynamical pathways, and enhances (suppresses) the overall relaxation process and the yield of the target structure, by avoiding (encountering) frustrated states. Besides insight, this finding provides a design principle for improved control of nanoparticle self-assembly. PMID:26621742

  2. How the type of input function affects the dynamic response of conducting polymer actuators

    NASA Astrophysics Data System (ADS)

    Xiang, Xingcan; Alici, Gursel; Mutlu, Rahim; Li, Weihua

    2014-10-01

    There has been a growing interest in smart actuators typified by conducting polymer actuators, especially in their (i) fabrication, modeling and control with minimum external data and (ii) applications in bio-inspired devices, robotics and mechatronics. Their control is a challenging research problem due to the complex and nonlinear properties of these actuators, which cannot be predicted accurately. Based on an input-shaping technique, we propose a new method to improve the conducting polymer actuators’ command-following ability, while minimizing their electric power consumption. We applied four input functions with smooth characteristics to a trilayer conducting polymer actuator to experimentally evaluate its command-following ability under an open-loop control strategy and a simulated feedback control strategy, and, more importantly, to quantify how the type of input function affects the dynamic response of this class of actuators. We have found that the four smooth inputs consume less electrical power than sharp inputs such as a step input with discontinuous higher-order derivatives. We also obtained an improved transient response performance from the smooth inputs, especially under the simulated feedback control strategy, which we have proposed previously [X Xiang, R Mutlu, G Alici, and W Li, 2014 “Control of conducting polymer actuators without physical feedback: simulated feedback control approach with particle swarm optimization’, Journal of Smart Materials and Structure, 23]. The idea of using a smooth input command, which results in lower power consumption and better control performance, can be extended to other smart actuators. Consuming less electrical energy or power will have a direct effect on enhancing the operational life of these actuators.

  3. SPATIAL DYNAMICS OF LAND COVER AND INFECTIOUS DISEASE RISK

    EPA Science Inventory

    Climate changes may allow for vector-transmitted tropical diseases to spread into temperate areas. Areas of low ecological diversity are at higher risk of infectious disease transmission due to decreased zooprophylaxis, the diversion of disease carrying insects from humans to
    ...

  4. The type of dietary fat affects the severity of autoimmune disease in NZB/NZW mice.

    PubMed Central

    Alexander, N. J.; Smythe, N. L.; Jokinen, M. P.

    1987-01-01

    The type of dietary fat dramatically affects the onset of autoimmune disease in lupus-prone female New Zealand Black/New Zealand White F1 (B/W) mice. Disease development was strikingly slowed in mice fed a diet containing quantities of omega-3 fatty acids (fish oil, FO). By 10 months of age, 94% of the FO mice were still living, whereas all the mice fed a saturated fat diet (lard,L) were dead. Those mice fed a corn oil (CO) diet were intermediate with 35% alive at the 10-month time evaluation. Long after the L and CO groups had succumbed to glomerulonephritis, the FO group had negligible proteinuria. Both B and T cell function, particularly antibody production and resultant circulating immune complex (CIC) levels, were modified by the type of dietary fat. FO mice exhibited lower levels of anti-ds-DNA and lower levels of CICs than L or CO mice. B/W antibody response to a T-independent antigen (DNP-dextran) was enhanced at 8 months of age in FO mice, whereas it was suppressed in L mice. T-dependent (sheep red blood cell) responses at that time period were reduced in all the diet groups, a reflection of the reduced numbers of accessory T cells as determined by FACS analysis. The natural killer (NK) response to YAC-1 cells decreased in the L group from 5 to 9 months of age but remained unchanged in the CO and FO groups. Severe glomerulonephritis was the most common histopathologic finding in the L and CO groups. Arteritis was found in the spleens of nearly all the L and CO mice. Arteritis of the heart, colon and intestine, stomach, kidney, and liver were also seen principally in the L mice. In contrast, most FO mice had minimal to mild glomerulonephritis and no or minimal arteritis in the spleen. It is likely omega-3 fatty acids of fish oil reduce immune-complex-induced glomerulonephritis through production of prostaglandin metabolites with attenuated activity and/or through altering cell membrane structure and fluidity, which may, in turn, affect the responsiveness of

  5. Factors Affecting Hemodialysis Adequacy in Cohort of Iranian Patient with End Stage Renal Disease

    PubMed Central

    Shahdadi, Hosein; Balouchi, Abbas; Sepehri, Zahra; Rafiemanesh, Hosein; Magbri, Awad; Keikhaie, Fereshteh; Shahakzehi, Ahmad; Sarjou, Azizullah Arbabi

    2016-01-01

    Background: There are many factors that can affect dialysis adequacy; such as the type of vascular access, filter type, device used, and the dose, and rout of erythropoietin stimulation agents (ESA) used. The aim of this study was investigating factors affecting Hemodialysis adequacy in cohort of Iranian patient with end stage renal disease (ESRD). Methods: This is a cross-sectional study conducted on 133 Hemodialysis patients referred to two dialysis units in Sistan-Baluchistan province in the cities of Zabol and Iranshahr, Iran. We have looked at, (the effects of the type of vascular access, the filter type, the device used, and the dose, route of delivery, and the type of ESA used) on Hemodialysis adequacy. Dialysis adequacy was calculated using kt/v formula, two-part information questionnaire including demographic data which also including access type, filter type, device used for hemodialysis (HD), type of Eprex injection, route of administration, blood groups and hemoglobin response to ESA were utilized. The data was analyzed using the SPSS v16 statistical software. Descriptive statistical methods, Mann-Whitney statistical test, and multiple regressions were used when applicable. Results: The range of calculated dialysis adequacy is 0.28 to 2.39 (units of adequacy of dialysis). 76.7% of patients are being dialyzed via AVF and 23.3% of patients used central venous catheters (CVC). There was no statistical significant difference between dialysis adequacy, vascular access type, device used for HD (Fresenius and B. Braun), and the filter used for HD (p> 0.05). However, a significant difference was observed between the adequacy of dialysis and Eprex injection and patients’ time of dialysis (p <0.05). Conclusion: Subcutaneous ESA (Eprex) injection and dialysis shift (being dialyzed in the morning) can have positive impact on dialysis adequacy. Patients should be educated on the facts that the type of device used for HD and the vascular access used has no

  6. Exposure to Concentrated Ambient Particles Does Not Affect Vascular Function in Patients with Coronary Heart Disease

    PubMed Central

    Mills, Nicholas L.; Robinson, Simon D.; Fokkens, Paul H. B.; Leseman, Daan L. A. C.; Miller, Mark R.; Anderson, David; Freney, Evelyn J.; Heal, Mathew R.; Donovan, Robert J.; Blomberg, Anders; Sandström, Thomas; MacNee, William; Boon, Nicholas A.; Donaldson, Ken; Newby, David E.; Cassee, Flemming R.

    2008-01-01

    Background Exposure to fine particulate air pollution is associated with increased cardiovascular morbidity and mortality. We previously demonstrated that exposure to dilute diesel exhaust causes vascular dysfunction in humans. Objectives We conducted a study to determine whether exposure to ambient particulate matter causes vascular dysfunction. Methods Twelve male patients with stable coronary heart disease and 12 age-matched volunteers were exposed to concentrated ambient fine and ultrafine particles (CAPs) or filtered air for 2 hr using a randomized, double-blind cross-over study design. We measured peripheral vascular vasomotor and fibrinolytic function, and inflammatory variables—including circulating leukocytes, serum C-reactive protein, and exhaled breath 8-isoprostane and nitrotyrosine—6–8 hr after both exposures. Results Particulate concentrations (mean ± SE) in the exposure chamber (190 ± 37 μg/m3) were higher than ambient levels (31 ± 8 μg/m3) and levels in filtered air (0.5 ± 0.4 μg/m3; p < 0.001). Chemical analysis of CAPs identified low levels of elemental carbon. Exhaled breath 8-isoprostane concentrations increased after exposure to CAPs (16.9 ± 8.5 vs. 4.9 ± 1.2 pg/mL, p < 0.05), but markers of systemic inflammation were largely unchanged. Although there was a dose-dependent increase in blood flow and plasma tissue plasminogen activator release (p < 0.001 for all), CAPs exposure had no effect on vascular function in either group. Conclusions Despite achieving marked increases in particulate matter, exposure to CAPs—low in combustion-derived particles—did not affect vasomotor or fibrinolytic function in either middle-aged healthy volunteers or patients with coronary heart disease. These findings contrast with previous exposures to dilute diesel exhaust and highlight the importance of particle composition in determining the vascular effects of particulate matter in humans. PMID:18560524

  7. Identification of weather variables sensitive to dysentery in disease-affected county of China.

    PubMed

    Liu, Jianing; Wu, Xiaoxu; Li, Chenlu; Xu, Bing; Hu, Luojia; Chen, Jin; Dai, Shuang

    2017-01-01

    Climate change mainly refers to long-term change in weather variables, and it has significant impact on sustainability and spread of infectious diseases. Among three leading infectious diseases in China, dysentery is exclusively sensitive to climate change. Previous researches on weather variables and dysentery mainly focus on determining correlation between dysentery incidence and weather variables. However, the contribution of each variable to dysentery incidence has been rarely clarified. Therefore, we chose a typical county in epidemic of dysentery as the study area. Based on data of dysentery incidence, weather variables (monthly mean temperature, precipitation, wind speed, relative humidity, absolute humidity, maximum temperature, and minimum temperature) and lagged analysis, we used principal component analysis (PCA) and classification and regression trees (CART) to examine the relationships between the incidence of dysentery and weather variables. Principal component analysis showed that temperature, precipitation, and humidity played a key role in determining transmission of dysentery. We further selected weather variables including minimum temperature, precipitation, and relative humidity based on results of PCA, and used CART to clarify contributions of these three weather variables to dysentery incidence. We found when minimum temperature was at a high level, the high incidence of dysentery occurred if relative humidity or precipitation was at a high level. We compared our results with other studies on dysentery incidence and meteorological factors in areas both in China and abroad, and good agreement has been achieved. Yet, some differences remain for three reasons: not identifying all key weather variables, climate condition difference caused by local factors, and human factors that also affect dysentery incidence. This study hopes to shed light on potential early warnings for dysentery transmission as climate change occurs, and provide a theoretical

  8. Dynamic Association between Negative Affect and Alcohol Lapses following Alcohol Treatment

    ERIC Educational Resources Information Center

    Witkiewitz, Katie; Villarroel, Nadia Aracelliz

    2009-01-01

    Clinical research has found a strong association between negative affect and returning to alcohol use after a period of abstinence. Yet little is known about the probability of a lapse given a particular level of negative affect or whether there is a reciprocal relationship between negative affect and alcohol use across time. The goal of the…

  9. Clinical value of nutritional status in neurodegenerative diseases: What is its impact and how it affects disease progression and management?

    PubMed

    Tsagalioti, Eftyhia; Trifonos, Christina; Morari, Aggeliki; Vadikolias, Konstantinos; Giaginis, Constantinos

    2016-11-30

    Neurodegenerative diseases constitute a major problem of public health that is associated with an increased risk of mortality and poor quality of life. Malnutrition is considered as a major problem that worsens the prognosis of patients suffering from neurodegenerative diseases. In this aspect, the present review is aimed to critically collect and summarize all the available existing clinical data regarding the clinical impact of nutritional assessment in neurodegenerative diseases, highlighting on the crucial role of nutritional status in disease progression and management. According to the currently available clinical data, the nutritional status of patients seems to play a very important role in the development and progression of neurodegenerative diseases. A correct nutritional evaluation of neurodegenerative disease patients and a right nutrition intervention is essential in monitoring their disease.

  10. Gait kinematics and kinetics are affected more by peripheral arterial disease than age

    PubMed Central

    Myers, Sara A.; Applequist, Bryon C.; Huisinga, Jessie M.; Pipinos, Iraklis I.; Johanning, Jason M.

    2016-01-01

    Peripheral arterial disease (PAD) produces abnormal gait and disproportionately affects older individuals. The current study investigated PAD gait biomechanics in young and older subjects. Sixty-one (31 < 65 years, age: 57.4 ± 5.3 years and 30 ≥ 65 years; age: 72.2 ± 5.4 years) patients with PAD and 52 healthy age matched controls were included. Patients with PAD were tested during pain free walking and compared to matched healthy controls. Joint kinematics and kinetics (torques) were compared using a 2 × 2 ANOVA (Groups: PAD vs. Control, Age: Younger vs. Older). Patients with PAD had significantly increased ankle and decreased hip range of motion during the stance phase as well as decreased ankle dorsiflexor torque compared to controls. Gait changes in older individuals are largely constrained to time-distance parameters. Joint kinematics and kinetics are significantly altered in patients with PAD during pain free ambulation. Symptomatic PAD produces a consistent ambulatory deficit across ages definable by advanced biomechanical analysis. The most important finding of the current study is that gait, in the absence of PAD and other ambulatory comorbidities, does not decline significantly with age based on advanced biomechanical analysis. Therefore, previous studies must be examined in the context of potential PAD patients being present in the population and future ambulatory studies must include PAD as a confounding factor when assessing the gait function of elderly individuals. PMID:27149635

  11. Disease Management: What Is It? Why Is It Necessary? How Will It Affect Me?

    ERIC Educational Resources Information Center

    Seifer, Frederic D.

    2008-01-01

    How does one "manage" a disease? For most patients, it feels like the disease manages them. It effects how a person feels, their energy level, healthcare expenditures, doctor appointments, longevity and, ultimately, the individual's quality of life. However, disease management turns the tables on disease and puts patients and their physicians in…

  12. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc{sub 1} complex

    SciTech Connect

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-04-28

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc{sub 1} bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ∼0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  13. Involvement of endocrine system in a patient affected by glycogen storage disease 1b: speculation on the role of autoimmunity.

    PubMed

    Melis, Daniela; Della Casa, Roberto; Balivo, Francesca; Minopoli, Giorgia; Rossi, Alessandro; Salerno, Mariacarolina; Andria, Generoso; Parenti, Giancarlo

    2014-03-19

    Glycogen storage disease type 1b (GSD1b) is an inherited metabolic defect of glycogenolysis and gluconeogenesis due to mutations of the SLC37A4 gene and to defective transport of glucose-6-phosphate. The clinical presentation of GSD1b is characterized by hepatomegaly, failure to thrive, fasting hypoglycemia, and dyslipidemia. Patients affected by GSD1b also show neutropenia and/or neutrophil dysfunction that cause increased susceptibility to recurrent bacterial infections. GSD1b patients are also at risk for inflammatory bowel disease. Occasional reports suggesting an increased risk of autoimmune disorders in GSD1b patients, have been published. These complications affect the clinical outcome of the patients. Here we describe the occurrence of autoimmune endocrine disorders including thyroiditis and growth hormone deficiency, in a patient affected by GSD1b. This case further supports the association between GSD1b and autoimmune diseases.

  14. Cold winter temperatures condition the egg-hatching dynamics of a grape disease vector

    NASA Astrophysics Data System (ADS)

    Chuche, Julien; Thiéry, Denis

    2009-07-01

    The leafhopper Scaphoideus titanus is the vector of a major phytoplasma grapevine disease, Flavescence dorée. The vector’s distribution is in Eastern and Northern Europe, and its population dynamics varies as a function of vineyard latitude. We tested the hypothesis that hatching dynamics are cued by cold temperatures observed in winter. We exposed eggs from a natural population to simulated “cold” and “mild” winters and varied the exposure time at 5 °C from 0 to 63 days. We show that temperature cooling mainly affected the onset of hatching and is negatively correlated to the cold time exposure. The majority of hatchings occurred more quickly in cold rather than in mild winter simulated conditions, but there was no significant difference between the duration of hatching of eggs whatever the cold time exposure. In agreement with the Northern American origin of the vector, the diapause termination and thus the timing regulation of egg hatching require cold winters.

  15. A digital-signal-processor-based optical tomographic system for dynamic imaging of joint diseases

    NASA Astrophysics Data System (ADS)

    Lasker, Joseph M.

    joint diseases, especially effects of rheumatoid arthritis (RA) in the proximal interphalangeal finger joints. Using a dual-wavelength tomographic imaging system and previously implemented reconstruction scheme, I have performed initial dynamic imaging case studies on healthy volunteers and patients diagnosed with RA. These studies support our hypothesis that differences in the vascular and metabolic reactivity exist between affected and unaffected joints and can be used for diagnostic purposes.

  16. Comparison of cardiovascular response to combined static-dynamic effort, postprandial dynamic effort and dynamic effort alone in patients with chronic ischemic heart disease

    SciTech Connect

    Hung, J.; McKillip, J.; Savin, W.; Magder, S.; Kraus, R.; Houston, N.; Goris, M.; Haskell, W.; DeBusk, R.

    1982-06-01

    The cardiovascular responses to combined static-dynamic effort, postprandial dynamic effort and dynamic effort alone were evaluated by upright bicycle ergometry during equilibrium-gated blood pool scintigraphy in 24 men, mean age 59 +/- 8 years, with chronic ischemic heart disease. Combined static-dynamic effort and the postprandial state elicited a peak cardiovascular response similar to that of dynamic effort alone. Heart rate, intraarterial systolic and diastolic pressures, rate-pressure product and ejection fraction were similar for the three test conditions at the onset of ischemia and at peak effort. The prevalence and extent of exercise-induced ischemic left ventricular dysfunction, ST-segment depression, angina pectoris and ventricular ectopic activity were also similar during the three test conditions. Direct and indirect measurements of systolic and diastolic blood pressure were highly correlated. The onset of ischemic ST-segment depression and angina pectoris correlated as strongly with heart rate alone as with the rate-pressure product during all three test conditions. The cardiovascular response to combined static-dynamic effort and to postprandial dynamic effort becomes more similar to that of dynamic effort alone as dynamic effort reaches a symptom limit. If significant ischemic and arrhythmic abnormalities are absent during symptom-limited dynamic exercise testing, they are unlikely to appear during combined static-dynamic or postprandial dynamic effort.

  17. Dynamic Visualizations: How Attraction, Motivation and Communication Affect Streaming Video Tutorial Implementation

    ERIC Educational Resources Information Center

    Boger, Claire

    2011-01-01

    The rapid advancement in the capabilities of computer technologies has made it easier to design and deploy dynamic visualizations in web-based learning environments; yet, the implementation of these dynamic visuals has been met with mixed results. While many guidelines exist to assist instructional designers in the design and application of…

  18. Self-Management and Quality of Life in Chronic Obstructive Pulmonary Disease (COPD): The Mediating Effects of Positive Affect

    PubMed Central

    Benzo, Roberto P.; Abascal-Bolado, Beatriz; Dulohery, Megan M.

    2015-01-01

    Objective This study aimed to increase our understanding of general self-management (SM) abilities in COPD by determining if SM can predict disease specific quality of life (QoL), by investigating whether specific SM domains are significant in COPD and by exploring the mediating effect of the positive/negative affect in the association between SM and QoL. Methods Cross-sectional study based on 292 patients with COPD. Measures included demographics, lung function, gait speed, health care utilization, positive/negative affect, SM abilities, breathlessness and disease specific QoL. We performed, correlation, multiple regression models and mediation analysis (positive/negative affect being mediator between SM and QoL association). Results After controlling for breathlessness, living alone, marital status, hospitalization history, age and lung function, SM related to QoL (p< 0.0001). Investment in behaviors (hobbies and social relationships) and self-efficacy are SM domains independently related to QoL in COPD. Positivity measured by the positive/negative affect ratio completely mediates the relationship of SM with QoL. Conclusion SM is independently associated with disease specific QoL in COPD after adjustment significant covariates but positive/negative affect ratio completely mediates the relationship of SM with QoL. Practice implications Measuring positive/negative affect and addressing investment behavior and self-efficacy are important in implementing COPD-SM programs. PMID:26632024

  19. Effects of the therapist's nonverbal behavior on participation and affect of individuals with Alzheimer's disease during group music therapy sessions.

