Science.gov

Sample records for affect dna uptake

  1. Restriction and sequence alterations affect DNA uptake sequence-dependent transformation in Neisseria meningitidis.

    PubMed

    Ambur, Ole Herman; Frye, Stephan A; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  2. Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis

    PubMed Central

    Ambur, Ole Herman; Frye, Stephan A.; Nilsen, Mariann; Hovland, Eirik; Tønjum, Tone

    2012-01-01

    Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination. PMID

  3. Transfection of L6 myoblasts with adipocyte fatty acid-binding protein cDNA does not affect fatty acid uptake but disturbs lipid metabolism and fusion.

    PubMed Central

    Prinsen, C F; Veerkamp, J H

    1998-01-01

    We studied the involvement of fatty acid-binding protein (FABP) in growth, differentiation and fatty acid metabolism of muscle cells by lipofection of rat L6 myoblasts with rat heart (H) FABP cDNA or with rat adipocyte (A) FABP cDNA in a eukaryotic expression vector which contained a puromycin acetyltransferase cassette. Stable transfectants showed integration into the genome for all constructs and type-specific overexpression at the mRNA and protein level for the clones with H-FABP and A-FABP cDNA constructs. The rate of proliferation of myoblasts transfected with rat A-FABP cDNA was 2-fold higher compared with all other transfected cells. In addition, these myoblasts showed disturbed fusion and differentiation, as assessed by morphological examination and creatine kinase activity. Uptake rates of palmitate were equal for all clone types, in spite of different FABP content and composition. Palmitate oxidation over a 3 h period was similar in all clones from growth medium. After being cultured in differentiation medium, mock- and H-FABP-cDNA-transfected cells showed a lower fatty acid-oxidation rate, in contrast with A-FABP-cDNA-transfected clones. The ratio of [14C]palmitic acid incorporation into phosphatidylcholine and phosphatidylethanolamine of A-FABP-cDNA-transfected clones changed in the opposite direction in differentiation medium from that of mock- and H-FABP-cDNA-transfected clones. In conclusion, transfection of L6 myoblasts with A-FABP cDNA does not affect H-FABP content and fatty acid uptake, but changes fatty acid metabolism. The latter changes may be related to the observed fusion defect. PMID:9425108

  4. DNA UPTAKE BY TRANSFORMABLE BACTERIA

    SciTech Connect

    LACKS,S.A.

    1999-09-07

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  5. DNA Uptake by Transformable Bacteria

    SciTech Connect

    Lacks, Sanford A.

    1999-03-31

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  6. Dialects of the DNA uptake sequence in Neisseriaceae.

    PubMed

    Frye, Stephan A; Nilsen, Mariann; Tønjum, Tone; Ambur, Ole Herman

    2013-04-01

    In all sexual organisms, adaptations exist that secure the safe reassortment of homologous alleles and prevent the intrusion of potentially hazardous alien DNA. Some bacteria engage in a simple form of sex known as transformation. In the human pathogen Neisseria meningitidis and in related bacterial species, transformation by exogenous DNA is regulated by the presence of a specific DNA Uptake Sequence (DUS), which is present in thousands of copies in the respective genomes. DUS affects transformation by limiting DNA uptake and recombination in favour of homologous DNA. The specific mechanisms of DUS-dependent genetic transformation have remained elusive. Bioinformatic analyses of family Neisseriaceae genomes reveal eight distinct variants of DUS. These variants are here termed DUS dialects, and their effect on interspecies commutation is demonstrated. Each of the DUS dialects is remarkably conserved within each species and is distributed consistent with a robust Neisseriaceae phylogeny based on core genome sequences. The impact of individual single nucleotide transversions in DUS on meningococcal transformation and on DNA binding and uptake is analysed. The results show that a DUS core 5'-CTG-3' is required for transformation and that transversions in this core reduce DNA uptake more than two orders of magnitude although the level of DNA binding remains less affected. Distinct DUS dialects are efficient barriers to interspecies recombination in N. meningitidis, N. elongata, Kingella denitrificans, and Eikenella corrodens, despite the presence of the core sequence. The degree of similarity between the DUS dialect of the recipient species and the donor DNA directly correlates with the level of transformation and DNA binding and uptake. Finally, DUS-dependent transformation is documented in the genera Eikenella and Kingella for the first time. The results presented here advance our understanding of the function and evolution of DUS and genetic transformation in

  7. The DNA-Uptake Process of Naturally Competent Vibrio cholerae.

    PubMed

    Matthey, Noémie; Blokesch, Melanie

    2016-02-01

    The sophisticated DNA-uptake machinery used during natural transformation is still poorly characterized, especially in Gram-negative bacteria where the transforming DNA has to cross two membranes as well as the peptidoglycan layer before entering the cytoplasm. The DNA-uptake machinery was hypothesized to take the form of a pseudopilus, which, upon repeated cycles of extension and retraction, would pull external DNA towards the cell surface or into the periplasmic space, followed by translocation across the cytoplasmic membrane. In this review, we summarize recent advances on the DNA-uptake machinery of V. cholerae, highlighting the presence of an extended competence-induced pilus and the contribution of a conserved DNA-binding protein that acts as a ratchet and reels DNA into the periplasm. PMID:26614677

  8. Natural competence and the evolution of DNA uptake specificity.

    PubMed

    Mell, Joshua Chang; Redfield, Rosemary J

    2014-04-01

    Many bacteria are naturally competent, able to actively transport environmental DNA fragments across their cell envelope and into their cytoplasm. Because incoming DNA fragments can recombine with and replace homologous segments of the chromosome, competence provides cells with a potent mechanism of horizontal gene transfer as well as access to the nutrients in extracellular DNA. This review starts with an introductory overview of competence and continues with a detailed consideration of the DNA uptake specificity of competent proteobacteria in the Pasteurellaceae and Neisseriaceae. Species in these distantly related families exhibit strong preferences for genomic DNA from close relatives, a self-specificity arising from the combined effects of biases in the uptake machinery and genomic overrepresentation of the sequences this machinery prefers. Other competent species tested lack obvious uptake bias or uptake sequences, suggesting that strong convergent evolutionary forces have acted on these two families. Recent results show that uptake sequences have multiple "dialects," with clades within each family preferring distinct sequence variants and having corresponding variants enriched in their genomes. Although the genomic consensus uptake sequences are 12 and 29 to 34 bp, uptake assays have found that only central cores of 3 to 4 bp, conserved across dialects, are crucial for uptake. The other bases, which differ between dialects, make weaker individual contributions but have important cooperative interactions. Together, these results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought. PMID:24488316

  9. Study of DNA uptake locations in single E. coli cells

    NASA Astrophysics Data System (ADS)

    Xu, C. Shan; Meadow Anderson, L.; Yang, Haw

    2006-03-01

    Artificial gene transfer of bacteria, such as E. coli, has become the main stream technique in genetic engineering and molecular cell biology studies. In spite of the great improvements in transformation efficiency, some fundamental questions remained to be answered. For instance, what are the DNA uptake channels and how do they form and function under external stimuli? Furthermore, where are these channels located on the cell membrane? Here we report a study aimed at DNA uptake locations in the two widely used gene transformation techniques: electroporation and heat shock. A direct visualization of the settling location of single DNA molecules inside individual E. coli cells was obtained by fluorescence imaging and spectroscopy. Electroporation and heat shock exhibit two distinct characteristics of DNA uptake locations. A preferential distribution toward cell poles during electroporation is consistent with earlier experiments and previously proposed models. However, the result from heat shock is unanticipated in which the majority of DNA enters the cell near the center. Such observation suggests that uptake channels form preferentially where newly-synthesized membrane is located under cation and low temperature treatment

  10. Biased distribution of DNA uptake sequences towards genome maintenance genes.

    PubMed

    Davidsen, Tonje; Rødland, Einar A; Lagesen, Karin; Seeberg, Erling; Rognes, Torbjørn; Tønjum, Tone

    2004-01-01

    Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H.influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions. These results imply that the high frequency of DUS in genome maintenance genes is conserved among phylogenetically divergent species and thus are of significant biological importance. Increased DUS density is expected to enhance DNA uptake and the over-representation of DUS in genome maintenance genes might reflect facilitated recovery of genome preserving functions. For example, transient and beneficial increase in genome instability can be allowed during pathogenesis simply through loss of antimutator genes, since these DUS-containing sequences will be preferentially recovered. Furthermore, uptake of such genes could provide a mechanism for facilitated recovery from DNA damage after genotoxic stress. PMID:14960717

  11. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure.

    PubMed

    Liu, Ying; Yan, Jing; Santangelo, Philip J; Prausnitz, Mark R

    2016-07-28

    Ultrasound has been studied as a promising tool for intracellular gene delivery. In this work, we studied gene transfection of a human prostate cancer cell line exposed to megahertz pulsed ultrasound in the presence of contrast agent and assessed the efficiency of fluorescently labelled DNA delivery into cell nuclei, which is necessary for gene transfection. At the sonication conditions studied, ~30% of cells showed DNA uptake 30min after sonication, but that fraction decreased over time to ~10% of cells after 24h. Most cells containing DNA had DNA in their nuclei, but the amount varied significantly. Transfection efficiency peaked at ~10% at 8h post sonication. Among those cells containing DNA, ~30% of DNA was localized in the cell nuclei, ~30% was in autophagosomes/autophagolysosomes and the remainder was "free" in the cytoplasm 30min after sonication. At later times up to 24h, ~30% of DNA continued to be found in the nuclei and most or all of the rest of the DNA was in autophagosomes/autophagolysosomes. These results demonstrate that ultrasound can deliver DNA into cell nuclei shortly after sonication and that the rest of the DNA can be cleared by autophagosomes/autophagolysosomes. PMID:27165808

  12. Sequence Affects the Cyclization of DNA Minicircles.

    PubMed

    Wang, Qian; Pettitt, B Montgomery

    2016-03-17

    Understanding how the sequence of a DNA molecule affects its dynamic properties is a central problem affecting biochemistry and biotechnology. The process of cyclizing short DNA, as a critical step in molecular cloning, lacks a comprehensive picture of the kinetic process containing sequence information. We have elucidated this process by using coarse-grained simulations, enhanced sampling methods, and recent theoretical advances. We are able to identify the types and positions of structural defects during the looping process at a base-pair level. Correlations along a DNA molecule dictate critical sequence positions that can affect the looping rate. Structural defects change the bending elasticity of the DNA molecule from a harmonic to subharmonic potential with respect to bending angles. We explore the subelastic chain as a possible model in loop formation kinetics. A sequence-dependent model is developed to qualitatively predict the relative loop formation time as a function of DNA sequence. PMID:26938490

  13. Metal-responsive promoter DNA compaction by the ferric uptake regulator.

    PubMed

    Roncarati, Davide; Pelliciari, Simone; Doniselli, Nicola; Maggi, Stefano; Vannini, Andrea; Valzania, Luca; Mazzei, Luca; Zambelli, Barbara; Rivetti, Claudio; Danielli, Alberto

    2016-01-01

    Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. PMID:27558202

  14. Metal-responsive promoter DNA compaction by the ferric uptake regulator

    PubMed Central

    Roncarati, Davide; Pelliciari, Simone; Doniselli, Nicola; Maggi, Stefano; Vannini, Andrea; Valzania, Luca; Mazzei, Luca; Zambelli, Barbara; Rivetti, Claudio; Danielli, Alberto

    2016-01-01

    Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. PMID:27558202

  15. New Functional Identity for the DNA Uptake Sequence in Transformation and Its Presence in Transcriptional Terminators▿

    PubMed Central

    Ambur, O. Herman; Frye, Stephan A.; Tønjum, Tone

    2007-01-01

    The frequently occurring DNA uptake sequence (DUS), recognized as a 10-bp repeat, is required for efficient genetic transformation in the human pathogens Neisseria meningitidis and Neisseria gonorrhoeae. Genome scanning for DUS occurrences in three different species of Neisseria demonstrated that 76% of the nearly 2,000 neisserial DUS were found to have two semiconserved base pairs extending from the 5′ end of DUS to constitute a 12-mer repeat. Plasmids containing sequential variants of the neisserial DUS were tested for their ability to transform N. meningitidis and N. gonorrhoeae, and the 12-mer was found to outperform the 10-mer DUS in transformation efficiency. Assessment of meningococcal uptake of DNA confirmed the enhanced performance of the 12-mer compared to the 10-mer DUS. An inverted repeat DUS was not more efficient in transformation than DNA species containing a single or direct repeat DUS. Genome-wide analysis revealed that half of the nearly 1,500 12-mer DUS are arranged as inverted repeats predicted to be involved in rho-independent transcriptional termination or attenuation. The distribution of the uptake signal sequence required for transformation in the Pasteurellaceae was also biased towards transcriptional terminators, although to a lesser extent. In addition to assessing the intergenic location of DUS, we propose that the 10-mer identity of DUS should be extended and recognized as a 12-mer DUS. The dual role of DUS in transformation and as a structural component on RNA affecting transcription makes this a relevant model system for assessing significant roles of repeat sequences in biology. PMID:17194793

  16. Glyceroglycolipids Affect Uptake of Carotenoids Solubilized in Mixed Micelles by Human Intestinal Caco-2 Cells.

    PubMed

    Kotake-Nara, Eiichi; Yonekura, Lina; Nagao, Akihiko

    2015-09-01

    We previously reported that phospholipids markedly affected the uptake of carotenoids solubilized in mixed micelles by human intestinal Caco-2 cells. In the present study, we found that two classes of dietary glyceroglycolipids and the corresponding lysoglyceroglycolipids affected uptake of β-carotene and lutein by differentiated Caco-2 cells. The levels of carotenoid uptake from micelles containing digalactosyldiacylglycerol or sulfoquinovosyldiacylglycerol were significantly lower than that from control micelles. On the other hand, the uptakes from micelles containing digalactosylmonoacylglycerol or sulfoquinovosylmonoacylglycerol were significantly higher than that from control micelles. In dispersed cells and Caco-2 cells with poor cell-to-cell adhesion, however, the levels of uptake from micelles containing these lyso-lipids were much lower than that from control micelles. The uptake levels from control micelles were markedly decreased depending on the development of cell-to-cell/cell-matrix adhesion in Caco-2 cells, but the uptake levels from the micelles containing these lyso-lipids were not substantially changed, suggesting that the intercellular barrier formed by cell-to-cell/cell-matrix adhesion inhibited the uptake from control micelles, but not from the lyso-lipid-containing micelles. The lyso-lipids appeared to enhance carotenoid uptake by decreasing the intercellular barrier integrity. The results showed that some types of glyceroglycolipids have the potential to modify the intestinal uptake of carotenoids. PMID:26012480

  17. Stability of mRNA/DNA and DNA/DNA Duplexes Affects mRNA Transcription

    PubMed Central

    Kraeva, Rayna I.; Krastev, Dragomir B.; Roguev, Assen; Ivanova, Anna; Nedelcheva-Veleva, Marina N.; Stoynov, Stoyno S.

    2007-01-01

    Nucleic acids, due to their structural and chemical properties, can form double-stranded secondary structures that assist the transfer of genetic information and can modulate gene expression. However, the nucleotide sequence alone is insufficient in explaining phenomena like intron-exon recognition during RNA processing. This raises the question whether nucleic acids are endowed with other attributes that can contribute to their biological functions. In this work, we present a calculation of thermodynamic stability of DNA/DNA and mRNA/DNA duplexes across the genomes of four species in the genus Saccharomyces by nearest-neighbor method. The results show that coding regions are more thermodynamically stable than introns, 3′-untranslated regions and intergenic sequences. Furthermore, open reading frames have more stable sense mRNA/DNA duplexes than the potential antisense duplexes, a property that can aid gene discovery. The lower stability of the DNA/DNA and mRNA/DNA duplexes of 3′-untranslated regions and the higher stability of genes correlates with increased mRNA level. These results suggest that the thermodynamic stability of DNA/DNA and mRNA/DNA duplexes affects mRNA transcription. PMID:17356699

  18. Identification of multiple cellular uptake pathways of polystyrene nanoparticles and factors affecting the uptake: relevance for drug delivery systems.

    PubMed

    Firdessa, Rebuma; Oelschlaeger, Tobias A; Moll, Heidrun

    2014-01-01

    Nanoparticles may address challenges by human diseases through improving diagnosis, vaccination and treatment. The uptake mechanism regulates the type of threat a particle poses on the host cells and how a cell responds to it. Hence, understanding the uptake mechanisms and cellular interactions of nanoparticles at the cellular and subcellular level is a prerequisite for their effective biomedical applications. The present study shows the uptake mechanisms of polystyrene nanoparticles and factors affecting their uptake in bone marrow-derived macrophages, 293T kidney epithelial cells and L929 fibroblasts. Labeling with the endocytic marker FM4-64 and transmission electron microscopy studies show that the nanoparticles were internalized rapidly via endocytosis and accumulated in intracellular vesicles. Soon after their internalizations, nanoparticles trafficked to organelles with acidic pH. Analysis of the ultrastructural morphology of the plasma membrane invaginations or extravasations provides clear evidence for the involvement of several uptake routes in parallel to internalize a given type of nanoparticles by mammalian cells, highlighting the complexity of the nanoparticle-cell interactions. Blocking the specific endocytic pathways by different pharmacological inhibitors shows similar outcomes. The potential to take up nanoparticles varies highly among different cell types in a particle sizes-, time- and energy-dependent manner. Furthermore, infection and the activation status of bone marrow-derived macrophages significantly affect the uptake potential of the cells, indicating the need to understand the diseases' pathogenesis to establish effective and rational drug-delivery systems. This study enhances our understanding of the application of nanotechnology in biomedical sciences. PMID:25224362

  19. Uptake of extracellular DNA: Competence induced pili in natural transformation of Streptococcus pneumoniae

    PubMed Central

    Muschiol, Sandra; Balaban, Murat; Normark, Staffan; Henriques-Normark, Birgitta

    2015-01-01

    Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram-positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram-negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram-positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram-positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus-like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus-related opening in the cell wall, may mediate DNA uptake in S. pneumoniae. PMID:25640084

  20. The cell pole: the site of cross talk between the DNA uptake and genetic recombination machinery.

    PubMed

    Kidane, Dawit; Ayora, Silvia; Sweasy, Joann B; Graumann, Peter L; Alonso, Juan C

    2012-01-01

    Natural transformation is a programmed mechanism characterized by binding of free double-stranded (ds) DNA from the environment to the cell pole in rod-shaped bacteria. In Bacillus subtilis some competence proteins, which process the dsDNA and translocate single-stranded (ss) DNA into the cytosol, recruit a set of recombination proteins mainly to one of the cell poles. A subset of single-stranded binding proteins, working as "guardians", protects ssDNA from degradation and limit the RecA recombinase loading. Then, the "mediators" overcome the inhibitory role of guardians, and recruit RecA onto ssDNA. A RecA·ssDNA filament searches for homology on the chromosome and, in a process that is controlled by "modulators", catalyzes strand invasion with the generation of a displacement loop (D-loop). A D-loop resolvase or "resolver" cleaves this intermediate, limited DNA replication restores missing information and a DNA ligase seals the DNA ends. However, if any step fails, the "rescuers" will repair the broken end to rescue chromosomal transformation. If the ssDNA does not share homology with resident DNA, but it contains information for autonomous replication, guardian and mediator proteins catalyze plasmid establishment after inhibition of RecA. DNA replication and ligation reconstitute the molecule (plasmid transformation). In this review, the interacting network that leads to a cross talk between proteins of the uptake and genetic recombination machinery will be placed into prospective. PMID:23046409

  1. Pentoxifylline affects idarubicin binding to DNA.

    PubMed

    Gołuński, Grzegorz; Borowik, Agnieszka; Lipińska, Andrea; Romanik, Monika; Derewońko, Natalia; Woziwodzka, Anna; Piosik, Jacek

    2016-04-01

    Anticancer drug idarubicin - derivative of doxorubicin - is commonly used in treatment of numerous cancer types. However, in contrast to doxorubicin, its biophysical properties are not well established yet. Additionally, potential direct interactions of idarubicin with other biologically active aromatic compounds, such as pentoxifylline - representative of methylxanthines - were not studied at all. Potential formation of such hetero-aggregates may result in sequestration of the anticancer drug and, in consequence, reduction of its biological activity. This work provide description of the idarubicin biophysical properties as well as assess influence of pentoxifylline on idarubicin interactions with DNA. To achieve these goals we employed spectrophotometric methods coupled with analysis with the appropriate mathematical models as well as flow cytometry and Ames test. Obtained results show influence of pentoxifylline on idarubicin binding to DNA and are well in agreement with the data previously published for other aromatic ligands. Additionally it may be hypothesized that direct interactions between idarubicin and pentoxifylline may influence the anticancer drug biological activity. PMID:26921593

  2. Amphiphilic Block Copolymers Enhance Cellular Uptake and Nuclear Entry of Polyplex-Delivered DNA

    PubMed Central

    Yang, Zhihui; Sahay, Gaurav; Sriadibhatla, Srikanth; Kabanov, Alexander V.

    2008-01-01

    This work for the first time demonstrates that synthetic polymers enhance uptake and nuclear import of plasmid DNA (pDNA) through the activation of cellular trafficking machinery. Nonionic block copolymers of poly(ethylene oxide) and poly(propylene oxide), Pluronics, are widely used as excipients in pharmaceutics. We previously demonstrated that Pluronics increase the phosphorylation of IκB and subsequent NFκB nuclear localization as well as upregulate numerous NFκB-related genes. In this study, we show that Pluronics enhance gene transfer by pDNA/polycation complexes (“polyplexes”) in a promoter-dependent fashion. Addition of Pluronic P123 or P85 to polyethyleneimine-based polyplexes had little effect on polyplex particle size but significantly enhanced pDNA cellular uptake, nuclear translocation and gene expression in several cell lines. When added to polyplex-transfected cells after transfection, Pluronics enhanced nuclear import of pDNA containing NFκB–binding sites, but have no effect on import of pDNA without these sites. All together, our studies suggest that Pluronics rapidly activate NFκB, which binds cytosolic pDNA that possesses promoters containing NFκB binding sites and consequently increases nuclear import of pDNA through NFκB nuclear translocation. PMID:18729495

  3. Ubiquitous late competence genes in Bacillus species indicate the presence of functional DNA uptake machineries.

    PubMed

    Kovács, Akos T; Smits, Wiep Klaas; Mirończuk, Aleksandra M; Kuipers, Oscar P

    2009-08-01

    Natural competence for genetic transformation, i.e. the ability to take up DNA and stably integrate it in the genome, has so far only been observed in the bacterial kingdom (both in gram-negative and gram-positive species) and may contribute to survival under adverse growth conditions. Bacillus subtilis, the model organism for the Bacillus genus, possesses a well-characterized competence machinery. Phylogenetic analysis of several genome sequences of different Bacillus species reveals the presence of many, but not all genes potentially involved in competence and its regulation. The recent demonstration of functional DNA uptake by B. cereus supports the significance of our genome analyses and shows that the ability for functional DNA uptake might be widespread among Bacilli. PMID:19453701

  4. Modulation of macrophage mannose receptor affects the uptake of virulent and avirulent Leishmania donovani promastigotes.

    PubMed

    Chakraborty, P; Ghosh, D; Basu, M K

    2001-10-01

    The effect of oxidants and the anti-inflammatory steroid dexamethasone on the attachment and internalization of virulent and avirulent Leishmania donovani promastigotes by the macrophage mannosyl fucosyl receptor was examined. Oxidants and dexamethasone are known to down- and upregulate the expression of the mannose receptor. Macrophages, when treated with 500 microM H2O2 at 37 C for 30 min, stimulate about 45% inhibition in uptake of an avirulent strain (UR6), and 30 and 25% inhibition for virulent strains AG-83 and GE-I, respectively. Treatment of macrophages with dexamethasone for 20 hr resulted in a stimulation in uptake of the parasite. When UR6 was used, a 3-fold increase in uptake was observed compared with the controls. Parasite uptake was also inhibited by the H2O2-generating system, glucose/glucose oxidase; inhibition was blocked by catalase. Treatment of macrophages either with H2O2 or dexamethasone did not affect the binding of the advanced glycosylation end product-bovine serum albumin (AGE-BSA), the ligand for AGE receptor of macrophages. Similarly, indirect evidence also shows that both types 1 and 3 complement receptors (CR1, CR3) are not affected by these treatments, indicating that, besides the mannosyl fucosyl receptor, other receptors are minimally altered in the identified condition. These results suggest that the up- and downregulation of the mannose receptor of macrophages may play a role in affecting L. donovani infection. PMID:11695359

  5. Assessment of titanium dioxide nanoparticle effects in bacteria: association, uptake, mutagenicity, co-mutagenicity and DNA repair inhibition.

    PubMed

    Butler, Kimberly S; Casey, Brendan J; Garborcauskas, Garret V M; Dair, Benita J; Elespuru, Rosalie K

    2014-07-01

    Due to their unique properties, the use of nanoparticles (NPs) is expanding; these same properties may affect their potential risk to humans. However, standard methods for genotoxicity assessment may not be adequate for NPs; altered tests reported here have been developed to address perceived inadequacies. The bacterial reverse mutation assay is an essential part of the battery of tests to determine genotoxicity. The utility of this test for assessing NPs is currently questioned, due to negative results seemingly caused by failure of particle uptake. To probe uptake issues, we examined the physical state in different media, dose and time dependent association, uptake and mutagenicity of titanium dioxide (TiO2) NPs in Salmonella typhimurium and Escherichia coli. The NPs suspended in water were characterized using dynamic light scattering, NP tracking analysis and transmission electron microscopy. NP association with bacteria was assessed by flow cytometry. Association was found to be time and dose dependent, with maximal association by 60 min. Therefore mutagenicity was assessed after a 60 min pre-incubation in a miniaturized assay demonstrating enhanced sensitivity. To assess potential indirect effects on bacterial mutagenicity, the effect of TiO2 NPs on the action of standard mutagens or on DNA repair capability was also investigated. TiO2 NPs did not affect mutant yields in standard strains of S. typhimurium or E. coli, including those detecting oxidative damage, using the modified methods. Nor did TiO2 NPs affect the action of standard mutagens or DNA excision repair capability. Despite particle association with the bacteria, subsequent analysis using electron microscopy and energy dispersive x-ray spectroscopy indicated that the NPs were not internalized. This work demonstrates that additional studies, including flow cytometry, are valuable tools for understanding the action of NPs in biological systems. PMID:24769488

  6. Transforming DNA uptake gene orthologs do not mediate spontaneous plasmid transformation in Escherichia coli.

    PubMed

    Sun, Dongchang; Zhang, Xuewu; Wang, Lingyu; Prudhomme, Marc; Xie, Zhixiong; Martin, Bernard; Claverys, Jean-Pierre

    2009-02-01

    Spontaneous plasmid transformation of Escherichia coli occurs on nutrient-containing agar plates. E. coli has also been reported to use double-stranded DNA (dsDNA) as a carbon source. The mechanism(s) of entry of exogenous dsDNA that allows plasmid establishment or the use of DNA as a nutrient remain(s) unknown. To further characterize plasmid transformation, we first documented the stimulation of transformation by agar and agarose. We provide evidence that stimulation is not due to agar contributing a supplement of Ca(2+), Fe(2+), Mg(2+), Mn(2+), or Zn(2+). Second, we undertook to inactivate the E. coli orthologues of Haemophilus influenzae components of the transformation machine that allows the uptake of single-stranded DNA (ssDNA) from exogenous dsDNA. The putative outer membrane channel protein (HofQ), transformation pseudopilus component (PpdD), and transmembrane pore (YcaI) are not required for plasmid transformation. We conclude that plasmid DNA does not enter E. coli cells as ssDNA. The finding that purified plasmid monomers transform E. coli with single-hit kinetics supports this conclusion; it establishes that a unique monomer molecule is sufficient to give rise to a transformant, which is not consistent with the reconstitution of an intact replicon through annealing of partially overlapping complementary ssDNA, taken up from two independent monomers. We therefore propose that plasmid transformation involves internalization of intact dsDNA molecules. Our data together, with previous reports that HofQ is required for the use of dsDNA as a carbon source, suggest the existence of two routes for DNA entry, at least across the outer membrane of E. coli. PMID:19011021

  7. Cadmium uptake by tobacco as affected by liming, N form, and year of cultivation.

    PubMed

    Tsadilas, C D; Karaivazoglou, N A; Tsotsolis, N C; Stamatiadis, S; Samaras, V

    2005-03-01

    Tobacco is able to accumulate cadmium and reduction of cadmium content can reduce health hazards to smokers. Soil pH and form of N fertilizers are among the factors affecting Cd uptake by tobacco. This hypothesis was tested in an acid soil in northern Greece by a four year field experiment. The variability of Cd uptake by tobacco was attributed to the variation of soil Cd availability as affected by soil pH. Liming with 3000 kg Ca(OH)(2) ha(-1) increased soil pH by 0.8 units and decreased extractable with DTPA soil and leaf Cd by 40% and 35%, respectively. The ammonium fertilizer caused the opposite, but weaker, effects. Liming reduced soil Cd more in the ammonium treatment than in nitrate or combined N treatments. The year of cultivation strongly affected soil and leaf Cd. Four years after tobacco cultivation, soil pH was reduced by 0.5 units, whereas soil and leaf Cd reduction was more than 60% in the limed treatments. Liming affected Cd uptake only in the first three years of cultivation. PMID:15589651

  8. Secretion of a pneumococcal type II secretion system pilus correlates with DNA uptake during transformation

    PubMed Central

    Balaban, Murat; Bättig, Patrick; Muschiol, Sandra; Tirier, Stephan M.; Wartha, Florian; Normark, Staffan; Henriques-Normark, Birgitta

    2014-01-01

    Streptococcus pneumoniae is a major human pathogen that successfully adapts to the host environment via an efficient uptake system for free DNA liberated from other organisms in the upper respiratory tract, facilitating immune evasion and drug resistance. Although the initial signaling events leading to pneumococcal competence for DNA transformation and the fate of DNA when it has been taken up have been extensively studied, the actual mechanism by which DNA in the environment may traverse the thick capsular and cell wall layers remains unknown. Here we visualize that induction of competence results in the formation of a native morphologically distinct pilus structure on the bacterial surface. This plaited pilus is encoded by the competence (com)G locus, and, after assembly, it is rapidly released into the surrounding medium. Heterologous pneumococcal pilus expression in Escherichia coli was obtained by replacing the pulE-K putative pilin genes of the Klebsiella oxytoca type II secretion system with the complete comG locus. In the pneumococcus, the coordinated secretion of pili from the cells correlates to DNA transformation. A model for DNA transformation is proposed whereby pilus assembly “drills” a channel across the thick cell wall that becomes transiently open by secretion of the pilus, providing the entry port for exogenous DNA to gain access to DNA receptors associated with the cytoplasmic membrane. PMID:24550320

  9. The User, not the Tool: Perceptions of Credibility and Relevance Affect the Uptake of Prioritisation

    NASA Astrophysics Data System (ADS)

    Kiatkoski Kim, Milena; Evans, Louisa; Scherl, Lea M.; Marsh, Helene

    2016-04-01

    Prioritisation methods have been used in conservation planning for over 20 years. The scientific literature focuses on the technical aspects of prioritisation, providing limited information on factors affecting the uptake of priorities. We focused on the Back on Track species prioritisation program in Queensland, Australia, used to prioritise species conservation efforts across Queensland from 2005. The program had low uptake by intended users. Our study aimed to identify the perceived limitations in the technical-scientific quality of this species-based prioritisation process and its outcomes in terms of credibility (scientific adequacy of the technical evidence) and relevance (of information to the needs of decision-makers). These criteria have been used to understand the uptake of scientific information in policy. We interviewed 73 key informants. Perceptions of credibility were affected by concerns related to the use of expert judgement (rather than empirical evidence) to assess species, impressions that key experts were not included in the planning process, and the lack of confidence in the information supporting prioritisation. We identified several trade-offs and synergies between the credibility and relevance of priorities to potential users. The relevance of the output plans was negatively affected by the lack of clarity about who were potential users and implementers of the priorities identified. We conclude with recommendations to enhance the credibility and relevance of such initiatives.

  10. The User, not the Tool: Perceptions of Credibility and Relevance Affect the Uptake of Prioritisation.

    PubMed

    Kiatkoski Kim, Milena; Evans, Louisa; Scherl, Lea M; Marsh, Helene

    2016-04-01

    Prioritisation methods have been used in conservation planning for over 20 years. The scientific literature focuses on the technical aspects of prioritisation, providing limited information on factors affecting the uptake of priorities. We focused on the Back on Track species prioritisation program in Queensland, Australia, used to prioritise species conservation efforts across Queensland from 2005. The program had low uptake by intended users. Our study aimed to identify the perceived limitations in the technical-scientific quality of this species-based prioritisation process and its outcomes in terms of credibility (scientific adequacy of the technical evidence) and relevance (of information to the needs of decision-makers). These criteria have been used to understand the uptake of scientific information in policy. We interviewed 73 key informants. Perceptions of credibility were affected by concerns related to the use of expert judgement (rather than empirical evidence) to assess species, impressions that key experts were not included in the planning process, and the lack of confidence in the information supporting prioritisation. We identified several trade-offs and synergies between the credibility and relevance of priorities to potential users. The relevance of the output plans was negatively affected by the lack of clarity about who were potential users and implementers of the priorities identified. We conclude with recommendations to enhance the credibility and relevance of such initiatives. PMID:26753916

  11. Binding of DNA with Abf2p Increases Efficiency of DNA Uptake by Isolated Mitochondria.

    PubMed

    Samoilova, E O; Krasheninnikov, I A; Vinogradova, E N; Kamenski, P A; Levitskii, S A

    2016-07-01

    Mutations in mitochondrial DNA often lead to severe hereditary diseases that are virtually resistant to symptomatic treatment. During the recent decades, many efforts were made to develop gene therapy approaches for treatment of such diseases using nucleic acid delivery into the organelles. The possibility of DNA import into mitochondria has been shown, but this process has low efficiency. In the present work, we demonstrate that the efficiency of DNA import can be significantly increased by preforming its complex with a mitochondria-targeted protein nonspecifically binding with DNA. As a model protein, we used the yeast protein Abf2p. In addition, we measured the length of the DNA site for binding this protein and the dissociation constant of the corresponding DNA-protein complex. Our data can serve as a basis for development of novel, highly efficient approaches for suppressing mutations in the mitochondrial genome. PMID:27449618

  12. Factors affecting uptake and adherence to breast cancer chemoprevention: a systematic review and meta-analysis

    PubMed Central

    Smith, S. G.; Sestak, I.; Forster, A.; Partridge, A.; Side, L.; Wolf, M. S.; Horne, R.; Wardle, J.; Cuzick, J.

    2016-01-01

    Background Preventive therapy is a risk reduction option for women who have an increased risk of breast cancer. The effectiveness of preventive therapy to reduce breast cancer incidence depends on adequate levels of uptake and adherence to therapy. We aimed to systematically review articles reporting uptake and adherence to therapeutic agents to prevent breast cancer among women at increased risk, and identify the psychological, clinical and demographic factors affecting these outcomes. Design Searches were carried out in PubMed, CINAHL, EMBASE and PsychInfo, yielding 3851 unique articles. Title, abstract and full text screening left 53 articles, and a further 4 studies were identified from reference lists, giving a total of 57. This review was prospectively registered with PROSPERO (CRD42014014957). Results Twenty-four articles reporting 26 studies of uptake in 21 423 women were included in a meta-analysis. The pooled uptake estimate was 16.3% [95% confidence interval (CI) 13.6–19.0], with high heterogeneity (I2 = 98.9%, P < 0.001). Uptake was unaffected by study location or agent, but was significantly higher in trials [25.2% (95% CI 18.3–32.2)] than in non-trial settings [8.7% (95% CI 6.8–10.9)] (P < 0.001). Factors associated with higher uptake included having an abnormal biopsy, a physician recommendation, higher objective risk, fewer side-effect or trial concerns, and older age. Adherence (day-to-day use or persistence) over the first year was adequate. However, only one study reported a persistence of ≥80% by 5 years. Factors associated with lower adherence included allocation to tamoxifen (versus placebo or raloxifene), depression, smoking and older age. Risk of breast cancer was discussed in all qualitative studies. Conclusion Uptake of therapeutic agents for the prevention of breast cancer is low, and long-term persistence is often insufficient for women to experience the full preventive effect. Uptake is higher in trials, suggesting further work

  13. Intracellular uptake study of radiolabeled anticancer drug and impedimetric detection of its interaction with DNA.

    PubMed

    Top, Mustafa; Er, Ozge; Congur, Gulsah; Erdem, Arzum; Lambrecht, Fatma Yurt

    2016-11-01

    Topoisomerase I inhibitor topotecan (TPT) is the only single-agent therapy certified for the remedy of repetitive small cell lung cancer (SCLC). In this study, TPT was labeled with (131)I via iodogen method and its quality control was determined using thin layer radiochromatography and paper electrophoresis methods. Intracellular uptake study was carried out with human lung adenocarcinoma cell line (A-549) and human lung fibroblast cell line (WI-38). The interaction of (131)I-TPT with healthy DNA and cancer DNA was also investigated using single-use sensor technology combined with electrochemical impedance spectroscopy (EIS). The change at the charge transfer resistance (Rct) obtained before/after interaction was evaluated. Similar to the results of intracellular uptake study, it was found that (131)I-TPT could more interact with the cancer DNA than healthy DNA according to the impedimetric results. (131)I-TPT is promising in terms of a new nuclear imaging agent for lung cancer. PMID:27591600

  14. Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees

    PubMed Central

    Liu, Bin; Rennenberg, Heinz; Kreuzwieser, Jürgen

    2015-01-01

    The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control) conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns. PMID:26308462

  15. Effect of parameter choice in root water uptake models - the arrangement of root hydraulic properties within the root architecture affects dynamics and efficiency of root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, M.; Schneider, C.; Carminati, A.; Vetterlein, D.; Attinger, S.; Hildebrandt, A.

    2014-10-01

    Detailed three-dimensional models of root water uptake have become increasingly popular for investigating the process of root water uptake. However, they suffer from a lack of information on important parameters, particularly on the spatial distribution of root axial and radial conductivities, which vary greatly along a root system. In this paper we explore how the arrangement of those root hydraulic properties and branching within the root system affects modelled uptake dynamics, xylem water potential and the efficiency of root water uptake. We first apply a simple model to illustrate the mechanisms at the scale of single roots. By using two efficiency indices based on (i) the collar xylem potential ("effort") and (ii) the integral amount of unstressed root water uptake ("water yield"), we show that an optimal root length emerges, depending on the ratio between roots axial and radial conductivity. Young roots with high capacity for radial uptake are only efficient when they are short. Branching, in combination with mature transport roots, enables soil exploration and substantially increases active young root length at low collar potentials. Second, we investigate how this shapes uptake dynamics at the plant scale using a comprehensive three-dimensional root water uptake model. Plant-scale dynamics, such as the average uptake depth of entire root systems, were only minimally influenced by the hydraulic parameterization. However, other factors such as hydraulic redistribution, collar potential, internal redistribution patterns and instantaneous uptake depth depended strongly on the arrangement on the arrangement of root hydraulic properties. Root systems were most efficient when assembled of different root types, allowing for separation of root function in uptake (numerous short apical young roots) and transport (longer mature roots). Modelling results became similar when this heterogeneity was accounted for to some degree (i.e. if the root systems contained between

  16. Ion Uptake in Tall Fescue as Affected by Carbonate, Chloride, and Sulfate Salinity

    PubMed Central

    Han, Lei; Gao, Yang; Li, Deying

    2014-01-01

    Turfgrass nutrient uptake may be differentially affected by different salts. The objective of this study was to compare nutrient uptake in tall fescue (Festuca arundinacea Schreb.) as affected by carbonate, chloride, and sulfate under iso-osmotic, iso-Na+ strength conditions. ‘Tar Heel II’ and ‘Wolfpack’ cultivars were subjected to NaCl, Na2CO3, Na2SO4, CaCl2, NaCl+ CaCl2, Na2CO3+ CaCl2, and Na2SO4+ CaCl2, in the range of 0 to 225 mM. There was no cultivar difference regarding K, Na, Mg, and Mn content in shoots. ‘Tar Heel II’ had higher shoot Ca content than ‘Wolfpack’, which were 6.9 and 5.7 g kg−1, respectively. In general, K+/Na+ ratio decreased with increasing salt concentrations, which reached <1 at about 87.5 mM in Na2CO3 treatment. All salt treatments decreased Mg content in shoot tissues, especially in Na2CO3 and treatments containing CaCl2. Both Ca and Mg content in shoot were higher in the NaCl treatment than the Na2SO4 and Na2CO3 treatments. All salt treatments except Na2CO3 had higher Mn content in shoots compared to the control. In conclusion, nutrient uptake was differently affected by carbonate, chloride, and sulfate which are different in pH, electrical conductivity (EC), and osmotic potential at the same concentration. Adding Ca to the sodium salts increased Ca content and balanced K+/Na+ in shoots, but did not increase Mg content, which was below sufficient level. Maintaining Mg content in shoots under salinity stress was recommended. The physiological impact of elevated Mn content in shoot under salinity stress requires further study. PMID:24626173

  17. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.

  18. Young Daughter Cladodes Affect CO2 Uptake by Mother Cladodes of Opuntia ficus-indica

    PubMed Central

    PIMIENTA-BARRIOS, EULOGIO; ZAÑUDO-HERNANDEZ, JULIA; ROSAS-ESPINOZA, VERONICA C.; VALENZUELA-TAPIA, AMARANTA; NOBEL, PARK S.

    2004-01-01

    • Background and Aims Drought damages cultivated C3, C4 and CAM plants in the semi-arid lands of central Mexico. Drought damage to Opuntia is common when mother cladodes, planted during the dry spring season, develop young daughter cladodes that behave like C3 plants, with daytime stomatal opening and water loss. In contrast, wild Opuntia are less affected because daughter cladodes do not develop on them under extreme drought conditions. The main objective of this work is to evaluate the effects of the number of daughter cladodes on gas exchange parameters of mother cladodes of Opuntia ficus-indica exposed to varying soil water contents. • Methods Rates of net CO2 uptake, stomatal conductance, intercellular CO2 concentration, chlorophyll content and relative water content were measured in mature mother cladodes with a variable number of daughter cladodes growing in spring under dry and wet conditions. • Key Results Daily carbon gain by mother cladodes was reduced as the number of daughter cladodes increased to eight, especially during drought. This was accompanied by decreased mother cladode relative water content, suggesting movement of water from mother to daughter cladodes. CO2 assimilation was most affected in phase IV of CAM (late afternoon net CO2 uptake) by the combined effects of daughter cladodes and drought. Rainfall raised the soil water content, decreasing the effects of daughter cladodes on net CO2 uptake by mother cladodes. • Conclusions Daughter cladodes significantly hasten the effects of drought on mother cladodes by competition for the water supply and thus decrease daily carbon gain by mother cladodes, mainly by inhibiting phase IV of CAM. PMID:15567805

  19. Tuning the cellular uptake properties of luminescent heterobimetallic iridium(III)-ruthenium(II) DNA imaging probes.

    PubMed

    Wragg, Ashley; Gill, Martin R; Turton, David; Adams, Harry; Roseveare, Thomas M; Smythe, Carl; Su, Xiaodi; Thomas, Jim A

    2014-10-20

    The synthesis of two new luminescent dinuclear Ir(III)-Ru(II) complexes containing tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz) as the bridging ligand is reported. Unlike many other complexes incorporating cyclometalated Ir(III) moieties, these complexes display good water solubility, allowing the first cell-based study on Ir(III)-Ru(II) bioprobes to be carried out. Photophysical studies indicate that emission from each complex is from a Ru(II) excited state and both complexes display significant in vitro DNA-binding affinities. Cellular studies show that each complex is rapidly internalised by HeLa cells, in which they function as luminescent nuclear DNA-imaging agents for confocal microscopy. Furthermore, the uptake and nuclear targeting properties of the complex incorporating cyclometalating 2-(4-fluorophenyl)pyridine ligands around its Ir(III) centre is enhanced in comparison to the non-fluorinated analogue, indicating that fluorination may provide a route to promote cell uptake of transition-metal bioprobes. PMID:25208528

  20. Characterization of a DNA uptake reaction through the nuclear membrane of isolated yeast nuclei. [Saccharomyces cerevisiae

    SciTech Connect

    Tsuchiya, E.; Shakuto, S.; Miyakawa, T.; Fukui, S.

    1988-02-01

    Isolated yeast nuclei were able to incorporate /sup 3/H-labeled pJDB219 DNA in vitro in the presence of ATP and Mg/sup 2 +/. The number of plasmid molecules incorporated into each nucleus was calculated to be 60 under the conditions we used. Enzyme-histochemical staining of the incorporated biotinylated pJDB219 with streptavidin-biotinylated-peroxidase complex indicated a uniform distribution of the incorporated plasmids within each nucleus. After intranuclear incorporation, substrate pJDB219 DNAs (open and closed circular forms) were changed to the linear form and were weakly digested over the longer incubation period (over 60 min). Facile release of the once-incorporated plasmid DNA was never observable; discharge of the incorporated (/sup 3/H)pJDB219 during a 60-min incubation was less than 5%. The addition of adenylyl-imidodiphosphate, N,N'-dicyclohexylcarbodiimide (DCCD), or quercetin inhibited in vitro DNA uptake reaction. DCCD and quercetin inhibited the nuclear ATPase and apparent protein kinase, respectively; hence, the involvement of these enzymes in the nuclear DNA transport system was suggested.

  1. Rapid successions affect microbial N-acetyl-glucosamine uptake patterns during a lacustrine spring phytoplankton bloom.

    PubMed

    Eckert, Ester M; Salcher, Michaela M; Posch, Thomas; Eugster, Bettina; Pernthaler, Jakob

    2012-03-01

    The vernal successions of phytoplankton, heterotrophic nanoflagellates (HNF) and viruses in temperate lakes result in alternating dominance of top-down and bottom-up factors on the bacterial community. This may lead to asynchronous blooms of bacteria with different life strategies and affect the channelling of particular components of the dissolved organic matter (DOM) through microbial food webs. We followed the dynamics of several bacterial populations and of other components of the microbial food web throughout the spring phytoplankton bloom period in a pre-alpine lake, and we assessed bacterial uptake patterns of two constituents of the labile DOM pool (N-acetyl-glucosamine [NAG] and leucine). There was a clear genotypic shift within the bacterial assemblage, from fast growing Cytophaga-Flavobacteria (CF) affiliated with Fluviicola and from Betaproteobacteria (BET) of the Limnohabitans cluster to more grazing resistant AcI Actinobacteria (ACT) and to filamentous morphotypes. This was paralleled by successive blooms of viruses and HNF. We also noted the transient rise of other CF (related to Cyclobacteriaceae and Sphingobacteriaceae) that are not detected by fluorescence in situ hybridization with the general CF probe. Both, the average uptake rates of leucine and the fractions of leucine incorporating bacteria were approximately five to sixfold higher than of NAG. However, the composition of the NAG-active community was much more prone to genotypic successions, in particular of bacteria with different life strategies: While 'opportunistically' growing BET and CF dominated NAG uptake in the initial period ruled by bottom-up factors, ACT constituted the major fraction of NAG active cells during the subsequent phase of high predation pressure. This indicates that some ACT could profit from a substrate that might in parts have originated from the grazing of protists on their bacterial competitors. PMID:22082109

  2. The relationships between the /sup 67/Ga uptake and nuclear DNA Feulgen content in thyroid tumors: concise communication

    SciTech Connect

    Higashi, T.; Watanabe, Y.; Yamaguchi, M.; Hisada, T.; Mimura, T.; Ito, K.; Allison, J.R.

    1982-11-01

    It has been reported that /sup 67/Ga uptake by malignant tumors differs somewhat according to the histologic type. Previously, we reported that uptake of /sup 67/Ga is predictably low in well-differentiated adenocarcinoma of the thyroid gland but high in anaplastic carcinoma and malignant lymphoma. We studied the relationship between /sup 67/Ga uptake and nuclear DNA content in four papillary adenocarcinomas, three follicular adenocarcinomas, three anaplastic carcinomas, and five malignant lymphomas of the thyroid gland. In anaplastic carcinoma and malignant lymphoma, the nuclear DNA content and proliferative index were significantly higher than in well-differentiated adenocarcinoma. These results suggest that there is close correlation between /sup 67/Ga uptake and degree of malignancy of thyroid tumor cells.

  3. The relationships between the Ga-67 uptake and nuclear DNA feulgen content in thyroid tumors: concise communication

    SciTech Connect

    Higashi, T.; Watanabe, Y.; Yamaguchi, M.; Hisada, T.; Mimura, T.; Ito, K.; Allison, J.R.

    1982-11-01

    It has been reported that Ga-67 uptake by malignant tumors differs somewhat according to the histologic type. Previously, we reported that uptake of Ga-67 is predictably low in well-differentiated adenocarcinoma of the thyroid gland but high in anaplastic carcinoma and malignant lymphoma. We studied the relationship between Ga-67 uptake and nuclear DNA content in four papillary adenocarcinomas, three follicular adenocarcinomas, three anaplastic carcinomas, and five malignant lymphomas of the thyroid gland. In anaplastic carcinoma and malignant lymphoma, the nuclear DNA content and proliferative index were significantly higher than in well-differentiated adenocarcinoma. These results suggest that there is close correlation between Ga-67 uptake and degree of malignancy of thyroid tumor cells.

  4. Inhibition of mitochondrial complex II affects dopamine metabolism and decreases its uptake into striatal synaptosomes.

    PubMed

    Cakała, Magdalena; Drabik, Jacek; Kaźmierczak, Anna; Kopczuk, Dorota; Adamczyk, Agata

    2006-01-01

    The mitochondrial toxin, 3-nitropropionic acid (3-NP), is a specific inhibitor of succinate dehydrogenase, complex II in the mitochondrial respiratory chain. The aim of our study was to determine the relationship between inhibition of mitochondrial complex II and dopamine (DA) metabolism and its transport into rat striatal synaptosomes after exposure to 3-NP. The study was carried out using spectrophotometric, radiochemical and HPLC methods. Our data showed that inhibition of succinate dehydrogenase by intraperitoneal (i.p.) injection of 3-NP (cumulated dose 100 mg/kg in 4 days) significantly affected DA metabolism, leading to the accumulation of its metabolites, 3,4-dihydroxylphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the rat striatum. These experimental conditions had no effect on free radical dependent lipid peroxidation in the brain. In vitro experiments revealed that DA and DOPAC significantly decrease lipid peroxidation in the brain homogenate. Moreover, 3-NP significantly inhibited [3H]DA uptake into striatal synaptosomes by specific dopamine transporter (DAT). The scavengers of superoxide radical (O2-) Tempol and Trolox had no effect on DAT function, but the nitric oxide synthase (NOS) inhibitor N w-nitro-L-arginine (100 microM) prevented 3-NP-evoked DAT down-regulation. In summary, our results indicate that inhibition of mitochondrial complex II by 3-NP enhances DA degradation and decreases its uptake into synaptosomes. It is suggested that NO and energy failure are responsible for alteration of the dopaminergic system in the striatum. PMID:17183449

  5. Preparing for Rectal Microbicides: Sociocultural Factors Affecting Product Uptake Among Potential South American Users

    PubMed Central

    Kinsler, Janni J.; Imrie, John; Nureña, César R.; Ruiz, Lucía; Galarza, Luis Fernando; Sánchez, Jorge; Cunningham, William E.

    2014-01-01

    Objectives. We examined views on rectal microbicides (RMs), a potential HIV prevention option, among men who have sex with men and transgender women in 3 South American cities. Methods. During September 2009 to September 2010, we conducted 10 focus groups and 36 in-depth interviews (n = 140) in Lima and Iquitos, Peru, and Guayaquil, Ecuador, to examine 5 RM domains: knowledge, thoughts and opinions about RM as an HIV prevention tool, use, condoms, and social concerns. We coded emergent themes in recorded and transcribed data sets and extracted representative quotes. We collected sociodemographic information with a self-administered questionnaire. Results. RM issues identified included limited knowledge; concerns regarding plausibility, side effects, and efficacy; impact on condom use; target users (insertive vs receptive partners); and access concerns. Conclusions. Understanding the sociocultural issues affecting RMs is critical to their uptake and should be addressed prior to product launch. PMID:24825222

  6. Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.

    PubMed

    Muehe, E Marie; Weigold, Pascal; Adaktylou, Irini J; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas; Behrens, Sebastian

    2015-03-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  7. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  8. Defective active silicon uptake affects some components of rice resistance to brown spot.

    PubMed

    Dallagnol, Leandro J; Rodrigues, Fabrício A; Mielli, Mateus V B; Ma, Jian F; Datnoff, Lawrence E

    2009-01-01

    Rice is known to accumulate high amounts of silicon (Si) in plant tissue, which helps to decrease the intensity of many economically important rice diseases. Among these diseases, brown spot, caused by the fungus Bipolaris oryzae, is one of the most devastating because it negatively affects yield and grain quality. This study aimed to evaluate the importance of active root Si uptake in rice for controlling brown spot development. Some components of host resistance were evaluated in a rice mutant, low silicon 1 (lsi1), defective in active Si uptake, and its wild-type counterpart (cv. Oochikara). Plants were inoculated with B. oryzae after growing for 35 days in a hydroponic culture amended with 0 or 2 mMol Si. The components of host resistance evaluated were incubation period (IP), relative infection efficiency (RIE), area under brown spot progress curve (AUBSPC), final lesion size (FLS), rate of lesion expansion (r), and area under lesion expansion progress curve (AULEPC). Si content from both Oochikara and lsi1 in the +Si treatment increased in leaf tissue by 219 and 178%, respectively, over the nonamended controls. Plants from Oochikara had 112% more Si in leaf tissue than plants from lsi1. The IP of brown spot from Oochikara increased approximately 6 h in the presence of Si and the RIE, AUBSPC, FLS, r, and AULEPC were significantly reduced by 65, 75, 33, 36, and 35%, respectively. In the presence of Si, the IP increased 3 h for lsi1 but the RIE, AUBSPC, FLS, r, and AULEPC were reduced by only 40, 50, 12, 21, and 12%, respectively. The correlation between Si leaf content and IP was significantly positive but Si content was negatively correlated with RIE, AUBSPC, FLS, r, and AULEPC. Single degree-of-freedom contrasts showed that Oochikara and lsi1 supplied with Si were significantly different from those not supplied with Si for all components of resistance evaluated. This result showed that a reduced Si content in tissues of plants from lsi1 dramatically affected

  9. Anthocyanidins modulate the activity of human DNA topoisomerases I and II and affect cellular DNA integrity.

    PubMed

    Habermeyer, Michael; Fritz, Jessica; Barthelmes, Hans U; Christensen, Morten O; Larsen, Morten K; Boege, Fritz; Marko, Doris

    2005-09-01

    In the present study, we investigated the effect of anthocyanidins on human topoisomerases I and II and its relevance for DNA integrity within human cells. Anthocyanidins bearing vicinal hydroxy groups at the B-ring (delphinidin, DEL; cyanidin, CY) were found to potently inhibit the catalytic activity of human topoisomerases I and II, without discriminating between the IIalpha and the IIbeta isoforms. However, in contrast to topoisomerase poisons, DEL and CY did not stabilize the covalent DNA-topoisomerase intermediates (cleavable complex) of topoisomerase I or II. Using recombinant topoisomerase I, the presence of CY or DEL (> or = 1 microM) effectively prohibited the stabilization of the cleavable complex by the topoisomerase I poison camptothecin. We furthermore investigated whether the potential protective effect vs topoisomerase I poisons is reflected also on the cellular level, affecting the DNA damaging properties of camptothecin. Indeed, in HT29 cells, low micromolar concentrations of DEL (1-10 microM) significantly diminished the DNA strand breaking effect of camptothecin (100 microM). However, at concentrations > or = 50 microM, all anthocyanidins tested (delphinidin, cyanidin, malvidin, pelargonidin, and paeonidin), including those not interfering with topoisomerases, were found to induce DNA strand breaks in the comet assay. All of these analogues were able to compete with ethidium bromide for the intercalation into calf thymus DNA and to replace the minor groove binder Hoechst 33258. These data indicate substantial affinity to double-stranded DNA, which might contribute at least to the DNA strand breaking effect of anthocyanidins at higher concentrations (> or = 50 microM). PMID:16167831

  10. The structure and duplex context of DNA interstrand crosslinks affects the activity of DNA polymerase η

    PubMed Central

    Roy, Upasana; Mukherjee, Shivam; Sharma, Anjali; Frank, Ekaterina G.; Schärer, Orlando D.

    2016-01-01

    Several important anti-tumor agents form DNA interstrand crosslinks (ICLs), but their clinical efficiency is counteracted by multiple complex DNA repair pathways. All of these pathways require unhooking of the ICL from one strand of a DNA duplex by nucleases, followed by bypass of the unhooked ICL by translesion synthesis (TLS) polymerases. The structures of the unhooked ICLs remain unknown, yet the position of incisions and processing of the unhooked ICLs significantly influence the efficiency and fidelity of bypass by TLS polymerases. We have synthesized a panel of model unhooked nitrogen mustard ICLs to systematically investigate how the state of an unhooked ICL affects pol η activity. We find that duplex distortion induced by a crosslink plays a crucial role in translesion synthesis, and length of the duplex surrounding an unhooked ICL critically affects polymerase efficiency. We report the synthesis of a putative ICL repair intermediate that mimics the complete processing of an unhooked ICL to a single crosslinked nucleotide, and find that it provides only a minimal obstacle for DNA polymerases. Our results raise the possibility that, depending on the structure and extent of processing of an ICL, its bypass may not absolutely require TLS polymerases. PMID:27257072

  11. Investigation of factors affecting terrestrial passive sampling device performance and uptake rates in laboratory chambers

    SciTech Connect

    Johnson, K.A.; Weisskopf, C.P.

    1995-12-31

    A rapid sampling method using passive sampling devices (PSDS) for soil contaminant characterization shows extreme promise. The use of PSDs increases ease and speed of analysis, decreases solvent usage and cost, and minimizes the transport of contaminated soils. Time and cost savings allow a high sampling frequency, providing a more thorough site characterization than traditional methods. The authors have conducted both laboratory and field studies with terrestrial PSDS. Laboratory studies demonstrated the concentration and moisture dependence of sampler uptake and provided an estimate of the optimal field sampling time for soils contaminated with polychlorinated biphenyls (PCBs). These PSDs were also used to accurately estimate PCB concentrations at hazardous waste site where concentrations ranged from 0.01 to 200 ug PCB/g soil. However, PSDs in the field had sampling rates approximately three times greater than in the laboratory. As a result several factors affecting PSD sampling rates and/or performance in laboratory chambers were evaluated. The parameters investigated were soil bulk density or compactness, chamber size and air flow. The chemicals used in these studies included two PCB congeners (52 and 153), three organochlorine pesticides (DDT, dieldrin and methoxychlor), three organophosphate pesticides (chlorpyrifos, diazinon and terbufos) and three herbicides (alachlor, atrazine and metolachlor).

  12. Fertilizer residence time affects nitrogen uptake efficiency and growth of sweet corn.

    PubMed

    Zotarelli, L; Scholberg, J M; Dukes, M D; Muñoz-Carpena, R

    2008-01-01

    Understanding plant N uptake dynamics is critical for increasing fertilizer N uptake efficiency (FUE) and minimize the risk of N leaching. The objective of this research was to determine the effect of residence time of N fertilizer on N uptake and FUE of sweet corn. Plants were grown in 25 L columns during the fall and spring to mimic short-term N uptake dynamics. Nitrogen was applied either 1, 3, or 7 d before a weekly leaching event, using KNO3 solution (total of 393 kg N ha(-1)). Residence times (tR) were tR-1, tR-3, and tR-7 d before weekly removal of residual soil N. Plant N uptake was calculated by comparing weekly N recovery from planted with non-planted columns. During the fall, N uptake values at 70 d after emergence were 59, 73, and 126 kg N ha(-1). During the spring, corresponding values were 54, 108, and 159 kg N ha(-1). A linear response of plant growth and yield to the tR was observed under cooler conditions, whereas a quadratic response occurred under warmer conditions. There was correlation between root length density and yield. It is concluded that increasing N fertilizer residence time, which is indicative of better irrigation practices, enhanced overall sweet corn growth, yield, N uptake, and FUE, consequently reduced the risk of N being leached below the root zone before complete N uptake. PMID:18453447

  13. Delivery Rate Affects Uptake of a Fluorescent Glucose Analog in Murine Metastatic Breast Cancer

    PubMed Central

    Rajaram, Narasimhan; Frees, Amy E.; Fontanella, Andrew N.; Zhong, Jim; Hansen, Katherine; Dewhirst, Mark W.; Ramanujam, Nirmala

    2013-01-01

    We demonstrate an optical strategy using intravital microscopy of dorsal skin flap window chamber models to image glucose uptake and vascular oxygenation in vivo. Glucose uptake was imaged using a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). SO2 was imaged using the differential absorption properties of oxygenated [HbO2] and deoxygenated hemoglobin [dHb]. This study was carried out on two sibling murine mammary adenocarcinoma lines, 4T1 and 4T07. 2-NBDG uptake in the 4T1 tumors was lowest when rates of delivery and clearance were lowest, indicating perfusion-limited uptake in poorly oxygenated tumor regions. For increasing rates of delivery that were still lower than the glucose consumption rate (as measured in vitro), both 2-NBDG uptake and the clearance rate from the tumor increased. When the rate of delivery of 2-NBDG exceeded the glucose consumption rate, 2-NBDG uptake decreased with any further increase in rate of delivery, but the clearance rate continued to increase. This inflection point was not observed in the 4T07 tumors due to an absence of low delivery rates close to the glucose consumption rate. In the 4T07 tumors, 2-NBDG uptake increased with increasing rates of delivery at low rates of clearance. Our results demonstrate that 2-NBDG uptake in tumors is influenced by the rates of delivery and clearance of the tracer. The rates of delivery and clearance are, in turn, dependent on vascular oxygenation of the tumors. Knowledge of the kinetics of tracer uptake as well as vascular oxygenation is essential to make an informed assessment of glucose demand of a tumor. PMID:24204635

  14. Nuclear DNA content affects the productivity of conifer forests by altering hydraulic architecture

    NASA Astrophysics Data System (ADS)

    Alday, Josu; Resco de Dios, Víctor

    2014-05-01

    Predictions of future global climate rely on feedbacks between terrestrial vegetation and the global carbon cycle, but the exact mechanisms underlying this relationship are still being discussed. One of the key knowledge gaps lies on the scaling of cellular processes to the ecosystem level. Here we examine whether an under-explored plant trait, inter-specific variation in the bulk amount of DNA in unreplicated somatic cells (2C DNA content), can explain inter-specific variation in the maximum productivity of conifer forests. We expected 2C DNA content to be negatively related to conifer productivity because: 1) it is positively correlated with cell volume (which, in turn, potentially affects structural features such as leaf mass area, a strong predictor of photosynthetic capacity); 2) it is positively correlated with stomatal size (with larger stomata leading to lower overall stomatal conductance and, by extension, lower CO2 uptake); and 3) larger genome sizes may reduce P availability in RNA (which has been hypothesized to slow growth). We present the results of regression and independent contrasts in different monospecific forests encompassing a 52º latitudinal gradient, each being dominated by 1 of 35 different conifer species. Contrary to expectations, we observed a positive correlation between genome size and maximum Gross Primary Productivity (R2 = 0.47) and also between genome size maximum tree height (R2 = 0.27). This correlation was apparently driven by the effects of genome size on stem hydraulics, since 2C DNA was positively correlated with wood density (R2 = 0.40) and also with resistance to cavitation (P50, R2 = 0.28). That is, increased genome sizes have a positive effect on the productivity of conifer forests by affecting the vascular tissues to increase their capacity for water transport. Our results shed a new light on the evolution of the vascular system of conifer forests and how they affect ecosystem productivity, and indicate the potential to

  15. FOB1 affects DNA topoisomerase I in vivo cleavages in the enhancer region of the Saccharomyces cerevisiae ribosomal DNA locus

    PubMed Central

    Di Felice, Francesca; Cioci, Francesco; Camilloni, Giorgio

    2005-01-01

    In Saccharomyces cerevisiae the FOB1 gene affects replication fork blocking activity at the replication fork block (RFB) sequences and promotes recombination events within the rDNA cluster. Using in vivo footprinting assays we mapped two in vivo Fob1p-binding sites, RFB1 and RFB3, located in the rDNA enhancer region and coincident with those previously reported to be in vitro binding sites. We previously provided evidences that DNA topoisomerase I is able to cleave two sites within this region. The results reported in this paper, indicate that the DNA topoisomerase I cleavage specific activity at the enhancer region is affected by the presence of Fob1p and independent of replication and transcription activities. We thus hypothesize that the binding to DNA of Fob1p itself may be the cause of the DNA topoisomerase I activity in the rDNA enhancer. PMID:16269824

  16. Copper phytoavailability and uptake by Elsholtzia splendens from contaminated soil as affected by soil amendments.

    PubMed

    Peng, Hong-Yun; Yang, Xiao-E; Jiang, Li-Ying; He, Zhen-Li

    2005-01-01

    Pot and field experiments were conducted to evaluate bioavailability of Cu in contaminated paddy soil (PS) and phytoremediation potential by Elsholtzia splendens as affected by soil amendments. The results from pot experiment showed that organic manure (M) applied to the PS not only remarkably raised the H2O exchangeable Cu, which were mainly due to the increased exchangeable and organic fractions of Cu in the PS by M, but also stimulated plant growth and Cu accumulation in E. splendens. At M application rate of 5.0%, shoot Cu concentration in the plant increased by four times grown on the PS, so as to the elevated shoot Cu accumulation by three times as compared to the control. In the field trial, soil amendments by M and furnace slag (F), and soil preparations like soil capping (S) and soil discing (D) were performed in the PS. Soil capping and discing considerably declined total Cu in the PS. Application of M solely or together with F enhanced plant growth and increased H2O exchangeable Cu levels in the soil. The increased extractability of Cu in the rhizosphere of E. splendens was noted, which may have mainly attributed to the rhizospheric acidification and chelation by dissolved organic matter (DOM), thus resulting in elevating Cu uptake and accumulation by E. splendens. Amendments with organic manure plus furnace slag (MF) to the PS caused the highest exactable Cu with saturated H2O in the rhizospheric soil of E. splendens after they were grown for 170 days in the PS, thus achieving 1.74 kg Cu ha(-1) removal from the contaminated soil by the whole plant of E. splendens at one season, which is higher than those of the other soil treatments. The results indicated that application of organic manure at a proper rate could enhance Cu bioavailability and increase effectiveness of Cu phytoextraction from the contaminated soil by the metal-tolerant and accumulating plant species (E. splendens). PMID:15792303

  17. Mutants affecting nucleotide recognition by T7 DNA polymerase.

    PubMed

    Donlin, M J; Johnson, K A

    1994-12-13

    Analysis of two mutations affecting nucleotide selection by the DNA polymerase from bacteriophage T7 is reported here. Two conserved residues (Glu480 and Tyr530) in the polymerase active site of an exonuclease deficient (exo-) T7 DNA polymerase were mutated using site-directed mutagenesis (Glu480-Asp and Tyr530-Phe). The kinetic and equilibrium constants governing DNA binding, nucleotide incorporation, and pyrophosphorolysis were measured with the mutants E480D(exo-) and Y530F(exo-) in single-turnover experiments using rapid chemical quench-flow methods. Both mutants have slightly lower Kd values for DNA binding compared to that of wild-type(exo-). With Y530F(exo-) the ground state nucleotide binding affinity was unchanged from wild-type for dGTP and dCTP, was 2-fold lower for dATP and 8-10-fold lower for dTTP binding. With E480D(exo-), the binding constants were 5-6-fold lower for dATP, dGTP, and dCTP and 40-fold lower for dTTP binding compared to those constants for wild-type(exo-). The significance of a specific destabilization of dTTP binding by these amino acids was examined using a dGTP analog, deoxyinosine triphosphate, which mimics the placement and number of hydrogen bonds of an A:T base pair. The Kd for dCTP opposite inosine was unchanged with wild-type(exo-) (197 microM) but higher with Y530F(exo-) (454 microM) and with E480D(exo-) (1 mM). The Kd for dITP was the same with wild-type(exo-) (180 microM) and Y530F(exo-) (229 microM), but significantly higher with E480D(exo-) (3.2 mM). These data support the suggestion that E480 selectively stabilizes dTTP in the wild-type enzyme, perhaps by hydrogen bonding to the unbonded carbonyl. Data on the incorporation of dideoxynucleotide analogs were consistent with the observation of a selective stabilization of dTTP by both residues. Pyrophosphorolysis experiments revealed that neither mutation had a significant effect on the chemistry of polymerization. The fidelity of the mutants were examined in

  18. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    PubMed Central

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  19. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    PubMed Central

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m−2 s−1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  20. Factors affecting the uptake of 14C-labeled organic chemicals by plants from soil

    SciTech Connect

    Topp, E.; Scheunert, I.; Attar, A.; Korte, F.

    1986-04-01

    The uptake of /sup 14/C from various /sup 14/C-labeled organic chemicals from different chemical classes by barley and cress seedlings from soil was studied for 7 days in a closed aerated laboratory apparatus. Uptake by roots and by leaves via the air was determined separately. Although comparative long-term outdoor studies showed that an equilibrium is not reached within a short time period, plant concentration factors after 7 days could be correlated to some physicochemical and structural substance properties. Barley root concentration factors due to root uptake, expressed as concentration in roots divided by concentration in soil, gave a fairly good negative correlation to adsorption coefficients based on soil organic carbon. Barley root concentration factors, expressed as concentration in roots divided by concentration in soil liquid, gave a positive correlation to the n-octanol/water partition coefficients. Uptake of chemicals by barley leaves via air was strongly positively correlated to volatilization of chemicals from soil. Both root and foliar uptake by barley could be correlated well to the molecular weight of 14 chemicals. Uptake of chemicals by cress differed from that by barley, and correlations to physicochemical substance properties mostly were poor.

  1. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.)

    NASA Astrophysics Data System (ADS)

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-02-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m-2 s-1) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower 15N-nitrate in root but higher in shoot and the higher 15N-glycine in root but lower in shoot suggested that most 15N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution.

  2. Light intensity affects the uptake and metabolism of glycine by pakchoi (Brassica chinensis L.).

    PubMed

    Ma, Qingxu; Cao, Xiaochuang; Wu, Lianghuan; Mi, Wenhai; Feng, Ying

    2016-01-01

    The uptake of glycine by pakchoi (Brassica chinensis L.), when supplied as single N-source or in a mixture of glycine and inorganic N, was studied at different light intensities under sterile conditions. At the optimal intensity (414 μmol m(-2) s(-1)) for plant growth, glycine, nitrate, and ammonium contributed 29.4%, 39.5%, and 31.1% shoot N, respectively, and light intensity altered the preferential absorption of N sources. The lower (15)N-nitrate in root but higher in shoot and the higher (15)N-glycine in root but lower in shoot suggested that most (15)N-nitrate uptake by root transported to shoot rapidly, with the shoot being important for nitrate assimilation, and the N contribution of glycine was limited by post-uptake metabolism. The amount of glycine that was taken up by the plant was likely limited by root uptake at low light intensities and by the metabolism of ammonium produced by glycine at high light intensities. These results indicate that pakchoi has the ability to uptake a large quantity of glycine, but that uptake is strongly regulated by light intensity, with metabolism in the root inhibiting its N contribution. PMID:26882864

  3. Root uptake and translocation of nickel in wheat as affected by histidine.

    PubMed

    Dalir, Neda; Khoshgoftarmanesh, Amir Hossein

    2015-07-20

    The role of histidine (His) on root uptake, xylem loading and root to shoot transport of nickel (Ni) was investigated in a winter (Triticum aestivum cv. Back Cross) and a durum wheat (Triticum durum cv. Durum) cultivar. Seedlings were grown in a modified Johnson nutrient solution and exposed to 10 μM of Ni and 100 μM of histidine (His) as no His, Ni (10) + His (100) and Ni(His) in a 1:1 mole ratio (1:1) complex. In our study, the presence of vanadate (a metabolic inhibitor) resulted in a significant decrease of root Ni uptake, indicating that a part of Ni uptake by the plant root is energy-dependent. Addition of His significantly increased the Ni content in shoots and roots of both wheat cultivars. The data suggest that the Ni(His) is most likely to be taken up as a complex or receptors at the membrane are able to enhance Ni uptake from Ni(His) complex. This result was indirectly supported by using EDTA as a strong chelating reagent to reduce the uptake of Ni(His) complexes. By using this ligand, the xylem loading of Ni and His was disproportionately reduced. Cycloheximide (a translation inhibitor) strongly decreased the release of His and Ni from the root into the xylem of wheat, suggesting the significance of a symplastic pathway for Ni loading into the xylem. PMID:26162706

  4. Light Conditions Affect the Measurement of Oceanic Bacterial Production via Leucine Uptake

    PubMed Central

    Morán, Xosé Anxelu G.; Massana, Ramon; Gasol, Josep M.