    PubMed

    Cevasco, Andrea M

    2010-01-01

    In healthcare settings, medical professionals' nonverbal behavior impacts patients' satisfaction and long-term physical, cognitive, and emotional well-being. The purpose of this research was to determine the effects of a music therapist's nonverbal behavior, affect and proximity, on participation and affect of 38 individuals with Alzheimer's disease and other related dementia (ADRD) during movement-to-music, singing, and instrument playing. Data indicated 62% of the individuals evinced positive affect when the therapist utilized affect and proximity combined, followed by the affect only condition (53%), proximity only condition (30%), and no affect or proximity condition (28%). A Friedman analysis indicated a significant difference in individuals' affect according to treatment conditions, chi(r)2 (3, 4) = 34.05, p = .001. Nonverbal behavior also impacted individuals' accuracy of participation, with participation at 79% for both affect and proximity combined, 75% for affect only, 71% for no affect or proximity, and 70% for proximity only. A significant difference occurred for participation by treatment conditions, F (3, 111) = 4.05, p = .009, eta2 = .10. Clinical implications are discussed.

  20. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer’s Disease Affected Brain Regions

    PubMed Central

    Berretta, Regina; Moscato, Pablo

    2016-01-01

    Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD

  1. Effect of static and dynamic heat pain stimulus profiles on the temporal dynamics and interdependence of pain qualities, intensity, and affect.

    PubMed

    Hashmi, Javeria A; Davis, Karen D

    2008-10-01

    Acute and chronic pains are characterized by a particular constellation of pain qualities, such as burning, aching, stinging, or sharp feelings. However, the temporal pattern of specific pain qualities and their relationship with pain and affect is not well understood. In addition, little is known about how the temperature time course of the stimulus impacts the temporal dynamics of pain qualities and the relationship between pain qualities. Therefore we applied two types of stimuli to the feet of 16 healthy subjects, each calibrated to evoke a similar pain magnitude (50/100): static stimulus held at constant intensity and dynamic stimulus increased in intensity in small steps. Stimulus runs consisted of three 30-s stimuli (either static or dynamic) with an interstimulus interval of 60 s. Continuous on-line ratings of pain, burning, sharp, stinging, cutting, and annoyance were obtained in separate runs, and the evoked responses were characterized by within-stimulus adaptation (early: 0- to 15-s peak vs. late: 25- to 40-s peak) and by their temporal properties (time to onset, peak, and end). The temporal profile of the burning sensation was similar to the pain and annoyance evoked by the static and dynamic stimuli. However, the sharp, stinging and cutting sensations attenuated in response to the static stimuli (P<0.01) but intensified along with pain and affect in response to the dynamic stimuli (P<0.05), whereas there was no attenuation in the evoked profiles of pain (P=0.61), annoyance (P=0.27), or burning quality (P=0.27). These data demonstrate that specific pain qualities with known differences in underlying mechanisms have distinct temporal dynamics that depend on the stimulus intensity dynamics.

  2. Plant Protein and Animal Proteins: Do They Differentially Affect Cardiovascular Disease Risk?12

    PubMed Central

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-01-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. PMID:26567196

  3. CD24 expression does not affect dopamine neuronal survival in a mouse model of Parkinson's disease

    PubMed Central

    Hayat, Shaista; Carnwath, Tom; Garas, Shaady; Sleeman, Jonathan P.; Barker, Roger A.

    2017-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative condition that is characterised by the loss of specific populations of neurons in the brain. The mechanisms underlying this selective cell death are unknown but by using laser capture microdissection, the glycoprotein, CD24 has been identified as a potential marker of the populations of cells that are affected in PD. Using in situ hybridization and immunohistochemistry on sections of mouse brain, we confirmed that CD24 is robustly expressed by many of these subsets of cells. To determine if CD24 may have a functional role in PD, we modelled the dopamine cell loss of PD in Cd24 mutant mice using striatal delivery of the neurotoxin 6-OHDA. We found that Cd24 mutant mice have an anatomically normal dopamine system and that this glycoprotein does not modulate the lesion effects of 6-OHDA delivered into the striatum. We then undertook in situ hybridization studies on sections of human brain and found—as in the mouse brain—that CD24 is expressed by many of the subsets of the cells that are vulnerable in PD, but not those of the midbrain dopamine system. Finally, we sought to determine if CD24 is required for the neuroprotective effect of Glial cell-derived neurotrophic factor (GDNF) on the dopaminergic nigrostriatal pathway. Our results indicate that in the absence of CD24, there is a reduction in the protective effects of GDNF on the dopaminergic fibres in the striatum, but no difference in the survival of the cell bodies in the midbrain. While we found no obvious role for CD24 in the normal development and maintenance of the dopaminergic nigrostriatal system in mice, it may have a role in mediating the neuroprotective aspects of GDNF in this system. PMID:28182766

  4. Does Swimming Exercise Affect Experimental Chronic Kidney Disease in Rats Treated with Gum Acacia?

    PubMed Central

    Ali, Badreldin H.; Al-Salam, Suhail; Al Za'abi, Mohammed; Al Balushi, Khalid A.; Ramkumar, Aishwarya; Waly, Mostafa I.; Yasin, Javid; Adham, Sirin A.; Nemmar, Abderrahim

    2014-01-01

    Different modes of exercise are reported to be beneficial in subjects with chronic kidney disease (CKD). Similar benefits have also been ascribed to the dietary supplement gum acacia (GA). Using several physiological, biochemical, immunological, and histopathological measurements, we assessed the effect of swimming exercise (SE) on adenine –induced CKD, and tested whether SE would influence the salutary action of GA in rats with CKD. Eight groups of rats were used, the first four of which were fed normal chow for 5 weeks, feed mixed with adenine (0.25% w/w) to induce CKD, GA in the drinking water (15% w/v), or were given adenine plus GA, as above. Another four groups were similarly treated, but were subjected to SE during the experimental period, while the first four groups remained sedentary. The pre-SE program lasted for four days (before the start of the experimental treatments), during which the rats were made to swim for 5 to 10 min, and then gradually extended to 20 min per day. Thereafter, the rats in the 5th, 6th, 7th, and 8th groups started to receive their respective treatments, and were subjected to SE three days a week for 45 min each. Adenine induced the typical signs of CKD as confirmed by histopathology, and the other measurements, and GA significantly ameliorated all these signs. SE did not affect the salutary action of GA on renal histology, but it partially improved some of the above biochemical and physiological analytes, suggesting that addition of this mode of exercise to GA supplementation may improve further the benefits of GA supplementation. PMID:25048380

  5. Iron-restricted pair-feeding affects renal damage in rats with chronic kidney disease

    PubMed Central

    Naito, Yoshiro; Senchi, Aya; Sawada, Hisashi; Oboshi, Makiko; Horimatsu, Tetsuo; Okuno, Keisuke; Yasumura, Seiki; Ishihara, Masaharu; Masuyama, Tohru

    2017-01-01

    Background We have previously shown that dietary iron restriction prevents the development of renal damage in a rat model of chronic kidney disease (CKD). However, iron deficiency is associated with appetite loss. In addition, calorie restriction is reported to prevent the development of end-stage renal pathology in CKD rats. Thus, the beneficial effect of iron restriction on renal damage may depend on calorie restriction. Here, we investigate the effect of pair-feeding iron restriction on renal damage in a rat model of CKD. Methods First, to determine the amount of food intake, Sprague-Dawley (SD) rats were randomly given an ad libitum normal diet or an iron-restricted diet, and the food intake was measured. Second, CKD was induced by a 5/6 nephrectomy in SD rats, and CKD rats were given either a pair-feeding normal or iron-restricted diet. Results Food intake was reduced in the iron-restricted diet group compared to the normal diet group of SD rats for 16 weeks (mean food intake; normal diet group and iron-restricted diet group: 25 and 20 g/day, respectively). Based on the initial experiments, CKD rats received either a pair-feeding normal or iron-restricted diet (20 g/day) for 16 weeks. Importantly, pair-feeding iron restriction prevented the development of proteinuria, glomerulosclerosis, and tubulointerstitial damage in CKD rats. Interestingly, pair-feeding iron restriction attenuated renal expression of nuclear mineralocorticoid receptor in CKD rats. Conclusions Pair-feeding iron restriction affected renal damage in a rat model of CKD. PMID:28196143

  6. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk?

    PubMed

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-11-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat.

  7. Levodopa influences striatal activity but does not affect cortical hyper-activity in Parkinson's disease.

    PubMed

    Martinu, K; Degroot, C; Madjar, C; Strafella, A P; Monchi, O

    2012-02-01

    Motor studies of Parkinson's disease (PD) have shown cortical hypo-activity in relation to nigrostriatal dopamine depletion. Cognitive studies also identified increased cortical activity in PD. We have previously suggested that the hypo-activity/hyper-activity patterns observed in PD are related to the striatal contribution. Tasks that recruit the striatum in control participants are associated with cortical hypo-activity in patients with PD, whereas tasks that do not result in cortical hyper-activity. The putamen, a structure affected by the neurodegeneration observed in PD, shows increased activation for externally-triggered (ET) and self-initiated (SI) movements. The first goal of this study was to evaluate the effect of levodopa on the putamen's response to ET and SI movements. Our second goal was to assess the effect of levodopa on the hypo-activity/hyper-activity patterns in cortical areas. Patients with PD on and off levodopa and healthy volunteers performed SI, ET and control finger movements during functional magnetic resonance imaging. Healthy participants displayed significant differences in putamen activity in ET and SI movements. These differences were reduced in patients off medication, with non-task-specific increases in activity after levodopa administration. Furthermore, the ventrolateral prefrontal cortex showed significant increases in activity during SI movements in healthy controls, whereas it was hypo-active in PD. This region showed significantly increased activity during ET movements in patients off medication. Levodopa had no effect on this discrepancy. Our results suggest that dopamine replacement therapy has a non-task-specific effect on motor corticostriatal regions, and support the hypothesis that increases and decreases in cortical activity in PD are related to the mesocortical dopamine pathway imbalance.

  8. Identification of viral and phytoplasmal agents responsible for diseases affecting plants of Gaillardia Foug. in Lithuania

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gaillardia plants exhibiting symptoms characteristic of viral and phytoplasmal diseases were collected at botanical gardens and floriculture farms in Lithuania. Cucumber mosaic virus was isolated from diseased plants exhibiting symptoms characterized stunting, color breaking and malformation of flo...

  9. Influence of vertical and mechanical transmission on the dynamics of dengue disease.

    PubMed

    Esteva, L; Vargas, C

    2000-09-01

    We formulate a non-linear system of differential equations that models the dynamics of transmission of dengue fever. We consider vertical and mechanical transmission in the vector population, and study the effects that they have on the dynamics of the disease. A qualitative analysis as well as some numerical examples are given for the model.

  10. Modeling Transmission Dynamics and Control of Vector-Borne Neglected Tropical Diseases

    PubMed Central

    Luz, Paula M.; Struchiner, Claudio J.; Galvani, Alison P.

    2010-01-01

    Neglected tropical diseases affect more than one billion people worldwide. The populations most impacted by such diseases are typically the most resource-limited. Mathematical modeling of disease transmission and cost-effectiveness analyses can play a central role in maximizing the utility of limited resources for neglected tropical diseases. We review the contributions that mathematical modeling has made to optimizing intervention strategies of vector-borne neglected diseases. We propose directions forward in the modeling of these diseases, including integrating new knowledge of vector and pathogen ecology, incorporating evolutionary responses to interventions, and expanding the scope of sensitivity analysis in order to achieve robust results. PMID:21049062

  11. Pre-treating channel catfish with copper sulfate affects susceptibility to columnaris disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Columnaris disease is one of the most important bacterial diseases of channel catfish, Ictalurus punctatus, commercially grown in the US. This disease can greatly diminish the profitability of aquaculture operations by large-scale mortality events, particularly in the fingerling production phase. ...

  12. Guava diseases in Hawaii and the characterization of Pestalotiopsis spp. affecting guava

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Guava (Psidium guajava L.), one of the most widely grown plants in the tropics, is very susceptible to disease which can decrease its marketability. Leaf and fruit spot diseases commonly occur on guava grown in Hawaii. A disease survey was conducted on more than 50 accessions grown at the USDA/ARS T...

  13. Fractal dynamics of body motion in patients with Parkinson's disease.

    PubMed

    Sekine, Masaki; Akay, Metin; Tamura, Toshiyo; Higashi, Yuji; Fujimoto, Toshiro

    2004-03-01

    In this paper, we assess the complexity (fractal measure) of body motion during walking in patients with Parkinson's disease. The body motion of 11 patients with Parkinson's disease and 10 healthy elderly subjects was recorded using a triaxial accelerometry technique. A triaxial accelerometer was attached to the lumbar region. An assessment of the complexity of body motion was made using a maximum-likelihood-estimator-based fractal analysis method. Our data suggest that the fractal measures of the body motion of patients with Parkinson's disease are higher than those of healthy elderly subjects. These results were statistically different in the X (anteroposterior), Y (lateral) and Z (vertical) directions of body motion between patients with Parkinson's disease and the healthy elderly subjects (p < 0.01 in X and Z directions and p < 0.05 in Y direction). The complexity (fractal measure) of body motion can be useful to assess and monitor the output from the motor system during walking in clinical practice.

  14. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    PubMed

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-03-28

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  15. Previous infection with a mesogenic strain of Newcastle disease virus affects infection with highly pathogenic avian influenza viruses in chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Avian influenza virus (AIV) and Newcastle disease virus (NDV) are two of the most important viruses affecting poultry worldwide, but little is known on the interactions between these two viruses when infecting birds. In a previous study we found that infection of chickens with a mesogenic strain of...

  16. Anger, Anxiety, and Depression as Risk Factors for Cardiovascular Disease: The Problems and Implications of Overlapping Affective Dispositions

    ERIC Educational Resources Information Center

    Sul, Jerry; Bunde, James

    2005-01-01

    Several recent reviews (e.g., L. C. Gallo & K. Matthews, 2003; A. Rozanski, J. A. Blumenthal, & J. Kaplan, 1999; R. Rugulies, 2002) have identified 3 affective dispositions--depression, anxiety, and anger-hostility--as putative risk factors for coronary heart disease. There are, however, mixed and negative results. Following a critical summary of…

  17. Are there any changes in burden and management of communicable diseases in areas affected by Cyclone Nargis?

    PubMed Central

    2011-01-01

    Background This study aims to assess the situation of communicable diseases under national surveillance in the Cyclone Nargis-affected areas in Myanmar (Burma) before and after the incident. Methods Monthly data during 2007, 2008 and 2009 from the routine reporting system for disease surveillance of the Myanmar Ministry of Health (MMOH) were reviewed and compared with weekly reporting from the Early Warning and Rapid Response (EWAR) system. Data from some UN agencies, NGOs and Tri-Partite Core Group (TCG) periodic reviews were also extracted for comparisons with indicators from Sphere and the Inter-Agency Standing Committee. Results Compared to 2007 and 2009, large and atypical increases in diarrheal disease and especially dysentery cases occurred in 2008 following Cyclone Nargis. A seasonal increase in ARI reached levels higher than usual in the months of 2008 post-Nargis. The number of malaria cases post-Nargis also increased, but it was less clear if this reflected normal seasonal patterns or was specifically associated with the disaster event. There was no significant change in the occurrence of other communicable diseases in Nargis-affected areas. Except for a small decrease in mortality for diarrheal diseases and ARI in 2008 in Nargis-affected areas, population-based mortality rates for all other communicable diseases showed no significant change in 2008 in these areas, compared to 2007 and 2009. Tuberculosis control programs reached their targets of 70% case detection and 85% treatment success rates in 2007 and 2008. Vaccination coverage rates for DPT 3rd dose and measles remained at high though measles coverage still did not reach the Sphere target of 95% even by 2009. Sanitary latrine coverage in the Nargis-affected area dropped sharply to 50% in the months of 2008 following the incident but then rose to 72% in 2009. Conclusion While the incidence of diarrhea, dysentery and ARI increased post-Nargis in areas affected by the incident, the incidence rate for

  18. Dynamics of host populations affected by the emerging fungal pathogen Batrachochytrium salamandrivorans

    PubMed Central

    Bozzuto, Claudio; Lötters, Stefan; Steinfartz, Sebastian

    2017-01-01

    Emerging infectious diseases cause extirpation of wildlife populations. We use an epidemiological model to explore the effects of a recently emerged disease caused by the salamander-killing chytrid fungus Batrachochytrium salamandrivorans (Bsal) on host populations, and to evaluate which mitigation measures are most likely to succeed. As individuals do not recover from Bsal, we used a model with the states susceptible, latent and infectious, and parametrized the model using data on host and pathogen taken from the literature and expert opinion. The model suggested that disease outbreaks can occur at very low host densities (one female per hectare). This density is far lower than host densities in the wild. Therefore, all naturally occurring populations are at risk. Bsal can lead to the local extirpation of the host population within a few months. Disease outbreaks are likely to fade out quickly. A spatial variant of the model showed that the pathogen could potentially spread rapidly. As disease mitigation during outbreaks is unlikely to be successful, control efforts should focus on preventing disease emergence and transmission between populations. Thus, this emerging wildlife disease is best controlled through prevention rather than subsequent actions.

  19. Dynamics of a stochastic SIS model with double epidemic diseases driven by Lévy jumps

    NASA Astrophysics Data System (ADS)

    Zhang, Xinhong; Jiang, Daqing; Hayat, Tasawar; Ahmad, Bashir

    2017-04-01

    This paper is to investigate the dynamics of a stochastic SIS epidemic model with saturated incidence rate and double epidemic diseases which make the research more complex. The environment variability in this study is characterized by white noise and jump noise. Sufficient conditions for the extinction and persistence in the mean of two epidemic diseases are obtained. It is shown that the two diseases can coexist under appropriate conditions. Finally, numerical simulations are introduced to illustrate the results developed.

  20. Model complexity affects transient population dynamics following a dispersal event: a case study with pea aphids.

    PubMed

    Tenhumberg, Brigitte; Tyre, Andrew J; Rebarber, Richard

    2009-07-01

    Stage-structured population models predict transient population dynamics if the population deviates from the stable stage distribution. Ecologists' interest in transient dynamics is growing because populations regularly deviate from the stable stage distribution, which can lead to transient dynamics that differ significantly from the stable stage dynamics. Because the structure of a population matrix (i.e., the number of life-history stages) can influence the predicted scale of the deviation, we explored the effect of matrix size on predicted transient dynamics and the resulting amplification of population size. First, we experimentally measured the transition rates between the different life-history stages and the adult fecundity and survival of the aphid, Acythosiphon pisum. Second, we used these data to parameterize models with different numbers of stages. Third, we compared model predictions with empirically measured transient population growth following the introduction of a single adult aphid. We find that the models with the largest number of life-history stages predicted the largest transient population growth rates, but in all models there was a considerable discrepancy between predicted and empirically measured transient peaks and a dramatic underestimation of final population sizes. For instance, the mean population size after 20 days was 2394 aphids compared to the highest predicted population size of 531 aphids; the predicted asymptotic growth rate (lamdamax) was consistent with the experiments. Possible explanations for this discrepancy are discussed.

  1. Principal component analysis of indocyanine green fluorescence dynamics for diagnosis of vascular diseases

    NASA Astrophysics Data System (ADS)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee

    2015-03-01

    Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.

  2. Dynamic Indices of Methamphetamine Dependence and HIV Infection Predict Fluctuations in Affective Distress: A Five-year Longitudinal Analysis

    PubMed Central

    Montoya, Jessica L.; Umlauf, Anya; Abramson, Ian; Badiee, Jayraan; Woods, Steven Paul; Atkinson, J. Hampton; Grant, Igor; Moore, David J.

    2013-01-01

    Background Methamphetamine (METH) use and human immunodeficiency virus (HIV) infection are highly comorbid, and both are associated with increased prevalence of affective distress. Delineating the trajectory of affective distress in the context of METH dependence and HIV infection is important given the implications for everyday functional impairment, adverse health behaviors, and increased risk for adverse health outcomes. Methods We conducted a five-year longitudinal investigation involving 133 METH-dependent (74 HIV seropositive) and 163 non-METH-dependent (90 HIV seropositive) persons to examine both long-standing patterns and transient changes in affective distress. Mixed-effect regression models with random subject-specific slopes and intercepts evaluated the effect of METH dependence, HIV serostatus, and related variables on affective distress, as measured by the Profile of Mood States. Results Transient changes in affective distress were found to be greater among those with a diagnosis of current MDD, briefer durations of abstinence from METH, and higher quantity of METH consumed. Weak associations were observed among static (time-independent predictors) covariates and long-standing patterns in affective distress. Limitations Study lacked data pertaining to the participants’ involvement in METH treatment and relied on respondent-driven sampling. Conclusions Our longitudinal investigation of the trajectory of affective distress indicated that specific and dynamic indices of current METH use were associated with greater transient changes in mood. In the evaluation and treatment of affective distress, recency and quantity of current METH use are important to consider given their association with heightened affective distress and mood instability over time. PMID:24012068

  3. The Catalonian Expert Patient Programme for Chagas Disease: An Approach to Comprehensive Care Involving Affected Individuals.

    PubMed

    Claveria Guiu, Isabel; Caro Mendivelso, Johanna; Ouaarab Essadek, Hakima; González Mestre, Maria Asunción; Albajar-Viñas, Pedro; Gómez I Prat, Jordi

    2017-02-01

    The Catalonian Expert Patient Programme on Chagas disease is a initiative, which is part of the Chronic Disease Programme. It aims to boost responsibility of patients for their own health and to promote self-care. The programme is based on nine sessions conducted by an expert patient. Evaluation was focusing in: habits and lifestyle/self-care, knowledge of disease, perception of health, self-esteem, participant satisfaction, and compliance with medical follow-up visits. Eighteen participants initiated the programme and 15 completed it. The participants were Bolivians. The 66.7 % of them had been diagnosed with chagas disease in Spain. The 100 % mentioned that they would participate in this activity again and would recommend it to family and friends. The knowledge about disease improve after sessions. The method used in the programme could serve as a key strategy in the field of comprehensive care for individuals with this disease.

  4. Delayed system response times affect immediate physiology and the dynamics of subsequent button press behavior.

    PubMed

    Kohrs, Christin; Hrabal, David; Angenstein, Nicole; Brechmann, André

    2014-11-01

    System response time research is an important issue in human-computer interactions. Experience with technical devices and general rules of human-human interactions determine the user's expectation, and any delay in system response time may lead to immediate physiological, emotional, and behavioral consequences. We investigated such effects on a trial-by-trial basis during a human-computer interaction by measuring changes in skin conductance (SC), heart rate (HR), and the dynamics of button press responses. We found an increase in SC and a deceleration of HR for all three delayed system response times (0.5, 1, 2 s). Moreover, the data on button press dynamics was highly informative since subjects repeated a button press with more force in response to delayed system response times. Furthermore, the button press dynamics could distinguish between correct and incorrect decisions and may thus even be used to infer the uncertainty of a user's decision.

  5. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1985-01-01

    Measurement of the gradient of the gravitational acceleration from a satellite platform is likely to provide the next improvement in knowledge of the Earth's gravity field after the upcoming Geopotential Research Mission. Observations from the subsatellite of a tethered satellite system (TSS) would increase sensitivity and resolution due to the low altitude possible. However, the TSS is a dynamically noisy system and would be perturbed by atmospheric drag fluctuations. The dynamic noise is being modeled in order to evaluate the feasibility of TSS gradiometry and to design methods of abating the error caused by this noise. The demonstration flights of the TSS are to provide an opportunity to directly observe the dynamical environment and refine modeling techniques. Random vibration analysis as a technique for modeling the TSS under atmospheric perturbation was studied.

  6. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1984-01-01

    The effects of a tethered satellite system's internal dynamics on the subsatellite were calculated including both overall motions (libration and attitude oscillations) and internal tether oscillations. The SKYHOOK tether simulation program was modified to operate with atmospheric density variations and to output quantities of interest. Techniques and software for analyzing the results were developed including noise spectral analysis. A program was begun for computing a stable configuration of a tether system subject to air drag. These configurations will be of use as initial conditions for SKYHOOK and, through linearized analysis, directly for stability and dynamical studies. A case study in which the subsatellite traverses an atmospheric density enhancement confirmed some theoretical calculations, and pointed out some aspects of the interaction with the tether system dynamics.

  7. Static and Dynamic Facial Cues Differentially Affect the Consistency of Social Evaluations.

    PubMed

    Hehman, Eric; Flake, Jessica K; Freeman, Jonathan B

    2015-08-01

    Individuals are quite sensitive to others' appearance cues when forming social evaluations. Cues such as facial emotional resemblance are based on facial musculature and thus dynamic. Cues such as a face's structure are based on the underlying bone and are thus relatively static. The current research examines the distinction between these types of facial cues by investigating the consistency in social evaluations arising from dynamic versus static cues. Specifically, across four studies using real faces, digitally generated faces, and downstream behavioral decisions, we demonstrate that social evaluations based on dynamic cues, such as intentions, have greater variability across multiple presentations of the same identity than do social evaluations based on static cues, such as ability. Thus, although evaluations of intentions vary considerably across different instances of a target's face, evaluations of ability are relatively fixed. The findings highlight the role of facial cues' consistency in the stability of social evaluations.

  8. Anticipatory Modulation of Digit Placement for Grasp Control Is Affected by Parkinson's Disease

    PubMed Central

    Lukos, Jamie R.; Lee, Dongpyo; Poizner, Howard; Santello, Marco

    2010-01-01

    Background Successful object manipulation relies on the ability to form and retrieve sensorimotor memories of digit forces and positions used in previous object lifts. Past studies of patients affected by Parkinson's disease (PD) have revealed that the basal ganglia play a crucial role in the acquisition and/or retrieval of sensorimotor memories for grasp control. Whereas it is known that PD impairs anticipatory control of digit forces during grasp, learning deficits associated with the planning of digit placement have yet to be explored. This question is motivated by recent work in healthy subjects revealing that anticipatory control of digit placement plays a crucial role for successful manipulation. Methodology/Principal Findings We asked ten PD patients off medication and ten age-matched controls to reach, grasp and lift an object whose center of mass (CM) was on the left, right or center. The only task requirement was to minimize object roll during lift. The CM remained the same across consecutive trials (blocked condition) or was altered from trial to trial (random condition). We hypothesized that impairment of the basal ganglia-thalamo-cortical circuits in PD patients would reduce their ability to anticipate digit placement appropriate to the CM location. Consequently, we predicted that PD patients would exhibit similar digit placement in the blocked vs. random conditions and produce larger peak object rolls than that of control subjects. In the blocked condition, PD patients exhibited significantly weaker modulation of fingertip contact points to CM location and larger object roll than controls (p<0.05 and p<0.01, respectively). Nevertheless, both controls and PD patients minimized object roll more in the blocked than in the random condition (p<0.01). Conclusions/Significance Our findings indicate that, even though PD patients may have a residual ability of anticipatory control of digit contact points and forces, they fail to implement a motor plan with the

  9. Lumbar Facet Joint Motion in Patients with Degenerative Disc Disease at Affected and Adjacent Levels

    PubMed Central

    Li, Weishi; Wang, Shaobai; Xia, Qun; Passias, Peter; Kozanek, Michal; Wood, Kirkham; Li, Guoan

    2013-01-01

    Study Design Controlled laboratory study. Objective To evaluate the effect of lumbar degenerative disc diseases (DDDs) on motion of the facet joints during functional weight-bearing activities. Summary of Background Data It has been suggested that DDD adversely affects the biomechanical behavior of the facet joints. Altered facet joint motion, in turn, has been thought to associate with various types of lumbar spine pathology including facet degeneration, neural impingement, and DDD progression. However, to date, no data have been reported on the motion patterns of the lumbar facet joint in DDD patients. Methods Ten symptomatic patients of DDD at L4–S1 were studied. Each participant underwent magnetic resonance images to obtain three-dimensional models of the lumbar vertebrae (L2–S1) and dual fluoroscopic imaging during three characteristic trunk motions: left-right torsion, left-right bending, and flexion-extension. In vivo positions of the vertebrae were reproduced by matching the three-dimensional models of the vertebrae to their outlines on the fluoroscopic images. The kinematics of the facet joints and the ranges of motion (ROMs) were compared with a group of healthy participants reported in a previous study. Results In facet joints of the DDD patients, there was no predominant axis of rotation and no difference in ROMs was found between the different levels. During left-right torsion, the ROMs were similar between the DDD patients and the healthy participants. During left-right bending, the rotation around mediolateral axis at L4–L5, in the DDD patients, was significantly larger than that of the healthy participants. During flexion-extension, the rotations around anterioposterior axis at L4–L5 and around craniocaudal axis at the adjacent level (L3–L4), in the DDD patients, were also significantly larger, whereas the rotation around mediolateral axis at both L2–L3 and L3–L4 levels in the DDD patients were significantly smaller than those of the

  10. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen

    2015-03-01

    The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.

  11. A Comprehensive Fluid Dynamic-Diffusion Model of Blood Microcirculation with Focus on Sickle Cell Disease

    NASA Astrophysics Data System (ADS)

    Le Floch, Francois; Harris, Wesley L.

    2009-11-01

    A novel methodology has been developed to address sickle cell disease, based on highly descriptive mathematical models for blood flow in the capillaries. Our investigations focus on the coupling between oxygen delivery and red blood cell dynamics, which is crucial to understanding sickle cell crises and is unique to this blood disease. The main part of our work is an extensive study of blood dynamics through simulations of red cells deforming within the capillary vessels, and relies on the use of a large mathematical system of equations describing oxygen transfer, blood plasma dynamics and red cell membrane mechanics. This model is expected to lead to the development of new research strategies for sickle cell disease. Our simulation model could be used not only to assess current researched remedies, but also to spur innovative research initiatives, based on our study of the physical properties coupled in sickle cell disease.

  12. Computational fluid dynamics models and congenital heart diseases.

    PubMed

    Pennati, Giancarlo; Corsini, Chiara; Hsia, Tain-Yen; Migliavacca, Francesco

    2013-02-26

    Mathematical modeling is a powerful tool to investigate hemodynamics of the circulatory system. With improving imaging techniques and detailed clinical investigations, it is now possible to construct patient-specific models of reconstructive surgeries for the treatment of congenital heart diseases. These models can help clinicians to better understand the hemodynamic behavior of different surgical options for a treated patient. This review outlines recent advances in mathematical modeling in congenital heart diseases, the discoveries and limitations these models present, and future directions that are on the horizon.

  13. Somatic and cognitive-affective depressive symptoms among patients with heart disease: differences by sex and age

    PubMed Central

    Dessotte, Carina Aparecida Marosti; Silva, Fernanda Souza; Furuya, Rejane Kiyomi; Ciol, Marcia Aparecida; Hoffman, Jeanne Marie; Dantas, Rosana Aparecida Spadoti

    2015-01-01

    OBJECTIVE: this study investigated the association of somatic and cognitive-affective symptoms with sex and age, among patients hospitalized with heart disease. METHOD: this study was a secondary analysis of two previous observational studies totaling 531 patients with heart disease, hospitalized from 2005 to 2011 in two public hospitals in Ribeirão Preto, state of São Paulo, Brazil. Somatic and cognitive-affective symptoms were assessed using the subscales of the Beck Depression Inventory - I (BDI-I). RESULTS: of 531 participants, 62.7% were male, with a mean age 57.3 years (SD= 13.0) for males and 56.2 years (SD= 12.1) for females. Analyses of variance showed an effect of sex (p<0.001 for somatic and p=0.005 for cognitive-affective symptoms), but no effect of age. Women presented with higher mean values than men in both BDI-I subscales: 7.1 (4.5) vs. 5.4 (4.3) for somatic, and 8.3 (7.9) vs. 6.7 (7.2) for cognitive-affective symptoms. There were no differences by age for somatic (p=0.84) or cognitive-affective symptoms (p=0.84). CONCLUSION: women hospitalized with heart disease had more somatic and cognitive-affective symptoms than men. We found no association of somatic and cognitive-affective symptoms with age. Future research for these patients could reveal whether these differences according to sex continue throughout the rehabilitation process. PMID:26039290

  14. Dynamics of Sleep Stage Transitions in Health and Disease

    NASA Astrophysics Data System (ADS)

    Kishi, Akifumi; Struzik, Zbigniew R.; Natelson, Benjamin H.; Togo, Fumiharu; Yamamoto, Yoshiharu

    2007-07-01

    Sleep dynamics emerges from complex interactions between neuronal populations in many brain regions. Annotated sleep stages from electroencephalography (EEG) recordings could potentially provide a non-invasive way to obtain valuable insights into the mechanisms of these interactions, and ultimately into the very nature of sleep regulation. However, to date, sleep stage analysis has been restricted, only very recently expanding the scope of the traditional descriptive statistics to more dynamical concepts of the duration of and transitions between vigilance states and temporal evaluation of transition probabilities among different stages. Physiological and/or pathological implications of the dynamics of sleep stage transitions have, to date, not been investigated. Here, we study detailed duration and transition statistics among sleep stages in healthy humans and patients with chronic fatigue syndrome, known to be associated with disturbed sleep. We find that the durations of waking and non-REM sleep, in particular deep sleep (Stages III and IV), during the nighttime, follow a power-law probability distribution function, while REM sleep durations follow an exponential function, suggestive of complex underlying mechanisms governing the onset of light sleep. We also find a substantial number of REM to non-REM transitions in humans, while this transition is reported to be virtually non-existent in rats. Interestingly, the probability of this REM to non-REM transition is significantly lower in the patients than in controls, resulting in a significantly greater REM to awake, together with Stage I to awake, transition probability. This might potentially account for the reported poor sleep quality in the patients because the normal continuation of sleep after either the lightest or REM sleep is disrupted. We conclude that the dynamical transition analysis of sleep stages is useful for elucidating yet-to-be-determined human sleep regulation mechanisms with a

  15. Dynamic and Static Exercises Differentially Affect Plasma Cytokine Content in Elite Endurance- and Strength-Trained Athletes and Untrained Volunteers.

    PubMed

    Kapilevich, Leonid V; Zakharova, Anna N; Kabachkova, Anastasia V; Kironenko, Tatyana A; Orlov, Sergei N

    2017-01-01

    Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons.

  16. Dynamic and Static Exercises Differentially Affect Plasma Cytokine Content in Elite Endurance- and Strength-Trained Athletes and Untrained Volunteers

    PubMed Central

    Kapilevich, Leonid V.; Zakharova, Anna N.; Kabachkova, Anastasia V.; Kironenko, Tatyana A.; Orlov, Sergei N.

    2017-01-01

    Extensive exercise increases the plasma content of IL-6, IL-8, IL-15, leukemia inhibitory factor (LIF), and several other cytokines via their augmented transcription in skeletal muscle cells. However, the relative impact of aerobic and resistant training interventions on cytokine production remains poorly defined. In this study, we compared effects of dynamic and static load on cytokine plasma content in elite strength- and endurance-trained athletes vs. healthy untrained volunteers. The plasma cytokine content was measured before, immediately after, and 30 min post-exercise using enzyme-linked immunosorbent assay. Pedaling on a bicycle ergometer increased IL-6 and IL-8 content in the plasma of trained athletes by about 4- and 2-fold, respectively. In contrast to dynamic load, weightlifting had negligible impact on these parameters in strength exercise-trained athletes. Unlike IL-6 and IL-8, dynamic exercise had no impact on IL-15 and LIF, whereas static load increases the content of these cytokines by ~50%. Two-fold increment of IL-8 content seen in athletes subjected to dynamic exercise was absent in untrained individuals, whereas the ~50% increase in IL-15 triggered by static load in the plasma of weightlifting athletes was not registered in the control group. Thus, our results show the distinct impact of static and dynamic exercises on cytokine content in the plasma of trained athletes. They also demonstrate that both types of exercises differentially affect cytokine content in plasma of athletes and untrained persons. PMID:28194116

  17. Understanding disease processes by partitioned dynamic Bayesian networks.

    PubMed

    Bueno, Marcos L P; Hommersom, Arjen; Lucas, Peter J F; Lappenschaar, Martijn; Janzing, Joost G E

    2016-06-01

    For many clinical problems in patients the underlying pathophysiological process changes in the course of time as a result of medical interventions. In model building for such problems, the typical scarcity of data in a clinical setting has been often compensated by utilizing time homogeneous models, such as dynamic Bayesian networks. As a consequence, the specificities of the underlying process are lost in the obtained models. In the current work, we propose the new concept of partitioned dynamic Bayesian networks to capture distribution regime changes, i.e. time non-homogeneity, benefiting from an intuitive and compact representation with the solid theoretical foundation of Bayesian network models. In order to balance specificity and simplicity in real-world scenarios, we propose a heuristic algorithm to search and learn these non-homogeneous models taking into account a preference for less complex models. An extensive set of experiments were ran, in which simulating experiments show that the heuristic algorithm was capable of constructing well-suited solutions, in terms of goodness of fit and statistical distance to the original distributions, in consonance with the underlying processes that generated data, whether it was homogeneous or non-homogeneous. Finally, a study case on psychotic depression was conducted using non-homogeneous models learned by the heuristic, leading to insightful answers for clinically relevant questions concerning the dynamics of this mental disorder.

  18. The developmental dynamics of children's academic performance and mothers' homework-related affect and practices.

    PubMed

    Silinskas, Gintautas; Kiuru, Noona; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik

    2015-04-01

    This study investigated the longitudinal associations between children's academic performance and their mothers' affect, practices, and perceptions of their children in homework situations. The children's (n = 2,261) performance in reading and math was tested in Grade 1 and Grade 4, and the mothers (n = 1,476) filled out questionnaires on their affect, practices, and perceptions while their children were in Grades 2, 3, and 4. The results showed, first, that the more help in homework the mothers reported, the slower was the development of their children's academic performance from Grade 1 to Grade 4. This negative association was true especially if mothers perceived their children not to be able to work autonomously. Second, children's good academic performance in Grade 1 predicted mothers' perception of child's ability to be autonomous and positive affect in homework situations later on, whereas poor performance predicted mothers' negative affect, help, and monitoring. Finally, mothers' negative affect mediated the association between children's poor performance, maternal practices, and perceptions of their children.

  19. [Dynamics of hormonal parameters changes in workers affected by noise nuisance].

    PubMed

    Lizarev, A V

    2008-01-01

    The dynamics of hormonal parameters changes in workers of noise dangerous occupations was studied over 5 year period. It was shown that with extension of length of service the content of hormones in peripheral blood of patients with sensorineural deafness has not changed significantly.

  20. Exogenous Social Identity Cues Differentially Affect the Dynamic Tracking of Individual Target Faces

    ERIC Educational Resources Information Center

    Allen, Roy; Gabbert, Fiona

    2013-01-01

    We report on an experiment to investigate the top-down effect of exogenous social identity cues on a multiple-identity tracking task, a paradigm well suited to investigate the processes of binding identity to spatial locations. Here we simulated an eyewitness event in which dynamic targets, all to be tracked with equal effort, were identified from…

  1. Experimental and analytical determination of characteristics affecting light aircraft landing-gear dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, E. L.; Mcgehee, J. R.; Pappas, M. S.

    1977-01-01

    An experimental and analytical investigation was conducted to determine which characteristics of a light aircraft landing gear influence gear dynamic behavior significantly. The investigation focused particularly on possible modification for load control. Pseudostatic tests were conducted to determine the gear fore-and-aft spring constant, axial friction as a function of drag load, brake pressure-torque characteristics, and tire force-deflection characteristics. To study dynamic tire response, vertical drops were conducted at impact velocities of 1.2, 1.5, and 1.8 m/s onto a level surface; to determine axial-friction effects, a second series of vertical drops were made at 1.5 m/s onto surfaces inclined 5 deg and 10 deg to the horizontal. An average dynamic axial-friction coefficient of 0.15 was obtained by comparing analytical data with inclined surface drop test data. Dynamic strut bending and associated axial friction were found to be severe for the drop tests on the 10 deg surface.