    2001-01-01

    The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surfacemost samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 μmol of photons m−2 s−1 evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles. PMID:11525969

  5. The Uptake of Extracellular Vesicles is Affected by the Differentiation Status of Myeloid Cells.

    PubMed

    Czernek, L; Chworos, A; Duechler, M

    2015-12-01

    Intercellular communication includes the exchange of various membrane vesicles including exosomes. Exosomes are intraluminal nanovesicles generated from multivesicular bodies, a late endosomal compartment. Cancer cells release exosomes that influence their proximate and distant environment to facilitate angiogenesis, metastatic dissemination and immune escape. Cancer-derived vesicles may also trigger an anti-tumour response by transferring tumour antigens to immune cells. We wanted to investigate whether differentiation and maturation of myeloid cells changes their capacity to take up cancer-derived extracellular vesicles (EV). We compared the efficiency of vesicle uptake by monocytes, macrophages and dendritic cells. To visualize and quantify the cellular uptake, EV were labelled with two different dyes, carboxyfluoresceine diacetate succinimidyl-ester (CFSE), or DSSN+, a water soluble distyrylstilbene oligoelectrolyte which preferentially intercalates into the cell membrane. With the help of cytokines, THP-1 monocytes were differentiated into immature or mature dendritic cells, or macrophages. EV uptake was monitored by flow cytometry and immunofluorescence microscopy. The results show that macrophages and mature dendritic cells acquired stronger fluorescence transferred by EV than monocytes or immature dendritic cells indicating that the differentiation status influences the efficiency of EV uptake. PMID:26332303

  6. Physiologically-based toxicokinetic models help identifying the key factors affecting contaminant uptake during flood events.

    PubMed

    Brinkmann, Markus; Eichbaum, Kathrin; Kammann, Ulrike; Hudjetz, Sebastian; Cofalla, Catrina; Buchinger, Sebastian; Reifferscheid, Georg; Schüttrumpf, Holger; Preuss, Thomas; Hollert, Henner

    2014-07-01

    As a consequence of global climate change, we will be likely facing an increasing frequency and intensity of flood events. Thus, the ecotoxicological relevance of sediment re-suspension is of growing concern. It is vital to understand contaminant uptake from suspended sediments and relate it to effects in aquatic biota. Here we report on a computational study that utilizes a physiologically based toxicokinetic model to predict uptake, metabolism and excretion of sediment-borne pyrene in rainbow trout (Oncorhynchus mykiss). To this end, data from two experimental studies were compared with the model predictions: (a) batch re-suspension experiments with constant concentration of suspended particulate matter at two different temperatures (12 and 24°C), and (b) simulated flood events in an annular flume. The model predicted both the final concentrations and the kinetics of 1-hydroxypyrene secretion into the gall bladder of exposed rainbow trout well. We were able to show that exhaustive exercise during exposure in simulated flood events can lead to increased levels of biliary metabolites and identified cardiac output and effective respiratory volume as the two most important factors for contaminant uptake. The results of our study clearly demonstrate the relevance and the necessity to investigate uptake of contaminants from suspended sediments under realistic exposure scenarios. PMID:24727214

  7. Oxygen microenvironment affects the uptake of nanoparticles in head and neck tumor cells

    NASA Astrophysics Data System (ADS)

    Chen, Eunice Y.; Hodge, Sasson; Tai, Katherine; Hou, Huagang; Khan, Nadeem; Hoopes, P. Jack; Samkoe, Kimberley S.

    2013-02-01

    Survival of head and neck cancer patients has not improved in several decades despite advances in diagnostic and therapeutic techniques. Tumor hypoxia in head and neck cancers is a critical factor that leads to poor prognosis, resistance to radiation and chemotherapies, and increased metastatic potential. Magnetic nanoparticle hyperthermia (mNPHT) is a promising therapy for hypoxic tumors because nanoparticles (NP) can be directly injected into, or targeted to, hypoxic tumor cells and exposed to alternating magnetic fields (AMF) to induce hyperthermia. Magnetic NPHT can improve therapeutic effectiveness by two modes of action: 1) direct killing of hypoxic tumor cells; and 2) increase in tumor oxygenation, which has the potential to make the tumor more susceptible to adjuvant therapies such as radiation and chemotherapy. Prior studies in breast cancer cells demonstrated that a hypoxic microenvironment diminished NP uptake in vitro; however, mNPHT with intratumoral NP injection in hypoxic tumors increased tumor oxygenation and delayed tumor growth. In this study, head and neck squamous cell carcinoma (HNSCC) cell lines were incubated in normoxic, hypoxic, and hyperoxic conditions with iron oxide NP for 4-72 hours. After incubation, the cells were analyzed for iron uptake by mass spectrometry, Prussian blue staining, and electron microscopy. In contrast to breast cancer cells, uptake of NPs was increased in hypoxic microenvironments as compared to normoxic conditions in HNSCC cells. In future studies, we will confirm the effect of the oxygen microenvironment on NP uptake and efficacy of mNPHT both in vitro and in vivo.

  8. Oxygen microenvironment affects the uptake of nanoparticles in head and neck tumor cells.

    PubMed

    Chen, Eunice Y; Hodge, Sassan; Tai, Katherine; Hou, Huagang; Khan, Nadeem; Hoopes, P Jack; Samkoe, Kimberley S

    2013-02-26

    Survival of head and neck cancer patients has not improved in several decades despite advances in diagnostic and therapeutic techniques. Tumor hypoxia in head and neck cancers is a critical factor that leads to poor prognosis, resistance to radiation and chemotherapies, and increased metastatic potential. Magnetic nanoparticle hyperthermia (mNPHT) is a promising therapy for hypoxic tumors because nanoparticles (NP) can be directly injected into, or targeted to, hypoxic tumor cells and exposed to alternating magnetic fields (AMF) to induce hyperthermia. Magnetic NPHT can improve therapeutic effectiveness by two modes of action: 1) direct killing of hypoxic tumor cells; and 2) increase in tumor oxygenation, which has the potential to make the tumor more susceptible to adjuvant therapies such as radiation and chemotherapy. Prior studies in breast cancer cells demonstrated that a hypoxic microenvironment diminished NP uptake in vitro; however, mNPHT with intratumoral NP injection in hypoxic tumors increased tumor oxygenation and delayed tumor growth. In this study, head and neck squamous cell carcinoma (HNSCC) cell lines were incubated in normoxic, hypoxic, and hyperoxic conditions with iron oxide NP for 4-72 hours. After incubation, the cells were analyzed for iron uptake by mass spectrometry, Prussian blue staining, and electron microscopy. In contrast to breast cancer cells, uptake of NPs was increased in hypoxic microenvironments as compared to normoxic conditions in HNSCC cells. In future studies, we will confirm the effect of the oxygen microenvironment on NP uptake and efficacy of mNPHT both in vitro and in vivo. PMID:25301994

  9. Uptake of Pharmaceuticals Influences Plant Development and Affects Nutrient and Hormone Homeostases.

    PubMed

    Carter, Laura J; Williams, Mike; Böttcher, Christine; Kookana, Rai S

    2015-10-20

    The detection of a range of active pharmaceutical ingredients (APIs) in the soil environment has led to a number of publications demonstrating uptake by crops, however very few studies have explored the potential for impacts on plant development as a result of API uptake. This study investigated the effect of carbamazepine and verapamil (0.005-10 mg/kg) on a range of plant responses in zucchini (Cucurbita pepo). Uptake increased in a dose-dependent manner, with maximum leaf concentrations of 821.9 and 2.2 mg/kg for carbamazepine and verapamil, respectively. Increased carbamazepine uptake by zucchini resulted in a decrease in above (<60%) and below (<30%) ground biomass compared to the controls (p < 0.05). At soil concentrations >4 mg/kg the mature leaves suffered from burnt edges and white spots as well as a reduction in photosynthetic pigments but no such effects were seen for verapamil. For both APIs, further investigations revealed significant differences in the concentrations of selected plant hormones (auxins, cytokinins, abscisic acid and jasmonates), and in the nutrient composition of the leaves in comparison to the controls (p < 0.05). This is some of the first research to demonstrate that the exposure of plants to APIs is likely to cause impacts on plant development with unknown implications. PMID:26418514

  10. Factors affecting uptake of recommended immunizations among health care workers in South Australia.

    PubMed

    Tuckerman, Jane L; Collins, Joanne E; Marshall, Helen S

    2015-01-01

    Despite the benefits of vaccination for health care workers (HCWs), uptake of recommended vaccinations is low, particularly for seasonal influenza and pertussis. In addition, there is variation in uptake within hospitals. While all vaccinations recommended for HCWs are important, vaccination against influenza and pertussis are particularly imperative, given HCWs are at risk of occupationally acquired influenza and pertussis, and may be asymptomatic, acting as a reservoir to vulnerable patients in their care. This study aimed to determine predictors of uptake of these vaccinations and explore the reasons for variation in uptake by HCWs working in different hospital wards. HCWs from wards with high and low influenza vaccine uptake in a tertiary pediatric and obstetric hospital completed a questionnaire to assess knowledge of HCW recommended immunizations. Multiple logistic regression was used to determine predictors of influenza and pertussis vaccination uptake. Of 92 HCWs who responded, 9.8% were able to identify correctly the vaccines recommended for HCWs. Overall 80% of respondents reported they had previously received influenza vaccine and 50.5% had received pertussis vaccine. Independent predictors of pertussis vaccination included length of time employed in health sector (P < 0.001), previously receiving hepatitis B/MMR (measles, mumps, rubella) vaccine (P < 0.001), and a respondent being aware influenza infections could be severe in infants (p = 0.023). Independent predictors of seasonal influenza vaccination included younger age (P < 0.001), English as first language (P < 0.001), considering it important to be vaccinated to protect themselves (P < 0.001), protect patients (p = 0.012) or awareness influenza could be serious in immunocompromised patients (p = 0.030). Independent predictors for receiving both influenza and pertussis vaccinations included younger age (P < 0.001), time in area of work (P = 0.020), previously receiving hepatitis B vaccine (P = 0

  11. Factors affecting uptake of recommended immunizations among health care workers in South Australia

    PubMed Central

    Tuckerman, Jane L; Collins, Joanne E; Marshall, Helen S

    2015-01-01

    Despite the benefits of vaccination for health care workers (HCWs), uptake of recommended vaccinations is low, particularly for seasonal influenza and pertussis. In addition, there is variation in uptake within hospitals. While all vaccinations recommended for HCWs are important, vaccination against influenza and pertussis are particularly imperative, given HCWs are at risk of occupationally acquired influenza and pertussis, and may be asymptomatic, acting as a reservoir to vulnerable patients in their care. This study aimed to determine predictors of uptake of these vaccinations and explore the reasons for variation in uptake by HCWs working in different hospital wards. HCWs from wards with high and low influenza vaccine uptake in a tertiary pediatric and obstetric hospital completed a questionnaire to assess knowledge of HCW recommended immunizations. Multiple logistic regression was used to determine predictors of influenza and pertussis vaccination uptake. Of 92 HCWs who responded, 9.8% were able to identify correctly the vaccines recommended for HCWs. Overall 80% of respondents reported they had previously received influenza vaccine and 50.5% had received pertussis vaccine. Independent predictors of pertussis vaccination included length of time employed in health sector (P < 0.001), previously receiving hepatitis B/MMR (measles, mumps, rubella) vaccine (P < 0.001), and a respondent being aware influenza infections could be severe in infants (p = 0.023). Independent predictors of seasonal influenza vaccination included younger age (P < 0.001), English as first language (P < 0.001), considering it important to be vaccinated to protect themselves (P < 0.001), protect patients (p = 0.012) or awareness influenza could be serious in immunocompromised patients (p = 0.030). Independent predictors for receiving both influenza and pertussis vaccinations included younger age (P < 0.001), time in area of work (P = 0.020), previously receiving hepatitis B vaccine (P = 0

  12. Histologic differences between orthotopic xenograft pancreas models affect Verteporfin uptake measured by fluorescence microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Hara, Julia A.; Samkoe, Kimberley S.; Chen, Alina; Isabelle, Martin; Hoopes, P. J.; Hasan, Tayyaba; Pogue, Brian W.

    2012-02-01

    Photodynamic therapy (PDT) that uses the second generation photosensitizer, verteporfin (VP), is a developing therapy for pancreatic cancer. The optimal timing of light delivery related to VP uptake and distribution in pancreatic tumors will be important information to obtain to improve treatment for this intractable disease. In this work we examined uptake and distribution of VP in two orthotopic pancreatic tumors with different histological structure. ASPC-1 (fast-growing) and Panc-1 (slower growing) tumors were implanted in SCID mice and studied when tumors were approximately 100mm3. In a pilot study, these tumors had been shown to differ in uptake of VP using lightinduced fluorescence spectroscopy (LIFS) in vivo and fluorescence imaging ex vivo and that work is extended here. In vivo fluorescence mean readings of tumor and liver increased rapidly up to 15 minutes after photosensitizer injection for both tumor types, and then continued to increase up to 60 minutes post injection to a higher level in ASPC-1 than in Panc-1. There was variability among animals with the same tumor type, in both liver and tumor uptake and no selectivity of tumor over liver. In this work we further examined VP uptake at multiple time points in relation to microvascular density and perfusion, using DiOC7 (to mark blood vessels) and VP fluorescence in the same tissue slices. Analysis of DiOC7 fluorescence indicates that AsPC-1 and Panc-1 have different vascular densities but AsPC-1 vasculature is more perfusive. Analysis of colocalized DiOC7 and VP fluorescence showed ASPC-1 with higher accumulation of VP 3 hrs after injection and more VP at a distance from blood vessels compared to Panc-1. This work shows the need for techniques to analyze photosensitizer distribution in order to optimize photodynamic therapy as an effective treatment for pancreatic tumors.

  13. Ternary complex consisting of DNA, polycation, and a natural polysaccharide of schizophyllan to induce cellular uptake by antigen presenting cells.

    PubMed

    Takeda, Yoichi; Shimada, Naohiko; Kaneko, Kenji; Shinkai, Seiji; Sakurai, Kazuo

    2007-04-01

    A natural polysaccharide called schizophyllan (SPG) can form a complex with polynucleotides, and the complex has been shown to deliver biofunctional short DNAs such as antisense DNAs and CpG-DNAs. Although it is a novel and efficient method, there is a drawback: attachment of homo-polynucleotide tails [for example, poly(dA) or poly(C)] to the end of DNA is necessary to stabilize the complex, because DNA heterosequences cannot bind to SPG. The aim of this paper is to present an alternative method in which SPG/DNA complexes can be made without using the tails. The basic strategy is as follows: since SPG can form hydrophobic domains in aqueous solutions, hydrophobic objects should be encapsulated by this domain. DNA alone is highly hydrophilic; however, once DNA/polycation complexes are made, they should be included by the SPG hydrophobic domain. The aim of this paper is to prove the formation of the polycation/DNA/SPG ternary complex. Gel electrophoresis showed that presence of SPG influenced the migration pattern of polycation+DNA mixtures. With increasing the SPG ratio, the zeta potential (zeta) of the polycation+DNA+SPG mixture decreased drastically to reach almost zeta = 0 and the particle size distributions were altered due to the ternary complex formation. Confocal laser scanning microscopy revealed that the polycation/DNA/SPG ternary complexes showed high uptake efficiency when the complexes were exposed to macrophage-like cells (J774.A1). IL-12 secretion was enhanced when CpG-DNA was added as the ternary complex. These features can be ascribed to the fact that J774.A1 has a SPG recognition site called Dectin-1 on the cellular surface and the ternary complex can be ingested by this pathway. PMID:17328571

  14. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake

    NASA Astrophysics Data System (ADS)

    Schöttler, S.; Klein, Katja; Landfester, K.; Mailänder, V.

    2016-03-01

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake.Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance

  15. Inulin and fructooligosaccharide affect in vitro calcium uptake and absorption from calcium-enriched gluten-free bread.

    PubMed

    Krupa-Kozak, U; Swiątecka, D; Bączek, N; Brzóska, M M

    2016-04-01

    Compromised intestinal calcium absorption affecting a deterioration of bone state is a sign of coeliac disease. Experimental calcium-fortified gluten-free bread (GFB) of improved calcium bioavailability could increase calcium content in the diets of coeliac disease patients, allowing them to obtain the amount of calcium they need for therapeutic use. Prebiotics, including inulin-type fructans (IFs) have a beneficial effect on calcium bioavailability. In the present study, the in vitro model composed of the intestinal-like Caco-2 cells and the human intestinal bacteria (Lactobacillus, Enterococcus and Enterobacteriaceae) were used to analyse the effect of inulin and fructooligosaccharide (FOS) of different chain lengths, on calcium uptake and absorption from experimental GFB. Analysed IFs, especially short-chain FOS, significantly (p < 0.05) increased cellular calcium uptake from GFB digest and stimulated the intestinal bacteria applied in the cultures to the intensive synthesis of organic acids. In particular, the concentration of butyric, valeric and lactic acids increased significantly. Similarly, in the calcium absorption experiment, IFs increased the cellular calcium retention but concomitantly reduced its content in basolateral filtrates. The results obtained suggest that the applied IFs affected differentially calcium uptake and absorption from the experimental calcium-enriched GFB, therefore a further study is needed to assess whether these observations made in vitro contribute to IF effects on calcium absorption from experimental GFB in vivo. PMID:26965706

  16. Local hindlimb antioxidant infusion does not affect muscle glucose uptake during in situ contractions in rat.

    PubMed

    Merry, T L; Dywer, R M; Bradley, E A; Rattigan, S; McConell, G K

    2010-05-01

    There is evidence that reactive oxygen species (ROS) contribute to the regulation of skeletal muscle glucose uptake during highly fatiguing ex vivo contraction conditions via AMP-activated protein kinase (AMPK). In this study we investigated the role of ROS in the regulation of glucose uptake and AMPK signaling during low-moderate intensity in situ hindlimb muscle contractions in rats, which is a more physiological protocol and preparation. Male hooded Wistar rats were anesthetized, and then N-acetylcysteine (NAC) was infused into the epigastric artery (125 mg.kg(-1).h(-1)) of one hindlimb (contracted leg) for 15 min before this leg was electrically stimulated (0.1-ms impulse at 2 Hz and 35 V) to contract at a low-moderate intensity for 15 min. The contralateral leg did not receive stimulation or local NAC infusion (rest leg). NAC infusion increased (P<0.05) plasma cysteine and cystine (by approximately 360- and 1.4-fold, respectively) and muscle cysteine (by 1.5-fold, P=0.001). Although contraction did not significantly alter muscle tyrosine nitration, reduced (GSH) or oxidized glutathione (GSSG) content, S-glutathionylation of protein bands at approximately 250 and 150 kDa was increased (P<0.05) approximately 1.7-fold by contraction, and this increase was prevented by NAC. Contraction increased (P<0.05) skeletal muscle glucose uptake 20-fold, AMPK phosphorylation 6-fold, ACCbeta phosphorylation 10-fold, and p38 MAPK phosphorylation 60-fold, and the muscle fatigued by approximately 30% during contraction and NAC infusion had no significant effect on any of these responses. This was despite NAC preventing increases in S-glutathionylation with contraction. In conclusion, unlike during highly fatiguing ex vivo contractions, local NAC infusion during in situ low-moderate intensity hindlimb contractions in rats, a more physiological preparation, does not attenuate increases in skeletal muscle glucose uptake or AMPK signaling. PMID:20203065

  17. Evaluation of the Impact of Human Papillomavirus DNA Self-sampling on the Uptake of Cervical Cancer Screening

    PubMed Central

    Wong, Eliza L. Y.; Chan, Paul K. S.; Chor, Josette S. Y.; Cheung, Annie W. L.; Huang, Fenwei; Wong, Samuel Y. S.

    2016-01-01

    Background: The rate of uptake of the Papanicolaou (Pap) smear is generally low. Its causal relationship with human papillomavirus (HPV) DNA allows HPV DNA self-sampling to be used as an alternative screening tool for cervical cancer. Objectives: This study explored the acceptability of HPV DNA self-sampling and its impact on the rate of compliance with cervical cancer screening. Methods: A crossover randomized clinical trial was conducted in community-based clinics. Participants were allocated to 1 of the following 2 arms: arm 1: self-sampling before a Pap smear; and arm 2: a Pap smear before self-sampling. After completing the 2 screening methods, participants in each arm took part in face-to-face interviews using standardized, structured questionnaire. Results: The participants accepted both self-sampling (7.7/10) and a Pap smear (7.8/10) for cervical cancer screening. However, participants without previous experience of Pap smears or who had more than 2 sexual partners preferred self-sampling (P < .05). The participants expressed overall positive feelings toward self-sampling, and there was good agreement in HPV detection between the 2 screening methods (κ = 0.65). We estimate that the introduction of HPV DNA self-sampling could increase the future rate of uptake of cervical cancer screening by 6.5% and would entail lower costs. Conclusion: Human papillomavirus DNA self-sampling could be an alternative screening method to increase the coverage of cervical cancer screening. Implications for Practice: Human papillomavirus DNA self-sampling could overcome the barriers raised by Pap smears and enhance the coverage of cervical cancer screening. Promotional publicity and education are essential. PMID:25730587

  18. Protein source and choice of anticoagulant decisively affect nanoparticle protein corona and cellular uptake.

    PubMed

    Schöttler, S; Klein, Katja; Landfester, K; Mailänder, V

    2016-03-14

    Protein adsorption on nanoparticles has been a focus of the field of nanocarrier research in the past few years and more and more papers are dealing with increasingly detailed lists of proteins adsorbed to a plethora of nanocarriers. While there is an urgent need to understand the influence of this protein corona on nanocarriers' interactions with cells the strong impact of the protein source on corona formation and the consequence for interaction with different cell types are factors that are regularly neglected, but should be taken into account for a meaningful analysis. In this study, the importance of the choice of protein source used for in vitro protein corona analysis is concisely investigated. Major and decisive differences in cellular uptake of a polystyrene nanoparticle incubated in fetal bovine serum, human serum, human citrate and heparin plasma are reported. Furthermore, the protein compositions are determined for coronas formed in the respective incubation media. A strong influence of heparin, which is used as an anticoagulant for plasma generation, on cell interaction is demonstrated. While heparin enhances the uptake into macrophages, it prevents internalization into HeLa cells. Taken together we can give the recommendation that human plasma anticoagulated with citrate seems to give the most relevant results for in vitro studies of nanoparticle uptake. PMID:26804616

  19. How phytohormone IAA and chelator EDTA affect lead uptake by Zn/Cd hyperaccumulator Picris divaricata.

    PubMed

    Du, Rui-Jun; He, Er-Kai; Tang, Ye-Tao; Hu, Peng-Jie; Ying, Rong-Rong; Morel, Jean-Louis; Qiu, Rong-Liang

    2011-01-01

    In this paper, the effects of indole-3-acetic acid (IAA) and/or ethylenediaminetetraacetic acid (EDTA) on lead uptake by a Zn/Cd hyperaccumulator Picris divaricata were studied. P. divaricata responded to Pb by better root system and increased biomass in presence of phytohormone IAA, which was able to reduce the inhibiting effects of Pb on transpiration without reducing the uptake of Pb The application of 100 microM IAA increased plant transpiration rate by about 20% and Pb concentration in leaves by about 37.3% as compared to treatment exposed to Pb alone. The enhanced phytoextraction efficiency could be attributed to the mechanisms played by IAA through alleviating Pb toxicity, creating better root system and plant biomass, promoting a higher transpiration rate as well as regulating the level of nutrient elements. On the contrary, inefficiency of phytoextraction was found with EDTA or the combination of IAA and EDTA probably because most Pb was in the form of Pb-EDTA complex which blocked the uptake by P. divaricata. The present study demonstrated that IAA was able to enhance the phytoextraction of Pb by Zn/Cd hyperaccumulator P. divaricata, providing a feasible method for the phytoremediation of polymetallic contaminated soils. PMID:21972569

  20. Evidence Supporting the Uptake and Genomic Incorporation of Environmental DNA in the "Ancient Asexual" Bdelloid Rotifer Philodina roseola.

    PubMed

    Bininda-Emonds, Olaf R P; Hinz, Claus; Ahlrichs, Wilko H

    2016-01-01

    Increasing evidence suggests that bdelloid rotifers regularly undergo horizontal gene transfer, apparently as a surrogate mechanism of genetic exchange in the absence of true sexual reproduction, in part because of their ability to withstand desiccation. We provide empirical support for this latter hypothesis using the bdelloid Philodina roseola, which we demonstrate to readily internalize environmental DNA in contrast to a representative monogonont rotifer (Brachionus rubens), which, like other monogononts, is facultative sexual and cannot withstand desiccation. In addition, environmental DNA that was more similar to the host DNA was retained more often and for a longer period of time. Indirect evidence (increased variance in the reproductive output of the untreated F1 generation) suggests that environmental DNA can be incorporated into the genome during desiccation and is thus heritable. Our observed fitness effects agree with sexual theory and also occurred when the animals were desiccated in groups (thereby acting as DNA donors), but not individually, indicating the mechanism could occur in nature. Thus, although DNA uptake and its genomic incorporation appears proximally related to anhydrobiosis in bdelloids, it might also facilitate accidental genetic exchange with closely related taxa, thereby maintaining higher levels of genetic diversity than is otherwise expected for this group of "ancient asexuals". PMID:27608044

  1. Alpha-phellandrene-induced DNA damage and affect DNA repair protein expression in WEHI-3 murine leukemia cells in vitro.

    PubMed

    Lin, Jen-Jyh; Wu, Chih-Chung; Hsu, Shu-Chun; Weng, Shu-Wen; Ma, Yi-Shih; Huang, Yi-Ping; Lin, Jaung-Geng; Chung, Jing-Gung

    2015-11-01

    Although there are few reports regarding α-phellandrene (α-PA), a natural compound from Schinus molle L. essential oil, there is no report to show that α-PA induced DNA damage and affected DNA repair associated protein expression. Herein, we investigated the effects of α-PA on DNA damage and repair associated protein expression in murine leukemia cells. Flow cytometric assay was used to measure the effects of α-PA on total cell viability and the results indicated that α-PA induced cell death. Comet assay and 4,6-diamidino-2-phenylindole dihydrochloride staining were used for measuring DNA damage and condensation, respectively, and the results indicated that α-PA induced DNA damage and condensation in a concentration-dependent manner. DNA gel electrophoresis was used to examine the DNA damage and the results showed that α-PA induced DNA damage in WEHI-3 cells. Western blotting assay was used to measure the changes of DNA damage and repair associated protein expression and the results indicated that α-PA increased p-p53, p-H2A.X, 14-3-3-σ, and MDC1 protein expression but inhibited the protein of p53, MGMT, DNA-PK, and BRCA-1. PMID:24861204

  2. Uptake, cellular distribution and DNA damage produced by mercuric chloride in a human fetal hepatic cell line.

    PubMed

    Bucio, L; García, C; Souza, V; Hernández, E; González, C; Betancourt, M; Gutiérrez-Ruiz, M C

    1999-01-25

    A human hepatic cell line (WRL-68 cells) was employed to investigate the uptake of the toxic heavy metal mercury. Hg accumulation in WRL-68 cells is a time and concentration dependent process. A rapid initial phase of uptake was followed by a second slower phase. The transport does not require energy and at low HgCl2 concentrations (<50 microM) Hg transport occurs by temperature-insensitive processes. Subcellular distribution of Hg was: 48% in mitochondria, 38% in nucleus and only 8% in cytosolic fraction and 7% in microsomes. Little is known at the molecular level concerning the genotoxic effects following the acute exposure of eucaryotic cells to low concentrations of Hg. Our results showed that Hg induced DNA single-strand breaks or alkali labile sites using the single-cell gel electrophoresis assay (Comet assay). The percentage of damaged nucleus and the average length of DNA migration increased as metal concentration and time exposure increased. Lipid peroxidation, determined as malondialdehyde production in the presence of thiobarbituric acid, followed the same tendency, increased as HgCl2 concentration and time of exposure increased. DNA damage recovery took 8 h after partial metal removed with PBS-EGTA. PMID:10029678

  3. OCT1 mediates hepatic uptake of sumatriptan and loss-of-function OCT1 polymorphisms affect sumatriptan pharmacokinetics.

    PubMed

    Matthaei, J; Kuron, D; Faltraco, F; Knoch, T; Dos Santos Pereira, J N; Abu Abed, M; Prukop, T; Brockmöller, J; Tzvetkov, M V

    2016-06-01

    The low bioavailability of the anti-migraine drug sumatriptan is partially caused by first-pass hepatic metabolism. In this study, we analyzed the impact of the hepatic organic cation transporter OCT1 on sumatriptan cellular uptake, and of OCT1 polymorphisms on sumatriptan pharmacokinetics. OCT1 transported sumatriptan with high capacity and sumatriptan uptake into human hepatocytes was strongly inhibited by the OCT1 inhibitor MPP(+) . Sumatriptan uptake was not affected by the Met420del polymorphism, but was strongly reduced by Arg61Cys and Gly401Ser, and completely abolished by Gly465Arg and Cys88Arg. Plasma concentrations in humans with two deficient OCT1 alleles were 215% of those with fully active OCT1 (P = 0.0003). OCT1 also transported naratriptan, rizatriptan, and zolmitriptan, suggesting a possible impact of OCT1 polymorphisms on the pharmacokinetics of other triptans as well. In conclusion, OCT1 is a high-capacity transporter of sumatriptan and polymorphisms causing OCT1 deficiency have similar effects on sumatriptan pharmacokinetics as those observed in subjects with liver impairment. PMID:26659468

  4. Does varicocelectomy affect DNA fragmentation in infertile patients?

    PubMed Central

    Telli, Onur; Sarici, Hasmet; Kabar, Mucahit; Ozgur, Berat Cem; Resorlu, Berkan; Bozkurt, Selen

    2015-01-01

    Introduction: The aims of this study were to investigate the effect of varicocelectomy on DNA fragmentation index and semen parameters in infertile patients before and after surgical repair of varicocele. Materials and Methods: In this prospective study, 72 men with at least 1-year history of infertility, varicocele and oligospermia were examined. Varicocele sperm samples were classified as normal or pathological according to the 2010 World Health Organization guidelines. The acridine orange test was used to assess the DNA fragmentation index (DFI) preoperatively and postoperatively. Results: DFI decreased significantly after varicocelectomy from 34.5% to 28.2% (P = 0.024). In addition all sperm parameters such as mean sperm count, sperm concentration, progressive motility and sperm morphology significantly increased from 19.5 × 106 to 30.7 × 106, 5.4 × 106/ml to 14.3 × 106/ml, and 19.9% to 31.2% (P < 0.001) and 2.6% to 3.1% (P = 0.017). The study was limited by the loss to follow-up of some patients and unrecorded pregnancy outcome due to short follow-up. Conclusion: Varicocele causes DNA-damage in spermatozoa. We suggest that varicocelectomy improves sperm parameters and decreases DFI. PMID:25878412

  5. Intradermal Gene Immunization: The Possible Role of DNA Uptake in the Induction of Cellular Immunity to Viruses

    NASA Astrophysics Data System (ADS)

    Raz, Eyal; Carson, Dennis A.; Parker, Suezanne E.; Parr, Tyler B.; Abai, Anna M.; Aichinger, Gerald; Gromkowski, Stanislaw H.; Singh, Malini; Lew, Denise; Yankauckas, Michelle A.; Baird, Stephen M.; Rhodes, Gary H.

    1994-09-01

    The skin and mucous membranes are the anatomical sites where most viruses are first encountered by the immune system. Previous experiments have suggested that striated muscle cells are unique among mammalian cell types in their capacity to take up and express free DNA in the absence of a viral vector or physical carrier. However, we have found that mice injected into the superficial skin with free (naked) plasmid DNA encoding the influenza nucleoprotein gene had discrete foci of epidermal and dermal cells, including cells with dendritic morphology, that contained immunoreactive nucleoprotein antigen. A single intradermal administration of 0.3-15 μ g of free plasmid DNA induced anti-nucleoprotein-specific antibody and cytotoxic T lymphocytes that persisted for at least 68-70 weeks after vaccination. Intradermal gene administration induced higher antibody titers than did direct gene injection into skeletal muscle and did not cause local inflammation or necrosis. Compared with control animals, the gene-injected mice were resistant to challenge with a heterologous strain of influenza virus. These results indicate that the cells of the skin can take up and express free foreign DNA and induce cellular and humoral immune responses against the encoded protein. We suggest that DNA uptake by the skin-associated lymphoid tissues may play a role in the induction of cytotoxic T cells against viruses and other intracellular pathogens.

  6. How fulvic acid affects heavy metal uptake on the muscovite (001) surface

    NASA Astrophysics Data System (ADS)

    Lee, S.; Fenter, P.; Park, C.; Sturchio, N. C.; Nagy, K.

    2009-12-01

    Understanding the molecular-scale reactions at mineral-solution interfaces is crucial for developing predictive models to assess the transport and bioavailability of dissolved heavy metals in the surface environment. We investigated the vertical distribution of divalent heavy metals (Cu, Zn, Sr, Hg, and Pb) adsorbed at the muscovite (001)-solution interface in the absence and presence of fulvic acid (FA) using interface-specific specular X-ray reflectivity combined with element-specific resonant anomalous X-ray reflectivity with a sub-angstrom resolution. The experimental solutions were prepared using 1-10 mmol/kg metal nitrates with or without 100 mg/kg Elliott Soil Fulvic Acid II or Suwannee River Fulvic Acid from the International Humic Substances Society at pH 2-5.5. Reflectivity data were measured at the Advanced Photon Source, Argonne National Laboratory. In the absence of FA, the results show a complex picture in which there are three distinct adsorbed species that coexist at the interface: classical inner- and outer-sphere complexes plus a third OS fraction that is more broadly distributed at heights farther from the surface than the other species. Systematic trends in cation adsorption show that these three species are correlated and that their partitioning can be explained by thermodynamic equilibrium among these three species which is controlled mainly by cation hydration energy. The presence of dissolved FA modifies heavy metal uptake by two different mechanisms: it can form complexes with metal cations in solution and adsorb on muscovite as metal-organic complexes when the metal has a relatively high affinity for organic matter. In this case, the adsorbed metal cation shows a characteristic broad distribution within the entire film, resulting in formation of a more electron-dense and thicker organic film on muscovite compared to that without metals. Metals with lower organophilicity show that the enhanced metal uptake occurs mainly within the outer

  7. Persistence of DNA in Carcasses, Slime and Avian Feces May Affect Interpretation of Environmental DNA Data

    PubMed Central

    Merkes, Christopher M.; McCalla, S. Grace; Jensen, Nathan R.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps. PMID:25402206

  8. Factors Affecting the Uptake and Retention of Vibrio vulnificus in Oysters

    PubMed Central

    Noble, Rachel T.

    2014-01-01

    Vibrio vulnificus, a bacterium ubiquitous in oysters and coastal water, is capable of causing ailments ranging from gastroenteritis to grievous wound infections or septicemia. The uptake of these bacteria into oysters is often examined in vitro by placing oysters in seawater amended with V. vulnificus. Multiple teams have obtained similar results in studies where laboratory-grown bacteria were observed to be rapidly taken up by oysters but quickly eliminated. This technique, along with suggested modifications, is reviewed here. In contrast, the natural microflora within oysters is notoriously difficult to eliminate via depuration. The reason for the transiency of exogenous bacteria is that those bacteria are competitively excluded by the oyster's preexisting microflora. Evidence of this phenomenon is shown using in vitro oyster studies and a multiyear in situ case study. Depuration of the endogenous oyster bacteria occurs naturally and can also be artificially induced, but both of these events require extreme conditions, natural or otherwise, as explained here. Finally, the “viable but nonculturable” (VBNC) state of Vibrio is discussed. This bacterial torpor can easily be confused with a reduction in bacterial abundance, as bacteria in this state fail to grow on culture media. Thus, oysters collected from colder months may appear to be relatively free of Vibrio but in reality harbor VBNC cells that respond to exogenous bacteria and prevent colonization of oyster matrices. Bacterial-uptake experiments combined with studies involving cell-free spent media are detailed that demonstrate this occurrence, which could explain why the microbial community in oysters does not always mirror that of the surrounding water. PMID:25261513

  9. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?

    PubMed

    Li, Hui; Luo, Na; Zhang, Li Jun; Zhao, Hai Ming; Li, Yan Wen; Cai, Quan Ying; Wong, Ming Hung; Mo, Ce Hui

    2016-11-15

    Rice (Oryza sativa L.) plants were inoculated with two species of arbuscular mycorrhizal fungi (AMF) - Rhizophagus intraradices (RI) and Funneliformis mosseae (FM) and grown for 60days to ensure strong colonization. Subsequently, a short-term hydroponic experiment was carried out to investigate the effects of AMF on cadmium (Cd) uptake kinetics, subcellular distribution and chemical forms in rice exposed to six Cd levels (0, 0.005, 0.01, 0.025, 0.05, 0.1mM) for three days. The results showed that the uptake kinetics of Cd fitted the Michaelis-Menten model well (R(2)>0.89). AMF significantly decreased the Cd concentrations both in shoots and roots in Cd solutions. Furthermore, the decrement of Cd concentrations by FM was significantly higher than RI treatment in roots. AMF reduced the Cd concentrations markedly in the cell wall fractions at high Cd substrate (≥0.025mM). The main subcellular fraction contributed to Cd detoxification was cell wall at low Cd substrate (<0.05mM), while vacuoles at high Cd substrate (≥0.05mM). Moreover, the concentrations and proportions of Cd in inorganic and water-soluble form also reduced by AMF colonization at high Cd substrate (≥0.05mM), both in shoots and roots. This suggested that AMF could convert Cd into inactive forms which were less toxic. Therefore, AMF could enhance rice resistance to Cd through altering subcellular distribution and chemical forms of Cd in rice. PMID:27450963

  10. Calcium chloride made E. coli competent for uptake of extraneous DNA through overproduction of OmpC protein.

    PubMed

    Aich, Pulakesh; Patra, Monobesh; Chatterjee, Arijit Kumar; Roy, Sourav Singha; Basu, Tarakdas

    2012-06-01

    In the standard method of transformation of Escherichia coli with extraneous DNA, cells are made competent for DNA uptake by incubating in ice-cold 100 mM CaCl(2). Analysis of the whole protein profile of CaCl(2)-treated E. coli cells by the techniques of one- and two-dimensional gel electrophoresis, MALDI-MS and immunoprecipitation revealed overproduction of outer membrane proteins OmpC, OmpA and heat-shock protein GroEL. In parity, transformation efficiency of E. coli ompC mutant by plasmid pUC19 DNA was found to be about 40 % lower than that of the wild type strain. Moreover, in E. coli cells containing groEL-bearing plasmid, induction of GroEL caused simultaneous overproduction of OmpC. On the other hand, less OmpC was synthesized in E. coli groEL mutant compared to its wild type counterpart, by CaCl(2)-shock. From these results it can be suggested that in the process of CaCl(2)-mediated generation of competence, the heat-shock chaperone GroEL has specific role in DNA entry into the cell, possibly through the overproduced OmpC and OmpA porins. PMID:22562126

  11. MWCNT uptake in Allium cepa root cells induces cytotoxic and genotoxic responses and results in DNA hyper-methylation.

    PubMed

    Ghosh, Manosij; Bhadra, Sreetama; Adegoke, Aremu; Bandyopadhyay, Maumita; Mukherjee, Anita

    2015-04-01

    Advances in nanotechnology have led to the large-scale production of nanoparticles, which, in turn, increases the chances of environmental exposure. While humans (consumers/workers) are primarily at risk of being exposed to the adverse effect of nanoparticles, the effect on plants and other components of the environment cannot be ignored. The present work investigates the cytotoxic, genotoxic, and epigenetic (DNA methylation) effect of MWCNT on the plant system- Allium cepa. MWCNT uptake in root cells significantly altered cellular morphology. Membrane integrity and mitochondrial function were also compromised. The nanotubes induced significant DNA damage, micronucleus formation and chromosome aberration. DNA laddering assay revealed the formation of internucleosomal fragments, which is indicative of apoptotic cell death. This finding was confirmed by an accumulation of cells in the sub-G0 phase of the cell cycle. An increase in CpG methylation was observed using the isoschizomers MspI/HpaII. HPLC analysis of DNA samples revealed a significant increase in the levels of 5-methyl-deoxy-cytidine (5mdC). These results confirm the cyto-genotoxic effect of MWCNT in the plant system and simultaneously highlight the importance of this epigenetic study in nanoparticle toxicity. PMID:25829105

  12. Persistence of DNA in carcasses, slime and avian feces may affect interpretation of environmental DNA data

    USGS Publications Warehouse

    Merkes, Christopher M.; McCalla, S. Grace; Jensen, Nathan R.; Gaikowski, Mark P.; Amberg, Jon J.

    2014-01-01

    The prevention of non-indigenous aquatic invasive species spreading into new areas is a goal of many resource managers. New techniques have been developed to survey for species that are difficult to capture with conventional gears that involve the detection of their DNA in water samples (eDNA). This technique is currently used to track the invasion of bigheaded carps (silver carp and bighead carp; Hypophthalmichthys molitrix and H. nobilis) in the Chicago Area Waterway System and Upper Mississippi River. In both systems DNA has been detected from silver carp without the capture of a live fish, which has led to some uncertainty about the source of the DNA. The potential contribution to eDNA by vectors and fomites has not been explored. Because barges move from areas with a high abundance of bigheaded carps to areas monitored for the potential presence of silver carp, we used juvenile silver carp to simulate the barge transport of dead bigheaded carp carcasses, slime residue, and predator feces to determine the potential of these sources to supply DNA to uninhabited waters where it could be detected and misinterpreted as indicative of the presence of live bigheaded carp. Our results indicate that all three vectors are feasible sources of detectable eDNA for at least one month after their deposition. This suggests that current monitoring programs must consider alternative vectors of DNA in the environment and consider alternative strategies to minimize the detection of DNA not directly released from live bigheaded carps.

  13. Does organizational culture affect out-patient DNA (did not attend) rates?

    PubMed

    Jackson, S

    1997-01-01

    Government interest in health service "did not attend" (DNA) rates was seen to occur by accident, following which efforts to reduce DNAs have tended to concentrate on operational rather than strategic issues. Considers the effect hospital culture has had on DNA rates from an organizational and patient perspective. Identifies some of the key cultural issues that impacted on DNA rates by utilizing observation and telephone survey research methods. Concludes that, in the main, the lack of customer-oriented organizational culture was seen to affect DNA rates adversely within one NHS provider trust. PMID:10179096

  14. Biogas digestates affect crop P uptake and soil microbial community composition.

    PubMed

    Hupfauf, Sebastian; Bachmann, Silvia; Fernández-Delgado Juárez, Marina; Insam, Heribert; Eichler-Löbermann, Bettina

    2016-01-15

    Fermentation residues from biogas production are known as valuable organic fertilisers. This study deals with the effect of cattle slurry, co-digested cattle slurry, co-digested energy crops and mineral fertilisers on the activity and composition of soil microbiota. Furthermore, the effect of solid-liquid separation as a common pre-treatment of digestate was tested. The fertilising effects were analysed in an 8-week pot experiment on loamy sand using two crops, Amaranthus cruentus and Sorghum bicolor. Amaranth, as a crop with significantly higher P uptake, triggered stress for occurring soil microbes and thereby caused a reduction of microbial biomass C in the soil. Irrespective of the crop, microbial basal respiration and metabolic quotient were higher with the digestates than with the untreated slurry or the mineral treatments. Community level physiological profiles with MicroResp showed considerable differences among the treatments, with particularly strong effects of solid-liquid separation. Similar results were also found on a structural level (PCR-DGGE). Alkaline phosphatase gene analyses revealed high sensitivity to different fertilisation regimes. PMID:26410342

  15. Transferrin-Polycation Conjugates as Carriers for DNA Uptake into Cells

    NASA Astrophysics Data System (ADS)

    Wagner, Ernst; Zenke, Martin; Cotten, Matt; Beug, Hartmut; Birnstiel, Max L.

    1990-05-01

    We have developed a high-efficiency nucleic acid delivery system that uses receptor-mediated endocytosis to carry DNA macromolecules into cells. We accomplished this by conjugating the iron-transport protein transferrin to polycations that bind nucleic acids. Human transferrin, as well as the chicken homologue conalbumin, has been covalently linked to the small DNA-binding protein protamine or to polylysines of various sizes through a disulfide linkage. These modified transferrin molecules maintain their ability to bind their cognate receptor and to mediate efficient iron transport into the cell. The transferrin-polycation molecules form electrophoretically stable complexes with double-stranded DNA, single-stranded DNA, and modified RNA molecules independent of nucleic acid size (from short oligonucleotides to DNA of 21 kilobase pairs). When complexes of transferrin-polycation and a bacterial plasmid DNA containing the gene for Photinus pyralis luciferase are supplied to eukaryotic cells, high-level expression of the luciferase gene occurs, demonstrating transferrin receptor-mediated endocytosis and expression of the imported DNA. We refer to this delivery system as "transferrinfection."

  16. Transferrin-polycation conjugates as carriers for DNA uptake into cells.

    PubMed Central

    Wagner, E; Zenke, M; Cotten, M; Beug, H; Birnstiel, M L

    1990-01-01

    We have developed a high-efficiency nucleic acid delivery system that uses receptor-mediated endocytosis to carry DNA macromolecules into cells. We accomplished this by conjugating the iron-transport protein transferrin to polycations that bind nucleic acids. Human transferrin, as well as the chicken homologue conalbumin, has been covalently linked to the small DNA-binding protein protamine or to polylysines of various sizes through a disulfide linkage. These modified transferrin molecules maintain their ability to bind their cognate receptor and to mediate efficient iron transport into the cell. The transferrin-polycation molecules form electrophoretically stable complexes with double-stranded DNA, single-stranded DNA, and modified RNA molecules independent of nucleic acid size (from short oligonucleotides to DNA of 21 kilobase pairs). When complexes of transferrin-polycation and a bacterial plasmid DNA containing the gene for Photinus pyralis luciferase are supplied to eukaryotic cells, high-level expression of the luciferase gene occurs, demonstrating transferrin receptor-mediated endocytosis and expression of the imported DNA. We refer to this delivery system as "transferrinfection." Images PMID:2333290

  17. How do alternative root water uptake models affect the inverse estimation of soil hydraulic parameters and the prediction of evapotranspiration?

    NASA Astrophysics Data System (ADS)

    Gayler, Sebastian; Salima-Sultana, Daisy; Selle, Benny; Ingwersen, Joachim; Wizemann, Hans-Dieter; Högy, Petra; Streck, Thilo

    2016-04-01

    Soil water extraction by roots affects the dynamics and distribution of soil moisture and controls transpiration, which influences soil-vegetation-atmosphere feedback processes. Consequently, root water uptake requires close attention when predicting water fluxes across the land surface, e.g., in agricultural crop models or in land surface schemes of weather and climate models. The key parameters for a successful simultaneous simulation of soil moisture dynamics and evapotranspiration in Richards equation-based models are the soil hydraulic parameters, which describe the shapes of the soil water retention curve and the soil hydraulic conductivity curve. As measurements of these parameters are expensive and their estimation from basic soil data via pedotransfer functions is rather inaccurate, the values of the soil hydraulic parameters are frequently inversely estimated by fitting the model to measured time series of soil water content and evapotranspiration. It is common to simulate root water uptake and transpiration by simple stress functions, which describe from which soil layer water is absorbed by roots and predict when total crop transpiration is decreased in case of soil water limitations. As for most of the biogeophysical processes simulated in crop and land surface models, there exist several alternative functional relationships for simulating root water uptake and there is no clear reason for preferring one process representation over another. The error associated with alternative representations of root water uptake, however, contributes to structural model uncertainty and the choice of the root water uptake model may have a significant impact on the values of the soil hydraulic parameters estimated inversely. In this study, we use the agroecosystem model system Expert-N to simulate soil moisture dynamics and evapotranspiration at three agricultural field sites located in two contrasting regions in Southwest Germany (Kraichgau, Swabian Alb). The Richards

  18. How does altered precipitation and annual grass invasion affect plant N uptake in a native semi-arid shrub community?

    NASA Astrophysics Data System (ADS)

    Mauritz, M.; Lipson, D.; Cleland, E. E.

    2012-12-01

    Climate change is expected to alter precipitation patterns, which will change the timing and amount of plant resources. Precipitation patterns determine water and nitrogen (N) availability, because water stimulates microbial N turnover and N transport. In order for plants to utilize water and N, they must coincide with the phenology and meet physiological requirements of the plant. As resource supply shifts, differences in species' ability to acquire resources will affect plant community composition. Semiarid ecosystems, such as shrublands in Southern California, are particularly sensitive to shifts in precipitation because they are severely water limited. This study takes advantage of the altered phenology and resource demands presented by invasive annual grasses in a native semiarid shrubland. The goal is to understand how altered precipitation patterns affect plant N uptake. Rainfall levels were manipulated to 50% and 150% of ambient levels. It is expected that higher rainfall levels promote annual grass invasion because grasses have higher water and N requirements and begin to grow earlier in the season than shrubs. A 15N tracer was added with the first rain event and plant samples were collected regularly to track the movement of N into the plants. Net soil N accumulation was determined using resin bags. Invasive grasses altered the timing and amount of N uptake but amount of rainfall had less effect on N distribution. 15N was detected sooner and at higher level in grasses than shrubs. 24hours after the first rain event 15N was detectable in grasses, 15N accumulated rapidly and peaked 2 months earlier than shrubs. Shrub 15N levels remained at pre-rain event levels for the first 2 months and began to increase at the beginning of spring, peak mid-spring and decline as the shrubs entered summer dormancy. One year later 15N levels in annual grass litter remained high, while 15N levels in shrubs returned to initial background levels as a result of resorption. 15N

  19. Chiral Ruthenium(II) Polypyridyl Complexes: Stabilization of G-Quadruplex DNA, Inhibition of Telomerase Activity and Cellular Uptake

    PubMed Central

    Yu, Qianqian; Liu, Yanan; Wang, Chuan; Sun, Dongdong; Yang, Xingcheng; Liu, Yanyu; Liu, Jie

    2012-01-01

    Two ruthenium(II) complexes, Λ-[Ru(phen)2(p-HPIP)]2+ and Δ-[Ru(phen)2(p-HPIP)]2+, were synthesized and characterized via proton nuclear magnetic resonance spectroscopy, electrospray ionization-mass spectrometry, and circular dichroism spectroscopy. This study aims to clarify the anticancer effect of metal complexes as novel and potent telomerase inhibitors and cellular nucleus target drug. First, the chiral selectivity of the compounds and their ability to stabilize quadruplex DNA were studied via absorption and emission analyses, circular dichroism spectroscopy, fluorescence-resonance energy transfer melting assay, electrophoretic mobility shift assay, and polymerase chain reaction stop assay. The two chiral compounds selectively induced and stabilized the G-quadruplex of telomeric DNA with or without metal cations. These results provide new insights into the development of chiral anticancer agents for G-quadruplex DNA targeting. Telomerase repeat amplification protocol reveals the higher inhibitory activity of Λ-[Ru(phen)2(p-HPIP)]2+ against telomerase, suggesting that Λ-[Ru(phen)2(p-HPIP)]2+ may be a potential telomerase inhibitor for cancer chemotherapy. MTT assay results show that these chiral complexes have significant antitumor activities in HepG2 cells. More interestingly, cellular uptake and laser-scanning confocal microscopic studies reveal the efficient uptake of Λ-[Ru(phen)2(p-HPIP)]2+ by HepG2 cells. This complex then enters the cytoplasm and tends to accumulate in the nucleus. This nuclear penetration of the ruthenium complexes and their subsequent accumulation are associated with the chirality of the isomers as well as with the subtle environment of the ruthenium complexes. Therefore, the nucleus can be the cellular target of chiral ruthenium complexes for anticancer therapy. PMID:23236402

  20. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    PubMed

    Oliver, Ana López-Serrano; Croteau, Marie-Noële; Stoiber, Tasha L; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R; Luoma, Samuel N

    2014-06-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important. PMID:24641838

  1. Does water chemistry affect the dietary uptake and toxicity of silver nanoparticles by the freshwater snail Lymnaea stagnalis?

    USGS Publications Warehouse

    López-Serrano Oliver, Ana; Croteau, Marie-Noële; Stoiber, Tasha L.; Tejamaya, Mila; Römer, Isabella; Lead, Jamie R.; Luoma, Samuel N.

    2014-01-01

    Silver nanoparticles (AgNPs) are widely used in many applications and likely released into the aquatic environment. There is increasing evidence that Ag is efficiently delivered to aquatic organisms from AgNPs after aqueous and dietary exposures. Accumulation of AgNPs through the diet can damage digestion and adversely affect growth. It is well recognized that aspects of water quality, such as hardness, affect the bioavailability and toxicity of waterborne Ag. However, the influence of water chemistry on the bioavailability and toxicity of dietborne AgNPs to aquatic invertebrates is largely unknown. Here we characterize for the first time the effects of water hardness and humic acids on the bioaccumulation and toxicity of AgNPs coated with polyvinyl pyrrolidone (PVP) to the freshwater snail Lymnaea stagnalis after dietary exposures. Our results indicate that bioaccumulation and toxicity of Ag from PVP-AgNPs ingested with food are not affected by water hardness and by humic acids, although both could affect interactions with the biological membrane and trigger nanoparticle transformations. Snails efficiently assimilated Ag from the PVP-AgNPs mixed with diatoms (Ag assimilation efficiencies ranged from 82 to 93%). Rate constants of Ag uptake from food were similar across the entire range of water hardness and humic acid concentrations. These results suggest that correcting regulations for water quality could be irrelevant and ineffective where dietary exposure is important.

  2. Nonconsensus Protein Binding to Repetitive DNA Sequence Elements Significantly Affects Eukaryotic Genomes

    PubMed Central

    Barber-Zucker, Shiran; Gordân, Raluca; Lukatsky, David B.

    2015-01-01

    Recent genome-wide experiments in different eukaryotic genomes provide an unprecedented view of transcription factor (TF) binding locations and of nucleosome occupancy. These experiments revealed that a large fraction of TF binding events occur in regions where only a small number of specific TF binding sites (TFBSs) have been detected. Furthermore, in vitro protein-DNA binding measurements performed for hundreds of TFs indicate that TFs are bound with wide range of affinities to different DNA sequences that lack known consensus motifs. These observations have thus challenged the classical picture of specific protein-DNA binding and strongly suggest the existence of additional recognition mechanisms that affect protein-DNA binding preferences. We have previously demonstrated that repetitive DNA sequence elements characterized by certain symmetries statistically affect protein-DNA binding preferences. We call this binding mechanism nonconsensus protein-DNA binding in order to emphasize the point that specific consensus TFBSs do not contribute to this effect. In this paper, using the simple statistical mechanics model developed previously, we calculate the nonconsensus protein-DNA binding free energy for the entire C. elegans and D. melanogaster genomes. Using the available chromatin immunoprecipitation followed by sequencing (ChIP-seq) results on TF-DNA binding preferences for ~100 TFs, we show that DNA sequences characterized by low predicted free energy of nonconsensus binding have statistically higher experimental TF occupancy and lower nucleosome occupancy than sequences characterized by high free energy of nonconsensus binding. This is in agreement with our previous analysis performed for the yeast genome. We suggest therefore that nonconsensus protein-DNA binding assists the formation of nucleosome-free regions, as TFs outcompete nucleosomes at genomic locations with enhanced nonconsensus binding. In addition, here we perform a new, large-scale analysis using

  3. Factors affecting ammonium uptake by C11 clone of MDCK cells.

    PubMed

    Tararthuch, A L; Fernandez, R; Ramirez, M A; Malnic, G

    2002-11-01

    In several tissues ammonium ions are able to use the transport pathways of other ions, particularly of K+. We investigated this possibility in the C11 clone of MDCK cells, thought to represent intercalated cells, in control and 0 Cl- conditions. Cell pH was measured by ratiometric fluorescence microscopy using the pH indicator BCECF. After preincubating the cells for 10 min in control or 0 Cl- (substituted by gluconate) Ringer, an ammonium pulse was applied to induce cell acidification. The magnitude of the initial alkalinization (DeltapH) was 0.24+/-0.03 ( n=28) pH units in controls, which fell to 0.023+/-0.01 ( n=12) in 0 Cl-, suggesting uptake of NH4+ balancing the alkalinization by NH3. Addition of 10(-3) M bumetanide or furosemide to the 0 Cl- medium, or 10(-4 )M hexamethylene amiloride, did not alter DeltapH. However, with 5 mM Ba+, DeltapH increased to 38% of control. When 2.5x10(-4) M ouabain, an inhibitor of Na+-K+ ATPase, was used, DeltapH increased to 46% of control. Inhibition of H+-K+ ATPase by SCH28080 or by omeprazol caused significant increase in DeltapH. In 0 Cl- solution, these cells underwent a mean volume reduction (-d V) of -10.24+/-1.96% per 10 min as measured by confocal microscopy. To investigate if NH4+ influx was regulated by cell volume or by cell Cl-, volume reduction was avoided by two procedures. When preincubating with NPPB, a Cl- channel blocker, in 0 Cl-, volume reduction was inhibited (d V=-2.12% per 10 min), and DeltapH was 0.24+/-0.04 ( n=5). When the cells were preincubated in hypotonic 0 Cl- (260 mosmol/l), cell volume reduction was abolished (d V=+2.6% per 10 min) and DeltapH was 0.52+/-0.07 ( n=7). Thus, activation of NH4+ influx by several transporters was due to volume reduction rather than to [Cl-] alteration. PMID:12457240

  4. Does frequent residential mobility in early years affect the uptake and timeliness of routine immunisations? An anonymised cohort study

    PubMed Central

    Hutchings, Hayley A.; Evans, Annette; Barnes, Peter; Healy, Melanie A.; James-Ellison, Michelle; Lyons, Ronan A.; Maddocks, Alison; Paranjothy, Shantini; Rodgers, Sarah E.; Dunstan, Frank

    2016-01-01

    Background There are conflicting findings regarding the impact of residential mobility on immunisation status. Our aim was to determine whether there was any association between residential mobility and take up of immunisations and whether they were delayed in administration. Methods We carried out a cohort analysis of children born in Wales, UK. Uptake and time of immunisation were collected electronically. We defined frequent movers as those who had moved: 2 or more times in the period prior to the final scheduled on-time date (4 months) for 5 in 1 vaccinations; and 3 or more times in the period prior to the final scheduled on-time date (12 months) for MMR, pneumococcal and meningitis C vaccinations. We defined immunisations due at 2–4 months delayed if they had not been given by age 1; and those due at 12–13 months as delayed if they had not been given by age 2. Results Uptake rates of routine immunisations and whether they were given within the specified timeframe were high for both groups. There was no increased risk (odds ratios (95% confidence intervals) between frequent movers compared to non-movers for the uptake of: primary MMR 1.08 (0.88–1.32); booster Meningitis C 1.65 (0.93–2.92); booster pneumococcal 1.60 (0.59–4.31); primary 5 in 1 1.28 (0.92–1.78); and timeliness: primary MMR 0.92 (0.79–1.07); booster Meningitis C 1.26 (0.77–2.07); booster pneumococcal 1.69 (0.23–12.14); and primary 5 in 1 1.04 (0.88–1.23). Discussion Findings suggest that children who move home frequently are not adversely affected in terms of the uptake of immunisations and whether they were given within a specified timeframe. Both were high and may reflect proactive behaviour in the primary healthcare setting to meet Government coverage rates for immunisation. PMID:26923454

  5. Characterization of How DNA Modifications Affect DNA Binding by C2H2 Zinc Finger Proteins

    PubMed Central

    Patel, A.; Hashimoto, H.; Zhang, X.; Cheng, X.

    2016-01-01

    Much is known about vertebrate DNA methylation and oxidation; however, much less is known about how modified cytosine residues within particular sequences are recognized. Among the known methylated DNA-binding domains, the Cys2-His2 zinc finger (ZnF) protein superfamily is the largest with hundreds of members, each containing tandem ZnFs ranging from 3 to >30 fingers. We have begun to biochemically and structurally characterize these ZnFs not only on their sequence specificity but also on their sensitivity to various DNA modifications. Rather than following published methods of refolding insoluble ZnF arrays, we have expressed and purified soluble forms of ZnFs, ranging in size from a tandem array of two to six ZnFs, from seven different proteins. We also describe a fluorescence polarization assay to measure ZnFs affinity with oligonucleotides containing various modifications and our approaches for cocrystallization of ZnFs with oligonucleotides. PMID:27372763

  6. DNA-binding, cytotoxicity, cellular uptake, apoptosis and photocleavage studies of Ru(II) complexes.

    PubMed

    N Deepika; C Shobha Devi; Y Praveen Kumar; K Laxma Reddy; P Venkat Reddy; D Anil Kumar; Surya S Singh; S Satyanarayana

    2016-07-01

    Two Ru(II) complexes [Ru(phen)2bppp](ClO4)2 (1) and [Ru(phen)27-Br-dppz](ClO4)2 (2) [phen=1,10 phenanthroline, 7-Br-dppz=7-fluorodipyrido[3,2-a:2',3'-c]phenazine, bppp=11-bromo-pyrido[2',3':5,6]pyrazino[2,3-f] [1,10]phenanthroline] have been synthesized and characterized by elemental analysis, ES-MS, (1)H-NMR, (13)C-NMR and IR. The in vitro cytotoxicity of the complexes examined against a panel of cancer cell lines (HeLa, Du145 and A549) by MTT method, both complexes show prominent anticancer activity against various cancer cells. Live cell imaging study and flow cytometric analysis demonstrate that both the complexes 1 and 2 could cross the cell membrane accumulating in the nucleus. Further, flow cytometry experiments showed that the cytotoxic Ru(II) complexes 1 and 2 induced apoptosis of HeLa tumor cell lines. Photo induced DNA cleavage studies have been performed and results indicate that both the complexes efficiently photo cleave pBR322 DNA. The binding properties of two complexes toward CT-DNA were investigated by various optical methods and viscosity measurements. The experimental results suggested that both Ru(II) complexes can intercalate into DNA base pairs. The complexes were docked into DNA-base pairs using the GOLD docking program. PMID:27107334

  7. Hydrocarbon contamination affects deep-sea benthic oxygen uptake and microbial community composition

    NASA Astrophysics Data System (ADS)

    Main, C. E.; Ruhl, H. A.; Jones, D. O. B.; Yool, A.; Thornton, B.; Mayor, D. J.

    2015-06-01

    Accidental oil well blowouts have the potential to introduce large quantities of hydrocarbons into the deep sea and disperse toxic contaminants to midwater and seafloor areas over ocean-basin scales. Our ability to assess the environmental impacts of these events is currently impaired by our limited understanding of how resident communities are affected. This study examined how two treatment levels of a water accommodated fraction of crude oil affected the oxygen consumption rate of a natural, deep-sea benthic community. We also investigated the resident microbial community's response to hydrocarbon contamination through quantification of phospholipid fatty acids (PLFAs) and their stable carbon isotope (δ13C) values. Sediment community oxygen consumption rates increased significantly in response to increasing levels of contamination in the overlying water of oil-treated microcosms, and bacterial biomass decreased significantly in the presence of oil. Multivariate ordination of PLFA compositional (mol%) data showed that the structure of the microbial community changed in response to hydrocarbon contamination. However, treatment effects on the δ13C values of individual PLFAs were not statistically significant. Our data demonstrate that deep-sea benthic microbes respond to hydrocarbon exposure within 36 h.

  8. Hyperglycemia Differentially Affects Maternal and Fetal DNA Integrity and DNA Damage Response

    PubMed Central

    Moreli, Jusciele B.; Santos, Janine H.; Lorenzon-Ojea, Aline Rodrigues; Corrêa-Silva, Simone; Fortunato, Rodrigo S.; Rocha, Clarissa Ribeiro; Rudge, Marilza V.; Damasceno, Débora C.; Bevilacqua, Estela; Calderon, Iracema M.

    2016-01-01

    Objective: Investigate the DNA damage and its cellular response in blood samples from both mother and the umbilical cord of pregnancies complicated by hyperglycemia. Methods: A total of 144 subjects were divided into 4 groups: normoglycemia (ND; 46 cases), mild gestational hyperglycemia (MGH; 30 cases), gestational diabetes mellitus (GDM; 45 cases) and type-2 diabetes mellitus (DM2; 23 cases). Peripheral blood mononuclear cell (PBMC) isolation and/or leukocytes from whole maternal and umbilical cord blood were obtained from all groups at delivery. Nuclear and mitochondrial DNA damage were measured by gene-specific quantitative PCR, and the expression of mRNA and proteins involved in the base excision repair (BER) pathway were assessed by real-time qPCR and Western blot, respectively. Apoptosis was measured in vitro experiments by caspase 3/7 activity and ATP levels. Results: GDM and DM2 groups were characterized by an increase in oxidative stress biomarkers, an increase in nuclear and mitochondrial DNA damage, and decreased expression of mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1) involved in BER. The levels of hyperglycemia were associated with the in vitro apoptosis pathway. Blood levels of DNA damage in umbilical cord were similar among the groups. Newborns of diabetic mothers had increased expression of BER mRNA (APE1, POLβ and FEN1) and proteins (hOGG1, APE1, POLβ and FEN1). A diabetes-like environment was unable to induce apoptosis in the umbilical cord blood cells. Conclusions: Our data show relevant asymmetry between maternal and fetal blood cell susceptibility to DNA damage and apoptosis induction. Maternal cells seem to be more predisposed to changes in an adverse glucose environment. This may be due to differential ability in upregulating multiple genes involved in the activation of DNA repair response, especially the BER mechanism. However if this study shows a more effective adaptive response by the fetal organism, it also calls for

  9. Biochemical analysis of the recombinant Fur (ferric uptake regulator) protein from Anabaena PCC 7119: factors affecting its oligomerization state.

    PubMed Central

    Hernández, José A; Bes, M Teresa; Fillat, María F; Neira, José L; Peleato, M Luisa

    2002-01-01

    Fur (ferric uptake regulator) protein is a DNA-binding protein which regulates iron-responsive genes. Recombinant Fur from the nitrogen-fixing cyanobacterium Anabaena PCC 7119 has been purified and characterized, and polyclonal antibodies obtained. The experimental data show that Fur from Anabaena dimerizes in solution with the involvement of disulphide bridges. Cross-linking experiments and MALDI-TOF (matrix-assisted laser desorption/ionization time of flight) MS also show several oligomerization states of Fur, and the equilibrium of these forms depends on protein concentration and ionic strength. In intact recombinant Fur, four cysteine residues out of five were inert towards DTNB [5,5'-dithiobis-(2-nitrobenzoic acid)], and their modification required sodium borohydride. Metal analysis and electrospray ionization MS revealed that neither zinc nor other metals are present in this Fur protein. Purified recombinant Fur bound to its own promoter in gel-shift assays. Fur was shown to be a constitutive protein in Anabaena cells, with no significant difference in its expression in cells grown under iron-sufficient compared with iron-deficient conditions. PMID:12015814

  10. Arsenic Uptake and Accumulation in Okra (Abelmoschus esculentus) as Affected by Different Arsenical Speciation.

    PubMed

    Chandra, Sukanya; Saha, Rajnarayan; Pal, Parimal

    2016-03-01

    Experimental investigations were conducted to evaluate the toxic effects of different arsenic (As) species such as arsenite (As(III)), arsenate (As(V)) and dimethylarsinic acid (DMA) on the growth of okra (Abelmoschus esculentus). The present study describes the changes in the growth, yield and accumulation characteristics of okra plants spiked with 20 and 50 mg kg(-1) of As(III), As(V) and DMA. As species negatively affected the yield and growth of the plant.The availability of arsenic compounds in the aerial parts decreased in the order As(V) > As(III) > DMA and in the roots observed as As(III) > As(V) > DMA. The results showed that except As(V), okra accumulated As(III) and DMA mainly in its roots with limited transport to shoots. Thus the plant has the capacity to tolerate As stress and can be considered as a resistive variety. The study also reveals that removal of As by boiling the vegetables with excess of water is not possible. PMID:26679322

  11. Soil amendment affects Cd uptake by wheat - are we underestimating the risks from chloride inputs?

    PubMed

    Dahlin, A Sigrun; Eriksson, Jan; Campbell, Colin D; Öborn, Ingrid

    2016-06-01

    Many parts of the world are investigating the efficacy of recycling nutrient resources to agriculture from different industry and domestic sectors as part of a more circular economy. The complex nature of recycled products as soil amendments coupled to the large diversity of soil types and their inherent properties make it difficult to optimize the benefits and minimize the risks from potentially toxic elements often present in recycled materials. Here we investigated how wheat grain cadmium (Cd) concentration was affected by soil amendments, namely human urine and biogas digestate compared to traditional farm manures and mineral fertilizers. We show that Cl(-) inadvertently added to soils with e.g. urine or biogas digestate strongly increased crop Cd concentrations, largely by mobilizing inherent soil Cd. This resulted in wheat grain Cd levels that could result in exceeding recommended WHO limits for dietary intake. This was evident even in soils with low inherent Cd content and when Cd inputs were low. The future of a circular economy that helps to underpin global food security needs to ensure that the effects of applying complex materials to different types of agricultural land are fully understood and do not jeopardize food safety. PMID:26974588

  12. Uptake and transport of roxarsone and its metabolites in water spinach as affected by phosphate supply.

    PubMed

    Yao, Lixian; Li, Guoliang; Dang, Zhi; Yang, Baomei; He, Zhaohuan; Zhou, Changmin

    2010-04-01

    Roxarsone (ROX) is widely used as a feed additive in intensive animal production. While an animal is fed with ROX, the As compounds in the manure primarily occur as ROX and its metabolites, including arsenate (As[V]), arsenite (As[III]), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA). Animal manure is commonly land applied with phosphorous fertilizers in China. A pot experiment was conducted to investigate the phytoavailability of ROX, As(V), As(III), MMA, and DMA in water spinach (Ipomoea aquatica), with the soil amended with 0, 0.25, 0.50, 1.0, and 2.0 g PO(4)/kg, respectively, plus 2% (w/w manure/soil) chicken manure (CM) bearing ROX and its metabolites. The results indicate that this species of water spinach cannot accumulate ROX and MMA at detectable levels, but As(V), As(III), and DMA were present in all plant samples. Increased phosphorous decreased the shoot As(V) and As(III) in water spinach but did not affect the root As(V). The shoot DMA and root As(III) and DMA were decreased/increased and then increased/decreased by elevated phosphorous. The total phosphorous content (P) in plant tissue did not correlate with the total As or the three As species in tissues. Arsenate, As(III), and DMA were more easily accumulated in the roots, and phosphate considerably inhibited their upward transport. Dimethylarsinic acid had higher transport efficiency than As(V) and As(III), but As(III) was dominant in tissues. Conclusively, phosphate had multiple effects on the accumulation and transport of ROX metabolites, which depended on their levels. However, proper utilization of phosphate fertilizer can decrease the accumulation of ROX metabolites in water spinach when treated with CM containing ROX and its metabolites. PMID:20821525

  13. Six week swimming followed by acute uptakes of ginsenoside Rg1 may affect aerobic capacity of SD rats

    PubMed Central

    Haam, Saebom; Park, Hyon

    2015-01-01

    [Purpose] The purpose of this study is to examine the effects of six-weeks of endurance swim training and short-term intake of Rg1 on the expression of related proteins as well as improvement of aerobic exercise capacity in 8-week-old male SD rats. [Methods] The groups were divided into placebo (NP, n=6), Rg1 (NRG, n=6), exercise+placebo (EP, n=7), and exercise+Rg1 (ERG, n=7). On completion of the 6-week swimming exercise, Rg1-intake groups were treated with acute uptakes (3 times within 24hrs) of Rg1. After the treatment, all groups were subjected to a swim to exhaustion test, and then the mass of muscle tissue, mRNA expression level and activity of citrate synthase (CS) were analyzed on plantaris. [Results] There were no differences in the effect of 6-week swimming exercise and short-term intake of Rg1 on body weight and muscle mass between groups. Although the CS mRNA expression was elevated in the exercise group and combined treatment group, there was no significant difference in CS activity. Acute uptakes of Rg1 did not affect swimming time to exhaustion, but it was increased by 235% and 314% by the 6-weeks of exercise and combined treatment of exercise and Rg1, respectively, which suggests that the combined treatment increased the effect on the capacity of aerobic exercise. [Conclusion] Based on these results, it was confirmed that even a short-term treatment of Rg1 can give an additive effect for improvement of exercise function, and additional studies are needed for the mechanisms and modes of its working. PMID:27274464

  14. How Does Guanine-Cytosine Base Pair Affect Excess-Electron Transfer in DNA?

    PubMed

    Lin, Shih-Hsun; Fujitsuka, Mamoru; Majima, Tetsuro

    2015-06-25

    Charge transfer and proton transfer in DNA have attracted wide attention due to their relevance in biological processes and so on. Especially, excess-electron transfer (EET) in DNA has strong relation to DNA repair. However, our understanding on EET in DNA still remains limited. Herein, by using a strongly electron-donating photosensitizer, trimer of 3,4-ethylenedioxythiophene (3E), and an electron acceptor, diphenylacetylene (DPA), two series of functionalized DNA oligomers were synthesized for investigation of EET dynamics in DNA. The transient absorption measurements during femtosecond laser flash photolysis showed that guanine:cytosine (G:C) base pair affects EET dynamics in DNA by two possible mechanisms: the excess-electron quenching by proton transfer with the complementary G after formation of C(•-) and the EET hindrance by inserting a G:C base pair as a potential barrier in consecutive thymines (T's). In the present paper, we provided useful information based on the direct kinetic measurements, which allowed us to discuss EET through oligonucleotides for the investigation of DNA damage/repair. PMID:26042867

  15. Densely ionizing radiation affects DNA methylation of selective LINE-1 elements.

    PubMed

    Prior, Sara; Miousse, Isabelle R; Nzabarushimana, Etienne; Pathak, Rupak; Skinner, Charles; Kutanzi, Kristy R; Allen, Antiño R; Raber, Jacob; Tackett, Alan J; Hauer-Jensen, Martin; Nelson, Gregory A; Koturbash, Igor

    2016-10-01

    Long Interspersed Nucleotide Element 1 (LINE-1) retrotransposons are heavily methylated and are the most abundant transposable elements in mammalian genomes. Here, we investigated the differential DNA methylation within the LINE-1 under normal conditions and in response to environmentally relevant doses of sparsely and densely ionizing radiation. We demonstrate that DNA methylation of LINE-1 elements in the lungs of C57BL6 mice is dependent on their evolutionary age, where the elder age of the element is associated with the lower extent of DNA methylation. Exposure to 5-aza-2'-deoxycytidine and methionine-deficient diet affected DNA methylation of selective LINE-1 elements in an age- and promoter type-dependent manner. Exposure to densely IR, but not sparsely IR, resulted in DNA hypermethylation of older LINE-1 elements, while the DNA methylation of evolutionary younger elements remained mostly unchanged. We also demonstrate that exposure to densely IR increased mRNA and protein levels of LINE-1 via the loss of the histone H3K9 dimethylation and an increase in the H3K4 trimethylation at the LINE-1 5'-untranslated region, independently of DNA methylation. Our findings suggest that DNA methylation is important for regulation of LINE-1 expression under normal conditions, but histone modifications may dictate the transcriptional activity of LINE-1 in response to exposure to densely IR. PMID:27419368

  16. Effects of trehalose polycation end-group functionalization on plasmid DNA uptake and transfection.

    PubMed

    Anderson, Kevin; Sizovs, Antons; Cortez, Mallory; Waldron, Chris; Haddleton, D M; Reineke, Theresa M

    2012-08-13

    In this study, we have synthesized six analogs of a trehalose-pentaethylenehexamine glycopolymer (Tr4) that contain (1A) adamantane, (1B) carboxy, (1C) alkynyl-oligoethyleneamine, (1D) azido trehalose, (1E) octyl, or (1F) oligoethyleneamine end groups and evaluated the effects of polymer end group chemistry on the ability of these systems to bind, compact, and deliver pDNA to cultured HeLa cells. The polymers were synthesized in one-pot azide-alkyne cycloaddition reactions with an adaptation of the Carothers equation for step-growth polymerization to produce a series of polymers with similar degrees of polymerization. An excess of end-capping monomer was added at the end of the polymerizations to maximize functionalization efficiency, which was evaluated with GPC, NMR, and MALDI-TOF. The polymers were all found to bind and compact pDNA at similarly low N/P ratios and form polyplexes with plasmid DNA. The effects of the different end group structures were most evident in the polyplex internalization and transfection assays in the presence of serum as determined by flow cytometry and luciferase gene expression, respectively. The Tr4 polymers end-capped with carboxyl groups (1B) (N/P = 7), octyne (1E) (N/P = 7), and oligoethyleneamine (1F) (N/P = 7), were taken into cells as polyplex and exhibited the highest levels of fluorescence, resulting from labeled plasmid. Similarly, the polymers end-functionalized with carboxyl groups (1E at N/P = 7), octyl groups (1E at N/P = 15), and in particular oligoethyleneamine groups (1F at N/P = 15) yielded dramatically higher reporter gene expression in the presence of serum. This study yields insight into how very subtle structural changes in polymer chemistry, such as end groups can yield very significant differences in the biological delivery efficiency and transgene expression of polymers used for pDNA delivery. PMID:22616977

  17. Solid-phase synthesis, thermal denaturation studies, nuclease resistance, and cellular uptake of (oligodeoxyribonucleoside)methylborane phosphine-DNA chimeras.