  2. The Role of Self-Efficacy, Goal, and Affect in Dynamic Motivational Self-Regulation

    ERIC Educational Resources Information Center

    Seo, Myeong-gu; Ilies, Remus

    2009-01-01

    In this paper, we examined the within-person relationship between self-efficacy and performance in an Internet-based stock investment simulation in which participants engaged in a series of stock trading activities trying to achieve performance goals in response to dynamic task environments (performance feedback and stock market movements).…

  3. Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance.

    PubMed

    Ely, Brett R; Sollanek, Kurt J; Cheuvront, Samuel N; Lieberman, Harris R; Kenefick, Robert W

    2013-04-01

    Equivocal findings have been reported in the few studies that examined the impact of ambient temperature (T a) and hypohydration on cognition and dynamic balance. The purpose of this study was to determine the impact of acute exposure to a range of ambient temperatures (T(a) 10-40 °C) in euhydration (EUH) and hypohydration (HYP) states on cognition, mood and dynamic balance. Thirty-two men (age 22 ± 4 years, height 1.80 ± 0.05 m, body mass 85.4 ± 10.8 kg) were grouped into four matched cohorts (n = 8), and tested in one of the four T(a) (10, 20, 30, 40 °C) when EUH and HYP (-4 % body mass via exercise-heat exposure). Cognition was assessed using psychomotor vigilance, 4-choice reaction time, matching to sample, and grammatical reasoning. Mood was evaluated by profile of mood states and dynamic postural balance was tested using a Biodex Balance System. Thermal sensation (TS), core (T core) and skin temperature (T(sk)) were obtained throughout testing. Volunteers lost -4.1 ± 0.4 % body mass during HYP. T sk and TS increased with increasing T(a), with no effect of hydration. Cognitive performance was not altered by HYP or thermal stress. Total mood disturbance (TMD), fatigue, confusion, anger, and depression increased during HYP at all T(a). Dynamic balance was unaffected by HYP, but 10 °C exposure impaired balance compared to all other T(a). Despite an increase in TMD during HYP, cognitive function was maintained in all testing environments, demonstrating cognitive resiliency in response to body fluid deficits. Dynamic postural stability at 10 °C appeared to be hampered by low-grade shivering, but was otherwise maintained during HYP and thermal stress.

  4. BDNF and VEGF in the pathogenesis of stress-induced affective diseases: an insight from experimental studies.

    PubMed

    Nowacka, Marta; Obuchowicz, Ewa

    2013-01-01

    Stress is known to play an important role in etiology, development and progression of affective diseases. Especially, chronic stress, by initiating changes in the hypothalamic-pituitary-adrenal axis (HPA), neurotransmission and the immune system, acts as a trigger for affective diseases. It has been reported that the rise in the concentration of pro-inflammatory cytokines and persistent up-regulation of glucocorticoid expression in the brain and periphery increases the excitotoxic effect on CA3 pyramidal neurons in the hippocampus resulting in dendritic atrophy, apoptosis of neurons and possibly inhibition of neurogenesis in adult brain. Stress was observed to disrupt neuroplasticity in the brain, and growing evidence demonstrates its role in the pathomechanism of affective disorders. Experimental studies indicate that a well-known brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) which have recently focused increasing attention of neuroscientists, promote cell survival, positively modulate neuroplasticity and hippocampal neurogenesis. In this paper, we review the alterations in BDNF and VEGF pathways induced by chronic and acute stress, and their relationships with HPA axis activity. Moreover, behavioral effects evoked in rodents by both above-mentioned factors and the effects consequent to their deficit are presented. Biochemical as well as behavioral findings suggest that BDNF and VEGF play an important role as components of cascade of changes in the pathomechanism of stress-induced affective diseases. Further studies on the mechanisms regulating their expression in stress conditions are needed to better understand the significance of trophic hypothesis of stress-induced affective diseases.

  5. Multilevel dynamic systems affecting introduction of HIV/STI prevention innovations among Chinese women in sex work establishments.

    PubMed

    Weeks, Margaret R; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2013-10-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the advantage of using empirically documented contextual factors and processes of change in a real-world and real-time setting that can then be tested in the same and other settings. System dynamics modeling offers great promise for addressing persistent problems like HIV and other sexually transmitted epidemics, particularly in complex rapidly developing countries such as China. We generated a system dynamics model of a multilevel intervention we conducted to promote female condoms for HIV/sexually transmitted infection (STI) prevention among Chinese women in sex work establishments. The model reflects factors and forces affecting the study's intervention, implementation, and effects. To build this conceptual model, we drew on our experiences and findings from this intensive, longitudinal mixed-ethnographic and quantitative four-town comparative case study (2007-2012) of the sex work establishments, the intervention conducted in them, and factors likely to explain variation in process and outcomes in the four towns. Multiple feedback loops in the sex work establishments, women's social networks, and the health organization responsible for implementing HIV/STI interventions in each town and at the town level directly or indirectly influenced the female condom intervention. We present the conceptual system dynamics model and discuss how further testing in this and other settings can inform future community interventions to reduce HIV and STIs.

  6. The role of predation in disease control: a comparison of selective and nonselective removal on prion disease dynamics in deer.

    PubMed

    Wild, Margaret A; Hobbs, N Thompson; Graham, Mark S; Miller, Michael W

    2011-01-01

    Effective measures for controlling chronic wasting disease (CWD), a contagious prion disease of cervids, remain elusive. We review theoretic relationships between predation and host-parasite dynamics and describe a mathematical model to evaluate the potential influence of random removal through harvest or culling and selective predation by wolves (Canis lupus) upon CWD dynamics in deer (Odocoileus spp.) populations. Imposing nonselective mortality representing a 15% annual harvest or cull 51 yr after CWD introduction lowered both deer population size and steady state CWD. Selective (4×) mortality at the same 15% predation rate caused a more modest reduction in deer population size accompanied by a relatively rapid decline in CWD prevalence and elimination of the disease from a closed population. The impacts of selective predation on epidemic dynamics were sensitive to assumptions on parameter estimates; however, within expected ranges, the results of selective predation were consistent and robust. We suggest that as CWD distribution and wolf range overlap in the future, wolf predation may suppress disease emergence or limit prevalence.

  7. Dysautonomia Differentially Influences the Effect of Affective Pain Perception on Quality of Life in Parkinson's Disease Patients.

    PubMed

    Rada, D; Seco, J; Echevarría, E; Tijero, B; Abecia, L C; Gómez-Esteban, J C

    2016-01-01

    Background. Our aim was to evaluate the real effect of dysautonomic symptoms on the influence of affective pain perception on quality of life in PD patients. Methods. An observational cross-sectional study was carried out using 105 Parkinson's disease (PD) patients of the Movement Disorders Unit, Hospital de Cruces (Bilbao, Spain) [men 59 (56.2%), women 46 (43.85%)]. Statistical analysis was made in order to evaluate the possible association of pain with life quality. Results. Quality of life measured by PDQ-39 (Parkinson's Disease Questionnaire for quality of life) was statistically associated with affective dimension of pain (PRIA, affective pain rating index). However, the influence of this dimension on PDQ-39 was different in the specific case of PD patients that experimented a high score (>12) in SCOPA-AUT (Scale for Outcomes in PD-Autonomic scale). Conclusions. These results confirm the effect of affective perception of pain in life quality of PD patients, indicating the critical role of autonomic symptoms in the modulation of the influence of pain on quality of life and showing the possible utility of dysautonomia as clinical prognostic indicator of quality of life in PD patients affected by pain.

  8. Dysautonomia Differentially Influences the Effect of Affective Pain Perception on Quality of Life in Parkinson's Disease Patients

    PubMed Central

    Rada, D.; Seco, J.; Tijero, B.; Abecia, L. C.; Gómez-Esteban, J. C.

    2016-01-01

    Background. Our aim was to evaluate the real effect of dysautonomic symptoms on the influence of affective pain perception on quality of life in PD patients. Methods. An observational cross-sectional study was carried out using 105 Parkinson's disease (PD) patients of the Movement Disorders Unit, Hospital de Cruces (Bilbao, Spain) [men 59 (56.2%), women 46 (43.85%)]. Statistical analysis was made in order to evaluate the possible association of pain with life quality. Results. Quality of life measured by PDQ-39 (Parkinson's Disease Questionnaire for quality of life) was statistically associated with affective dimension of pain (PRIA, affective pain rating index). However, the influence of this dimension on PDQ-39 was different in the specific case of PD patients that experimented a high score (>12) in SCOPA-AUT (Scale for Outcomes in PD-Autonomic scale). Conclusions. These results confirm the effect of affective perception of pain in life quality of PD patients, indicating the critical role of autonomic symptoms in the modulation of the influence of pain on quality of life and showing the possible utility of dysautonomia as clinical prognostic indicator of quality of life in PD patients affected by pain. PMID:27239367

  9. Transmission dynamics of Ebola virus disease and intervention effectiveness in Sierra Leone.

    PubMed

    Fang, Li-Qun; Yang, Yang; Jiang, Jia-Fu; Yao, Hong-Wu; Kargbo, David; Li, Xin-Lou; Jiang, Bao-Gui; Kargbo, Brima; Tong, Yi-Gang; Wang, Ya-Wei; Liu, Kun; Kamara, Abdul; Dafae, Foday; Kanu, Alex; Jiang, Rui-Ruo; Sun, Ye; Sun, Ruo-Xi; Chen, Wan-Jun; Ma, Mai-Juan; Dean, Natalie E; Thomas, Harold; Longini, Ira M; Halloran, M Elizabeth; Cao, Wu-Chun

    2016-04-19

    Sierra Leone is the most severely affected country by an unprecedented outbreak of Ebola virus disease (EVD) in West Africa. Although successfully contained, the transmission dynamics of EVD and the impact of interventions in the country remain unclear. We established a database of confirmed and suspected EVD cases from May 2014 to September 2015 in Sierra Leone and mapped the spatiotemporal distribution of cases at the chiefdom level. A Poisson transmission model revealed that the transmissibility at the chiefdom level, estimated as the average number of secondary infections caused by a patient per week, was reduced by 43% [95% confidence interval (CI): 30%, 52%] after October 2014, when the strategic plan of the United Nations Mission for Emergency Ebola Response was initiated, and by 65% (95% CI: 57%, 71%) after the end of December 2014, when 100% case isolation and safe burials were essentially achieved, both compared with before October 2014. Population density, proximity to Ebola treatment centers, cropland coverage, and atmospheric temperature were associated with EVD transmission. The household secondary attack rate (SAR) was estimated to be 0.059 (95% CI: 0.050, 0.070) for the overall outbreak. The household SAR was reduced by 82%, from 0.093 to 0.017, after the nationwide campaign to achieve 100% case isolation and safe burials had been conducted. This study provides a complete overview of the transmission dynamics of the 2014-2015 EVD outbreak in Sierra Leone at both chiefdom and household levels. The interventions implemented in Sierra Leone seem effective in containing the epidemic, particularly in interrupting household transmission.

  10. The Developmental Dynamics of Children's Academic Performance and Mothers' Homework-Related Affect and Practices

    ERIC Educational Resources Information Center

    Silinskas, Gintautas; Kiuru, Noona; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik

    2015-01-01

    This study investigated the longitudinal associations between children's academic performance and their mothers' affect, practices, and perceptions of their children in homework situations. The children's (n = 2,261) performance in reading and math was tested in Grade 1 and Grade 4, and the mothers (n = 1,476) filled out questionnaires on their…

  11. Exploring Dynamical Assessments of Affect, Behavior, and Cognition and Math State Test Achievement

    ERIC Educational Resources Information Center

    San Pedro, Maria Ofelia Z.; Snow, Erica L.; Baker, Ryan S.; McNamara, Danielle S.; Heffernan, Neil T.

    2015-01-01

    There is increasing evidence that fine-grained aspects of student performance and interaction within educational software are predictive of long-term learning. Machine learning models have been used to provide assessments of affect, behavior, and cognition based on analyses of system log data, estimating the probability of a student's particular…

  12. The dynamics of devaluation: the spiritual disease of civilization.

    PubMed

    Glasberg, Ronald

    2012-12-01

    The presentation seeks to identify a major spiritual sickness that is not only widespread but also kept out of public discourse or seriously minimized in terms of its scope and destructive effects. Most religious traditions derive much of their power by giving 'believers' a sense of personal and/or collective worth, where worth may be associated with a feeling of positive valuation. However, as religious traditions decline in the wake of a materialist science or as they become corrupted by developing false forms of valuation, Western, if not world, civilization becomes ever more threatened by the disease of devaluation. In this context, the study will attempt three things: (1) to identify the manifestations or symptoms of devaluation as a disease of the soul; (2) to place these symptoms in a kind of historical context; and (3) to develop some effective healing strategies that may serve to counter, not only the symptoms but also the root causes of the disease of devaluation. In particular, it will be argued that false forms of valuation need to be identified so that public discourse can minimize the possibilities of these taking root and leading to one of the tragedies of our time: that is, the gaining of a kind of substitute value by the devaluing of some other group.

  13. Discrete dynamics of contagious social diseases: Example of obesity

    PubMed Central

    Demongeot, J; Hansen, O; Taramasco, C

    2016-01-01

    Abstract Modeling contagious diseases needs to incorporate information about social networks through which the disease spreads as well as data about demographic and genetic changes in the susceptible population. In this paper, we propose a theoretical framework (conceptualization and formalization) which seeks to model obesity as a process of transformation of one's own body determined by individual (physical and psychological), inter-individual (relational, i.e., relative to the relationship between the individual and others) and socio-cultural (environmental, i.e., relative to the relationship between the individual and his milieu) factors. Individual and inter-individual factors are tied to each other in a socio-cultural context whose impact is notably related to the visibility of anybody being exposed on the public stage in a non-contingent way. The question we are dealing with in this article is whether such kind of social diseases, i.e., depending upon socio-environmental exposure, can be considered as “contagious”. In other words, can obesity be propagated from individual to individual or from environmental sources throughout an entire population? PMID:26375495

  14. Discrete dynamics of contagious social diseases: Example of obesity.

    PubMed

    Demongeot, J; Hansen, O; Taramasco, C

    2016-01-01

    Modeling contagious diseases needs to incorporate information about social networks through which the disease spreads as well as data about demographic and genetic changes in the susceptible population. In this paper, we propose a theoretical framework (conceptualization and formalization) which seeks to model obesity as a process of transformation of one's own body determined by individual (physical and psychological), inter-individual (relational, i.e., relative to the relationship between the individual and others) and socio-cultural (environmental, i.e., relative to the relationship between the individual and his milieu) factors. Individual and inter-individual factors are tied to each other in a socio-cultural context whose impact is notably related to the visibility of anybody being exposed on the public stage in a non-contingent way. The question we are dealing with in this article is whether such kind of social diseases, i.e., depending upon socio-environmental exposure, can be considered as "contagious". In other words, can obesity be propagated from individual to individual or from environmental sources throughout an entire population?

  15. How Does the Electron Dynamics Affect the Reconnection Rate in a Typical Reconnection Layer?

    NASA Technical Reports Server (NTRS)

    Hesse, Michael

    2009-01-01

    The question of whether the microscale controls the macroscale or vice-versa remains one of the most challenging problems in plasmas. A particular topic of interest within this context is collisionless magnetic reconnection, where both points of views are espoused by different groups of researchers. This presentation will focus on this topic. We will begin by analyzing the properties of electron diffusion region dynamics both for guide field and anti-parallel reconnection, and how they can be scaled to different inflow conditions. As a next step, we will study typical temporal variations of the microscopic dynamics with the objective of understanding the potential for secular changes to the macroscopic system. The research will be based on a combination of analytical theory and numerical modeling.

  16. The affect of a clearcut environment on woody debris respiration rate dynamics, Harvard Forest, Massachusetts

    NASA Astrophysics Data System (ADS)

    Vanderhoof, M. K.; Williams, C. L.

    2011-12-01

    At an ecosystem scale, the distribution of carbon is largely a function of stand development and disturbance processes. Clearcut logging remains a common practice both in the United States and globally and typically results in elevated storage of carbon in onsite woody debris and detritus. The residence time and decomposition rate of this woody debris and detritus will affect the rate of CO2 efflux to the atmosphere and thus affect the long term consequences of such disturbances on carbon flux and storage. The removal of a forest canopy also affects a site's microclimate including the albedo, air temperature, air humidity, as well as soil temperature and moisture, many of the same factors that affect the rate of woody debris decomposition. Thus it could be expected that differences in woody debris characteristics (e.g. size, abundance, state of decay), as well as differences in microclimate, between mature and recently clearcut forest sites, would result in differences in piece and site-level woody debris decomposition rates. Although woody debris stocks post-harvest have been well characterized, few studies have explored post-disturbance woody debris respiration rates, which directly measures carbon emissions from woody debris, distinguishing decomposition from mass loss due to fragmentation or leaching. This study addressed the question: does a clearcut environment in a temperate forest affect the rate of decomposition of coarse woody debris? The rate of respiration of downed spruce logs were repeatedly measured in-situ using an LI-6250 gas analyzer in Harvard Forest, Petersham, Massachusetts. Treatments included clear-cut, shaded clear-cut, mature spruce stand, and transfer (from clearcut to spruce stand). Gas analyzer measurements were accompanied by measurements of log temperature and percent water, soil temperature, moisture and pH, as well as light levels, air temperature and humidity to determine dominant drivers of respiration rates.

  17. Hypohydration and Acute Thermal Stress Affect Mood State but not Cognition or Dynamic Postural

    DTIC Science & Technology

    2012-10-12

    followed by euhydration (EUH) and HYP trials separated by 1 week in a counter-balanced design . EUH and HYP trial days began with exercise–heat expo...standard output of the dynamic balance test. Experimental design and testing Following familiarization, the 32 volunteers were grouped into 4 cohorts...randomly assigned and separated by 1 week in a counter-balanced design . All trials occurred at the same time of day, and physical exercise was restricted

  18. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases

    PubMed Central

    Giachin, Gabriele; Bouverot, Romain; Acajjaoui, Samira; Pantalone, Serena; Soler-López, Montserrat

    2016-01-01

    Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases. PMID:27597947

  19. Nucleotide binding affects intrinsic dynamics and structural communication in Ras GTPases.

    PubMed

    Fanelli, Francesca; Raimondi, Francesco

    2013-01-01

    The Ras superfamily comprises many guanine nucleotide-binding proteins (G proteins) that are essential to intracellular signal transduction. These proteins act biologically as molecular switches, which, cycling between OFF and ON states, play fundamental role in cell biology. This review article summarizes the inferences from the widest computational analyses done so far on Ras GTPases aimed at providing a comprehensive structural/dynamic view of the trans-family and family-specific functioning mechanisms. These variegated comparative analyses could infer the evolutionary and intrinsic flexibilities as well as the structural communication features in the most representative G protein families in different functional states. In spite of the low sequence similarities, the members of the Ras superfamily share the topology of the Ras-like domain, including the nucleotide binding site. GDP and GTP make very similar interactions in all GTPases and differences in their binding modes are localized around the γ-phosphate of GTP. Remarkably, such subtle local differences result in significant differences in the functional dynamics and structural communication features of the protein. In Ras GTPases, the nucleotide plays a central and active role in dictating functional dynamics, establishing the major structure network, and mediating the communication paths instrumental in function retention and specialization. Collectively, the results of these studies support the speculation that an "extended conformational selection model" that embraces a repertoire of selection and adjustment processes is likely more suitable to describe the nucleotide behavior in these important molecular switches.

  20. Nonequilibrium water dynamics in the rhizosphere: How mucilage affects water flow in soils

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2014-08-01

    The flow of water from soil to plant roots is controlled by the properties of the narrow region of soil close to the roots, the rhizosphere. In particular, the hydraulic properties of the rhizosphere are altered by mucilage, a polymeric gel exuded by the roots. In this paper we present experimental results and a conceptual model of water flow in unsaturated soils mixed with mucilage. A central hypothesis of the model is that the different drying/wetting rate of mucilage compared to the bulk soil results in nonequilibrium relations between water content and water potential in the rhizosphere. We coupled this nonequilibrium relation with the Richards equation and obtained a constitutive equation for water flow in soil and mucilage. To test the model assumptions, we measured the water retention curve and the saturated hydraulic conductivity of sandy soil mixed with mucilage from chia seeds. Additionally, we used neutron radiography to image water content in a layer of soil mixed with mucilage during drying and wetting cycles. The radiographs demonstrated the occurrence of nonequilibrium water dynamics in the soil-mucilage mixture. The experiments were simulated by numerically solving the nonequilibrium model. Our study provides conceptual and experimental evidences that mucilage has a strong impact on soil water dynamics. During drying, mucilage maintains a greater soil water content for an extended time, while during irrigation it delays the soil rewetting. We postulate that mucilage exudation by roots attenuates plant water stress by modulating water content dynamics in the rhizosphere.

  1. A robotic apparatus that dictates torque fields around joints without affecting inherent joint dynamics.

    PubMed

    Oytam, Yalchin; Lloyd, David; Reid, Campbell S; de Rugy, Aymar; Carson, Richard G

    2010-10-01

    This manuscript describes how motor behaviour researchers who are not at the same time expert roboticists may implement an experimental apparatus, which has the ability to dictate torque fields around a single joint on one limb or single joints on multiple limbs without otherwise interfering with the inherent dynamics of those joints. Such an apparatus expands the exploratory potential of the researcher wherever experimental distinction of factors may necessitate independent control of torque fields around multiple limbs, or the shaping of torque fields of a given joint independently of its plane of motion, or its directional phase within that plane. The apparatus utilizes torque motors. The challenge with torque motors is that they impose added inertia on limbs and thus attenuate joint dynamics. We eliminated this attenuation by establishing an accurate mathematical model of the robotic device using the Box-Jenkins method, and cancelling out its dynamics by employing the inverse of the model as a compensating controller. A direct measure of the remnant inertial torque as experienced by the hand during a 50 s period of wrist oscillations that increased gradually in frequency from 1.0 to 3.8 Hz confirmed that the removal of the inertial effect of the motor was effectively complete.

  2. Biological control of soilborne diseases in organic potato production as affected by varying environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilborne diseases are persistent problems in potato production and alternative management practices are needed, particularly in organic production, where control options are limited. Selected biocontrol organisms, including two naturally-occurring hypovirulent strains of Rhizoctonia solani (Rhs1a1 ...

  3. Affective Disorders, Psychosis and Dementia in a Community Sample of Older Men with and without Parkinson’s Disease

    PubMed Central

    Almeida, Osvaldo P.; McCaul, Kieran; Hankey, Graeme J.; Yeap, Bu B.; Golledge, Jonathan; Flicker, Leon

    2016-01-01

    Background Dementia and affective and psychotic symptoms are commonly associated with Parkinson’s disease, but information about their prevalence and incidence in community representative samples remains sparse. Methods We recruited a community-representative sample 38173 older men aged 65–85 years in 1996 and used data linkage to ascertain the presence of PD, affective disorders, psychotic disorders and dementia. Diagnoses followed the International Classification of Disease coding system. Age was recorded in years. Follow up data were available until December 2011. Results The mean age of participants was 72.5 years and 333 men (0.9%) had PD at study entry. Affective and psychotic disorders and dementia were more frequent in men with than without PD (respective odds ratios: 6.3 [95%CI = 4.7, 8.4]; 14.2 [95%CI = 8.4, 24.0] and 18.2 [95%CI = 13.4, 24.6]). Incidence rate ratios of affective and psychotic disorders were higher among men with than without PD, although ratios decreased with increasing age. The age-adjusted hazard ratio (HR) of an affective episode associated with PD was 5.0 (95%CI = 4.2, 5.9). PD was associated with an age-adjusted HR of 8.6 (95%CI = 6.1, 12.0) for psychotic disorders and 6.1 (95%CI = 5.5, 6.8) for dementia. PD and dementia increased the HR of depressive and psychotic disorders. Conclusions PD increases the risk of affective and psychotic disorders, as well as dementia, among community dwelling older men. The risk of a recorded diagnosis of affective and psychotic disorders decreases with increasing age. PMID:27689715

  4. Role of molecular imaging in the management of patients affected by inflammatory bowel disease: State-of-the-art

    PubMed Central

    Caobelli, Federico; Evangelista, Laura; Quartuccio, Natale; Familiari, Demetrio; Altini, Corinna; Castello, Angelo; Cucinotta, Mariapaola; Di Dato, Rossella; Ferrari, Cristina; Kokomani, Aurora; Laghai, Iashar; Laudicella, Riccardo; Migliari, Silvia; Orsini, Federica; Pignata, Salvatore Antonio; Popescu, Cristina; Puta, Erinda; Ricci, Martina; Seghezzi, Silvia; Sindoni, Alessandro; Sollini, Martina; Sturiale, Letterio; Svyridenka, Anna; Vergura, Vittoria; Alongi, Pierpaolo; Young AIMN Working Group

    2016-01-01

    AIM To present the current state-of-the art of molecular imaging in the management of patients affected by inflammatory bowel disease (IBD). METHODS A systematic review of the literature was performed in order to find important original articles on the role of molecular imaging in the management of patients affected by IBD. The search was updated until February 2016 and limited to articles in English. RESULTS Fifty-five original articles were included in this review, highlighting the role of single photon emission tomography and positron emission tomography. CONCLUSION To date, molecular imaging represents a useful tool to detect active disease in IBD. However, the available data need to be validated in prospective multicenter studies on larger patient samples. PMID:27843542

  5. Analysis of laser ablation dynamics of CFRP in order to reduce heat affected zone

    NASA Astrophysics Data System (ADS)

    Sato, Yuji; Tsukamoto, Masahiro; Nariyama, Tatsuya; Nakai, Kazuki; Matsuoka, Fumihiro; Takahashi, Kenjiro; Masuno, Shinichiro; Ohkubo, Tomomasa; Nakano, Hitoshi

    2014-03-01

    A carbon fiber reinforced plastic [CFRP], which has high strength, light weight and weather resistance, is attractive material applied for automobile, aircraft and so on. The laser processing of CFRP is one of suitable way to machining tool. However, thermal affected zone was formed at the exposure part, since the heat conduction property of the matrix is different from that of carbon fiber. In this paper, we demonstrated that the CFRP plates were cut with UV nanosecond laser to reduce the heat affected zone. The ablation plume and ablation mass were investigated by laser microscope and ultra-high speed camera. Furthermore, the ablation model was constructed by energy balance, and it was confirmed that the ablation rate was 0.028 μg/ pulse in good agreement with the calculation value of 0.03 μg/ pulse.

  6. Evidence that a ‘dynamic knockout’ in Escherichia coli dihydrofolate reductase does not affect the chemical step of catalysis

    NASA Astrophysics Data System (ADS)

    Loveridge, E. Joel; Behiry, Enas M.; Guo, Jiannan; Allemann, Rudolf K.

    2012-04-01

    The question of whether protein motions play a role in the chemical step of enzymatic catalysis has generated much controversy in recent years. Debate has recently reignited over possible dynamic contributions to catalysis in dihydrofolate reductase, following conflicting conclusions from studies of the N23PP/S148A variant of the Escherichia coli enzyme. By investigating the temperature dependence of kinetic isotope effects, we present evidence that the reduction in the hydride transfer rate constants in this variant is not a direct result of impairment of conformational fluctuations. Instead, the conformational state of the enzyme immediately before hydride transfer, which determines the electrostatic environment of the active site, affects the rate constant for the reaction. Although protein motions are clearly important for binding and release of substrates and products, there appears to be no detectable dynamic coupling of protein motions to the hydride transfer step itself.

  7. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers.

    PubMed

    Liu, Rui; Wang, Xiangdong; Aihara, Kazuyuki; Chen, Luonan

    2014-05-01

    Many studies have been carried out for early diagnosis of complex diseases by finding accurate and robust biomarkers specific to respective diseases. In particular, recent rapid advance of high-throughput technologies provides unprecedented rich information to characterize various disease genotypes and phenotypes in a global and also dynamical manner, which significantly accelerates the study of biomarkers from both theoretical and clinical perspectives. Traditionally, molecular biomarkers that distinguish disease samples from normal samples are widely adopted in clinical practices due to their ease of data measurement. However, many of them suffer from low coverage and high false-positive rates or high false-negative rates, which seriously limit their further clinical applications. To overcome those difficulties, network biomarkers (or module biomarkers) attract much attention and also achieve better performance because a network (or subnetwork) is considered to be a more robust form to characterize diseases than individual molecules. But, both molecular biomarkers and network biomarkers mainly distinguish disease samples from normal samples, and they generally cannot ensure to identify predisease samples due to their static nature, thereby lacking ability to early diagnosis. Based on nonlinear dynamical theory and complex network theory, a new concept of dynamical network biomarkers (DNBs, or a dynamical network of biomarkers) has been developed, which is different from traditional static approaches, and the DNB is able to distinguish a predisease state from normal and disease states by even a small number of samples, and therefore has great potential to achieve "real" early diagnosis of complex diseases. In this paper, we comprehensively review the recent advances and developments on molecular biomarkers, network biomarkers, and DNBs in particular, focusing on the biomarkers for early diagnosis of complex diseases considering a small number of samples and high

  8. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease

    PubMed Central

    Gilsbach, Ralf; Preissl, Sebastian; Grüning, Björn A.; Schnick, Tilman; Burger, Lukas; Benes, Vladimir; Würch, Andreas; Bönisch, Ulrike; Günther, Stefan; Backofen, Rolf; Fleischmann, Bernd K.; Schübeler, Dirk; Hein, Lutz

    2014-01-01

    The heart is a highly specialized organ with essential function for the organism throughout life. The significance of DNA methylation in shaping the phenotype of the heart remains only partially known. Here we generate and analyse DNA methylomes from highly purified cardiomyocytes of neonatal, adult healthy and adult failing hearts. We identify large genomic regions that are differentially methylated during cardiomyocyte development and maturation. Demethylation of cardiomyocyte gene bodies correlates strongly with increased gene expression. Silencing of demethylated genes is characterized by the polycomb mark H3K27me3 or by DNA methylation. De novo methylation by DNA methyltransferases 3A/B causes repression of fetal cardiac genes, including essential components of the cardiac sarcomere. Failing cardiomyocytes partially resemble neonatal methylation patterns. This study establishes DNA methylation as a highly dynamic process during postnatal growth of cardiomyocytes and their adaptation to pathological stress in a process tightly linked to gene regulation and activity. PMID:25335909

  9. Sex, Mosquitoes and Epidemics: An Evaluation of Zika Disease Dynamics.

    PubMed

    Baca-Carrasco, David; Velasco-Hernández, Jorge X

    2016-11-01

    Since the first major outbreak reported on the island Yap in 2007, the Zika virus spread has alerted the scientific community worldwide. Zika is an arbovirus transmitted by Aedes mosquitoes; particularly in Central and South America, the main vector is the same mosquito that transmits dengue and chikungunya, Aedes aegypti. Seeking to understand the dynamics of spread of the Zika, in this paper, three mathematical models are presented, in which vector transmission of the virus, sexual contact transmission and migration are considered. Numerical analysis of these models allows us to have a clear view of the effects of sexual transmission and migration in the spread of the virus, showing that sexual transmission influences the magnitude of the outbreaks and migration generates outbreaks over time, each of lower intensity than the previous.

  10. DNA methylation dynamics in muscle development and disease

    PubMed Central

    Carrió, Elvira; Suelves, Mònica

    2015-01-01

    DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis. PMID:25798107

  11. Mitochondrial dynamics and inheritance during cell division, development and disease.

    PubMed

    Mishra, Prashant; Chan, David C

    2014-10-01

    During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with that of other organelles, particularly in the use of interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features - including their own genome and a maternal mode of germline transmission - that place additional demands on this process. Consequently, mechanisms have evolved to regulate mitochondrial segregation during cell division, oogenesis, fertilization and tissue development, as well as to ensure the integrity of these organelles and their DNA, including fusion-fission dynamics, organelle transport, mitophagy and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies.

  12. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease.

    PubMed

    Gilsbach, Ralf; Preissl, Sebastian; Grüning, Björn A; Schnick, Tilman; Burger, Lukas; Benes, Vladimir; Würch, Andreas; Bönisch, Ulrike; Günther, Stefan; Backofen, Rolf; Fleischmann, Bernd K; Schübeler, Dirk; Hein, Lutz

    2014-10-22

    The heart is a highly specialized organ with essential function for the organism throughout life. The significance of DNA methylation in shaping the phenotype of the heart remains only partially known. Here we generate and analyse DNA methylomes from highly purified cardiomyocytes of neonatal, adult healthy and adult failing hearts. We identify large genomic regions that are differentially methylated during cardiomyocyte development and maturation. Demethylation of cardiomyocyte gene bodies correlates strongly with increased gene expression. Silencing of demethylated genes is characterized by the polycomb mark H3K27me3 or by DNA methylation. De novo methylation by DNA methyltransferases 3A/B causes repression of fetal cardiac genes, including essential components of the cardiac sarcomere. Failing cardiomyocytes partially resemble neonatal methylation patterns. This study establishes DNA methylation as a highly dynamic process during postnatal growth of cardiomyocytes and their adaptation to pathological stress in a process tightly linked to gene regulation and activity.

  13. Disease dynamics and costly punishment can foster socially imposed monogamy

    PubMed Central

    Bauch, Chris T.; McElreath, Richard

    2016-01-01

    Socially imposed monogamy in humans is an evolutionary puzzle because it requires costly punishment by those who impose the norm. Moreover, most societies were—and are—polygynous; yet many larger human societies transitioned from polygyny to socially imposed monogamy beginning with the advent of agriculture and larger residential groups. We use a simulation model to explore how interactions between group size, sexually transmitted infection (STI) dynamics and social norms can explain the timing and emergence of socially imposed monogamy. Polygyny dominates when groups are too small to sustain STIs. However, in larger groups, STIs become endemic (especially in concurrent polygynist networks) and have an impact on fertility, thereby mediating multilevel selection. Punishment of polygynists improves monogamist fitness within groups by reducing their STI exposure, and between groups by enabling punishing monogamist groups to outcompete polygynists. This suggests pathways for the emergence of socially imposed monogamy, and enriches our understanding of costly punishment evolution. PMID:27044573

  14. The dynamics of the snow avalanche affected areas in Piatra Mica mountains (Romania)

    NASA Astrophysics Data System (ADS)

    Munteanu, Anca; Nedelea, Alexandru; Comanescu, Laura

    2011-10-01

    This article is intended to explain the snow avalanche occurrence, as a natural phenomenon directly influenced by the local natural conditions, for the well-delimited area represented by the Piatra Mica massif, belonging to the Piatra Craiului mountain range (southern Carpathians). In this respect, depending on the factors that may trigger or encourage the avalanches, some vulnerable areas with avalanche occurring conditions have been identified, based on the analysis of the relationships among the factors controlling the avalanche vulnerability in the study area. These factors are mainly represented by the slope aspect, which induces from the very beginning some specific features for each type of slope (north-, east-, south and west-facing slopes), the geological structure, slope gradient and topography. At the same time, the general climatic and biological features have been taken into account, from the point of view of their importance for avalanche occurrence and distribution. Depending on the microrelief exhibited by the avalanche chutes, one can establish distinct dynamical features for each of the four major slopes of the massif. It is worth mentioning that for this study area, this is the first paper dealing with avalanche phenomenon, vulnerable space, control factors and landscape dynamics. In accomplishing this demarche, we used detailed mappings in the field in several stages, the processing of satellite images, analytical (declivities, the exposure of slopes, etc.) and synthetic maps from which the dynamic of sectors with avalanches resulted. The findings of this investigation may further be employed for solving the problems raised by avalanche-prone areas, as well as for devising a better strategy for the effective management of the mountain realm.

  15. Coral disease dynamics at a subtropical location, Solitary Islands Marine Park, eastern Australia

    NASA Astrophysics Data System (ADS)

    Dalton, Steven J.; Smith, Stephen D. A.

    2006-03-01

    Recent observations suggest that a spreading disease is increasingly contributing to hard coral mortality in the Solitary Islands Marine Park, NSW, Australia. This study determined coral disease prevalence and rate-of-spread through individual affected colonies and investigated the effect this epizootic had on coral populations at sites adjacent to South West Solitary Island. Quantitative data were collected between 2002 and 2004 using photographic and video methods, and visual census along radial arc belt transects. Disease similar to the reported white syndrome and white plague was apparent, spreading through hard coral species from the genera Turbinaria, Acropora, Goniastrea, Pocillopora, Stylophora and Porites. Coral disease prevalence varied between survey dates with mean prevalence increasing from 8.55% during March 2003 to 13.58% in June and declining to 7.75% in September and 6.21% during March 2004. There was a significant difference in mean prevalence between the affected species (p<0.001) and an overall difference between survey dates (p=0.001). Additionally, the rate-of-spread of coral disease through coral colonies determined using repeated, seasonal, still photographs followed similar patterns, with disease progression differing between affected species (p=0.004), and between survey dates (p<0.001). Analysis of the video-transects indicated significant difference in disease prevalence over larger spatial scales (100s of m). However, disease frequency did not vary significantly between 2002 and 2003.

  16. How Do Growth and Sibling Competition Affect Telomere Dynamics in the First Month of Life of Long-Lived Seabird?

    PubMed Central

    Mizutani, Yuichi; Niizuma, Yasuaki; Yoda, Ken

    2016-01-01

    Telomeres are nucleotide sequences located at the ends of chromosomes that promote genome stability. Changes in telomere length (dynamics) are related to fitness or life expectancy, and telomere dynamics during the development phase are likely to be affected by growth and stress factors. Here, we examined telomere dynamics of black-tailed gull chicks (Larus crassirostris) in nests with and without siblings. We found that the initial telomere lengths of singletons at hatching were longer than those of siblings, indicating that singletons are higher-quality chicks than siblings in terms of telomere length. Other factors likely affecting individual quality (i.e., sex, laying date, laying order of eggs, and clutch size) were not related to telomere lengths. Within broods, initial telomere lengths were longer in older chicks than in younger chicks, suggesting that maternal effects, which vary with laying sequence, influence the initial lengths. Additionally, telomeres of chicks with a sibling showed more attrition between hatching and fledging than those of singleton chicks, suggesting that being raised with siblings can cause a sustained competitive environment that leads to telomere loss. High growth rates were associated with a low degree of telomere shortening observed in older siblings, perhaps because slower growth reflects higher food stress and/or higher aerobic metabolism from increased begging effort. Our results show that developmental telomere attrition was an inevitable consequence in two-chick nests in the pre- and post-hatching microenvironments due to the combination of social stress within the nest and maternal effects. The results of our study shed light on telomere dynamics in early life, which may represent an important physiological undercurrent of life-history traits. PMID:27902754

  17. Parents helping parents: does this psychological mechanism work when the child is affected by a high risk disease?

    PubMed

    Massimo, L M; Caprino, D; Zarri, D R

    2005-12-01

    Mutual help relationships are very important among families with children affected by serious diseases. Discussing common problems and experiences can provide the stimulus for developing the coping strategies that are needed to face new situations. This can thus be done with an outlook that nurtures subsequent adjustment and restoration of a good quality of life after diagnosis and the start of therapy. However, when parents are faced with the ordeal of a child affected by a high risk disease, this interaction may have detrimental effects. Through our observations of the behavior and relationships of 217 families over 5 years, we have been able to identify the caregiver as the staff member who can provide true and helpful support to the children and their parents. This caregiver is in touch with the psychologist supervisor on a daily basis, as well as with all the staff members involved in the global care of the child, including physicians, nurses, school teachers, and play workers. We strongly believe that physicians and caregivers must adopt strategies and practices to improve communication with, and often among, the families of affected children, and that they must act as a reliable source of support for their hopes for a cure. Treatment and recovery must never be proposed as a war to be won, but rather as an alliance among patients, parents, physicians and other caregivers that is formed to build health, and not merely to destroy the disease.