    PubMed

    Krishna, Heera; Caruthers, Marvin H

    2011-06-29

    The major hurdle associated with utilizing oligodeoxyribonucleotides for therapeutic purposes is their poor delivery into cells coupled with high nuclease susceptibility. In an attempt to combine the nonionic nature and high nuclease stability of the P-C bond of methylphosphonates with the high membrane permeability, low toxicity, and improved gene silencing ability of borane phosphonates, we have focused our research on the relatively unexplored methylborane phosphine (Me-P-BH(3)) modification. This Article describes the automated solid-phase synthesis of mixed-backbone oligodeoxynucleotides (ODNs) consisting of methylborane phosphine and phosphate or thiophosphate linkages (16-mers). Nuclease stability assays show that methylborane phosphine ODNs are highly resistant to 5' and 3' exonucleases. When hybridized to a complementary strand, the ODN:RNA duplex was more stable than its corresponding ODN:DNA duplex. The binding affinity of ODN:RNA duplex increased at lower salt concentration and approached that of a native DNA:RNA duplex under conditions close to physiological saline, indicating that the Me-P-BH(3) linkage is positively charged. Cellular uptake measurements indicate that these ODNs are efficiently taken up by cells even when the strand is 13% modified. Treatment of HeLa cells and WM-239A cells with fluorescently labeled ODNs shows significant cytoplasmic fluorescence when viewed under a microscope. Our results suggest that methylborane phosphine ODNs may prove very valuable as potential candidates in antisense research and RNAi. PMID:21585202

  18. How nanochannel confinement affects the DNA melting transition within the Poland-Scheraga model

    NASA Astrophysics Data System (ADS)

    Reiter-Schad, Michaela; Werner, Erik; Tegenfeldt, Jonas O.; Mehlig, Bernhard; Ambjörnsson, Tobias

    2015-09-01

    When double-stranded DNA molecules are heated, or exposed to denaturing agents, the two strands are separated. The statistical physics of this process has a long history and is commonly described in terms of the Poland-Scheraga (PS) model. Crucial to this model is the configurational entropy for a melted region (compared to the entropy of an intact region of the same size), quantified by the loop factor. In this study, we investigate how confinement affects the DNA melting transition, by using the loop factor for an ideal Gaussian chain. By subsequent numerical solutions of the PS model, we demonstrate that the melting temperature depends on the persistence lengths of single-stranded and double-stranded DNA. For realistic values of the persistence lengths, the melting temperature is predicted to decrease with decreasing channel diameter. We also demonstrate that confinement broadens the melting transition. These general findings hold for the three scenarios investigated: 1. homo-DNA, i.e., identical basepairs along the DNA molecule, 2. random sequence DNA, and 3. "real" DNA, here T4 phage DNA. We show that cases 2 and 3 in general give rise to broader transitions than case 1. Case 3 exhibits a similar phase transition as case 2 provided the random sequence DNA has the same ratio of AT to GC basepairs (A - adenine, T - thymine, G - guanine, C - cytosine). A simple analytical estimate for the shift in melting temperature is provided as a function of nanochannel diameter. For homo-DNA, we also present an analytical prediction of the melting probability as a function of temperature.

  19. Study of design parameters affecting the motion of DNA for nanoinjection

    NASA Astrophysics Data System (ADS)

    David, Regis A.; Jensen, Brian D.; Black, Justin L.; Burnett, Sandra H.; Howell, Larry L.

    2012-05-01

    This paper reports the effects of various parameters on the attraction and repulsion of DNA to and from a silicon lance. An understanding of DNA motion is crucial for a new approach to insert DNA, or other foreign microscopic matter, into a living cell. The approach, called nanoinjection, uses electrical forces to attract and repel the desired substance to a micromachined lance designed to pierce the cell membranes. We have developed mathematical models to predict the trajectory of DNA. The mathematical model allows investigation of the attraction/repulsion process by varying specific parameters. We find that the ground electrode placement, lance orientation and lance penetration significantly affect attraction or repulsion efficiency, while the gap, lance direction, lance tip width, lance tip half-angle and lance tip height do not.

  20. Glycans affect DNA extraction and induce substantial differences in gut metagenomic studies.

    PubMed

    Angelakis, Emmanouil; Bachar, Dipankar; Henrissat, Bernard; Armougom, Fabrice; Audoly, Gilles; Lagier, Jean-Christophe; Robert, Catherine; Raoult, Didier

    2016-01-01

    Exopolysaccharides produced by bacterial species and present in feces are extremely inhibitory to DNA restriction and can cause discrepancies in metagenomic studies. We determined the effects of different DNA extraction methods on the apparent composition of the gut microbiota using Illumina MiSeq deep sequencing technology. DNA was extracted from the stool from an obese female using 10 different methods and the choice of DNA extraction method affected the proportional abundance at the phylum level, species richness (Chao index, 227 to 2,714) and diversity (non parametric Shannon, 1.37 to 4.4). Moreover DNA was extracted from stools obtained from 83 different individuals by the fastest extraction assay and by an extraction assay that degradated exopolysaccharides. The fastest extraction method was able to detect 68% to 100% genera and 42% to 95% species whereas the glycan degradation extraction method was able to detect 56% to 93% genera and 25% to 87% species. To allow a good liberation of DNA from exopolysaccharides commonly presented in stools, we recommend the mechanical lysis of stools plus glycan degradation, used here for the first time. Caution must be taken in the interpretation of current metagenomic studies, as the efficiency of DNA extraction varies widely among stool samples. PMID:27188959

  1. Glycans affect DNA extraction and induce substantial differences in gut metagenomic studies

    PubMed Central

    Angelakis, Emmanouil; Bachar, Dipankar; Henrissat, Bernard; Armougom, Fabrice; Audoly, Gilles; Lagier, Jean-Christophe; Robert, Catherine; Raoult, Didier

    2016-01-01

    Exopolysaccharides produced by bacterial species and present in feces are extremely inhibitory to DNA restriction and can cause discrepancies in metagenomic studies. We determined the effects of different DNA extraction methods on the apparent composition of the gut microbiota using Illumina MiSeq deep sequencing technology. DNA was extracted from the stool from an obese female using 10 different methods and the choice of DNA extraction method affected the proportional abundance at the phylum level, species richness (Chao index, 227 to 2,714) and diversity (non parametric Shannon, 1.37 to 4.4). Moreover DNA was extracted from stools obtained from 83 different individuals by the fastest extraction assay and by an extraction assay that degradated exopolysaccharides. The fastest extraction method was able to detect 68% to 100% genera and 42% to 95% species whereas the glycan degradation extraction method was able to detect 56% to 93% genera and 25% to 87% species. To allow a good liberation of DNA from exopolysaccharides commonly presented in stools, we recommend the mechanical lysis of stools plus glycan degradation, used here for the first time. Caution must be taken in the interpretation of current metagenomic studies, as the efficiency of DNA extraction varies widely among stool samples. PMID:27188959

  2. DNA methylation affected by male sterile cytoplasm in rice (Oryza sativa L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male sterile cytoplasm plays an important role in hybrid rice and cytoplasmic effects are sufficiently documented. However, no reports are available on DNA methylation affected by male sterile cytoplasm in hybrid rice. We used a methylation sensitive amplified polymorphism (MSAP) technique to charac...

  3. Preanalytical Conditions and DNA Isolation Methods Affect Telomere Length Quantification in Whole Blood.

    PubMed

    Tolios, Alexander; Teupser, Daniel; Holdt, Lesca M

    2015-01-01

    Telomeres are located at chromosome ends and their length (TL) has been associated with aging and human diseases such as cancer. Whole blood DNA is frequently used for TL measurements but the influence of preanalytical conditions and DNA isolation methods on TL quantification has not been thoroughly investigated. To evaluate potential preanalytical as well as methodological bias on TL, anonymized leftover EDTA-whole blood samples were pooled according to leukocyte counts and were incubated with and without actinomycin D to induce apoptosis as a prototype of sample degradation. DNA was isolated from fresh blood pools and after freezing at -80°C. Commercially available kits using beads (Invitrogen), spin columns (Qiagen, Macherey-Nagel and 5prime) or precipitation (Stratec/Invisorb) and a published isopropanol precipitation protocol (IPP) were used for DNA isolation. TL was assessed by qPCR, and normalized to the single copy reference gene 36B4 using two established single-plex and a new multiplex protocol. We show that the method of DNA isolation significantly affected TL (e.g. 1.86-fold longer TL when comparing IPP vs. Invitrogen). Sample degradation led to an average TL decrease of 22% when using all except for one DNA isolation method (5prime). Preanalytical storage conditions did not affect TL with exception of samples that were isolated with the 5prime kit, where a 27% increase in TL was observed after freezing. Finally, performance of the multiplex qPCR protocol was comparable to the single-plex assays, but showed superior time- and cost-effectiveness and required > 80% less DNA. Findings of the current study highlight the need for standardization of whole blood processing and DNA isolation in clinical study settings to avoid preanalytical bias of TL quantification and show that multiplex assays may improve TL/SCG measurements. PMID:26636575

  4. Preanalytical Conditions and DNA Isolation Methods Affect Telomere Length Quantification in Whole Blood

    PubMed Central

    Tolios, Alexander; Teupser, Daniel; Holdt, Lesca M.

    2015-01-01

    Telomeres are located at chromosome ends and their length (TL) has been associated with aging and human diseases such as cancer. Whole blood DNA is frequently used for TL measurements but the influence of preanalytical conditions and DNA isolation methods on TL quantification has not been thoroughly investigated. To evaluate potential preanalytical as well as methodological bias on TL, anonymized leftover EDTA-whole blood samples were pooled according to leukocyte counts and were incubated with and without actinomycin D to induce apoptosis as a prototype of sample degradation. DNA was isolated from fresh blood pools and after freezing at -80°C. Commercially available kits using beads (Invitrogen), spin columns (Qiagen, Macherey-Nagel and 5prime) or precipitation (Stratec/Invisorb) and a published isopropanol precipitation protocol (IPP) were used for DNA isolation. TL was assessed by qPCR, and normalized to the single copy reference gene 36B4 using two established single-plex and a new multiplex protocol. We show that the method of DNA isolation significantly affected TL (e.g. 1.86-fold longer TL when comparing IPP vs. Invitrogen). Sample degradation led to an average TL decrease of 22% when using all except for one DNA isolation method (5prime). Preanalytical storage conditions did not affect TL with exception of samples that were isolated with the 5prime kit, where a 27% increase in TL was observed after freezing. Finally, performance of the multiplex qPCR protocol was comparable to the single-plex assays, but showed superior time- and cost-effectiveness and required > 80% less DNA. Findings of the current study highlight the need for standardization of whole blood processing and DNA isolation in clinical study settings to avoid preanalytical bias of TL quantification and show that multiplex assays may improve TL/SCG measurements. PMID:26636575

  5. Factors influencing the transfection efficiency and cellular uptake mechanisms of Pluronic P123-modified polypropyleneimine/pDNA polyplexes in multidrug resistant breast cancer cells.

    PubMed

    Gu, Jijin; Hao, Junguo; Fang, Xiaoling; Sha, Xianyi

    2016-04-01

    Generally, the major obstacles for efficient gene delivery are cellular internalization and endosomal escape of nucleic acid such as plasmid DNA (pDNA) or small interfering RNA (siRNA). We previously developed Pluronic P123 modified polypropyleneimine (PPI)/pDNA (P123-PPI/pDNA) polyplexes as a gene delivery system. The results showed that P123-PPI/pDNA polyplexes revealed higher transfection efficiency than PPI/pDNA polyplexes in multidrug resistant breast cancer cells. As a continued effort, the present investigation on the factors influencing the transfection efficiency, cellular uptake mechanisms, and intracellular fate of P123-PPI/pDNA polyplexes is reported. The presence of P123 was the main factor influencing the transfection efficiency of P123-PPI/pDNA polyplexes in MCF-7/ADR cells, but other parameters, such as N/P ratio, FBS concentration, incubation time and temperature were important as well. The endocytic inhibitors against clathrin-mediated endocytosis (CME), caveolae-mediated endocytosis (CvME), and macropinocytosis were involved in the internalization to investigate their effects on the cellular uptake and transfection efficiency of P123-PPI/pDNA polyplexes in vitro. The data showed that the internalization of P123-PPI/pDNA polyplexes was obtained from both CME and CvME. Colocalization experiments with TRITC-transferrin (CME indicator), Alexa Fluor 555-CTB (CvME indicator), monoclonal anti-α-tubulin (microtubule indicator), and LysoTracker Green (Endosome/lysosome indicator) were carried out to confirm the internalization routes. The results showed that both CME and CvME played vital roles in the effective transfection of P123-PPI/pDNA polyplexes. Endosome/lysosome system and skeleton, including actin filament and microtubule, were necessary for the transportation after internalization. PMID:26741268

  6. The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 Is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis.

    PubMed

    Schneider, Anja; Steinberger, Iris; Herdean, Andrei; Gandini, Chiara; Eisenhut, Marion; Kurz, Samantha; Morper, Anna; Hoecker, Natalie; Rühle, Thilo; Labs, Mathias; Flügge, Ulf-Ingo; Geimer, Stefan; Schmidt, Sidsel Birkelund; Husted, Søren; Weber, Andreas P M; Spetea, Cornelia; Leister, Dario

    2016-04-01

    In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn(2+) and Ca(2+) homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn(2+) and Ca(2+) ions were differently sequestered in pam71, with Ca(2+) enriched in pam71 thylakoids relative to the wild type. The changes in Ca(2+) homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn(2+), but not Ca(2+) Furthermore, PAM71 suppressed the Mn(2+)-sensitive phenotype of the yeast mutant Δpmr1 Therefore, PAM71 presumably functions in Mn(2+) uptake into thylakoids to ensure optimal PSII performance. PMID:27020959

  7. Chemical form of selenium affects its uptake, transport and glutathione peroxidase activity in the human intestinal Caco-2 cell model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the effect of selenium (Se) chemical form on uptake and transport in human intestinal cells is critical to assess Se bioavailability. In the present study, we measured the uptake and transport of various Se compounds in the human intestinal Caco-2 cell model. We found that two sources...

  8. Influence of cobalt uptake by Vicia faba seeds on chlorophyll morphosis induction, SOD polymorphism, and DNA methylation.

    PubMed

    Rancelis, Vytautas; Cesniene, Tatjana; Kleizaite, Violeta; Zvingila, Donatas; Balciuniene, Laimute

    2012-01-01

    Vicia faba plants show polymorphism to cobalt (Co) excess, expressed by a different degree of chlorophyll morphosis (CM)-from normally green (N) to yellow (Y) seedlings. For superoxide dismutase (SOD), the high V. faba polymorphism was revealed and increased by Co stress. Epigenetic mechanisms may be involved in both phenomena. For such reasons, we investigated the effect of 5-azacytosine (AzaC) and Na butyrate (NaBut) on CM induction, SOD polymorphism, and DNA methylation-demethylation events in Co(NO(3) )(2) affected plants, without or with AzaC or NaBut. CMs were induced after treatment of seeds for 8 h with 7.5 mM Co(NO(3) )(2) plus 12 h with H(2) O or 8 h with H(2) O plus 12 h with Co(NO(3) )(2) . In the same order AzaC and NaBut were applied in concentrations equimolar to Co(NO(3) )(2) . SOD isoforms were investigated electrophoretically, and for DNA methylation-demethylation events the Aina [Aina et al. (2004) Physiol Plant 121:472-480] system was applied upon using the random amplified polymorphic DNA (RAPD) method employing restrictases MspI and HpaII. The effect of AzaC and NaBut on CM induction in combination with Co was unclear. Posttreatment with Co was more effective than Co-pretreatment. SOD polymorphism was significantly strengthened by NaBut. Detection of DNA methylation-demethylation events depended on the primers used for RAPD analysis. With AP5 and MP4 primers, DNA demethylation was observed in N-seedlings after exposure to Co, AzaC or NaBut applied separately. With primer A6, only DNA methylation events were determined in N-seedlings from seeds exposed to Co or Co-AzaC, and in Y-seedlings after Co-AzaC or Co-NaBut treatment. UPGMA grouping of the results showed that all N-seedlings comprised one common cluster after Co exposure, independently of treatment combinations (Co alone, Co with AzaC, Co with NaBut). On the contrary, no significant differences were determined in SOD polymorphism among the most resistant N-seedlings and the most severely

  9. Complexity of genetic sequences modified by horizontal gene transfer and degraded-DNA uptake

    NASA Astrophysics Data System (ADS)

    Tremberger, George; Dehipawala, S.; Nguyen, A.; Cheung, E.; Sullivan, R.; Holden, T.; Lieberman, D.; Cheung, T.

    2015-09-01

    Horizontal gene transfer has been a major vehicle for efficient transfer of genetic materials among living species and could be one of the sources for noncoding DNA incorporation into a genome. Our previous study of lnc- RNA sequence complexity in terms of fractal dimension and information entropy shows a tight regulation among the studied genes in numerous diseases. The role of sequence complexity in horizontal transferred genes was investigated with Mealybug in symbiotic relation with a 139K genome microbe and Deinococcus radiodurans as examples. The fractal dimension and entropy showed correlation R-sq of 0.82 (N = 6) for the studied Deinococcus radiodurans sequences. For comparison the Deinococcus radiodurans oxidative stress tolerant catalase and superoxide dismutase genes under extracellular dGMP growth condition showed R-sq ~ 0.42 (N = 6); and the studied arsenate reductase horizontal transferred genes for toxicity survival in several microorganisms showed no correlation. Simulation results showed that R-sq < 0.4 would be improbable at less than one percent chance, suggestive of additional selection pressure when compared to the R-sq ~ 0.29 (N = 21) in the studied transferred genes in Mealybug. The mild correlation of R-sq ~ 0.5 for fractal dimension versus transcription level in the studied Deinococcus radiodurans sequences upon extracellular dGMP growth condition would suggest that lower fractal dimension with less electron density fluctuation favors higher transcription level.

  10. Satellite DNA from the brine shrimp Artemia affects the expression of a flanking gene in yeast.

    PubMed

    Maiorano, D; Cece, R; Badaracco, G

    1997-04-11

    We have previously revealed that in the brine shrimp Artemia franciscana an AluI DNA family of repeats, 113 bp in length, is the major component of the constitutive heterochromatin and that this repetitive DNA shows a stable curvature that confers a solenoidal geometry on the double helix in vitro. It was suggested that this particular structure may play a relevant role in determining the condensation of the heterochromatin. In this report we have cloned hexamers of highly-repetitive sequence (AluI-satellite DNA) in proximity to a yeast lacZ reporter gene on a plasmid. We find that the expression of the reporter gene is affected by the presence of this DNA in a dose- and orientation-dependent manner in the yeast, S. cerevisiae. We show that this effect is not dependent on under-replication or re-arrangements of the repetitive DNA in the cell but is due to decreased expression of the reporter gene. Our results indicate that the AluI-satellite DNA of Artemia per se is able to influence gene expression. PMID:9161405

  11. The HRDC domain of E. coli RecQ helicase controls single-stranded DNA translocation and double-stranded DNA unwinding rates without affecting mechanoenzymatic coupling

    PubMed Central

    Harami, Gábor M.; Nagy, Nikolett T.; Martina, Máté; Neuman, Keir C.; Kovács, Mihály

    2015-01-01

    DNA-restructuring activities of RecQ-family helicases play key roles in genome maintenance. These activities, driven by two tandem RecA-like core domains, are thought to be controlled by accessory DNA-binding elements including the helicase-and-RnaseD-C-terminal (HRDC) domain. The HRDC domain of human Bloom’s syndrome (BLM) helicase was shown to interact with the RecA core, raising the possibility that it may affect the coupling between ATP hydrolysis, translocation along single-stranded (ss)DNA and/or unwinding of double-stranded (ds)DNA. Here, we determined how these activities are affected by the abolition of the ssDNA interaction of the HRDC domain or the deletion of the entire domain in E. coli RecQ helicase. Our data show that the HRDC domain suppresses the rate of DNA-activated ATPase activity in parallel with those of ssDNA translocation and dsDNA unwinding, regardless of the ssDNA binding capability of this domain. The HRDC domain does not affect either the processivity of ssDNA translocation or the tight coupling between the ATPase, translocation, and unwinding activities. Thus, the mechanochemical coupling of E. coli RecQ appears to be independent of HRDC-ssDNA and HRDC-RecA core interactions, which may play roles in more specialized functions of the enzyme. PMID:26067769

  12. An inhibitor of DNA binding and uptake events dictates the proficiency of genetic transformation in Neisseria gonorrhoeae: mechanism of action and links to Type IV pilus expression.

    PubMed

    Aas, Finn Erik; Løvold, Cecilia; Koomey, Michael

    2002-12-01

    Although natural genetic transformation is a widely disseminated form of genetic exchange in prokaryotic species, the proficiencies with which DNA recognition, uptake and processing occur in nature vary greatly. However, the molecular factors and interactions underlying intra- and interspecies diversity in levels of competence for natural genetic transformation are poorly understood. In Neisseria gonorrhoeae, the Gram-negative aetiologic agent of gonorrhoea, DNA binding and uptake involve components required for Type IV pilus (Tfp) biogenesis as well as those which are structurally related to Tfp biogenesis components but dispensable for organelle expression. We demonstrate here that the gonococcal PilV protein, structurally related to Tfp pilin subunits, is an intrinsic inhibitor of natural genetic transformation which acts ultimately by reducing the levels of sequence-specific DNA uptake into the cell. Specifically, we show that DNA uptake is enhanced in strains bearing pilV mutations and reduced in strains overexpressing PilV. Furthermore, we show that PilV exerts its effect by acting as an antagonist of ComP, a positive effector of sequence-specific DNA binding. As it prevents the accumulation of ComP at a site where it can be purified by shear extraction of intact cells, the data are most consistent with PilV either obstructing ComP trafficking or altering ComP stability. In addition, we report that ComP and PilV play overlapping and partially redundant roles in Tfp biogenesis and document other genetic interactions between comP and pilV together with the pilE and pilT genes required for the expression of retractile Tfp. Together, the results reveal a novel mechanism by which the levels of competence are governed in prokaryotic species and suggest unique ways by which competence might be modulated. PMID:12453228

  13. Deficiency in silicon uptake affects cytological, physiological, and biochemical events in the rice--Bipolaris oryzae interaction.

    PubMed

    Dallagnol, Leandro J; Rodrigues, Fabrício A; DaMatta, Fábio M; Mielli, Mateus V B; Pereira, Sandra C

    2011-01-01

    This study investigated how a defect in the active uptake of silicon (Si) affects rice resistance to brown spot. Plants from a rice mutant (low silicon 1 [lsi1]) and its wild-type counterpart (cv. Oochikara), growing in hydroponic culture with (+Si; 2 mM) or without (-Si) Si, were inoculated with Bipolaris oryzae. Si concentration in leaf tissue of cv. Oochikara and the lsi1 mutant increased by 381 and 263%, respectively, for the +Si treatment compared with the -Si treatment. The incubation period was 6 h longer in the presence of Si. The area under brown spot progress curve for plants from cv. Oochikara and the lsi1 mutant was reduced 81 and 50%, respectively, in the presence of Si. The reduced number of brown epidermal cells on leaves from cv. Oochikara and the lsi1 mutant supplied with Si contributed to the lower lipid peroxidation and electrolyte leakage. The concentration of total soluble phenolics in cv. Oochikara supplied with Si (values of 4.2 to 15.4 μg g(-1) fresh weight) was greater compared with plants not supplied with Si (values of 1.9 to 11.5 μg g(-1) fresh weight). The concentration of lignin was also important to the resistance of cv. Oochikara and the lsi1 mutant. Polyphenoloxidase activity did not contribute to the resistance of cv. Oochikara and the lsi1 mutant to brown spot, regardless of Si supply. Peroxidase and chitinase activities were higher in cv. Oochikara and the lsi1 mutant supplied with Si. These results bring novel evidence of the involvement of Si in a more complex defense mechanism than simply the formation of a physical barrier to avoid or delay fungal penetration. PMID:20879842

  14. Imipramine treatment differentially affects platelet /sup 3/H-imipramine binding and serotonin uptake in depressed patients

    SciTech Connect

    Suranyi-Cadotte, B.E.; Quirion, R.; Nair, N.P.V.; Lafaille, F.; Schwartz, G.

    1985-02-25

    Uptake of serotonin and /sup 3/H-imipramine binding in platelets of depressed patients were investigated simultaneously with changes in clinical state. Both V/sub max/ for serotonin uptake and B/sub max/ for /sup 3/H-imipramine binding were significantly lower in unmedicated depressed patients with respect to normal subjects. Successful treatment with imipramine led to a significant increase in B/sub max/ for /sup 3/H-imipramine binding, without significant change in V/sub max/ for serotonin uptake. B/sub max/ values increased to the normal range following complete, rather than partial clinical improvement. These data indicate that successful antidepressant treatment may increase the density of /sup 3/H-imipramine binding sites on platelets by a process which is independent of the uptake of serotonin. 29 references, 1 table.

  15. Alterations of nuclear DNA synthesis after irradiation of the cellular slime mold Dictyostelium discoideum: studies performed in a mutant strain displaying enhanced thymidine uptake

    SciTech Connect

    Hurley, D.L.

    1986-01-01

    The auxotrophic Dictyostelium discoideum strain HPS 401 was studied. Thymidine at 8 ..mu..g/ml or thymidylate at 50 ..mu..g/ml supported growth to maximal cell densities. Thin layer chromatography of cell extracts showed rapid intracellular accumulation of thymidine in HPS 401 vs slightly detectable accumulation in wild-type cells. Measurements showed that methionine and thymidylate were taken into all strains at a low rate, but HPS 401 had enhanced uptake of thymidine and uridine compared to wild-type. The HPS 401 phenotype is due to the efficient utilization of thymidine as a result of increased nucleoside uptake. Rapid nuclear purification removed mitochondrial DNA without decreasing the single-strand molecular weight of the nuclear DNA. The nuclear DNA peaks on alkaline sucrose gradients were identified using filter hybridization to cloned probes. As measured by pulse-chase labelling, production of full-sized main band DNA required 45-50 minutes. Pulse labelling of the cells immediately after ultraviolet irradiation caused the single-strand molecular weight of the DNA synthesized to decrease from 8 x 10/sup 6/ daltons at O J/m/sup 2/ to 3.9 x 10/sup 6/ daltons at 50 J/m/sup 2/ to 2.6 x 10/sup 6/ daltons at 200 J/m/sup 2/. The time required for maturation into full-sized DNA increased from 1 hour at O J/m/sup 2/ to 4 hours at 20 J/m/sup 2/ and to 21 hours at 200 J/m/sup 2/. Measured amounts of DNA synthesis at times after ultraviolet irradiation showed a period of reduced incorporation, followed by the resumption of control levels. The lag period ended at the same time as the production of full-sized DNA resumed.

  16. Increased DNA methylation of scavenger receptor class B type I contributes to inhibitory effects of prenatal caffeine ingestion on cholesterol uptake and steroidogenesis in fetal adrenals

    SciTech Connect

    Wu, Dong-Mei; He, Zheng; Ma, Liang-Peng; Wang, Lin-Long; Ping, Jie; Wang, Hui

    2015-06-01

    Steroid hormones synthesized from cholesterol in the fetal adrenal are crucial for fetal development. We have observed the inhibited fetal adrenal corticosterone synthesis and increased intrauterine growth retardation (IUGR) rate in rats under prenatal caffeine ingestion. The aim of this study is to evaluate the effects of prenatal caffeine ingestion on cholesterol supply in fetal adrenal steroidogenesis in rats and explore the underlying epigenetic mechanisms. Pregnant Wistar rats were treated with 60 mg/kg·d caffeine from gestational day (GD) 7 to GD17. Histological changes of fetal adrenals and increased IUGR rates were observed in the caffeine group. There were significantly decreased steroid hormone contents and cholesterol supply in caffeine-treated fetal adrenals. Data from the gene expression array suggested that prenatal caffeine ingestion caused increased expression of genes related to DNA methylation and decreased expression of genes related to cholesterol uptake. The following conjoint analysis of DNA methylation array with these differentially expressed genes suggested that scavenger receptor class B type I (SR-BI) may play an important role in caffeine-induced cholesterol supply deficiency. Moreover, real-time RT-PCR and immunohistochemical detection certified the inhibitory effects of caffeine on both mRNA expression and protein expression of SR-BI in the fetal adrenal. And the increased DNA methylation frequency in the proximal promoter of SR-BI was confirmed by bisulfite-sequencing PCR. In conclusion, prenatal caffeine ingestion can induce DNA hypermethylation of the SR-BI promoter in the rat fetal adrenal. These effects may lead to decreased SR-BI expression and cholesterol uptake, which inhibits steroidogenesis in the fetal adrenal. - Highlights: • Prenatal caffeine ingestion inhibits steroid hormone production in the fetal adrenal. • Prenatal caffeine ingestion inhibits cholesterol uptake in the fetal adrenal. • Prenatal caffeine

  17. BETA DEFENSIN 2 AND 3 PROMOTE THE UPTAKE OF SELF OR CpG DNA, ENHANCE IFN-α PRODUCTION BY HUMAN PLASMACYTOID DENDRITIC CELLS AND PROMOTE INFLAMMATION

    PubMed Central

    Tewary, Poonam; dela Rosa, Gonzalo; Sharma, Neeraj; Rodriguez, Luis G; Tarasov, Sergey G; Howard, OM Zack; Shirota, Hidekazu; Steinhagen, Folkert; Klinman, Dennis M.; Yang, De; Oppenheim, Joost J.

    2013-01-01

    Alarmins are a group of structurally diverse host defense antimicrobial peptides that are important immune activators. Here we present a novel role of two potent alarmins, human beta defensin 2 and 3 (HBD2 and 3) in promoting IFN-α production by human plasmacytoid DCs (pDCs). We demonstrate that HBD2 and 3 activate pDCs by enhancing the intracellular uptake of CpG and self DNA and promote DNA induced IFN-α production in a TLR9 dependent manner. Both CpG and host DNA form aggregates that resemble DNA nets when combined with HBD2 and 3. Isothermal Titration Calorimetry (ITC) studies to elucidate the nature of HBD3-CpG complexes demonstrates involvement of enthalpy driven interactions in addition to hydrophobic interactions with the formation of complexes at a molar ratio of 2:1 defensin/CpG. Intravenous administration of HBD3-CpG complexes induced proinflammatory cytokines like IL-12, IFN-γ, IL-6, IFN-α and IL-10 in serum associated with an increased recruitment of antigen presenting cells (APCs) in the spleen. Subcutaneous injections of these complexes showed enhanced infiltration of inflammatory cells at injection site indicating a potential pathophysiological role of alarmin/DNA complexes in contributing to inflammation. Intraperitoneal immunization of HBD3/CpG complexes with OVA enhanced both cellular and humoral responses in response to OVA as compared to OVA/HBD3 or OVA/CPG alone, indicative of a much more potent adjuvant effect of the HBD3/CpG complexes. Thus the ability of defensins to enhance cellular uptake of nucleic acids can lead to improved vaccine formulations by promoting their uptake by various cells resulting in an enhanced immune response. PMID:23776172

  18. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli.

    PubMed

    Kieser, T

    1984-07-01

    Based on the results of a systematic study of factors affecting plasmid yield and purity, a procedure suitable for the rapid screening for and isolation of covalently closed circular DNA from Streptomyces lividans and Escherichia coli was developed. The method consists of lysis of lysozyme-treated bacteria combined with alkaline denaturation of DNA at high temperature. Renaturation of CCC DNA and precipitation of single-stranded DNA together with protein is achieved by the addition of a minimal amount of phenol/chloroform. The screening procedure uses only a single tube and the samples can be analyzed by agarose gel electrophoresis about 30 min after lysis. Removal of phenol and further purification of the plasmid preparation is achieved by consecutive precipitations with isopropanol and spermine, followed by extraction with ethanol, producing samples suitable for restriction endonuclease digestion, ligation, and transformation of S. lividans protoplasts or competent E. coli cells in about 2 h. All steps of the procedure are explained in detail with information about the effects of changing parameters. This should help the experimenter to obtain reproducible results and may be useful if the method has to be adapted to new strains or plasmids. PMID:6387733

  19. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  20. DNA Hypomethylation Affects Cancer-Related Biological Functions and Genes Relevant in Neuroblastoma Pathogenesis

    PubMed Central

    Mayol, Gemma; Martín-Subero, José I.; Ríos, José; Queiros, Ana; Kulis, Marta; Suñol, Mariona; Esteller, Manel; Gómez, Soledad; Garcia, Idoia; de Torres, Carmen; Rodríguez, Eva; Galván, Patricia; Mora, Jaume; Lavarino, Cinzia

    2012-01-01

    Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation. PMID:23144874

  1. DNA Binding and Photocleavage Properties, Cellular Uptake and Localization, and in-Vitro Cytotoxicity of Dinuclear Ruthenium(II) Complexes with Varying Lengths in Bridging Alkyl Linkers.

    PubMed

    Liu, Ping; Wu, Bao-Yan; Liu, Jin; Dai, Yong-Cheng; Wang, You-Jun; Wang, Ke-Zhi

    2016-02-15

    Two new dinuclear Ru(II) polypyridyl complexes containing three and ten methylene chains in their bridging linkers are synthesized and characterized. Their calf thymus DNA-binding and plasmid DNA photocleavage behaviors are comparatively studied with a previously reported, six-methylene-containing analog by absorption and luminescence spectroscopy, steady-state emission quenching by [Fe(CN)6](4-), DNA competitive binding with ethidium bromide, DNA viscosity measurements, DNA thermal denaturation, and agarose gel electrophoresis analyses. Theoretical calculations applying the density functional theory (DFT) method for the three complexes are also performed to understand experimentally observed DNA binding properties. The results show that the two complexes partially intercalate between the base pairs of DNA. Cellular uptake and colocalization studies have demonstrated that the complexes could enter HeLa cells efficiently and localize within lysosomes. The in-vitro antitumor activity against HeLa and MCF-7 tumor cells of the complexes are studied by MTT cytotoxic analysis. A new method, high-content analysis (HCA), is also used to assess cytotoxicity, apoptosis and cell cycle arrest of the three complexes. The results show that the lengths of the alkyl linkers could effectively tune their biological properties and that HCA is suitable for rapidly identifying cytotoxicity and can be substituted for MTT assays to evaluate the cell cytotoxicity of chemotherapeutic agents. PMID:26811966

  2. Improvement of Cellular Uptake and Transfection Ability of pDNA Using α-Cyclodextrin-Polyamidoamine Conjugates as Gene Delivery System.

    PubMed

    Qin, Linghao; Cao, Duanwen; Huang, Huan; Ji, Gangjian; Feng, Min; Chen, Jianhai; Pan, Shirong

    2016-02-01

    Polyamidoamine (PAMAM) dendrimers are a class of unique nanomaterials which attracted attention because of their extraordinary properties, such as highly branched structure and types of terminal primary groups. In addition, development in PAMAM chemical modification has broadened its biological application especially for drug and gene delivery. In this study, PAMAMs are covalently conjugated onto α-Cyclodextrin (α-CD) via amide bonds obtaining the starburst cationic polymers (CD-PG2). The chemical structure and composition of CD-PG2 was characterized by IH NMR. Physicochemical and biological properties of CD-PG2/pDNA polyplex were evaluated by agarose gel retardation, stability test against DNasecñ, MTT assay, DLS measurement, CLSM observation, LDH leakage test, cellular uptake route analysis and in-vitro cell transfection. Results showed that CD-PG2 can efficiently condense pDNA into nanoscale particles with a narrow size distribution, and protect pDNA form DNase I degradation. Compared with free PEI-25K and commercial product Lipofectamine2000, CD-PG2 shows excellent gene transfection efficiency without serum interference as well as relatively low cytotoxicity. Cellular uptake of CD-PG2/pDNA polyplex is mainly through CME and CvME route and further investigations demonstrate that α-CD can regulate CvME pathway to improve polyplex transfection behavior. In conclusion, CD-PG2 can be considered as a versatile tool for gene delivery, especially for gene transfer in-vivo. PMID:27305760

  3. UPTAKE OF SPECIFIC ENGINEERED NANOPARTICLES (ENP) BY SLUDGE PARTICULATES AS AFFECTED BY THE PRESENCE OF DISSOLVED ORGANIC MATTERS (DOM)

    EPA Science Inventory

    This research project will be among the first attempts to study the distribution of ENP at major municipal wastewater treatment plants.  A new technique, EATF-EAA-NMAS, will be used to monitor free ENP in field and laboratory wastewater samples. The uptake isotherm of ENP ...

  4. Inhibition of local blood flow control systems in the mammary glands of lactating cows affects uptakes of energy metabolites from blood.

    PubMed

    Madsen, T G; Cieslar, S R L; Trout, D R; Nielsen, M O; Cant, J P

    2015-05-01

    To test the effect of mammary blood flow on net uptakes of milk precursors by the mammary glands, inhibitors of nitric oxide synthase (NOS) and cyclooxygenase (COX) were infused into the mammary circulation of 4 lactating cows. Inhibitors were infused in a 4×4 Latin square design, where treatments were infusion for 1 h of saline, NOS inhibitor (Nω-nitro-l-arginine methyl ester hydrochloride), COX inhibitor (indomethacin), or both NOS + COX inhibitors into one external iliac artery. Para-aminohippuric acid was also infused to allow for estimation of iliac plasma flow (IPF), of which approximately 80% flows to the mammary glands. Blood samples were collected before, during, and after inhibitor infusion from the contralateral external iliac artery and ipsilateral mammary vein. Inhibition of COX and NOS each produced a decrease in IPF, although the NOS effect was smaller and IPF continued to be depressed throughout the recovery period. The combination of COX and NOS inhibition produced a 50% depression in IPF and there was no carryover into the recovery period. Treatments that depressed IPF also increased arterial concentrations of acetate, β-hydroxybutyrate (BHBA), and glucose. Similarly, arteriovenous differences of acetate, BHBA, and glucose were all increased during IPF depression. To correct for a potential effect of arterial concentration, arteriovenous differences were normalized to arterial concentration, producing an extraction percentage. Inhibition of COX increased glucose extraction and tended to increase acetate and BHBA extraction. Dual inhibition only increased BHBA extraction and had no effect on mammary extraction of other metabolites. These extractions did not increase because clearances of glucose and TAG decreased as IPF decreased, and clearances of acetate and BHBA tended to decrease. Net uptake of TAG was depressed by dual NOS/COX inhibition, whereas uptakes of acetate, BHBA, and glucose were not affected by any of the treatments. To separate

  5. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans.

    PubMed

    Choi, Y; Brunken, R C; Hawkins, R A; Huang, S C; Buxton, D B; Hoh, C K; Phelps, M E; Schelbert, H R

    1993-04-01

    The goal of this study was to identify the anatomic and physiologic factors affecting left ventricular myocardial 2-[F-18]fluoro-2-deoxy-D-glucose (FDG) uptake and myocardial glucose utilization rates (MRGlc) in normal humans. Eighteen healthy male volunteers were studied in the fasting state (4-19 h) and 16 after oral glucose loading (100 g dextrose) with positron emission tomography (PET) and FDG. Substrate and hormone concentrations were measured in each study. The kinetics of myocardial FDG uptake were evaluated using both a three-compartment model and Patlak graphical analysis. Systolic blood pressures and rate pressure products were similar in the fasting and postglucose states. MRGlc averaged 0.24 +/- 0.17 mumol/min/g in fasting subjects and rose to 0.69 +/- 0.11 mumol/min/g after glucose loading. Phosphorylation rate constant, k3, and MRGlc were linearly related (P < 0.001). Increases in MRGlc following glucose loading were correlated with plasma glucose, insulin and free fatty acid concentrations, ratios of insulin to glucagon levels, and influx rate constants of FDG. Glucose loading improved the diagnostic image quality due to more rapid clearance of tracer from blood and higher myocardial FDG uptake. When MRGlc, glucose and insulin concentrations, and insulin to glucagon ratios exceeded 0.2 mumol/min/g, 100 mg/dl, 19 microU/ml, and 0.2 microU/pg, respectively, myocardial uptake of FDG was always adequate for diagnostic use. FDG image quality and MRGlc were similar after relatively short (6 +/- 2 h) and overnight (16 +/- 2 h) fasting. Significant (P < 0.05) regional heterogeneity of myocardial FDG uptake and MRGlc was observed in both the fasting and the postglucose studies. MRGlc and FDG uptake values in the posterolateral wall were higher than those in the anterior wall and septum. Thus, both 6-h and overnight fasts resulted in similarly low myocardial glucose utilization rates. While MRGlc and myocardial FDG uptake depended on plasma glucose, free

  6. The effects of weed-crop competition on nutrient uptake as affected by crop rotation and fertilizers.

    PubMed

    Mohammaddoust-E-Chamanabad, Hamid Reza; Asghari, Ali; Tulikov, Aleksander Mikhailovic

    2007-11-15

    A field study at the Agricultural University of Timiriazev, Moscow, was conducted to determine the effect of crop rotation and Long-term fertilizer application on differences in the competitive ability of spring barley and weeds to nutrient uptake in 2004 and 2005. Spring barley was cultivated in continuous and in crop rotation with winter rye, potato, clover, flax and fallow, with and without NPK application since 1912. Spring barley, especially in no fertilizer plots grown in crop rotation has greater dry mass than spring barley grown in continuous. While dry weed mass markedly decreased in crop rotation. Decrease dry weeds mass was greater when NPK had applied. The statistical analyses show that when spring barley grew in competition with weeds in the no fertilizer plots, crop rotation significantly increased nutrient content in spring barley, but when fertilizer applied the content of N, P2O5 and K2O in barley did not change. Lowest weeds nutrient content observed where soil fertility was increased by crop rotation and NPK application. Crop rotation significantly increased total nutrient uptake of soils by spring barley, but decreased total nutrient uptake by weeds. PMID:19090292

  7. DNA topoisomerase III localizes to centromeres and affects centromeric CENP-A levels in fission yeast.

    PubMed

    Norman-Axelsson, Ulrika; Durand-Dubief, Mickaël; Prasad, Punit; Ekwall, Karl

    2013-01-01

    Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-A(Cnp1) at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-A(Cnp1) occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-A(Cnp1) at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-A(Cnp1) in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-A(Cnp1) nucleosomes. PMID:23516381

  8. DNA Topoisomerase III Localizes to Centromeres and Affects Centromeric CENP-A Levels in Fission Yeast

    PubMed Central

    Norman-Axelsson, Ulrika; Durand-Dubief, Mickaël; Prasad, Punit; Ekwall, Karl

    2013-01-01

    Centromeres are specialized chromatin regions marked by the presence of nucleosomes containing the centromere-specific histone H3 variant CENP-A, which is essential for chromosome segregation. Assembly and disassembly of nucleosomes is intimately linked to DNA topology, and DNA topoisomerases have previously been implicated in the dynamics of canonical H3 nucleosomes. Here we show that Schizosaccharomyces pombe Top3 and its partner Rqh1 are involved in controlling the levels of CENP-ACnp1 at centromeres. Both top3 and rqh1 mutants display defects in chromosome segregation. Using chromatin immunoprecipitation and tiling microarrays, we show that Top3, unlike Top1 and Top2, is highly enriched at centromeric central domains, demonstrating that Top3 is the major topoisomerase in this region. Moreover, centromeric Top3 occupancy positively correlates with CENP-ACnp1 occupancy. Intriguingly, both top3 and rqh1 mutants display increased relative enrichment of CENP-ACnp1 at centromeric central domains. Thus, Top3 and Rqh1 normally limit the levels of CENP-ACnp1 in this region. This new role is independent of the established function of Top3 and Rqh1 in homologous recombination downstream of Rad51. Therefore, we hypothesize that the Top3-Rqh1 complex has an important role in controlling centromere DNA topology, which in turn affects the dynamics of CENP-ACnp1 nucleosomes. PMID:23516381

  9. Human cytomegalovirus RL13 protein interacts with host NUDT14 protein affecting viral DNA replication.

    PubMed

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanping; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-03-01

    The interaction between the host and human cytomegalovirus (HCMV) is important in determining the outcome of a viral infection. The HCMV RL13 gene product exerts independent, inhibitory effects on viral growth in fibroblasts and epithelial cells. At present, there are few reports on the interactions between the HCMV RL13 protein and human host proteins. The present study provided direct evidence for the specific interaction between HCMV RL13 and host nucleoside diphosphate linked moiety X (nudix)‑type motif 14 (NUDT14), a UDP‑glucose pyrophosphatase, using two‑hybrid screening, an in vitro glutathione S‑transferase pull‑down assay, and co‑immunoprecipitation in human embryonic kidney HEK293 cells. Additionally, the RL13 protein was shown to co‑localize with the NUDT14 protein in the HEK293 cell membrane and cytoplasm, demonstrated using fluorescence confocal microscopy. Decreasing the expression level of NUDT14 via NUDT14‑specific small interfering RNAs increased the number of viral DNA copies in the HCMV‑infected cells. However, the overexpression of NUDT14 in a stably expressing cell line did not affect viral DNA levels significantly in the HCMV infected cells. Based on the known functions of NUDT14, the results of the present study suggested that the interaction between the RL13 protein and NUDT14 protein may be involved in HCMV DNA replication, and that NUDT14 may offer potential in the modulation of viral infection. PMID:26781650

  10. Implementing Prenatal Diagnosis Based on Cell-Free Fetal DNA: Accurate Identification of Factors Affecting Fetal DNA Yield

    PubMed Central

    Barrett, Angela N.; Zimmermann, Bernhard G.; Wang, Darrell; Holloway, Andrew; Chitty, Lyn S.

    2011-01-01

    Objective Cell-free fetal DNA is a source of fetal genetic material that can be used for non-invasive prenatal diagnosis. Usually constituting less than 10% of the total cell free DNA in maternal plasma, the majority is maternal in origin. Optimizing conditions for maximizing yield of cell-free fetal DNA will be crucial for effective implementation of testing. We explore factors influencing yield of fetal DNA from maternal blood samples, including assessment of collection tubes containing cell-stabilizing agents, storage temperature, interval to sample processing and DNA extraction method used. Methods Microfluidic digital PCR was performed to precisely quantify male (fetal) DNA, total DNA and long DNA fragments (indicative of maternal cellular DNA). Real-time qPCR was used to assay for the presence of male SRY signal in samples. Results Total cell-free DNA quantity increased significantly with time in samples stored in K3EDTA tubes, but only minimally in cell stabilizing tubes. This increase was solely due to the presence of additional long fragment DNA, with no change in quantity of fetal or short DNA, resulting in a significant decrease in proportion of cell-free fetal DNA over time. Storage at 4°C did not prevent these changes. Conclusion When samples can be processed within eight hours of blood draw, K3EDTA tubes can be used. Prolonged transfer times in K3EDTA tubes should be avoided as the proportion of fetal DNA present decreases significantly; in these situations the use of cell stabilising tubes is preferable. The DNA extraction kit used may influence success rate of diagnostic tests. PMID:21998643

  11. The Tip of the Tail Needle Affects the Rate of DNA Delivery by Bacteriophage P22

    PubMed Central

    Leavitt, Justin C.; Gogokhia, Lasha; Gilcrease, Eddie B.; Bhardwaj, Anshul; Cingolani, Gino; Casjens, Sherwood R.

    2013-01-01

    The P22-like bacteriophages have short tails. Their virions bind to their polysaccharide receptors through six trimeric tailspike proteins that surround the tail tip. These short tails also have a trimeric needle protein that extends beyond the tailspikes from the center of the tail tip, in a position that suggests that it should make first contact with the host’s outer membrane during the infection process. The base of the needle serves as a plug that keeps the DNA in the virion, but role of the needle during adsorption and DNA injection is not well understood. Among the P22-like phages are needle types with two completely different C-terminal distal tip domains. In the phage Sf6-type needle, unlike the other P22-type needle, the distal tip folds into a “knob” with a TNF-like fold, similar to the fiber knobs of bacteriophage PRD1 and Adenovirus. The phage HS1 knob is very similar to that of Sf6, and we report here its crystal structure which, like the Sf6 knob, contains three bound L-glutamate molecules. A chimeric P22 phage with a tail needle that contains the HS1 terminal knob efficiently infects the P22 host, Salmonella enterica, suggesting the knob does not confer host specificity. Likewise, mutations that should abrogate the binding of L-glutamate to the needle do not appear to affect virion function, but several different other genetic changes to the tip of the needle slow down potassium release from the host during infection. These findings suggest that the needle plays a role in phage P22 DNA delivery by controlling the kinetics of DNA ejection into the host. PMID:23951045

  12. Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses

    PubMed Central

    Zhang, Ting; Bae, Dongryeoul

    2016-01-01

    ABSTRACT The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is structurally similar to the Bacillus cereus alkyl base DNA glycosylase (AlkD), was identified. This determinant was involved in the transcriptional repression of flagellar motility genes and was named adlP (encoding an AlkD-like protein [AdlP]). Deletion of adlP activated the expression of flagellar motility genes at 37°C and disrupted the temperature-dependent inhibition of L. monocytogenes motility. The adlP null strains demonstrated decreased survival in murine macrophage-like RAW264.7 cells and less virulence in mice. Furthermore, the deletion of adlP significantly decreased biofilm formation and impaired the survival of bacteria under several stress conditions, including the presence of a DNA alkylation compound (methyl methanesulfonate), an oxidative agent (H2O2), and aminoglycoside antibiotics. Our findings strongly suggest that adlP may encode a bifunctional protein that transcriptionally represses the expression of flagellar motility genes and influences stress responses through its DNA glycosylase activity. IMPORTANCE We discovered a novel protein that we named AlkD-like protein (AdlP). This protein affected flagellar motility, biofilm formation, and virulence. Our data suggest that AdlP may be a bifunctional protein that represses flagellar motility genes and influences stress responses through its DNA glycosylase activity. PMID:27316964

  13. Morphine Induces Redox-Based Changes in Global DNA Methylation and Retrotransposon Transcription by Inhibition of Excitatory Amino Acid Transporter Type 3–Mediated Cysteine Uptake

    PubMed Central

    Trivedi, Malav; Shah, Jayni; Hodgson, Nathaniel; Byun, Hyang-Min

    2014-01-01

    Canonically, opioids influence cells by binding to a G protein–coupled opioid receptor, initiating intracellular signaling cascades, such as protein kinase, phosphatidylinositol 3-kinase, and extracellular receptor kinase pathways. This results in several downstream effects, including decreased levels of the reduced form of glutathione (GSH) and elevated oxidative stress, as well as epigenetic changes, especially in retrotransposons and heterochromatin, although the mechanism and consequences of these actions are unclear. We characterized the acute and long-term influence of morphine on redox and methylation status (including DNA methylation levels) in cultured neuronal SH-SY5Y cells. Acting via μ-opioid receptors, morphine inhibits excitatory amino acid transporter type 3–mediated cysteine uptake via multiple signaling pathways, involving different G proteins and protein kinases in a temporal manner. Decreased cysteine uptake was associated with decreases in both the redox and methylation status of neuronal cells, as defined by the ratios of GSH to oxidized forms of glutathione and S-adenosylmethionine to S-adenosylhomocysteine levels, respectively. Further, morphine induced global DNA methylation changes, including CpG sites in long interspersed nuclear elements (LINE-1) retrotransposons, resulting in increased LINE-1 mRNA. Together, these findings illuminate the mechanism by which morphine, and potentially other opioids, can influence neuronal-cell redox and methylation status including DNA methylation. Since epigenetic changes are implicated in drug addiction and tolerance phenomenon, this study could potentially extrapolate to elucidate a novel mechanism of action for other drugs of abuse. PMID:24569088

  14. Concentration of carp edema virus (CEV) DNA in koi tissues affected by koi sleepy disease (KSD).

    PubMed

    Adamek, Mikolaj; Jung-Schroers, Verena; Hellmann, John; Teitge, Felix; Bergmann, Sven Michael; Runge, Martin; Kleingeld, Dirk Willem; Way, Keith; Stone, David Michael; Steinhagen, Dieter

    2016-05-26

    Carp edema virus (CEV), the causative agent of 'koi sleepy disease' (KSD), appears to be spreading worldwide and to be responsible for losses in koi, ornamental varieties of the common carp Cyprinus carpio. Clinical signs of KSD include lethargic behaviour, swollen gills, sunken eyes and skin alterations and can easily be mistaken for other diseases, such as infection with cyprinid herpesvirus 3 (CyHV-3). To improve the future diagnosis of CEV infection and to provide a tool to better explore the relationship between viral load and clinical disease, we developed a specific quantitative PCR (qPCR) for strains of the virus known to infect koi carp. In samples from several clinically affected koi, CEV-specific DNA was present in a range from 1 to 2,046,000 copies, with a mean of 129,982 copies and a median of 45 copies per 250 ng of isolated DNA, but virus DNA could not be detected in all clinically affected koi. A comparison of the newly developed qPCR, which is based on a dual-labelled probe, to an existing end-point PCR procedure revealed higher specificity and sensitivity of the qPCR and demonstrated that the new protocol could improve CEV detection in koi. In addition to improved diagnosis, the newly developed qPCR test would be a useful research tool. For example, studies on the pathobiology of CEV could employ controlled infection experiments in which the development of clinical signs could be examined in parallel with a quantitative determination of virus load. PMID:27225208

  15. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate.

    PubMed

    Brix, Hans; Dyhr-Jensen, Kirsten; Lorenzen, Bent

    2002-12-01

    The NH(4)(+) and NO(3)(-) uptake kinetics by Typha latifolia L. were studied after prolonged hydroponics growth at constant pH 3.5, 5.0, 6.5 or 7.0 and with NH(4)(+) or NO(3)(-) as the sole N-source. In addition, the effects of pH and N source on H(+) extrusion and adenine nucleotide content were examined. Typha latifolia was able to grow with both N sources at near neutral pH levels, but the plants had higher relative growth rates, higher tissue concentrations of the major nutrients, higher contents of adenine nucleotides, and higher affinity for uptake of inorganic nitrogen when grown on NH(4)(+). Growth almost completely stopped at pH 3.5, irrespective of N source, probably as a consequence of pH effects on plasma membrane integrity and H(+) influx into the root cells. Tissue concentrations of the major nutrients and adenine nucleotides were severely reduced at low pH, and the uptake capacity for inorganic nitrogen was low, and more so for NO(3)(-)-fed than for NH(4)(+)-fed plants. The maximum uptake rate, V(max), was highest for NH(4)(+) at pH 6.5 (30.9 micro mol h(-1) g(-1) root dry weight) and for NO(3)(-) at pH 5.0 (31.7 micro mol h(-1) g(-1) root dry weight), and less than 10% of these values at pH 3.5. The affinity for uptake as estimated by the half saturation constant, K((1/2)), was lowest at low pH for NH(4)(+) and at high pH for NO(3)(-). The changes in V(max) and K((1/2)) were thus consistent with the theory of increasing competition between cations and H(+) at low pH and between anions and OH(-) at high pH. C(min) was independent of pH, but slightly higher for NO(3)(-) than for NH(4)(+) (C(min)(NH(4)(+)) approximately 0.8 mmol m(-3); C(min)(NO(3)(-)) approximately 2.8 mmol m(-3)). The growth inhibition at low pH was probably due to a reduced nutrient uptake and a consequential limitation of growth by nutrient stress. Typha latifolia seems to be well adapted to growth in wetland soils where NH(4)(+) is the prevailing nitrogen compound, but very low p

  16. Dividuality, masculine respectability and reputation: how masculinity affects men's uptake of HIV treatment in rural eastern Uganda.

    PubMed

    Siu, Godfrey E; Seeley, Janet; Wight, Daniel

    2013-07-01

    There is increasing evidence in SSA that once infected with HIV men are disadvantaged compared to women in terms of uptake of treatment. In Uganda fewer men are on treatment, they tend to initiate treatment later, are difficult to retain on treatment and have a higher mortality while on treatment. This article discusses how men's response to HIV infection relates to their masculinity. We conducted participant observation and in-depth interviews with 26 men from a rural setting in eastern Uganda, in 2009-2010. They comprised men receiving HIV treatment, who had dropped treatment or did not seek it despite testing HIV positive, who had not tested but suspected infection, and those with other symptoms unrelated to HIV. Thematic analysis identified recurrent themes and variations across the data. Men drew from a range of norms to fulfil the social and individual expectations of being sufficiently masculine. The study argues that there are essentially two forms of masculinity in Mam-Kiror, one based on reputation and the other on respectability, with some ideals shared by both. Respectability was endorsed by 'the wider society', while reputation was endorsed almost entirely by men. Men's treatment seeking behaviours corresponded with different masculine ideologies. Family and societal expectations to be a family provider and respectable role model encouraged treatment, to regain and maintain health. However, reputational concern with strength and the capacity for hard physical work, income generation and sexual achievement discouraged uptake of HIV testing and treatment since it meant acknowledging weakness and an 'HIV patient' identity. Men's 'dividuality' allowed them to express different masculinities in different social contexts. We conclude that characteristics associated with respectable masculinity tend to encourage men's uptake of HIV treatment while those associated with reputational masculinity tend to undermine it. PMID:23726215

  17. The Urease Inhibitor NBPT Negatively Affects DUR3-mediated Uptake and Assimilation of Urea in Maize Roots

    PubMed Central

    Zanin, Laura; Tomasi, Nicola; Zamboni, Anita; Varanini, Zeno; Pinton, Roberto

    2015-01-01

    Despite the widespread use of urease inhibitors in agriculture, little information is available on their effect on nitrogen (N) uptake and assimilation. Aim of this work was to study, at physiological and transcriptional level, the effects of N-(n-butyl) thiophosphoric triamide (NBPT) on urea nutrition in hydroponically grown maize plants. Presence of NBPT in the nutrient solution limited the capacity of plants to utilize urea as a N-source; this was shown by a decrease in urea uptake rate and 15N accumulation. Noteworthy, these negative effects were evident only when plants were fed with urea, as NBPT did not alter 15N accumulation in nitrate-fed plants. NBPT also impaired the growth of Arabidopsis plants when urea was used as N-source, while having no effect on plants grown with nitrate or ammonium. This response was related, at least in part, to a direct effect of NBPT on the high affinity urea transport system. Impact of NBPT on urea uptake was further evaluated using lines of Arabidopsis overexpressing ZmDUR3 and dur3-knockout; results suggest that not only transport but also urea assimilation could be compromised by the inhibitor. This hypothesis was reinforced by an over-accumulation of urea and a decrease in ammonium concentration in NBPT-treated plants. Furthermore, transcriptional analyses showed that in maize roots NBPT treatment severely impaired the expression of genes involved in the cytosolic pathway of ureic-N assimilation and ammonium transport. NBPT also limited the expression of a gene coding for a transcription factor highly induced by urea and possibly playing a crucial role in the regulation of its acquisition. This work provides evidence that NBPT can heavily interfere with urea nutrition in maize plants, limiting influx as well as the following assimilation pathway. PMID:26635834

  18. Prenatal Exposure to DEHP Affects Spermatogenesis and Sperm DNA Methylation in a Strain-Dependent Manner.

    PubMed

    Prados, Julien; Stenz, Ludwig; Somm, Emmanuel; Stouder, Christelle; Dayer, Alexandre; Paoloni-Giacobino, Ariane

    2015-01-01

    Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents. Here we investigated the impact of prenatal exposure to DEHP on spermatogenesis and DNA sperm methylation in two distinct, selected, and sequenced mice strains. FVB/N and C57BL/6J mice were orally exposed to 300 mg/kg/day of DEHP from gestation day 9 to 19. Prenatal DEHP exposure significantly decreased spermatogenesis in C57BL/6J (fold-change = 0.6, p-value = 8.7*10-4), but not in FVB/N (fold-change = 1, p-value = 0.9). The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N. At the promoter level, three important subsets of genes were massively affected. Promoters of vomeronasal and olfactory receptors coding genes globally followed the same trend, more pronounced in the C57BL/6J strain, of being hyper-methylated in DEHP related conditions. In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain. We additionally analyze both the presence of functional genetic variations within genes that were associated with the detected DMRs and that could be involved in spermatogenesis, and DMRs related with the DEHP exposure that affected both strains in an opposite manner. The major finding in this study indicates that prenatal exposure to DEHP can decrease spermatogenesis in a strain-dependent manner and affects sperm DNA methylation in promoters of large sets of genes putatively involved in both sperm chemotaxis and post-transcriptional regulatory mechanisms. PMID:26244509

  19. Prenatal Exposure to DEHP Affects Spermatogenesis and Sperm DNA Methylation in a Strain-Dependent Manner

    PubMed Central

    Somm, Emmanuel; Stouder, Christelle; Dayer, Alexandre; Paoloni-Giacobino, Ariane

    2015-01-01

    Di-(2-ethylhexyl)phtalate (DEHP) is a plasticizer with endocrine disrupting properties found ubiquitously in the environment and altering reproduction in rodents. Here we investigated the impact of prenatal exposure to DEHP on spermatogenesis and DNA sperm methylation in two distinct, selected, and sequenced mice strains. FVB/N and C57BL/6J mice were orally exposed to 300 mg/kg/day of DEHP from gestation day 9 to 19. Prenatal DEHP exposure significantly decreased spermatogenesis in C57BL/6J (fold-change = 0.6, p-value = 8.7*10-4), but not in FVB/N (fold-change = 1, p-value = 0.9). The number of differentially methylated regions (DMRs) by DEHP-exposure across the entire genome showed increased hyper- and decreased hypo-methylation in C57BL/6J compared to FVB/N. At the promoter level, three important subsets of genes were massively affected. Promoters of vomeronasal and olfactory receptors coding genes globally followed the same trend, more pronounced in the C57BL/6J strain, of being hyper-methylated in DEHP related conditions. In contrast, a large set of micro-RNAs were hypo-methylated, with a trend more pronounced in the FVB/N strain. We additionally analyze both the presence of functional genetic variations within genes that were associated with the detected DMRs and that could be involved in spermatogenesis, and DMRs related with the DEHP exposure that affected both strains in an opposite manner. The major finding in this study indicates that prenatal exposure to DEHP can decrease spermatogenesis in a strain-dependent manner and affects sperm DNA methylation in promoters of large sets of genes putatively involved in both sperm chemotaxis and post-transcriptional regulatory mechanisms. PMID:26244509

  20. The school nurse, the school and HPV vaccination: a qualitative study of factors affecting HPV vaccine uptake.

    PubMed

    Brabin, Loretta; Stretch, Rebecca; Roberts, Stephen A; Elton, Peter; Baxter, David; McCann, Rosemary

    2011-04-12

    School nurses in the United Kingdom are largely responsible for delivering the human papillomavirus (HPV) vaccine to 12-13 year old girls. In order to assess the impact of HPV vaccination on school nurses' roles, we gave a questionnaire to all 33 school nurses who offered Cervarix ™ in two Primary Care Trusts one year ahead of the national vaccine programme. Key organisational issues raised by the school nurses were the size of the team and its skill mix. A few found their schools uncooperative and were dissatisfied with mechanisms for problem resolution. On average, nurses spent an additional 69 h (0.80 h per child) on vaccine-related activities. In semi-qualitative interviews (n=17), school nurses complained of work overload and described the difficulties of establishing good relationships with some of their schools. Nurses expected schools to take some responsibility for ensuring good uptake and were frustrated when help was not forthcoming. We conclude that variation in uptake between schools in part reflects a difficult relationship with the school nurse which may be attributed to characteristics of the school, schools' attitudes towards health interventions, organisational problems, multiple school nurse roles and/or personal ability. Some of these issues will need to be addressed to ensure continued high vaccine coverage as HPV vaccination becomes a less prioritised, routine activity. PMID:21354481

  1. Evaluation of cellular uptake and intracellular trafficking as determining factors of gene expression for amino acid-substituted gemini surfactant-based DNA nanoparticles

    PubMed Central

    2012-01-01

    Background Gene transfer using non-viral vectors offers a non-immunogenic and safe method of gene delivery. Cellular uptake and intracellular trafficking of the nanoparticles can impact on the transfection efficiency of these vectors. Therefore, understanding the physicochemical properties that may influence the cellular uptake and the intracellular trafficking can aid the design of more efficient non-viral gene delivery systems. Recently, we developed novel amino acid-substituted gemini surfactants that showed higher transfection efficiency than their parent compound. In this study, we evaluated the mechanism of cellular uptake of the plasmid/gemini surfactant/helper lipid nanoparticles and their effect on the transfection efficiency. Results Nanoparticles were incubated with Sf 1 Ep cells in the presence of different endocytic inhibitors and gene expression (interferon-γ) was measured using ELISA. Clathrin-mediated and caveolae-mediated uptake were found to be equally contributing to cellular internalization of both P/12-7NH-12/L (parent gemini surfactant) and P/12-7NGK-12/L (amino acid-substituted gemini surfactant) nanoparticles. The plasmid and the helper lipid were fluorescently tagged to track the nanoparticles inside the cells, using confocal laser scanning microscopy. Transmission electron microscopy images showed that the P/12-7NGK-12/L particles were cylindrical while the P/12-7NH-12/L particles were spherical which may influence the cellular uptake behaviour of these particles. Dye exclusion assay and pH-titration of the nanoparticles suggested that high buffering capacity, pH-dependent increase in particle size and balanced DNA binding properties may be contributing to a more efficient endosomal escape of P/12-7NGK-12/L compared to the P/12-7NH-12/L nanoparticles, leading to higher gene expression. Conclusion Amino-acid substitution in the spacer of gemini surfactant did not alter the cellular uptake pathway, showing similar pattern to the

  2. Nutri-epigenomic Studies Related to Neural Tube Defects: Does Folate Affect Neural Tube Closure Via Changes in DNA Methylation?

    PubMed

    Rochtus, Anne; Jansen, Katrien; Van Geet, Chris; Freson, Kathleen

    2015-01-01

    Neural tube defects (NTDs), affecting 1-2 per 1000 pregnancies, are severe congenital malformations that arise from the failure of neurulation during early embryonic development. The methylation hypothesis suggests that folate prevents NTDs by stimulating cellular methylation reactions. Folate is central to the one-carbon metabolism that produces pyrimidines and purines for DNA synthesis and for the generation of the methyldonor S-adenosyl-methionine. This review focuses on the relation between the folate-mediated one-carbon metabolism, DNA methylation and NTDs. Studies will be discussed that investigated global or locus-specific DNA methylation differences in patients with NTDs. Folate deficiency may increase NTD risk by decreasing DNA methylation, but to date, human studies vary widely in study design in terms of analyzing different clinical subtypes of NTDs, using different methylation quantification assays and using DNA isolated from diverse types of tissues. Some studies have focused mainly on global DNA methylation differences while others have quantified specific methylation differences for imprinted genes, transposable elements and DNA repair enzymes. Findings of global DNA hypomethylation and LINE-1 hypomethylation suggest that epigenetic alterations may disrupt neural tube closure. However, current research does not support a linear relation between red blood cell folate concentration and DNA methylation. Further studies are required to better understand the interaction between folate, DNA methylation changes and NTDs. PMID:26349489

  3. Reduction in DNA topoisomerase I level affects growth, phenotype and nucleoid architecture of Mycobacterium smegmatis.

    PubMed

    Ahmed, Wareed; Menon, Shruti; Karthik, Pullela V; Nagaraja, Valakunja

    2015-02-01

    The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While Mycobacterium tuberculosis (Mtb) contains a single type I (TopoI) and a single type II (Gyrase) enzyme, Mycobacterium smegmatis (Msm) and other members harbour additional relaxases. TopoI is essential for Mtb survival. However, the necessity of TopoI or other relaxases in Msm has not been investigated. To recognize the importance of TopoI for growth, physiology and gene expression of Msm, we have developed a conditional knock-down strain of TopoI in Msm. The TopoI-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in TopoI level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the TopoI-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of TopoI in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in TopoI level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects. PMID:25516959

  4. Change in Uptake, Transport and Accumulation of Ions in Nerium oleander (Rosebay) as Affected by Different Nitrogen Sources and Salinity

    PubMed Central

    Abdolzadeh, Ahmad; Shima, Kazuto; Lambers, Hans; Chiba, Kyozo

    2008-01-01

    Background and Aims The source of nitrogen plays an important role in salt tolerance of plants. In this study, the effects of NaCl on net uptake, accumulation and transport of ions were investigated in Nerium oleander with ammonium or nitrate as the nitrogen source in order to analyse differences in uptake and cycling of ions within plants. Methods Plants were grown in a greenhouse in hydroponics under different salt treatments (control vs. 100 mm NaCl) with ammonium or nitrate as the nitrogen source, and changes in ion concentration in plants, xylem sap exuded from roots and stems, and phloem sap were determined. Key Results Plant weight, leaf area and photosynthetic rate showed a higher salt tolerance of nitrate-fed plants compared with that of ammonium-fed plants. The total amount of Na+ transported in the xylem in roots, accumulated in the shoot and retranslocated in the phloem of ammonium-fed plants under salt treatment was 1·8, 1·9 and 2·7 times more, respectively, than that of nitrate-treated plants. However, the amount of Na+ accumulated in roots in nitrate-fed plants was about 1·5 times higher than that in ammonium-fed plants. Similarly, Cl− transport via the xylem to the shoot and its retranslocation via the phloem (Cl− cycling) were far greater with ammonium treatment than with nitrate treatment under conditions of salinity. The uptake and accumulation of K+ in shoots decreased more due to salinity in ammonium-fed plants compared with nitrate-fed plants. In contrast, K+ cycling in shoots increased due to salinity, with higher rates in the ammonium-treated plants. Conclusions The faster growth of nitrate-fed plants under conditions of salinity was associated with a lower transport and accumulation of Na+ and Cl− in the shoot, whereas in ammonium-fed plants accumulation and cycling of Na+ and Cl− in shoots probably caused harmful effects and reduced growth of plants. PMID:18772147

  5. Interconverting Conformations of Slipped-DNA Junctions Formed by Trinucleotide Repeats Affect Repair Outcome

    PubMed Central

    2013-01-01

    Expansions of (CTG)·(CAG) repeated DNAs are the mutagenic cause of 14 neurological diseases, likely arising through the formation and processing of slipped-strand DNAs. These transient intermediates of repeat length mutations are formed by out-of-register mispairing of repeat units on complementary strands. The three-way slipped-DNA junction, at which the excess repeats slip out from the duplex, is a poorly understood feature common to these mutagenic intermediates. Here, we reveal that slipped junctions can assume a surprising number of interconverting conformations where the strand opposite the slip-out either is fully base paired or has one or two unpaired nucleotides. These unpaired nucleotides can also arise opposite either of the nonslipped junction arms. Junction conformation can affect binding by various structure-specific DNA repair proteins and can also alter correct nick-directed repair levels. Junctions that have the potential to contain unpaired nucleotides are repaired with a significantly higher efficiency than constrained fully paired junctions. Surprisingly, certain junction conformations are aberrantly repaired to expansion mutations: misdirection of repair to the non-nicked strand opposite the slip-out leads to integration of the excess slipped-out repeats rather than their excision. Thus, slipped-junction structure can determine whether repair attempts lead to correction or expansion mutations. PMID:23339280

  6. Mutations affecting sensitivity of the cellular slime mold Dictyostelium discoideum to DNA-damaging agents.

    PubMed

    Bronner, C E; Welker, D L; Deering, R A

    1992-09-01

    We describe 22 new mutants of D. discoideum that are sensitive to DNA damage. These mutants were isolated on the basis of sensitivity to either temperature, gamma-rays, or 4-nitroquinolone-1-oxide (4NQO). The doses of gamma-rays, ultraviolet light (UV), and 4NQO required to reduce the survival of colony-forming ability of these mutants to 10% (D10) range from 2% to 100% of the D10s for the nonmutant, parent strains. For most of the mutants, those which are very sensitive to one agent are very sensitive to all agents tested and those which are moderately sensitive to one agent, are moderately sensitive to all agents tested. One mutant is sensitive only to 4NQO. Linkage relationships have been examined for 13 of these mutants. This linkage information was used to design complementation tests to determine allelism with previously characterized complementation groups affecting sensitivity to radiation. 4 of the new mutants fall within previously identified complementation groups and 3 new complementation groups have been identified (radJ, radK and radL). Other new loci probably also exist among these new mutants. This brings the number of characterized mutants of D. discoideum which are sensitive to DNA-damaging agents to 33 and the number of assigned complementation groups to 11. PMID:1380652

  7. 3-base periodicity in coding DNA is affected by intercodon dinucleotides

    PubMed Central

    Sánchez, Joaquín

    2011-01-01

    All coding DNAs exhibit 3-base periodicity (TBP), which may be defined as the tendency of nucleotides and higher order n-tuples, e.g. trinucleotides (triplets), to be preferentially spaced by 3, 6, 9 etc, bases, and we have proposed an association between TBP and clustering of same-phase triplets. We here investigated if TBP was affected by intercodon dinucleotide tendencies and whether clustering of same-phase triplets was involved. Under constant protein sequence intercodon dinucleotide frequencies depend on the distribution of synonymous codons. So, possible effects were revealed by randomly exchanging synonymous codons without altering protein sequences to subsequently document changes in TBP via frequency distribution of distances (FDD) of DNA triplets. A tripartite positive correlation was found between intercodon dinucleotide frequencies, clustering of same-phase triplets and TBP. So, intercodon C|A (where “|” indicates the boundary between codons) was more frequent in native human DNA than in the codon-shuffled sequences; higher C|A frequency occurred along with more frequent clustering of C|AN triplets (where N jointly represents A, C, G and T) and with intense CAN TBP. The opposite was found for C|G, which was less frequent in native than in shuffled sequences; lower C|G frequency occurred together with reduced clustering of C|GN triplets and with less intense CGN TBP. We hence propose that intercodon dinucleotides affect TBP via same-phase triplet clustering. A possible biological relevance of our findings is briefly discussed. PMID:21814388

  8. Implication of 18F-fluorodeoxyglucose uptake by affected lymph nodes in cases with differentiated thyroid cancer

    PubMed Central

    Fujii, Takaaki; Yajima, Reina; Tatsuki, Hironori; Kuwano, Hiroyuki

    2016-01-01

    In this study, we evaluated the usefulness of positron emission tomography using 18F-fluorodeoxyglucose (FDG-PET) to detect metastatic lymph nodes in differentiated thyroid cancer. We also investigated whether certain factors, including the size of the metastasis to the lymph nodes, are associated with FDG avidity. A total of 22 consecutive patients with differentiated thyroid cancer who underwent FDG-PET preoperatively were enrolled in this study. Lymph node metastasis was diagnosed in the final pathology in 10 of the 22 patients (45.5%). The mean maximum standardized uptake value of the metastatic lymph nodes was 4.53 (range, 0–23.5). The 22 cases with differentiated thyroid cancer were divided into two groups based on lymph node metastasis. Clinicopathological variables other than FDG uptake of metastatic lymph nodes were not predictors of lymph node metastasis of thyroid cancer. The sensitivity, specificity, overall accuracy and false-negative rates of preoperative FDG-PET in the prediction of lymph node status were 40.0, 100, 72.7 and 60.0%, respectively. The false-positive rate of FDG-PET evaluation was 0%. The mean largest dimension of metastasis was 23.0 mm for FDG-positive cases and 10.9 mm for FDG-negative cases. There was a marked difference in the size of metastases between FDG-positive and -negative cases; however, even in patients with node metastasis >10 mm, the false-negative rate was 50.0%. Therefore, FDG-PET imaging was not found to be sufficient for the evaluation of lymph node status, particularly in cases with small metastases. Our findings indicate that preoperative FDG-PET evaluation of the lymph nodes cannot be considered predictive of the final pathology. PMID:27600496

  9. Factors Affecting the Uptake of HIV Testing among Men: A Mixed-Methods Study in Rural Burkina Faso

    PubMed Central

    De Allegri, Manuela; Agier, Isabelle; Tiendrebeogo, Justin; Louis, Valerie Renée; Yé, Maurice; Mueller, Olaf; Sarker, Malabika

    2015-01-01

    Background This study aimed to explore factors shaping the decision to undergo Human Immunodeficiency Virus (HIV) testing among men in rural Burkina Faso. Methods The study took place in 2009 in the Nouna Health District and adopted a triangulation mixed methods design. The quantitative component relied on data collected through a structured survey on a representative sample of 1130 households. The qualitative component relied on 38 in-depth interviews, with men purposely selected to represent variation in testing decision, age, and place of residence. A two-part model was conducted, with two distinct outcome variables, i.e. “being offered an HIV test” and “having done an HIV test”. The qualitative data analysis relied on inductive coding conducted by three independent analysts. Result Of the 937 men, 357 had been offered an HIV test and 97 had taken the test. Younger age, household wealth, living in a village under demographic surveillance, and knowing that HIV testing is available at primary health facilities were all positively associated with the probability of being offered an HIV test. Household wealth and literacy were found to be positively associated, and distance was found to be negatively associated with the probability of having taken an HIV test. Qualitative findings indicated that the limited uptake of HIV testing was linked to poor knowledge on service availability and to low risk perceptions. Conclusion With only 10% of the total sample ever having tested for HIV, our study confirmed that male HIV testing remains unacceptably low in Sub-Saharan Africa. This results from a combination of health system factors, indicating general barriers to access, and motivational factors, such as one’s own knowledge of service availability and risk perceptions. Our findings suggested that using antenatal care and curative services as the exclusive entry points into HIV testing may not be sufficient to reach large portions of the male population. Thus

  10. Foliar uptake, carbon fluxes and water status are affected by the timing of daily fog in saplings from a threatened cloud forest.

    PubMed

    Berry, Z Carter; White, Joseph C; Smith, William K

    2014-05-01

    In cloud forests, foliar uptake (FU) of water has been reported for numerous species, possibly acting to relieve daily water and carbon stress. While the prevalence of FU seems common, how daily variation in fog timing may affect this process has not been studied. We examined the quantity of FU, water potentials, gas exchange and abiotic variation at the beginning and end of a 9-day exposure to fog in a glasshouse setting. Saplings of Abies fraseri (Pursh) Poir. and Picea rubens Sarg. were exposed to morning (MF), afternoon (AF) or evening fog (EF) regimes to assess the ability to utilize fog water at different times of day and after sustained exposure to simulated fog. The greatest amount of FU occurred during MF (up to 50%), followed by AF (up to 23%) and then EF, which surprisingly had no FU. There was also a positive relationship between leaf conductance and FU, suggesting a role of stomata in FU. Moreover, MF and AF lead to the greatest improvements in daily water balance and carbon gain, respectively. Foliar uptake was important for improving plant ecophysiology but was influenced by diurnal variation in fog. With climate change scenarios predicting changes to cloud patterns and frequency that will likely alter diurnal patterns, cloud forests that rely on this water subsidy could be affected. PMID:24835239

  11. Linking cytoarchitecture to metabolism: sarcolemma-associated plectin affects glucose uptake by destabilizing microtubule networks in mdx myofibers

    PubMed Central

    2013-01-01

    Background Duchenne muscular dystrophy (DMD) is one of the most frequent forms of muscular disorders. It is caused by the absence of dystrophin, a core component of the sarcolemma-associated junctional complex that links the cytoskeleton to the extracellular matrix. We showed previously that plectin 1f (P1f), one of the major muscle-expressed isoforms of the cytoskeletal linker protein plectin, accumulates at the sarcolemma of DMD patients as well as of mdx mice, a widely studied animal model for DMD. Based on plectin’s dual role as structural protein and scaffolding platform for signaling molecules, we speculated that the dystrophic phenotype observed after loss of dystrophin was caused, at least to some extent, by excess plectin. Thus, we hypothesized that elimination of plectin expression in mdx skeletal muscle, while probably resulting in an overall more severe phenotype, may lead to a partial phenotype rescue. In particular, we wanted to assess whether excess sarcolemmal plectin contributes to the dysregulation of sugar metabolism in mdx myofibers. Methods We generated plectin/dystrophin double deficient (dKO) mice by breeding mdx with conditional striated muscle-restricted plectin knockout (cKO) mice. The phenotype of these mice was comparatively analyzed with that of mdx, cKO, and wild-type mice, focusing on structural integrity and dysregulation of glucose metabolism. Results We show that the accumulation of plectin at the sarcolemma of mdx muscle fibers hardly compensated for their loss of structural integrity. Instead, it led to an additional metabolic deficit by impairing glucose uptake. While dKO mice suffered from an overall more severe form of muscular dystrophy compared to mdx or plectin-deficient mice, sarcolemmal integrity as well as glucose uptake of their myofibers were restored to normal levels upon ablation of plectin. Furthermore, microtubule (MT) networks in intact dKO myofibers, including subsarcolemmal areas, were found to be more robust

  12. Miscellaneous additives can enhance plant uptake and affect geochemical fractions of copper in a heavily polluted riparian grassland soil.

    PubMed

    Rinklebe, Jörg; Shaheen, Sabry M

    2015-09-01

    The problem of copper (Cu) pollution in riverine ecosystems is world-wide and has significant environmental, eco-toxicological, and agricultural relevance. We assessed the suitability and effectiveness of application rate of 1% of activated charcoal, bentonite, biochar, cement kiln dust, chitosan, coal fly ash, limestone, nano-hydroxyapatite, organo-clay, sugar beet factory lime, and zeolite as soil amendments together with rapeseed as bioenergy crop as a possible remediation option for a heavily Cu polluted floodplain soil (total Cu=3041.9mgkg(-1)) that has a very high proportion of sorbed/carbonate fraction (484.6mgkg(-1)) and potential mobile fraction of Cu (1611.9mgkg(-1)). Application changed distribution of Cu among geochemical fractions: alkaline materials lead to increased carbonate bounded fraction and the acid rhizosphere zone might cause release of this Cu. Thus, mobilization of Cu and uptake of Cu by rapeseed were increased compared to the control (except for organo-clay) under the prevailing conditions. PMID:25968602

  13. Lack of detectable DNA uptake by bacterial gut isolates grown in vitro and by Acinetobacter baylyi colonizing rodents in vivo.

    PubMed

    Nordgård, Lise; Nguyen, Thuy; Midtvedt, Tore; Benno, Yoshimi; Traavik, Terje; Nielsen, Kaare M

    2007-01-01

    Biological risk assessment of food containing recombinant DNA has exposed knowledge gaps related to the general fate of DNA in the gastrointestinal tract (GIT). Here, a series of experiments is presented that were designed to determine if genetic transformation of the naturally competent bacterium Acinetobacter baylyi BD413 occurs in the GIT of mice and rats, with feed-introduced bacterial DNA containing a kanamycin resistance gene (nptII). Strain BD413 was found in various gut locations in germ-free mice at 10(3)-10(5) CFU per gram GIT content 24-48 h after administration. However, subsequent DNA exposure of the colonized mice did not result in detectable bacterial transformants, with a detection limit of 1 transformant per 10(3)-10(5) bacteria. Further attempts to increase the likelihood of detection by introducing weak positive selection with kanamycin of putative transformants arising in vivo during a 4-week-long feeding experiment (where the mice received DNA and the recipient cells regularly) did not yield transformants either. Moreover, the in vitro exposure of actively growing A. baylyi cells to gut contents from the stomach, small intestine, cecum or colon contents of rats (with a normal microbiota) fed either purified DNA (50 microg) or bacterial cell lysates did not produce bacterial transformants. The presence of gut content of germfree mice was also highly inhibitory to transformation of A. baylyi, indicating that microbially-produced nucleases are not responsible for the sharp 500- to 1,000,000-fold reduction of transformation frequencies seen. Finally, a range of isolates from the genera Enterococcus, Streptococcus and Bifidobacterium spp. was examined for competence expression in vitro, without yielding any transformants. In conclusion, model choice and methodological constraints severely limit the sample size and, hence, transfer frequencies that can be measured experimentally in the GIT. Our observations suggest the contents of the GIT shield or

  14. Factors Affecting Option Choices Relative to the Uptake of Design and Technology at a Selected Hong Kong International School

    ERIC Educational Resources Information Center

    Hughes, Marshall

    2008-01-01

    The purpose of the study described in this paper was to identify those factors which affect Year 9 students at Sha Tin College, Hong Kong, as they make option choices at the end of Key Stage 3 (Year 9: age 14). The main focus of the investigation was how these factors influence the selection or rejection of the four subjects offered under the…

  15. Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Maurer, Felix; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2010-12-01

    Groundwater rich in arsenic (As) is extensively used for dry season boro rice cultivation in Bangladesh, leading to long-term As accumulation in soils. This may result in increasing levels of As in rice straw and grain, and eventually, in decreasing rice yields due to As phytotoxicity. In this study, we investigated the As contents of rice straw and grain over three consecutive harvest seasons (2005-2007) in a paddy field in Munshiganj, Bangladesh, which exhibits a documented gradient in soil As caused by annual irrigation with As-rich groundwater since the early 1990s. The field data revealed that straw and grain As concentrations were elevated in the field and highest near the irrigation water inlet, where As concentrations in both soil and irrigation water were highest. Additionally, a pot experiment with soils and rice seeds from the field site was carried out in which soil and irrigation water As were varied in a full factorial design. The results suggested that both soil As accumulated in previous years and As freshly introduced with irrigation water influence As uptake during rice growth. At similar soil As contents, plants grown in pots exhibited similar grain and straw As contents as plants grown in the field. This suggested that the results from pot experiments performed at higher soil As levels can be used to assess the effect of continuing soil As accumulation on As content and yield of rice. On the basis of a recently published scenario of long-term As accumulation at the study site, we estimate that, under unchanged irrigation practice, average grain As concentrations will increase from currently ∼0.15 mg As kg(-1) to 0.25-0.58 mg As kg(-1) by the year 2050. This translates to a 1.5-3.8 times higher As intake by the local population via rice, possibly exceeding the provisional tolerable As intake value defined by FAO/WHO. PMID:21043519

  16. Cellular uptake and fate of fibroin microspheres loaded with randomly fragmented DNA in 3T3 cells

    PubMed Central

    Lee, Jin Sil; Hur, Won

    2016-01-01

    Purified fibroin protein can be obtained in large quantities from silk fibers and processed to form microscopic particles as delivery vehicles for therapeutic agents. In this study, we demonstrated that fibroin microspheres were taken up by 3T3 cells, localized in the nonlysosomal compartment, and secreted from the cytoplasm after medium replenishment. DNA-loaded microspheres were taken up by >95% of 3T3 cells. DNA cargo had no influence on the intracellular trafficking of microspheres, while fluorescently labeled cargo DNA was observed in the lysosomal compartment and in the microspheres. These results indicate that fibroin microspheres can travel through 3T3 cells without making any contact with the lysosomal compartments. The amount of DNA loaded in the microspheres taken up by 3T3 cells was estimated up to 831.0 pg/cell. Thus, fibroin microspheres can deliver a large amount of randomly fragmented DNA (<10 kb) into the cytoplasmic compartment of 3T3 cells. PMID:27257379

  17. Cigarette toxicity triggers Leber's hereditary optic neuropathy by affecting mtDNA copy number, oxidative phosphorylation and ROS detoxification pathways

    PubMed Central

    Giordano, L; Deceglie, S; d'Adamo, P; Valentino, M L; La Morgia, C; Fracasso, F; Roberti, M; Cappellari, M; Petrosillo, G; Ciaravolo, S; Parente, D; Giordano, C; Maresca, A; Iommarini, L; Del Dotto, V; Ghelli, A M; Salomao, S R; Berezovsky, A; Belfort, R; Sadun, A A; Carelli, V; Loguercio Polosa, P; Cantatore, P

    2015-01-01

    Leber's hereditary optic neuropathy (LHON), the most frequent mitochondrial disease, is associated with mitochondrial DNA (mtDNA) point mutations affecting Complex I subunits, usually homoplasmic. This blinding disorder is characterized by incomplete penetrance, possibly related to several genetic modifying factors. We recently reported that increased mitochondrial biogenesis in unaffected mutation carriers is a compensatory mechanism, which reduces penetrance. Also, environmental factors such as cigarette smoking have been implicated as disease triggers. To investigate this issue further, we first assessed the relationship between cigarette smoke and mtDNA copy number in blood cells from large cohorts of LHON families, finding that smoking was significantly associated with the lowest mtDNA content in affected individuals. To unwrap the mechanism of tobacco toxicity in LHON, we exposed fibroblasts from affected individuals, unaffected mutation carriers and controls to cigarette smoke condensate (CSC). CSC decreased mtDNA copy number in all cells; moreover, it caused significant reduction of ATP level only in mutated cells including carriers. This implies that the bioenergetic compensation in carriers is hampered by exposure to smoke derivatives. We also observed that in untreated cells the level of carbonylated proteins was highest in affected individuals, whereas the level of several detoxifying enzymes was highest in carriers. Thus, carriers are particularly successful in reactive oxygen species (ROS) scavenging capacity. After CSC exposure, the amount of detoxifying enzymes increased in all cells, but carbonylated proteins increased only in LHON mutant cells, mostly from affected individuals. All considered, it appears that exposure to smoke derivatives has a more deleterious effect in affected individuals, whereas carriers are the most efficient in mitigating ROS rather than recovering bioenergetics. Therefore, the identification of genetic modifiers that

  18. Barium uptake by maize plants as affected by sewage sludge in a long-term field study.

    PubMed

    Nogueira, Thiago Assis Rodrigues; deMelo, Wanderley José; Fonseca, Ivana Machado; Marques, Marcos Omir; He, Zhenli

    2010-09-15

    A long-term experiment was carried out under field conditions in Jaboticabal, SP, Brazil, with the objective of evaluating the concentration of Ba in soil and in maize plants grown in a soil treated with sewage sludge for nine consecutive years. During 2005/2006, maize was used as test plants and the experimental design was in randomized complete blocks with four treatments and five replicates. Treatments consisted of: 0.0, 45.0, 90.0 and 127.5 t ha(-1) sewage sludge (dry basis). Sewage sludge application increased soil Ba concentration. Barium accumulated in the parts of maize plants were generally affected by the successive applications of sewage sludge to the soil. However, the concentration of Ba in maize grain did not exceed the critical levels of Ba for human consumption. Sewage sludge applied to soil for a long time did not affect dry matter and grain production, nevertheless had the similar effect of mineral fertilization. PMID:20579810

  19. RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee

    PubMed Central

    Li-Byarlay, Hongmei; Li, Yang; Stroud, Hume; Feng, Suhua; Newman, Thomas C.; Kaneda, Megan; Hou, Kirk K.; Worley, Kim C.; Elsik, Christine G.; Wickline, Samuel A.; Jacobsen, Steven E.; Ma, Jian; Robinson, Gene E.

    2013-01-01

    Studies of DNA methylation from fungi, plants, and animals indicate that gene body methylation is ancient and highly conserved in eukaryotic genomes, but its role has not been clearly defined. It has been postulated that regulation of alternative splicing of transcripts was an original function of DNA methylation, but a direct experimental test of the effect of methylation on alternative slicing at the whole genome level has never been performed. To do this, we developed a unique method to administer RNA interference (RNAi) in a high-throughput and noninvasive manner and then used it to knock down the expression of DNA methyl-transferase 3 (dnmt3), which is required for de novo DNA methylation. We chose the honey bee (Apis mellifera) for this test because it has recently emerged as an important model organism for studying the effects of DNA methylation on development and social behavior, and DNA methylation in honey bees is predominantly on gene bodies. Here we show that dnmt3 RNAi decreased global genomic methylation level as expected and in addition caused widespread and diverse changes in alternative splicing in fat tissue. Four different types of splicing events were affected by dnmt3 gene knockdown, and change in two types, exon skipping and intron retention, was directly related to decreased methylation. These results demonstrate that one function of gene body DNA methylation is to regulate alternative splicing. PMID:23852726

  20. DNA repair and replication fork helicases are differentially affected by alkyl phosphotriester lesion.

    PubMed

    Suhasini, Avvaru N; Sommers, Joshua A; Yu, Stephen; Wu, Yuliang; Xu, Ting; Kelman, Zvi; Kaplan, Daniel L; Brosh, Robert M

    2012-06-01

    DNA helicases are directly responsible for catalytically unwinding duplex DNA in an ATP-dependent and directionally specific manner and play essential roles in cellular nucleic acid metabolism. It has been conventionally thought that DNA helicases are inhibited by bulky covalent DNA adducts in a strand-specific manner. However, the effects of highly stable alkyl phosphotriester (PTE) lesions that are induced by chemical mutagens and refractory to DNA repair have not been previously studied for their effects on helicases. In this study, DNA repair and replication helicases were examined for unwinding a forked duplex DNA substrate harboring a single isopropyl PTE specifically positioned in the helicase-translocating or -nontranslocating strand within the double-stranded region. A comparison of SF2 helicases (RecQ, RECQ1, WRN, BLM, FANCJ, and ChlR1) with a SF1 DNA repair helicase (UvrD) and two replicative helicases (MCM and DnaB) demonstrates unique differences in the effect of the PTE on the DNA unwinding reactions catalyzed by these enzymes. All of the SF2 helicases tested were inhibited by the PTE lesion, whereas UvrD and the replication fork helicases were fully tolerant of the isopropyl backbone modification, irrespective of strand. Sequestration studies demonstrated that RECQ1 helicase was trapped by the PTE lesion only when it resided in the helicase-translocating strand. Our results are discussed in light of the current models for DNA unwinding by helicases that are likely to encounter sugar phosphate backbone damage during biological DNA transactions. PMID:22500020

  1. Biochar amendment before or after composting affects compost quality and N losses, but not P plant uptake.

    PubMed

    Vandecasteele, Bart; Sinicco, Tania; D'Hose, Tommy; Vanden Nest, Thijs; Mondini, Claudio

    2016-03-01

    We investigated the use of biochar (10% on a dry weight basis) to improve the composting process and/or the compost quality by adding it to either the feedstock mixture or the mature compost. The addition of biochar to the feedstocks was essayed in a full scale trial using a mixture of green waste and the organic fraction of municipal solid waste. Addition of biochar to mature compost was performed in a medium scale experiment. The use of biochar, even in small amounts, changed the composting process and the properties of the end products. However these effects depended on the time of application. We observed a faster decomposition in the bio-oxidative phase and lower greenhouse gas emissions when biochar was added at the beginning of the composting process, and a reduction in readily available P when biochar was applied during compost storage. Biochar as a means to increase the C content of the compost was only effective during compost storage. The P fertilizer replacement value of the compost with and without biochar was tested in a plant trial with annual ryegrass. While there was a clear effect on readily available P concentrations in the compost, adding biochar to the feedstock or the compost did not affect the P fertilizer replacement value. PMID:26708650

  2. Speed matters: How subtle changes in DNA end resection rate affect repair

    PubMed Central

    Huertas, Pablo; Cruz-García, Andrés

    2015-01-01

    The contribution of BRCA1 (breast cancer 1) to the repair of broken DNA is well established, but its real role at the molecular level is less well understood. By developing a new high-resolution, single-molecule technique, we have now shown that BRCA1 accelerates the processing of DNA breaks that subsequently engage in homologous recombination. PMID:27308460

  3. Cellular Uptake, DNA Binding and Apoptosis Induction of Cytotoxic Trans-[PtCl2(N,N-dimethylamine)(Isopropylamine)] in A2780cisR Ovarian Tumor Cells

    PubMed Central

    Pérez, José M.; Montero, Eva I.; Quiroga, Adoración G.; Fuertes, Miguel A; Alonso, Carlos

    2001-01-01

    Trans-[PtCl2(N,N-dimethylamine)(isopropylamine)] is a novel trans-platinum compound that shows cytotoxic activity in several cisplatin resistant cell lines. The aim of this paper was to analyse, by means of molecular cell biology techniques and total reflection X-ray fluorescence (TXRF), the cytotoxic activity, the induction of apoptosis, the cellular uptake and the DNA binding of trans-[PtCl2(N,N-dimethylamine)(isopropylamine)] in the cisplatin resistant cell line A2780cisR. The results show that this drug is more cytotoxic and induces a higher amount of apoptotic cells than cisplatin in A2780cisR cells. However, the intracellular accumulation and extent of binding to DNA of trans-[PtCl2(N,N-dimethylamine)( isopropylamine)] is lower than that of cis-DDP. Moreover, trans-[PtCl2(N,N-dimethylamine)(isopropylaminae)] is partially inactivated by intracellular levels of glulathione. The result suggest that circumvention of ciplatin resistance by trans-[PtCl2(N,N-dimethylamine)(isopropylamine)] in A2780cisR cells might be related with the ability of this drug to induce apoptosis. PMID:18475973

  4. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    PubMed

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion. PMID:23274397

  5. Mutations that affect production of branched RNA-linked msDNA in Myxococcus xanthus.

    PubMed Central

    Dhundale, A; Furuichi, T; Inouye, M; Inouye, S

    1988-01-01

    A deletion mutation of the gene (msd-msr) for the branched RNA-linked msDNA of Myxococcus xanthus was constructed by replacing the chromosomal 0.7-kilobase (kb) SmaI-XhoI fragment encompassing msd-msr with a 1.4-kb fragment carrying a gene for kanamycin resistance. It was found that this deletion strain (delta msSX) could not produce msDNA, although it still contained another species of msDNA, mrDNA (msDNA, reduced size). No apparent differences between delta msSX and the wild-type strain were observed in terms of cell growth, morphogenesis, fruiting-body formation, or motility. Both a deletion mutation at the region 100 base pairs upstream of msd and an insertion mutation at a site 500 base pairs upstream of msd showed a significant reduction of msDNA production, indicating that there is a cis- or trans-acting positive element in this region. When the 3.5-kb BamHI fragment carrying msd-msr from Stigmatella aurantiaca was inserted into the M. xanthus chromosome, the S. aurantiaca msDNA was found to be produced in M. xanthus. Images PMID:2461359

  6. Chemometric method of spectra analysis leading to isolation of lysozyme and CtDNA spectra affected by osmolytes.

    PubMed

    Bruździak, Piotr; Rakowska, Paulina W; Stangret, Janusz

    2012-11-01

    In this paper we present a chemometric method of analysis leading to isolation of Fourier transform infrared (FT-IR) spectra of biomacromolecules (HEW lysozyme, ctDNA) affected by osmolytes (trimethylamine-N-oxide and N,N,N-trimethylglycine, respectively) in aqueous solutions. The method is based on the difference spectra method primarily used to characterize the structure of solvent affected by solute. The cyclical usage of factor analysis allows precise information to be obtained on the shape of "affected spectra" of analyzed biomacromolecules. "Affected spectra" of selected biomacromolecules give valuable information on their structure in the presence of the osmolytes in solution, as well as on the level of perturbation in dependence of osmolyte concentration. The method also gives a possibility of insight into the mechanism of interaction in presented types of systems. It can be easily adapted to various chemical and biochemical problems where vibrational or ultraviolet-visible (UV-Vis) spectroscopy is used. PMID:23146186

  7. DNA polymerase kappa deficiency does not affect somatic hypermutation in mice.

    PubMed

    Schenten, Dominik; Gerlach, Valerie L; Guo, Caixia; Velasco-Miguel, Susana; Hladik, Christa L; White, Charles L; Friedberg, Errol C; Rajewsky, Klaus; Esposito, Gloria

    2002-11-01

    Somatic hypermutation (SH) in B cells undergoing T cell-dependent immune responses generates high-affinity antibodies that provide protective immunity. Most current models of SH postulate the introduction of a nick into the DNA and subsequent replication-independent, error-prone short-patch synthesis by one or more DNA polymerases. The Pol kappa (DinB1) gene encodes a specialized mammalian DNA polymerase called DNA polymerase kappa (pol kappa), a member of the recently discovered Y family of DNA polymerases. The mouse PolK gene is expressed at high levels in the seminiferous tubules of the testis and in the adrenal cortex, and at lower levels in most other cells of the body including B lymphocytes. In vitro studies showed that pol kappa can act as an error-prone polymerase, although they failed to ascribe a clear function to this enzyme. The ability of pol kappa to generate mutations when extending primers on undamaged DNA templates identifies this enzyme as a potential candidate for the introduction of nucleotide changes in the immunoglobulin (Ig) genes during the process of SH. Here we show that pol kappa-deficient mice are viable, fertile and able to mount a normal immune response to the antigen (4-hydroxy-3-nitrophenyl)acetyl-chicken gamma-globulin (NP-GC). They also mutate their Ig genes normally. However, pol kappa-deficient embryonic fibroblasts are abnormally sensitive to killing following exposure to ultraviolet (UV) radiation, suggesting a role of pol kappa in translesion DNA synthesis. PMID:12555660

  8. Selenium bioavailability and uptake as affected by four different plants in a loamy clay soil with particular attention to mycorrhizae inoculated ryegrass.

    PubMed

    Munier-Lamy, C; Deneux-Mustin, S; Mustin, C; Merlet, D; Berthelin, J; Leyval, C

    2007-01-01

    The aim of this study was to investigate the influence of plant species, especially of their rhizosphere soil, and of inoculation with an arbuscular mycorrhizal (AM) fungus on the bioavailability of selenium and its transfer in soil-plant systems. A pot experiment was performed with a loamy clay soil and four plant species: maize, lettuce, radish and ryegrass, the last one being inoculated or not with an arbuscular mycorrhizal fungus (Glomus mosseae). Plant biomass and Se concentration in shoots and roots were estimated at harvest. Se bioavailability in rhizosphere and unplanted soil was evaluated using sequential extractions. Plant biomass and selenium uptake varied with plant species. The quantity of rhizosphere soil also differed between plants and was not proportional to plant biomass. The highest plant biomass, Se concentration in plants, and soil to plant transfer factor were obtained with radish. The lowest Se transfer factors were obtained with ryegrass. For the latter, mycorrhizal inoculation did not significantly affect plant growth, but reduced selenium transfer from soil to plant by 30%. In unplanted soil after 65 days aging, more than 90% of added Se was water-extractable. On the contrary, Se concentration in water extracts of rhizosphere soil represented less than 1% and 20% of added Se for ryegrass and maize, respectively. No correlation was found between the water-extractable fraction and Se concentration in plants. The speciation of selenium in the water extracts indicated that selenate was reduced, may be under organic forms, in the rhizosphere soil. PMID:17544553

  9. Agents that reverse UV-induced immune suppression and photocarcinogenesis affect DNA repair

    PubMed Central

    Sreevidya, Coimbatore S.; Fukunaga, Atsushi; Khaskhely, Noor M.; Masaki, Taro; Ono, Ryusuke; Nishigori, Chikako; Ullrich, Stephen E.

    2010-01-01

    UV exposure induces skin cancer, in part by inducing immune suppression. Repairing DNA damage, neutralizing the activity of cis-urocanic acid (cis-UCA), and reversing oxidative stress abrogates UV-induced immune suppression and skin cancer induction, suggesting the DNA, UCA and lipid photo-oxidation serves as UV photoreceptors. What is not clear is whether signaling through each of these different photoreceptors activates independent pathways to induce biological effects or whether there is a common checkpoint where these pathways converge. Here we show that agents known to reverse photocarcinogenesis and photoimmune suppression, such as platelet activating factor (PAF) and serotonin (5-HT) receptor antagonists regulate DNA repair. Pyrimidine dimer repair was accelerated in UV-irradiated mice injected with PAF and 5-HT receptor antagonists. Nucleotide excision repair, as measured by unscheduled DNA synthesis, was accelerated by PAF and 5-HT receptor antagonists. Injecting PAF and 5-HT receptor antagonists into UV-irradiated Xeroderma pigmentosum complementation group A (XPA) deficient mice, which lack the enzymes responsible for nucleotide excision repair, did not accelerate photoproduct repair. Similarly, UV-induced formation of 8-oxo-deoxyguanosine (8-oxo-dG) was reduced by PAF and 5-HT receptor antagonists. We conclude that PAF and 5-HT receptor antagonists accelerate DNA repair caused by UV radiation, which prevents immune suppression and interferes with photocarcinogenesis. PMID:19829299

  10. Multiple factors affect immunogenicity of DNA plasmid HIV vaccines in human clinical trials

    PubMed Central

    Jin, Xia; Morgan, Cecilia; Yu, Xuesong; DeRosa, Stephen; Tomaras, Georgia D.; Montefiori, David C.; Kublin, James; Corey, Larry; Keefer, Michael C.

    2015-01-01

    Plasmid DNA vaccines have been licensed for use in domesticated animals because of their excellent immunogenicity, but none have yet been licensed for use in humans. Here we report a retrospective analysis of 1218 healthy human volunteers enrolled in 10 phase I clinical trials in which DNA plasmids encoding HIV antigens were administered. Elicited T-cell immune responses were quantified by validated intracellular cytokine staining (ICS) stimulated with HIV peptide pools. HIV-specific binding and neutralizing antibody activities were also analyzed using validated assays. Results showed that, in the absence of adjuvants and boosting with alternative vaccines, DNA vaccines elicited CD8+ and CD4+ T-cell responses in an average of 13.3% (95% CI: 9.8% to 17.8%) and 37.7% (95% CI: 31.9% to 43.8%) of vaccine recipients, respectively. Three vaccinations (versus 2) improved the proportion of subjects with antigen-specific CD8+ responses (p=0.02), as did increased DNA dosage (p=0.007). Furthermore, female gender and participants having a lower Body Mass Index were independently associated with higher CD4+ T-cell response rate (p=0.001 and p=0.008, respectively). These vaccines elicited minimal neutralizing and binding antibody responses. These findings of the immunogenicity of HIV DNA vaccines in humans can provide guidance for future clinical trials. PMID:25820067

  11. A type IV P-type ATPase affects insulin-mediated glucose uptake in adipose tissue and skeletal muscle in mice.

    PubMed

    Dhar, Madhu S; Yuan, Joshua S; Elliott, Sarah B; Sommardahl, Carla

    2006-12-01

    Mice carrying two pink-eyed dilution (p) locus heterozygous deletions represent a novel polygenic mouse model of type 2 diabetes associated with obesity. Atp10c, a putative aminophospholipid transporter on mouse chromosome 7, is a candidate for the phenotype. The phenotype is diet-induced. As a next logical step in the validation and characterization of the model, experiments to analyze metabolic abnormalities associated with these mice were carried out. Results demonstrate that mutants (inheriting the p deletion maternally) heterozygous for Atp10c are hyperinsulinemic, insulin-resistant and have an altered insulin-stimulated response in peripheral tissues. Adipose tissue and the skeletal muscle are the targets, and GLUT4-mediated glucose uptake is the specific metabolic pathway associated with Atp10c deletion. Insulin resistance primarily affects the adipose tissue and the skeletal muscle, and the effect in the liver is secondary. Gene expression profiling using microarray and real-time PCR show significant changes in the expression of four genes--Vamp2, Dok1, Glut4 and Mapk14--involved in insulin signaling. The expression of Atp10c is also significantly altered in the adipose tissue and the soleus muscle. The most striking observation is the loss of Atp10c expression in the mutants, specifically in the soleus muscle, after eating the high-fat diet for 12 weeks. In conclusion, experiments suggest that the target genes and/or their cognate factors in conjunction with Atp10c presumably affect the normal translocation and sequestration of GLUT4 in both the target tissues. PMID:16517145

  12. Methane Uptake in a Semi-Arid Grassland Affected by Elevated CO2 and Warming: Role of Methanotroph Activity and Gas Diffusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semiarid rangelands represent a significant global sink for methane (CH4) where methane uptake is controlled by methanotroph activity and the diffusivity of CH4 into the soil. Because increasing soil moisture causes diffusivity to fall but methanotroph activity to rise, methane uptake rates show a h...

  13. DNA Binding Region” of BRCA1 Affects Genetic Stability through modulating the Intra-S-Phase Checkpoint

    PubMed Central

    Masuda, Takaaki; Xu, Xiaoling; Dimitriadis, Emilios K.; Lahusen, Tyler; Deng, Chu-Xia

    2016-01-01

    The breast cancer associated gene 1 (BRCA1) contains 3 domains: an N-terminal RING domain with ubiquitin E3 ligase activity, C-terminal BRCT protein interaction domain and a central region. RING and BRCT domains are well characterized, yet the function of the central region remains unclear. In this study, we identified an essential DNA binding region (DBR: 421-701 amino acids) within the central region of human BRCA1, and found that BRCA1 brings DNA together and preferably binds to splayed-arm DNA in a sequence-independent manner. To investigate the biological role of the DBR, we generated mouse ES cells, which lack the DBR (ΔDBR) by using the TALEN method. The ΔDBR cells exhibited decreased survival as compared to the wild type (WT) cells treated with a PARP inhibitor, however they have an intact ability to conduct DNA repair mediated by homologous recombination (HR). The ΔDBR cells continued to incorporate more EdU in the presence of hydroxyurea (HU), which causes replication stress and exhibited reduced viability than the WT cells. Moreover, phosphorylation of CHK1, which regulates the intra-S phase checkpoint, was moderately decreased in ΔDBR cells. These data suggest that DNA binding by BRCA1 affects the stability of DNA replication folks, resulting in weakened intra-S-phase checkpoint control in the ΔDBR cells. The ΔDBR cells also exhibited an increased number of abnormal chromosome structures as compared with WT cells, indicating that the ΔDBR cells have increased genetic instability. Thus, we demonstrated that the DBR of BRCA1 modulates genetic stability through the intra-S-phase checkpoint activated by replication stress. PMID:26884712

  14. SERBP1 affects homologous recombination-mediated DNA repair by regulation of CtIP translation during S phase

    PubMed Central

    Ahn, Jang-Won; Kim, Sunjik; Na, Wooju; Baek, Su-Jin; Kim, Jeong-Hwan; Min, Keehong; Yeom, Jeonghun; Kwak, Hoyun; Jeong, Sunjoo; Lee, Cheolju; Kim, Seon-Young; Choi, Cheol Yong

    2015-01-01

    DNA double-strand breaks (DSBs) are the most severe type of DNA damage and are primarily repaired by non-homologous end joining (NHEJ) and homologous recombination (HR) in the G1 and S/G2 phase, respectively. Although CtBP-interacting protein (CtIP) is crucial in DNA end resection during HR following DSBs, little is known about how CtIP levels increase in an S phase-specific manner. Here, we show that Serpine mRNA binding protein 1 (SERBP1) regulates CtIP expression at the translational level in S phase. In response to camptothecin-mediated DNA DSBs, CHK1 and RPA2 phosphorylation, which are hallmarks of HR activation, was abrogated in SERBP1-depleted cells. We identified CtIP mRNA as a binding target of SERBP1 using RNA immunoprecipitation-coupled RNA sequencing, and confirmed SERBP1 binding to CtIP mRNA in S phase. SERBP1 depletion resulted in reduction of polysome-associated CtIP mRNA and concomitant loss of CtIP expression in S phase. These effects were reversed by reconstituting cells with wild-type SERBP1, but not by SERBP1 ΔRGG, an RNA binding defective mutant, suggesting regulation of CtIP translation by SERBP1 association with CtIP mRNA. These results indicate that SERBP1 affects HR-mediated DNA repair in response to DNA DSBs by regulation of CtIP translation in S phase. PMID:26068472

  15. Folate supplementation differently affects uracil content in DNA in the mouse colon and liver

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High folate intake may increase the risk of cancer, especially in the elderly. The present study examined the effects of ageing and dietary folate on uracil misincorporation into DNA, which has a mutagenic effect, in the mouse colon and liver. Old (18 months; n 42) and young (4 months; n 42) male C5...

  16. Do DNA barcoding delimitation methods affect our view of stream biodiversity?

    EPA Science Inventory

    How we delimit molecular operational taxonomic units (MOTUs) is an important aspect in the use of DNA barcoding for bioassessment. Four delimitation methods were examined to gain an understanding of their relative strengths at organizing data from 5300 specimens collected during ...

  17. Sperm Chromatin Immaturity Observed in Short Abstinence Ejaculates Affects DNA Integrity and Longevity In Vitro

    PubMed Central

    Salian, Sujith Raj; Kumar, Dayanidhi; Singh, Vikram Jeet; D’Souza, Fiona; Kalthur, Guruprasad; Kamath, Asha; Adiga, Satish Kumar

    2016-01-01

    Background The influence of ejaculatory abstinence (EA) on semen parameters and subsequent reproductive outcome is still debatable; hence understanding the impact of EA on sperm structural and functional integrity may provide a valuable information on predicting successful clinical outcome. Objective To understand the influence of EA on sperm chromatin maturity, integrity, longevity and global methylation status. Methods This experimental prospective study included 76 ejaculates from 19 healthy volunteers who provided ejaculates after observing 1, 3, 5 and 7 days of abstinence. Sperm chromatin maturity, DNA integrity and global methylation status were assessed in the neat ejaculate. Sperm motility, DNA integrity and longevity were assessed in the processed fraction of the fresh and frozen-thawed ejaculates to determine their association with the length of EA. Results Spermatozoa from 1 day ejaculatory abstinence (EA-1) displayed significantly higher level of sperm chromatin immaturity in comparison to EA-3 (P < 0.05) and EA-5 (P < 0.01) whereas; the number of 5-methyl cytosine immunostained spermatozoa did not vary significantly across groups. On the other hand, in vitro incubation of processed ejaculate from EA-1 resulted in approximately 20 and 40 fold increase in the DNA fragmented spermatozoa at the end of 6 and 24h respectively (P < 0.01–0.001). Conclusion Use of short-term EA for therapeutic fertilization would be a clinically valuable strategy to improve the DNA quality. However, use of such spermatozoa after prolonged incubation in vitro should be avoided as it can carry a substantial risk of transmitting DNA fragmentation to the oocytes. PMID:27043437

  18. Suberoylanilide Hydroxyamic Acid Modification of Chromatin Architecture Affects DNA Break Formation and Repair

    SciTech Connect

    Singh, Sheetal; Le Hongan; Shih, S.-J.; Ho, Bay; Vaughan, Andrew T.

    2010-02-01

    Purpose: Chromatin-modifying compounds that inhibit the activity of histone deacetylases have shown potency as radiosensitizers, but the action of these drugs at a molecular level is not clear. Here we investigated the effect of suberoylanilide hydroxyamic acid (SAHA) on DNA breaks and their repair and induction of rearrangements. Methods and Materials: The effect of SAHA on both clonogenic survival and repair was assessed using cell lines SCC-25, MCF7, and TK6. In order to study unique DNA double-strand breaks, anti-CD95 antibody was employed to introduce a DNA double-strand break at a known location within the 11q23 region. The effects of SAHA on DNA cleavage and rearrangements were analyzed by ligation-mediated PCR and inverse PCR, respectively. Results: SAHA acts as radiosensitizer at 1 {mu}M, with dose enhancement factors (DEFs) at 10% survival of: SCC-25 - 1.24 +- 0.05; MCF7 - 1.16 +- 0.09 and TK6 - 1.17 +- 0.05, and it reduced the capacity of SCC-25 cells to repair radiation induced lesions. Additionally, SAHA treatment diffused site-specific fragmentation over at least 1 kbp in TK6 cells. Chromosomal rearrangements produced in TK6 cells exposed to SAHA showed a reduction in microhomology at the breakpoint between 11q23 and partner chromosomes. Conclusions: SAHA shows efficacy as a radiosensitizer at clinically obtainable levels. In its presence, targeted DNA strand breaks occur over an expanded region, indicating increased chromatin access. The rejoining of such breaks is degraded by SAHA when measured as rearrangements at the molecular level and rejoining that contributes to cell survival.

  19. False-Positive Radioactive Iodine Uptake Mimicking Miliary Lung Metastases in a Patient Affected by Papillary Thyroid Cancer and IgA Deficiency.

    PubMed

    Demidowich, Andrew Paul; Kundu, Amartya; Reynolds, James C; Celi, Francesco S

    2016-09-01

    A 42-year-old female with immunoglobulin A deficiency and recurrent sinopulmonary infections underwent thyroidectomy for papillary thyroid cancer (PTC). Follow-up (123)I scintigraphy demonstrated diffuse pulmonary uptake, suggesting metastatic disease. However, subsequent pathologic, biochemical and radiographic testing proved that she was in fact disease free, and the initial (123)I pulmonary uptake was identified as a false positive. Inflammatory conditions may rarely cause iodine uptake in non-thyroidal tissues due to local retention, organification, and/or immunologic utilization. To avoid exposing patients to unnecessary treatments, it is critical for clinicians to recognize that comorbid pulmonary conditions may mimic metastatic PTC on radioiodine scintigraphy. PMID:27540434

  20. DNA Methylation of Lipid-Related Genes Affects Blood Lipid Levels

    PubMed Central

    Pfeiffer, Liliane; Wahl, Simone; Pilling, Luke C.; Reischl, Eva; Sandling, Johanna K.; Kunze, Sonja; Holdt, Lesca M.; Kretschmer, Anja; Schramm, Katharina; Adamski, Jerzy; Klopp, Norman; Illig, Thomas; Hedman, Åsa K.; Roden, Michael; Hernandez, Dena G.; Singleton, Andrew B.; Thasler, Wolfgang E.; Grallert, Harald; Gieger, Christian; Herder, Christian; Teupser, Daniel; Meisinger, Christa; Spector, Timothy D.; Kronenberg, Florian; Prokisch, Holger; Melzer, David; Peters, Annette; Deloukas, Panos; Ferrucci, Luigi; Waldenberger, Melanie

    2016-01-01

    Background Epigenetic mechanisms might be involved in the regulation of interindividual lipid level variability and thus may contribute to the cardiovascular risk profile. The aim of this study was to investigate the association between genome-wide DNA methylation and blood lipid levels high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. Observed DNA methylation changes were also further analyzed to examine their relationship with previous hospitalized myocardial infarction. Methods and Results Genome-wide DNA methylation patterns were determined in whole blood samples of 1776 subjects of the Cooperative Health Research in the Region of Augsburg F4 cohort using the Infinium HumanMethylation450 BeadChip (Illumina). Ten novel lipid-related CpG sites annotated to various genes including ABCG1, MIR33B/SREBF1, and TNIP1 were identified. CpG cg06500161, located in ABCG1, was associated in opposite directions with both high-density lipoprotein cholesterol (β coefficient=−0.049; P=8.26E-17) and triglyceride levels (β=0.070; P=1.21E-27). Eight associations were confirmed by replication in the Cooperative Health Research in the Region of Augsburg F3 study (n=499) and in the Invecchiare in Chianti, Aging in the Chianti Area study (n=472). Associations between triglyceride levels and SREBF1 and ABCG1 were also found in adipose tissue of the Multiple Tissue Human Expression Resource cohort (n=634). Expression analysis revealed an association between ABCG1 methylation and lipid levels that might be partly mediated by ABCG1 expression. DNA methylation of ABCG1 might also play a role in previous hospitalized myocardial infarction (odds ratio, 1.15; 95% confidence interval=1.06–1.25). Conclusions Epigenetic modifications of the newly identified loci might regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-related diseases. PMID:25583993

  1. The group A streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease.

    PubMed

    Podbielski, A; Leonard, B A

    1998-06-01

    The majority of characterized bacterial dipeptide permeases (Dpp) are membrane-associated complexes of five proteins belonging to the ABC-transporter family. They have been found to be involved in the uptake of essential amino acids, haem production, chemotaxis and sporulation. A 5.8 kb genomic DNA fragment of the serotype M49 group A streptococcal (GAS) strain CS101 was sequenced and found to contain five putative GAS Dpp genes (dppA to dppE). Deduced amino acid sequences exhibited 17-54% similarity to corresponding ABC-transporter sequences. The operon organization of the five genes was confirmed by transcriptional analysis, and a shorter, more abundant, dppA-only transcript was detected similar to that found in the GAS oligopeptide permease (Opp) system. Insertional inactivation was used to create serotype M2 and M49 strains that did not express the dppD and dppEATPase genes or nearly the entire operon. In feeding experiments with di- to hexapeptides, the wild-type strain grew with each peptide tested. The dpp mutants were unable to grow on dipeptides, whereas hexapeptides did not sustain the growth of opp mutants. Expression of the dpp operon was induced approximately fourfold in late exponential growth phase. In addition, a striking increase in the dppA to dppA-E ratio from 5:1 to more than 20:1 occurred during late exponential growth phase in complex medium. Growth in chemically defined medium (CDM) supplemented with various dipeptides specifically induced the expression of dpp and reduced both the dppA to dppA-E and oppA to oppA-F mRNA ratios. Expression of the virulence factor SpeB (major cysteine protease) was reduced eightfold in dpp mutants, whereas dpp expression was decreased about fourfold in a Mga virulence regulator mutant. Taken together, these data indicate a correlation between levels of intracellular essential amino acids and the regulation of virulence factor expression. PMID:9680220

  2. Glycation of Ribonuclease A affects its enzymatic activity and DNA binding ability.

    PubMed

    Dinda, Amit Kumar; Tripathy, Debi Ranjan; Dasgupta, Swagata

    2015-11-01

    Prolonged non-enzymatic glycation of proteins results in the formation of advanced glycation end products (AGEs) that cause several diseases. The glycation of Ribonuclease A (RNase A) at pH 7.4 and 37 °C with ribose, glucose and fructose has been monitored by UV-vis, fluorescence, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and matrix assisted laser desorption ionization spectroscopy-time of flight (MALDI-TOF) methods. The enzymatic activity and DNA binding ability of glycated RNase A was also investigated by an agarose gel-based assay. A precipitation assay examined the ribonucleolytic activity of the glycated enzyme. An increase in incubation time resulted in the formation of high molecular weight AGEs with a decrease in ribonucleolytic activity. Ribose exhibits the highest potency as a glycating agent and showed the greatest reduction in the ribonucleolytic activity of the enzyme. Interestingly, glycated RNase A was unable to bind with the ribonuclease inhibitor (RI) and DNA. The glycated form of the protein was also found to be ineffective in DNA melting unlike native RNase A. PMID:26365067

  3. Factors affecting flow cytometric detection of apoptotic nuclei by DNA analysis

    SciTech Connect

    Elstein, K.H.; Thomas, D.J.; Zucker, R.M.

    1995-10-01

    Apoptotic thymocyte nuclei normally appear on a flow cytometric DNA histogram as a subdiploid peak. We observed that addition of a specific RNase A preparation to the detergent-based lysing buffer increased the fluorescence of toxicant-induced apoptotic nuclei to the level of untreated diploid nuclei. The chelating agent EDTA partially inhibited the RNase effect, suggesting contaminating divalent cations may have been involved. Moreover, spectrofluorometric analysis revealed that addition of RNase or divalent cations decreased the amount of DNA present in the lysate. This suggested that the upscale fluorescence shift was due to a decrease in the ability of the lysing buffer to extract DNA, possibly as a result of cation-induced chromatin condensation, rather than increased accessibility of fluorochrome binding sites due to apoptotic degeneration. Moreover, during a 16-h culture, we observed a similar, but time-dependent, upscale shift in the fluorescence of thymocytes undergoing apoptosis either spontaneously or as a result of exposure to 1 {mu}M tributyltin methoxide (TBT), 2% ethanol, 2% methanol, or 1 {mu}M dexamethasone phosphate (DEX). This commonality of effect suggests that a similar magnitude of chromatin reorganization occurs in apoptotic cells in prolonged culture regardless of the method of apoptotic induction. These findings should alert investigators to potential inaccuracies in the flow cytometric quantitation of apoptosis in vitro systems employing prolonged toxicant exposures or complex lysing cocktails that may contain active contaminants. 37 refs., 3 figs., 1 tab.

  4. Cisplatin-induced DNA damage activates replication checkpoint signaling components that differentially affect tumor cell survival.

    PubMed

    Wagner, Jill M; Karnitz, Larry M

    2009-07-01

    Cisplatin and other platinating agents are some of the most widely used chemotherapy agents. These drugs exert their antiproliferative effects by creating intrastrand and interstrand DNA cross-links, which block DNA replication. The cross-links mobilize signaling and repair pathways, including the Rad9-Hus1-Rad1-ATR-Chk1 pathway, a pathway that helps tumor cells survive the DNA damage inflicted by many chemotherapy agents. Here we show that Rad9 and ATR play critical roles in helping tumor cells survive cisplatin treatment. However, depleting Chk1 with small interfering RNA or inhibiting Chk1 with 3-(carbamoylamino)-5-(3-fluorophenyl)-N-(3-piperidyl)thiophene-2-carboxamide (AZD7762) did not sensitize these cells to cisplatin, oxaliplatin, or carboplatin. Moreover, when Rad18, Rad51, BRCA1, BRCA2, or FancD2 was disabled, Chk1 depletion did not further sensitize the cells to cisplatin. In fact, Chk1 depletion reversed the sensitivity seen when Rad18 was disabled. Collectively, these studies suggest that the pharmacological manipulation of Chk1 may not be an effective strategy to sensitize tumors to platinating agents. PMID:19403702

  5. Uptake of Germanium and Rare Earth Elements (La, Gd, Er, Nd) by white mustard (Brassica alba L.) and common millet (Panicum milliaceum L.) as affected by Phosphorus Nutrition

    NASA Astrophysics Data System (ADS)

    Zill, Juliane; Wiche, Oliver

    2015-04-01

    The effect of phosphate nutrition is important due to the future usage of fertilizer treatment in phytomining experiments e.g. in accumulation of the economically important rare earth elements (REE). It is expected that the trivalent charge of REE will result in complexation with phosphate and REEs could be immobilized and not further bioavailable for plants which would cause losses of REE concentration in biomass. To investigate this influence on lanthanum, neodymium, gadolinium and erbium two plant species Brassica alba (white mustard) and Panicum miliaceum (common millet) were cultured in a greenhouse study. The plants were cultivated onto two different substrates and were poured with modified REE and phosphate solutions within an eight-week period. The concentrations of REE in soil, soil solution and plant samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The results show an increase of concentration of REE with increasing levels of element solution applied for both species. REE accumulations are elevated in roots and decrease in the order of roots> leaves> stem> fruit/blossom. Brassica accumulated more REE in root whereas Panicum showed higher REE concentrations in leaves. Exposure to increased phosphate addition did not significantly change the concentrations of REE in both plant species yet the REE concentrations in leaves slightly decreased with increasing phosphate addition. For root and stem no precise trend could be determined. It is most likely that REEs precipitate with phosphate on root surfaces and in the roots. The bioavailability of REE to plants is affected by complexation processes of REEs with phosphate in the rhizosphere. The results indicate that phosphate application plays an important role on REE uptake by roots and accumulation in different parts of a plant and it might have an influence on translocation of REE within the plant.

  6. Combining plasma Epstein-Barr virus DNA and nodal maximal standard uptake values of 18F-fluoro-2-deoxy-D-glucose positron emission tomography improved prognostic stratification to predict distant metastasis for locoregionally advanced nasopharyngeal carcinoma

    PubMed Central

    Chen, Qiu-Yan; Guo, Shan-Shan; Liu, Li-Ting; Fan, Wei; Zhang, Xu; Guo, Ling; Zhao, Chong; Cao, Ka-Jia; Qian, Chao-Nan; Guo, Xiang; Xie, Dan; Zeng, Mu-Sheng; Mai, Hai-Qiang

    2015-01-01

    Background This study aimed to evaluate the value of combining the nodal maximal standard uptake values (SUVmax) of 18 F-fluoro-2-deoxy-D-glucose positron emission tomography with Epstein-Barr virus DNA(EBV DNA) levels to predict distant metastasis for nasopharyngeal carcinoma (NPC) patients Patients and Methods Eight hundred seventy-four patients with stage III-IVa-b NPC were evaluated for the effects of combining SUVmax and EBV DNA levels on distant metastasis-free survival (DMFS), disease-free survival (DFS) and overall survival (OS). Results The optimal cutoff value was 6,220 copies/mL for EBV DNA and 7.5 for SUVmax-N. Patients with lower EBV DNA levels or SUVmax-N had a significantly better 3-year DMFS, DFS, and OS. Patients were divided into four groups based on EBV DNA and SUVmax-N, as follows: low EBV DNA and low SUVmax-N (LL), low EBV DNA and high SUVmax-N (LH), high EBV DNA and low SUVmax-N (HL), and high EBV DNA and high SUVmax-N (HH). There were significant differences between the four mentioned groups in 3-year DMFS: 95.7%, 92.2%, 92.3%, and 80.1%, respectively (Ptrend < 0.001). When looking at the disease stage, the 3-year DMFS in group LL, LH, HL, HH were 94.2%, 92.9%, 95.0%, and 81.1%, respectively, in stage III patients (Ptrend < 0.001) and 92.7%, 87.2%, 86.3%, and 77.0% in stage IVa–b patients (Ptrend = 0.026). Conclusion Pretreatment EBV DNA and SUVmax of neck lymph nodes were independent prognostic factors for distant metastasis in NPC patients. Combining EBV DNA and SUVmax-N led to an improved risk stratification for distant metastasis in advanced-stage disease. PMID:26512922

  7. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  8. Class I HDACs Affect DNA Replication, Repair, and Chromatin Structure: Implications for Cancer Therapy

    PubMed Central

    Stengel, Kristy R.

    2015-01-01

    Abstract Significance: The contribution of epigenetic alterations to cancer development and progression is becoming increasingly clear, prompting the development of epigenetic therapies. Histone deacetylase inhibitors (HDIs) represent one of the first classes of such therapy. Two HDIs, Vorinostat and Romidepsin, are broad-spectrum inhibitors that target multiple histone deacetylases (HDACs) and are FDA approved for the treatment of cutaneous T-cell lymphoma. However, the mechanism of action and the basis for the cancer-selective effects of these inhibitors are still unclear. Recent Advances: While the anti-tumor effects of HDIs have traditionally been attributed to their ability to modify gene expression after the accumulation of histone acetylation, recent studies have identified the effects of HDACs on DNA replication, DNA repair, and genome stability. In addition, the HDIs available in the clinic target multiple HDACs, making it difficult to assign either their anti-tumor effects or their associated toxicities to the inhibition of a single protein. However, recent studies in mouse models provide insights into the tissue-specific functions of individual HDACs and their involvement in mediating the effects of HDI therapy. Critical Issues: Here, we describe how altered replication contributes to the efficacy of HDAC-targeted therapies as well as discuss what knowledge mouse models have provided to our understanding of the specific functions of class I HDACs, their potential involvement in tumorigenesis, and how their disruption may contribute to toxicities associated with HDI treatment. Future Directions: Impairment of DNA replication by HDIs has important therapeutic implications. Future studies should assess how best to exploit these findings for therapeutic gain. Antioxid. Redox Signal. 23, 51–65. PMID:24730655

  9. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids

  10. Host protein Snapin interacts with human cytomegalovirus pUL130 and affects viral DNA replication.

    PubMed

    Wang, Guili; Ren, Gaowei; Cui, Xin; Lu, Zhitao; Ma, Yanpin; Qi, Ying; Huang, Yujing; Liu, Zhongyang; Sun, Zhengrong; Ruan, Qiang

    2016-06-01

    The interplay between the host and Human cytomegalovirus (HCMV) plays a pivotal role in the outcome of an infection. HCMV growth in endothelial and epithelial cells requires expression of viral proteins UL128, UL130, and UL131 proteins (UL128-131), of which UL130 is the largest gene and the only one that is not interrupted by introns.Mutation of the C terminus of the UL130 protein causes reduced tropism of endothelial cells (EC). However, very few host factors have been identified that interact with the UL130 protein. In this study, HCMV UL130 protein was shown to directly interact with the human protein Snapin in human embryonic kidney HEK293 cells by Yeast two-hybrid screening, in vitro glutathione S-transferase (GST) pull-down, and co-immunoprecipitation. Additionally, heterologous expression of protein UL130 revealed co-localization with Snapin in the cell membrane and cytoplasm of HEK293 cells using fluorescence confocal microscopy. Furthermore, decreasing the level of Snapin via specific small interfering RNAs decreased the number of viral DNA copies and titer inHCMV-infected U373-S cells. Taken together, these results suggest that Snapin, the pUL130 interacting protein, has a role in modulating HCMV DNA synthesis. PMID:27240978

  11. Physical Factors Affecting Plasmid DNA Compaction in Stearylamine-Containing Nanoemulsions Intended for Gene Delivery

    PubMed Central

    Silva, André Leandro; Júnior, Francisco Alexandrino; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  12. DNA Replication Licensing Affects Cell Proliferation or Endoreplication in a Cell Type–Specific Manner

    PubMed Central

    del Mar Castellano, María; Boniotti, María Beatrice; Caro, Elena; Schnittger, Arp; Gutierrez, Crisanto

    2004-01-01

    In eukaryotic cells, the function of DNA replication licensing components (Cdc6 and Cdt1, among others) is crucial for cell proliferation and genome stability. However, little is known about their role in whole organisms and whether licensing control interfaces with differentiation and developmental programs. Here, we study Arabidopsis thaliana CDT1, its regulation, and the consequences of overriding licensing control. The availability of AtCDT1 is strictly regulated at two levels: (1) at the transcription level, by E2F and growth-arresting signals, and (2) posttranscriptionally, by CDK phosphorylation, a step that is required for its proteasome-mediated degradation. We also show that CDC6 and CDT1 are key targets for the coordination of cell proliferation, differentiation, and development. Indeed, altered CDT1 or CDC6 levels have cell type–specific effects in developing Arabidopsis plants: in leaf cells competent to divide, cell proliferation is stimulated, whereas in cells programmed to undergo differentiation-associated endoreplication rounds, extra endocycles are triggered. Thus, we propose that DNA replication licensing control is critical for the proper maintenance of proliferative potential, developmental programs, and morphogenetic patterns. PMID:15316110

  13. Physical factors affecting plasmid DNA compaction in stearylamine-containing nanoemulsions intended for gene delivery.

    PubMed

    Silva, André Leandro; Alexandrino, Francisco; Verissimo, Lourena Mafra; Agnez-Lima, Lucymara Fassarella; Egito, Lucila Carmem Monte; de Oliveira, Anselmo Gomes; do Egito, Eryvaldo Socrates Tabosa

    2012-01-01

    Cationic lipids have been used in the development of non-viral gene delivery systems as lipoplexes. Stearylamine, a cationic lipid that presents a primary amine group when in solution, is able to compact genetic material by electrostatic interactions. In dispersed systems such as nanoemulsions this lipid anchors on the oil/water interface confering a positive charge to them. The aim of this work was to evaluate factors that influence DNA compaction in cationic nanoemulsions containing stearylamine. The influence of the stearylamine incorporation phase (water or oil), time of complexation, and different incubation temperatures were studied. The complexation rate was assessed by electrophoresis migration on agarose gel 0.7%, and nanoemulsion and lipoplex characterization was done by Dynamic Light Scattering (DLS). The results demonstrate that the best DNA compaction process occurs after 120 min of complexation, at low temperature (4 ± 1 °C), and after incorporation of the cationic lipid into the aqueous phase. Although the zeta potential of lipoplexes was lower than the results found for basic nanoemulsions, the granulometry did not change. Moreover, it was demonstrated that lipoplexes are suitable vehicles for gene delivery. PMID:24281666

  14. Health status and potential uptake of transgenic DNA by Japanese quail fed diets containing genetically modified plant ingredients over 10 generations.

    PubMed

    Korwin-Kossakowska, A; Sartowska, K; Tomczyk, G; Prusak, B; Sender, G

    2016-06-01

    The hypothesis assumes that feed containing GMOs affects animal health and results in the transgene product accumulating in the body. Therefore, the objective of the study was to evaluate the impact of genetically modified (GM) ingredients used in poultry diets on aspects of bird health status and accumulation of transgenic DNA in eggs, breast muscle and internal organs. A total of 10 generations of Japanese quail were fed three types of diets: group A - containing GM soya (Roundup Ready) and non-GM maize, group B - containing GM maize (MON810) and non-GM soya, and group C - containing non-GM soya and maize. Bird performance traits were monitored throughout the trial. In 17-week-old animals of each generation, health examination took place on birds from each group including post-mortem necropsy and histological organ evaluation. For the purpose of transgenic DNA detection, samples of selected important tissues were taken. A molecular screening method of PCR amplification was used. The analysis of the sectional examination of birds used in the current experiment did not indicate the existence of the pathological changes caused by pathogens, nutritional factors or of environmental nature. The histopathological changes occurred in all three dietary groups and there were no statistically significant differences between the groups. There was no transgene amplification - neither CaMV35S promoter sequence nor nos terminator sequence, in the samples derived from breast muscle, selected tissues and germinal discs (eggs). According to the obtained results, it was concluded that there was no negative effect of the use of GM soya or maize with regard to bird health status or to the presence of transgenic DNA in the final consumable product. PMID:27095142

  15. Smoking and polymorphisms in xenobiotic metabolism and DNA repair genes are additive risk factors affecting bladder cancer in Northern Tunisia.

    PubMed

    Rouissi, Kamel; Ouerhani, Slah; Hamrita, Bechr; Bougatef, Karim; Marrakchi, Raja; Cherif, Mohamed; Ben Slama, Mohamed Riadh; Bouzouita, Mohamed; Chebil, Mohamed; Ben Ammar Elgaaied, Amel

    2011-12-01

    Cancer epidemiology has undergone marked development since the nineteen-fifties. One of the most spectacular and specific contributions was the demonstration of the massive effect of smoking and genetic polymorphisms on the occurrence of bladder cancer. The tobacco carcinogens are metabolized by various xenobiotic metabolizing enzymes, such as the super-families of N-acetyltransferases (NAT) and glutathione S-transferases (GST). DNA repair is essential to an individual's ability to respond to damage caused by tobacco carcinogens. Alterations in DNA repair genes may affect cancer risk by influencing individual susceptibility to this environmental exposure. Polymorphisms in NAT2, GST and DNA repair genes alter the ability of these enzymes to metabolize carcinogens or to repair alterations caused by this process. We have conducted a case-control study to assess the role of smoking, slow NAT2 variants, GSTM1 and GSTT1 null, and XPC, XPD, XPG nucleotide excision-repair (NER) genotypes in bladder cancer development in North Tunisia. Taken alone, each gene unless NAT2 did not appear to be a factor affecting bladder cancer susceptibility. For the NAT2 slow acetylator genotypes, the NAT2*5/*7 diplotype was found to have a 7-fold increased risk to develop bladder cancer (OR = 7.14; 95% CI: 1.30-51.41). However, in tobacco consumers, we have shown that Null GSTM1, Wild GSTT1, Slow NAT2, XPC (CC) and XPG (CC) are genetic risk factors for the disease. When combined together in susceptible individuals compared to protected individuals these risk factors give an elevated OR (OR = 61). So, we have shown a strong cumulative effect of tobacco and different combinations of studied genetic risk factors which lead to a great susceptibility to bladder cancer. PMID:21647780

  16. Association of a DNA virus with grapevines affected by red blotch disease in California.

    PubMed

    Al Rwahnih, Maher; Dave, Ashita; Anderson, Michael M; Rowhani, Adib; Uyemoto, Jerry K; Sudarshana, Mysore R

    2013-10-01

    In the Napa Valley of California, vineyards of 'Cabernet Franc' (CF) clone 214, 'Cabernet Sauvignon' clone 337, and 'Zinfandel' clone 1A (Z1A) with grapevines exhibiting foliar symptoms of red blotches, marginal reddening, and red veins that were accompanied by reduced sugar accumulation in fruit at harvest were initially suspected to be infected with leafroll-associated viruses. However, reverse-transcription polymerase chain reaction (PCR) tests were negative for all known leafroll-associated viruses, with the exception of Grapevine leafroll-associated virus 2 in Z1A. Metagenomic analysis of cDNA libraries obtained from double-stranded RNA enriched nucleic acid (NA) preparations from bark scrapings of dormant canes on an Illumina platform revealed sequences having a distant relationship with members of the family Geminiviridae. Sequencing of products obtained by PCR assays using overlapping primers and rolling circle amplification (RCA) confirmed the presence of a single circular genome of 3,206 nucleotides which was nearly identical to the genome of a recently reported Grapevine cabernet franc-associated virus found in declining grapevines in New York. We propose to call this virus "Grapevine red blotch-associated virus" (GRBaV) to describe its association with grapevine red blotch disease. Primers specific to GRBaV amplified a product of expected size (557 bp) from NA preparations obtained from petioles of several diseased source vines. Chip bud inoculations successfully transmitted GRBaV to test plants of CF, as confirmed by PCR analysis. This is the first report of a DNA virus associated with red blotch disease of grapevines in California. PMID:23656312

  17. Tales from scales: old DNA yields insights into contemporary evolutionary processes affecting fishes.

    PubMed

    Quinn, Thomas P; Seamons, Todd R

    2009-06-01

    Salmon and trout populations are suffering declines in abundance and diversity over much of their range around the Atlantic and Pacific rims as a consequence of many factors. One method of dealing with the decline has been to produce them in hatcheries but the wisdom of this approach has been hotly debated (e.g. Hilborn & Winton 1993; Waples 1999; Brannon et al. 2004). One concern is that domesticated hatchery strains will interbreed with locally adapted wild fish; but how do we study the genetic effects if the introgression might have occurred in the past? Hansen (2002) used DNA isolated from archived scales from brown trout, Salmo trutta (Fig. 1), to show that domesticated trout had, to varying degrees, genetically introgressed with wild, native trout in two Danish rivers. Extending that study, Hansen et al. (2009) have examined DNA from brown trout scales in six Danish rivers collected during historical (1927-1956) and contemporary (2000-2006) periods and from two hatchery source populations, to assess the effects of stocking nonlocal strains of hatchery trout and declining abundance on genetic diversity. Using 21 microsatellite loci, they revealed that genetic change occurred between the historic and contemporary time periods. Many populations appeared to have some low level of introgression from hatchery stocks and two populations apparently experienced high levels of introgression. Hansen et al. (2009) also showed that population structure persists in contemporary populations despite apparent admixture and migration among populations, providing evidence that the locally adapted populations have struggled against and, to some extent, resisted being overwhelmed by repeated introductions of and interbreeding with non-native, hatchery-produced conspecifics. PMID:19457205

  18. Uptake and expression of bacterial and cyanobacterial genes by isolated cucumber etioplasts

    SciTech Connect

    Daniell, H.; McFadden, B.A.