  18. A model for the dynamic behavior of financial assets affected by news: The case of Tohoku-Kanto earthquake

    NASA Astrophysics Data System (ADS)

    Ochiai, T.; Nacher, J. C.

    2011-09-01

    The prices of financial products in markets are determined by the behavior of investors, who are influenced by positive and negative news. Here, we present a mathematical model to reproduce the price movements in real financial markets affected by news. The model has both positive and negative feed-back mechanisms. Furthermore, the behavior of the model is examined by considering two types of noise. Our results show that the dynamic balance of positive and negative feed-back mechanisms with the noise effect determines the asset price movement.

  19. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

    PubMed Central

    Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.

    2017-01-01

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure. PMID:28382948

  20. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles.

    PubMed

    Golub, M; Lehofer, B; Martinez, N; Ollivier, J; Kohlbrecher, J; Prassl, R; Peters, J

    2017-04-06

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure.

  1. How does adaptive consumer movement affect population dynamics in consumer-resource metacommunities with homogeneous patches?

    PubMed

    Abrams, Peter A; Ruokolainen, Lasse

    2011-05-21

    This article uses simple models to explore the impact of adaptive movement by consumers on the population dynamics of a consumer-resource metacommunity consisting of two identical patches. Consumer-resource interactions within a patch are described by the Rosenzweig-MacArthur predator-prey model, and these dynamics are assumed to be cyclic in the absence of movement. The per capita movement rate from one patch to the other is an increasing function of the difference between the per capita birth minus death rate in the destination patch and that in the currently occupied patch. Several variations on this model are considered. Results show that adaptive movement frequently creates anti-phase cycles in the two patches; these suppress the predator-prey cycle and lead to low temporal variation of the total population sizes of both species. Paradoxically, even when movement is very sensitive to the fitness difference between patches, perfect synchrony of patches is often much less likely than in comparable systems with random movement. Under these circumstances adaptive movement of consumers often generates differences in the average properties of the two patches. In addition, mean global densities and responses to global perturbations often differ greatly from similar systems with no movement or random movement.

  2. Dynamic spatial patterns of leaf traits affect total respiration on the crown scale

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolin; Zhou, Hongxuan; Han, Fengsen; Li, Yuanzheng; Hu, Dan

    2016-05-01

    Temporal and spatial variations of leaf traits caused conflicting conclusions and great estimating errors of total carbon budget on crown scales. However, there is no effective method to quantitatively describe and study heterogeneous patterns of crowns yet. In this study, dynamic spatial patterns of typical ecological factors on crown scales were investigated during two sky conditions, and CEZs (crown ecological zones) method was developed for spatial crown zoning, within which leaf traits were statistically unchanged. The influencing factors on hourly and spatial variations of leaf dark respiration (Rd) were analysed, and total crown respiration (Rt) was estimated based on patterns of CEZs. The results showed that dynamic spatial patterns of air temperature and light intensity changed significantly by CEZs in special periods and positions, but not continuously. The contributions of influencing factors on variations of Rd changed with crown depth and sky conditions, and total contributions of leaf structural and chemical traits were higher during sunny days than ecological factors, but lower during cloudy days. The estimated errors of Rt may be obviously reduced with CEZs. These results provided some references for scaling from leaves to crown, and technical foundations for expanding lab-control experiments to open field ones.

  3. STARDUST-U experiments on fluid-dynamic conditions affecting dust mobilization during LOVAs

    NASA Astrophysics Data System (ADS)

    Poggi, L. A.; Malizia, A.; Ciparisse, J. F.; Tieri, F.; Gelfusa, M.; Murari, A.; Del Papa, C.; Giovannangeli, I.; Gaudio, P.

    2016-07-01

    Since 2006 the Quantum Electronics and Plasma Physics (QEP) Research Group together with ENEA FusTech of Frascati have been working on dust re-suspension inside tokamaks and its potential capability to jeopardize the integrity of future fusion nuclear plants (i.e. ITER or DEMO) and to be a risk for the health of the operators. Actually, this team is working with the improved version of the "STARDUST" facility, i.e. "STARDUST-Upgrade". STARDUST-U facility has four new air inlet ports that allow the experimental replication of Loss of Vacuum Accidents (LOVAs). The experimental campaign to detect the different pressurization rates, local air velocity, temperature, have been carried out from all the ports in different accident conditions and the principal results will be analyzed and compared with the numerical simulations obtained through a CFD (Computational Fluid Dynamic) code. This preliminary thermo fluid-dynamic analysis of the accident is crucial for numerical model development and validation, and for the incoming experimental campaign of dust resuspension inside STARDUST-U due to well-defined accidents presented in this paper.

  4. Dynamic spatial patterns of leaf traits affect total respiration on the crown scale

    PubMed Central

    Wang, Xiaolin; Zhou, Hongxuan; Han, Fengsen; Li, Yuanzheng; Hu, Dan

    2016-01-01

    Temporal and spatial variations of leaf traits caused conflicting conclusions and great estimating errors of total carbon budget on crown scales. However, there is no effective method to quantitatively describe and study heterogeneous patterns of crowns yet. In this study, dynamic spatial patterns of typical ecological factors on crown scales were investigated during two sky conditions, and CEZs (crown ecological zones) method was developed for spatial crown zoning, within which leaf traits were statistically unchanged. The influencing factors on hourly and spatial variations of leaf dark respiration (Rd) were analysed, and total crown respiration (Rt) was estimated based on patterns of CEZs. The results showed that dynamic spatial patterns of air temperature and light intensity changed significantly by CEZs in special periods and positions, but not continuously. The contributions of influencing factors on variations of Rd changed with crown depth and sky conditions, and total contributions of leaf structural and chemical traits were higher during sunny days than ecological factors, but lower during cloudy days. The estimated errors of Rt may be obviously reduced with CEZs. These results provided some references for scaling from leaves to crown, and technical foundations for expanding lab-control experiments to open field ones. PMID:27225586

  5. Forming a support group for people affected by inflammatory bowel disease

    PubMed Central

    Swarup, Nidhi; Nayak, Saumya; Lee, Jessie; Pai Raikar, Srinivas; Hou, David; Sockalingam, Senthil; Lee, Ken J

    2017-01-01

    Inflammatory bowel disease (IBD) – primarily Crohn’s disease and ulcerative colitis – is a debilitating lifelong condition with significant health and economic costs. From diagnosis to management, IBD can cause huge psychosocial concerns to patients and their caregivers. This study reports an experience of a Crohn’s patient, leading to the formation of the first IBD patient support group in Singapore and how this group has evolved in the last 4 years in supporting other IBD patients. IBD patient advocacy and/or support groups facilitate open conversations on patients’ fears, concerns, preferences and needs, and may potentially improve disease knowledge and quality of life for individuals with the condition or their families. PMID:28255233

  6. Counter-insurgents of the blue revolution? Parasites and diseases affecting aquaculture and science.

    PubMed

    Blaylock, Reginald B; Bullard, Stephen A

    2014-12-01

    Aquaculture is the fastest-growing segment of food production and is expected to supply a growing portion of animal protein for consumption by humans. Because industrial aquaculture developed only recently compared to industrial agriculture, its development occurred within the context of a growing environmental awareness and acknowledgment of environmental issues associated with industrial farming. As such, parasites and diseases have become central criticisms of commercial aquaculture. This focus on parasites and diseases, however, has created a nexus of opportunities for research that has facilitated considerable scientific advances in the fields of parasitology and aquaculture. This paper reviews Myxobolus cerebralis , Lepeophtheirus salmonis , white spot syndrome virus, and assorted flatworms as select marquee aquaculture pathogens, summarizes the status of the diseases caused by each and their impacts on aquaculture, and highlights some of the significant contributions these pathogens have made to the science of parasitology and aquaculture.

  7. Genes that affect brain structure and function identified by rare variant analyses of Mendelian neurologic disease

    PubMed Central

    Karaca, Ender; Harel, Tamar; Pehlivan, Davut; Jhangiani, Shalini N.; Gambin, Tomasz; Akdemir, Zeynep Coban; Gonzaga-Jauregui, Claudia; Erdin, Serkan; Bayram, Yavuz; Campbell, Ian M.; Hunter, Jill V.; Atik, Mehmed M.; Van Esch, Hilde; Yuan, Bo; Wiszniewski, Wojciech; Isikay, Sedat; Yesil, Gozde; Yuregir, Ozge O.; Bozdogan, Sevcan Tug; Aslan, Huseyin; Aydin, Hatip; Tos, Tulay; Aksoy, Ayse; De Vivo, Darryl C.; Jain, Preti; Geckinli, B. Bilge; Sezer, Ozlem; Gul, Davut; Durmaz, Burak; Cogulu, Ozgur; Ozkinay, Ferda; Topcu, Vehap; Candan, Sukru; Cebi, Alper Han; Ikbal, Mevlit; Gulec, Elif Yilmaz; Gezdirici, Alper; Koparir, Erkan; Ekici, Fatma; Coskun, Salih; Cicek, Salih; Karaer, Kadri; Koparir, Asuman; Duz, Mehmet Bugrahan; Kirat, Emre; Fenercioglu, Elif; Ulucan, Hakan; Seven, Mehmet; Guran, Tulay; Elcioglu, Nursel; Yildirim, Mahmut Selman; Aktas, Dilek; Alikaşifoğlu, Mehmet; Ture, Mehmet; Yakut, Tahsin; Overton, John D.; Yuksel, Adnan; Ozen, Mustafa; Muzny, Donna M.; Adams, David R.; Boerwinkle, Eric; Chung, Wendy K.; Gibbs, Richard A.; Lupski, James R

    2015-01-01

    Development of the human nervous system involves complex interactions between fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families, and homozygous loss of function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations. PMID:26539891

  8. [Certain immune-genes may affect Crohn disease. Advances in diagnosis, pathogenesis and treatment].

    PubMed

    Befrits, R; Hultcrantz, R

    1998-02-11

    Despite extensive research, the cause of Crohn's disease remains unknown. No specific infectious agent has been identified, though interest has been focused on the possible involvement of mycobacteria, and recently on child hood measles as a possible aetiological factor. Both hereditary and environmental factors seem to contribute to development of the disease. The clinical picture may be dependent upon individual HLA subtypes, as they appear to differ from each other regarding the secretion of inflammatory cytokines. Non-invasive scintigraphy and computerised tomography are used to determine the extent of disease, and to localise such complications as abscesses and fistulas. Endoscopic ultrasonography and magnetic resonance imaging have proved particularly valuable in diagnosing rectal and rectovaginal fistulas. New 5-ASA (5-aminosalicylic acid) preparations, steroids with fewer systemic side effects, and azathioprine-induced immunosuppression constitute the cornerstones of medical treatment, further developments in pharmacological immunoregulation being a future treatment possibility.

  9. Alterations in cognitive performance and affect-arousal state during fluctuations in motor function in Parkinson's disease.

    PubMed Central

    Brown, R G; Marsden, C D; Quinn, N; Wyke, M A

    1984-01-01

    Sixteen patients with idiopathic Parkinson's disease were selected who were all showing severe fluctuations in motor function ("on-off" phenomenon). Measures of cognitive function and of subjective affect/arousal state were taken on two occasions, once when "on" and once when "off". Twenty-five matched normal controls were also assessed on the same measures. Results revealed, on the average, a drop in cognitive function plus an adverse swing in affect/arousal state, in the patient group in the "off" condition, compared to the levels when "on". Analysis of the data suggested that the main factor associated with cognitive function when "off" was not the severity of disability but the level of affect/arousal. The fluctuations in cognitive function found tended to be mild relative to the severe changes in motor ability, and were present in only a proportion of patients. PMID:6736975

  10. Modelling real disease dynamics with behaviourally adaptive complex networks. Comment on "Coupled disease-behavior dynamics on complex networks: A review" by Z. Wang et al.

    NASA Astrophysics Data System (ADS)

    Small, Michael

    2015-12-01

    Mean field compartmental models of disease transmission have been successfully applied to a host of different scenarios, and the Kermack-McKendrick equations are now a staple of mathematical biology text books. In Susceptible-Infected-Removed format these equations provide three coupled first order ordinary differential equations with a very mild nonlinearity and they are very well understood. However, underpinning these equations are two important assumptions: that the population is (a) homogeneous, and (b) well-mixed. These assumptions become closest to being true for diseases infecting a large portion of the population for which inevitable individual effects can be averaged away. Emerging infectious disease (such as, in recent times, SARS, avian influenza, swine flu and ebola) typically does not conform to this scenario. Individual contacts and peculiarities of the transmission network play a vital role in understanding the dynamics of such relatively rare infections - particularly during the early stages of an outbreak.

  11. Genetic factors that affect nonalcoholic fatty liver disease: A systematic clinical review

    PubMed Central

    Severson, Tyler J; Besur, Siddesh; Bonkovsky, Herbert L

    2016-01-01

    AIM: To investigate roles of genetic polymorphisms in non-alcoholic fatty liver disease (NAFLD) onset, severity, and outcome through systematic literature review. METHODS: The authors conducted both systematic and specific searches of PubMed through December 2015 with special emphasis on more recent data (from 2012 onward) while still drawing from more historical data for background. We identified several specific genetic polymorphisms that have been most researched and, at this time, appear to have the greatest clinical significance on NAFLD and similar hepatic diseases. These were further investigated to assess their specific effects on disease onset and progression and the mechanisms by which these effects occur. RESULTS: We focus particularly on genetic polymorphisms of the following genes: PNPLA3, particularly the p. I148M variant, TM6SF2, particularly the p. E167K variant, and on variants in FTO, LIPA, IFNλ4, and iron metabolism, specifically focusing on HFE, and HMOX-1. We discuss the effect of these genetic variations and their resultant protein variants on the onset of fatty liver disease and its severity, including the effect on likelihood of progression to cirrhosis and hepatocellular carcinoma. While our principal focus is on NAFLD, we also discuss briefly effects of some of the variants on development and severity of other hepatic diseases, including hepatitis C and alcoholic liver disease. These results are briefly discussed in terms of clinical application and future potential for personalized medicine. CONCLUSION: Polymorphisms and genetic factors of several genes contribute to NAFLD and its end results. These genes hold keys to future improvements in diagnosis and management. PMID:27547017

  12. Putting Infection Dynamics at the Heart of Chagas Disease.

    PubMed

    Lewis, Michael D; Kelly, John M

    2016-11-01

    In chronic Trypanosoma cruzi infections, parasite burden is controlled by effective, but nonsterilising immune responses. Infected cells are difficult to detect because they are scarce and focally distributed in multiple sites. However, advances in detection technologies have established a link between parasite persistence and the pathogenesis of Chagas heart disease. Long-term persistence likely involves episodic reinvasion as well as continuous infection, to an extent that varies between tissues. The primary reservoir sites in humans are not definitively known, but analysis of murine models has identified the gastrointestinal tract. Here, we highlight that quantitative, spatial, and temporal aspects of T. cruzi infection are central to a fuller understanding of the association between persistence, pathogenesis, and immunity, and for optimising treatment.

  13. Repetitive elements dynamics in cell identity programming, maintenance and disease.

    PubMed

    Bodega, Beatrice; Orlando, Valerio

    2014-12-01

    The days of 'junk DNA' seem to be over. The rapid progress of genomics technologies has been unveiling unexpected mechanisms by which repetitive DNA and in particular transposable elements (TEs) have evolved, becoming key issues in understanding genome structure and function. Indeed, rather than 'parasites', recent findings strongly suggest that TEs may have a positive function by contributing to tissue specific transcriptional programs, in particular as enhancer-like elements and/or modules for regulation of higher order chromatin structure. Further, it appears that during development and aging genomes experience several waves of TEs activation, and this contributes to individual genome shaping during lifetime. Interestingly, TEs activity is major target of epigenomic regulation. These findings are shedding new light on the genome-phenotype relationship and set the premises to help to explain complex disease manifestation, as consequence of TEs activity deregulation.

  14. Dynamics of collateral circulation in progressive asymptomatic carotid disease.

    PubMed

    Moll, F L; Eikelboom, B C; Vermeulen, F E; van Lier, H J; Schulte, B P

    1986-03-01

    Inadequacy of collateral arterial flow is the major risk factor for hemispheric infarction in association with spontaneous occlusion of the ipsilateral carotid artery. This prospective study was designed to measure the adaptation of collateral cerebral circulation through the circle of Willis in patients in whom a unilateral carotid stenosis of hemodynamic consequence develops asymptomatically. The collateral cerebral potential is assessed by ocular pneumoplethysmography (OPG) during proximal common carotid artery compression, measuring the collateral ophthalmic artery pressure (COAP). During an average follow-up of almost 3 years (maximum more than 7 years), 45 patients showed asymptomatic development of a unilateral hemodynamically significant carotid stenosis according to OPG evidence. In these patients the mean index COAP/brachial artery pressure did not change on the side of stenosis progression (p greater than 0.05). The developed carotid stenosis had only reduced collateral circulation to the contralateral hemisphere. The risk of inadequate collateral cerebral circulation remained during progression of asymptomatic extracranial arterial obstructive disease.

  15. Statistical mechanics and stochastic dynamics of prion diseases

    NASA Astrophysics Data System (ADS)

    Kulkarni, Rahul

    2002-03-01

    We examine the laboratory and epidemiological data for incubation times in infectious prion diseases using a lattice-based protein-level cellular-automata model. For this model we present numerical simulations and analytic solutions in the low concentration limit, using which we argue that existing laboratory and epidemiological data are best described by initial accumulation into two-dimensional compact aggregates. Broad incubation time distributions arise for low infectious dose while our calculated distributions narrow to sharply defined onset times with increased dose, in agreement with experimental results. We also model ``species barriers'' to prion infection and assess a related treatment protocol. We apply our distributions to epidemiological vCJD data and extract estimates of incubation times.

  16. Structural dynamics associated with intermediate formation in an archetypal conformational disease.

    PubMed

    Nyon, Mun Peak; Segu, Lakshmi; Cabrita, Lisa D; Lévy, Géraldine R; Kirkpatrick, John; Roussel, Benoit D; Patschull, Anathe O M; Barrett, Tracey E; Ekeowa, Ugo I; Kerr, Richard; Waudby, Christopher A; Kalsheker, Noor; Hill, Marian; Thalassinos, Konstantinos; Lomas, David A; Christodoulou, John; Gooptu, Bibek

    2012-03-07

    In conformational diseases, native protein conformers convert to pathological intermediates that polymerize. Structural characterization of these key intermediates is challenging. They are unstable and minimally populated in dynamic equilibria that may be perturbed by many analytical techniques. We have characterized a forme fruste deficiency variant of α(1)-antitrypsin (Lys154Asn) that forms polymers recapitulating the conformer-specific neo-epitope observed in polymers that form in vivo. Lys154Asn α(1)-antitrypsin populates an intermediate ensemble along the polymerization pathway at physiological temperatures. Nuclear magnetic resonance spectroscopy was used to report the structural and dynamic changes associated with this. Our data highlight an interaction network likely to regulate conformational change and do not support the recent contention that the disease-relevant intermediate is substantially unfolded. Conformational disease intermediates may best be defined using powerful but minimally perturbing techniques, mild disease mutants, and physiological conditions.

  17. Drosophila melanogaster Natural Variation Affects Growth Dynamics of Infecting Listeria monocytogenes

    PubMed Central

    Hotson, Alejandra Guzmán; Schneider, David S.

    2015-01-01

    We find that in a Listeria monocytogenes/Drosophila melanogaster infection model, L. monocytogenes grows according to logistic kinetics, which means we can measure both a maximal growth rate and growth plateau for the microbe. Genetic variation of the host affects both of the pathogen growth parameters, and they can vary independently. Because growth rates and ceilings both correlate with host survival, both properties could drive evolution of the host. We find that growth rates and ceilings are sensitive to the initial infectious dose in a host genotype–dependent manner, implying that experimental results differ as we change the original challenge dose within a single strain of host. PMID:26438294

  18. Disease dynamics of Porites bleaching with tissue loss: prevalence, virulence, transmission, and environmental drivers.