    1987-09-01

    The uptake and expression by plastids isolated from dark-grown cucumber cotyledons (etioplasts) of two pUC derivatives, pCS75 and pUC9-CM, respectively carrying genes for the large and small subunits of ribulose bisphosphate carboxylase/oxygenase of Anacystis nidulans or chloramphenicol acetyltransferase, is reported. Untreated etioplasts take up only 3% as much DNA as that taken up by EDTA-washed etioplasts after 2 hr of incubation with nick-translated (/sup 32/P)-pCS75. The presence or absence of light does not affect DNA uptake, binding, or breakdown by etioplasts. Calcium or magnesium ions inhibit DNA uptake by 86% but enhance binding and breakdown of donor DNA by EDTA-treated etioplasts. Uncouplers that abolish membrane potential, transmembrane proton gradient, or both do not affect DNA uptake, binding, or breakdown by etioplasts. However, both DNA uptake and binding are severely inhibited by ATP. After the incubation of EDTA-treated etioplasts with pCS75, immunoprecipitation using antiserum to the small subunit of ribulose bisphosphate carboxylase/oxygenase from A. nidulans reveals the synthesis of small subunits. Treatment of etioplasts with 10 mM EDTA shows a 10-min duration to be optimal for the expression of chloramphenicol acetyltransferase encoded by pUC9-CM. A progressive increase in the expression of this enzyme is observed with an increase in the concentration of pUC9-CM in the DNA uptake medium. The plasmid-dependent incorporation of (/sup 35/S) methionine by EDTA-treated organelles declines markedly during cotyledon greening in vivo.

  19. Fetal cell-free DNA fraction in maternal plasma is affected by fetal trisomy.

    PubMed

    Suzumori, Nobuhiro; Ebara, Takeshi; Yamada, Takahiro; Samura, Osamu; Yotsumoto, Junko; Nishiyama, Miyuki; Miura, Kiyonori; Sawai, Hideaki; Murotsuki, Jun; Kitagawa, Michihiro; Kamei, Yoshimasa; Masuzaki, Hideaki; Hirahara, Fumiki; Saldivar, Juan-Sebastian; Dharajiya, Nilesh; Sago, Haruhiko; Sekizawa, Akihiko

    2016-07-01

    The purpose of this noninvasive prenatal testing (NIPT) study was to compare the fetal fraction of singleton gestations by gestational age, maternal characteristics and chromosome-specific aneuploidies as indicated by z-scores. This study was a multicenter prospective cohort study. Test data were collected from women who underwent NIPT by the massively parallel sequencing method. We used sequencing-based fetal fraction calculations in which we estimated fetal DNA fraction by simply counting the number of reads aligned within specific autosomal regions and applying a weighting scheme derived from a multivariate model. Relationships between fetal fractions and gestational age, maternal weight and height, and z-scores for chromosomes 21, 18 and 13 were assessed. A total of 7740 pregnant women enrolled in the study, of which 6993 met the study criteria. As expected, fetal fraction was inversely correlated with maternal weight (P<0.001). The median fetal fraction of samples with euploid result (n=6850) and trisomy 21 (n=70) were 13.7% and 13.6%, respectively. In contrast, the median fetal fraction values for samples with trisomies 18 (n=35) and 13 (n=9) were 11.0% and 8.0%, respectively. The fetal fraction of samples with trisomy 21 NIPT result is comparable to that of samples with euploid result. However, the fetal fractions of samples with trisomies 13 and 18 are significantly lower compared with that of euploid result. We conclude that it may make detecting these two trisomies more challenging. PMID:26984559

  20. Translation Start Sequences Affect the Efficiency of Silencing of Agrobacterium tumefaciens T-DNA Oncogenes1

    PubMed Central

    Lee, Hyewon; Humann, Jodi L.; Pitrak, Jennifer S.; Cuperus, Josh T.; Parks, T. Dawn; Whistler, Cheryl A.; Mok, Machteld C.; Ream, L. Walt

    2003-01-01

    Agrobacterium tumefaciens oncogenes cause transformed plant cells to overproduce auxin and cytokinin. Two oncogenes encode enzymes that convert tryptophan to indole-3-acetic acid (auxin): iaaM (tryptophan mono-oxygenase) and iaaH (indole-3-acetamide hydrolase). A third oncogene (ipt) encodes AMP isopentenyl transferase, which produces cytokinin (isopentenyl-AMP). Inactivation of ipt and iaaM (or iaaH) abolishes tumorigenesis. Because adequate means do not exist to control crown gall, we created resistant plants by introducing transgenes designed to elicit posttranscriptional gene silencing (PTGS) of iaaM and ipt. Transgenes that elicit silencing trigger sequence-specific destruction of the inducing RNA and messenger RNAs with related sequences. Although PTGS has proven effective against a variety of target genes, we found that a much higher percentage of transgenic lines silenced iaaM than ipt, suggesting that transgene sequences influenced the effectiveness of PTGS. Sequences required for oncogene silencing included a translation start site. A transgene encoding a translatable sense-strand RNA from the 5′ end of iaaM silenced the iaaM oncogene, but deletion of the translation start site abolished the ability of the transgene to silence iaaM. Silencing A. tumefaciens T-DNA oncogenes is a new and effective method to produce plants resistant to crown gall disease. PMID:12972655

  1. Inulin affects iron dialyzability from FeSO4 and FeEDTA solutions but does not alter Fe uptake by Caco-2 cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The in vitro effects of inulin on the fluxes of Fe (FFe), uptake by Caco-2 cells from FeSO4 and FeEDTA which are commonly used for food fortification, were evaluated. For an element to be absorbed it is necessary that it should be soluble in the gastrointestinal tract, thus, changes in FFe diffussio...

  2. Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA

    PubMed Central

    Turner, Tychele N.; Hormozdiari, Fereydoun; Duyzend, Michael H.; McClymont, Sarah A.; Hook, Paul W.; Iossifov, Ivan; Raja, Archana; Baker, Carl; Hoekzema, Kendra; Stessman, Holly A.; Zody, Michael C.; Nelson, Bradley J.; Huddleston, John; Sandstrom, Richard; Smith, Joshua D.; Hanna, David; Swanson, James M.; Faustman, Elaine M.; Bamshad, Michael J.; Stamatoyannopoulos, John; Nickerson, Deborah A.; McCallion, Andrew S.; Darnell, Robert; Eichler, Evan E.

    2016-01-01

    We performed whole-genome sequencing (WGS) of 208 genomes from 53 families affected by simplex autism. For the majority of these families, no copy-number variant (CNV) or candidate de novo gene-disruptive single-nucleotide variant (SNV) had been detected by microarray or whole-exome sequencing (WES). We integrated multiple CNV and SNV analyses and extensive experimental validation to identify additional candidate mutations in eight families. We report that compared to control individuals, probands showed a significant (p = 0.03) enrichment of de novo and private disruptive mutations within fetal CNS DNase I hypersensitive sites (i.e., putative regulatory regions). This effect was only observed within 50 kb of genes that have been previously associated with autism risk, including genes where dosage sensitivity has already been established by recurrent disruptive de novo protein-coding mutations (ARID1B, SCN2A, NR3C2, PRKCA, and DSCAM). In addition, we provide evidence of gene-disruptive CNVs (in DISC1, WNT7A, RBFOX1, and MBD5), as well as smaller de novo CNVs and exon-specific SNVs missed by exome sequencing in neurodevelopmental genes (e.g., CANX, SAE1, and PIK3CA). Our results suggest that the detection of smaller, often multiple CNVs affecting putative regulatory elements might help explain additional risk of simplex autism. PMID:26749308

  3. Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA.

    PubMed

    Turner, Tychele N; Hormozdiari, Fereydoun; Duyzend, Michael H; McClymont, Sarah A; Hook, Paul W; Iossifov, Ivan; Raja, Archana; Baker, Carl; Hoekzema, Kendra; Stessman, Holly A; Zody, Michael C; Nelson, Bradley J; Huddleston, John; Sandstrom, Richard; Smith, Joshua D; Hanna, David; Swanson, James M; Faustman, Elaine M; Bamshad, Michael J; Stamatoyannopoulos, John; Nickerson, Deborah A; McCallion, Andrew S; Darnell, Robert; Eichler, Evan E

    2016-01-01

    We performed whole-genome sequencing (WGS) of 208 genomes from 53 families affected by simplex autism. For the majority of these families, no copy-number variant (CNV) or candidate de novo gene-disruptive single-nucleotide variant (SNV) had been detected by microarray or whole-exome sequencing (WES). We integrated multiple CNV and SNV analyses and extensive experimental validation to identify additional candidate mutations in eight families. We report that compared to control individuals, probands showed a significant (p = 0.03) enrichment of de novo and private disruptive mutations within fetal CNS DNase I hypersensitive sites (i.e., putative regulatory regions). This effect was only observed within 50 kb of genes that have been previously associated with autism risk, including genes where dosage sensitivity has already been established by recurrent disruptive de novo protein-coding mutations (ARID1B, SCN2A, NR3C2, PRKCA, and DSCAM). In addition, we provide evidence of gene-disruptive CNVs (in DISC1, WNT7A, RBFOX1, and MBD5), as well as smaller de novo CNVs and exon-specific SNVs missed by exome sequencing in neurodevelopmental genes (e.g., CANX, SAE1, and PIK3CA). Our results suggest that the detection of smaller, often multiple CNVs affecting putative regulatory elements might help explain additional risk of simplex autism. PMID:26749308

  4. The DnaJ-Like Zinc Finger Domain Protein PSA2 Affects Light Acclimation and Chloroplast Development in Arabidopsis thaliana.

    PubMed

    Wang, Yan-Wen; Chen, Si-Ming; Wang, Wei-Jie; Huang, Xing-Qi; Zhou, Chang-Fang; Zhuang, Zhong; Lu, Shan

    2016-01-01

    The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin, and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development. PMID:27047527

  5. The DnaJ-Like Zinc Finger Domain Protein PSA2 Affects Light Acclimation and Chloroplast Development in Arabidopsis thaliana

    PubMed Central

    Wang, Yan-Wen; Chen, Si-Ming; Wang, Wei-Jie; Huang, Xing-Qi; Zhou, Chang-Fang; Zhuang, Zhong; Lu, Shan

    2016-01-01

    The biosynthesis of chlorophylls and carotenoids and the assembly of thylakoid membranes are critical for the photoautotrophic growth of plants. Different factors are involved in these two processes. In recent years, members of the DnaJ-like zinc finger domain proteins have been found to take part in the biogenesis and/or the maintenance of plastids. One member of this family of proteins, PSA2, was recently found to localize to the thylakoid lumen and regulate the accumulation of photosystem I. In this study, we report that the silencing of PSA2 in Arabidopsis thaliana resulted in variegated leaves and retarded growth. Although both chlorophylls and total carotenoids decreased in the psa2 mutant, violaxanthin, and zeaxanthin accumulated in the mutant seedlings grown under growth condition. Lower levels of non-photochemical quenching and electron transport rate were also found in the psa2 mutant seedlings under growth condition compared with those of the wild-type plants, indicating an impaired capability to acclimate to normal light irradiance when PSA2 was silenced. Moreover, we also observed an abnormal assembly of grana thylakoids and poorly developed stroma thylakoids in psa2 chloroplasts. Taken together, our results demonstrate that PSA2 is a member of the DnaJ-like zinc finger domain protein family that affects light acclimation and chloroplast development. PMID:27047527

  6. Factors affecting uptake of optimal doses of sulphadoxine-pyrimethamine for intermittent preventive treatment of malaria in pregnancy in six districts of Tanzania

    PubMed Central

    2014-01-01

    Background Intermittent preventive treatment during pregnancy (IPTp) with optimal doses (two+) of sulphadoxine-pyrimethamine (SP) protects pregnant women from malaria-related adverse outcomes. This study assesses the extent and predictors of uptake of optimal doses of IPTp-SP in six districts of Tanzania. Methods The data come from a cross-sectional survey of random households conducted in six districts in Tanzania in 2012. A total of 1,267 women, with children aged less than two years and who had sought antenatal care (ANC) at least once during pregnancy, were selected for the current analysis. Data analysis involved the use of Chi-Square (χ2) for associations and multivariate analysis was performed using multinomial logistic regression. Results Overall, 43.6% and 28.5% of the women received optimal (two+) and partial (one) doses of IPTp-SP respectively during pregnancy. Having had been counseled on the dangers of malaria during pregnancy was the most pervasive determinant of both optimal (RRR = 6.47, 95% CI 4.66-8.97) and partial (RRR = 4.24, 95% CI 3.00-6.00) uptake of IPTp-SP doses. Early ANC initiation was associated with a higher likelihood of uptake of optimal doses of IPTp-SP (RRR = 2.05, 95% CI 1.18-3.57). Also, women with secondary or higher education were almost twice as likely as those who had never been to school to have received optimal SP doses during pregnancy (RRR = 1.93, 95% CI 1.04-3.56). Being married was associated with a 60% decline in the partial uptake of IPTp-SP (RRR = 0.40, 95% CI 0.17-0.96). Inter-district variations in the uptake of both optimal and partial IPTp-SP doses existed (P < 0.05). Conclusion Counseling to pregnant women on the dangers of malaria in pregnancy and formal education beyond primary school is important to enhance uptake of optimal doses of SP for malaria control in pregnancy in Tanzania. ANC initiation in the first trimester should be promoted to enhance coverage of optimal doses of IPTp

  7. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  8. Global skeletal uptake of 99mTc-methylene diphosphonate (GSU) in patients affected by endocrine diseases: comparison with biochemical markers of bone turnover.

    PubMed

    Scillitani, A; Dicembrino, F; Chiodini, I; Minisola, S; Fusilli, S; Di Giorgio, A; Garrubba, M; D'Aloiso, L; Frusciante, V; Torlontano, M; Modoni, S; Trischitta, V; Trischitta, V; Carnevale, V

    2002-10-01

    This study aimed to clinically validate the global skeletal uptake (GSU) of (99m)Tc-methylene diphosphonate ((99m)Tc-MDP), and to compare it with a marker of bone formation (i.e. serum osteocalcin or OC) and an index of bone resorption (i.e. urinary deoxypyridinoline or U-DPD) in different endocrine disorders affecting the skeleton. We studied 29 female patients with thyrotoxicosis (TT), 27 with primary hyperparathyroidism (PHPT), 16 with acromegaly (AC), 15 with Cushing's syndrome (CS), and altogether 110 healthy women matched for age, BMI and menstrual status. In all subjects total body digital scan images (TBDS) were acquired at 5 min and at 4 h after the administration of (99m)Tc-MDP; the whole body retention (WBR) of the tracer was measured by counting two identical sets of rectangular ROIs, and GSU was subsequently calculated by drawing an irregular ROI on 4 h TBDS images. Serum OC was assessed by IRMA and urinary DPD by fluorometric detection after reverse phase high pressure chromatography. In TT patients GSU (40.0 +/- 5.1 vs 36.5 +/- 4.8%), OC (19.1 +/- 11.8 vs 7.1 +/- 2.9 microg/l) and U-DPD (62.4 +/- 42.7 vs 19.5 +/- 5.3 pmol/pmol) were significantly ( p<0.01) higher than in controls. PHPT patients showed GSU (47.2 +/- 6.6 vs 37.8 +/- 5.3%), OC (38.6 +/- 40.9 vs 8.2 +/- 2.5 microg/l), and U-DPD (55.0 +/- 51.3 vs 21.9 +/- 6.1 pmol/pmol) values significantly ( p<0.001) higher than controls. In CS patients, GSU (39.6 +/- 6.4 vs 32.7 +/- 3.5%; p<0.01) and U-DPD (22.8 +/- 8.4 vs 16.5 +/- 2.7 pmol/pmol; p<0.05) were higher, whereas OC (3.6 +/- 2.4 vs 5.2 +/- 1.9 mg/l; p<0,05) was lower than in controls. In AC patients, GSU (34.9 +/- 5.3 vs 35.2 +/- 3.4%) did not differ significantly from controls, whereas OC (16.8 +/- 8.8 vs 6.9 +/- 2.9 microg/l; p<0.001) and U-DPD (30.9 +/- 13.6 vs 21.0 +/- 5.7 pmol/pmol; p<0.01) were higher. Stepwise multivariate linear regression analysis was performed with disease activity, creatinine clearance, age, and years since

  9. Campomanesia adamantium extract induces DNA damage, apoptosis, and affects cyclophosphamide metabolism.

    PubMed

    Martello, M D; David, N; Matuo, R; Carvalho, P C; Navarro, S D; Monreal, A C D; Cunha-Laura, A L; Cardoso, C A L; Kassuya, C A L; Oliveira, R J

    2016-01-01

    Campomanesia adamantium (Cambess.) O. Berg. is originally from Brazil. Its leaves and fruits have medicinal properties such as anti-inflammatory, antidiarrheal and antiseptic properties. However, the mutagenic potential of this species has been reported in few studies. This study describes the mutagenic/antimutagenic, splenic phagocytic, and apoptotic activities of C. adamantium hydroethanolic extract with or without cyclophosphamide in Swiss mice. The animals orally received the hydroethanolic extract at doses of 30, 100, or 300 mg/kg with or without 100 mg/kg cyclophosphamide. Mutagenesis was evaluated by performing the micronucleus assay after treatment for 24, 48, and 72 h, while splenic phagocytic and apoptotic effects were investigated after 72 h. Short-term exposure of 30 and 100 mg/kg extract induced mild clastogenic/aneugenic effects and increased splenic phagocytosis and apoptosis in the liver, spleen, and kidneys. When the extract was administered in combination with cyclophosphamide, micronucleus frequency and apoptosis reduced. Extract components might affect cyclophosphamide metabolism, which possibly leads to increased clearance of this chemotherapeutic agent. C. adamantium showed mutagenic activity and it may decrease the effectiveness of drugs with metabolic pathways similar to those associated with cyclophosphamide. Thus, caution should be exercised while consuming these extracts, especially when received in combination with other drugs. PMID:27173259

  10. Enhanced cell uptake via non-covalent decollation of a single-walled carbon nanotube-DNA hybrid with polyethylene glycol-grafted poly(l-lysine) labeled with an Alexa-dye and its efficient uptake in a cancer cell

    NASA Astrophysics Data System (ADS)

    Fujigaya, Tsuyohiko; Yamamoto, Yuki; Kano, Arihiro; Maruyama, Atsushi; Nakashima, Naotoshi

    2011-10-01

    The use of single-walled carbon nanotubes (SWNTs) for biomedical applications is a promising approach due to their unique outer optical stimuli response properties, such as a photothermal response triggered by near-IR laser irradiation. The challenging task in order to realize such applications is to render the SWNTs biocompatible. For this purpose, the stable and homogeneous functionalization of the SWNTs with a molecule carrying a biocompatible group is very important. Here, we describe the design and synthesis of a polyanionic SWNT/DNA hybrid combined with a cationic poly(l-lysine) grafted by polyethylene glycol (PLL-g-PEG) to provide a supramolecular SWNT assembly. A titration experiment revealed that the assembly undergoes an approximately 1 : 1 reaction of the SWNT/DNA with PLL-g-PEG. We also found that SWNT/DNA is coated with PLL-g-PEG very homogeneously that avoids the non-specific binding of proteins on the SWNT surface. The experiment using the obtained supramolecular hybrid was carried out in vitro and a dramatic enhancement in the cell uptake efficiency compared to that of the SWNT/DNA hybrid without PLL-g-PEG was found.The use of single-walled carbon nanotubes (SWNTs) for biomedical applications is a promising approach due to their unique outer optical stimuli response properties, such as a photothermal response triggered by near-IR laser irradiation. The challenging task in order to realize such applications is to render the SWNTs biocompatible. For this purpose, the stable and homogeneous functionalization of the SWNTs with a molecule carrying a biocompatible group is very important. Here, we describe the design and synthesis of a polyanionic SWNT/DNA hybrid combined with a cationic poly(l-lysine) grafted by polyethylene glycol (PLL-g-PEG) to provide a supramolecular SWNT assembly. A titration experiment revealed that the assembly undergoes an approximately 1 : 1 reaction of the SWNT/DNA with PLL-g-PEG. We also found that SWNT/DNA is coated with PLL

  11. Longer resistance of some DNA traits from BT176 maize to gastric juice from gastrointestinal affected patients.

    PubMed

    Ferrini, A M; Mannoni, V; Pontieri, E; Pourshaban, M

    2007-01-01

    The presence of antibiotic resistance marker genes in genetically engineered plants is one of the most controversial issues related to Genetically Modified Organism (GMO)-containing food, raising concern about the possibility that these markers could increase the pool of antibiotic resistance genes. This study investigates the in vitro survival of genes bla and cryIA(b) of maize Bt176 in human gastric juice samples. Five samples of gastric juice were collected from patients affected by gastro-esophageal reflux or celiac disease and three additional samples were obtained by pH modification with NaHCO3. DNA was extracted from maize Bt176 and incubated with samples of gastric juices at different times. The survival of the target traits (bla gene, whole 1914 bp gene cry1A(b), and its 211 bp fragment) was determined using PCR. The stability of the target genes was an inverse function of their lengths in all the samples. Survival in samples from untreated subjects was below the normal physiological time of gastric digestion. On the contrary, survival time in samples from patients under anti-acid drug treatment or in samples whose pH was modified, resulted strongly increased. Our data indicate the possibility that in particular cases the survival time could be so delayed that, as a consequence, some traits of DNA could reach the intestine. In general, this aspect must be considered for vulnerable consumers (people suffering from gastrointestinal diseases related to altered digestive functionality, physiological problems or drug side-effects) in the risk analysis usually referred to healthy subjects. PMID:17346434

  12. DNA Storage under High Temperature Conditions Does Not Affect Performance in Human Leukocyte Antigen Genotyping via Next-Generation Sequencing (DNA Integrity Maintained in Extreme Conditions)

    PubMed Central

    McDevitt, Shana L; Hogan, Michael E; Pappas, Derek J; Wong, Lily Y

    2014-01-01

    Background: Stable dry-state storage of DNA is desirable to minimize required storage space and to reduce electrical and shipping costs. DNA purified from various commercially available dry-state stabilization matrices has been used successfully in downstream molecular applications (e.g., quantitative polymerase chain reaction [qPCR], microarray, and sequence-based genotyping). However, standard DNA storage conditions still include freezing of DNA eluted in aqueous buffers or nuclease-free water. Broad implementation of dry-state, long-term DNA storage requires enhancement of such dry-state DNA stabilization products to control for temperature fluctuations at specimen collection, transit, and storage. This study tested the integrity of genomic DNA subjected to long-term storage on GenTegra™ DNA stabilization matrices (GenTegra LLC, Pleasanton, CA) at extreme conditions, as defined by a 4-year storage period at ambient temperature with an initial incubation for 7 months at 37°C, 56°C, or ambient temperature. Subsequently, purified DNA performance and integrity were measured by qPCR and next-generation sequencing (NGS)-based human leokocyte antigen (HLA) genotyping. Results: High molecular weight genomic DNA samples were recovered from the GenTegra product matrix and exhibited integrity comparable to a highly characterized commercial standard under assessment by qPCR. Samples were genotyped for classical HLA loci using next generation sequencing-based methodolgy on the Roche 454 GS Junior instrument. Amplification efficiency, sequence coverage, and sequence quality were all comparable with those produced from a cell line DNA sequenced as a control. No significant differences were observed in the mean, median, or mode quality scores between samples and controls (p≥0.4). Conclusions: Next generation HLA genotyping was chosen to test the integrity of GenTegra-treated genomic DNA due to the requirment for long sequence reads to genotype the highly polymorphic

  13. Study of mitochondrial DNA alteration in the exhaled breath condensate of patients affected by obstructive lung diseases.

    PubMed

    Carpagnano, G E; Lacedonia, D; Carone, M; Soccio, P; Cotugno, G; Palmiotti, G A; Scioscia, G; Foschino Barbaro, M P

    2016-06-01

    Mitochondrial DNA (MtDNA) has been studied as an expression of oxidative stress in asthma, COPD, lung cancer and obstructive sleep apnea, but it has been mainly investigated systemically, although the pathogenetic mechanisms begin in the airways and only later progress to systemic circulation. The aim of this study was to investigate the MtDNA alterations in the exhaled breath condensate (EBC) of patients with asthma, COPD and asthma-COPD overlap syndrome (ACOS). In order to analyze better what happens to mitochondria, both locally and systemically, we compared MtDNA/nDNA in blood and EBC of paired patients. Thirteen (13) COPD patients, 14 asthmatics, 23 ACOS (10 according to Spanish guidelines, 13 in line with GINA guidelines) and 12 healthy subjects were enrolled. Patients underwent clinical and functional diagnostic tests as foreseen by the guidelines. They underwent blood and EBC collection. Content of MtDNA and nuclear DNA (nDNA) was measured in the blood cells and EBC of patients by Real Time PCR. The ratio between MtDNA/nDNA was calculated. For the first time we were able to detect MtDNA/nDNA in the EBC. We found higher exhaled MtDNA/nDNA in COPD, asthmatic and ACOS patients respectively compared to healthy subjects (21.9  ±  4.9 versus 6.51  ±  0.21, p  <  0.05; 7.9  ±  2.5 versus 6.51  ±  0.21, p  =  0.06; 18.3  ±  3.4 versus 6.51  ±  0.21, p  <  0.05). The level of exhaled MtDNA/nDNA was positively correlated with the plasmatic one. The levels of MtDNA/nDNA in the EBC, as expression of oxidative stress, are increased in COPD, asthmatic and ACOS patients compared to healthy subjects. These are preliminary results in a small number of well characterized patients that requires confirmation on a larger population. We support new studies directed toward the analysis of exhaled MtDNA/nDNA as a new exhaled non-invasive marker in other inflammatory/oxidative airways diseases. PMID

  14. Factors That Affect Large Subunit Ribosomal DNA Amplicon Sequencing Studies of Fungal Communities: Classification Method, Primer Choice, and Error

    PubMed Central

    Porter, Teresita M.; Golding, G. Brian

    2012-01-01

    Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys. PMID:22558215

  15. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells

    NASA Astrophysics Data System (ADS)

    Murali, Kumarasamy; Kenesei, Kata; Li, Yang; Demeter, Kornél; Környei, Zsuzsanna; Madarász, Emilia

    2015-02-01

    Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the role of the chemical composition of particle surfaces in the in vitro interaction with different neural cell types. PS NPs within a size-range of 45-70 nm influenced the metabolic activity of cells depending on the cell-type, but caused toxicity only at extremely high particle concentrations. Neurons did not internalize particles, while microglial cells ingested a large amount of carboxylated but almost no PEGylated NPs. PEGylation reduced the protein adsorption, toxicity and cellular uptake of NPs. After storage (shelf-life >6 months), the toxicity and cellular uptake of NPs increased. The altered biological activity of ``aged'' NPs was due to particle aggregation and due to the adsorption of bioactive compounds on NP surfaces. Aggregation by increasing the size and sedimentation velocity of NPs results in increased cell-targeted NP doses. The ready endotoxin adsorption which cannot be prevented by PEG coating, can render the particles toxic. The age-dependent changes in otherwise harmless NPs could be the important sources for variability in the effects of NPs, and could explain the contradictory data obtained with ``identical'' NPs.Because of their capacity of crossing an intact blood-brain barrier and reaching the brain through an injured barrier or via the nasal epithelium, nanoparticles have been considered as vehicles to deliver drugs and as contrast materials for brain imaging. The potential neurotoxicity of nanoparticles, however, is not fully explored. Using particles with a biologically inert polystyrene core material, we investigated the

  16. Factors affecting uptake and retention of technetium-99m-diphosphonate and 99m-pertechnetate in osseous, connective and soft tissues.

    PubMed

    Francis, M D; Slough, C L; Tofe, A J

    1976-06-14

    The bone scanning complex, 99mTc-Sn-EHDP, consisting of the nuclide technetium-99m, stannous ion and ethane-1-hydroxy-1,1-diphosphonate, administered intravenously is retained in soft tissues in proportion to increasing calcium content of the tissues. Within bone tissue, the retention is proportional to vascularity and to surface area of calcium phosphate in bones and not necessarily to calcium and phosphate concentration. The nuclidic agent 99mTcO4-BUT NOT THE 99MTc-diphosphonate is selectively taken up by the thyroid and this uptake can be blocked by administering sodium perchlorate. Among the connective tissues studied, the tracheal cartilage seems to have the greatest potential to calcify with increasing age of the animal and man. Soft tissue does not retain the bone scanning complex 99mTc-Sn-EHDP but does retain 99mTcO4-. PMID:182328

  17. Metal uptake of tomato and alfalfa plants as affected by water source, salinity, and Cd and Zn levels under greenhouse conditions.

    PubMed

    Gharaibeh, Mamoun A; Marschner, Bernd; Heinze, Stefanie

    2015-12-01

    Irrigation with wastewater is a promising option to improve crop yields and to reduce pressure on freshwater sources. However, heavy metal concentrations in wastewater may cause health concerns. A greenhouse pot experiment was conducted in order to determine cadmium (Cd) and zinc (Zn) concentrations in sandy soil and plant tissues of tomato (Lycopersicon esculentum L.) and alfalfa (Medicago sativa L.). A 2 × 2 × 4 × 2 factorial treatment arrangement was utilized. Two water sources, fresh (FW) or treated wastewater (TWW), at two salinity levels (1 and 3 dS m(-1)) containing different levels of Cd and Zn were used. Samples were collected after a 90-day growth period. It was observed that the growth of both plants was depressed at the highest metal level (L3). Metal accumulation in plant parts increased with the increase of metal concentration and salinity in irrigation water. At low salinity, water source was the main factor which controlled metal accumulation, whereas, at high salinity, chloride appeared to be the principal factor controlling metal uptake regardless of water source. Metal translocation from roots to shoots increased in TWW-irrigated plants, even in the controls. Tomatoes accumulated Cd up to and above critical levels safe for human consumption, even though Cd concentration in irrigation water did not exceed the current recommended values. Therefore, food production in sandy soils may well pose a health hazard when irrigated with TWW containing heavy metals. Complexation with dissolved organic compounds (DOC) in TWW may be to be the principal factor responsible for increased metal uptake and transfer at low salinity, thereby increasing the risk of heavy metal contamination of food and forage crops. PMID:26206131

  18. TH-C-18A-09: Exam and Patient Parameters Affecting the DNA Damage Response Following CT Studies

    SciTech Connect

    Elgart, S; Adibi, A; Bostani, M; Ruehm, S; Enzmann, D; McNitt-Gray, M; Iwamoto, K

    2014-06-15

    Purpose: To identify exam and patient parameters affecting the biological response to CT studies using in vivo and ex vivo blood samples. Methods: Blood samples were collected under IRB approval from 16 patients undergoing clinically-indicated CT exams. Blood was procured prior to, immediately after and 30minutes following irradiation. A sample of preexam blood was placed on the patient within the exam region for ex vivo analysis. Whole blood samples were fixed immediately following collection and stained for γH2AX to assess DNA damage response (DDR). Median fluorescence of treated samples was compared to non-irradiated control samples for each patient. Patients were characterized by observed biological kinetic response: (a) fast — phosphorylation increased by 2minutes and fell by 30minutes, (b) slow — phosphorylation continued to increase to 30minutes and (c) none — little change was observed or irradiated samples fell below controls. Total dose values were normalized to exam time for an averaged dose-rate in dose/sec for each exam. Relationships between patient biological responses and patient and exam parameters were investigated. Results: A clearer dose response at 30minutes is observed for young patients (<61yoa; R2>0.5) compared to old patients (>61yoa; R{sup 2}<0.11). Fast responding patients were significantly younger than slow responding patients (p<0.05). Unlike in vivo samples, age did not significantly affect the patient response ex vivo. Additionally, fast responding patients received exams with significantly smaller dose-rate than slow responding patients (p<0.05). Conclusion: Age is a significant factor in the biological response suggesting that DDR may be more rapid in a younger population and slower as the population ages. Lack of an agerelated response ex vivo suggests a systemic response to radiation not present when irradiated outside the body. Dose-rate affects the biological response suggesting that patient response may be related to

  19. National decline in invasive prenatal diagnostic procedures in association with uptake of combined first trimester and cell-free DNA aneuploidy screening.

    PubMed

    Robson, Stephen J; Hui, Lisa

    2015-10-01

    In late 2012, a new screening test for fetal aneuploidy based on circulating cell-free DNA (cfDNA) became available to Australian women. The introduction of this technology in the United States has led to a reduction in invasive diagnostic procedures. Analysis of the number of amniocentesis and chorionic villus sampling (CVS) procedures performed in Australia from 1994 to 2014 shows that the introduction of cfDNA testing has been associated with the most rapid decline in invasive procedures in the last 20 years. This change has important implications for training in, and maintenance of, the procedural skills of amniocentesis and CVS. PMID:26259499

  20. Factors that affect the uptake of community-based health insurance in low-income and middle-income countries: a systematic protocol

    PubMed Central

    Adebayo, Esther F; Ataguba, John E; Uthman, Olalekan A; Okwundu, Charles I; Lamont, Kim T; Wiysonge, Charles S

    2014-01-01

    Introduction Many people residing in low-income and middle-income countries (LMICs) are regularly exposed to catastrophic healthcare expenditure. It is therefore pertinent that LMICs should finance their health systems in ways that ensure that their citizens can use needed healthcare services and are protected from potential impoverishment arising from having to pay for services. Ways of financing health systems include government funding, health insurance schemes and out-of-pocket payment. A health insurance scheme refers to pooling of prepaid funds in a way that allows for risks to be shared. The health insurance scheme particularly suitable for the rural poor and the informal sector in LMICs is community-based health insurance (CBHI), that is, insurance schemes operated by organisations other than governments or private for-profit companies. We plan to search for and summarise currently available evidence on factors associated with the uptake of CBHI, as we are not aware of previous systematic reviews that have looked at this important topic. Methods This is a protocol for a systematic review of the literature. We will include both quantitative and qualitative studies in this review. Eligible quantitative studies include intervention and observational studies. Qualitative studies to be included are focus group discussions, direct observations, interviews, case studies and ethnography. We will search EMBASE, PubMed, Scopus, ERIC, PsycInfo, Africa-Wide Information, Academic Search Premier, Business Source Premier, WHOLIS, CINAHL and the Cochrane Library for eligible studies available by 31 October 2013, regardless of publication status or language of publication. We will also check reference lists of included studies and proceedings of relevant conferences and contact researchers for eligible studies. Two authors will independently screen the search output, select studies and extract data, resolving discrepancies by consensus and discussion. Qualitative data will

  1. Enhanced cytokine secretion from primary macrophages due to Dectin-1 mediated uptake of CpG DNA/β-1,3-glucan complex.

    PubMed

    Minari, Jusaku; Mochizuki, Shinichi; Matsuzaki, Tsubasa; Adachi, Yoshiyuki; Ohno, Naohito; Sakurai, Kazuo

    2011-01-19

    Unmethylated CpG sequences (CpG DNA) can induce Th1 response and thus become a potential immunotherapeutic agent. A key step in the treatment is to transport CpG DNA to its receptor TLR9 located in the endocytosis pathway of target immune cells. For the effective transport, we prepared a novel complex from a β-1,3-glucan schizophyllan (SPG) and CpG DNA, and administered the complex to murine peritoneal macrophages that had been previously activated by thioglycollate and expressed a major β-1,3-glucan receptor Dectin-1 on the cellular surface. Flow cytometric analysis and microscopic observation showed that the complex was taken up by the macrophage through Dectin-1 mediated pathway. Indeed, ELISA demonstrated that IL-12 production was increased sigmoidally with increasing SPG/CpG DNA ratio in the complexation, and reached the maximum at the SPG-rich composition. In the present work, we describe a new approach to deliver CpG DNA to immune cells by use of a β-1,3-glucan/DNA complex. PMID:21126031

  2. Field application of mycorrhizal bio-inoculants affects the mineral uptake of a forage legume (Hedysarum coronarium L.) on a highly calcareous soil.

    PubMed

    Labidi, S; Jeddi, F Ben; Tisserant, B; Yousfi, M; Sanaa, M; Dalpé, Y; Sahraoui, A Lounès-Hadj

    2015-05-01

    The efficiency of two mycorrhizal bio-inoculants on the mineral uptake during the growth stages of a Mediterranean forage legume sulla (Hedysarum coronarium L.) was studied in the field on a highly calcareous soil. The first inoculum (Mm) was made up of a mixture of native arbuscular mycorrhizal fungi (AMF) isolated from calcareous soils: Septoglomus constrictum, Funneliformis geosporum, Glomus fuegianum, Rhizophagus irregularis and Glomus sp. The second was a commercial inoculum (Mi) containing one AMF species: R. irregularis. Both mycorrhizal inoculants increased total and arbuscular colonization of sulla roots. Inoculation with Mm showed a positive effect on sulla shoot dry weight (SDW) when compared to Mi and non-inoculated plants (control). Mineral contents (P, Mg, Mn, Fe) were higher in the shoots of sulla plants cultivated on mycorrhiza-inoculated plots compared to non-inoculated ones. This enhancement was observed during the flowering stage for P, Mg and Mn and during the rosette stage for Fe. An increase in P content of 50 % in plants inoculated with Mm compared to non-inoculated ones may be explained by the induction of root alkaline and acid phosphatase activities. Higher efficiency of native AMF species adapted to calcareous soils opens the way towards the development of mycorrhiza bio-fertilizers targeted to improve sustainable fertilization management in such soils. PMID:25323044

  3. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine

    PubMed Central

    Jung, Myung Chae

    2008-01-01

    Heavy metal concentrations were measured in soils and plants in and around a copper-tungsten mine in southeast Korea to investigate the influence of past base metal mining on the surface environment. The results of chemical analysis indicate that the heavy metals in soils decreased with distance from the source, controlled mainly by water movement and topography. The metal concentrations measured in plant species generally decreased in the order; spring onions > soybean leaves > perilla leaves ≈ red pepper > corn grains ≈ jujube grains, although this pattern varied moderately between different elements. The results agree with other reports that metal concentrations in leaves are usually much higher than those in grain. Factors influencing the bioavailability of metals and their occurrences in crops were found as soil pH, cation exchange capacity, organic matter content, soil texture, and interaction among the target elements. It is concluded that total metal concentrations in soils are the main controls on their contents in plants. Soil pH was also an important factor. A stepwise linear multiple regression analysis was also conducted to identify the dominant factors influencing metal uptake by plants. Metal concentrations in plants were also estimated by computer-aided statistical methods.

  4. Common polymorphism in a highly variable region upstream of the human lactase gene affects DNA-protein interactions.

    PubMed

    Hollox, E J; Poulter, M; Wang, Y; Krause, A; Swallow, D M

    1999-01-01

    In most mammals lactase activity declines after weaning when lactose is no longer part of the diet, but in many humans lactase activity persists into adult life. The difference responsible for this phenotypic polymorphism has been shown to be cis-acting to the lactase gene. The causal sequence difference has not been found so far, but a number of polymorphic sites have been found within and near to the lactase gene. We have shown previously that in Europeans there are two polymorphic sites in a small region between 974 bp and 852 bp upstream from the start of transcription, which are detectable by denaturing gradient gel electrophoresis (DGGE). In this study, analysis of individuals from five other population groups by the same DGGE method reveals four new alleles resulting from three additional nucleotide changes within this very small region. Analysis of sequence in four primate species and comparison with the published pig sequence shows that the overall sequence of this highly variable human region is conserved in pigs as well as primates, and that it lies within a 1kb region which has been shown to control lactase downregulation in pigs. Electrophoretic mobility shift assay (EMSA) studies were carried out to determine whether common variation affected protein-DNA binding and several binding activities were found using this technique. A novel two base-pair deletion that is common in most populations tested, but is not present in Europeans, caused no change in binding activity. However, a previously published C to T transition at -958bp dramatically reduced binding activity, although the functional significance of this is not clear. PMID:10573012

  5. Mechanism of How Salt-Gradient-Induced Charges Affect the Translocation of DNA Molecules through a Nanopore

    PubMed Central

    He, Yuhui; Tsutsui, Makusu; Scheicher, Ralph H.; Fan, Chun; Taniguchi, Masateru; Kawai, Tomoji

    2013-01-01

    Experiments using nanopores demonstrated that a salt gradient enhances the capture rate of DNA and reduces its translocation speed. These two effects can help to enable electrical DNA sequencing with nanopores. Here, we provide a quantitative theoretical evaluation that shows the positive net charges, which accumulate around the pore entrance due to the salt gradient, are responsible for the two observed effects: they reinforce the electric capture field, resulting in promoted molecule capture rate; and they induce cationic electroosmotic flow through the nanopore, thus significantly retarding the motion of the anionic DNA through the nanopore. Our multiphysical simulation results show that, during the polymer trapping stage, the former effect plays the major role, thus resulting in promoted DNA capture rate, while during the nanopore-penetrating stage the latter effect dominates and consequently reduces the DNA translocation speed significantly. Quantitative agreement with experimental results has been reached by further taking nanopore wall surface charges into account. PMID:23931325

  6. The yield and quality of cellular and bacterial DNA extracts from human oral rinse samples are variably affected by the cell lysis methodology.

    PubMed

    Sohrabi, Mohsen; Nair, Raj G; Samaranayake, Lakshman P; Zhang, Li; Zulfiker, Abu Hasanat Md; Ahmetagic, Adnan; Good, David; Wei, Ming Q

    2016-03-01

    Recent culture-independent studies have enabled detailed mapping of human microbiome that has not been hitherto achievable by culture-based methods. DNA extraction is a key element of bacterial culture-independent studies that critically impacts on the outcome of the detected microbial profile. Despite the variations in DNA extraction methods described in the literature, no standardized technique is available for the purpose of microbiome profiling. Hence, standardization of DNA extraction methods is urgently needed to yield comparable data from different studies. We examined the effect of eight different cell lysis protocols on the yield and quality of the extracted DNA from oral rinse samples. These samples were exposed to cell lysis techniques based on enzymatic, mechanical, and a combination of enzymatic-mechanical methods. The outcome measures evaluated were total bacterial population, Firmicutes levels and human DNA contamination (in terms of surrogate GAPDH levels). We noted that all three parameters were significantly affected by the method of cell lysis employed. Although the highest yield of gDNA was obtained using lysozyme-achromopeptidase method, the lysozyme-zirconium beads method yielded the peak quantity of total bacterial DNA and Firmicutes with a lower degree of GAPDH contamination compared with the other methods. Taken together our data clearly points to an urgent need for a consensus, standardized DNA extraction technique to evaluate the oral microbiome using oral rinse samples. Further, if Firmicutes levels are the focus of investigation in oral rinse microbiome analyses then the lysozyme-zirconium bead method would be the method of choice in preference to others. PMID:26812577

  7. The ERCC2/XPD Lys751Gln polymorphism affects DNA repair of benzo[a]pyrene induced damage, tested in an in vitro model.

    PubMed

    Xiao, Sha; Cui, Su; Lu, Xiaobo; Guan, Yangyang; Li, Dandan; Liu, Qiufang; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; van der Straaten, Tahar

    2016-08-01

    Nucleotide excision repair (NER) is an important defense mechanism of the body to exogenous carcinogens and mutagens, such as benzo[a]pyrene (B[a]P). Genetic polymorphisms in ERCC2/XPD, a critical element in NER, are thought to be associated with individual's cancer susceptibility. Although ERCC2/XPD Lys751Gln (rs13181) is the most studied polymorphism, the impact of this polymorphism on DNA repair capacity to carcinogen remains unclear. In the present study, cDNA clones carrying different genotypes of ERCC2/XPD (Lys751Gln) were introduced into an ERCC2/XPD deficient cell line (UV5) in a well-controlled biological system. After B[a]P treatment, cell growth inhibition rates and DNA damage levels in all cells were detected respectively. As expected, we found that the DNA repair capacity in UV5 cells was restored to levels similar to wildtype parent AA8 cells upon introduction of the cDNA clone of ERCC2/XPD (Lys751). Interestingly, after B[a]P treatment, transfected cells expressing variant ERCC2/XPD (751Gln) showed an enhanced cellular sensitivity and a diminished DNA repair capacity. The wildtype genotype AA (Lys) was found to be associated with a higher DNA repair capacity as compared to its polymorphic genotype CC (Gln). These data indicate that ERCC2/XPD Lys751Gln polymorphism affects DNA repair capacity after exposure to environmental carcinogens such as B[a]P in this well-controlled in vitro system and could act as a biomarker to increase the predictive value to develop cancer. PMID:27139774

  8. Factors affecting the transformation of Escherichia coli strain chi1776 by pBR322 plasmid DNA.

    PubMed

    Norgard, M V; Keem, K; Monahan, J J

    1978-07-01

    The susceptibility of E. coli strain chi1776 to transformation by pBR322 plasmid DNA was examined and optimized. Maximum transformation to tetracycline (Tc) resistance was achieved when cells were harvested from L broth at 5.0--6.0 . 10(7) cfu/ml, followed by washing twice in cold 0.1 M NaCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6. Cells grown in the presence of D-cycloserine (Cyc) rather than nalidixic acid (Nx) transformed markedly better. The presence of 5 mM Mg2+ ions in washing and CaCl2 solutions stimulated transformation about 2-fold. Optimal conditions for transformation included a pH range of 7.25-7.75 and a cell-to-DNA ratio of about 1.6 . 10(8) cfu/ng plasmid DNA. The frequency of transformation was highest when cells were exposed to 100 mM CaCl2 in 250 mM KCl + 5 mM MgCl2 + 5 mM Tris, pH 7.6, before mixing with DNA. A 60 min incubation period for cell + DNA mixtures held on ice produced the maximum number of Tcr transformants. In our hands, heat shocks at 37 degrees C or 42 degrees C for various times all decreased transformation to about one-half of optimal levels. Furthermore, the recovery of transformants was best when cell + DNA mixtures were plated on precooled (4 degrees C) Tc agar plates. The efficiency of plating was optimum when only 5 microliter of cell + DNA mixture was spread per plate, suggesting that non-viable background chi1776 cells on selective medium inhibited the recovery of transformants. It was also found that the presence of linear DNA molecules in cell + DNA mixtures markedly inhibited the transformation of chi1776 by pBR322 plasmid DNA. On the basis of these findings, a new procedure for the plasmid-specific transformation of E. coli chi1776 by pBR322 plasmid DNA is proposed. The use of this technique has allowed us to attain transformation frequencies in excess of 10(7) transformants/microgram pBR322 plasmid DNA. PMID:365684

  9. Uptake, distribution, and formation of hemoglobin and DNA adducts after inhalation of C2-C8 1-alkenes (olefins) in the rat.

    PubMed

    Eide, I; Hagemann, R; Zahlsen, K; Tareke, E; Törnqvist, M; Kumar, R; Vodicka, P; Hemminki, K

    1995-07-01

    Absorption, distribution, elimination and hemoglobin and DNA adduct formation were studied in the rat after inhalation of individual C2-C8 1-alkenes (olefins) at 300 p.p.m., 12 h a day for 3 consecutive days. The concentrations of olefins were measured in blood, lung, brain, liver, kidney and perirenal fat immediately after each exposure and 12 h after the third exposure. DNA adducts were determined by 32P-postlabeling in liver, and lymphocytes sampled immediately after the last exposure. Hemoglobin adducts were determined by GC/MS and GC/MS/MS in erythrocytes sampled immediately after the last exposure. Concentrations of 1-alkenes in blood and organs reached a steady-state level after the first 12 h exposure, and the concentrations 12 h after the last exposure were generally low, except in fat tissue. Concentrations of 1-alkenes in blood and the different tissues increased with increasing number of carbon atoms. In contrast, levels of hemoglobin and DNA adducts decreased with increasing number of carbon atoms. The decrease was most pronounced from C2 to C3. The decrease through the whole homologous series from ethene to 1-octene was most pronounced for hemoglobin adducts followed by the DNA adducts in the lymphocytes. All 1-alkenes caused formation of detectable levels of hemoglobin and DNA adducts, although the levels of hemoglobin adducts after C4-C8 exposure were low. The project illustrates important aspects of the use of biomarkers. The structure-activity approach gives possibilities for extrapolation within the homologous series. PMID:7614695

  10. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity.

    PubMed

    Butler, Kimberly S; Peeler, David J; Casey, Brendan J; Dair, Benita J; Elespuru, Rosalie K

    2015-07-01

    The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed. PMID:25964273

  11. Silver nanoparticles: correlating nanoparticle size and cellular uptake with genotoxicity

    PubMed Central

    Butler, Kimberly S.; Peeler, David J.; Casey, Brendan J.; Dair, Benita J.; Elespuru, Rosalie K.

    2015-01-01

    The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed. PMID:25964273

  12. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5.

    PubMed

    Svennerstam, Henrik; Ganeteg, Ulrika; Näsholm, Torgny

    2008-01-01

    * Specific transporters mediate uptake of amino acids by plant roots. Earlier studies have indicated that the lysine histidine transporter 1 and amino acid permease 1 participate in this process, but although plant roots have been shown to absorb cationic amino acids with high affinity, neither of these transporters seems to mediate transport of L-arginine (L-Arg) or L-lysine (L-Lys). * Here, a collection of T-DNA knockout mutants were screened for alterations in Arabidopsis root uptake rates of L-Arg and it was found that only the AAP5 mutant displayed clear phenotypic divergence on high concentrations of L-Arg. A second screen using low concentrations of (15)N-labelled L-Arg in the growth media also identified AAP5 as being involved in L-Arg acquisition. * Momentaneous root uptake of basic amino acids was strongly affected in AAP5 mutant lines, but their uptake of other types of amino acids was only marginally affected. Comparisons of the root uptake characteristics of AAP5 and LHT1 mutants corroborated the hypothesis that the two transporters have distinct affinity spectra in planta. * Root uptake of all tested amino acids, except L-aspartic acid (L-Asp), was significantly affected in double AAP5*LHT1 mutants, suggesting that these two transporters account for a major proportion of roots' uptake of amino acids at low concentrations. PMID:18681934

  13. Specific interactions between lactose repressor protein and DNA affected by ligand binding: ab initio molecular orbital calculations.

    PubMed

    Ohyama, Tatsuya; Hayakawa, Masato; Nishikawa, Shin; Kurita, Noriyuki

    2011-06-01

    Transcription mechanisms of gene information from DNA to mRNA are essentially controlled by regulatory proteins such as a lactose repressor (LacR) protein and ligand molecules. Biochemical experiments elucidated that a ligand binding to LacR drastically changes the mechanism controlled by LacR, although the effect of ligand binding has not been clarified at atomic and electronic levels. We here investigated the effect of ligand binding on the specific interactions between LacR and operator DNA by the molecular simulations combined with classical molecular mechanics and ab initio fragment molecular orbital methods. The results indicate that the binding of anti-inducer ligand strengthens the interaction between LacR and DNA, which is consistent with the fact that the binding of anti-inducer enhances the repression of gene transcription by LacR. It was also elucidated that hydrating water molecules existing between LacR and DNA contribute to the specific interactions between LacR and DNA. PMID:21328406

  14. 17β-Hydroxysteroid dehydrogenase type 10 predicts survival of patients with colorectal cancer and affects mitochondrial DNA content.

    PubMed

    Amberger, Albert; Deutschmann, Andrea J; Traunfellner, Pia; Moser, Patrizia; Feichtinger, René G; Kofler, Barbara; Zschocke, Johannes

    2016-04-28

    Mitochondrial energy production is reduced in tumor cells, and altered mitochondrial respiration contributes to tumor progression. Synthesis of proteins coded by mitochondrial DNA (mtDNA) requires the correct processing of long polycistronic precursor RNA molecules. Mitochondrial RNase P, composed of three different proteins (MRPP1, HSD10, and MRPP3), is necessary for correct RNA processing. Here we analyzed the role of RNase P proteins in colorectal cancer. High HSD10 expression was found in 28%; high MRPP1 expression in 40% of colorectal cancers, respectively. Expression of both proteins was not significantly associated with clinicopathological parameters. Survival analysis revealed that loss of HSD10 expression is associated with poor prognosis. Cox regression demonstrated that patients with high HSD10 tumors are at lower risk. High HSD10 expression was significantly associated with high mtDNA content in tumor tissue. A causal effect of HSD10 overexpression or knock down with increased or reduced mtDNA levels, respectively, was confirmed in tumor cell lines. Our data suggest that HSD10 plays a role in alterations of energy metabolism by regulating mtDNA content in colorectal carcinomas, and HSD10 protein analysis may be of prognostic value. PMID:26884257

  15. DNA Extraction Method Affects the Detection of a Fungal Pathogen in Formalin-Fixed Specimens Using qPCR.

    PubMed

    Adams, Andrea J; LaBonte, John P; Ball, Morgan L; Richards-Hrdlicka, Kathryn L; Toothman, Mary H; Briggs, Cheryl J

    2015-01-01

    Museum collections provide indispensable repositories for obtaining information about the historical presence of disease in wildlife populations. The pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has played a significant role in global amphibian declines, and examining preserved specimens for Bd can improve our understanding of its emergence and spread. Quantitative PCR (qPCR) enables Bd detection with minimal disturbance to amphibian skin and is significantly more sensitive to detecting Bd than histology; therefore, developing effective qPCR methodologies for detecting Bd DNA in formalin-fixed specimens can provide an efficient and effective approach to examining historical Bd emergence and prevalence. Techniques for detecting Bd in museum specimens have not been evaluated for their effectiveness in control specimens that mimic the conditions of animals most likely to be encountered in museums, including those with low pathogen loads. We used American bullfrogs (Lithobates catesbeianus) of known infection status to evaluate the success of qPCR to detect Bd in formalin-fixed specimens after three years of ethanol storage. Our objectives were to compare the most commonly used DNA extraction method for Bd (PrepMan, PM) to Macherey-Nagel DNA FFPE (MN), test optimizations for Bd detection with PM, and provide recommendations for maximizing Bd detection. We found that successful detection is relatively high (80-90%) when Bd loads before formalin fixation are high, regardless of the extraction method used; however, at lower infection levels, detection probabilities were significantly reduced. The MN DNA extraction method increased Bd detection by as much as 50% at moderate infection levels. Our results indicate that, for animals characterized by lower pathogen loads (i.e., those most commonly encountered in museum collections), current methods may underestimate the proportion of Bd-infected amphibians. Those extracting DNA from archived museum

  16. DNA Extraction Method Affects the Detection of a Fungal Pathogen in Formalin-Fixed Specimens Using qPCR

    PubMed Central

    Adams, Andrea J.; LaBonte, John P.; Ball, Morgan L.; Richards-Hrdlicka, Kathryn L.; Toothman, Mary H.; Briggs, Cheryl J.

    2015-01-01

    Museum collections provide indispensable repositories for obtaining information about the historical presence of disease in wildlife populations. The pathogenic amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has played a significant role in global amphibian declines, and examining preserved specimens for Bd can improve our understanding of its emergence and spread. Quantitative PCR (qPCR) enables Bd detection with minimal disturbance to amphibian skin and is significantly more sensitive to detecting Bd than histology; therefore, developing effective qPCR methodologies for detecting Bd DNA in formalin-fixed specimens can provide an efficient and effective approach to examining historical Bd emergence and prevalence. Techniques for detecting Bd in museum specimens have not been evaluated for their effectiveness in control specimens that mimic the conditions of animals most likely to be encountered in museums, including those with low pathogen loads. We used American bullfrogs (Lithobates catesbeianus) of known infection status to evaluate the success of qPCR to detect Bd in formalin-fixed specimens after three years of ethanol storage. Our objectives were to compare the most commonly used DNA extraction method for Bd (PrepMan, PM) to Macherey-Nagel DNA FFPE (MN), test optimizations for Bd detection with PM, and provide recommendations for maximizing Bd detection. We found that successful detection is relatively high (80–90%) when Bd loads before formalin fixation are high, regardless of the extraction method used; however, at lower infection levels, detection probabilities were significantly reduced. The MN DNA extraction method increased Bd detection by as much as 50% at moderate infection levels. Our results indicate that, for animals characterized by lower pathogen loads (i.e., those most commonly encountered in museum collections), current methods may underestimate the proportion of Bd-infected amphibians. Those extracting DNA from archived museum

  17. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III.

    PubMed

    Bonora, Elena; Porcelli, Anna Maria; Gasparre, Giuseppe; Biondi, Annalisa; Ghelli, Anna; Carelli, Valerio; Baracca, Alessandra; Tallini, Giovanni; Martinuzzi, Andrea; Lenaz, Giorgio; Rugolo, Michela; Romeo, Giovanni

    2006-06-15

    Oncocytic tumors are characterized by cells with an aberrant accumulation of mitochondria. To assess mitochondrial function in neoplastic oncocytic cells, we studied the thyroid oncocytic cell line XTC.UC1 and compared it with other thyroid non-oncocytic cell lines. Only XTC.UC1 cells were unable to survive in galactose, a condition forcing cells to rely solely on mitochondria for energy production. The rate of respiration and mitochondrial ATP synthesis driven by complex I substrates was severely reduced in XTC.UC1 cells. Furthermore, the enzymatic activity of complexes I and III was dramatically decreased in these cells compared with controls, in conjunction with a strongly enhanced production of reactive oxygen species. Osteosarcoma-derived transmitochondrial cell hybrids (cybrids) carrying XTC.UC1 mitochondrial DNA (mtDNA) were generated to discriminate whether the energetic failure depended on mitochondrial or nuclear DNA mutations. In galactose medium, XTC.UC1 cybrid clones showed reduced viability and ATP content, similarly to the parental XTC.UC1, clearly pointing to the existence of mtDNA alterations. Sequencing of XTC.UC1 mtDNA identified a frameshift mutation in ND1 and a nonconservative substitution in cytochrome b, two mutations with a clear pathogenic potential. In conclusion, this is the first demonstration that mitochondrial dysfunction of XTC.UC1 is due to a combined complex I/III defect associated with mtDNA mutations, as proven by the transfer of the defective energetic phenotype with the mitochondrial genome into the cybrids. PMID:16778181

  18. Cryopreservation method affects DNA fragmentation in trophectoderm and the speed of re-expansion in bovine blastocysts.

    PubMed

    Inaba, Yasushi; Miyashita, Satoshi; Somfai, Tamás; Geshi, Masaya; Matoba, Satoko; Dochi, Osamu; Nagai, Takashi

    2016-04-01

    This study investigated re-expansion dynamics during culture of bovine blastocysts cryopreserved either by slow-freezing or vitrification. Also, the extent and localization of membrane damage and DNA fragmentation in re-expanded embryos were studied. Frozen-thawed embryos showed a significantly lower re-expansion rate during 24 h of post-thawing culture compared to vitrified embryos. Vitrified embryos reached the maximum level of re-expansion rate by 12 h of culture whereas frozen embryos showed a gradual increase in re-expansion rate by 24 h of culture. When assayed by Hoechst/propidium iodide staining there was no difference in the numbers and ratio of membrane damaged cells between re-expanded frozen and vitrified embryos; however, the extent of membrane damage in blastomeres was significantly higher in both groups compared with non-cryopreserved embryos (control). TUNEL assay combined with differential ICM and TE staining revealed a significantly higher number and ratio of TE cells showing DNA-fragmentation in frozen-thawed re-expanded blastocysts compared to vitrified ones; however, vitrification also resulted in an increased extent of DNA fragmentation in TE cells compared with control blastocysts. In frozen-thawed blastocysts increased extent of DNA fragmentation was associated with reduced numbers and proportion of TE cells compared with vitrified and control embryos. The number and ratio of ICM cells and the extent of DNA fragmentation in ICM did not differ among control, frozen and vitrified groups. In conclusion, compared with vitrified embryos, blastocysts preserved by slow-freezing showed a delayed timing of re-expansion which was associated with an increased frequency of DNA fragmentation in TE cells. PMID:26996887

  19. TET2 Mutations Affect Non-CpG Island DNA Methylation at Enhancers and Transcription Factor-Binding Sites in Chronic Myelomonocytic Leukemia.

    PubMed

    Yamazaki, Jumpei; Jelinek, Jaroslav; Lu, Yue; Cesaroni, Matteo; Madzo, Jozef; Neumann, Frank; He, Rong; Taby, Rodolphe; Vasanthakumar, Aparna; Macrae, Trisha; Ostler, Kelly R; Kantarjian, Hagop M; Liang, Shoudan; Estecio, Marcos R; Godley, Lucy A; Issa, Jean-Pierre J

    2015-07-15

    TET2 enzymatically converts 5-methylcytosine to 5-hydroxymethylcytosine as well as other covalently modified cytosines and its mutations are common in myeloid leukemia. However, the exact mechanism and the extent to which TET2 mutations affect DNA methylation remain in question. Here, we report on DNA methylomes in TET2 wild-type (TET2-WT) and mutant (TET2-MT) cases of chronic myelomonocytic leukemia (CMML). We analyzed 85,134 CpG sites [28,114 sites in CpG islands (CGI) and 57,020 in non-CpG islands (NCGI)]. TET2 mutations do not explain genome-wide differences in DNA methylation in CMML, and we found few and inconsistent differences at CGIs between TET2-WT and TET2-MT cases. In contrast, we identified 409 (0.71%) TET2-specific differentially methylated CpGs (tet2-DMCs) in NCGIs, 86% of which were hypermethylated in TET2-MT cases, suggesting a strikingly different biology of the effects of TET2 mutations at CGIs and NCGIs. DNA methylation of tet2-DMCs at promoters and nonpromoters repressed gene expression. Tet2-DMCs showed significant enrichment at hematopoietic-specific enhancers marked by H3K4me1 and at binding sites for the transcription factor p300. Tet2-DMCs showed significantly lower 5-hydroxymethylcytosine in TET2-MT cases. We conclude that leukemia-associated TET2 mutations affect DNA methylation at NCGI regions containing hematopoietic-specific enhancers and transcription factor-binding sites. PMID:25972343

  20. Abnormal pattern of post-gamma-ray DNA replication in radioresistant fibroblast strains from affected members of a cancer-prone family with Li-Fraumeni syndrome.

    PubMed Central

    Mirzayans, R.; Aubin, R. A.; Bosnich, W.; Blattner, W. A.; Paterson, M. C.

    1995-01-01

    Non-malignant dermal fibroblast strains, cultured from affected members of a Li-Fraumeni syndrome (LFS) family with diverse neoplasms associated with radiation exposure, display a unique increased resistance to the lethal effects of gamma-radiation. In the studies reported here, this radioresistance (RR) trait has been found to correlate strongly with an abnormal pattern of post-gamma-ray DNA replicative synthesis, as monitored by radiolabelled thymidine incorporation and S-phase cell autoradiography. In particular, the time interval between the gamma-ray-induced shutdown of DNA synthesis and its subsequent recovery was greater in all four RR strains examined and the post-recovery replication rate was much higher and was maintained longer than in normal and spousal controls. Alkaline sucrose sedimentation profiles of pulse-labelled cellular DNA indicated that the unusual pattern of DNA replication in irradiated RR strains may be ascribed to anomalies in both replicon initiation and DNA chain elongation processes. Moreover, the RR strain which had previously displayed the highest post-gamma-ray clonogenic survival was found to harbour a somatic (codon 234) mutation (presumably acquired during culture in vitro) in the same conserved region of the p53 tumour-suppressor gene as the germline (codon 245) mutation in the remaining three RR strains from other family members, thus coupling the RR phenotype and abnormal post-gamma-ray DNA synthesis pattern with faulty p53 expression. Significantly, these two aberrant radioresponse end points, along with documented anomalies in c-myc and c-raf-1 proto-oncogenes, are unprecedented among other LFS families carrying p53 germline mutations. We thus speculate that this peculiar cancer-prone family may possess in its germ line a second, as yet unidentified, genetic defect in addition to the p53 mutation. Images Figure 8 PMID:7779715

  1. Improved Pulsed-Field Gel Electrophoresis Procedure for the Analysis of F. columnare Isolates Previously Affected by DNA Degradation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavobacterium columnare is a fresh water bacterium that causes columnaris diseases in over 36 fish species. Intra-species typing of F. columnare can be performed by pulsed-field gel electrophoresis (PFGE). However, this method is hampered by the degradation of chromosomal DNA in about 10% of strain...

  2. Ischemic preconditioning affects long-term cell fate through DNA damage-related molecular signaling and altered proliferation.

    PubMed

    Kapoor, Sorabh; Berishvili, Ekaterine; Bandi, Sriram; Gupta, Sanjeev

    2014-10-01

    Despite the potential of ischemic preconditioning for organ protection, long-term effects in terms of molecular processes and cell fates are ill defined. We determined consequences of hepatic ischemic preconditioning in rats, including cell transplantation assays. Ischemic preconditioning induced persistent alterations; for example, after 5 days liver histology was normal, but γ-glutamyl transpeptidase expression was observed, with altered antioxidant enzyme content, lipid peroxidation, and oxidative DNA adducts. Nonetheless, ischemic preconditioning partially protected from toxic liver injury. Similarly, primary hepatocytes from donor livers preconditioned with ischemia exhibited undesirably altered antioxidant enzyme content and lipid peroxidation, but better withstood insults. However, donor hepatocytes from livers preconditioned with ischemia did not engraft better than hepatocytes from control livers. Moreover, proliferation of hepatocytes from donor livers preconditioned with ischemia decreased under liver repopulation conditions. Hepatocytes from donor livers preconditioned with ischemia showed oxidative DNA damage with expression of genes involved in MAPK signaling that impose G1/S and G2/M checkpoint restrictions, including p38 MAPK-regulated or ERK-1/2-regulated cell-cycle genes such as FOS, MAPK8, MYC, various cyclins, CDKN2A, CDKN2B, TP53, and RB1. Thus, although ischemic preconditioning allowed hepatocytes to better withstand secondary insults, accompanying DNA damage and molecular events simultaneously impaired their proliferation capacity over the long term. Mitigation of ischemic preconditioning-induced DNA damage and deleterious molecular perturbations holds promise for advancing clinical applications. PMID:25128377

  3. Decontamination by Persteril 36 may affect the reliability of DNA-based detection of biological warfare agents-short communication.

    PubMed

    Josefiova, Jirina; Pospisek, Martin; Vanek, Daniel

    2016-09-01

    Persteril 36 is a disinfectant with a broad spectrum of antimicrobial activity. Because of its bactericidal, virucidal, fungicidal, and sporicidal effectiveness, it is used as a disinfectant against biological warfare agents in the emergency and army services. In case of an attack with potentially harmful biological agents, a person's gear or afflicted skin is sprayed with a diluted solution of Persteril 36 as a precaution. Subsequently, the remains of the biological agents are analyzed. However, the question remains concerning whether DNA can be successfully analyzed from Persteril 36-treated dead bacterial cells. Spore-forming Bacillus subtilis and Gram-negative Pseudomonas aeruginosa and Xanthomonas campestris were splattered on a camouflage suit and treated with 2 or 0.2 % Persteril 36. After the disinfectant vaporized, the bacterial DNA was extracted and quantified by real-time PCR. A sufficient amount of DNA was recovered for downstream analysis only in the case of spore-forming B. subtilis treated with a 0.2 % solution of Persteril 36. The bacterial DNA was almost completely destroyed in Gram-negative bacteria or after treatment with the more concentrated solution in B. subtilis. This phenomenon can lead to false-negative results during the identification of harmful microorganisms. PMID:26910525

  4. Factors affecting production of transgenic rats by ICSI-mediated DNA transfer: effects of sonication and freeze-thawing of spermatozoa, rat strains for sperm and oocyte donors, and different constructs of exogenous DNA.

    PubMed

    Hirabayashi, Masumi; Kato, Megumi; Ishikawa, Ayako; Kaneko, Ryosuke; Yagi, Takeshi; Hochi, Shinichi

    2005-04-01

    Factors affecting the efficiency of producing transgenic rats by intracytoplasmic sperm injection (ICSI)-mediated DNA transfer were investigated. Epididymal spermatozoa from Sprague-Dawley (SD) rats were sonicated and/or frozen-thawed for cutting the tail and membrane disruption. The sperm heads were exposed for 1 min to different concentrations (0.02-2.5 microg/ml) of 3.0 kb enhanced green fluorescent protein (EGFP) DNA solution, and then microinjected into the denuded F1 hybrid (Donryu x LEW) rat oocytes. The optimal concentration of EGFP DNA solution was 0.1 microg/ml, as determined by the in vitro developmental competence into morulae/blastocysts of the ICSI oocytes and the EGFP expression of the resultant embryos. The efficiency of producing transgenic rat offspring (per transferred zygote) was 2.8%, 1.6%, and 3.3% in the oocytes injected with sonicated, frozen-thawed, and sonicated + frozen-thawed sperm heads, respectively. The founder transgenic rats carrying the EGFP gene transmitted their transgenes to their progeny according to the Mendelian fashion, suggesting the stable incorporation of the transgenes into the rat genomes. Four rat strains (F344, LEW, Donryu, and SD) were compared for their suitability as sperm/oocyte donors for the production of transgenic rats by ICSI with sonicated, frozen-thawed and solution of EGFP DNA-exposed sperm heads. The efficiency of producing transgenic rats in the SD strain (8.2%) was higher than that in the LEW strain (0.9%), while those in the F344 and Donryu strains (4.3%-4.4%) were intermediate. One plasmid DNA (Fyn, 5.0 kb) and two BAC DNA (BAC/Fyn, 208 kb; Svet1/IRES-Cre, 186 kb) were successfully introduced into the SD rat genomes via ICSI, with the producing efficiencies of 2.8%, 0.9%, and 2.4%, respectively. PMID:15685640

  5. Mutations Affecting Potassium Import Restore the Viability of the Escherichia coli DNA Polymerase III holD Mutant.

    PubMed

    Durand, Adeline; Sinha, Anurag Kumar; Dard-Dascot, Cloelia; Michel, Bénédicte

    2016-06-01

    Mutants lacking the ψ (HolD) subunit of the Escherichia coli DNA Polymerase III holoenzyme (Pol III HE) have poor viability, but a residual growth allows the isolation of spontaneous suppressor mutations that restore ΔholD mutant viability. Here we describe the isolation and characterization of two suppressor mutations in the trkA and trkE genes, involved in the main E. coli potassium import system. Viability of ΔholD trk mutants is abolished on media with low or high K+ concentrations, where alternative K+ import systems are activated, and is restored on low K+ concentrations by the inactivation of the alternative Kdp system. These findings show that the ΔholD mutant is rescued by a decrease in K+ import. The effect of trk inactivation is additive with the previously identified ΔholD suppressor mutation lexAind that blocks the SOS response indicating an SOS-independent mechanism of suppression. Accordingly, although lagging-strand synthesis is still perturbed in holD trkA mutants, the trkA mutation allows HolD-less Pol III HE to resist increased levels of the SOS-induced bypass polymerase DinB. trk inactivation is also partially additive with an ssb gene duplication, proposed to stabilize HolD-less Pol III HE by a modification of the single-stranded DNA binding protein (SSB) binding mode. We propose that lowering the intracellular K+ concentration stabilizes HolD-less Pol III HE on DNA by increasing electrostatic interactions between Pol III HE subunits, or between Pol III and DNA, directly or through a modification of the SSB binding mode; these three modes of action are not exclusive and could be additive. To our knowledge, the holD mutant provides the first example of an essential protein-DNA interaction that strongly depends on K+ import in vivo. PMID:27280472

  6. Mutations Affecting Potassium Import Restore the Viability of the Escherichia coli DNA Polymerase III holD Mutant

    PubMed Central

    Durand, Adeline

    2016-01-01

    Mutants lacking the ψ (HolD) subunit of the Escherichia coli DNA Polymerase III holoenzyme (Pol III HE) have poor viability, but a residual growth allows the isolation of spontaneous suppressor mutations that restore ΔholD mutant viability. Here we describe the isolation and characterization of two suppressor mutations in the trkA and trkE genes, involved in the main E. coli potassium import system. Viability of ΔholD trk mutants is abolished on media with low or high K+ concentrations, where alternative K+ import systems are activated, and is restored on low K+ concentrations by the inactivation of the alternative Kdp system. These findings show that the ΔholD mutant is rescued by a decrease in K+ import. The effect of trk inactivation is additive with the previously identified ΔholD suppressor mutation lexAind that blocks the SOS response indicating an SOS-independent mechanism of suppression. Accordingly, although lagging-strand synthesis is still perturbed in holD trkA mutants, the trkA mutation allows HolD-less Pol III HE to resist increased levels of the SOS-induced bypass polymerase DinB. trk inactivation is also partially additive with an ssb gene duplication, proposed to stabilize HolD-less Pol III HE by a modification of the single-stranded DNA binding protein (SSB) binding mode. We propose that lowering the intracellular K+ concentration stabilizes HolD-less Pol III HE on DNA by increasing electrostatic interactions between Pol III HE subunits, or between Pol III and DNA, directly or through a modification of the SSB binding mode; these three modes of action are not exclusive and could be additive. To our knowledge, the holD mutant provides the first example of an essential protein-DNA interaction that strongly depends on K+ import in vivo. PMID:27280472

  7. The ability of Hepatitis B surface antigen DNA vaccine to elicit cell-mediated immune responses, but not antibody responses, was affected by the deglysosylation of S antigen.