    PubMed

    Sudek, M; Williams, G J; Runyon, C; Aeby, G S; Davy, S K

    2015-02-10

    The prevalence, number of species affected, and geographical extent of coral diseases have been increasing worldwide. We present ecological data on the coral disease Porites bleaching with tissue loss (PBTL) from Kaneohe Bay, Oahu (Hawaii, USA), affecting P. compressa. This disease is prevalent throughout the year, although it shows spatio-temporal variability with peak prevalence during the warmer summer months. Temporal variability in disease prevalence showed a strong positive relationship with elevated water temperature. Spatially, PBTL prevalence peaked in clearer waters (lower turbidity) with higher water flow and higher densities of parrotfish, together explaining approximately 26% of the spatial variability in PBTL prevalence. However, the relatively poor performance of the spatial model suggests that other, unmeasured factors may be more important in driving spatial prevalence. PBTL was not transmissible through direct contact or the water column in controlled aquaria experiments, suggesting that this disease may not be caused by a pathogen, is not highly infectious, or perhaps requires a vector for transmission. In general, PBTL results in partial tissue mortality of affected colonies; on average, one-third of the tissue is lost. This disease can affect the same colonies repeatedly, suggesting a potential for progressive damage which could cause increased tissue loss over time. P. compressa is the main framework-building species in Kaneohe Bay; PBTL therefore has the potential to negatively impact the structure of the reefs at this location.

  19. Time of Initiating Enzyme Replacement Therapy Affects Immune Abnormalities and Disease Severity in Patients with Gaucher Disease

    PubMed Central

    Ioanou, Chidima; Plassmeyer, Matthew; Ryherd, Mark; Kozhaya, Lina; Austin, Lauren; Abidoglu, Cem; Unutmaz, Derya; Alpan, Oral; Goker-Alpan, Ozlem

    2016-01-01

    Gaucher disease (GD) patients often present with abnormalities in immune response that may be the result of alterations in cellular and/or humoral immunity. However, how the treatment and clinical features of patients impact the perturbation of their immunological status remains unclear. To address this, we assessed the immune profile of 26 GD patients who were part of an enzyme replacement therapy (ERT) study. Patients were evaluated clinically for onset of GD symptoms, duration of therapy and validated outcome measures for ERT. According to DS3 disease severity scoring system criteria, they were assigned to have mild, moderate or severe GD. Flow cytometry based immunophenotyping was performed to analyze subsets of T, B, NK, NKT and dendritic cells. GD patients showed multiple types of immune abnormalities associated to T and B lymphocytes with respect to their subpopulations as well as memory and activation markers. Skewing of CD4 and CD8 T cell numbers resulting in lower CD4/CD8 ratio and an increase in overall T cell activation were observed. A decrease in the overall B cells and an increase in NK and NKT cells were noted in the GD patients compared to controls. These immune alterations do not correlate with GD clinical type or level of biomarkers. However, subjects with persistent immune alterations, especially in B cells and DCs correlate with longer delay in initiation of ERT (ΔTX). Thus, while ERT may reverse some of these immune abnormalities, the immune cell alterations become persistent if therapy is further delayed. These findings have important implications in understanding the immune disruptions before and after treatment of GD patients. PMID:27942037

  20. Improved Dynamic Modeling of the Cascade Distillation Subsystem and Analysis of Factors Affecting Its Performance

    NASA Technical Reports Server (NTRS)

    Perry, Bruce A.; Anderson, Molly S.

    2015-01-01

    The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station Water Processor Assembly to form a complete water recovery system for future missions. A preliminary chemical process simulation was previously developed using Aspen Custom Modeler® (ACM), but it could not simulate thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. This paper describes modifications to the ACM simulation of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version can be used to model thermal startup and predicts the total energy consumption of the CDS. The simulation has been validated for both NaC1 solution and pretreated urine feeds and no longer requires retuning when operating parameters change. The simulation was also used to predict how internal processes and operating conditions of the CDS affect its performance. In particular, it is shown that the coefficient of performance of the thermoelectric heat pump used to provide heating and cooling for the CDS is the largest factor in determining CDS efficiency. Intrastage heat transfer affects CDS performance indirectly through effects on the coefficient of performance.

  1. Dynamic changes in brain activations and functional connectivity during affectively different tactile stimuli.

    PubMed

    Hua, Qing-Ping; Zeng, Xiang-Zhu; Liu, Jian-Yu; Wang, Jin-Yan; Guo, Jian-You; Luo, Fei

    2008-01-01

    In the present study, we compared brain activations produced by pleasant, neutral and unpleasant touch, to the anterior lateral surface of lower leg of human subjects. It was found that several brain regions, including the contralateral primary somatosensory area (SI), bilateral secondary somatosensory area (SII), as well as contralateral middle and posterior insula cortex were commonly activated under the three touch conditions. In addition, pleasant and unpleasant touch conditions shared a few brain regions including the contralateral posterior parietal cortex (PPC) and bilateral premotor cortex (PMC). Unpleasant touch specifically activated a set of pain-related brain regions such as contralateral supplementary motor area (SMA) and dorsal parts of bilateral anterior cingulated cortex, etc. Brain regions specifically activated by pleasant touch comprised bilateral lateral orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), intraparietal cortex and left dorsal lateral prefrontal cortex (DLPFC). Using a novel functional connectivity model based on graph theory, we showed that a series of brain regions related to affectively different touch had significant functional connectivity during the resting state. Furthermore, it was found that such a network can be modulated between affectively different touch conditions.

  2. Do group dynamics affect colour morph clines during a range shift?

    PubMed

    Lancaster, L T; Dudaniec, R Y; Hansson, B; Svensson, E I

    2017-04-01

    Species exhibiting colour polymorphism are thought to have an ecological advantage at the landscape scale, because spatial segregation of alternatively adapted ecotypes into diverse habitats can increase the species' niche breadth and thus confer greater geographic range size. However, morph frequencies are also influenced by intrapopulational processes such as frequency- or density-dependent social interactions. To identify how social feedback may affect clinal variation in morph frequencies, we investigated reciprocal interactions between morph-specific thermal tolerance, local climatic conditions and social environments, in the context of a colour-morph frequency cline associated with a recent range expansion in blue-tailed damselflies (Ischnura elegans) in Sweden. Cold tolerances of gynochromes (female-like female morph) were positively correlated with local gynochrome frequencies, suggesting a positive frequency-dependent fitness benefit. In contrast, androchrome (male-mimic female morph) cold tolerances were improved following recent exposure to cold weather, suggesting a beneficial environmental acclimation effect. Thus, according to an environment-matching hypothesis for clinal variation, androchrome frequencies should therefore increase towards the (cooler) range limit. In contrast to this prediction, gynochrome frequencies increased at the expanding range limit, consistent with a positive frequency-dependent social feedback that is beneficial when invading novel climates. Our results suggest that when phenotypes or fitnesses are affected by interactions with conspecifics, beneficial social effects on environmental tolerances may (i) facilitate range shifts, and (ii) reverse or counteract typical patterns of intraspecific interactions and environment-matching clines observed in stable populations observed over broader geographic scales.

  3. Drainage and leaching dynamics in a cropped hummocky soil landscape with erosion-affected pedogenesis

    NASA Astrophysics Data System (ADS)

    Gerke, Horst H.; Rieckh, Helene; Sommer, Michael

    2016-04-01

    Hummocky soil landscapes are characterized by 3D spatial patterns of soil types that result from erosion-affected pedogenesis. Due to tillage and water erosion, truncated profiles have been formed at steep and mid slopes and colluvial soils at hollows. Pedogenetic variations in soil horizons at the different hillslope positions suggested feedback effects between erosion affected soil properties, the water balances, and the crop growth and leaching rates. Water balance simulations compared uniform with hillslope position-specific crop and root growths for soils at plateau, flat mid slope, steep slope, and hollow using the Hydrus-1D program. The boundary condition data were monitored at the CarboZALF-D experimental field site, which was cropped with perennial lucerne (Medicago sativa L.) in 2013 and 2014. Crop and root growth was assumed proportional to observed leaf area index (LAI). Fluxes of dissolved organic and inorganic carbon (DOC, DIC) were obtained from simulated water fluxes and measured DOC and DIC concentrations. For the colluvic soil, the predominately upward flow led to a net input in DIC and DOC. For the truncated soils at steep slopes, a reduced crop growth caused an relative increase in drainage, suggesting an accelerated leaching, which in the long term could accelerate the soil development and more soil variations along eroding hillslopes in arable soil landscapes.

  4. Docking, molecular dynamics and free energy studies on aspartoacylase mutations involved in Canavan disease.

    PubMed

    Kocak, Abdulkadir; Yildiz, Muslum

    2017-03-19

    The disruption of aspartoacylase enzyme's catalytic activity causes fatal neurodegenerative Canavan disease. By molecular dynamics and docking methods, here we studied two deleterious mutations that have been identified in the Canavan patients' genotype E285A, F295S, and revealed the possible cause for the enzyme inhibition due to the drastic changes in active site dynamics, loss of interactions among Arg 71, Arg 168 and the substrate and pKa value of critical Glu178 residue. In addition to changes in the enzyme dynamics, free energy calculations show that the binding energy of substrate decreases dramatically up on mutations.

  5. Periodontal health and caries prevalence evaluation in patients affected by Parkinson's disease.

    PubMed

    Cicciù, Marco; Risitano, Giacomo; Lo Giudice, Giuseppe; Bramanti, Ennio

    2012-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder related to the loss or absence of dopaminergic neurons in the brain. These deficits result in slowness of movement, tremor, rigidity, and dysfunction of behaviour. These symptoms negatively influence the patient's capability to carry out the daily oral hygiene manoeuvres. The aim of this work is to record the oral health condition of PD patients evaluated at the IRCSS Bonino-Puleio in Messina. The oral health of 45 consecutive PD patients (study group) with neurologic diagnosis based on United Kingdom Brain Bank Criteria has been compared with that of another 45 no PD patients of the same age (control group). The evaluation of the general oral condition was recorded underlining tooth loss, active periodontal disease, and presence of untreated caries. The frequency of untreated caries, periodontal diseases, and missing teeth of the study group was significantly higher than in control group. Based on the data results, clinicians should direct high attention to the oral hygiene of patients with PD, above all at the early stages of the caries or periodontal disease, in order to prevent serious evolution of those pathologic dental conditions that may finally result in the tooth extraction event.

  6. 78 FR 58316 - Complex Issues in Developing Medical Devices for Pediatric Patients Affected by Rare Diseases...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... HUMAN SERVICES Food and Drug Administration Complex Issues in Developing Medical Devices for Pediatric... (FDA) is announcing the following public workshop entitled ``Complex Issues in Developing Medical... ``Complex Issues in Developing Drug and Biological Products for Rare Diseases.'' The purpose of the...

  7. Interacting disturbances: wildfire severity affected by stage of forest disease invasion.

    PubMed

    Metz, Margaret R; Frangioso, Kerri M; Meentemeyer, Ross K; Rizzo, David M

    2011-03-01

    Sudden oak death (SOD) is an emerging forest disease causing extensive tree mortality in coastal California forests. Recent California wildfires provided an opportunity to test a major assumption underlying discussions of SOD and land management: SOD mortality will increase fire severity. We examined prefire fuels from host species in a forest monitoring plot network in Big Sur, California (USA), to understand the interactions between disease-caused mortality and wildfire severity during the 2008 Basin Complex wildfire. Detailed measurements of standing dead woody stems and downed woody debris 1-2 years prior to the Basin fire provided a rare picture of the increased fuels attributable to SOD mortality. Despite great differences in host fuel abundance, we found no significant difference in burn severity between infested and uninfested plots. Instead, the relationship between SOD and fire reflected the changing nature of the disease impacts over time. Increased SOD mortality contributed to overstory burn severity only in areas where the pathogen had recently invaded. Where longer-term disease establishment allowed dead material to fall and accumulate, increasing log volumes led to increased substrate burn severity. These patterns help inform forest management decisions regarding fire, both in Big Sur and in other areas of California as the pathogen continues to expand throughout coastal forests.

  8. Disease severity of organic rice as affected by host resistance, fertility and tillage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies were conducted to determine the effect of fertilizer inputs and tillage methods on disease incidence in an organic rice production system. The results of these studies suggest that organically produced rice is more vulnerable to infection of narrow brown leaf spot and brown spot. Thi...

  9. Periodontal Health and Caries Prevalence Evaluation in Patients Affected by Parkinson's Disease

    PubMed Central

    Cicciù, Marco; Risitano, Giacomo; Lo Giudice, Giuseppe; Bramanti, Ennio

    2012-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder related to the loss or absence of dopaminergic neurons in the brain. These deficits result in slowness of movement, tremor, rigidity, and dysfunction of behaviour. These symptoms negatively influence the patient's capability to carry out the daily oral hygiene manoeuvres. The aim of this work is to record the oral health condition of PD patients evaluated at the IRCSS Bonino-Puleio in Messina. The oral health of 45 consecutive PD patients (study group) with neurologic diagnosis based on United Kingdom Brain Bank Criteria has been compared with that of another 45 no PD patients of the same age (control group). The evaluation of the general oral condition was recorded underlining tooth loss, active periodontal disease, and presence of untreated caries. The frequency of untreated caries, periodontal diseases, and missing teeth of the study group was significantly higher than in control group. Based on the data results, clinicians should direct high attention to the oral hygiene of patients with PD, above all at the early stages of the caries or periodontal disease, in order to prevent serious evolution of those pathologic dental conditions that may finally result in the tooth extraction event. PMID:23320249

  10. Evolutionary changes affecting rapid identification of 2008 Newcastle disease viruses isolated from double-crested cormorants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An outbreak of virulent Newcastle Disease Virus (NDV) in wild double-breasted cormorants (Phalacrocorax auritus) occurred in North America in the summer of 2008. All ten viruses isolated from cormorants were positively identified by the USDA validated real-time reverse transcriptase polymerase chai...

  11. The interplay between language, gesture, and affect during communicative transition: a dynamic systems approach.

    PubMed

    Parladé, Meaghan V; Iverson, Jana M

    2011-05-01

    From a dynamic systems perspective, transition points in development are times of increased instability, during which behavioral patterns are susceptible to temporary decoupling. This study investigated the impact of the vocabulary spurt on existing patterns of communicative coordination. Eighteen typically developing infants were videotaped at home 1 month before, at, and after the vocabulary spurt. Infants were identified as spurters if they underwent a discrete phase transition in vocabulary development (marked by an inflection point), and compared with a group of nonspurters whose word-learning rates followed a trajectory of continuous change. Relative to surrounding sessions, there were significant reductions in overall coordination of communicative behaviors and in words produced in coordination at the vocabulary spurt session for infants who experienced more dramatic vocabulary growth. In contrast, nonspurters demonstrated little change across sessions. Findings underscore the importance of transitions as opportunities for observing processes of developmental change.

  12. [Factors Affecting the Dynamics of Circadian Activity of Frit Flies Meromyza saltatrix (L) (Diptera: Chloropidae)].

    PubMed

    Safonkin, A F; Triselyova, T A; Yazchuk, A A; Akent'eva, N A

    2015-01-01

    The dynamics of circadian activity in adult frit flies of the Holarctic species Meromyza saltatrix (L) from Mongolian, Moscow, and Polish populations was studied. Synchronous peaks of activity were revealed with the periodicity multiple of three-four hours, which may depend on the level of light. The direct effect of temperature and humidity on the activity of flies outside the optimal values of these factors was found. It was detected that the peak of adult emergence falls on the beginning of a general increase in the abundance of flies, which indicates constant rejuvenation of the population. The sex ratio is close to 1, but the emergence of males and females is in antiphase. The synchronization of peaks of circadian activity in the populations from different regions confirms the presence of a circadian rhythm of activity. The rhythm synchronizing the reproductive activity of adults was found to be modified by the photoperiod under the optimum conditions of temperature and humidity.

  13. Melatonin affects the order, dynamics and hydration of brain membrane lipids

    NASA Astrophysics Data System (ADS)

    Akkas, Sara B.; Inci, Servet; Zorlu, Faruk; Severcan, Feride

    2007-05-01

    The brain is especially susceptible to free radical attack since it is rich in polyunsaturated fatty acids and consumes very high amounts of oxygen. Melatonin is a non-enzymatic amphiphilic antioxidant hormone that is widely used in medicine for protective and treatment purposes in cases of oxidative stress. In the present work, the effects of the clinically used dose of melatonin (a single intraperitoneal dose of 100 mg/kg) on rat brain homogenate were investigated as a function of temperature using Fourier transform infrared spectroscopy. The results showed that the lipid to protein ratio decreases in the melatonin treated brain samples. Moreover, it is revealed that melatonin disorders and decreases the dynamics of lipids and induces a strengthening in the hydrogen bonding between the functional groups of both melatonin and the polar parts of lipids and/or water at physiological temperatures.

  14. Small doses, big troubles: modeling growth dynamics of organisms affecting microalgal production cultures in closed photobioreactors.

    PubMed

    Forehead, Hugh I; O'Kelly, Charles J

    2013-02-01

    The destruction of mass cultures of microalgae by biological contamination of culture medium is a pervasive and expensive problem, in industry and research. A mathematical model has been formulated that attempts to explain contaminant growth dynamics in closed photobioreactors (PBRs). The model simulates an initial growth phase without PBR dilution, followed by a production phase in which culture is intermittently removed. Contaminants can be introduced at any of these stages. The model shows how exponential growth from low initial inocula can lead to "explosive" growth in the population of contaminants, appearing days to weeks after inoculation. Principal influences are contaminant growth rate, PBR dilution rate, and the size of initial contaminant inoculum. Predictions corresponded closely with observed behavior of two contaminants, Uronema sp. and Neoparamoeba sp., found in operating PBRs. A simple, cheap and effective protocol was developed for short-term prediction of contamination in PBRs, using microscopy and archived samples.

  15. Testing parameters of TMR heads affected by dynamic-tester induced EMI

    NASA Astrophysics Data System (ADS)

    Kruesubthaworn, A.; Sivaratana, R.; Ungvichian, V.; Siritaratiwat, A.

    2007-09-01

    A variety of expected electromagnetic interference (EMI) sources of both radiated and conducted EMI emissions produced by a dynamic tester is studied. It is determined that the power cable connector of the robot arm radiates a significant electric field (E-field) of about 197 V/m at 1 foot away and an estimated calculation of the E-field of about 212 mV/m is at the spindle motor. These fields can be attenuated by about 20-30 dB when using a copper lined Faraday's cage. Furthermore, the study has revealed that the radiated EMI plays a more significant role than the conducted EMI. In addition, it is determined that out of seven selected testing parameters, the SGAW is rather more sensitive to EMI than conventional failure parameters, especially static glitche during the write cycle.

  16. Assessing when chromosomal rearrangements affect the dynamics of speciation: implications from computer simulations.

    PubMed

    Feder, Jeffrey L; Nosil, Patrik; Flaxman, Samuel M

    2014-01-01

    Many hypotheses have been put forth to explain the origin and spread of inversions, and their significance for speciation. Several recent genic models have proposed that inversions promote speciation with gene flow due to the adaptive significance of the genes contained within them and because of the effects inversions have on suppressing recombination. However, the consequences of inversions for the dynamics of genome wide divergence across the speciation continuum remain unclear, an issue we examine here. We review a framework for the genomics of speciation involving the congealing of the genome into alternate adaptive states representing species ("genome wide congealing"). We then place inversions in this context as examples of how genetic hitchhiking can potentially hasten genome wide congealing. Specifically, we use simulation models to (i) examine the conditions under which inversions may speed genome congealing and (ii) quantify predicted magnitudes of these effects. Effects of inversions on promoting speciation were most common and pronounced when inversions were initially fixed between populations before secondary contact and adaptation involved many genes with small fitness effects. Further work is required on the role of underdominance and epistasis between a few loci of major effect within inversions. The results highlight five important aspects of the roles of inversions in speciation: (i) the geographic context of the origins and spread of inversions, (ii) the conditions under which inversions can facilitate divergence, (iii) the magnitude of that facilitation, (iv) the extent to which the buildup of divergence is likely to be biased within vs. outside of inversions, and (v) the dynamics of the appearance and disappearance of exceptional divergence within inversions. We conclude by discussing the empirical challenges in showing that inversions play a central role in facilitating speciation with gene flow.