    PubMed

    Xing, Yiping; Huang, Zuhu; Lin, Yan; Li, Jun; Chou, Te-Hui; Lu, Shan; Wang, Shixia

    2008-09-19

    Hepatitis B Virus (HBV) infection remains a major worldwide infectious disease with serious long-term morbidity and mortality. The limited selections of drug treatment are not able to control the progress of disease in people with active and persistent HBV infection. Immunotherapy to control the degree of viral infection is one possible alternative solution to this challenge. HBV DNA vaccines, with their strong ability to induce cell-mediated immune responses, offer an attractive option. HBV surface protein is important in viral immunity. Re-establishing anti-S immunity in chronic HBV infected patients will bring significant benefit to the patients. Previous studies have shown that HBV S DNA vaccines are immunogenic in a number of animal studies. In the current study, we further investigated the effect of glycosylation to the expression and immunogenicity of S DNA vaccines. Our results demonstrate that deglycosylation at the two potential N-linked glycosylation sites in S protein resulted in a significant decrease of S-specific cell-mediated immune responses, but did not affect anti-S antibody responses. This finding provides important direction to the development of S DNA vaccines to elicit the optimal and balanced antibody and cell-mediated immune responses to treat people with HBV chronic infections. PMID:18462847

  8. Secretion of dengue virus envelope protein ectodomain from mammalian cells is dependent on domain II serotype and affects the immune response upon DNA vaccination.

    PubMed

    Slon Campos, J L; Poggianella, M; Marchese, S; Bestagno, M; Burrone, O R

    2015-11-01

    Dengue virus (DENV) is currently among the most important human pathogens and affects millions of people throughout the tropical and subtropical regions of the world. Although it has been a World Health Organization priority for several years, there is still no efficient vaccine available to prevent infection. The envelope glycoprotein (E), exposed on the surface on infective viral particles, is the main target of neutralizing antibodies. For this reason it has been used as the antigen of choice for vaccine development efforts. Here we show a detailed analysis of factors involved in the expression, secretion and folding of E ectodomain from all four DENV serotypes in mammalian cells, and how this affects their ability to induce neutralizing antibody responses in DNA-vaccinated mice. Proper folding of E domain II (DII) is essential for efficient E ectodomain secretion, with DIII playing a significant role in stabilizing soluble dimers. We also show that the level of protein secreted from transfected cells determines the strength and efficiency of antibody responses in the context of DNA vaccination and should be considered a pivotal feature for the development of E-based DNA vaccines against DENV. PMID:26358704

  9. DIETARY ARSENITE AFFECTS DIMETHYLHYDRAZINE (DMH)-INDUCED ABERRANT CRYPT FORMATION IN COLON AND GLOBAL DNA METHYLATION IN LIVER OF RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous work has shown that arsenic (As) affects methionine metabolism. Alterations in methionine metabolism can affect cancer processes. To determine the effect of dietary As on DMH-induced aberrant crypt formation in colon Fisher-344 male, weanling rats (N=20/group) were fed diets containing 0, 0...

  10. STAT3 regulated ATR via microRNA-383 to control DNA damage to affect apoptosis in A431 cells.

    PubMed

    Liao, Xing-Hua; Zheng, Li; He, Hong-Peng; Zheng, De-Liang; Wei, Zhao-Qiang; Wang, Nan; Dong, Jian; Ma, Wen-Jian; Zhang, Tong-Cun

    2015-11-01

    Skin cancer is a major cause of morbidity and mortality worldwide. Mounting evidence shows that exposure of the skin to solar UV radiation results in inflammation, oxidative stress, DNA damage, dysregulation of cellular signaling pathways and immunosuppression thereby resulting in skin cancer. Signal transducer and activator of transcription 3 (STAT3) is well known to function as an anti-apoptotic factor, especially in numerous malignancies, but the relationship between STAT3 activation and DNA damage response in skin cancer is still not fully understood. We now report that STAT3 inhibited DNA damage induced by UV and STAT3 mediated upregulation of GADD45γ and MDC-1 and the phosphorylation of H2AX in UV induced DNA damage. Notably, STAT3 can increase the expression of ATR in A431 cells. Luciferase assay shows that STAT3 activates the transcription of ATR promoter. More importantly, microRNA-383 suppressed ATR expression by targeting 3' (untranslated regions)UTR of ATR in A431 cells, and STAT3 down-regulates the transcription of miR-383 promoter. Thus, these results reveal the new insight that ATR is down-regulated by STAT3-regulated microRNA-383 in A431 cells. Moreover, overexpression of STAT3 enhanced expression of antiapoptosis genes BCL-1 and MCL-1, and depletion of STAT3 sensitized A431 cells to apoptotic cell death following UV. Collectively, these studies suggest that STAT3 may be a potential target for both the prevention and treatment of human skin cancer. PMID:26261078

  11. Argonaute Proteins Affect siRNA Levels and Accumulation of a Novel Extrachromosomal DNA from the Dictyostelium Retrotransposon DIRS-1*

    PubMed Central

    Boesler, Benjamin; Meier, Doreen; Förstner, Konrad U.; Friedrich, Michael; Hammann, Christian; Sharma, Cynthia M.; Nellen, Wolfgang

    2014-01-01

    The retrotransposon DIRS-1 is the most abundant retroelement in Dictyostelium discoideum and constitutes the pericentromeric heterochromatin of the six chromosomes in D. discoideum. The vast majority of cellular siRNAs is derived from DIRS-1, suggesting that the element is controlled by RNAi-related mechanisms. We investigated the role of two of the five Argonaute proteins of D. discoideum, AgnA and AgnB, in DIRS-1 silencing. Deletion of agnA resulted in the accumulation of DIRS-1 transcripts, the expression of DIRS-1-encoded proteins, and the loss of most DIRS-1-derived secondary siRNAs. Simultaneously, extrachromosomal single-stranded DIRS-1 DNA accumulated in the cytoplasm of agnA− strains. These DNA molecules appear to be products of reverse transcription and thus could represent intermediate structures before transposition. We further show that transitivity of endogenous siRNAs is impaired in agnA− strains. The deletion of agnB alone had no strong effect on DIRS-1 transposon regulation. However, in agnA−/agnB− double mutant strains strongly reduced accumulation of extrachromosomal DNA compared with the single agnA− strains was observed. PMID:25352599

  12. Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

    PubMed Central

    Smykowski, Anja; Fischer, Stefan M.; Zentgraf, Ulrike

    2015-01-01

    Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers the onset of leaf senescence, suggesting posttranscriptional mechanisms for senescence-specific GBF1 activation. Here we show that GBF1 is phosphorylated by the threonine/serine CASEIN KINASE II (CKII) in vitro and that CKII phosphorylation had a negative effect on GBF1 DNA-binding to G-boxes of two direct target genes, CATALASE2 and RBSCS1a. Phosphorylation mimicry at three serine positions in the basic region of GBF1 also had a negative effect on DNA-binding. Kinase assays revealed that CKII phosphorylates at least one serine in the basic domain but has additional phosphorylation sites outside this domain. Two different ckII α subunit1 and one α subunit2 T-DNA insertion lines showed no visible senescence phenotype, but in all lines the expression of the senescence marker gene SAG12 was remarkably diminished. A model is presented suggesting that senescence-specific GBF1 activation might be achieved by lowering the phosphorylation of GBF1 by CKII. PMID:27135347

  13. Phenolic composition and inhibitory effect against oxidative DNA damage of cooked cowpeas as affected by simulated in vitro gastrointestinal digestion.

    PubMed

    Nderitu, Alice M; Dykes, Linda; Awika, Joseph M; Minnaar, Amanda; Duodu, Kwaku G

    2013-12-01

    Cowpeas contain phenolic compounds with potential health benefits. The effect of simulated gastrointestinal digestion on phenolic composition of cooked cowpeas and the ability of the digests to inhibit radical-induced DNA damage was determined. A red and a cream-coloured cowpea type were used. The phenolic composition of acetone extracts and enzyme digests of cooked cowpeas was determined using UPLC-MS. Compounds such as p-hydroxybenzoic acid, p-coumaric acid, coumaroylaldaric acid and feruloylaldaric acid were present in the acetone extracts of the cooked cowpeas but were not detected in the enzyme digests. Glycosides of quercetin and myricetin decreased upon in vitro gastrointestinal digestion of cooked cowpeas whereas flavan-3-ols were hardly present except catechin glucoside. The enzyme digest of the red cowpea type was about thrice as effective as that of the cream cowpea type in protecting DNA from oxidative damage. The observation that enzyme digests of cooked cowpeas inhibited radical-induced DNA damage suggests that cowpea phenolics retain some radical scavenging activity after gastrointestinal digestion. PMID:23870889

  14. Extrachromosomal homologous DNA recombination in plant cells is fast and is not affected by CpG methylation.

    PubMed Central

    Puchta, H; Kocher, S; Hohn, B

    1992-01-01

    Using a sensitive transient assay, we investigated extrachromosomal homologous DNA recombination (ECR) in plant cells. As the plant genome is highly C methylated, we addressed the question of whether CpG methylation has an influence on DNA recombination efficiencies. Whereas the expression level of the fully CpG-methylated DNA molecules was reduced drastically, we found no significant changes in ECR efficiencies between two partly CpG-methylated plasmids or between one fully CpG-methylated and one nonmethylated plasmid. Using a modified polymerase chain reaction analysis, we were able to detect recombination between two fully CpG-methylated plasmids. Furthermore, we characterized the kinetics of the ECR reaction. Cotransfection of plasmids carrying truncated copies of the beta-glucuronidase (GUS) gene resulted in enzyme activity with a delay of only half an hour compared with that of the plasmid carrying the functional marker gene. This indicates that the ECR reaction itself requires no more than 30 min. By polymerase chain reaction, we were able to detect the recombined GUS gene as early as 2 h after transfection. This result and the time course of the transient GUS activity indicate that ECR occurs mainly early after transfection. The biological significance of this finding is discussed, and properties of ECR and intrachromosomal recombination are compared. Images PMID:1630452

  15. Factors affecting efficiency of introducing foreign DNA and RNA into parthenogenetic or in vitro-fertilized porcine eggs by cytoplasmic microinjection.

    PubMed

    Liu, Shuai; Liu, XiaoQun; Huang, HaiYan; Liu, QingYou; Su, XiaoPing; Zhu, Peng; Li, HongLi; Cui, KuiQing; Xie, BingKun; Shi, DeShun

    2016-08-01

    Cytoplasmic microinjection (CI) of foreign gene into in vivo fertilized zygotes has emerged as a useful tool for transgenic pig production. In the current study, we investigated factors affecting transgenic efficiency and developmental potential of parthenogenetic (PA) and in vitro-fertilized (IVF) porcine embryos produced by CI. These factors included adding of RNase inhibitor, DNA or RNA concentration, injection time, and different structures of plasmids. Our results showed that adding of 1-4 U/μL of RNase inhibitor did not have negative effect on development potential of CI-PA embryos, and RNase inhibitor injection significantly increased EGFP expressing rate of CI-PA embryos. High injection DNA concentration and long injection interval after PA significantly reduced blastocyst formation. Different molecular structures such as DNA or RNA affected CI-PA embryos development, and RNA had little harmful effect on pig's early embryonic development. EGFP expression rate of CI-IVF embryos was improved following the increase of foreign DNA concentration, but blastocyst formation rate was decreased. Injection time after IVF did not show any significant difference on embryonic development, but longer interval resulted in a significantly lower EGFP expressing rate. Cas9 mRNA and myostatin (GDF-8) sgRNA co-injection indicated that the mutation rate of CI-IVF group was significantly higher than that of CI-PA. The CI-IVF-generated embryos were then transferred to six recipient pigs, but no live piglets were obtained. The following pronuclear formation assessment showed more than 76.1% IVF zygotes were polyspermy. These results demonstrate that CI-PA and CI-IVF were effective methods for production of transgenic pig embryos. However, polyspermic fertilization and poor quality of porcine IVF blastocysts are still the main problem of resulting in pregnancy failure. PMID:27130683

  16. Dme-miR-314-3p modulation in Cr(VI) exposed Drosophila affects DNA damage repair by targeting mus309.

    PubMed

    Chandra, Swati; Khatoon, Rehana; Pandey, Ashutosh; Saini, Sanjay; Vimal, Divya; Singh, Pallavi; Chowdhuri, D Kar

    2016-03-01

    microRNAs (miRNAs) as one of the major epigenetic modulators negatively regulate mRNAs at post transcriptional level. It was therefore hypothesized that modulation of miRNAs by hexavalent Chromium [Cr(VI)], a priority environmental chemical, can affect DNA damage. In a genetically tractable model, Drosophila melanogaster, role of maximally up-regulated miRNA, dme-miR-314-3p, on DNA damage was examined by exposing the third instar larvae to 5.0-20.0 μg/ml Cr(VI) for 24 and 48 h. mus309, a Drosophila homologue of human Bloom's syndrome and predicted as one of the potential targets of this miRNA, was confirmed as its target by 5'RLM-RACE assay. A significant down-regulation of mus309 was observed in dme-miR-314-3p overexpression strain (myo-gal4>UAS-miR-314-3p) as compared with that in parental strains (myo-gal4 and UAS-miR-314-3p) and in w(1118). A significant increase in DNA damage including double strand breaks generation was observed in exposed myo-gal4>UAS-miR-314 and mus309 mutants as compared with that in parental strain and in unexposed control. A significant down-regulation of cell cycle regulation genes (CycA, CycB and cdc2) was observed in these exposed genotypes. Collectively, the study demonstrates that dme-miR-314-3p can mediate the downregulation of repair deficient gene mus309 leading to increased DNA damage and cell cycle arrest in exposed organism which may affect Cr(VI) mediated carcinogenesis. PMID:26590872

  17. Synthesis, characterization, cellular uptake and interaction with native DNA of a bis(pyridyl)-1,2,4-oxadiazole copper(II) complex.

    PubMed

    Terenzi, Alessio; Barone, Giampaolo; Piccionello, Antonio Palumbo; Giorgi, Gianluca; Guarcello, Annalisa; Portanova, Patrizia; Calvaruso, Giuseppe; Buscemi, Silvestre; Vivona, Nicolò; Pace, Andrea

    2010-10-14

    The copper(II) complex of 3,5-bis(2'-pyridyl)-1,2,4-oxadiazole was synthesized and characterized. X-Ray crystallography revealed that the complex consists of a discrete [Cu(3,5-bis(2'-pyridyl)-1,2,4-oxadiazole)(2)(H(2)O)(2)](2+) cation and two ClO(4)(-) anions. The Cu(II) coordination sphere has a distorted octahedral geometry and each ligand chelates the copper ion through the N(4) nitrogen of the oxadiazole ring and the nitrogen of one pyridine moiety. The coordinated water molecules are in cis position and each of them is H-bonded to the 5-pyridyl nitrogen of the oxadiazole ligand and to an oxygen of the perchlorate anion. Biological assays showed that, despite the free ligand not being effective, [Cu(3,5-bis(2'-pyridyl)-1,2,4-oxadiazole)(2)(H(2)O)(2)](2+) reduced the vitality of human hepatoblastoma HepG2 and colorectal carcinoma HT29 cells in a dose- and time-dependent manner. The interaction of the cationic copper complex with native DNA was investigated by variable-temperature UV-vis spectroscopy, circular dichroism, viscosity and gel electrophoresis, indicating that it is a groove binder with binding constant K(b) = 2.2 × 10(4) M(-1). PMID:20820603

  18. Identification and hydropathic characterization of structural features affecting sequence specificity for doxorubicin intercalation into DNA double-stranded polynucleotides.

    PubMed

    Kellogg, G E; Scarsdale, J N; Fornari, F A

    1998-10-15

    The computer molecular modeling program HINT (Hydropathic INTeractions), an empirical hydropathic force field function that includes hydrogen bonding, coulombic and hydrophobic terms, was used to study sequence-selective doxorubicin binding/intercalation in the 64 unique CAxy, CGxy, TAxy, TGxy base pair quartet combinations. The CAAT quartet sequence is shown to have the highest binding score of the 64 combinations. Of the two regularly alternating polynucleotides, d(CGCGCG)2and d(TATATA)2, the HINT calculated binding scores reveal doxorubicin binds preferentially to d(TATATA)2. Although interactions of the chromophore with the DNA base pairs defining the intercalation site [I-1] [I+1] and the neighboring [I+2] base pair are predominant, the results obtained with HINT indicate that the base pair [I+3] contributes significantly to the sequence selectivity of doxorubicin by providing an additional hydrogen bonding opportunity for the N3' ammonium of the daunosamine sugar moiety in approximately 25% of the sequences. This observation, that interactions involving a base pair [I+3] distal to the intercalation site play a significant role in stabilizing/destabilizing the intercalation of doxorubicin into the various DNA sequences, has not been previously reported. In general terms, this work shows that molecular modeling and careful analysis of molecular interactions can have a significant role in designing and evaluating nucleotides and antineoplastic agents. PMID:9753742

  19. Identification and hydropathic characterization of structural features affecting sequence specificity for doxorubicin intercalation into DNA double-stranded polynucleotides.

    PubMed Central

    Kellogg, G E; Scarsdale, J N; Fornari, F A

    1998-01-01

    The computer molecular modeling program HINT (Hydropathic INTeractions), an empirical hydropathic force field function that includes hydrogen bonding, coulombic and hydrophobic terms, was used to study sequence-selective doxorubicin binding/intercalation in the 64 unique CAxy, CGxy, TAxy, TGxy base pair quartet combinations. The CAAT quartet sequence is shown to have the highest binding score of the 64 combinations. Of the two regularly alternating polynucleotides, d(CGCGCG)2and d(TATATA)2, the HINT calculated binding scores reveal doxorubicin binds preferentially to d(TATATA)2. Although interactions of the chromophore with the DNA base pairs defining the intercalation site [I-1] [I+1] and the neighboring [I+2] base pair are predominant, the results obtained with HINT indicate that the base pair [I+3] contributes significantly to the sequence selectivity of doxorubicin by providing an additional hydrogen bonding opportunity for the N3' ammonium of the daunosamine sugar moiety in approximately 25% of the sequences. This observation, that interactions involving a base pair [I+3] distal to the intercalation site play a significant role in stabilizing/destabilizing the intercalation of doxorubicin into the various DNA sequences, has not been previously reported. In general terms, this work shows that molecular modeling and careful analysis of molecular interactions can have a significant role in designing and evaluating nucleotides and antineoplastic agents. PMID:9753742

  20. DNA topology affects transcriptional regulation of the pertussis toxin gene of Bordetella pertussis in Escherichia coli and in vitro.

    PubMed Central

    Scarlato, V; Aricò, B; Rappuoli, R

    1993-01-01

    The bvg locus of Bordetella pertussis encodes an environmentally inducible operon essential for the expression of virulence genes. We show that in Escherichia coli, the PTOX promoter cloned in cis of the bvg locus is activated and environmentally regulated. Cotransformation of E. coli with the bvg locus cloned in a low-copy-number plasmid and with the PTOX promoter cloned in a high-copy-number plasmid can give rise to two different results. If the PTOX promoter is cloned in the pGem-3 vector, transcription is absent. If the PTOX promoter is cloned in the plasmid pKK232, containing the PTOX promoter between two ribosomal gene terminators of transcription, transcription occurs, although regulation of transcription is abolished. Under these conditions, the intracellular amount of RNA transcripts is increased by adding to the culture medium novobiocin, an inhibitor of bacterial gyrases. In vitro, the transcription of the PTOX promoter is activated on E. coli RNA polymerase supplemented with cell extracts from wild-type B. pertussis. Addition of DNA gyrase to the mixture dramatically reduces the amount of RNA synthesized. Our data show that the products of the bvg locus, BvgA and BvgS, are directly involved in the regulation of the PTOX promoter in E. coli and that DNA topology may play a role in the induction of transcription. Images PMID:8393006

  1. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair

    PubMed Central

    Penterling, Corina; Drexler, Guido A.; Böhland, Claudia; Stamp, Ramona; Wilke, Christina; Braselmann, Herbert; Caldwell, Randolph B.; Reindl, Judith; Girst, Stefanie; Greubel, Christoph; Siebenwirth, Christian; Mansour, Wael Y.; Borgmann, Kerstin; Dollinger, Günther; Unger, Kristian; Friedl, Anna A.

    2016-01-01

    Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2), on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks. PMID:27253695

  2. Depletion of Histone Demethylase Jarid1A Resulting in Histone Hyperacetylation and Radiation Sensitivity Does Not Affect DNA Double-Strand Break Repair.

    PubMed

    Penterling, Corina; Drexler, Guido A; Böhland, Claudia; Stamp, Ramona; Wilke, Christina; Braselmann, Herbert; Caldwell, Randolph B; Reindl, Judith; Girst, Stefanie; Greubel, Christoph; Siebenwirth, Christian; Mansour, Wael Y; Borgmann, Kerstin; Dollinger, Günther; Unger, Kristian; Friedl, Anna A

    2016-01-01

    Histone demethylases have recently gained interest as potential targets in cancer treatment and several histone demethylases have been implicated in the DNA damage response. We investigated the effects of siRNA-mediated depletion of histone demethylase Jarid1A (KDM5A, RBP2), which demethylates transcription activating tri- and dimethylated lysine 4 at histone H3 (H3K4me3/me2), on growth characteristics and cellular response to radiation in several cancer cell lines. In unirradiated cells Jarid1A depletion lead to histone hyperacetylation while not affecting cell growth. In irradiated cells, depletion of Jarid1A significantly increased cellular radiosensitivity. Unexpectedly, the hyperacetylation phenotype did not lead to disturbed accumulation of DNA damage response and repair factors 53BP1, BRCA1, or Rad51 at damage sites, nor did it influence resolution of radiation-induced foci or rejoining of reporter constructs. We conclude that the radiation sensitivity observed following depletion of Jarid1A is not caused by a deficiency in repair of DNA double-strand breaks. PMID:27253695

  3. Lactation Affects Isolated Mitochondria and Its Fatty Acid Composition but Has No Effect on Tissue Protein Oxidation, Lipid Peroxidation or DNA-Damage in Laboratory Mice

    PubMed Central

    Valencak, Teresa G.; Raith, Johannes; Staniek, Katrin; Gille, Lars; Strasser, Alois

    2016-01-01

    Linking peak energy metabolism to lifespan and aging remains a major question especially when focusing on lactation in females. We studied, if and how lactation affects in vitro mitochondrial oxygen consumption and mitochondrial fatty acid composition. In addition, we assessed DNA damage, lipid peroxidation and protein carbonyls to extrapolate on oxidative stress in mothers. As model system we used C57BL/6NCrl mice and exposed lactating females to two ambient temperatures (15 °C and 22 °C) while they nursed their offspring until weaning. We found that state II and state IV respiration rates of liver mitochondria were significantly higher in the lactating animals than in non-lactating mice. Fatty acid composition of isolated liver and heart mitochondria differed between lactating and non-lactating mice with higher n-6, and lower n-3 polyunsaturated fatty acids in the lactating females. Surprisingly, lactation did not affect protein carbonyls, lipid peroxidation and DNA damage, nor did moderate cold exposure of 15 °C. We conclude that lactation increases rates of mitochondrial uncoupling and alters mitochondrial fatty acid composition thus supporting the “uncoupling to survive” hypothesis. Regarding oxidative stress, we found no impact of lactation and lower ambient temperature and contribute to growing evidence that there is no linear relationship between oxidative damage and lactation. PMID:26805895

  4. The DNA-damage response to γ-radiation is affected by miR-27a in A549 cells.

    PubMed

    Di Francesco, Andrea; De Pittà, Cristiano; Moret, Francesca; Barbieri, Vito; Celotti, Lucia; Mognato, Maddalena

    2013-01-01

    Perturbations during the cell DNA-Damage Response (DDR) can originate from alteration in the functionality of the microRNA-mediated gene regulation, being microRNAs (miRNAs), small non-coding RNAs that act as post-transcriptional regulators of gene expression. The oncogenic miR-27a is over-expressed in several tumors and, in the present study, we investigated its interaction with ATM, the gene coding for the main kinase of DDR pathway. Experimental validation to confirm miR-27a as a direct regulator of ATM was performed by site-direct mutagenesis of the luciferase reporter vector containing the 3'UTR of ATM gene, and by miRNA oligonucleotide mimics. We then explored the functional miR-27a/ATM interaction under biological conditions, i.e., during the response of A549 cells to ionizing radiation (IR) exposure. To evaluate if miR-27a over-expression affects IR-induced DDR activation in A549 cells we determined cell survival, cell cycle progression and DNA double-strand break (DSB) repair. Our results show that up-regulation of miR-27a promotes cell proliferation of non-irradiated and irradiated cells. Moreover, increased expression of endogenous mature miR-27a in A549 cells affects DBS rejoining kinetics early after irradiation. PMID:24002026

  5. DNA Binding by Sgf11 Protein Affects Histone H2B Deubiquitination by Spt-Ada-Gcn5-Acetyltransferase (SAGA)*

    PubMed Central

    Koehler, Christian; Bonnet, Jacques; Stierle, Matthieu; Romier, Christophe; Devys, Didier; Kieffer, Bruno

    2014-01-01

    The yeast Spt-Ada-Gcn5-acetyltransferase (SAGA) complex is a transcription coactivator that contains a histone H2B deubiquitination activity mediated by its Ubp8 subunit. Full enzymatic activity requires the formation of a quaternary complex, the deubiquitination module (DUBm) of SAGA, which is composed of Ubp8, Sus1, Sgf11, and Sgf73. The crystal structures of the DUBm have shed light on the structure/function relationship of this complex. Specifically, both Sgf11 and Sgf73 contain zinc finger domains (ZnF) that appear essential for the DUBm activity. Whereas Sgf73 N-terminal ZnF is important for DUBm stability, Sgf11 C-terminal ZnF appears to be involved in DUBm function. To further characterize the role of these two zinc fingers, we have solved their structure by NMR. We show that, contrary to the previously reported structures, Sgf73 ZnF adopts a C2H2 coordination with unusual tautomeric forms for the coordinating histidines. We further report that the Sgf11 ZnF, but not the Sgf73 ZnF, binds to nucleosomal DNA with a binding interface composed of arginine residues located within the ZnF α-helix. Mutational analyses both in vitro and in vivo provide evidence for the functional relevance of our structural observations. The combined interpretation of our results leads to an uncommon ZnF-DNA interaction between the SAGA DUBm and nucleosomes, thus providing further functional insights into SAGA's epigenetic modulation of the chromatin structure. PMID:24509845

  6. Nuclear α Spectrin Differentially Affects Monoubiquitinated Versus Non-Ubiquitinated FANCD2 Function After DNA Interstrand Cross-Link Damage.

    PubMed

    Zhang, Pan; Sridharan, Deepa; Lambert, Muriel W

    2016-03-01

    Nonerythroid α spectrin (αIISp) and the Fanconi anemia (FA) protein, FANCD2, play critical roles in DNA interstrand cross-link (ICL) repair during S phase. Both are needed for recruitment of repair proteins, such as XPF, to sites of damage and repair of ICLs. However, the relationship between them in ICL repair and whether αIISp is involved in FANCD2's function in repair is unclear. The present studies show that, after ICL formation, FANCD2 disassociates from αIISp and localizes, before αIISp, at sites of damage in nuclear foci. αIISp and FANCD2 foci do not co-localize, in contrast to our previous finding that αIISp and the ICL repair protein, XPF, co-localize and follow a similar time course for formation. Knock-down of αIISp has no effect on monoubiquitination of FANCD2 (FANCD2-Ub) or its localization to chromatin or foci, though it leads to decreased ICL repair. Studies using cells from FA patients, defective in ICL repair and αIISp, have elucidated an important role for αIISp in the function of non-Ub FANCD2. In FA complementation group A (FA-A) cells, in which FANCD2 is not monoubiquitinated and does not form damage-induced foci, we demonstrate that restoration of αIISp levels to normal, by knocking down the protease μ-calpain, leads to formation of non-Ub FANCD2 foci after ICL damage. Since restoration of αIISp levels in FA-A cells restores DNA repair and cell survival, we propose that αIISp is critical for recruitment of non-Ub FANCD2 to sites of damage, which has an important role in the repair response and ICL repair. PMID:26297932

  7. Polyamine Uptake in Carrot Cell Cultures 1

    PubMed Central

    Pistocchi, Rossella; Bagni, Nello; Creus, José A.

    1987-01-01

    Putrescine and spermidine uptake into carrot (Daucus carota L.) cells in culture was studied. The time course of uptake showed that the two polyamines were very quickly transported into the cells, reaching a maximum absorption within 1 minute. Increasing external polyamine concentrations up to 100 millimolar showed the existence of a biphasic system with different affinities at low and high polyamine concentrations. The cellular localization of absorbed polyamines was such that a greater amount of putrescine was present in the cytoplasmic soluble fraction, while spermidine was mostly present in cell walls. The absorbed polyamines were released into the medium in the presence of increasing external concentrations of the corresponding polyamine or Ca2+. The effects of Ca2+ were different for putrescine and spermidine; putrescine uptake was slightly stimulated by 10 micromolar Ca2+ and inhibited by higher concentrations, while for spermidine uptake there was an increasing stimulation in the Ca2+ concentration range between 10 micromolar and 1 millimolar. La3+ nullified the stimulatory effect of 10 micromolar Ca2+ on putrescine uptake and that of 1 millimolar Ca2+ on spermidine uptake. La3+ at 0.5 to 1 millimolar markedly inhibited the uptake of both polyamines, suggesting that it interferes with the sites of polyamine uptake. Putrescine uptake was affected to a lesser extent by metabolic inhibitors than was spermidine uptake. It is proposed that the entry of polyamines into the cells is driven by the transmembrane electrical gradient, with a possible antiport mechanism between external and internal polyamine molecule. PMID:16665446

  8. Mutations Affecting the BHLHA9 DNA-Binding Domain Cause MSSD, Mesoaxial Synostotic Syndactyly with Phalangeal Reduction, Malik-Percin Type

    PubMed Central

    Malik, Sajid; Percin, Ferda E.; Bornholdt, Dorothea; Albrecht, Beate; Percesepe, Antonio; Koch, Manuela C.; Landi, Antonio; Fritz, Barbara; Khan, Rizwan; Mumtaz, Sara; Akarsu, Nurten A.; Grzeschik, Karl-Heinz

    2014-01-01

    Mesoaxial synostotic syndactyly, Malik-Percin type (MSSD) (syndactyly type IX) is a rare autosomal-recessive nonsyndromic digit anomaly with only two affected families reported so far. We previously showed that the trait is genetically distinct from other syndactyly types, and through autozygosity mapping we had identified a locus on chromosome 17p13.3 for this unique limb malformation. Here, we extend the number of independent pedigrees from various geographic regions segregating MSSD to a total of six. We demonstrate that three neighboring missense mutations affecting the highly conserved DNA-binding region of the basic helix-loop-helix A9 transcription factor (BHLHA9) are associated with this phenotype. Recombinant BHLHA9 generated by transient gene expression is shown to be located in the cytoplasm and the cell nucleus. Transcription factors 3, 4, and 12, members of the E protein (class I) family of helix-loop-helix transcription factors, are highlighted in yeast two-hybrid analysis as potential dimerization partners for BHLHA9. In the presence of BHLHA9, the potential of these three proteins to activate expression of an E-box-regulated target gene is reduced considerably. BHLHA9 harboring one of the three substitutions detected in MSSD-affected individuals eliminates entirely the transcription activation by these class I bHLH proteins. We conclude that by dimerizing with other bHLH protein monomers, BHLHA9 could fine tune the expression of regulatory factors governing determination of central limb mesenchyme cells, a function made impossible by altering critical amino acids in the DNA binding domain. These findings identify BHLHA9 as an essential player in the regulatory network governing limb morphogenesis in humans. PMID:25466284

  9. Selective ploidy ablation, a high-throughput plasmid transfer protocol, identifies new genes affecting topoisomerase I–induced DNA damage

    PubMed Central

    Reid, Robert J.D.; González-Barrera, Sergio; Sunjevaric, Ivana; Alvaro, David; Ciccone, Samantha; Wagner, Marisa; Rothstein, Rodney

    2011-01-01

    We have streamlined the process of transferring plasmids into any yeast strain library by developing a novel mating-based, high-throughput method called selective ploidy ablation (SPA). SPA uses a universal plasmid donor strain that contains conditional centromeres on every chromosome. The plasmid-bearing donor is mated to a recipient, followed by removal of all donor-strain chromosomes, producing a haploid strain containing the transferred plasmid. As proof of principle, we used SPA to transfer plasmids containing wild-type and mutant alleles of DNA topoisomerase I (TOP1) into the haploid yeast gene-disruption library. Overexpression of Top1 identified only one sensitive mutation, rpa34, while overexpression of top1-T722A allele, a camptothecin mimetic, identified 190 sensitive gene-disruption strains along with rpa34. In addition to known camptothecin-sensitive strains, this set contained mutations in genes involved in the Rpd3 histone deacetylase complex, the kinetochore, and vesicle trafficking. We further show that mutations in several ESCRT vesicle trafficking components increase Top1 levels, which is dependent on SUMO modification. These findings demonstrate the utility of the SPA technique to introduce plasmids into the haploid gene-disruption library to discover new interacting pathways. PMID:21173034

  10. Rapid Contraceptive Uptake and Changing Method Mix With High Use of Long-Acting Reversible Contraceptives in Crisis-Affected Populations in Chad and the Democratic Republic of the Congo

    PubMed Central

    Rattan, Jesse; Noznesky, Elizabeth; Curry, Dora Ward; Galavotti, Christine; Hwang, Shuyuan; Rodriguez, Mariela

    2016-01-01

    ABSTRACT The global health community has recognized that expanding the contraceptive method mix is a programmatic imperative since (1) one-third of unintended pregnancies are due to method failure or discontinuation, and (2) the addition of a new method to the existing mix tends to increase total contraceptive use. Since July 2011, CARE has been implementing the Supporting Access to Family Planning and Post-Abortion Care (SAFPAC) initiative to increase the availability, quality, and use of contraception, with a particular focus on highly effective and long-acting reversible methods—intrauterine devices (IUDs) and implants—in crisis-affected settings in Chad and the Democratic Republic of the Congo (DRC). This initiative supports government health systems at primary and referral levels to provide a wide range of contraceptive services to people affected by conflict and/or displacement. Before the initiative, long-acting reversible methods were either unknown or unavailable in the intervention areas. However, as soon as trained providers were in place, we noted a dramatic and sustained increase in new users of all contraceptive methods, especially implants, with total new clients reaching 82,855, or 32% of the estimated number of women of reproductive age in the respective catchment areas in both countries, at the end of the fourth year. Demand for implants was very strong in the first 6 months after provider training. During this time, implants consistently accounted for more than 50% of the method mix, reaching as high as 89% in Chad and 74% in DRC. To ensure that all clients were getting the contraceptive method of their choice, we conducted a series of discussions and sought feedback from different stakeholders in order to modify program strategies. Key program modifications included more focused communication in mass media, community, and interpersonal channels about the benefits of IUDs while reinforcing the wide range of methods available and refresher

  11. Rapid Contraceptive Uptake and Changing Method Mix With High Use of Long-Acting Reversible Contraceptives in Crisis-Affected Populations in Chad and the Democratic Republic of the Congo.

    PubMed

    Rattan, Jesse; Noznesky, Elizabeth; Curry, Dora Ward; Galavotti, Christine; Hwang, Shuyuan; Rodriguez, Mariela

    2016-08-11

    The global health community has recognized that expanding the contraceptive method mix is a programmatic imperative since (1) one-third of unintended pregnancies are due to method failure or discontinuation, and (2) the addition of a new method to the existing mix tends to increase total contraceptive use. Since July 2011, CARE has been implementing the Supporting Access to Family Planning and Post-Abortion Care (SAFPAC) initiative to increase the availability, quality, and use of contraception, with a particular focus on highly effective and long-acting reversible methods-intrauterine devices (IUDs) and implants-in crisis-affected settings in Chad and the Democratic Republic of the Congo (DRC). This initiative supports government health systems at primary and referral levels to provide a wide range of contraceptive services to people affected by conflict and/or displacement. Before the initiative, long-acting reversible methods were either unknown or unavailable in the intervention areas. However, as soon as trained providers were in place, we noted a dramatic and sustained increase in new users of all contraceptive methods, especially implants, with total new clients reaching 82,855, or 32% of the estimated number of women of reproductive age in the respective catchment areas in both countries, at the end of the fourth year. Demand for implants was very strong in the first 6 months after provider training. During this time, implants consistently accounted for more than 50% of the method mix, reaching as high as 89% in Chad and 74% in DRC. To ensure that all clients were getting the contraceptive method of their choice, we conducted a series of discussions and sought feedback from different stakeholders in order to modify program strategies. Key program modifications included more focused communication in mass media, community, and interpersonal channels about the benefits of IUDs while reinforcing the wide range of methods available and refresher training for

  12. Post-weaning selenium and folate supplementation affects gene and protein expression and global DNA methylation in mice fed high-fat diets

    PubMed Central

    2013-01-01

    Background Consumption of high-fat diets has negative impacts on health and well-being, some of which may be epigenetically regulated. Selenium and folate are two compounds which influence epigenetic mechanisms. We investigated the hypothesis that post-weaning supplementation with adequate levels of selenium and folate in offspring of female mice fed a high-fat, low selenium and folate diet during gestation and lactation will lead to epigenetic changes of potential importance for long-term health. Methods Female offspring of mothers fed the experimental diet were either maintained on this diet (HF-low-low), or weaned onto a high-fat diet with sufficient levels of selenium and folate (HF-low-suf), for 8 weeks. Gene and protein expression, DNA methylation, and histone modifications were measured in colon and liver of female offspring. Results Adequate levels of selenium and folate post-weaning affected gene expression in colon and liver of offspring, including decreasing Slc2a4 gene expression. Protein expression was only altered in the liver. There was no effect of adequate levels of selenium and folate on global histone modifications in the liver. Global liver DNA methylation was decreased in mice switched to adequate levels of selenium and folate, but there was no effect on methylation of specific CpG sites within the Slc2a4 gene in liver. Conclusions Post-weaning supplementation with adequate levels of selenium and folate in female offspring of mice fed high-fat diets inadequate in selenium and folate during gestation and lactation can alter global DNA methylation in liver. This may be one factor through which the negative effects of a poor diet during early life can be ameliorated. Further research is required to establish what role epigenetic changes play in mediating observed changes in gene and protein expression, and the relevance of these changes to health. PMID:23497688

  13. Genome-Wide Analysis of Factors Affecting Transcription Elongation and DNA Repair: A New Role for PAF and Ccr4-Not in Transcription-Coupled Repair

    PubMed Central

    Gaillard, Hélène; Tous, Cristina; Botet, Javier; González-Aguilera, Cristina; Quintero, Maria José; Viladevall, Laia; García-Rubio, María L.; Rodríguez-Gil, Alfonso; Marín, Antonio; Ariño, Joaquín; Revuelta, José Luis; Chávez, Sebastián; Aguilera, Andrés

    2009-01-01

    RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2, and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast, unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-NER and its functional interconnection with transcription elongation. PMID:19197357

  14. Methylprednisolone inhibits uptake of Ca2+ and Na+ ions into concanavalin A-stimulated thymocytes.

    PubMed Central

    Buttgereit, F; Krauss, S; Brand, M D

    1997-01-01

    The glucocorticoid drug methylprednisolone inhibits respiration in concanavalin A-stimulated rat thymocytes at concentrations that are relevant to its acute clinical efficacy against autoimmune diseases and spinal cord injury. Methylprednisolone affects several processes, including ion cycling, substrate oxidation reactions and RNA/DNA synthesis. The inhibition of respiration used to drive ATP-consuming cycles of Ca2+ and Na+ ions across the plasma membrane has been proposed to be either primary or secondary to restriction of cellular ATP supply. By comparing the effects of methylprednisolone with those of myxothiazol, an inhibitor of the mitochondrial electron transport chain, we show that the effects of methylprednisolone on Ca2+ and Na+ cycling are primary. We propose that methylprednisolone acts by affecting membrane properties to inhibit Ca2+ and Na+ uptake across the plasma membrane and to increase H+ uptake across the mitochondrial membrane, and that other effects are secondary. PMID:9291100

  15. The Quorum Sensing Inhibitor Hamamelitannin Increases Antibiotic Susceptibility of Staphylococcus aureus Biofilms by Affecting Peptidoglycan Biosynthesis and eDNA Release

    PubMed Central

    Brackman, Gilles; Breyne, Koen; De Rycke, Riet; Vermote, Arno; Van Nieuwerburgh, Filip; Meyer, Evelyne; Van Calenbergh, Serge; Coenye, Tom

    2016-01-01

    Treatment of Staphylococcus aureus infections has become increasingly challenging due to the rapid emergence and dissemination of methicillin-resistant strains. In addition, S. aureus reside within biofilms at the site of infection. Few novel antibacterial agents have been developed in recent years and their bacteriostatic or bactericidal activity results in selective pressure, inevitably inducing antimicrobial resistance. Consequently, innovative antimicrobials with other modes of action are urgently needed. One alternative approach is targeting the bacterial quorum sensing (QS) system. Hamamelitannin (2′,5-di-O-galloyl-d-hamamelose; HAM) was previously suggested to block QS through the TraP QS system and was shown to increase S. aureus biofilm susceptibility towards vancomycin (VAN) although mechanistic insights are still lacking. In the present study we provide evidence that HAM specifically affects S. aureus biofilm susceptibility through the TraP receptor by affecting cell wall synthesis and extracellular DNA release of S. aureus. We further provide evidence that HAM can increase the susceptibility of S. aureus biofilms towards different classes of antibiotics in vitro. Finally, we show that HAM increases the susceptibility of S. aureus to antibiotic treatment in in vivo Caenorhabditis elegans and mouse mammary gland infection models. PMID:26828772

  16. Identification of the lrp gene in Bradyrhizobium japonicum and its role in regulation of delta-aminolevulinic acid uptake.

    PubMed Central

    King, N D; O'Brian, M R

    1997-01-01

    The heme precursor delta-aminolevulinic acid (ALA) is taken up by the dipeptide permease (Dpp) system in Escherichia coli. In this study, we identified a Bradyrhizobium japonicum genomic library clone that complemented both ALA and dipeptide uptake activities in E. coli dpp mutants. The complementing B. japonicum DNA encoded a product with 58% identity to the E. coli global transcriptional regulator Lrp (leucine-responsive regulatory protein), implying the presence of Dpp-independent ALA uptake activity in those cells. Data support the conclusion that the Lrp homolog induced the oligopeptide permease system in the complemented cells by interfering with the repressor activity of the endogenous Lrp, thus conferring oligopeptide and ALA uptake activities. ALA uptake by B. japonicum was effectively inhibited by a tripeptide and, to a lesser extent, by a dipeptide, and a mutant strain that expressed the lrp homolog from a constitutive promoter was deficient in ALA uptake activity. The data show that Lrp negatively affects ALA uptake in E. coli and B. japonicum. Furthermore, the product of the isolated B. japonicum gene is both a functional and structural homolog of E. coli Lrp, and thus the regulator is not restricted to enteric bacteria. PMID:9045849

  17. DNA Microarray and Gene Ontology Enrichment Analysis Reveals That a Mutation in opsX Affects Virulence and Chemotaxis in Xanthomonas oryzae pv. oryzae

    PubMed Central

    Kim, Hong-Il; Park, Young-Jin

    2016-01-01

    Xanthomonas oryzae pv. oryzae (Xoo) causes bacterial leaf blight (BLB) in rice (Oryza sativa L.). In this study, we investigated the effect of a mutation in opsX (XOO1056), which encodes a saccharide biosynthesis regulatory protein, on the virulence and bacterial chemotaxis of Xoo. We performed DNA microarray analysis, which showed that 63 of 2,678 genes, including genes related to bacterial motility (flagellar and chemotaxis proteins) were significantly downregulated (<−2 log2 fold changes) by the mutation in opsX. Indeed, motility assays showed that the mutant strain was nonmotile on semisolid agar swarm plates. In addition, a mutant strain (opsX::Tn5) showed decreased virulence against the susceptible rice cultivar, IR24. Quantitative real-time RT-PCR reaction was performed to confirm the expression levels of these genes, including those related to flagella and chemotaxis, in the opsX mutant. Our findings revealed that mutation of opsX affects both virulence and bacterial motility. These results will help to improve our understanding of Xoo and provide insight into Xoo-rice interactions. PMID:27298594

  18. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  19. Uptake As Language Awareness.

    ERIC Educational Resources Information Center

    Ellis, Rod

    1995-01-01

    Investigates the sincerity and validity of uptake as a measure of language learning by comparing the words students report they have learned after completing a listening task with the words they score correctly on a translation test. Results indicate that whereas uptake may have construct validity, its concurrent validity is uncertain. (16…

  20. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  1. Correlation between drug uptake and selective toxicity of porfiromycin to hypoxic EMT6 cells.

    PubMed

    Keyes, S R; Rockwell, S; Sartorelli, A C

    1987-11-01

    Mitomycin C and its methylated analogue porfiromycin (Por) have significant potential as adjuncts to regimens presently used for treating solid tumors because of their preferential toxicity to cells existing in an hypoxic environment. An understanding of the factors producing the differential activity of these drugs under aerobic and hypoxic conditions would facilitate the development of new agents of this class. Previous studies have focused on the enzymes that reductively activate the mitomycins and on the interaction of these drugs with DNA; none of these studies has fully explained the differences in cytotoxicity observed under hypoxic and aerobic conditions. The present investigation demonstrates that the rate of Por uptake is directly correlated with cytotoxicity under both aerobic and hypoxic conditions. Uptake of Por into hypoxic cells is more rapid than into aerobic cells at equal drug concentrations. Hypoxic cells also accumulate drug in concentrations well in excess of those in the extracellular medium; this is apparently a reflection of drug sequestration in these cells. This sequestration of Por, which affects the rate and extent of uptake in hypoxic cells, does not take place in aerobic cells. The failure of aerobic cells to sequester drug is evidenced by the very rapid efflux of Por from these cells upon removal of extracellular Por and by the fact that aerobic cells attain a state of equilibrium between the intracellular and extracellular drug concentrations. The findings demonstrate that differences in the uptake and retention of Por are associated with the preferential toxicity of Por to hypoxic cells. PMID:3664473

  2. DIETARY SELENIUIM (SE) AND FOLATE AFFECT DIMETHYLHYDRAZINE (DMH)-INDUCED ABERRANT CRYPT FORMATION, GLOBAL DNA METHYLATION AND ONE-CARBON METABOLISM IN RATS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several observations implicate a role for DNA methylation in cancer pathogenesis. Although both Se and folate deficiency have been shown to cause global DNA hypomethylation and increased cancer susceptibility, the nutrients have different effects on one-carbon metabolism. Thus, the purpose of this s...

  3. Effect of Surface Chemistry on Gene Transfer Efficiency Mediated by Surface-induced DNA-doped Nanocomposites

    PubMed Central

    Sun, Bingbing; Yi, Minchang; Yacoob, Christina C.; Nguyen, Hai T.; Shen, Hong

    2011-01-01

    Surface-induced biomineralization represents an effective way to immobilize DNA molecules onto biomaterial surfaces for introducing DNA into cells in contact with or in an approximate distance to biomaterial surfaces. Our previous studies have investigated how the composition of mineralizing solutions affects the composition and pH responsiveness of nanocomposites and thus gene transfer efficiency in different cell types. In this study, we investigated how the functional groups of a biomaterial surface would affect the induction and crystallographic properties of nanocomposites and thus the gene transfer efficiency. Self-assembled monolayers (SAMs) with different terminus were used to control the functional groups of a surface. We demonstrated that the induction of DNA-doped nanocomposites depended on the surface functional groups, which is consistent with previous studies. The crystallographic properties did not vary significantly with the functional groups. DNA-doped nanocomposites induced by different surface functional groups resulted in different cellular uptake of DNA and thus gene transfer efficiency. The differential cellular uptake may be attributed to the interactions between nanocomposites and functional groups. The weaker inducer resulted in higher cellular uptake thus higher gene transfer efficiency. Together with others and our previous studies, our current results suggest that surface-mediated gene transfer by DNA-doped nanocomposites can be modulated through both mineralizing solutions and surface chemistries. PMID:22198137

  4. The putative P-gp inhibitor telmisartan does not affect the transcellular permeability and cellular uptake of the calcium channel antagonist verapamil in the P-glycoprotein expressing cell line MDCK II MDR1

    PubMed Central

    Saaby, Lasse; Tfelt-Hansen, Peer; Brodin, Birger

    2015-01-01

    Verapamil is used in high doses for the treatment of cluster headache. Verapamil has been described as a P-glycoprotein (P-gp, ABCB1) substrate. We wished to evaluate in vitro whether co administration of a P-gp inhibitor with verapamil could be a feasible strategy for increasing CNS uptake of verapamil. Fluxes of radiolabelled verapamil across MDCK II MDR1 monolayers were measured in the absence and presence of the putative P-gp inhibitor telmisartan (a clinically approved drug compound). Verapamil displayed a vectorial basolateral-to-apical transepithelial efflux across the MDCK II MDR1 monolayers with a permeability of 5.7 × 10−5 cm sec−1 compared to an apical to basolateral permeability of 1.3 × 10−5 cm sec-1. The efflux could be inhibited with the P-gp inhibitor zosuquidar. Zosuquidar (0.4 μmol/L) reduced the efflux ratio (PB-A/PA-B) for verapamil 4.6–1.6. The presence of telmisartan, however, only caused a slight reduction in P-gp-mediated verapamil transport to an efflux ratio of 3.4. Overall, the results of the present in vitro approach indicate, that clinical use of telmisartan as a P-gp inhibitor may not be an effective strategy for increasing brain uptake of verapamil by co-administration with telmisartan. PMID:26171231

  5. Radioactive iodine uptake

    MedlinePlus

    ... uptake may be due to: Factitious hyperthyroidism Iodine overload Subacute thyroiditis Silent (or painless) thyroiditis Amiodarone Risks ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  6. The EcoKI type I restriction-modification system in Escherichia coli affects but is not an absolute barrier for conjugation.

    PubMed

    Roer, Louise; Aarestrup, Frank M; Hasman, Henrik

    2015-01-01

    The rapid evolution of bacteria is crucial to their survival and is caused by exchange, transfer, and uptake of DNA, among other things. Conjugation is one of the main mechanisms by which bacteria share their DNA, and it is thought to be controlled by varied bacterial immune systems. Contradictory results about restriction-modification systems based on phenotypic studies have been presented as reasons for a barrier to conjugation with and other means of uptake of exogenous DNA. In this study, we show that inactivation of the R.EcoKI restriction enzyme in strain Escherichia coli K-12 strain MG1655 increases the conjugational transfer of plasmid pOLA52, which carriers two EcoKI recognition sites. Interestingly, the results were not absolute, and uptake of unmethylated pOLA52 was still observed in the wild-type strain (with an intact hsdR gene) but at a reduction of 85% compared to the uptake of the mutant recipient with a disrupted hsdR gene. This leads to the conclusion that EcoKI restriction-modification affects the uptake of DNA by conjugation but is not a major barrier to plasmid transfer. PMID:25384481

  7. Dependence of FDG uptake on tumor microenvironment

    SciTech Connect

    Pugachev, Andrei . E-mail: pugachea@mskcc.org; Ruan, Shutian; Carlin, Sean; Larson, Steven M.; Campa, Jose; Ling, C. Clifton; Humm, John L.

    2005-06-01

    Purpose: To investigate the factors affecting the {sup 18}F-fluorodeoxyglucose ({sup 18}F-FDG) uptake in tumors at a microscopic level, by correlating it with tumor hypoxia, cellular proliferation, and blood perfusion. Methods and Materials: Nude mice bearing Dunning prostate tumors (R3327-AT) were injected with {sup 18}F-FDG and pimonidazole, bromodeoxyuridine, and, 1 min before sacrifice, with Hoechst 33342. Selected tumor sections were imaged by phosphor plate autoradiography, while adjacent sections were used to obtain the images of the spatial distribution of Hoechst 33342, pimonidazole, and bromodeoxyuridine. The images were co-registered and analyzed on a pixel-by-pixel basis. Results: Statistical analysis of the data obtained from these tumors demonstrated that {sup 18}F-FDG uptake was positively correlated with pimonidazole staining intensity in each data set studied. Correlation of FDG uptake with bromodeoxyuridine staining intensity was always negative. In addition, FDG uptake was always negatively correlated with the staining intensity of Hoechst 33342. Conclusions: For the Dunning prostate tumors studied, FDG uptake was always positively correlated with hypoxia and negatively correlated with both cellular proliferation and blood flow. Therefore, for the tumor model studied, higher FDG uptake is indicative of tumor hypoxia, but neither blood flow nor cellular proliferation.

  8. Detection and Validation of QTL Affecting Bacterial Cold Water Disease Resistance in Rainbow Trout Using Restriction-Site Associated DNA Sequencing

    PubMed Central

    Gao, Guangtu; Liu, Sixin; Hernandez, Alvaro G.; Rexroad, Caird E.

    2015-01-01

    Bacterial cold water disease (BCWD) causes significant economic loss in salmonid aquaculture. Using microsatellite markers in a genome scan, we previously detected significant and suggestive QTL affecting phenotypic variation in survival following challenge with Flavobacterium psychrophilum, the causative agent of BCWD in rainbow trout. In this study, we performed selective genotyping of SNPs from restriction-site associated DNA (RAD) sequence data from two pedigreed families (2009070 and 2009196) to validate the major QTL from the previous work and to detect new QTL. The use of RAD SNPs in the genome scans increased the number of mapped markers from ~300 to ~5,000 per family. The significant QTL detected in the microsatellites scan on chromosome Omy8 in family 2009070 was validated explaining up to 58% of the phenotypic variance in that family, and in addition, a second QTL was also detected on Omy8. Two novel QTL on Omy11 and 14 were also detected, and the previously suggestive QTL on Omy1, 7 and 25 were also validated in family 2009070. In family 2009196, the microsatellite significant QTL on Omy6 and 12 were validated and a new QTL on Omy8 was detected, but none of the previously detected suggestive QTL were validated. The two Omy8 QTL from family 2009070 and the Omy12 QTL from family 2009196 were found to be co-localized with handling and confinement stress response QTL that our group has previously identified in a separate pedigreed family. With the currently available data we cannot determine if the co-localized QTL are the result of genes with pleiotropic effects or a mere physical proximity on the same chromosome segment. The genetic markers linked to BCWD resistance QTL were used to query the scaffolds of the rainbow trout reference genome assembly and the QTL-positive scaffold sequences were found to include 100 positional candidate genes. Several of the candidate genes located on or near the two Omy8 QTL detected in family 2009070 suggest potential

  9. Methionine splanchnic uptake is increased in critically ill children

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During critical illness the splanchnic area is profoundly affected. There is no information on splanchnic uptake of amino acids in vivo, in critically ill children. Methionine splanchnic uptake in critically ill children will differ from estimates in healthy adults. We studied 24 critically ill chil...

  10. A Sequence-Specific Interaction between the Saccharomyces cerevisiae rRNA Gene Repeats and a Locus Encoding an RNA Polymerase I Subunit Affects Ribosomal DNA Stability

    PubMed Central

    Cahyani, Inswasti; Cridge, Andrew G.; Engelke, David R.; Ganley, Austen R. D.

    2014-01-01

    The spatial organization of eukaryotic genomes is linked to their functions. However, how individual features of the global spatial structure contribute to nuclear function remains largely unknown. We previously identified a high-frequency interchromosomal interaction within the Saccharomyces cerevisiae genome that occurs between the intergenic spacer of the ribosomal DNA (rDNA) repeats and the intergenic sequence between the locus encoding the second largest RNA polymerase I subunit and a lysine tRNA gene [i.e., RPA135-tK(CUU)P]. Here, we used quantitative chromosome conformation capture in combination with replacement mapping to identify a 75-bp sequence within the RPA135-tK(CUU)P intergenic region that is involved in the interaction. We demonstrate that the RPA135-IGS1 interaction is dependent on the rDNA copy number and the Msn2 protein. Surprisingly, we found that the interaction does not govern RPA135 transcription. Instead, replacement of a 605-bp region within the RPA135-tK(CUU)P intergenic region results in a reduction in the RPA135-IGS1 interaction level and fluctuations in rDNA copy number. We conclude that the chromosomal interaction that occurs between the RPA135-tK(CUU)P and rDNA IGS1 loci stabilizes rDNA repeat number and contributes to the maintenance of nucleolar stability. Our results provide evidence that the DNA loci involved in chromosomal interactions are composite elements, sections of which function in stabilizing the interaction or mediating a functional outcome. PMID:25421713

  11. Patterns of radioiodine uptake by the lactating breast.

    PubMed

    Bakheet, S M; Hammami, M M

    1994-07-01

    Breast uptake of radioiodine, if not suspected, may be misinterpreted as thyroid cancer metastasis to the lung. To characterize the patterns of radioiodine breast uptake, we retrospectively studied 20 radioiodine scans that were performed within 1 week of cessation of breast feeding. Four patterns of uptake were identified: "full", "focal", "crescent" and "irregular". The uptake was asymmetric in 60% (left > right in 45%, right > left in 15%), symmetric in 25% and unilateral in 15% of cases. A characteristic full bilateral uptake was present in 40% of cases. In three cases with the irregular pattern, caused in part by external contamination with radioactive milk, the uptake closely mimicked lung metastases. Delayed images, obtained in one case, showed an apparent radioiodine shift from the breast to the thyroid, suggesting that the presence of breast uptake can modulate radioiodine uptake by thyroid tissue. In a case of unilateral breast uptake, a history of mastitis was obtained, which to our knowledge has not been previously reported. Breast uptake of radioiodine may take several scintigraphic patterns that are not always characteristic of the lactating breast and may affect the apparent extent of thyroid remnant/metastasis. PMID:7957345

  12. How Do Structure and Charge Affect Metal-Complex Binding to DNA? An Upper-Division Integrated Laboratory Project Using Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Kulczynska, Agnieszka; Johnson, Reed; Frost, Tony; Margerum, Lawrence D.

    2011-01-01

    An advanced undergraduate laboratory project is described that integrates inorganic, analytical, physical, and biochemical techniques to reveal differences in binding between cationic metal complexes and anionic DNA (herring testes). Students were guided to formulate testable hypotheses based on the title question and a list of different metal…

  13. Demonstration by real-time polymerase chain reaction that cellular DNA alkylation by novel aminoindoline compounds affects expression of the protooncogene c-myc.

    PubMed

    Nelson, Stephanie M; Ferguson, Lynnette R; Denny, William A

    2005-02-01

    Aminoindolines, analogues of the potent DNA alkylating agent seco-CBI-TMI, bind to and alkylate in the minor groove of AT-rich DNA in vitro. Here we extend the in vitro mechanism of action studies by treating cells in culture and examining the DNA binding patterns within AT-rich regions of the protooncogene locus c-myc, using a real-time polymerase chain reaction (PCR) stop assay. In addition, real-time reverse transcriptase (RT) PCR is used to examine the immediate effects of drug treatment on c-myc expression. These analyses demonstrate a concentration and time dependence for DNA alkylation at the chosen sites within the c-myc locus, as well as a prompt and significant downregulation of c-myc expression. While downregulation of this important growth regulator is likely not the only consequence of aminoindoline treatment, these studies begin to address the cellular pathways that are involved in the potent cytotoxic effects observed and provide insights for the future development of anticancer drugs of this class. PMID:15720128

  14. Novel Replication-Competent Circular DNA Molecules from Healthy Cattle Serum and Milk and Multiple Sclerosis-Affected Human Brain Tissue

    PubMed Central

    Whitley, Corinna; Gunst, Karin; Müller, Hermann; Funk, Mathis; zur Hausen, Harald

    2014-01-01

    Epidemiological data point to the involvement of a cow milk factor in the etiology of multiple sclerosis (MS). Eleven circular DNA molecules closely related to transmissible spongiform encephalopathy (TSE)-associated isolate Sphinx 1.76 were isolated from healthy cattle serum, cow milk, and serum and brain tissue from MS patients. PMID:25169859

  15. Arsenate and dimethylarsinic acid in drinking water did not affect DNA damage repair in urinary bladder transitional cells or micronuclei in bone marrow

    EPA Science Inventory

    Arsenic is a recognized human skin, lung, and urinary bladder carcinogen, and may act as a cocarcinogen in the urinary bladder (with cigarette smoking) and skin (with UV light exposure). Possible modes of action of arsenic carcinogenesis/cocarcinogenesis include induction of DNA ...

  16. Preparation and properties of clickable amino analogues of the duocarmycins: factors that affect the efficiency of their fluorescent labelling of DNA.

    PubMed

    Tercel, Moana; McManaway, Sarah P; Liyanage, H D Sarath; Pruijn, Frederik B

    2014-09-01

    Herein we report the synthesis of three DNA-alkylating amino analogues of the duocarmycins that carry an alkyne functional group suitable for copper-catalysed click chemistry. The alkyne-containing substituents are connected via a side chain position which projects away from the minor groove, and have only a small effect on DNA alkylation and cytotoxicity. The efficiency of click reactions with fluorophore azides was studied using alkylated ctDNA by analysing the adenine adducts produced after thermal depurination. Click reactions "on DNA" were sensitive to steric effects (tether length to the alkyne) and, surprisingly, to the nature of the fluorophore azide. With the best combination of click partners and reagents, adducts could be detected in the nuclei of treated cells by microscopy or flow cytometry, provided that an appropriate detergent (Triton X-100 and not Tween 20) was used for permeabilisation. The method is sensitive enough to detect adducts at physiologically relevant concentrations, and could have application in the development of nitro analogues of the duocarmycins as hypoxia-activated anticancer prodrugs. PMID:25044224

  17. Novel replication-competent circular DNA molecules from healthy cattle serum and milk and multiple sclerosis-affected human brain tissue.

    PubMed

    Whitley, Corinna; Gunst, Karin; Müller, Hermann; Funk, Mathis; Zur Hausen, Harald; de Villiers, Ethel-Michele

    2014-01-01

    Epidemiological data point to the involvement of a cow milk factor in the etiology of multiple sclerosis (MS). Eleven circular DNA molecules closely related to transmissible spongiform encephalopathy (TSE)-associated isolate Sphinx 1.76 were isolated from healthy cattle serum, cow milk, and serum and brain tissue from MS patients. PMID:25169859

  18. Nitrogen Uptake in Spinach

    NASA Astrophysics Data System (ADS)

    Ramirez, J.; VanBenthem, P.

    2013-12-01

    A plant's absorption of nitrogen can be encouraged by a variety of environmental factors, especially the application of fertilizers. As a common limiting factor in plant growth, not up taking enough nitrogen can be a result of an unhealthy plant. Moreover, as farmers seek out methods to increase growth of plants, fertilizers are used as a solution to the issue of nitrogen deficiency to incorporate additional nitrogen from chemical or organic sources, by not using the right fertilizer can greatly affect the plats. The point of this research project is to determine the effect of various fertilizers on the plant growth, and to correlate the measured nitrogen, water and chlorophyll content in spinach leaves. Spinach leaves were used because they are known to quickly uptake chemicals in the environment. The spinach plants were exposed to four different growing parameters, which are referred to as control, ammonium nitrate, MiracleGro , and organic. The spinach was originally placed in nitrogen deficient soil with only 2.2x10 4 weight percent (wt. %) nitrogen. The leaves in the control group were grown in this nitrogen deficient soil without any fertilizer added. Ammomium nitrate and MiracleGro were added to the spinach in the A and MG groups, respectively, and organic chicken stool was used for the O group. By using a spectral imaging system and flame combustion techniques, the chlorophyll content can be related to the nitrogen content in the spinach leaves. In these spinach leaves, nitrogen and chlorophyll content were measured, chlorophyll is a green pigment that plays a crucial role in producing nutrients for green plants. The lack of chlorophyll will allow the plant to become susceptible to diseases, so it is extremely important that the plants have a high content of chlorophyll. The role of nitrogen in chlorophyll is very important and helps in the creation of chlorophyll; therefore it is necessary that an appropriate amount of nitrogen is added for optimal growth

  19. X-linked thrombocytopenia with thalassemia from a mutation in the amino finger of GATA-1 affecting DNA binding rather than FOG-1 interaction

    PubMed Central

    Yu, Channing; Niakan, Kathy K.; Matsushita, Mark; Stamatoyannopoulos, George; Orkin, Stuart H.; Raskind, Wendy H.

    2010-01-01

    Transcription factor GATA-1 is essential for the development of erythroid cells and megakaryocytes. Each of its 2 zinc fingers is critical for normal function. The C-terminal finger is necessary for DNA binding. The N finger mediates interaction with FOG-1, a cofactor for GATA-1, and also modulates DNA-binding affinity, notably at complex or palindromic GATA sites. Residues of the N finger–mediating interaction with FOG-1 lie on the surface of the N finger facing away from DNA. Strong sequence conservation of residues facing DNA suggests that this other surface may also have an important role. We report here that a syndrome of X-linked thrombocytopenia with thalassemia in humans is caused by a missense mutation (Arg216Gln) in the GATA-1 N finger. To investigate the functional consequences of this substitution, we used site-directed mutagenesis to alter the corresponding residue in GATA-1. Compared with wild-type GATA-1, Arg216Gln GATA-1 shows comparable affinity to single GATA sites but decreased affinity to palindromic sites. Arg216Gln GATA-1 interacts with FOG-1 similarly with wild-type GATA-1. Arg216Gln GATA-1 supports erythroid maturation of GATA-1 erythroid cells, albeit at reduced efficiency compared with wild-type GATA-1. Together, these findings suggest that residues of the N finger of GATA-1–facing DNA contribute to GATA-1 function apart from interaction with the cofactor FOG-1. This is also the first example of β-thalassemia in humans caused by a mutation in an erythroid transcription factor. PMID:12200364

  20. Potassium Uptake Modulates Staphylococcus aureus Metabolism.

    PubMed

    Gries, Casey M; Sadykov, Marat R; Bulock, Logan L; Chaudhari, Sujata S; Thomas, Vinai C; Bose, Jeffrey L; Bayles, Kenneth W

    2016-01-01

    As a leading cause of community-associated and nosocomial infections, Staphylococcus aureus requires sophisticated mechanisms that function to maintain cellular homeostasis in response to its exposure to changing environmental conditions. The adaptation to stress and maintenance of homeostasis depend largely on membrane activity, including supporting electrochemical gradients and synthesis of ATP. This is largely achieved through potassium (K(+)) transport, which plays an essential role in maintaining chemiosmotic homeostasis, affects antimicrobial resistance, and contributes to fitness in vivo. Here, we report that S. aureus Ktr-mediated K(+) uptake is necessary for maintaining cytoplasmic pH and the establishment of a proton motive force. Metabolite analyses revealed that K(+) deficiency affects both metabolic and energy states of S. aureus by impairing oxidative phosphorylation and directing carbon flux toward substrate-level phosphorylation. Taken together, these results underline the importance of K(+) uptake in maintaining essential components of S. aureus metabolism. IMPORTANCE Previous studies describing mechanisms for K(+) uptake in S. aureus revealed that the Ktr-mediated K(+) transport system was required for normal growth under alkaline conditions but not under neutral or acidic conditions. This work focuses on the effect of K(+) uptake on S. aureus metabolism, including intracellular pH and carbon flux, and is the first to utilize a pH-dependent green fluorescent protein (GFP) to measure S. aureus cytoplasmic pH. These studies highlight the role of K(+) uptake in supporting proton efflux under alkaline conditions and uncover a critical role for K(+) uptake in establishing efficient carbon utilization. PMID:27340697

  1. Potassium Uptake Modulates Staphylococcus aureus Metabolism

    PubMed Central

    Gries, Casey M.; Sadykov, Marat R.; Bulock, Logan L.; Chaudhari, Sujata S.; Thomas, Vinai C.; Bose, Jeffrey L.

    2016-01-01

    ABSTRACT As a leading cause of community-associated and nosocomial infections, Staphylococcus aureus requires sophisticated mechanisms that function to maintain cellular homeostasis in response to its exposure to changing environmental conditions. The adaptation to stress and maintenance of homeostasis depend largely on membrane activity, including supporting electrochemical gradients and synthesis of ATP. This is largely achieved through potassium (K+) transport, which plays an essential role in maintaining chemiosmotic homeostasis, affects antimicrobial resistance, and contributes to fitness in vivo. Here, we report that S. aureus Ktr-mediated K+ uptake is necessary for maintaining cytoplasmic pH and the establishment of a proton motive force. Metabolite analyses revealed that K+ deficiency affects both metabolic and energy states of S. aureus by impairing oxidative phosphorylation and directing carbon flux toward substrate-level phosphorylation. Taken together, these results underline the importance of K+ uptake in maintaining essential components of S. aureus metabolism. IMPORTANCE Previous studies describing mechanisms for K+ uptake in S. aureus revealed that the Ktr-mediated K+ transport system was required for normal growth under alkaline conditions but not under neutral or acidic conditions. This work focuses on the effect of K+ uptake on S. aureus metabolism, including intracellular pH and carbon flux, and is the first to utilize a pH-dependent green fluorescent protein (GFP) to measure S. aureus cytoplasmic pH. These studies highlight the role of K+ uptake in supporting proton efflux under alkaline conditions and uncover a critical role for K+ uptake in establishing efficient carbon utilization. PMID:27340697

  2. The soil microbial community composition and soil microbial carbon uptake are more affected by soil type than by different vegetation types (C3 and C4 plants) and seasonal changes

    NASA Astrophysics Data System (ADS)

    Griselle Mellado Vazquez, Perla; Lange, Markus; Gleixner, Gerd

    2016-04-01

    This study investigates the influence of different vegetation types (C3 and C4 plants), soil type and seasonal changes on the soil microbial biomass, soil microbial community composition and soil microbial carbon (C) uptake. We collected soil samples in winter (non-growing season) and summer (growing season) in 2012 from an experimental site cropping C3 and C4 plants for 6 years on two different soil types (sandy and clayey). The amount of phospholipid fatty acids (PLFAs) and their compound-specific δ13C values were used to determined microbial biomass and the flow of C from plants to soil microorganisms, respectively. Higher microbial biomass was found in the growing season. The microbial community composition was mainly explained by soil type. Higher amounts of SOC were driving the predominance of G+ bacteria, actinobacteria and cyclic G- bacteria in sandy soils, whereas root biomass was significantly related to the increased proportions of G- bacteria in clayey soils. Plant-derived C in G- bacteria increased significantly in clayey soils in the growing season. This increase was positively and significantly driven by root biomass. Moreover, changes in plant-derived C among microbial groups pointed to specific capabilities of different microbial groups to decompose distinct sources of C. We concluded that soil texture and favorable growth conditions driven by rhizosphere interactions are the most important factors controlling the soil microbial community. Our results demonstrate that a change of C3 plants vs. C4 plants has only a minor effect on the soil microbial community. Thus, such experiments are well suited to investigate soil organic matter dynamics as they allow to trace the C flow from plants into the soil microbial community without changing the community abundance and composition.

  3. The A1555G Mutation in the 12S rRNA Gene of Human mtDNA: Recurrent Origins and Founder Events in Families Affected by Sensorineural Deafness

    PubMed Central

    Torroni, Antonio; Cruciani, Fulvio; Rengo, Chiara; Sellitto, Daniele; López-Bigas, Núria; Rabionet, Raquel; Govea, Nancy; López de Munain, Adolfo; Sarduy, Maritza; Romero, Lourdes; Villamar, Manuela; del Castillo, Ignacio; Moreno, Felipe; Estivill, Xavier; Scozzari, Rosaria

    1999-01-01

    Summary The mtDNA variation of 50 Spanish and 4 Cuban families affected by nonsyndromic sensorineural deafness due to the A1555G mutation in the 12S rRNA gene was studied by high-resolution RFLP analysis and sequencing of the control region. Phylogenetic analyses of haplotypes and detailed survey of population controls revealed that the A1555G mutation can be attributed to ⩾30 independent mutational events among the 50 Spanish families and that it occurs on mtDNA haplogroups that are common in all European populations. This indicates that the relatively high detection rate of this mutation in Spain is not due to sampling biases or to a single major founder event. Moreover, the distribution of these mutational events on different haplogroups is compatible with a random occurrence of the A1555G mutation and tends to support the conclusion that mtDNA backgrounds do not play a significant role in the expression of the mutation. Overall, these findings appear to indicate that the rare detection of this mutation in other populations is most likely due to inadequacy in patient ascertainment and molecular screening. This probable lack of identification of the A1555G mutation in subjects affected by sensorineural hearing loss implies that their maternally related relatives are not benefiting from presymptomatic detection and information concerning their increased risk of ototoxicity due to aminoglycoside treatments. PMID:10521300

  4. Escherichia coli Fis and DnaA proteins bind specifically to the nrd promoter region and affect expression of an nrd-lac fusion.

    PubMed Central

    Augustin, L B; Jacobson, B A; Fuchs, J A

    1994-01-01

    The Escherichia coli nrd operon contains the genes encoding the two subunits of ribonucleoside diphosphate reductase. The regulation of the nrd operon has been observed to be very complex. The specific binding of two proteins to the nrd regulatory region and expression of mutant nrd-lac fusions that do not bind these proteins are described. A partially purified protein from an E. coli cell extract was previously shown to bind to the promoter region and to regulate transcription of the nrd operon (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990). We have purified this protein to homogeneity by affinity chromatography and identified it as the E. coli factor for inversion stimulation (Fis). Cu-phenanthroline footprinting experiments showed that Fis binds to a site centered 156 bp upstream of the start of nrd transcription. Mutants with deletion and site-directed mutations that do not bind Fis at this site have two- to threefold-lower expression of an nrd-lac fusion. The previously reported negative regulatory nature of this site (C. K. Tuggle and J. A. Fuchs, J. Bacteriol. 172:1711-1718, 1990) was found to be due to a change in polarity in the vectors used to construct promoter fusions. Two nine-base sequences with homology to the DnaA consensus binding sequence are located immediately upstream of the nrd putative -35 RNA polymerase binding site. Binding of DnaA to these sequences on DNA fragments containing the nrd promoter region was confirmed by in vitro Cu-phenanthroline footprinting. Footprinting experiments on fragments with each as well as both of the mutated 9-mers suggests cooperativity between the two sites in binding DnaA. Assay of in vivo expression from wild-type and DnaA box-mutated nrd promoter fragments fused to lacZ on single-copy plasmids indicates a positive effect of DnaA binding on expression of nrd. Images PMID:8288532

  5. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  6. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells.

    PubMed

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells' molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  7. Is DNA a language?

    PubMed

    Tsonis, A A; Elsner, J B; Tsonis, P A

    1997-01-01

    DNA sequences usually involve local construction rules that affect different scales. As such their "dictionary" may not follow Zipf's law (a power law) which is followed in every natural language. Indeed, analysis of many DNA sequences suggests that no linguistics connections to DNA exist and that even though it has structure DNA is not a language. Computer simulations and a biological approach to this problem further support these results. PMID:9039397

  8. Interaction of air temperature and nitrogen supply on root growth and nitrogen uptake by corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient uptake rates by plants are governed by both plant processes and soil properties. Simulation models of nitrogen uptake should account for both demand and availability of nitrogen. The goal of this study was to quantify root growth and nitrogen uptake by corn plants (maize) as affected by air...

  9. Stimulatory actions of bioflavenoids on tyrosine uptake into cultured bovine adrenal chromaffin cells

    SciTech Connect

    Morita, K.; Hamano, S.; Oka, M.; Teraoka, K. )

    1990-09-28

    The effects of flavenoids on L-({sup 14}C)tyrosine uptake into cultured adrenal chromaffin cells were examined. Flavone markedly stimulated tyrosine uptake into these cells in a manner dependent on its concentration. Apigenin also caused a moderate stimulatory action, but quercetin had no significant effect on the uptake. Flavone also stimulated the uptake of histidine, but did not affect the uptake of serine, lysine, or glutamic acid. These results are considered to propose the possibility that flavonoids may be able to stimulate the precursor uptake into the cells, resulting in an enhancement of the biogenic amine production.

  10. DNA polymerases β and λ do not directly affect Ig variable region somatic hypermutation although their absence reduces the frequency of mutations

    PubMed Central

    Schrader, Carol E.; Linehan, Erin K.; Ucher, Anna J.; Bertocci, Barbara; Stavnezer, Janet

    2014-01-01

    During somatic hypermutation (SHM) of antibody variable (V) region genes, activation-induced cytidine deaminase (AID) converts dC to dU, and dUs can either be excised by uracil DNA glycosylase (UNG), by mismatch repair, or replicated over. If UNG excises the dU, the abasic site could be cleaved by AP-endonuclease (APE), introducing the single-strand DNA breaks (SSBs) required for generating mutations at A:T bp, which are known to depend upon mismatch repair and DNA Pol η. DNA Pol β or λ could instead repair the lesion correctly. To assess the involvement of Pols β and λ in SHM of antibody genes, we analyzed mutations in the VDJh4 3′ flanking region in Peyer’s patch germinal center (GC) B cells from polβ−/−polλ−/−, polλ−/−, and polβ−/− mice. We find that deficiency of either or both polymerases results in a modest but significant decrease in V region SHM, with Pol β having a greater effect, but there is no effect on mutation specificity, suggesting they have no direct role in SHM. Instead, the effect on SHM appears to be due to a role for these enzymes in GC B cell proliferation or viability. The results suggest that the BER pathway is not important during V region SHM for generating mutations at A:T bp. Furthermore, this implies that most of the SSBs required for Pol η to enter and create A:T mutations are likely generated during replication instead. These results contrast with the inhibitory effect of Pol β on mutations at the Ig Sμ locus, Sμ DSBs and class switch recombination (CSR) reported previously. We show here that B cells deficient in Pol λ or both Pol β and λ proliferate normally in culture and undergo slightly elevated CSR, as shown previously for Pol β-deficient B cells. PMID:24084171

  11. Storage conditions of blood samples and primer selection affect the yield of cDNA polymerase chain reaction products of hepatitis C virus.

    PubMed Central

    Cuypers, H T; Bresters, D; Winkel, I N; Reesink, H W; Weiner, A J; Houghton, M; van der Poel, C L; Lelie, P N

    1992-01-01

    We have noticed that suboptimal specimen processing and storage conditions may cause false-negative results in the detection of hepatitis C virus (HCV) RNA in plasma or serum. To establish the influence of specimen handling in a serological laboratory on the rate of detection of HCV RNA by the cDNA polymerase chain reaction (cDNA-PCR), we tested routine serum samples and fresh-frozen plasma samples from the same bleeding from confirmed anti-HCV-positive blood donors. When primers from the NS3/NS4 region were used, HCV RNA was detected in fresh-frozen plasma from 67% of the donors, whereas positive results were obtained with only 50% of the serum samples that had been subjected to routine serological procedures. Analysis of the same samples with primers from the highly conserved 5'-terminal region (5'-TR) revealed an HCV RNA detection rate of 92% for both the routine and the fresh-frozen samples. However, the yield of the amplification product in routine samples was strongly reduced compared with that in fresh-frozen plasma. Comparison of both primer sets for cDNA-PCR showed that the 5'-TR primer set was 10- to 100-fold more effective in detecting HCV RNA. We also analyzed the effect of storage of whole EDTA-blood and serum at room temperature and at 4 degrees C on the yield of the amplification product. A rapid decline in detectable HCV RNA of 3 to 4 log units was observed within 14 days when whole blood and serum were stored at room temperature. By contrast, no perceptible reduction in the cDNA-PCR signal was found in freshly prepared serum stored at 4 degrees C. Images PMID:1333489

  12. Barriers to uptake and use of pre-exposure prophylaxis (PrEP) among communities most affected by HIV in the UK: findings from a qualitative study in Scotland

    PubMed Central

    Young, Ingrid; Flowers, Paul; McDaid, Lisa M

    2014-01-01

    Objectives To explore the acceptability of pre-exposure prophylaxis (PrEP) among gay, bisexual and men who have sex with men (MSM) and migrant African communities in Scotland, UK. Design Consecutive mixed qualitative methods consisting of focus groups (FGs) and in-depth interviews (IDIs) explored PrEP acceptability. Data were digitally recorded, transcribed and analysed thematically to identify anticipated and emerging themes. Setting Participants were recruited through community sexual health and outreach support services, and from non-sexual health settings across Scotland. Participants Inclusion criteria included identification as either MSM and/or from migrant African communities; 18 years and older; living in Scotland at the time of participation. 7 FGs were conducted (n=33): 5 with MSM (n=22) and 2 mixed-sex groups with African participants (n=11, women=8), aged 18–75 years. 34 IDIs were conducted with MSM (n=20) and African participants (n=14, women=10), aged 19–60 years. The sample included participants who were HIV-positive and HIV-negative or untested (HIV-positive FG participants, n=22; HIV-positive IDI participants, n=17). Results Understandings of PrEP effectiveness and concerns about maintaining regular adherence were identified as barriers to potential PrEP uptake and use. Low perception of HIV risk due to existing risk management strategies meant few participants saw themselves as PrEP candidates. Participants identified risk of other sexually transmitted infections and pregnancy as a concern which PrEP did not address for either themselves or their sexual partners. PrEP emerged as a contentious issue because of the potentially negative implications it had for HIV prevention. Many participants viewed PrEP as problematic because they perceived that others would stop using condoms if PrEP was to become available. Conclusions PrEP implementation needs to identify appropriate communication methods in the context of diverse HIV literacy

  13. Loss of CCDC6, the First Identified RET Partner Gene, Affects pH2AX S139 Levels and Accelerates Mitotic Entry upon DNA Damage

    PubMed Central

    Muller, Mark T.; Pacelli, Roberto; Fusco, Alfredo; Celetti, Angela

    2012-01-01

    CCDC6 was originally identified in chimeric genes caused by chromosomal translocation involving the RET proto-oncogene in some thryoid tumors mostly upon ionizing radiation exposure. Recognised as a pro-apoptotic phosphoprotein that negatively regulates CREB1-dependent transcription, CCDC6 is an ATM substrate that is responsive to genotoxic stress. Here we report that following genotoxic stress, loss or inactivation of CCDC6 in cancers that carry the CCDC6 fusion, accelerates the dephosphorylation of pH2AX S139, resulting in defective G2 arrest and premature mitotic entry. Moreover, we show that CCDC6 depleted cells appear to repair DNA damaged in a shorter time compared to controls, based on reporter assays in cells. High-troughput proteomic screening predicted the interaction between the CCDC6 gene product and the catalytic subunit of Serin–Threonin Protein Phosphatase 4 (PP4c) recently identified as the evolutionarily conserved pH2AX S139 phosphatase that is activated upon DNA Damage. We describe the interaction between CCDC6 and PP4c and we report the modulation of PP4c enzymatic activity in CCDC6 depleted cells. We discuss the functional significance of CCDC6-PP4c interactions and hypothesize that CCDC6 may act in the DNA Damage Response by negatively modulating PP4c activity. Overall, our data suggest that in primary tumours the loss of CCDC6 function could influence genome stability and thereby contribute to carcinogenesis. PMID:22655027

  14. Microbiology and Moisture Uptake of Desert Soils

    NASA Astrophysics Data System (ADS)

    Kress, M. E.; Bryant, E. P.; Morgan, S. W.; Rech, S.; McKay, C. P.

    2005-12-01

    We have initiated an interdisciplinary study of the microbiology and water content of desert soils to better understand microbial activity in extreme arid environments. Water is the one constituent that no organism can live without; nevertheless, there are places on Earth with an annual rainfall near zero that do support microbial ecosystems. These hyperarid deserts (e.g. Atacama and the Antarctic Dry Valleys) are the closest terrestrial analogs to Mars, which is the subject of future exploration motivated by the search for life beyond Earth. We are modeling the moisture uptake by soils in hyperarid environments to quantify the environmental constraints that regulate the survival and growth of micro-organisms. Together with the studies of moisture uptake, we are also characterizing the microbial population in these soils using molecular and culturing methods. We are in the process of extracting DNA from these soils using MoBio extraction kits. This DNA will be used as a template to amplify bacterial and eukaryotic ribosomal DNA to determine the diversity of the microbial population. We also have been attempting to determine the density of organisms by culturing on one-half strength R2A agar. The long-range goal of this research is to identify special adaptations of terrestrial life that allow them to inhabit extreme arid environments, while simultaneously quantifying the environmental parameters that enforce limits on these organisms' growth and survival.

  15. A hierarchical examination of methane uptake: field patterns, lab physiology, community composition and biogeography

    NASA Astrophysics Data System (ADS)

    von Fischer, J. C.; Koyama, A.; Johnson, N. G.; Webb, C. T.

    2015-12-01

    Scaling problems abound in biogeochemistry. At the finest scale, soil microbes experience habitats and environmental changes that affect the chemical transformations of interest. We collect the DNA of these organisms from sites across landscapes and note differences in who is there, and we seek to evaluate why group membership changes in space (biogeography) and why activity rates change over time (physiology). The goal of efforts at finer scales is often to better predict patterns at larger scales. We conducted such a hierarchical examination of methane uptake in the Great Plains grasslands of North America, gathering data from 22 plots at 8 field locations, scattered from South Dakota to New Mexico and Colorado to Kansas. Our work provides insight into methanotroph biogeochemistry at all of these scales. For example, we found that methane uptake rates vary mostly due to the methanotroph activity, and less so due to diffusivity. A combination of field and lab observations reveal that methanotroph communities differ in their sensitivity to soil moisture and to ammonium (an inhibitor of methanotrophy). Examination of methanotroph community composition reveals tantalizing patterns in composition, dominance and richness across sites, that appears to be structured by patterns of precipitation and soil texture. We anticipate that greater synthesis of these hierarchical findings will paint a richer picture of methanotroph life and enable improved prediction of methane uptake at regional scales.

  16. Residue Substitutions Near the Redox Center of Bacillus subtilis Spx Affect RNA Polymerase Interaction, Redox Control, and Spx-DNA Contact at a Conserved cis-Acting Element

    PubMed Central

    Lin, Ann A.; Walthers, Don

    2013-01-01

    Spx, a member of the ArsC protein family, is a regulatory factor that interacts with RNA polymerase (RNAP). It is highly conserved in Gram-positive bacteria and controls transcription on a genome-wide scale in response to oxidative stress. The structural requirements for RNAP interaction and promoter DNA recognition by Spx were examined through mutational analysis. Residues near the CxxC redox disulfide center of Spx functioned in RNAP α subunit interaction and in promoter DNA binding. R60E and C10A mutants were shown previously to confer defects in transcriptional activation, but both were able to interact with RNAP. R92, which is conserved in ArsC-family proteins, is likely involved in redox control of Spx, as the C10A mutation, which blocks disulfide formation, was epistatic to the R92A mutation. The R91A mutation reduced transcriptional activation and repression, suggesting a defect in RNAP interaction, which was confirmed by interaction assays using an epitope-tagged mutant protein. Protein-DNA cross-linking detected contact between RNAP-bound Spx and the AGCA element at −44 that is conserved in Spx-controlled genes. This interaction caused repositioning of the RNAP σA subunit from a −35-like element upstream of the trxB (thioredoxin reductase) promoter to positions −36 and −11 of the core promoter. The study shows that RNAP-bound Spx contacts a conserved upstream promoter sequence element when bound to RNAP. PMID:23813734

  17. Inhibition of the mitochondrial respiratory chain function abrogates quartz induced DNA damage in lung epithelial cells.

    PubMed

    Li, Hui; Haberzettl, Petra; Albrecht, Catrin; Höhr, Doris; Knaapen, Ad M; Borm, Paul J A; Schins, Roel P F

    2007-04-01

    Respirable quartz dust has been classified as a human carcinogen by the International Agency for Research on Cancer. The aim of our study was to investigate the mechanisms of DNA damage by DQ12 quartz in RLE-6TN rat lung epithelial type II cells (RLE). Transmission electron microscopy and flow-cytometry analysis showed a rapid particle uptake (30 min to 4 h) of quartz by the RLE cells, but particles were not found within the cell nuclei. This suggests that DNA strand breakage and induction of 8-hydroxydeoxyguanosine - as also observed in these cells during these treatment intervals - did not result from direct physical interactions between particles and DNA, or from short-lived particle surface-derived reactive oxygen species. DNA damage by quartz was significantly reduced in the presence of the mitochondrial inhibitors rotenone and antimycin-A. In the absence of quartz, these inhibitors did not affect DNA damage, but they reduced cellular oxygen consumption. No signs of apoptosis were observed by quartz. Flow-cytometry analysis indicated that the reduced DNA damage by rotenone was not due to a possible mitochondria-mediated reduction of particle uptake by the RLE cells. Further proof of concept for the role of mitochondria was shown by the failure of quartz to elicit DNA damage in mitochondria-depleted 143B (rho-0) osteosarcoma cells, at concentrations where it elicited DNA damage in the parental 143B cell line. In conclusion, our data show that respirable quartz particles can elicit oxidative DNA damage in vitro without entering the nuclei of type II cells, which are considered to be important target cells in quartz carcinogenesis. Furthermore, our observations indicate that such indirect DNA damage involves the mitochondrial electron transport chain function, by an as-yet-to-be elucidated mechanism. PMID:17239409

  18. Genome-wide identification of mononuclear cell DNA methylation sites potentially affected by fish oil supplementation in young infants: A pilot study.

    PubMed

    Lind, M V; Martino, D; Harsløf, L B S; Kyjovska, Z O; Kristensen, M; Lauritzen, L

    2015-10-01

    Recent evidence suggests that the effects of n-3LCPUFA might be mediated through epigenetic mechanisms, especially DNA-methylation, during pregnancy and early life. A randomized trial was conducted in 133 9-mo-old, infants who received 3.8g/day of fish oil (FO) or sunflower oil (SO) for 9 mo. In a subset of 12 children, buffy-coat DNA was extracted before and after intervention and analyzed on Illumina-Human-Methylation 450-arrays to explore genome-wide differences between the FO and SO groups. Genome-wide-methylation analysis did not reveal significant differences between groups after adjustment for multiple testing. However, analysis of the top-ranked CpG-sites revealed 43 CpG׳s that appear modified with an absolute difference in methylation of ≥10%. Methylation levels at these sites were associated with phenotypic changes mainly in blood pressure. In conclusion, our analyses suggest potential epigenome effects that might be associated with functional outcomes, yet the effect sizes were small and should be verified by additional investigation. PMID:26254087

  19. Six DNA polymorphisms in the low density lipoprotein receptor gene: their genetic relationship and an example of their use for identifying affected relatives of patients with familial hypercholesterolaemia.

    PubMed Central

    Humphries, S; King-Underwood, L; Gudnason, V; Seed, M; Delattre, S; Clavey, V; Fruchart, J C

    1993-01-01

    We have determined the relative allele frequency and estimated linkage disequilibrium between six DNA polymorphisms of the low density lipoprotein (LDL) receptor gene. Polymorphisms were detected using the enzymes SfaNI, TaqI, StuI, HincII, AvaII, and NcoI after DNA amplification by the polymerase chain reaction. Strong linkage disequilibrium was detected between many of the pair wise comparisons in a sample of 60 patients heterozygous for familial hypercholesterolaemia (FH). Using the enzymes HincII, NcoI, and SfaNI, 85% of patients were heterozygous for at least one polymorphism and thus potentially informative for cosegregation studies. The polymorphisms were used to follow the inheritance of the defective allele of the LDL receptor gene in the relatives of a patient with FH. Assays of LDL receptor activity on lymphoblastoid cell lines from two members of the family was used to confirm that the proband, but not the hypercholesterolaemic brother, had a defect in the LDL receptor. In the family, none of the children had inherited the allele of the LDL receptor gene inferred to be defective. The problems associated with this cosegregation approach to identify relatives of patients with a clinical diagnosis of FH are discussed. PMID:8098067

  20. The R215W mutation in NBS1 impairs {gamma}-H2AX binding and affects DNA repair: molecular bases for the severe phenotype of 657del5/R215W Nijmegen breakage syndrome patients

    SciTech Connect

    Masi, Alessandra di Viganotti, Mara; Polticelli, Fabio; Ascenzi, Paolo; Tanzarella, Caterina; Antoccia, Antonio

    2008-05-09

    Nijmegen breakage syndrome (NBS) is a genetic disorder characterized by chromosomal instability and hypersensitivity to ionising radiation. Compound heterozygous 657del5/R215W NBS patients display a clinical phenotype more severe than the majority of NBS patients homozygous for the 657del5 mutation. The NBS1 protein, mutated in NBS patients, contains a FHA/BRCT domain necessary for the DNA-double strand break (DSB) damage response. Recently, a second BRCT domain has been identified, however, its role is still unknown. Here, we demonstrate that the R215W mutation in NBS1 impairs histone {gamma}-H2AX binding after induction of DNA damage, leading to a delay in DNA-DSB rejoining. Molecular modelling reveals that the 215 residue of NBS1 is located between the two BRCT domains, affecting their relative orientation that appears critical for {gamma}-H2AX binding. Present data represent the first evidence for the role of NBS1 tandem BRCT domains in {gamma}-H2AX recognition, and could explain the severe phenotype observed in 657del5/R215W NBS patients.

  1. Putrescine uptake in saintpaulia petals.

    PubMed

    Bagni, N; Pistocchi, R

    1985-02-01

    Putrescine uptake and the kinetics of this uptake were studied in petals of Saintpaulia ionantha Wendl. Uptake experiments of [(3)H] or [(14)C] putrescine were done on single petals at room temperature at various pH values. The results show that putrescine uptake occurs against a concentration gradient at low external putrescine concentration (0.5-100 micromolar) and follows a concentration gradient at higher external putrescine concentrations (100 micromolar to 100 millimolar). 2,4-Dinitrophenol and carbonylcyanide-m-chlorophenylhydrazone, two uncouplers, had no effect on putrescine uptake. Uptake rates were constant for 2 hours, reaching a maximum after 3 to 4 hours. Putrescine uptake depended markedly on the external pH and two maxima were observed: at low external concentrations of putrescine, the optimum was at pH 5 to 5.5; at higher concentrations the optimum was at pH 8. PMID:16664065

  2. Benzo[a]pyrene Uptake by Bacteria and Yeast

    PubMed Central

    Moore, B. G.; Harrison, Arthur P.

    1965-01-01

    Moore, B. G. (Oak Ridge National Laboratory, Oak Ridge, Tenn.), and Arthur P. Harrison, Jr. Benzo[a]pyrene uptake by bacteria and yeast. J. Bacteriol. 90:989–1000. 1965.—Various Enterobacteriaceae and yeast incubated in a medium containing 25 μg/ml of H3-benzo[a]pyrene (30% serum in the medium dissolves the hydrocarbon) retain radioactivity after washings with fresh 30% serum-medium. This radioactivity is defined as bound and represents intact benzo[a]pyrene. Factors relating to the binding of benzo[a]pyrene (benzo[a]pyrene uptake) have been studied in detail with Escherichia coli Ma, a triple auxotroph requiring l-leucine, uracil, and thymine. In defined medium, benzo[a]pyrene uptake by normally growing cells is 10−10 to 2 × 10−10 μg per cell. Uptake is the same in suspensions lacking leucine and containing chloramphenicol where there is neither measurable protein synthesis nor cell division. Uptake is diminished, but not eliminated, by autoclaving the cells; thus, some uptake occurs in the absence of enzymatic activity. Uptake is enhanced by heat shock, thymine deprivation, uracil deprivation, and exposure to penicillin. Thus, uptake is affected by the physiological state of the cells. Either the cells play a direct (enzymatic) role in uptake, or they affect uptake indirectly by increasing or altering the benzo[a]pyrene-binding structure. Physical fractionation of cells demonstrates that this structure is associated with the cell wall-membrane complex. All but 1% of the bound radioactivity is extracted with ethyl alcohol-ether. This residual radioactivity is defined as fixed, and may be associated with cell protein. The extracted radioactivity is identified as benzo[a]pyrene. Very little hydrocarbon is metabolized. Adverse photodynamic effects, increase in mutation, and dimunition in bacteriophage replication (in whole cells) have not been observed in the benzo[a]pyrene cultures. PMID:5321405

  3. Low-intensity red and infrared lasers affect mRNA expression of DNA nucleotide excision repair in skin and muscle tissue.

    PubMed

    Sergio, Luiz Philippe S; Campos, Vera Maria A; Vicentini, Solange C; Mencalha, Andre Luiz; de Paoli, Flavia; Fonseca, Adenilson S

    2016-04-01

    Lasers emit light beams with specific characteristics, in which wavelength, frequency, power, fluence, and emission mode properties determine the photophysical, photochemical, and photobiological responses. Low-intensity lasers could induce free radical generation in biological tissues and cause alterations in macromolecules, such as DNA. Thus, the aim of this work was to evaluate excision repair cross-complementing group 1 (ERCC1) and excision repair cross-complementing group 2 (ERCC2) messenger RNA (mRNA) expression in biological tissues exposed to low-intensity lasers. Wistar rat (n = 28, 4 for each group) skin and muscle were exposed to low-intensity red (660 nm) and near-infrared (880 nm) lasers at different fluences (25, 50, and 100 J/cm(2)), and samples of these tissues were withdrawn for RNA extraction, cDNA synthesis, and gene expression evaluation by quantitative polymerase chain reaction. Laser exposure was in continuous wave and power of 100 mW. Data show that ERCC1 and ERCC2 mRNA expressions decrease in skin (p < 0.001) exposed to near-infrared laser, but increase in muscle tissue (p < 0.001). ERCC1 mRNA expression does not alter (p > 0.05), but ERCC2 mRNA expression decreases in skin (p < 0.001) and increases in muscle tissue (p < 0.001) exposed to red laser. Our results show that ERCC1 and ERCC2 mRNA expression is differently altered in skin and muscle tissue exposed to low-intensity lasers depending on wavelengths and fluences used in therapeutic protocols. PMID:26796702

  4. Modulation of the poly (ADP-ribose) polymerase inhibitor response and DNA recombination in breast cancer cells by drugs affecting endogenous wild-type p53.

    PubMed

    Ireno, Ivanildce Cristiane; Wiehe, Rahel Stephanie; Stahl, Andreea Iulia; Hampp, Stephanie; Aydin, Sevtap; Troester, Melissa A; Selivanova, Galina; Wiesmüller, Lisa

    2014-10-01

    Synthetic lethal interactions between poly (ADP-ribose) polymerase (PARP) and homologous recombination (HR) repair pathways have been exploited for the development of novel mono- and combination cancer therapies. The tumor suppressor p53 was demonstrated to exhibit indirect and direct regulatory activities in DNA repair, particularly in DNA double-strand break (DSB)-induced and replication-associated HR. In this study, we tested a potential influence of the p53 status on the response to PARP inhibition, which is known to cause replication stress. Silencing endogenous or inducibly expressing p53 we found a protective effect of p53 on PARP inhibitor (PARPi)-mediated cytotoxicities. This effect was specific for wild-type versus mutant p53 and observed in cancer but not in non-transformed cell lines. Enhanced cytotoxicities after treatment with the p53-inhibitory drug Pifithrinα further supported p53-mediated resistance to PARP inhibition. Surprisingly, we equally observed increased PARPi sensitivity in the presence of the p53-activating compound Nutlin-3. As a common denominator, both drug responses correlated with decreased HR activities: Pifithrinα downregulated spontaneous HR resulting in damage accumulation. Nutlin-3 induced a decrease of DSB-induced HR, which was accompanied by a severe drop in RAD51 protein levels. Thus, we revealed a novel link between PARPi responsiveness and p53-controlled HR activities. These data expand the concept of cell and stress type-dependent healer and killer functions of wild-type p53 in response to cancer therapeutic treatment. Our findings have implications for the individualized design of cancer therapies using PARPi and the potentially combined use of p53-modulatory drugs. PMID:25085902

  5. Effects of opiates on synaptosomal calmodulin and calcium uptake

    SciTech Connect

    Hoss, W.; Formaniak, M.

    1983-02-01

    Acute opiate administration in vivo increases the level of cytoplasmic calmodulin in isolated rat brain synaptosomes. These synaptosomes do not, however, display decreased K/sup +/-stimulated /sup 45/Ca uptake in vitro. Opiates affect neither cytoplasmic calmodulin nor Ca uptake after incubation of synaptosomes with the drugs in vitro. In contrast to the interpretation of electrophysiological data, these results suggest that the observed inhibition by opiates of the release of several transmitters may not be mediated by presynaptic opiate receptors that inhibit Ca uptake.

  6. Basic fibroblast growth factor (basic FGF) in isolated ovine thyroid follicles: thyrotropin stimulation and effects of basic FGF on DNA synthesis, iodine uptake and organification, and the release of insulin-like growth factors (IGFs) and IGF-binding proteins.

    PubMed

    Hill, D J; Phillips, I D; Wang, J F; Becks, G P

    1994-01-01

    We examined the effects of thyroid-stimulating hormone (TSH) on basic fibroblast growth factor (basic FGF) expression in isolated ovine thyroid follicles in vitro, and the effects of exogenous basic FGF on thyroid growth and function, to elucidate the significance of increased basic FGF expression during TSH-induced rat thyroid hyperplasia in vivo. Primary cultures of ovine thyroid follicles were maintained in serum-free Ham's modified F-12M medium containing transferrin, somatostatin, and glycyl-histidyl-lysine (designated 3H) with or without basic FGF alone, or in combination with TSH (100 microU/mL) and cortisol (10 nM). Following 48 h incubation, cells were harvested and total RNA prepared for the detection of basic FGF mRNA using Northern blot analysis and ribonuclease protection assay. Basic FGF in the cytoplasm and extracellular matrix fractions was quantified by radioimmunoassay. Basic FGF mRNA transcripts of 3.7, 3.0, and 2.2 kb, respectively, were found in thyroid follicles cultured in 3H medium, and the abundance of each increased between 2- and 3-fold following incubation with 10-50 microU/mL TSH, although higher concentrations of TSH were less effective. Similar results were seen using a more sensitive ribonuclease protection assay. Cells cultured in control, 3H medium contained 2.4 +/- 0.5 fmol immunoreactive basic FGF/micrograms cell DNA within the cytoplasm and 21.1 +/- 1.5 fmol/micrograms DNA within the extracellular matrix (mean +/- SD, n = 6). A significant increase (p < 0.05) in basic FGF content was seen in both cell compartments following incubation with 50 or 100 microU/mL TSH, while 250 microU/mL was less effective.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7519916

  7. Methamphetamine administration reduces hippocampal vesicular monoamine transporter-2 uptake.

    PubMed

    Rau, Kristi S; Birdsall, Elisabeth; Volz, Trent J; Riordan, James A; Baucum, Anthony J; Adair, Brian P; Bitter, Rebecca; Gibb, James W; Hanson, Glen R; Fleckenstein, Annette E

    2006-08-01

    Repeated high-dose injections of methamphetamine (METH) rapidly decrease dopamine uptake by the vesicular monoamine transporter-2 (VMAT-2) associated with dopaminergic nerve terminals, as assessed in nonmembrane-associated vesicles purified from striata of treated rats. The purpose of this study was to determine whether METH similarly affects vesicular uptake in the hippocampus; a region innervated by both serotonergic and noradrenergic neurons and profoundly affected by METH treatment. Results revealed that repeated high-dose METH administrations rapidly (within 1 h) reduced hippocampal vesicular dopamine uptake, as assessed in vesicles purified from treated rats. This reduction was likely associated with serotonergic nerve terminals because METH did not further reduce vesicular monoamine uptake in para-chloroamphetamine-lesioned animals. Pretreatment with the serotonin transporter inhibitor fluoxetine blocked both this acute effect on VMAT-2 and the decrease in serotonin content observed 7 days after METH treatment. In contrast, there was no conclusive evidence that METH affected vesicular dopamine uptake in noradrenergic neurons or caused persistent noradrenergic deficits. These findings suggest a link between METH-induced alterations in serotonergic hippocampal vesicular uptake and the persistent hippocampal serotonergic deficits induced by the stimulant. PMID:16687477

  8. Solar ultraviolet-B radiation affects seedling emergence, DNA integrity, plant morphology, growth rate, and attractiveness to herbivore insects in Datura ferox

    SciTech Connect

    Ballare, C.L.; Scopel, A.L.; Stapleton, A.E.

    1996-09-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV0B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferrox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. 56 refs., 7 figs.

  9. Solar Ultraviolet-B Radiation Affects Seedling Emergence, DNA Integrity, Plant Morphology, Growth Rate, and Attractiveness to Herbivore Insects in Datura ferox.

    PubMed Central

    Ballare, C. L.; Scopel, A. L.; Stapleton, A. E.; Yanovsky, M. J.

    1996-01-01

    To study functional relationships between the effects of solar ultraviolet-B radiation (UV-B) on different aspects of the physiology of a wild plant, we carried out exclusion experiments in the field with the summer annual Datura ferox L. Solar UV-B incident over Buenos Aires reduced daytime seedling emergence, inhibited stem elongation and leaf expansion, and tended to reduce biomass accumulation during early growth. However, UV-B had no effect on calculated net assimilation rate. Using a monoclonal antibody specific to the cyclobutane-pyrimidine dimer (CPD), we found that plants receiving full sunlight had more CPDs per unit of DNA than plants shielded from solar UV-B, but the positive correlation between UV-B and CPD burden tended to level off at high (near solar) UV-B levels. At our field site, Datura plants were consumed by leaf beetles (Coleoptera), and the proportion of plants attacked by insects declined with the amount of UV-B received during growth. Field experiments showed that plant exposure to solar UV-B reduced the likelihood of leaf beetle attack by one-half. Our results highlight the complexities associated with scaling plant responses to solar UV-B, because they show: (a) a lack of correspondence between UV-B effects on net assimilation rate and whole-plant growth rate, (b) nonlinear UV-B dose-response curves, and (c) UV-B effects of plant attractiveness to natural herbivores. PMID:12226382

  10. Identification of a Mitochondrial DNA Polymerase Affecting Cardiotoxicity of Sunitinib Using a Genome-Wide Screening on S. pombe Deletion Library.

    PubMed

    Kim, Dong-Myung; Kim, Hanna; Yeon, Ji-Hyun; Lee, Ju-Hee; Park, Han-Oh

    2016-01-01

    Drug toxicity is a key issue for drug R&D, a fundamental challenge of which is to screen for the targets genome-wide. The anticancer tyrosine kinase inhibitor sunitinib is known to induce cardiotoxicity. Here, to understand the molecular insights of cardiotoxicity by sunitinib at the genome level, we used a genome-wide drug target screening technology (GPScreen) that measures drug-induced haploinsufficiency (DIH) in the fission yeast Schizosaccharomyces pombe genome-wide deletion library and found a mitochondrial DNA polymerase (POG1). In the results, sunitinib induced more severe cytotoxicity and mitochondrial damage in POG1-deleted heterozygous mutants compared to wild type (WT) of S. pombe. Furthermore, knockdown of the human ortholog POLG of S. pombe POG1 in human cells significantly increased the cytotoxicity of sunitinib. Notably, sunitinib dramatically decreased the levels of POLG mRNAs and proteins, of which downregulation was already known to induce mitochondrial damage of cardiomyocytes, causing cardiotoxicity. These results indicate that POLG might play a crucial role in mitochondrial damage as a gene of which expressional pathway is targeted by sunitinib for cardiotoxicity, and that genome-wide drug target screening with GPScreen can be applied to drug toxicity target discovery to understand the molecular insights regarding drug toxicity. PMID:26385865

  11. Woodchuck hepatitis virus core antigen-based DNA and protein vaccines induce qualitatively different immune responses that affect T cell recall responses and antiviral effects.

    PubMed

    Zhang, Ejuan; Kosinska, Anna D; Ma, Zhiyong; Dietze, Kirsten K; Xu, Yang; Meng, Zhongji; Zhang, Xiaoyong; Wang, Junzhong; Wang, Baoju; Dittmer, Ulf; Roggendorf, Michael; Yang, Dongliang; Lu, Mengji

    2015-01-15

    T helper type 1 (Th1) immunity was considered to play a dominant role in viral clearance of hepadnaviral infection. However, pre-primed Th2 type responses were able to efficiently control hepadnaviral infection in animal models. We investigated how pre-primed Th1/2 responses control hepadnaviral replication using the newly established mouse models. DNA (pWHcIm, pCTLA-4-C) and protein vaccines based on the nucleocapsid protein (WHcAg) of woodchuck hepatitis virus (WHV) primed specific immune responses with distinct features. The pre-primed responses determined the characteristics of recall responses if challenged with a WHcAg-expressing adenoviral vector. Vaccination with pWHcIm and pCTLA4-C facilitated viral control in the hydrodynamic injection model and reduced WHV loads by about 3 and 2 logs in WHV-transgenic mice, respectively, despite of different kinetics of specific CD8+ T cell responses. Thus, pre-primed Th2-biased responses facilitate the development of CD8+ T cell responses in mice compared with naïve controls and thereby confer better viral control. PMID:25462346

  12. Soil fungal communities underneath willow canopies on a primary successional glacier forefront: rDNA sequence results can be affected by primer selection and chimeric data.

    PubMed

    Jumpponen, Ari

    2007-02-01

    Soil fungal communities underneath willow canopies that had established on the forefront of a receding glacier were analyzed by cloning the polymerase chain reaction (PCR)-amplified partial small subunit (18S) of the ribosomal (rRNA) genes. Congruence between two sets of fungus-specific primers targeting the same gene region was analyzed by comparisons of inferred neighbor-joining topologies. The importance of chimeric sequences was evaluated by Chimera Check (Ribosomal Database Project) and by data reanalyses after omission of potentially chimeric regions at the 5'- and 3'-ends of the cloned amplicons. Diverse communities of fungi representing Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota were detected. Ectomycorrhizal fungi comprised a major component in the early plant communities in primary successional ecosystems, as both primer sets frequently detected basidiomycetes (Russulaceae and Thelephoraceae) forming mycorrhizal symbioses. Various ascomycetes (Ophiostomatales, Pezizales, and Sordariales) of uncertain function dominated the clone libraries amplified from the willow canopy soil with one set of primers, whereas the clone libraries of the amplicons generated with the second primer set were dominated by basidiomycetes. Accordingly, primer bias is an important factor in fungal community analyses using DNA extracted from environmental samples. A large proportion (>30%) of the cloned sequences were concluded to be chimeric based on their changing positions in inferred phylogenies after omission of possibly chimeric data. Many chimeric sequences were positioned basal to existing classes of fungi, suggesting that PCR artifacts may cause frequent discovery of new, higher level taxa (order, class) in direct PCR analyses. Longer extension times during the PCR amplification and a smaller number of PCR cycles are necessary precautions to allow collection of reliable environmental sequence data. PMID:17106807

  13. FANCM c.5791C>T nonsense mutation (rs144567652) induces exon skipping, affects DNA repair activity and is a familial breast cancer risk factor.

    PubMed

    Peterlongo, Paolo; Catucci, Irene; Colombo, Mara; Caleca, Laura; Mucaki, Eliseos; Bogliolo, Massimo; Marin, Maria; Damiola, Francesca; Bernard, Loris; Pensotti, Valeria; Volorio, Sara; Dall'Olio, Valentina; Meindl, Alfons; Bartram, Claus; Sutter, Christian; Surowy, Harald; Sornin, Valérie; Dondon, Marie-Gabrielle; Eon-Marchais, Séverine; Stoppa-Lyonnet, Dominique; Andrieu, Nadine; Sinilnikova, Olga M; Mitchell, Gillian; James, Paul A; Thompson, Ella; Marchetti, Marina; Verzeroli, Cristina; Tartari, Carmen; Capone, Gabriele Lorenzo; Putignano, Anna Laura; Genuardi, Maurizio; Medici, Veronica; Marchi, Isabella; Federico, Massimo; Tognazzo, Silvia; Matricardi, Laura; Agata, Simona; Dolcetti, Riccardo; Della Puppa, Lara; Cini, Giulia; Gismondi, Viviana; Viassolo, Valeria; Perfumo, Chiara; Mencarelli, Maria Antonietta; Baldassarri, Margherita; Peissel, Bernard; Roversi, Gaia; Silvestri, Valentina; Rizzolo, Piera; Spina, Francesca; Vivanet, Caterina; Tibiletti, Maria Grazia; Caligo, Maria Adelaide; Gambino, Gaetana; Tommasi, Stefania; Pilato, Brunella; Tondini, Carlo; Corna, Chiara; Bonanni, Bernardo; Barile, Monica; Osorio, Ana; Benitez, Javier; Balestrino, Luisa; Ottini, Laura; Manoukian, Siranoush; Pierotti, Marco A; Renieri, Alessandra; Varesco, Liliana; Couch, Fergus J; Wang, Xianshu; Devilee, Peter; Hilbers, Florentine S; van Asperen, Christi J; Viel, Alessandra; Montagna, Marco; Cortesi, Laura; Diez, Orland; Balmaña, Judith; Hauke, Jan; Schmutzler, Rita K; Papi, Laura; Pujana, Miguel Angel; Lázaro, Conxi; Falanga, Anna; Offit, Kenneth; Vijai, Joseph; Campbell, Ian; Burwinkel, Barbara; Kvist, Anders; Ehrencrona, Hans; Mazoyer, Sylvie; Pizzamiglio, Sara; Verderio, Paolo; Surralles, Jordi; Rogan, Peter K; Radice, Paolo

    2015-09-15

    Numerous genetic factors that influence breast cancer risk are known. However, approximately two-thirds of the overall familial risk remain unexplained. To determine whether some of the missing heritability is due to rare variants conferring high to moderate risk, we tested for an association between the c.5791C>T nonsense mutation (p.Arg1931*; rs144567652) in exon 22 of FANCM gene and breast cancer. An analysis of genotyping data from 8635 familial breast cancer cases and 6625 controls from different countries yielded an association between the c.5791C>T mutation and breast cancer risk [odds ratio (OR) = 3.93 (95% confidence interval (CI) = 1.28-12.11; P = 0.017)]. Moreover, we performed two meta-analyses of studies from countries with carriers in both cases and controls and of all available data. These analyses showed breast cancer associations with OR = 3.67 (95% CI = 1.04-12.87; P = 0.043) and OR = 3.33 (95% CI = 1.09-13.62; P = 0.032), respectively. Based on information theory-based prediction, we established that the mutation caused an out-of-frame deletion of exon 22, due to the creation of a binding site for the pre-mRNA processing protein hnRNP A1. Furthermore, genetic complementation analyses showed that the mutation influenced the DNA repair activity of the FANCM protein. In summary, we provide evidence for the first time showing that the common p.Arg1931* loss-of-function variant in FANCM is a risk factor for familial breast cancer. PMID:26130695

  14. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  15. Vacuolar Ca(2+) uptake.

    PubMed

    Pittman, Jon K

    2011-08-01

    Calcium transporters that mediate the removal of Ca(2+) from the cytosol and into internal stores provide a critical role in regulating Ca(2+) signals following stimulus induction and in preventing calcium toxicity. The vacuole is a major calcium store in many organisms, particularly plants and fungi. Two main pathways facilitate the accumulation of Ca(2+) into vacuoles, Ca(2+)-ATPases and Ca(2+)/H(+) exchangers. Here I review the biochemical and regulatory features of these transporters that have been characterised in yeast and plants. These Ca(2+) transport mechanisms are compared with those being identified from other vacuolated organisms including algae and protozoa. Studies suggest that Ca(2+) uptake into vacuoles and other related acidic Ca(2+) stores occurs by conserved mechanisms which developed early in evolution. PMID:21310481

  16. Bicarbonate uptake by Southern Ocean phytoplankton

    NASA Astrophysics Data System (ADS)

    Cassar, Nicolas; Laws, Edward A.; Bidigare, Robert R.; Popp, Brian N.

    2004-06-01

    Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [, 1993]. Estimation of the extent of bicarbonate (HCO3-) uptake in the oceans is therefore required to determine whether the anthropogenic carbon sources will enhance carbon flux to the deep ocean. Using short-term 14CO2-disequilibrium experiments during the Southern Ocean Iron Experiment (SOFeX), we show that HCO3- uptake by Southern Ocean phytoplankton is significant. Since the majority of dissolved inorganic carbon (DIC) in the ocean is in the form of bicarbonate, the biological pump may therefore be insensitive to anthropogenic CO2. Approximately half of the DIC uptake observed was attributable to direct HCO3- uptake, the other half being direct CO2 uptake mediated either by passive diffusion or active uptake mechanisms. The increase in growth rates and decrease in CO2 concentration associated with the iron fertilization did not trigger any noticeable changes in the mode of DIC acquisition, indicating that under most environmental conditions the carbon concentrating mechanism (CCM) is constitutive. A low-CO2 treatment induced an increase in uptake of CO2, which we attributed to increased extracellular carbonic anhydrase activity, at the expense of direct HCO3- transport across the plasmalemma. Isotopic disequilibrium experimental results are consistent with Southern Ocean carbon stable isotope fractionation data from this and other studies. Although iron fertilization has been shown to significantly enhance phytoplankton growth and may potentially increase carbon flux to the deep ocean, an important source of the inorganic carbon taken up by phytoplankton in this study was HCO3-, whose concentration is negligibly affected by the

  17. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle.

    PubMed

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian; Schjerling, Peter; Vernet, Erik; Steinberg, Gregory R; Richter, Erik A; Jørgensen, Sebastian B

    2015-07-15

    Members of the IL-6 family, IL-6 and ciliary neurotrophic factor (CNTF), have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well characterized. Effects of LIF on skeletal muscle glucose uptake and palmitate oxidation and signaling were investigated in ex vivo incubated mouse soleus and EDL muscles from muscle-specific AMPKα2 kinase-dead, muscle-specific SOCS3 knockout, and lean and high-fat-fed mice. Inhibitors were used to investigate involvement of specific signaling pathways. LIF increased muscle glucose uptake in dose (50-5,000 pM/l) and time-dependent manners with maximal effects at the 30-min time point. LIF increased Akt Ser(473) phosphorylation (P) in soleus and EDL, whereas AMPK Thr(172) P was unaffected. Incubation with parthenolide abolished LIF-induced glucose uptake and STAT3 Tyr(705) P, whereas incubation with LY-294002 and wortmannin suppressed both basal and LIF-induced glucose uptake and Akt Ser(473) P, indicating that JAK and PI 3-kinase signaling is required for LIF-stimulated glucose uptake. Incubation with rapamycin and AZD8055 indicated that mammalian target of rapamycin complex (mTORC)2, but not mTORC1, also is required for LIF-stimulated glucose uptake. In contrast to CNTF, LIF stimulation did not alter palmitate oxidation. LIF-stimulated glucose uptake was maintained in EDL from obese insulin-resistant mice, whereas soleus developed LIF resistance. Lack of SOCS3 and AMPKα2 did not affect LIF-stimulated glucose uptake. In conclusion, LIF acutely increased muscle glucose uptake by a mechanism potentially involving the PI 3-kinase/mTORC2/Akt pathway and is not impaired in EDL muscle from obese insulin-resistant mice. PMID:25968579

  18. Breast cancer risk and the DNA double-strand break end-joining capacity of nonhomologous end-joining genes are affected by BRCA1.

    PubMed

    Bau, Da-Tian; Fu, Yi-Ping; Chen, Shou-Tung; Cheng, Ting-Chih; Yu, Jyh-Cherng; Wu, Pei-Ei; Shen, Chen-Yang

    2004-07-15

    A tumorigenic role of the nonhomologous end-joining (NHEJ) pathway for the repair of DNA double-strand breaks (DSBs) has been suggested by the finding of a significant association between increased breast cancer risk and a cooperative effect of single nucleotide polymorphisms (SNPs) in NHEJ genes. However, the lack of an association between hereditary breast cancer and defective NHEJ genes prevents conclusions from being drawn about a link between NHEJ and breast cancer development. Recently, BRCA1-deficient mouse embryonic fibroblasts were found to have significantly reduced NHEJ activity, suggesting an accessory role of BRCA1 in NHEJ. The present study was performed to confirm this observation in human breast cancer cell lines and to examine whether the interaction between BRCA1 and NHEJ was of tumorigenic significance. Support for this hypothesis came from the findings that (a) a case-control study (469 breast cancer patients and 740 healthy controls) showed that the breast cancer risk associated with high-risk genotypes of NHEJ genes was significantly modified by the BRCA1 genotype. A significant increase in the cancer risk associated either with harboring one additional putative high-risk NHEJ genotype or with the joint effect of having reproductive risk factors (reflected by an interval of > or =12 years between menarche and first full-term pregnancy) and a higher number of high-risk genotypes of the NHEJ genes was only seen in women with at least one variant BRCA1 allele (i.e., the Glu/Gly or Gly/Gly forms of BRCA1 Glu(1038)Gly); and (b) a phenotype-based study measuring in vitro and in vivo NHEJ capacity showed that the precise end-joining capacity was different in breast cancer cell lines with different BRCA1 statuses being higher in BRCA1-expressing MCF-7 cells than in HCC1937 cells (defective BRCA1 expression). Furthermore, this end-joining capacity was decreased in MCF-7 cells in which BRCA1 expression was blocked using small interfering RNA and

  19. A whole genome scan for quantitative trait loci affecting milk protein percentage in Israeli-Holstein cattle, by means of selective milk DNA pooling in a daughter design, using an adjusted false discovery rate criterion.

    PubMed Central

    Mosig, M O; Lipkin, E; Khutoreskaya, G; Tchourzyna, E; Soller, M; Friedmann, A

    2001-01-01

    Selective DNA pooling was employed in a daughter design to screen all bovine autosomes for quantitative trait loci (QTL) affecting estimated breeding value for milk protein percentage (EBVP%). Milk pools prepared from high and low daughters of each of seven sires were genotyped for 138 dinucleotide microsatellites. Shadow-corrected estimates of sire allele frequencies were compared between high and low pools. An adjusted false discovery rate (FDR) method was employed to calculate experimentwise significance levels and empirical power. Significant associations with milk protein percentage were found for 61 of the markers (adjusted FDR = 0.10; estimated power, 0.68). The significant markers appear to be linked to 19--28 QTL. Mean allele substitution effects of the putative QTL averaged 0.016 (0.009--0.028) in units of the within-sire family standard deviation of EBVP% and summed to 0.460 EBVP%. Overall QTL heterozygosity was 0.40. The identified QTL appear to account for all of the variation in EBVP% in the population. Through use of selective DNA pooling, 4400 pool data points provided the statistical power of 600,000 individual data points. PMID:11290723

  20. Exposure to 3,3',5-triiodothyronine affects histone and RNA polymerase II modifications, but not DNA methylation status, in the regulatory region of the Xenopus laevis thyroid hormone receptor βΑ gene.

    PubMed

    Kasai, Kentaro; Nishiyama, Norihito; Izumi, Yushi; Otsuka, Shunsuke; Ishihara, Akinori; Yamauchi, Kiyoshi

    2015-11-01

    Thyroid hormones (THs) play a critical role in amphibian metamorphosis, during which the TH receptor (TR) gene, thrb, is upregulated in a tissue-specific manner. The Xenopus laevis thrb gene has 3 TH response elements (TREs) in the 5' flanking regulatory region and 1 TRE in the exon b region, around which CpG sites are highly distributed. To clarify whether exposure to 3,3',5-triiodothyronine (T3) affects histone and RNA polymerase II (RNAPII) modifications and the level of DNA methylation in the 5' regulatory region, we conducted reverse transcription-quantitative polymerase chain reaction, bisulfite sequencing and chromatin immunoprecipitation assay using X. laevis cultured cells and premetamorphic tadpoles treated with or without 2 nM T3. Exposure to T3 increased the amount of the thrb transcript, in parallel with enhanced histone H4 acetylation and RNAPII recruitment, and probably phosphorylation of RNAPII at serine 5, in the 5' regulatory and exon b regions. However, the 5' regulatory region remained hypermethylated even with exposure to T3, and there was no significant difference in the methylation status between DNAs from T3-untreated and -treated cultured cells or tadpole tissues. Our results demonstrate that exposure to T3 induced euchromatin-associated epigenetic marks by enhancing histone acetylation and RNAPII recruitment, but not by decreasing the level of DNA methylation, in the 5' regulatory region of the X. laevis thrb gene. PMID:26417689

  1. Investigating Factors Affecting the Uptake of Automated Assessment Technology

    ERIC Educational Resources Information Center

    Dreher, Carl; Reiners, Torsten; Dreher, Heinz

    2011-01-01

    Automated assessment is an emerging innovation in educational praxis, however its pedagogical potential is not fully utilised in Australia, particularly regarding automated essay grading. The rationale for this research is that the usage of automated assessment currently lags behind the capacity that the technology provides, thus restricting the…

  2. Uptake of VOC by sunflower

    NASA Astrophysics Data System (ADS)

    Folkers, A.; Miebach, M.; Kleist, E.; Wildt, J.

    2003-04-01

    To study potential VOC uptake by plants we exposed sunflower (Helianthus annuus) to different VOC in continuously stirred tank reactors. For many VOC like methanol, ethanol, acetone, methylvinylketone, isoprene or limonene no uptake was detectable within the accuracy of our analytic set up. Other VOC like hexanal, octanal, (E)-3-hexenol and nopinone were taken up by sunflower. The uptake was related to stomatal aperture. Obviously, these VOC enter the plants through stomata. In case of hexanal, octanal, and (E)-3-hexenol the uptake was only limited by stomatal aperture implying that these VOC are rapidly metabolised. For nopinone the uptake seems to be limited by a slow metabolization. Estimations of deposition velocities showed that dry deposition of these compounds cannot be neglected as sink if diffusion through stomata is the limiting step for dry deposition. In such cases the lifetime with respect to dry deposiotion is comparable to the lifetime with respect to oxidation by hydroxyl radicals.

  3. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    PubMed Central

    Gironacci, M. M.

    2016-01-01

    Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP) and Ang-(1-7) may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7) was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7) and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7)-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7) stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide) did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7) on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7) was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7) on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7) enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  4. Uptake of 2, 4-Dichlorophenoxyacetic acid by Pseudomonas fluorescens

    USGS Publications Warehouse

    Wedemeyer, G.A.

    1966-01-01

    WEDEMEYER, GARY (Fish-Pesticide Research Laboratory, Denver, Colo.). Uptake of 2,4-dichlorophenoxyacetic acid by Pseudomonas fluorescens. Appl. Microbiol. 14:486-491. 1966.-Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “nonmetabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carriermediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranylion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.

  5. Molecular mechanisms of foliar water uptake in a desert tree.

    PubMed

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. PMID:26567212

  6. Molecular mechanisms of foliar water uptake in a desert tree

    PubMed Central

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. PMID:26567212

  7. Differences in the ovine HSP90AA1 gene expression rates caused by two linked polymorphisms at its promoter affect rams sperm DNA fragmentation under environmental heat stress conditions.

    PubMed

    Salces-Ortiz, Judit; Ramón, Manuel; González, Carmen; Pérez-Guzmán, M Dolores; Garde, J Julián; García-Álvarez, Olga; Maroto-Morales, Alejandro; Calvo, Jorge H; Serrano, M Magdalena

    2015-01-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram's fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and

  8. Differences in the Ovine HSP90AA1 Gene Expression Rates Caused by Two Linked Polymorphisms at Its Promoter Affect Rams Sperm DNA Fragmentation under Environmental Heat Stress Conditions

    PubMed Central

    González, Carmen; Pérez-Guzmán, M. Dolores; Garde, J. Julián; García-Álvarez, Olga; Maroto-Morales, Alejandro; Calvo, Jorge H.; Serrano, M. Magdalena

    2015-01-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses. Almost all tissues, cell types, metabolic pathways and biochemical reactions are affected in greater or lesser extent by HS. However, there are some especially thermo sensible cellular types such as the mammalian male germ cells. The present study examined the role of three INDELs in conjunction with the -660G/C polymorphism located at the HSP90AA1 promoter region over the gene expression rate under HS. Specially, the -668insC INDEL, which is very close to the -660G/C transversion, is a good candidate to be implied in the transcriptional regulation of the gene by itself or in a cooperative way with this SNP. Animals carrying the genotype II-668 showed higher transcription rates than those with ID-668 (FC = 3.07) and DD-668 (FC = 3.40) genotypes for samples collected under HS. A linkage between gene expression and sperm DNA fragmentation was also found. When HS conditions were present along or in some stages of the spermatogenesis, alternative genotypes of the -668insC and -660G/C mutations are involved in the effect of HS over sperm DNA fragmentation. Thus, unfavorable genotypes in terms of gene expression induction (ID-668GC-660 and DD-668GG-660) do not produce enough mRNA (stored as messenger ribonucleoprotein particles) and Hsp90α protein to cope with future thermal stress which might occur in posterior stages when transcriptional activity is reduced and cell types and molecular processes are more sensible to heat (spermatocytes in pachytene and spermatids protamination). This would result in the impairment of DNA packaging and the consequent commitment of the events occurring shortly after fertilization and during embryonic development. In the short-term, the assessment of the relationship between sperm DNA fragmentation sensitivity and ram’s fertility will be of interest to a better understanding of the mechanisms of response to HS and its consequences on animal production and

  9. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    PubMed Central

    Sharma, Nynne; Cai, Yujia; Bak, Rasmus O; Jakobsen, Martin R; Schrøder, Lisbeth Dahl; Mikkelsen, Jacob Giehm

    2013-01-01

    DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB) DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs) devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system. PMID:23443502

  10. Temperature and pH effects on plant uptake of benzotriazoles by sunflowers in hydroponic culture.

    PubMed

    Castro, Sigifredo; Davis, Lawrence C; Erickson, Larry E

    2004-01-01

    This article describes a systematic approach to understanding the effect of environmental variables on plant uptake (phyto-uptake) of organic contaminants. Uptake (and possibly phytotransformation) of xenobiotics is a complex process that may differ from nutrient uptake. A specific group of xenobiotics (benzotriazoles) were studied using sunflowers grown hydroponically with changes of environmental conditions including solution volume, temperature, pH, and mixing. The response of plants to these stimuli was evaluated and compared using physiological changes (biomass production and water uptake) and estimated uptake rates (influx into plants), which define the uptake characteristics for the xenobiotic. Stirring of the hydroponic solution had a significant impact on plant growth and water uptake. Plants were healthier, probably because of a combination of factors such as improved aeration and increase in temperature. Uptake and possibly phytotransformation of benzotriazoles was increased accordingly. Experiments at different temperatures allowed us to estimate an activation energy for the reaction leading to triazole disappearance from the solution. The estimated activation energy was 43 kJ/mol, which indicates that the uptake process is kinetically limited. Culturing plants in triazole-amended hydroponic solutions at different pH values did not strongly affect the biomass production, water uptake, and benzotriazole uptake characteristics. The sunflowers showed an unexpected capacity to buffer the solution pH. PMID:15554474

  11. A phospholipid uptake system in the model plant Arabidopsis thaliana.

    PubMed

    Poulsen, Lisbeth R; López-Marqués, Rosa L; Pedas, Pai R; McDowell, Stephen C; Brown, Elizabeth; Kunze, Reinhard; Harper, Jeffrey F; Pomorski, Thomas G; Palmgren, Michael

    2015-01-01

    Plants use solar energy to produce lipids directly from inorganic elements and are not thought to require molecular systems for lipid uptake from the environment. Here we show that Arabidopsis thaliana Aminophospholipid ATPase10 (ALA10) is a P4-type ATPase flippase that internalizes exogenous phospholipids across the plasma membrane, after which they are rapidly metabolized. ALA10 expression and phospholipid uptake are high in the epidermal cells of the root tip and in guard cells, the latter of which regulate the size of stomatal apertures to modulate gas exchange. ALA10-knockout mutants exhibit reduced phospholipid uptake at the root tips and guard cells and are affected in growth and transpiration. The presence of a phospholipid uptake system in plants is surprising. Our results suggest that one possible physiological role of this system is to internalize lysophosphatidylcholine, a signalling lipid involved in root development and stomatal control. PMID:26212235

  12. DNA Damage Response

    PubMed Central

    Giglia-Mari, Giuseppina; Zotter, Angelika; Vermeulen, Wim

    2011-01-01

    Structural changes to DNA severely affect its functions, such as replication and transcription, and play a major role in age-related diseases and cancer. A complicated and entangled network of DNA damage response (DDR) mechanisms, including multiple DNA repair pathways, damage tolerance processes, and cell-cycle checkpoints safeguard genomic integrity. Like transcription and replication, DDR is a chromatin-associated process that is generally tightly controlled in time and space. As DNA damage can occur at any time on any genomic location, a specialized spatio-temporal orchestration of this defense apparatus is required. PMID:20980439

  13. Cleaving DNA with DNA

    NASA Astrophysics Data System (ADS)

    Carmi, Nir; Balkhi, Shameelah R.; Breaker, Ronald R.

    1998-03-01

    A DNA structure is described that can cleave single-stranded DNA oligonucleotides in the presence of ionic copper. This ``deoxyribozyme'' can self-cleave or can operate as a bimolecular complex that simultaneously makes use of duplex and triplex interactions to bind and cleave separate DNA substrates. Bimolecular deoxyribozyme-mediated strand scission proceeds with a kobs of 0.2 min-1, whereas the corresponding uncatalyzed reaction could not be detected. The duplex and triplex recognition domains can be altered, making possible the targeted cleavage of single-stranded DNAs with different nucleotide sequences. Several small synthetic DNAs were made to function as simple ``restriction enzymes'' for the site-specific cleavage of single-stranded DNA.

  14. NOTE: The specific uptake size index for quantifying radiopharmaceutical uptake

    NASA Astrophysics Data System (ADS)

    Fleming, John S.; Bolt, Livia; Stratford, Jennifer S.; Kemp, Paul M.

    2004-07-01

    Quantitative indices of radionuclide uptake in an object of interest provide a useful adjunct to qualitative interpretation in the diagnostic application of radionuclide imaging. This note describes a new measure of total uptake of an organ, the specific uptake size index (SUSI). It can either be related in absolute terms to the total activity injected or to the specific activity in a reference region. As it depends on the total activity in the object, the value obtained will not depend on the resolution of the imaging process, as is the case with some other similar quantitative indices. This has been demonstrated in an experiment using simulated images. The application of the index to quantification of dopamine receptor SPECT imaging and parathyroid thyroid subtraction planar scintigraphy is described. The index is considered to be of potential value in reducing variation in quantitative assessment of uptake in objects with applications in all areas of radionuclide imaging.

  15. DNA methylation in plants.

    PubMed

    Vanyushin, B F

    2006-01-01

    DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA

  16. The Disaccharide Moiety of Bleomycin Facilitates Uptake by Cancer Cells

    PubMed Central

    2015-01-01

    The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization. PMID:25184545

  17. The disaccharide moiety of bleomycin facilitates uptake by cancer cells.

    PubMed

    Schroeder, Benjamin R; Ghare, M Imran; Bhattacharya, Chandrabali; Paul, Rakesh; Yu, Zhiqiang; Zaleski, Paul A; Bozeman, Trevor C; Rishel, Michael J; Hecht, Sidney M

    2014-10-01

    The disaccharide moiety is responsible for the tumor cell targeting properties of bleomycin (BLM). While the aglycon (deglycobleomycin) mediates DNA cleavage in much the same fashion as bleomycin, it exhibits diminished cytotoxicity in comparison to BLM. These findings suggested that BLM might be modular in nature, composed of tumor-seeking and tumoricidal domains. To explore this possibility, BLM analogues were prepared in which the disaccharide moiety was attached to deglycobleomycin at novel positions, namely, via the threonine moiety or C-terminal substituent. The analogues were compared with BLM and deglycoBLM for DNA cleavage, cancer cell uptake, and cytotoxic activity. BLM is more potent than deglycoBLM in supercoiled plasmid DNA relaxation, while the analogue having the disaccharide on threonine was less active than deglycoBLM and the analogue containing the C-terminal disaccharide was slightly more potent. While having unexceptional DNA cleavage potencies, both glycosylated analogues were more cytotoxic to cultured DU145 prostate cancer cells than deglycoBLM. Dye-labeled conjugates of the cytotoxic BLM aglycons were used in imaging experiments to determine the extent of cell uptake. The rank order of internalization efficiencies was the same as their order of cytotoxicities toward DU145 cells. These findings establish a role for the BLM disaccharide in tumor targeting/uptake and suggest that the disaccharide moiety may be capable of delivering other cytotoxins to cancer cells. While the mechanism responsible for uptake of the BLM disaccharide selectively by tumor cells has not yet been established, data are presented which suggest that the metabolic shift to glycolysis in cancer cells may provide the vehicle for selective internalization. PMID:25184545

  18. Intracellular disassembly and localization of a new P123-PEI-R13/DNA complex.

    PubMed

    Zhu, Manman; Liu, Kehai; Zhu, Qing; Chen, Shunsheng; Lv, Hui; Zhao, Wenfang; Mao, Yuan; Hu, Jing

    2014-01-01

    The appropriate location and release of target gene is necessary for gene therapy. In our previous paper, a gene vector named P123-PEI-R13 has been successfully synthesized, and the physical characteristics and cellular trafficking of nanoparticle P123-PEI-R13/DNA has been explored explicitly, but little was known about its disassembly within cells. In order to investigate its intracellular disassembly, P123-PEI-R13/DNA complex was exposed to the different competitors (RNA, DNA, proteins) or different conditions of pH and osmolarity, DNA release was determined by gel electrophoresis. Meanwhile, confocal laser technology was used to locate the complex in cells. The results revealed that DNA, RNA and osmolarity could affect the stability of the complex obviously, especially RNA which exist in nucleus. In addition, the speed of DNA release decreased as the weight ratio of polymer increased. Images got by a confocal fluorescence microscope confirmed that after cell uptake, P123-PEI-R13 could translocate DNA into nucleus. PMID:25226888

  19. Static magnetic field reduced exogenous oligonucleotide uptake by spermatozoa using magnetic nanoparticle gene delivery system

    NASA Astrophysics Data System (ADS)

    Katebi, Samira; Esmaeili, Abolghasem; Ghaedi, Kamran

    2016-03-01

    Spermatozoa could introduce exogenous oligonucleotides of interest to the oocyte. The most important reason of low efficiency of sperm mediated gene transfer (SMGT) is low uptake of exogenous DNA by spermatozoa. The aim of this study was to evaluate the effects of static magnetic field on exogenous oligonucleotide uptake of spermatozoa using magnetofection method. Magnetic nanoparticles (MNPs) associated with the labeled oligonucleotides were used to increase the efficiency of exogenous oligonucleotide uptake by rooster spermatozoa. We used high-field/high-gradient magnet (NdFeB) to enhance and accelerate exogenous DNA sedimentation at the spermatozoa surface. Flow cytometry analysis was performed to measure viability and percentage of exogenous oligonucleotide uptake by sperm. Flow cytometry analysis showed a significant increase in exogenous oligonucleotide uptake by rooster spermatozoa (P<0.001) when spermatozoa were incubated in exogenous oligonucleotide solution and MNPs. However, by applying static magnetic field during magnetofection method, a significant decrease in exogenous oligonucleotide uptake was observed (P<0.05). Findings of this study showed that MNPs were effective to increase exogenous oligonucleotide uptake by rooster spermatozoa; however unlike others studies, static magnetic field, was not only ineffective to enhance exogenous oligonucleotide uptake by rooster spermatozoa but also led to reduction in efficiency of magnetic nanoparticles in gene transfer.

  20. Manganese uptake of imprinted polymers

    DOE Data Explorer

    Susanna Ventura

    2015-09-30

    Batch tests of manganese imprinted polymers of variable composition to assess their ability to extract lithium and manganese from synthetic brines at T=45C . Data on manganese uptake for two consecutive cycles are included.

  1. Characterization of iron uptake from transferrin by murine endothelial cells.

    PubMed

    Hallmann, R; Savigni, D L; Morgan, E H; Baker, E

    2000-01-01

    Iron is required by the brain for normal function, however, the mechanisms by which it crosses the blood-brain barrier (BBB) are poorly understood. The uptake and efflux of transferrin (Tf) and Fe by murine brain-derived (bEND3) and lymph node-derived (m1END1) endothelial cell lines was compared. The effects of iron chelators, metabolic inhibitors and the cellular activators, lipopolysaccharide (LPS) and tumour necrosis factor-alpha (TNF-alpha), on Tf and Fe uptake were investigated. Cells were incubated with 59Fe-125I-Tf; Fe uptake was shown to increase linearly over time for both cell lines, while Tf uptake reached a plateau within 2 h. Both Tf and Fe uptake were saturable. bEND3 cells were shown to have half as many Tf receptors as m1END1 cells, but the mean cycling times of a Tf molecule were the same. Tf and Fe efflux from the cells were measured over time, revealing that after 2 h only 25% of the Tf but 80% of the Fe remained associated with the cells. Of 7 iron chelators, only deferriprone (L1) markedly decreased Tf uptake. However, Fe uptake was reduced by more than 50% by L1, pyridoxal isonicotinoyl hydrazone (PIH) and desferrithiocin (DFT). The cellular activators TNF-alpha or LPS had little effect on Tf turnover, but they accelerated Fe uptake in both endothelial cell types. Phenylarsenoxide (PhAsO) and N-ethyl maleimide (NEM), inhibitors of Tf endocytosis, reduced both Tf and Fe uptake in both cell lines, while bafilomycin A1, an inhibitor of endosomal acidification, reduced Fe uptake but did not affect Tf uptake. The results suggest that Tf and Fe uptake by both bEND3 and m1END1 is via receptor-mediated endocytosis with release of Fe from Tf within the cell and recycling of apo-Tf. On the basis of Tf- and Fe-metabolism both cell lines are similar and therefore well suited for use in in vitro models for Fe transport across the BBB. PMID:10865941

  2. Rubidium (Potassium) Uptake by Arabidopsis

    PubMed Central

    Polley, L. David; Hopkins, Johns W.

    1979-01-01

    Experiments are reported in which the uptake of 86Rb+, used as an analog of K+, into cultured cells of Arabidopsis thaliana is investigated. A single transport system is found with Km = 0.34 millimolar and Vmax = 14 nmoles per milligram of protein per hour. This system is blocked by the metabolic inhibitor carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and by cold. At high concentrations of external K+ (above 1 millimolar), a significant fraction of total uptake is energy-independent. No evidence is found for more than one energy-dependent uptake system or for concentration-dependent modifications of a carrier as postulated in multiphasic transport models. Rb+ uptake was also examined in cultured cells derived from an “osmotic mutant” of Arabidopsis. The system closely resembles that found in wild type cells with the exception that the Michaelis-Menten constants are higher: Km = 1 millimolar and Vmax = 32 nanomoles per milligram of protein per hour. The possibility that these results are artifacts associated with use of cultured cells was checked by examining 86Rb+ uptake by roots of intact seedlings of wild type Arabidopsis. A single energy-dependent transport system is found with Km = 0.42 millimolar which is not significantly different from the Km of cultured cells. There is also energy-independent uptake at high external ion concentration. PMID:16660969

  3. DNA repair

    SciTech Connect

    Friedberg, E.C.; Hanawalt, P.C. )

    1988-01-01

    Topics covered in this book included: Eukaryote model systems for DNA repair study; Sensitive detection of DNA lesions and their repair; and Defined DNA sequence probes for analysis of mutagenesis and repair.

  4. Vaccine production, distribution, access, and uptake.

    PubMed

    Smith, Jon; Lipsitch, Marc; Almond, Jeffrey W

    2011-07-30

    For human vaccines to be available on a global scale, complex production methods, meticulous quality control, and reliable distribution channels are needed to ensure that the products are potent and effective at the point of use. The technologies used to manufacture different types of vaccines can strongly affect vaccine cost, ease of industrial scale-up, stability, and, ultimately, worldwide availability. The complexity of manufacturing is compounded by the need for different formulations in different countries and age-groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, to ensure optimum access and uptake, strong partnerships are needed between private manufacturers, regulatory authorities, and national and international public health services. For vaccines whose supply is insufficient to meet demand, prioritisation of target groups can increase the effect of these vaccines. In this report, we draw from our experience of vaccine development and focus on influenza vaccines as an example to consider production, distribution, access, and other factors that affect vaccine uptake and population-level effectiveness. PMID:21664680

  5. Uptake of 2,4-Dichlorophenoxyacetic Acid by Pseudomonas fluorescens

    USGS Publications Warehouse

    Wedemeyer, Gary

    1966-01-01

    Factors influencing the uptake of the sodium salt of 2,4-dichlorophenoxyacetic acid (2,4-D), under conditions in which no net metabolism occurred, were investigated in an effort to determine both the significance of “non-metabolic” uptake as a potential agent in reducing pesticide levels and the mechanisms involved. Uptake of 2,4-D was affected by pH, temperature, and the presence of other organic and inorganic compounds. Uptake was more pronounced at pH values less than 6, which implies that there may be some interaction between charged groups on the cell and the ionized carboxyl group of 2,4-D. Active transport, carrier-mediated diffusion, passive diffusion, and adsorption were considered as possible mechanisms. Though uptake was inhibited by glucose, sodium azide, and fluorodinitrobenzene (but not by uranyl ion), 2,4-D was not accumulated against a concentration gradient, a necessary consequence of an active transport system, nor was isotope counterflow found to occur. Thus, carrier-mediated diffusion was finally precluded, implying that uptake probably occurs by a two-step process: sorption onto the cell wall followed by passive diffusion into the cytoplasm.