  17. Fluid front displacement dynamics affecting pressure fluctuations and phase entrapment in porous media

    NASA Astrophysics Data System (ADS)

    Moebius, F.; Or, D.

    2012-04-01

    Many natural and engineering processes involve motion of fluid fronts in porous media, from infiltration and drainage in hydrology to reservoir management in petroleum engineering. Macroscopically smooth and continuous motion of displacement fronts involves numerous rapid interfacial jumps and local reconfigurations. Detailed observations of displacement processes in micromodels illustrate the wide array of fluid interfacial dynamics ranging from irregular jumping-pinning motions to gradual pore scale invasions. The pressure fluctuations associated with interfacial motions reflect not only pore geometry (as traditionally hypothesized) but there is a strong influence of boundary conditions (e.g., mean drainage rate). The time scales associated with waiting time distribution of individual invasion events and decay time of inertial oscillations (following a rapid interfacial jump) provide a means for distinguishing between displacement regimes. Direct observations using high-speed camera combined with concurrent pressure signal measurements were instrumental in clarifying influences of flow rates, pore size, and gravity on burst size distribution and waiting times. We compared our results with the early experimental and theoretical study on burst size and waiting time distribution during slow drainage processes of Måløy et al. [Måløy et al., 1992]. Results provide insights on critical invasion events that exert strong influence on macroscopic phenomena such as front morphology and residual phase entrapment behind leading to hysteresis. Måløy, K. J., L. Furuberg, J. Feder, and T. Jossang (1992), Dynamics of Slow Drainage in Porous-Media, Phys Rev Lett, 68(14), 2161-2164.

  18. Differential replication dynamics for large and small Vibrio chromosomes affect gene dosage, expression and location

    PubMed Central

    Dryselius, Rikard; Izutsu, Kaori; Honda, Takeshi; Iida, Tetsuya

    2008-01-01

    Background Replication of bacterial chromosomes increases copy numbers of genes located near origins of replication relative to genes located near termini. Such differential gene dosage depends on replication rate, doubling time and chromosome size. Although little explored, differential gene dosage may influence both gene expression and location. For vibrios, a diverse family of fast growing gammaproteobacteria, gene dosage may be particularly important as they harbor two chromosomes of different size. Results Here we examined replication dynamics and gene dosage effects for the separate chromosomes of three Vibrio species. We also investigated locations for specific gene types within the genome. The results showed consistently larger gene dosage differences for the large chromosome which also initiated replication long before the small. Accordingly, large chromosome gene expression levels were generally higher and showed an influence from gene dosage. This was reflected by a higher abundance of growth essential and growth contributing genes of which many locate near the origin of replication. In contrast, small chromosome gene expression levels were low and appeared independent of gene dosage. Also, species specific genes are highly abundant and an over-representation of genes involved in transcription could explain its gene dosage independent expression. Conclusion Here we establish a link between replication dynamics and differential gene dosage on one hand and gene expression levels and the location of specific gene types on the other. For vibrios, this relationship appears connected to a polarisation of genetic content between its chromosomes, which may both contribute to and be enhanced by an improved adaptive capacity. PMID:19032792

  19. Paxillin mutations affect focal adhesions and lead to altered mitochondrial dynamics

    PubMed Central

    Kawada, Ichiro; Hasina, Rifat; Lennon, Frances E; Bindokas, Vytautas P; Usatyuk, Peter; Tan, Yi-Hung C; Krishnaswamy, Soundararajan; Arif, Qudsia; Carey, George; Hseu, Robyn D; Robinson, Matthew; Tretiakova, Maria; Brand, Toni M; Iida, Mari; Ferguson, Mark K; Wheeler, Deric L; Husain, Aliya N; Natarajan, Viswanathan; Vokes, Everett E; Singleton, Patrick A; Salgia, Ravi

    2013-01-01

    Cytoskeletal and focal adhesion abnormalities are observed in several types of cancer, including lung cancer. We have previously reported that paxillin (PXN) was mutated, amplified, and overexpressed in a significant number of lung cancer patient samples, that PXN protein was upregulated in more advanced stages of lung cancer compared with lower stages, and that the PXN gene was also amplified in some pre-neoplastic lung lesions. Among the mutations investigated, we previously found that PXN variant A127T in lung cancer cells enhanced cell proliferation and focal adhesion formation and colocalized with the anti-apoptotic protein B Cell Lymphoma 2 (BCL-2), which is known to localize to the mitochondria, among other sites. To further explore the effects of activating mutations of PXN on mitochondrial function, we cloned and expressed wild-type PXN and variants containing the most commonly occurring PXN mutations (P46S, P52L, G105D, A127T, P233L, T255I, D399N, E423K, P487L, and K506R) in a GFP-tagged vector using HEK-293 human embryonic kidney cells. Utilizing live-cell imaging to systematically study the effects of wild-type PXN vs. mutants, we created a model that recapitulates the salient features of the measured dynamics and conclude that compared with wild-type, some mutant clones confer enhanced focal adhesion and lamellipodia formation (A127T, P233L, and P487L) and some confer increased association with BCL-2, Dynamin-related Protein-1 (DRP-1), and Mitofusion-2 (MFN-2) proteins (P233L and D399N). Further, PXN mutants, through their interactions with BCL-2 and DRP-1, could regulate cisplatin drug resistance in human lung cancer cells. The data reported herein suggest that mutant PXN variants play a prominent role in mitochondrial dynamics with direct implications on lung cancer progression and hence, deserve further exploration as therapeutic targets. PMID:23792636

  20. Tracheobronchomalacia/excessive dynamic airway collapse in patients with chronic obstructive pulmonary disease with persistent expiratory wheeze: A pilot study

    PubMed Central

    Sindhwani, Girish; Sodhi, Rakhee; Saini, Manju; Jethani, Varuna; Khanduri, Sushant; Singh, Baltej

    2016-01-01

    Background: Tracheobronchomalacia (TBM) refers to a condition in which structural integrity of cartilaginous wall of trachea is lost. Excessive dynamic airway collapse (EDAC) is characterized by excessive invagination of posterior wall of trachea. In both these conditions, airway lumen gets compromised, especially during expiration, which can lead to symptoms such as breathlessness, cough, and wheezing. Both these conditions can be present in obstructive lung diseases; TBM due to chronic airway inflammation and EDAC due to dynamic compressive forces during expiration. The present study was planned with the hypothesis that TBM/EDAC could also produce expiratory wheeze in patients with obstructive airway disorders. Hence, prevalence and factors affecting presence of this entity in patients with obstructive airway diseases were the aims and objectives of this study. Materials and Methods: Twenty-five patients with obstructive airway disorders (chronic obstructive pulmonary disease [COPD] or bronchial asthma), who were stable on medical management, but having persistent expiratory wheezing, were included in the study. They were evaluated for TBM/EDAC by bronchoscopy and computed tomographic scan of chest. The presence of TBM/EDAC was correlated with variables including age, sex, body mass index (BMI), smoking index, level of dyspnea, and severity of disease. Results: Mean age of the patients was 62.7 ± 7.81 years. Out of 25 patients, 14 were males. TBM/EDAC was found in 40% of study subjects. Age, sex, BMI, severity of disease, frequency of exacerbations and radiological findings etc., were not found to have any association with presence of TBM/EDAC. Conclusion: TBM/EDAC is common in patients with obstructive airway disorders and should be evaluated in these patients, especially with persistent expiratory wheezing as diagnosis of this entity could provide another treatment option in these patients with persistent symptoms despite medical management. PMID:27578929

  1. In Utero Cigarette Smoke Affects Allergic Airway Disease But Does Not Alter the Lung Methylome

    PubMed Central

    Eyring, Kenneth R.; Pedersen, Brent S.; Yang, Ivana V.; Schwartz, David A.

    2015-01-01

    Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma. Despite this as well as other smoking related risks, 11% of women still smoke during pregnancy. We hypothesized that cigarette smoke exposure during prenatal development generates long lasting differential methylation altering transcriptional activity that correlates with disease. In a house dust mite (HDM) model of allergic airway disease, we measured airway hyperresponsiveness (AHR) and airway inflammation between mice exposed prenatally to cigarette smoke (CS) or filtered air (FA). DNA methylation and gene expression were then measured in lung tissue. We demonstrate that HDM-treated CS mice develop a more severe allergic airway disease compared to HDM-treated FA mice including increased AHR and airway inflammation. While DNA methylation changes between the two HDM-treated groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value < 0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Additionally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3) are differentially expressed between HDM-treated CS mice and HDM-treated FA mice. Our findings confirm that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease; however, it is unlikely that specific methylation changes account for the exposure-response relationship. These findings highlight the important role in utero cigarette smoke exposure plays in the development of allergic airway disease. PMID:26642056

  2. Severity of liver disease affects HCV kinetics in patients treated with intravenous silibinin monotherapy

    SciTech Connect

    Canini, Laetitia; DebRoy, Swati; Mariño, Zoe; Conway, Jessica M.; Crespo, Gonzalo; Navasa, Miquel; D’Amato, Massimo; Ferenci, Peter; Cotler, Scott J.; Forns, Xavier; Perelson, Alan S.; Dahari, Harel

    2014-06-10

    HCV kinetic analysis and modeling during antiviral therapy have not been performed in decompensated cirrhotic patients awaiting liver transplantation. Here, viral and host parameters were compared in patients treated with daily intravenous silibinin (SIL) monotherapy for 7 days according to the severity of their liver disease. Data were obtained from 25 patients, 12 non-cirrhotic, 8 with compensated cirrhosis and 5 with decompensated cirrhosis. The standard-biphasic model with time-varying SIL effectiveness (from 0 to εmax) was fit to viral kinetic data. Our results show that baseline viral load and age were significantly associated with the severity of liver disease (p<0.0001). A biphasic viral decline was observed in most patients with a higher first phase decline patients with less severe liver disease. The maximal effectiveness, εmax, was significantly (p≤0.032) associated with increasing severity of liver diseasemax[s.e.]=0.86[0.05], εmax=0.69[0.06] and εmax=0.59[0.1]). The 2nd phase decline slope was not significantly different among groups (mean 1.88±0.15 log10IU/ml/wk, p=0.75) as was the rate of change of SIL effectiveness (k=2.12/day[standard error, SE=0.18/day]). HCV-infected cell loss rate (δ[SE]=0.62/day[0.05/day]) was high and similar among groups. We conclude that the high loss rate of HCV-infected cells suggests that sufficient dose and duration of SIL might achieve viral suppression in advanced liver disease.

  3. Severity of liver disease affects HCV kinetics in patients treated with intravenous silibinin monotherapy

    DOE PAGES

    Canini, Laetitia; DebRoy, Swati; Mariño, Zoe; ...

    2014-06-10

    HCV kinetic analysis and modeling during antiviral therapy have not been performed in decompensated cirrhotic patients awaiting liver transplantation. Here, viral and host parameters were compared in patients treated with daily intravenous silibinin (SIL) monotherapy for 7 days according to the severity of their liver disease. Data were obtained from 25 patients, 12 non-cirrhotic, 8 with compensated cirrhosis and 5 with decompensated cirrhosis. The standard-biphasic model with time-varying SIL effectiveness (from 0 to εmax) was fit to viral kinetic data. Our results show that baseline viral load and age were significantly associated with the severity of liver disease (p<0.0001). Amore » biphasic viral decline was observed in most patients with a higher first phase decline patients with less severe liver disease. The maximal effectiveness, εmax, was significantly (p≤0.032) associated with increasing severity of liver disease (εmax[s.e.]=0.86[0.05], εmax=0.69[0.06] and εmax=0.59[0.1]). The 2nd phase decline slope was not significantly different among groups (mean 1.88±0.15 log10IU/ml/wk, p=0.75) as was the rate of change of SIL effectiveness (k=2.12/day[standard error, SE=0.18/day]). HCV-infected cell loss rate (δ[SE]=0.62/day[0.05/day]) was high and similar among groups. We conclude that the high loss rate of HCV-infected cells suggests that sufficient dose and duration of SIL might achieve viral suppression in advanced liver disease.« less

  4. Brain Dynamics: Methodological Issues and Applications in Psychiatric and Neurologic Diseases

    NASA Astrophysics Data System (ADS)

    Pezard, Laurent

    The human brain is a complex dynamical system generating the EEG signal. Numerical methods developed to study complex physical dynamics have been used to characterize EEG since the mid-eighties. This endeavor raised several issues related to the specificity of EEG. Firstly, theoretical and methodological studies should address the major differences between the dynamics of the human brain and physical systems. Secondly, this approach of EEG signal should prove to be relevant for dealing with physiological or clinical problems. A set of studies performed in our group is presented here within the context of these two problematic aspects. After the discussion of methodological drawbacks, we review numerical simulations related to the high dimension and spatial extension of brain dynamics. Experimental studies in neurologic and psychiatric disease are then presented. We conclude that if it is now clear that brain dynamics changes in relation with clinical situations, methodological problems remain largely unsolved.

  5. Varietal Dynamics and Yam Agro-Diversity Demonstrate Complex Trajectories Intersecting Farmers' Strategies, Networks, and Disease Experience.

    PubMed

    Penet, Laurent; Cornet, Denis; Blazy, Jean-Marc; Alleyne, Angela; Barthe, Emilie; Bussière, François; Guyader, Sébastien; Pavis, Claudie; Pétro, Dalila

    2016-01-01

    Loss of varietal diversity is a worldwide challenge to crop species at risk for genetic erosion, while the loss of biological resources may hinder future breeding objectives. Loss of varieties has been mostly investigated in traditional agricultural systems where variety numbers are dramatically high, or for most economically important crop species for which comparison between pre-intensive and modern agriculture was possible. Varietal dynamics, i.e., turnover, or gains and losses of varieties by farmers, is nevertheless more rarely studied and while we currently have good estimates of genetic or varietal diversity for most crop species, we have less information as to how on farm agro-diversity changes and what cause its dynamics. We therefore investigated varietal dynamics in the agricultural yam system in the Caribbean island of Guadeloupe. We interviewed producers about varieties they cultivated in the past compared to their current varieties, in addition to characterizing yam cropping characteristics and both farm level and producers socio-economic features. We then used regression tree analyses to investigate the components of yam agro-diversity, varietal dynamics and impact of anthracnose on varieties. Our data demonstrated that no dramatic loss of varieties occurred within the last decades. Cultivation changes mostly affected widespread cultivars while frequency of uncommon varieties stayed relatively stable. Varietal dynamics nevertheless followed sub-regional patterns, and socio-economic influences such as producer age or farm crop diversity. Recurrent anthracnose epidemics since the 1970s did not alter varietal dynamics strongly, but sometimes translated into transition from Dioscorea alata to less susceptible species or into a decrease of yam cultivation. Factors affecting changes in agro-diversity were not relating to agronomy in our study, and surprisingly there were different processes delineating short term from long term varietal dynamics

  6. Varietal Dynamics and Yam Agro-Diversity Demonstrate Complex Trajectories Intersecting Farmers’ Strategies, Networks, and Disease Experience

    PubMed Central

    Penet, Laurent; Cornet, Denis; Blazy, Jean-Marc; Alleyne, Angela; Barthe, Emilie; Bussière, François; Guyader, Sébastien; Pavis, Claudie; Pétro, Dalila

    2016-01-01

    Loss of varietal diversity is a worldwide challenge to crop species at risk for genetic erosion, while the loss of biological resources may hinder future breeding objectives. Loss of varieties has been mostly investigated in traditional agricultural systems where variety numbers are dramatically high, or for most economically important crop species for which comparison between pre-intensive and modern agriculture was possible. Varietal dynamics, i.e., turnover, or gains and losses of varieties by farmers, is nevertheless more rarely studied and while we currently have good estimates of genetic or varietal diversity for most crop species, we have less information as to how on farm agro-diversity changes and what cause its dynamics. We therefore investigated varietal dynamics in the agricultural yam system in the Caribbean island of Guadeloupe. We interviewed producers about varieties they cultivated in the past compared to their current varieties, in addition to characterizing yam cropping characteristics and both farm level and producers socio-economic features. We then used regression tree analyses to investigate the components of yam agro-diversity, varietal dynamics and impact of anthracnose on varieties. Our data demonstrated that no dramatic loss of varieties occurred within the last decades. Cultivation changes mostly affected widespread cultivars while frequency of uncommon varieties stayed relatively stable. Varietal dynamics nevertheless followed sub-regional patterns, and socio-economic influences such as producer age or farm crop diversity. Recurrent anthracnose epidemics since the 1970s did not alter varietal dynamics strongly, but sometimes translated into transition from Dioscorea alata to less susceptible species or into a decrease of yam cultivation. Factors affecting changes in agro-diversity were not relating to agronomy in our study, and surprisingly there were different processes delineating short term from long term varietal dynamics

  7. A dynamic model for infectious diseases: The role of vaccination and treatment

    NASA Astrophysics Data System (ADS)

    Raja Sekhara Rao, P.; Naresh Kumar, M.

    2015-06-01

    Understanding dynamics of an infectious disease helps in designing appropriate strategies for containing its spread in a population. Recent mathematical models are aimed at studying dynamics of some specific types of infectious diseases. In this paper we propose a new model for infectious diseases spread having susceptible, infected, and recovered populations and study its dynamics in presence of incubation delays and relapse of the disease. The influence of treatment and vaccination efforts on the spread of infection in presence of time delays are studied. Sufficient conditions for local stability of the equilibria and change of stability are derived in various cases. The problem of global stability is studied for an important special case of the model. Simulations carried out in this study brought out the importance of treatment rate in controlling the disease spread. It is observed that incubation delays have influence on the system even under enhanced vaccination. The present study has clearly brought out the fact that treatment rate in presence of time delays would contain the disease as compared to popular belief that eradication can only be done through vaccination.

  8. Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction.

    PubMed

    McCallum, Hamish; Jones, Menna; Hawkins, Clare; Hamede, Rodrigo; Lachish, Shelly; Sinn, David L; Beeton, Nick; Lazenby, Billie

    2009-12-01

    Most pathogens threatening to cause extinction of a host species are maintained on one or more reservoir hosts, in addition to the species that is threatened by disease. Further, most conventional host-pathogen theory assumes that transmission is related to host density, and therefore a pathogen should become extinct before its sole host. Tasmanian devil facial tumor disease is a recently emerged infectious cancer that has led to massive population declines and grave concerns for the future persistence of this largest surviving marsupial carnivore. Here we report the results of mark-recapture studies at six sites and use these data to estimate epidemiological parameters critical to both accurately assessing the risk of extinction from this disease and effectively managing this disease threat. Three sites were monitored from before or close to the time of disease arrival, and at three others disease was well established when trapping began, in one site for at least 10 years. We found no evidence for sex-specific differences in disease prevalence and little evidence of consistent seasonal variation in the force of infection. At all sites, the disease was maintained at high levels of prevalence (>50% in 2-3-year-old animals), despite causing major population declines. We also provide the first estimates of the basic reproductive rate R0 for this disease. Using a simple age-structured deterministic model, we show that our results are not consistent with transmission being proportional to the density of infected hosts but are consistent with frequency-dependent transmission. This conclusion is further supported by the observation that local disease prevalence in 2-3-year-olds still exceeds 50% at a site where population density has been reduced by up to 90% in the past 12 years. These findings lend considerable weight to concerns that this host-specific pathogen will cause the extinction of the Tasmanian devil. Our study highlights the importance of rapidly implementing

  9. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia

    USGS Publications Warehouse

    Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A.

    2008-01-01

    Aim  We aimed to estimate the present extent of tsunami-affected mangrove forests and determine the rates and causes of deforestation from 1975 to 2005.Loc