  6. Statins Impair Glucose Uptake in Tumor Cells1

    PubMed Central

    Malenda, Agata; Skrobanska, Anna; Issat, Tadeusz; Winiarska, Magdalena; Bil, Jacek; Oleszczak, Bozenna; Sinski, Maciej; Firczuk, Małgorzata; Bujnicki, Janusz M; Chlebowska, Justyna; Staruch, Adam D; Glodkowska-Mrowka, Eliza; Kunikowska, Jolanta; Krolicki, Leszek; Szablewski, Leszek; Gaciong, Zbigniew; Koziak, Katarzyna; Jakobisiak, Marek; Golab, Jakub; Nowis, Dominika A

    2012-01-01

    Statins, HMG-CoA reductase inhibitors, are used in the prevention and treatment of cardiovascular diseases owing to their lipid-lowering effects. Previous studies revealed that, by modulating membrane cholesterol content, statins could induce conformational changes in cluster of differentiation 20 (CD20) tetraspanin. The aim of the presented study was to investigate the influence of statins on glucose transporter 1 (GLUT1)-mediated glucose uptake in tumor cells. We observed a significant concentration- and time-dependent decrease in glucose analogs' uptake in several tumor cell lines incubated with statins. This effect was reversible with restitution of cholesterol synthesis pathway with mevalonic acid as well as with supplementation of plasma membrane with exogenous cholesterol. Statins did not change overall GLUT1 expression at either transcriptional or protein levels. An exploratory clinical trial revealed that statin treatment decreased glucose uptake in peripheral blood leukocytes and lowered 18F-fluorodeoxyglucose (18F-FDG) uptake by tumor masses in a mantle cell lymphoma patient. A bioinformatics analysis was used to predict the structure of human GLUT1 and to identify putative cholesterol-binding motifs in its juxtamembrane fragment. Altogether, the influence of statins on glucose uptake seems to be of clinical significance. By inhibiting 18F-FDG uptake, statins can negatively affect the sensitivity of positron emission tomography, a diagnostic procedure frequently used in oncology. PMID:22577346

  7. Mechanisms of Ocean Heat Uptake

    NASA Astrophysics Data System (ADS)

    Garuba, Oluwayemi

    An important parameter for the climate response to increased greenhouse gases or other radiative forcing is the speed at which heat anomalies propagate downward in the ocean. Ocean heat uptake occurs through passive advection/diffusion of surface heat anomalies and through the redistribution of existing temperature gradients due to circulation changes. Atlantic meridional overturning circulation (AMOC) weakens in a warming climate and this should slow the downward heat advection (compared to a case in which the circulation is unchanged). However, weakening AMOC also causes a deep warming through the redistributive effect, thus increasing the downward rate of heat propagation compared to unchanging circulation. Total heat uptake depends on the combined effect of these two mechanisms. Passive tracers in a perturbed CO2 quadrupling experiments are used to investigate the effect of passive advection and redistribution of temperature anomalies. A new passive tracer formulation is used to separate ocean heat uptake into contributions due to redistribution and passive advection-diffusion of surface heating during an ocean model experiment with abrupt increase in surface temperature. The spatial pattern and mechanisms of each component are examined. With further experiments, the effects of surface wind, salinity and temperature changes in changing circulation and the resulting effect on redistribution in the individual basins are isolated. Analysis of the passive advection and propagation path of the tracer show that the Southern ocean dominates heat uptake, largely through vertical and horizontal diffusion. Vertical diffusion transports the tracer across isopycnals down to about 1000m in 100 years in the Southern ocean. Advection is more important in the subtropical cells and in the Atlantic high latitudes, both with a short time scale of about 20 years. The shallow subtropical cells transport the tracer down to about 500m along isopycnal surfaces, below this vertical

  8. Flavonoid Rutin Increases Thyroid Iodide Uptake in Rats

    PubMed Central

    Lima Gonçalves, Carlos Frederico; de Souza dos Santos, Maria Carolina; Ginabreda, Maria Gloria; Soares Fortunato, Rodrigo; Pires de Carvalho, Denise; Freitas Ferreira, Andrea Claudia

    2013-01-01

    Thyroid iodide uptake through the sodium-iodide symporter (NIS) is not only an essential step for thyroid hormones biosynthesis, but also fundamental for the diagnosis and treatment of different thyroid diseases. However, part of patients with thyroid cancer is refractory to radioiodine therapy, due to reduced ability to uptake iodide, which greatly reduces the chances of survival. Therefore, compounds able to increase thyroid iodide uptake are of great interest. It has been shown that some flavonoids are able to increase iodide uptake and NIS expression in vitro, however, data in vivo are lacking. Flavonoids are polyhydroxyphenolic compounds, found in vegetables present in human diet, and have been shown not only to modulate NIS, but also thyroperoxidase (TPO), the key enzyme in thyroid hormones biosynthesis, besides having antiproliferative effect in thyroid cancer cell lines. Therefore, we aimed to evaluate the effect of some flavonoids on thyroid iodide uptake in Wistar rats in vivo. Among the flavonoids tested, rutin was the only one able to increase thyroid iodide uptake, so we decided to evaluate the effect of this flavonoid on some aspects of thyroid hormones synthesis and metabolism. Rutin led to a slight reduction of serum T4 and T3 without changes in serum thyrotropin (TSH), and significantly increased hypothalamic, pituitary and brown adipose tissue type 2 deiodinase and decreased liver type 1 deiodinase activities. Moreover, rutin treatment increased thyroid iodide uptake probably due to the increment of NIS expression, which might be secondary to increased response to TSH, since TSH receptor expression was increased. Thus, rutin might be useful as an adjuvant in radioiodine therapy, since this flavonoid increased thyroid iodide uptake without greatly affecting thyroid function. PMID:24023911

  9. UPTAKE OF BROMACIL BY ISOLATED BARLEY ROOTS

    EPA Science Inventory

    A study of bromacil uptake by excised barley (Hordeum Vulgare) roots was used to evaluate this procedure as a tool to learn the uptake characteristics of toxic organic chemicals. Bromacil uptake was shown to be a passive process with an uptake rate (at 0.8 mg/l) of 0.64 microgram...

  10. l-Methionine Placental Uptake

    PubMed Central

    Araújo, João R.; Correia-Branco, Ana; Ramalho, Carla; Gonçalves, Pedro; Pinho, Maria J.; Keating, Elisa

    2013-01-01

    Our aim was to investigate the influence of gestational diabetes mellitus (GDM) and GDM-associated conditions upon the placental uptake of 14C-l-methionine (14C-l-Met). The 14C-l-Met uptake by human trophoblasts (TBs) obtained from normal pregnancies (normal trophoblast [NTB] cells) is mainly system l-type amino acid transporter 1 (LAT1 [L])-mediated, although a small contribution of system y+LAT2 is also present. Comparison of 14C-l-Met uptake by NTB and by human TBs obtained from GDM pregnancies (diabetic trophoblast [DTB] cells) reveals similar kinetics, but a contribution of systems A, LAT2, and b0+ and a greater contribution of system y+LAT1 appears to exist in DTB cells. Short-term exposure to insulin and long-term exposure to high glucose, tumor necrosis factor-α, and leptin decrease 14C-l-Met uptake in a human TB (Bewo) cell line. The effect of leptin was dependent upon phosphoinositide 3-kinase, extracellular-signal-regulated kinase 1/2 (ERK/MEK 1/2), and p38 mitogen-activated protein kinase. In conclusion, GDM does not quantitatively alter 14C-l-Met placental uptake, although it changes the nature of transporters involved in that process. PMID:23653387

  11. Uncoupling of mitochondrial oxidative phosphorylation by DNA gyrase inhibitors

    SciTech Connect

    Gallagher, M.; Weinberg, R.; Simpson, M.V.

    1986-05-01

    Supercoiled mtDNA and the swivel requirement for its replication suggest the existence of a mtDNA gyrase. The authors published studies on isolated mitochondria showing that novobiocin, coumermycin, nalidixic acid, and oxolinic acid promote relaxed DNA formation at the expense of supercoiled DNA are in accord with this view. However, their inability to directly detect the enzyme led them to ask whether these drugs act elsewhere. Their results with isolated rat liver mitochondria show that novo, nal, but not oxo, stimulate O/sub 2/ uptake as much as does 2.4-dinitrophenol (DNP). This possible uncoupling effect was confirmed by a standard (/sup 32/P) assay showing the following inhibitions of ATP synthesis: 0.2 mM novo, 95% (0.4 mM, 100%) 0.4 mM nal, 37%; oxo to at least 1.9 mM, 0%; (0.5 mM 2,4-DNP, 100%). Thus, oxo remains a useful tool for intact mitochondrial studies. Because these three drugs, especially novo, are being used to study the role of DNA superhelicity on pro- and eucaryotic (and mitochondrial) gene expression, the authors studied their effect on oxidative phosphorylation in such cells. In these cases the drugs did not affect DNP-sensitive (/sup 14/C)glutamine transport into E. coli cells (an established measure of ATP level), nor, in an S. cerevisiae mutant permeable to novo, did novo affect the steady state ATP level. Studies on cultured mammalian cells are in progress.

  12. High-Efficiency Ligation and Recombination of DNA Fragments by Vertebrate Cells

    NASA Astrophysics Data System (ADS)

    Miller, Cynthia K.; Temin, Howard M.

    1983-05-01

    DNA-mediated gene transfer (transfection) is used to introduce specific genes into vertebrate cells. Events soon after transfection were quantitatively analyzed by determining the infectivity of the DNA from an avian retrovirus and of mixtures of subgenomic fragments of this DNA. The limiting step of transfection with two DNA molecules is the uptake by a single cell of both DNA's in a biologically active state. Transfected cells mediate ligation and recombination of physically unlinked DNA's at nearly 100 percent efficiency.

  13. DNA vaccine against visceral leishmaniasis: a promising approach for prevention and control.

    PubMed

    Kumar, A; Samant, M

    2016-05-01

    The visceral leishmaniasis (VL) caused by Leishmania donovani parasite severely affects large populations in tropical and subtropical regions of the world. The arsenal of drugs available is limited, and resistance is common in clinical field isolates. Therefore, vaccines could be an important alternative for prevention against VL. Recently, some investigators advocated the protective efficacy of DNA vaccines, which induces the T cell-based immunity against VL. The vaccine antigens are selected as conserved in various Leishmania species and provide a viable strategy for DNA vaccine development. Our understanding for DNA vaccine development against VL is not enough and much technological advancement is required. Improved formulations and methods of delivery are required, which increase the uptake of DNA vaccine by cells; optimization of vaccine vectors/encoded antigens to augment and direct the host immune response in VL. Despite the many genes identified as vaccine candidates, the disappointing potency of the DNA vaccines in VL underscores the challenges encountered in the efforts to translate efficacy in preclinical models into clinical realities. This review will provide a brief background of DNA vaccines including the insights gained about the design, strategy, safety issues, varied candidates, progress and challenges that play a role in their ability against VL. PMID:27009772

  14. Structural diversity of supercoiled DNA

    NASA Astrophysics Data System (ADS)

    Irobalieva, Rossitza N.; Fogg, Jonathan M.; Catanese, Daniel J.; Sutthibutpong, Thana; Chen, Muyuan; Barker, Anna K.; Ludtke, Steven J.; Harris, Sarah A.; Schmid, Michael F.; Chiu, Wah; Zechiedrich, Lynn

    2015-10-01

    By regulating access to the genetic code, DNA supercoiling strongly affects DNA metabolism. Despite its importance, however, much about supercoiled DNA (positively supercoiled DNA, in particular) remains unknown. Here we use electron cryo-tomography together with biochemical analyses to investigate structures of individual purified DNA minicircle topoisomers with defined degrees of supercoiling. Our results reveal that each topoisomer, negative or positive, adopts a unique and surprisingly wide distribution of three-dimensional conformations. Moreover, we uncover striking differences in how the topoisomers handle torsional stress. As negative supercoiling increases, bases are increasingly exposed. Beyond a sharp supercoiling threshold, we also detect exposed bases in positively supercoiled DNA. Molecular dynamics simulations independently confirm the conformational heterogeneity and provide atomistic insight into the flexibility of supercoiled DNA. Our integrated approach reveals the three-dimensional structures of DNA that are essential for its function.

  15. Structural diversity of supercoiled DNA

    PubMed Central

    Irobalieva, Rossitza N.; Fogg, Jonathan M.; Catanese, Daniel J.; Sutthibutpong, Thana; Chen, Muyuan; Barker, Anna K.; Ludtke, Steven J.; Harris, Sarah A.; Schmid, Michael F.; Chiu, Wah; Zechiedrich, Lynn

    2015-01-01

    By regulating access to the genetic code, DNA supercoiling strongly affects DNA metabolism. Despite its importance, however, much about supercoiled DNA (positively supercoiled DNA, in particular) remains unknown. Here we use electron cryo-tomography together with biochemical analyses to investigate structures of individual purified DNA minicircle topoisomers with defined degrees of supercoiling. Our results reveal that each topoisomer, negative or positive, adopts a unique and surprisingly wide distribution of three-dimensional conformations. Moreover, we uncover striking differences in how the topoisomers handle torsional stress. As negative supercoiling increases, bases are increasingly exposed. Beyond a sharp supercoiling threshold, we also detect exposed bases in positively supercoiled DNA. Molecular dynamics simulations independently confirm the conformational heterogeneity and provide atomistic insight into the flexibility of supercoiled DNA. Our integrated approach reveals the three-dimensional structures of DNA that are essential for its function. PMID:26455586

  16. A Nuclear Reaction Analysis study of fluorine uptake in flint

    SciTech Connect

    Jin, Jian-Yue; Weathers, D. L.; Picton, F.; Hughes, B. F.; Duggan, J. L.; McDaniel, F. D.; Matteson, S.

    1999-06-10

    Nuclear Reaction Analysis (NRA) using the {sup 19}F(p,{alpha}{gamma}){sup 16}O resonance reaction is a powerful method of fluorine depth profiling. We have used this method to study the fluorine uptake phenomenon in mineral flint, which could potentially develop into a method of dating archeological flint artifacts. Flint samples cut with a rock saw were immersed in aqueous fluoride solutions for different times for the uptake study. The results suggest that fluorine uptake is not a simple phenomenon, but rather a combination of several simultaneous processes. Fluorine surface adsorption appears to play an important role in developing the fluorine profiles. The surface adsorption was affected by several parameters such as pH value and fluorine concentration in the solution, among others. The problem of surface charging for the insulator materials during ion bombardment is also reported.

  17. Iodide uptake by negatively charged clay interlayers?

    PubMed

    Miller, Andrew; Kruichak, Jessica; Mills, Melissa; Wang, Yifeng

    2015-09-01

    Understanding iodide interactions with clay minerals is critical to quantifying risk associated with nuclear waste disposal. Current thought assumes that iodide does not interact directly with clay minerals due to electrical repulsion between the iodide and the negatively charged clay layers. However, a growing body of work indicates a weak interaction between iodide and clays. The goal of this contribution is to report a conceptual model for iodide interaction with clays by considering clay mineral structures and emergent behaviors of chemical species in confined spaces. To approach the problem, a suite of clay minerals was used with varying degrees of isomorphic substitution, chemical composition, and mineral structure. Iodide uptake experiments were completed with each of these minerals in a range of swamping electrolyte identities (NaCl, NaBr, KCl) and concentrations. Iodide uptake behaviors form distinct trends with cation exchange capacity and mineral structure. These trends change substantially with electrolyte composition and concentration, but do not appear to be affected by solution pH. The experimental results suggest that iodide may directly interact with clays by forming ion-pairs (e.g., NaI(aq)) which may concentrate within the interlayer space as well as the thin areas surrounding the clay particle where water behavior is more structured relative to bulk water. Ion pairing and iodide concentration in these zones is probably driven by the reduced dielectric constant of water in confined space and by the relatively high polarizability of the iodide species. PMID:26057987

  18. Update on cerebral uptake of blood ammonia.

    PubMed

    Sørensen, Michael

    2013-06-01

    Ammonia is believed to play a key role in the development of hepatic encephalopathy (HE) with increased formation of glutamine playing a central role. It has been debated whether blood ammonia enters the brain by passive diffusion and/or active transport by ion-transporters and that changes in blood pH could affect the blood-to-brain transfer of ammonia. It has also been proposed that the permeability-surface area product for ammonia across the blood-brain barrier (PSBBB) should be increased in cirrhosis and HE. In the present paper it is argued that changes in blood pH does not alter PSBBB for ammonia and the question of passive diffusion versus active transport of ammonia remains unresolved. Furthermore, recent studies do not find evidence for increased PSBBB for ammonia in cirrhosis. The main determent for cerebral uptake of blood ammonia (i.e. flux) is the arterial blood ammonia concentration. This means that the only way to protect the brain from hyperammonemia is by lowering blood ammonia, inhibit cerebral uptake of ammonia, or by manipulating cerebral ammonia metabolism so that less glutamine is produced. PMID:23479402

  19. O2 Uptake in the Light in Chlamydomonas

    PubMed Central

    Peltier, Gilles; Thibault, Pierre

    1985-01-01

    The nature of the process responsible for the stationary O2 uptake occurring in the light under saturating CO2 concentration in Chlamydomonas reinhardii has been investigated. For this purpose, a mass spectrometer with a membrane inlet system was used to measure O2 uptake and evolution in the algal suspension. First, we observed that the O2 uptake rate was constant (about 0.5 micromoles of O2 per milligram chlorophyll per minute) during a light to dark transition and was not affected by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Salicylhydroxamic acid had no effect on O2 uptake in the dark or in the light, but was found to have the same inhibitory effect either in the dark or in the light when added to cyanide-treated algae. The stimulation of the O2 uptake rate due to the uncoupling effect of carbonyl cyanide m-chlorophenylhydrazone was about the same in the dark or in the light. From these results, we conclude that mitochondrial respiration is maintained during illumination and therefore is not inhibited by high ATP levels. Another conclusion is that in conditions where photorespiration is absent, no other light-dependent O2 uptake process occurs. If Mehler reactions are involved, in Chlamydomonas, under conditions where both photosynthetic carbon oxidation and reduction cycles cannot operate (as in cyanide-treated algae), their occurrence in photosynthesizing algae either under saturating CO2 concentration or at the CO2 compensation point appears very unlikely. The comparison with the situation previously reported in Scenedesmus (R. J. Radmer and B. Kok 1976 Plant Physiol 58: 336-340) suggests that different O2 uptake processes might be present in these two algal species. PMID:16664375

  20. Tumor uptake of radioruthenium compounds

    SciTech Connect

    Srivastava, S C; Richards, P; Meinken, G E; Larson, S M; Grunbaum, Z

    1980-01-01

    The use of ruthenium-97 as a scintigraphic agent, particularly for tumor localization, is investigated. The tumor uptake of ruthenium chloride and ruthenium-labelled transferrin is evaluated and their application as tumor-imagine agents is compared to gallium-67 citrate. (ACR)

  1. Gbu Glycine Betaine Porter and Carnitine Uptake in Osmotically Stressed Listeria monocytogenes Cells

    PubMed Central

    Mendum, Mary Lou; Smith, Linda Tombras

    2002-01-01

    The food-borne pathogen Listeria monocytogenes grows actively under high-salt conditions by accumulating compatible solutes such as glycine betaine and carnitine from the medium. We report here that the dominant transport system for glycine betaine uptake, the Gbu porter, may act as a secondary uptake system for carnitine, with a Km of 4 mM for carnitine uptake and measurable uptake at carnitine concentrations as low as 10 μM. This porter has a Km for glycine betaine uptake of about 6 μM. The dedicated carnitine porter, OpuC, has a Km for carnitine uptake of 1 to 3 μM and a Vmax of approximately 15 nmol/min/mg of protein. Mutants lacking either opuC or gbu were used to study the effects of four carnitine analogs on growth and uptake of osmolytes. In strain DP-L1044, which had OpuC and the two glycine betaine porters Gbu and BetL, triethylglycine was most effective in inhibiting growth in the presence of glycine betaine, but trigonelline was best at inhibiting growth in the presence of carnitine. Carnitine uptake through OpuC was inhibited by γ-butyrobetaine. Dimethylglycine inhibited both glycine betaine and carnitine uptake through the Gbu porter. Carnitine uptake through the Gbu porter was inhibited by triethylglycine. Glycine betaine uptake through the BetL porter was strongly inhibited by trigonelline and triethylglycine. These results suggest that it is possible to reduce the growth of L. monocytogenes under osmotically stressful conditions by inhibiting glycine betaine and carnitine uptake but that to do so, multiple uptake systems must be affected. PMID:12406761

  2. Intracytoplasmic Sperm Injection Using DNA-Fragmented Sperm in Mice Negatively Affects Embryo-Derived Embryonic Stem Cells, Reduces the Fertility of Male Offspring and Induces Heritable Changes in Epialleles

    PubMed Central

    Fernández-González, Raúl; Laguna-Barraza, Ricardo; Pericuesta, Eva; Calero, Antonia; Ramírez, Miguel Ángel; Gutiérrez-Adán, Alfonso

    2014-01-01

    Intracytoplasmic sperm injection (ICSI) in mice using DNA-fragmented sperm (DFS) has been linked to an increased risk of genetic and epigenetic abnormalities both in embryos and offspring. This study examines: whether embryonic stem cells (ESCs) derived from DFS-ICSI embryos reflect the abnormalities observed in the DFS-ICSI progeny; the effect of DFS-ICSI on male fertility; and whether DFS-ICSI induces epigenetic changes that lead to a modified heritable phenotype. DFS-ICSI-produced embryos showed a low potential to generate ESC lines. However, these lines had normal karyotype accompanied by early gene expression alterations, though a normal expression pattern was observed after several passages. The fertility of males in the DFS-ICSI and control groups was compared by mating test. Sperm quantity, vaginal plug and pregnancy rates were significantly lower for the DFS-ICSI-produced males compared to in vivo-produced mice, while the number of females showing resorptions was higher. The epigenetic effects of DFS-ICSI were assessed by analyzing the phenotype rendered by the Axin1Fu allele, a locus that is highly sensitive to epigenetic perturbations. Oocytes were injected with spermatozoa from Axin1Fu/+ mice and the DFS-ICSI-generated embryos were transferred to females. A significantly higher proportion of pups expressed the active kinky-tail epiallele in the DFS-ICSI group than the controls. In conclusion: 1) ESCs cannot be used as a model of DFS-ICSI; 2) DFS-ICSI reduces sperm production and fertility in the male progeny; and 3) DFS-ICSI affects the postnatal expression of a defined epigenetically sensitive allele and this modification may be inherited across generations. PMID:24743851

  3. Zinc uptake by young wheat plants under two transpiration regimes

    SciTech Connect

    Grifferty, A.; Barrington, S.

    2000-04-01

    Treated wastewater for crop irrigation is an alternative for countries with a shortage of fresh water. Such practice requires strict wastewater application criteria and a better understanding of the effects of transpiration rate on plant heavy metal uptake. The experiment measured Zn uptake by young wheat plants (Triticum aestvum L.) grown in triplicated experimental pots and held in two growth chambers with constant environmental conditions (relative humidity, light and temperature) but with a different air water vapor pressure deficit to produce two different transpiration rates. After 5 wk of growth in a greenhouse, the plants were transferred to the controlled chambers and irrigated using a fertilized solution with five different levels of Zn: 0, 2, 10, 25, and 50 mg/L. These Zn levels were low enough to have no significant effect on plant growth and transpiration rate. The wheat plants started to produce their grain at 6 wk. Plants were collected at 0, 3, and 10 d of incubation in the controlled chambers and analyzed for dry matter and total Zn content. The pots were weighed daily to measure their transpiration rates. On Day 10, the remaining plants were collected and their roots, shoots, and grain were separated, weighed, dried, and analyzed for total Zn. Time and plant transpiration rate were found to affect significantly plant Zn uptake. The higher transpiration rate enhanced plant Zn uptake. The roots had the highest Zn uptake followed by the shoots and then the grain.

  4. Increased Bacterial Uptake of Macromolecular Substrates with Fluid Shear

    PubMed Central

    Confer, David R.; Logan, Bruce E.

    1991-01-01

    To investigate the effect of fluid shear on uptake rates of low-diffusivity macromolecular substrates by suspended cultures, we measured the uptake of two compounds as models of macromolecules, a protein (bovine serum albumin [BSA]) and a polysaccharide (dextran), using pure cultures of Zoogloea ramigera and Escherichia coli, respectively. Oxygen utilization rates of stirred samples grown on BSA and dextran were 2.3 and 2.9 times higher, respectively, than those of undisturbed (still) samples. Uptake rates of 3H-BSA and [3H]dextran by stirred samples were 12.6 and 6.2 times higher, respectively, than those by still samples. These experimentally obtained increases are larger than those predicted with a mass transfer model. Model results indicated that stirring would increase uptake by factors of 1.6 and 1.8 for BSA and dextran. As predicted by the model, we also found that uptake rates of low-molecular-weight substrates with high diffusivities, such as leucine and glucose, were only slightly affected by fluid shear. Since macromolecules can make up a major portion of bacterial substrate in natural, laboratory, and engineered systems, the demonstrated effect of fluid shear has wide implications for kinetic studies performed in basic metabolic research as well as in the evaluation of engineered bioreactors used for wastewater treatment. PMID:16348577

  5. Pulmonary uptake of morphine (M)

    SciTech Connect

    Roerig, D.L.; Bunke, S.S.; Kotrly, K.J.; Dawson, C.A.; Kampine, J.P.

    1986-03-01

    Previously the authors reported less than 5% of M was taken up during the first pass through the human lung. The low uptake of this basic lipophilic amine was further investigated in a single pass isolated perfused rat lung (IPL) in comparison to uptake of radiolabelled H/sub 2/O, antipyrine (A), aminopyrine (AM), nicotine (N) and phenylethylamine (P). The IPL was perfused for 5 min with each drug (5nmol/ml) and effluent collected in 10 sec fractions. Pulmonary extraction was calculated using indocyanine green dye as a non-extractable reference indicator. Accumulation of all compounds in the IPL reached an apparent equilibrium within 4 min. At equilibrium lung/perfusate conc. ratios for H/sub 2/O, A, AM, N, P and M were 1.04, 0.84, 0.85, 1.44, 2.57 and 1.13 respectively. The time course of M uptake differed from the other compounds since initial extraction of M was low (23%) compared to 75%, 53%, 35%, 82% and 86% for H/sub 2/O, A, AM, N and P respectively. Also, the half time to equilibrium for M was longer (50 sec) compared to 18, 21, 26, 19 and 22 sec for H/sub 2/O, A, AM, N and P respectively. The low initial pulmonary extraction of M compared to these compounds followed by greater M extraction during the remainder of drug infusion suggests uptake mechanisms for M different than the flow limited uptake for water and other basic amine drugs.

  6. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides.

    PubMed

    Ezzat, Kariem; Aoki, Yoshitsugu; Koo, Taeyoung; McClorey, Graham; Benner, Leif; Coenen-Stass, Anna; O'Donovan, Liz; Lehto, Taavi; Garcia-Guerra, Antonio; Nordin, Joel; Saleh, Amer F; Behlke, Mark; Morris, John; Goyenvalle, Aurelie; Dugovic, Branislav; Leumann, Christian; Gordon, Siamon; Gait, Michael J; El-Andaloussi, Samir; Wood, Matthew J A

    2015-07-01

    Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles. PMID:26042553

  7. Flow cytometric measurement of total DNA and incorporated halodeoxyuridine

    DOEpatents

    Dolbeare, Frank A.; Gray, Joe W.

    1986-01-01

    A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as bromodeoxyuridine (BrdU) is used as a probe for the measurement of BrdU uptake by the cells as a measure of DNA synthesis.

  8. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  9. DNA Banking

    SciTech Connect

    Reilly, P.R. )

    1992-11-01

    The author is involved in the ethical, legal, and social issues of banking of DNA and data from DNA analysis. In his attempt to determine the extent of DNA banking in the U.S., the author surveyed some commercial companies performing DNA banking services. This article summarizes the results of that survey, with special emphasis on the procedures the companies use to protect the privacy of individuals. 4 refs.

  10. Coordinate expression of Escherichia coli dnaA and dnaN genes.

    PubMed

    Sako, T; Sakakibara, Y

    1980-01-01

    The defects of temperature-sensitive dnaA and dnaN mutants of Escherichia coli are complemented by a recombinant lambda phage, which carries the bacterial DNA segment composed of two EcoRI segments of 1.0 and 3.3 kilobases. Derivatives of the phage, which have an insertion segment of Tn3 in the dnaA gene, are much less active in expressing the dnaN gene function than the parent phage. The dnaN gene activity was determined as the efficiency of superinfecting phage to suppress loss of the viability of lambda lysogenic dnaN59 cells at the non-permissive temperature. Deletions that include the end of the dnaA gene distal to the dnaN gene also reduce the expression of the dnaN gene function. Deletion and insertion in the dnaN gene do not affect the expression of the dnaA gene function. The expression of the dnaN gene function by the dnaA- dnaN+ phages remains weak upon simultaneous infection with dnaA+ dnaN- phages. Thus the insertion and deletion of the dnaA gene influence in cis the expresion of the dnaN gene. We propose that the dnaA and dnaN genes constitute an operon, where the former is upstream to the latter. PMID:6449652

  11. DNA Damage and Repair in Vascular Disease.

    PubMed

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease. PMID:26442438

  12. Phosphate uptake kinetics by Acinetobacter isolates.

    PubMed

    Pauli, A S; Kaitala, S

    1997-02-01

    Acinetobacter isolates from activated sludge treatment plants of forest industry were used as model organisms for polyphosphate accumulating bacteria to study excess phosphate uptake by the overplus phenomenon as well as luxury uptake of phosphate during growth. The initial, rapid phosphate uptake by the phosphorus-starved Acinetobacter isolates (the overplus phenomenon) followed the Michaelis-Menten model (maximum initial phosphate uptake rate 29 mg P g(-1) dry mass (DM) h(-1), half-saturation constant for excess phosphate uptake 17 mg P L(-1)). During the rapid uptake no growth was observed, but most cells contained polyphosphate granules. Also growth and luxury uptake of phosphate could be modeled with the Michaelis-Menten equation (maximum phosphate uptake rate 3.7-12 mg P g(-1) DM h(-1), half-saturation constant for growth 0.47-6.0 mg P L(-1), maximum specific growth rate 0.15-0.55 h(-1)). PMID:18633985

  13. Uptake and translocation of Ti from nanoparticles in crops and wetland plants.

    PubMed

    Jacob, Donna L; Borchardt, Joshua D; Navaratnam, Leelaruban; Otte, Marinus L; Bezbaruah, Achintya N

    2013-01-01

    Bioavailability of engineered metal nanoparticles affects uptake in plants, impacts on ecosystems, and phytoremediation. We studied uptake and translocation of Ti in plants when the main source of this metal was TiO2 nanoparticles. Two crops (Phaseolus vulgaris (bean) and Triticum aestivum (wheat)), a wetland species (Rumex crispus, curly dock), and the floating aquatic plant (Elodea canadensis, Canadian waterweed), were grown in nutrient solutions with TiO2 nanoparticles (0, 6, 18 mmol Ti L(-1) for P. vulgaris, T. aestivum, and R. crispus; and 0 and 12 mmol Ti L(-1) for E. canadensis). Also examined in E. canadensis was the influence of TiO2 nanoparticles upon the uptake of Fe, Mn, and Mg, and the influence of P on Ti uptake. For the rooted plants, exposure to TiO2 nanoparticles did not affect biomass production, but significantly increased root Ti sorption and uptake. R. crispus showed translocation of Ti into the shoots. E. canadensis also showed significant uptake of Ti, P in the nutrient solution significantly decreased Ti uptake, and the uptake patterns of Mn and Mg were altered. Ti from nano-Ti was bioavailable to plants, thus showing the potential for cycling in ecosystems and for phytoremediation, particularly where water is the main carrier. PMID:23487992

  14. Single chemical modifications of the C-1027 enediyne core, a radiomimetic antitumor drug, affect both drug potency and the role of ataxia-telangiectasia mutated in cellular responses to DNA double-strand breaks.

    PubMed

    Kennedy, Daniel R; Gawron, Loretta S; Ju, Jianhua; Liu, Wen; Shen, Ben; Beerman, Terry A

    2007-01-15

    The radiomimetic enediyne C-1027 induces almost exclusively DNA double-strand breaks (DSB) and is extremely cytotoxic. Unique among radiomimetics, ataxia-telangiectasia mutated (ATM) is dispensable for cellular responses to C-1027-induced DNA damage. This study explores the biological activity of three recently bioengineered C-1027 analogues: 7''-desmethyl-C-1027 (desmethyl), 20'-deschloro-C-1027 (deschloro), and 22'-deshydroxy-C-1027 (deshydroxy). Each compound maintains the characteristic ability of radiomimetics to cleave DNA in cell-free systems, varying in activity from 2-fold (deschloro) to 55-fold (desmethyl) less than C-1027. The induction of cellular DNA breaks based on pulsed field gel electrophoresis, comet analysis, and gammaH2AX activation was in the same rank order as cell-free DNA break induction, although the amount of breaks induced by desmethyl is greatly reduced compared with the other analogues. Despite the disparity in inducing DNA DSBs, all of the analogues produced G2-M cell cycle arrest and activated DNA DSB damage response proteins, such as p53-Ser15 and Chk2-Thr68, at concentrations in concordance with their ability to inhibit cell growth. Interestingly, of the three analogues, only the desmethyl-induced DNA damage response was similar to C-1027, as it did not cause hypersensitive cell growth inhibition in the absence of ATM nor require the kinase to phosphorylate p53 or Chk2. These findings show that simple modifications of the chromophore of C-1027 can result in varied induction of, and cellular response to, DNA DSBs. PMID:17234789

  15. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    SciTech Connect

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  16. [DNA methylation in obesity].

    PubMed

    Pokrywka, Małgorzata; Kieć-Wilk, Beata; Polus, Anna; Wybrańska, Iwona

    2014-01-01

    The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes), have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA) synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described. PMID:25531701

  17. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  18. Characterization of DNA transport in the thermophilic bacterium Thermus thermophilus HB27.

    PubMed

    Schwarzenlander, Cornelia; Averhoff, Beate

    2006-09-01

    Horizontal gene transfer has been a major force for genome plasticity over evolutionary history, and is largely responsible for fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Recently, by performing a genome-wide mutagenesis approach with Thermus thermophilus HB27, we identified the first genes in a thermophilic bacterium for the uptake of free DNA, a process called natural transformation. Here, we present the first data on the biochemistry and bioenergetics of the DNA transport process in this thermophile. We report that linear and circular plasmid DNA are equally well taken up with a high maximal velocity of 1.5 microg DNA.(mg protein)(-1).min(-1), demonstrating an extremely efficient binding and uptake rate of 40 kb.s(-1).cell(-1). Uncouplers and ATPase inhibitors immediately inhibited DNA uptake, providing clear evidence that DNA translocation in HB27 is an energy-dependent process. DNA uptake studies with genomic DNA of Bacteria, Archaea and Eukarya revealed that Thermus thermophilus HB27 takes up DNA from members of all three domains of life. We propose that the extraordinary broad substrate specificity of the highly efficient Thermus thermophilus HB27 DNA uptake system may contribute significantly to thermoadaptation of Thermus thermophilus HB27 and to interdomain DNA transfer in hot environments. PMID:16939619

  19. [Characterization comparison of polycyclic aromatic hydrocarbon uptake by roots of different crops].

    PubMed

    Liang, Xiao; Zhan, Xin-Hua; Zhou, Li-Xiang

    2012-07-01

    It is important to investigate the differences in polycyclic aromatic hydrocarbon (PAH) uptake by roots of different crops for selecting and breeding less or excess uptake species of PAHs by genetic engineering, and further yielding safe production and phytoremediating the soil or water contaminated with PAHs. Hydroponic experiments were performed to study characterization comparison of phenanthrene (a representative of PAHs) uptake by soybean, wheat and carrot roots. Soybean, carrot and wheat roots can take up phenanthrene from Hoagland nutrient solution and the phenanthrene absorbed by roots increases with incubation time. The uptake process consists of two sequential phases: a fast accumulation process followed by a slow one. The capability to take up phenanthrene for the three crops can be arranged as soybean > carrot > wheat. The relationship between the phenanthrene absorbed and time fits Elovich equation well. Uptake rate constants for soybean, carrot and wheat roots are 4.31, 4.10 and 2.84 mg x (kg x h)(-1), respectively. Concentration-dependent uptake of phenanthrene by roots of soybean, carrot and wheat can be described with Michaelis-Menten equation and the Km values for soybean, carrot and wheat are 0.117, 0.124 and 0.540 mg x L(-1). Hydroponic solution pH increases due to phenanthrene uptake and the trend in pH increase significantly correlates with those in uptake rate constant and Km value. In addition, the orders of uptake rate constant, Km value and pH increase for soybean, carrot and wheat are the same as that of uptake capability. Therefore, it is concluded that uptake rate constant, Km value and pH increase can be employed as indicators for the capability to take up PAHs by crop roots, and uptake rate constant and Km value are better indicators than pH increase because of less affecting factors. PMID:23002636

  20. Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum.

    PubMed Central

    Leyva, A; Palacios, J M; Mozo, T; Ruiz-Argüeso, T

    1987-01-01

    A gene library of genomic DNA from the hydrogen uptake (Hup)-positive strain 128C53 of Rhizobium leguminosarum was constructed by using the broad-host-range mobilizable cosmid vector pLAFR1. The resulting recombinant cosmids contained insert DNA averaging 21 kilobase pairs (kb) in length. Two clones from the above gene library were identified by colony hybridization with DNA sequences from plasmid pHU1 containing hup genes of Bradyhizobium japonicum. The corresponding recombinant cosmids, pAL618 and pAL704, were isolated, and a region of about 28 kb containing the sequences homologous to B. japonicum hup-specific DNA was physically mapped. Further hybridization analysis with three fragments from pHU1 (5.9-kb HindIII, 2.9-kb EcoRI, and 5.0-kb EcoRI) showed that the overall arrangement of the R. leguminosarum hup-specific region closely parallels that of B. japonicum. The presence of functional hup genes within the isolated cosmid DNA was demonstrated by site-directed Tn5 mutagenesis of the 128C53 genome and analysis of the Hup phenotype of the Tn5 insertion strains in symbiosis with peas. Transposon Tn5 insertions at six different sites spanning 11 kb of pAL618 completely suppressed the hydrogenase activity of the pea bacteroids. Images PMID:2822654

  1. Cellular uptake of metallated cobalamins.

    PubMed

    Tran, Mai Thanh Quynh; Stürup, Stefan; Lambert, Ian Henry; Gammelgaard, Bente; Furger, Evelyne; Alberto, Roger

    2016-03-16

    Cellular uptake of vitamin B12-cisplatin conjugates was estimated via detection of their metal constituents (Co, Pt, and Re) by inductively coupled plasma mass spectrometry (ICP-MS). Vitamin B12 (cyano-cob(iii)alamin) and aquo-cob(iii)alamin [Cbl-OH2](+), which differ in the β-axial ligands (CN(-) and H2O, respectively), were included as control samples. The results indicated that B12 derivatives delivered cisplatin to both cellular cytosol and nuclei with an efficiency of one third compared to the uptake of free cisplatin cis-[Pt(II)Cl2(NH3)2]. In addition, uptake of charged B12 derivatives including [Cbl-OH2](+), [{Co}-CN-{cis-PtCl(NH3)2}](+), [{Re}-{Co}-CN-{cis-PtCl(NH3)2}](+), and [{Co}-CN-{trans-Pt(Cyt)(NH3)2}](2+) (Cyt = cytarabin) was high compared to neutral B12, which implied the existence of an additional internalization pathway for charged B12 vitamin analogs. The affinities of the charged B12 derivatives to the B12 transporters HC, IF and TC were similar to that of native vitamin B12. PMID:26739575

  2. Improving vaccine uptake: An overview

    PubMed Central

    Falconer, Michelle Anne

    2013-01-01

    A task group was formed with the aim to improve the quality of the service offered by ensuring that all children waiting for an appointment for vaccination would be offered one at the earliest opportunity. Children aged between 12 mo–5 y that were not completely immunized for their age were identified and included in a pilot catch-up session. Following evaluation of the pilot session, four further immunization sessions were delivered. A total of 398 children attended the four sessions, representing an improved attendance rate of 39%. Most parents brought their children between 11am–3pm and 728 vaccines were administered: 339 MMR; 255 Pre-school boosters; 53 Hib/MenC and 81 PCV. Uptake of MMR vaccine in the PCT at age 24 mo increased by 9% by Q3 2008. For children aged five years, uptake of the first dose of MMR vaccine increased from 91.9% to 94% for the first dose and from 82.3 to 82.5% for the second dose by Q3 2008. This project demonstrates that new ways of delivering immunization sessions can be successfully implemented which can enhance access through the use of alternative venues and subsequently lead to increased vaccine uptake. PMID:23732890

  3. Water level changes affect carbon turnover and microbial community composition in lake sediments

    PubMed Central

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; E. Kayler, Zachary; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-01-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. 13C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  4. Water level changes affect carbon turnover and microbial community composition in lake sediments.

    PubMed

    Weise, Lukas; Ulrich, Andreas; Moreano, Matilde; Gessler, Arthur; Kayler, Zachary E; Steger, Kristin; Zeller, Bernd; Rudolph, Kristin; Knezevic-Jaric, Jelena; Premke, Katrin

    2016-05-01

    Due to climate change, many lakes in Europe will be subject to higher variability of hydrological characteristics in their littoral zones. These different hydrological regimes might affect the use of allochthonous and autochthonous carbon sources. We used sandy sediment microcosms to examine the effects of different hydrological regimes (wet, desiccating, and wet-desiccation cycles) on carbon turnover. (13)C-labelled particulate organic carbon was used to trace and estimate carbon uptake into bacterial biomass (via phospholipid fatty acids) and respiration. Microbial community changes were monitored by combining DNA- and RNA-based real-time PCR quantification and terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA. The shifting hydrological regimes in the sediment primarily caused two linked microbial effects: changes in the use of available organic carbon and community composition changes. Drying sediments yielded the highest CO2 emission rates, whereas hydrological shifts increased the uptake of allochthonous organic carbon for respiration. T-RFLP patterns demonstrated that only the most extreme hydrological changes induced a significant shift in the active and total bacterial communities. As current scenarios of climate change predict an increase of drought events, frequent variations of the hydrological regimes of many lake littoral zones in central Europe are anticipated. Based on the results of our study, this phenomenon may increase the intensity and amplitude in rates of allochthonous organic carbon uptake and CO2 emissions. PMID:26902802

  5. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry.

    PubMed

    Crowley, Lisa C; Scott, Adrian P; Marfell, Brooke J; Boughaba, Jeanne A; Chojnowski, Grace; Waterhouse, Nigel J

    2016-01-01

    Propidium iodide (PI) is a small fluorescent molecule that binds to DNA but cannot passively traverse into cells that possess an intact plasma membrane. PI uptake versus exclusion can be used to discriminate dead cells, in which plasma membranes become permeable regardless of the mechanism of death, from live cells with intact membranes. PI is excited by wavelengths between 400 and 600 nm and emits light between 600 and 700 nm, and is therefore compatible with lasers and photodetectors commonly available in flow cytometers. This protocol for PI staining can be used to quantitate cell death in most modern research facilities and universities. PMID:27371595

  6. Membrane-associated DNA Transport Machines

    PubMed Central

    Burton, Briana; Dubnau, David

    2010-01-01

    DNA pumps play important roles in bacteria during cell division and during the transfer of genetic material by conjugation and transformation. The FtsK/SpoIIIE proteins carry out the translocation of double-stranded DNA to ensure complete chromosome segregation during cell division. In contrast, the complex molecular machines that mediate conjugation and genetic transformation drive the transport of single stranded DNA. The transformation machine also processes this internalized DNA and mediates its recombination with the resident chromosome during and after uptake, whereas the conjugation apparatus processes DNA before transfer. This article reviews these three types of DNA pumps, with attention to what is understood of their molecular mechanisms, their energetics and their cellular localizations. PMID:20573715

  7. Transcutaneous DNA immunization following waxing-based hair depilation

    PubMed Central

    Sloat, Brian R.; Kiguchi, Kaoru; Xiao, Gang; DiGiovanni, John; Maury, Wendy; Cui, Zhengrong

    2011-01-01

    Transcutaneous DNA immunization is an attractive immunization approach. Previously, we reported that transcutaneous immunization by applying plasmid DNA onto a skin area wherein the hair follicles had been induced into growth stage by ‘cold’ waxing-based hair plucking significantly enhanced the resultant immune responses. In the present study, using a plasmid that encodes the Bacillus anthracis protective antigen (PA63) gene fragment, it was shown that the anti-PA63 antibody responses induced by applying the plasmid onto a skin area where the hair was plucked by ‘warm’ waxing were significantly stronger than by ‘cold’ waxing, very likely because the ‘warm’ waxing-based hair depilation significantly i) enhanced the uptake (or retention) of the plasmid in the application area and ii) enhanced the expression of the transfected gene in the follicular and interfollicular epidermis in the skin. The antibody response induced by transcutaneous DNA immunization was hair cycle dependent, because the plasmid needed to be applied within 5 days after the hair plucking to induce a strong antibody response. The antibody responses were not affected by whether the expressed PA63 protein, as an antigen, was secreted or cell surface bound. Finally, this strategy of enhancing the immune responses induced by transcutaneous DNA immunization following ‘warm’ waxing-based hair depilation was not limited to the PA63 as an antigen, because immunization with a plasmid that encodes the HIV-1 env gp160 gene induced a strong anti-gp160 response as well. Transcutaneous DNA immunization by modifying the hair follicle cycle may hold a great promise in inducing strong and functional immune responses. PMID:21907253

  8. Macroscopic modeling of plant water uptake: soil and root resistances

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir

    2014-05-01

    The macroscopic physically-based plant root water uptake (RWU) model, based on water-potential-gradient formulation (Vogel et al., 2013), was used to simulate the observed soil-plant-atmosphere interactions at a forest site located in a temperate humid climate of central Europe and to gain an improved insight into the mutual interplay of RWU parameters that affects the soil water distribution in the root zone. In the applied RWU model, the uptake rates are directly proportional to the potential gradient and indirectly proportional to the local soil and root resistances to water flow. The RWU algorithm is implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation. The RWU model is defined by four parameters (root length density distribution, average active root radius, radial root resistance, and the threshold value of the root xylem potential). In addition, soil resistance to water extraction by roots is related to soil hydraulic conductivity function and actual soil water content. The RWU model is capable of simulating both the compensatory root water uptake, in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers, and the root-mediated hydraulic redistribution of soil water, contributing to more natural soil moisture distribution throughout the root zone. The present study focusses on the sensitivity analysis of the combined soil water flow and RWU model responses in respect to variations of RWU model parameters. Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154.

  9. Dual targeting effect of Angiopep-2-modified, DNA-loaded nanoparticles for glioma.

    PubMed

    Huang, Shixian; Li, Jianfeng; Han, Liang; Liu, Shuhuan; Ma, Haojun; Huang, Rongqin; Jiang, Chen

    2011-10-01

    Gene therapy offers a promising cure of brain glioma and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is able to induce cell apoptosis of glioma selectively without affecting the normal cells. In this study, the nanoscopic high-branching dendrimer, polyamidoamine (PAMAM), was selected as the principal vector. Angiopep-2, which can target to the low-density lipoprotein receptor-related protein-1 (LRP1) expressed on BCECs and glial cells, was exploited as the targeting ligand to conjugate PAMAM via bifunctional polyethyleneglycol (PEG) and then complexed with the DNA, designated as PAMAM-PEG-Angiopep/DNA nanoparticles (NPs). The cellular uptake mechanism explored in glial cells showed that the DNA of PAMAM-PEG-Angiopep/DNA NPs entered into the nuclei through the endosome/lysosome pathway. The in vivo biodistribution of PAMAM-PEG-Angiopep/DNA NPs in the brain especially the tumor site was higher than that of PAMAM-PEG/DNA NPs and PAMAM/DNA NPs. Furthermore, the TUNEL analysis showed a more wide-extended apoptosis in the PAMAM-PEG-Angiopep/pORF-TRAIL NPs treated group, compared to other groups including commercial Temozolomide-treated one. The median survival time of PAMAM-PEG-Angiopep/pORF-TRAIL NPs and Temozolomide treated on brain tumor-bearing mice was 61 and 49 days respectively, significantly longer than that of other groups. Besides, the NPs suggested low cytotoxicity after in vitro transfection. Thus, the results showed that Angiopep-2 could be exploited as a specific ligand to cross the BBB and targeted to glial cells, and PAMAM-PEG-Angiopep/DNA NPs can be a potential non-viral delivery system for gene therapy of glial tumor. PMID:21700333

  10. Mitoxantrone-loaded superparamagnetic iron oxide nanoparticles as drug carriers for cancer therapy: Uptake and toxicity in primary human tubular epithelial cells.

    PubMed

    Cicha, Iwona; Scheffler, Laura; Ebenau, Astrid; Lyer, Stefan; Alexiou, Christoph; Goppelt-Struebe, Margarete

    2016-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) are in use for many clinical diagnostic and experimental therapeutic applications, for example, for targeted drug delivery. To analyze the cellular responses to mitoxantrone-carrying SPIONs (SPION-MTO), and to the drug released from SPIONs, we used an in vitro system that allows comparison of primary human cells with different endocytotic capacities, namely, epithelial cells from proximal and distal parts of the nephron. SPIONs were selectively and rapidly internalized by proximal tubular cells with high endocytotic potential, but not by distal tubular cells. Uptake did not affect cell viability or morphology. In both cell types, free MTO (10-100 nM) induced double-strand DNA breaks and senescence, cell hypertrophy and reduced cell proliferation. However, cadherin-mediated cell-cell adhesion, cytoskeletal structures or polarity of the cells were not affected. Interestingly, a comparable response was also observed upon treatment with SPION-MTO and was independent of uptake of the particles. The effect of SPION-MTO on cells which did not internalize particles was primarily related to the release of MTO from drug-coated particles upon incubation in serum-containing cell growth medium. In conclusion, we show that whereas the uptake of SPIONs does not affect cellular functions or viability, the toxicity of drug-loaded SPIONs depends essentially on the type of drug bound to nanoparticles. Due to the relatively low systemic toxicity of MTO, the effects of MTO-SPIONs on human tubular cells were moderate, but they may become clinically relevant when more nephrotoxic drugs are bound to SPIONs. PMID:26468004

  11. Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role?

    PubMed

    Gramlich, Anja; Tandy, Susan; Frossard, Emmanuel; Eikenberg, Jost; Schulin, Rainer

    2013-11-01

    Organic ligands in soils affect the availability of trace metals such as Zn to plants. This study investigated the effects of two of these ligands, citrate and histidine, on Zn uptake by wheat under hydroponic conditions. Uptake of (65)Zn in the presence of these ligands was compared to uptake in the presence of EDTA at the same free Zn concentration (Zn(2+) ~ 50 nM). In the presence of citrate Zn root uptake was enhanced ~3.5 times and in the presence of histidine, by a factor of ~9, compared to the EDTA treatments. Citrate uptake was slightly reduced in the treatment containing ligands and Zn compared to the treatment containing the same ligand concentration but no Zn. In addition, a higher uptake of Zn than of citrate was observed. This suggests that the enhanced Zn uptake was primarily due to increased supply of Zn(2+) by diffusion and dissociation of Zn-citrate complexes at the root surface. Histidine uptake was much higher than citrate uptake and not influenced by the presence of Zn. As histidine forms stronger complexes with Zn than citrate, the results suggest that the enhancement of Zn uptake in the presence of histidine was in part due to the uptake of undissociated Zn-histidine complexes. PMID:24147770

  12. Nanoparticles of compacted DNA transfect postmitotic cells.

    PubMed

    Liu, Ge; Li, DeShan; Pasumarthy, Murali K; Kowalczyk, Tomasz H; Gedeon, Christopher R; Hyatt, Susannah L; Payne, Jennifer M; Miller, Timothy J; Brunovskis, Peter; Fink, Tamara L; Muhammad, Osman; Moen, Robert C; Hanson, Richard W; Cooper, Mark J

    2003-08-29

    Charge-neutral DNA nanoparticles have been developed in which single molecules of DNA are compacted to their minimal possible size. We speculated that the small size of these DNA nanoparticles may facilitate gene transfer in postmitotic cells, permitting nuclear uptake across the 25-nm nuclear membrane pore. To determine whether DNA nanoparticles can transfect nondividing cells, growth-arrested neuroblastoma and hepatoma cells were transfected with DNA/liposome mixtures encoding luciferase. In both models, growth-arrested cells were robustly transfected by compacted DNA (6,900-360-fold more than naked DNA). To evaluate mechanisms responsible for enhanced transfection, HuH-7 cells were microinjected with naked or compacted plasmids encoding enhanced green fluorescent protein. Cytoplasmic microinjection of DNA nanoparticles generated a approximately 10-fold improvement in transgene expression as compared with naked DNA; this enhancement was reversed by the nuclear pore inhibitor, wheat germ agglutinin. To determine the upper size limit for gene transfer, DNA nanoparticles of various sizes were microinjected into the cytoplasm. A marked decrease in transgene expression was observed as the minor ellipsoidal diameter approached 25 nm. In summary, suitably sized DNA nanoparticles productively transfect growth arrested cells by traversing the nuclear membrane pore. PMID:12807905

  13. DNA Immunization

    PubMed Central

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed. PMID:24510291

  14. Cation uptake and allocation by red pine seedlings under cation-nutrient stress in a column growth experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and aims: Plant nutrient uptake is affected by environmental stress, but how plants respond to cation nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient stress on cation uptake in an experimental plant-mineral system. Methods: Column experim...

  15. Gas uptake and chemical aging of semisolid organic aerosol particles

    PubMed Central

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-01-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate. PMID:21690350

  16. Selected Phytochemicals and Culinary Plant Extracts Inhibit Fructose Uptake in Caco-2 Cells.

    PubMed

    Lee, Yurim; Lim, Yeni; Kwon, Oran

    2015-01-01

    This study compared the ability of nine culinary plant extracts containing a wide array of phytochemicals to inhibit fructose uptake and then explored the involvement of intestinal fructose transporters and phytochemicals for selected samples. The chemical signature was characterized by high performance liquid chromatography with mass spectrometry. Inhibition of [(14)C]-fructose uptake was tested by using human intestinal Caco-2 cells. Then, the relative contribution of the two apical-facing intestinal fructose transporters, GLUT2 and GLUT5, and the signature components for fructose uptake inhibition was confirmed in naive, phloretin-treated and forskolin-treated Caco-2 cells. HPLC/MS analysis of the chemical signature revealed that guava leaf contained quercetin and catechin, and turmeric contained curcumin, bisdemethoxycurcumin and dimethoxycurcumin. Similar inhibition of fructose uptake (by ~50%) was observed with guava leaf and turmeric in Caco-2 cells, but with a higher contribution of GLUT2 for turmeric and that of GLUT5 for guava leaf. The data suggested that, in turmeric, demethoxycurcumin specifically contributed to GLUT2-mediated fructose uptake inhibition, and curcumin did the same to GLUT5-mediated fructose uptake inhibition, but GLUT2 inhibition was more potent. By contrast, in guava leaf, catechin specifically contributed to GLUT5-mediated fructose uptake inhibition, and quercetin affected both GLUT5- and GLUT2-mediated fructose uptake inhibition, resulting in the higher contribution of GLUT5. These results suggest that demethoxycurcumin is an important contributor to GLUT2-mediated fructose uptake inhibition for turmeric extract, and catechin is the same to GLUT5-mediated fructose uptake inhibition for guava leaf extract. Quercetin, curcumin and bisdemethoxycurcumin contributed to both GLUT5- and GLUT2-mediated fructose uptake inhibition, but the contribution to GLUT5 inhibition was higher than the contribution to GLUT2 inhibition. PMID:26393568

  17. Channel-mediated and carrier-mediated uptake of K+ into cultured ovine oligodendrocytes

    SciTech Connect

    Hertz, L.; Soliven, B.; Hertz, E.; Szuchet, S.; Nelson, D.J. )

    1990-01-01

    Uptake of radioactive K+ by mature ovine oligodendrocytes (OLGs) maintained in primary culture was measured under steady-state conditions, i.e., in cells maintained in a normal tissue culture medium (5.4 mM K+), and in cells after depletion of intracellular K+ to less than 15% of its normal value by pre-incubation in K(+)-free medium. The latter value is dominated by an active, carrier-mediated uptake (although it may include some diffusional uptake), whereas the former, in addition to active uptake, also reflects passive K+ diffusion through ion selective channels and possible self-exchange between extracellular and intracellular K+, which may be carrier-mediated. The total uptake rate was 144 +/- 10 nmol/min/mg protein, and the uptake after K+ depletion was 60 +/- 2 nmol/min/mg protein, much lower rates than previously observed in astrocytes. The uptake into K(+)-depleted cells was inhibited by about 80% in the presence of ouabain (1 mM) and about 30% in the presence of furosemide (2 mM). Activators of protein kinase C (phorbol esters) and cAMP-dependent protein kinase (forskolin) have been shown to alter the myelinogenic metabolism as well as outward K+ current in cultured OLGs. The present study demonstrates that K+ homeostasis in OLGs is modulated through similar second messenger pathways. Active uptake was inhibited by about 60% in the presence of active phorbol esters (100 nM) but was not affected by forskolin (100 nM). Forskolin likewise had no effect on total uptake, whereas phorbol esters caused a much larger inhibition than expected from their effect on carrier-mediated uptake alone, suggesting that channel-mediated uptake was also reduced.

  18. Variations in brain DNA

    PubMed Central

    Avila, Jesús; Gómez-Ramos, Alberto; Soriano, Eduardo

    2014-01-01

    It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain) of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain. PMID:25505410

  19. Uptake and transient expression of chimeric genes in seed-derived embryos.

    PubMed Central

    Töpfer, R; Gronenborn, B; Schell, J; Steinbiss, H H

    1989-01-01

    Uptake of DNA in dry and viable embryos of wheat by imbibition in DNA solution was detected by monitoring the transient expression of chimeric genes. Gene expression vectors used in this study contained a neomycin phosphotransferase (NPT) II reporter gene fused to various promoters. Some of the chimeric "neo" genes were shown to yield reproducibly NPT II activity in germinating embryos. This NPT II activity was increased markedly when the neo genes were carried by a vector capable of autonomous replication. Dimers of wheat dwarf virus, a monopartite gemini virus, were thus shown to be effective in amplifying the transient expressed NPT II activity in embryos of several cereals. These and other observations indicate that the observed transient expression really results from DNA uptake and expression in plant embryo cells and is not due to contaminating microorganisms. PMID:2562504

  20. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes.

    PubMed

    Ewert, Kai K; Kotamraju, Venkata Ramana; Majzoub, Ramsey N; Steffes, Victoria M; Wonder, Emily A; Teesalu, Tambet; Ruoslahti, Erkki; Safinya, Cyrus R

    2016-03-15

    Because nucleic acids (NAs) have immense potential value as therapeutics, the development of safe and effective synthetic NA vectors continues to attract much attention. In vivo applications of NA vectors require stabilized, nanometer-scale particles, but the commonly used approaches of steric stabilization with a polymer coat (e.g., PEGylation; PEG=poly(ethylene glycol)) interfere with attachment to cells, uptake, and endosomal escape. Conjugation of peptides to PEG-lipids can improve cell attachment and uptake for cationic liposome-DNA (CL-DNA) complexes. We present several synthetic approaches to peptide-PEG-lipids and discuss their merits and drawbacks. A lipid-PEG-amine building block served as the common key intermediate in all synthetic routes. Assembling the entire peptide-PEG-lipid by manual solid phase peptide synthesis (employing a lipid-PEG-carboxylic acid) allowed gram-scale synthesis but is mostly applicable to linear peptides connected via their N-terminus. Conjugation via thiol-maleimide or strain-promoted (copper-free) azide-alkyne cycloaddition chemistry is highly amenable to on-demand preparation of peptide-PEG-lipids, and the appropriate PEG-lipid precursors are available in a single chemical step from the lipid-PEG-amine building block. Azide-alkyne cycloaddition is especially suitable for disulfide-bridged peptides such as iRGD (cyclic CRGDKGPDC). Added at 10 mol% of a cationic/neutral lipid mixture, the peptide-PEG-lipids stabilize the size of CL-DNA complexes. They also affect cell attachment and uptake of nanoparticles in a peptide-dependent manner, thereby providing a platform for preparing stabilized, affinity-targeted CL-DNA nanoparticles. PMID:26874401

  1. Bumetanide-sensitive NaCl uptake in rabbit tracheal epithelial cells is stimulated by neurohormones and hypertonicity.

    PubMed

    Liedtke, C M

    1992-05-01

    Loop diuretic-sensitive NaCl(K) cotransport plays a fundamental role in absorption and secretion of electrolytes in epithelial tissues. Cotransport activity was measured as uptake of 22Na, 36Cl, or 86Rb at 27 degrees C in isolated rabbit tracheal epithelial cells. Uptake of radiotracer was linear from 1 to 2 min after initiation of radiotracer transport. Bumetanide at 10 microM final concentration did not affect tracer uptake. The endogenous catecholamine l-epinephrine and alpha 2-adrenergic agent clonidine increased sodium and chloride uptake at least 5.5-fold. Bumetanide blocked sodium uptake by 85% and chloride uptake by 72%. 86Rb uptake was not affected by l-epinephrine, clonidine, or bumetanide. The alpha 2-adrenergic antagonist yohimbine blocked the effects of l-epinephrine and clonidine on 22Na and 36Cl uptake. In Ca(2+)-depleted transport medium, baseline levels of sodium and chloride uptake increased 3.8- and 2.4-fold, respectively, in a bumetanide-independent manner. Nevertheless, l-epinephrine and clonidine induced a net stimulation of sodium and chloride uptake similar to that found in Ca(2+)-replete medium. This response was reduced by bumetanide and yohimbine. The Ca(2+)-elevating agent ionomycin increased bumetanide-sensitive sodium and chloride uptake 7.2- and 6.2-fold, respectively. Replacement of chloride with gluconate or sodium with N-methyl-D-glucamine in the extracellular medium inhibited l-epinephrine and clonidine-stimulated bumetanide-sensitive sodium and chloride uptake, respectively. Osmotic shrinkage in hyperosmotic (500 mM NaCl with all other electrolytes at normal concentration) transport medium markedly increased bumetanide-inhibitable sodium and chloride uptake.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1590411

  2. Mechanism of cellular uptake of genotoxic silica nanoparticles

    PubMed Central

    2012-01-01

    Mechanisms for cellular uptake of nanoparticles have important implications for nanoparticulate drug delivery and toxicity. We have explored the mechanism of uptake of amorphous silica nanoparticles of 14 nm diameter, which agglomerate in culture medium to hydrodynamic diameters around 500 nm. In HT29, HaCat and A549 cells, cytotoxicity was observed at nanoparticle concentrations ≥ 1 μg/ml, but DNA damage was evident at 0.1 μg/ml and above. Transmission electron microscopy (TEM) combined with energy-dispersive X-ray spectroscopy confirmed entry of the silica particles into A549 cells exposed to 10 μg/ml of nanoparticles. The particles were observed in the cytoplasm but not within membrane bound vesicles or in the nucleus. TEM of cells exposed to nanoparticles at 4°C for 30 minutes showed particles enter cells when activity is low, suggesting a passive mode of entry. Plasma lipid membrane models identified physical interactions between the membrane and the silica NPs. Quartz crystal microbalance experiments on tethered bilayer lipid membrane systems show that the nanoparticles strongly bind to lipid membranes, forming an adherent monolayer on the membrane. Leakage assays on large unilamellar vesicles (400 nm diameter) indicate that binding of the silica NPs transiently disrupts the vesicles which rapidly self-seal. We suggest that an adhesive interaction between silica nanoparticles and lipid membranes could cause passive cellular uptake of the particles. PMID:22823932

  3. A Comparative Structure/Function Analysis of Two Type IV Pilin DNA Receptors Defines a Novel Mode of DNA Binding.

    PubMed

    Berry, Jamie-Lee; Xu, Yingqi; Ward, Philip N; Lea, Susan M; Matthews, Stephen J; Pelicic, Vladimir

    2016-06-01

    DNA transformation is a widespread process allowing bacteria to capture free DNA by using filamentous nano-machines composed of type IV pilins. These proteins can act as DNA receptors as demonstrated by the finding that Neisseria meningitidis ComP minor pilin has intrinsic DNA-binding ability. ComP binds DNA better when it contains the DNA-uptake sequence (DUS) motif abundant in this species genome, playing a role in its trademark ability to selectively take up its own DNA. Here, we report high-resolution structures for meningococcal ComP and Neisseria subflava ComPsub, which recognize different DUS motifs. We show that they are structurally identical type IV pilins that pack readily into filament models and display a unique DD region delimited by two disulfide bonds. Functional analysis of ComPsub defines a new mode of DNA binding involving the DD region, adapted for exported DNA receptors. PMID:27161979

  4. Organic and inorganic nitrogen uptake in lichens.

    PubMed

    Dahlman, Lena; Persson, Jörgen; Palmqvist, Kristin; Näsholm, Torgny

    2004-07-01

    In order to learn more about nitrogen (N) acquisition in lichens, and to see whether different lichens differ in their affinity to various N sources, N uptake was measured in 14 various lichen associations ("species"). These species represented various morphologies (fruticose or foliose), contrasting microhabitat preferences (epiphytic or terricolous), and had green algal, cyanobacterial or both forms of photobionts. N was supplied under non-limiting conditions as an amino acid mixture, ammonium, or nitrate, using 15N to quantify uptake. Carbonyl cyanide m-chlorophenylhydrazone (CCCP) was used to separate active and passive uptake. Thallus N, amino acids, soluble polyol concentrations, and the biont-specific markers chlorophyll a and ergosterol were quantified, aiming to test if these metabolites or markers were correlated with N uptake capacity. Ammonium uptake was significantly greater and to a higher extent passive, relative to the other two N sources. Nitrate uptake differed among lichen photobiont groups, cyanobacterial lichens having a lower uptake rate. All lichens had the capacity to assimilate amino acids, in many species at rates equal to nitrate uptake or even higher, suggesting that organic N compounds could potentially have an important role in the N nutrition of these organisms. There were no clear correlations between N uptake rates and any of the measured metabolites or markers. The relative uptake rates of ammonium, nitrate and amino acids were not related to morphology or microhabitat. PMID:15060826

  5. Warming decreased and grazing increased plant uptake of amino acids in an alpine meadow.

    PubMed

    Ma, Shuang; Zhu, Xiaoxue; Zhang, Jing; Zhang, Lirong; Che, Rongxiao; Wang, Fang; Liu, Hanke; Niu, Haishan; Wang, Shiping; Cui, Xiaoyong

    2015-09-01

    Organic nitrogen (N) uptake by plants has been recognized as a significant component of terrestrial N cycle. Several studies indicated that plants have the ability to switch their preference between inorganic and organic forms of N in diverse environments; however, research on plant community response in organic nitrogen uptake to warming and grazing is scarce. Here, we demonstrated that organic N uptake by an alpine plant community decreased under warming with (13)C-(15)N-enriched glycine addition method. After 6 years of treatment, warming decreased plant organic N uptake by 37% as compared to control treatment. Under the condition of grazing, warming reduced plant organic N uptake by 44%. Grazing alone significantly increased organic N absorption by 15%, whereas under warming condition grazing did not affect organic N uptake by the Kobresia humilis community on Tibetan Plateau. Besides, soil NO 3-N content explained more than 70% of the variability observed in glycine uptake, and C:N ratio in soil dissolved organic matter remarkably increased under warming treatment. These results suggested warming promoted soil microbial activity and dissolved organic N mineralization. Grazing stimulated organic N uptake by plants, which counteracted the effect of warming. PMID:26442646

  6. Affective Learning.

    ERIC Educational Resources Information Center

    Brown, Charles T.

    This paper addresses itself to the question, "What does feeling have to do with knowing?" Two movements in affective education are discussed which have come into focus in recent years and which attempt to define the relationship between knowing and feeling. The first, a conscious application of the role of arousal in learning, emphasizes arousal…

  7. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung ); Takahashi, Taro . Lamont-Doherty Earth Observatory)

    1993-01-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0[sup 2] include carbon chemistry, distribution of alkalinity, pCO[sup 2] and total concentration of dissolved C0[sup 2], sea-air pCO[sup 2] difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0[sup 2] uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0[sup 2] from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0[sup 2] fertilization is a potential candidate for such missing carbon sinks.

  8. Ocean uptake of carbon dioxide

    SciTech Connect

    Peng, Tsung-Hung; Takahashi, Taro

    1993-06-01

    Factors controlling the capacity of the ocean for taking up anthropogenic C0{sup 2} include carbon chemistry, distribution of alkalinity, pCO{sup 2} and total concentration of dissolved C0{sup 2}, sea-air pCO{sup 2} difference, gas exchange rate across the sea-air interface, biological carbon pump, ocean water circulation and mixing, and dissolution of carbonate in deep sea sediments. A general review of these processes is given and models of ocean-atmosphere system based on our understanding of these regulating processes axe used to estimate the magnitude of C0{sup 2} uptake by the ocean. We conclude that the ocean can absorb up to 35% of the fossil fuel emission. Direct measurements show that 55% Of C0{sup 2} from fossil fuel burning remains in the atmosphere. The remaining 10% is not accounted for by atmospheric increases and ocean uptake. In addition, it is estimated that an amount equivalent to 30% of recent annual fossil fuel emissions is released into the atmosphere as a result of deforestation and farming. To balance global carbon budget, a sizable carbon sink besides the ocean is needed. Storage of carbon in terrestrial biosphere as a result of C0{sup 2} fertilization is a potential candidate for such missing carbon sinks.

  9. Cadmium uptake by floating macrophytes.

    PubMed

    Maine, M A; Duarte, M V; Suñé, N L

    2001-08-01

    Cd uptake capacity of a group of floating macrophytes (Salvinia herzogii, Pistia stratiotes, Hydromistia stolonifera and Eichhornia crassipes) was determined in outdoors experiments during the lowest temperature period of the year. Although all studied species were highly efficient in the Cd uptake, Pistia stratiotes was selected for further research because of its superior performance and its higher average relative growth rate. Cadmium% removal by Pistia stratiotes was greater in the first 24 h of the experiments (63, 65, 72 and 74% of the added Cd for 1, 2, 4 and 6 mg Cd 1(-1), respectively). After 31 days of growth, Pistia statiotes efficiently removed Cd at the studied concentrations. The macrophyte was able to keep its capacity for Cd removal even though some toxicity symptoms appeared at 4 and 6 mg Cd 1(-1). The greater the initial concentration, the greater Cd bioaccumulation rates. The increase of Cd concentration in plant tissues occurred especially in roots and was linearly related to the quantity of Cd added. Cd sorption by roots is faster than translocation to the plant aerial part and it occurs mainly during the first 24h. PMID:11456161

  10. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Growing plant cells increase in volume principally by water uptake into the vacuole. There are only three general mechanisms by which a cell can modulate the process of water uptake: (a) by relaxing wall stress to reduce cell turgor pressure (thereby reducing cell water potential), (b) by modifying the solute content of the cell or its surroundings (likewise affecting water potential), and (c) by changing the hydraulic conductance of the water uptake pathway (this works only for cells remote from water potential equilibrium). Recent studies supporting each of these potential mechanisms are reviewed and critically assessed. The importance of solute uptake and hydraulic conductance is advocated by some recent studies, but the evidence is indirect and conclusions remain controversial. For most growing plant cells with substantial turgor pressure, it appears that reduction in cell turgor pressure, as a consequence of wall relaxation, serves as the major initiator and control point for plant cell enlargement. Two views of wall relaxation as a viscoelastic or a chemorheological process are compared and distinguished.

  11. Bixin uptake and antioxidative effect and role in immunoregulation in domestic cats.

    PubMed

    Park, J S; Mathison, B D; Zawlocki, B M; Chew, B P

    2016-01-01

    Bixin, a carotenoid found in the seed of the Annatto plant, , is a potent antioxidant. Carotenoids are readily absorbed from the diet; therefore, the purpose of this study was to examine uptake of bixin by plasma, lipoproteins, and leukocytes after dietary supplementation in domestic cats and to assess effects on immune response. Female domestic short hair cats (3 yr old; 4.79 ± 0.13 kg BW) were fed a single dose of 0, 1, 5, or 10 mg bixin, and blood was taken at 0, 1, 2, 4 and 8 h after administration ( = 6/treatment) to determine acute absorption rate. Then, bixin was fed daily for 14 d to examine steady-state plasma concentrations and subcellular distribution. Following these preliminary experiments, cats ( = 8/treatment) were fed diets containing 0, 1, 5, or 10 mg bixin/d for 16 wk and blood was collected on wk 0, 6, 12, and 16 for analysis of leukocyte subpopulations, cell-mediated responsiveness, and inflammatory and oxidative biomarkers. Maximal uptake in plasma occurred 1 h after a single oral dose of bixin, with a maximal concentration of 0.119 μ and elimination half-life of 1.8 to 2.2 h. Daily feeding of bixin showed a steady-state plasma concentration of 0.110 μ at the greatest doses. Bixin was primarily associated with the high-density lipoprotein fraction of blood lipoproteins and was primarily distributed in mitochondrial fractions (58-59%) of but also in microsomal and nuclear fractions (37-44%). Leukocyte subpopulations in blood were variably affected by dietary bixin, with an increase ( < 0.05) in total T cells but a concurrent decrease ( < 0.05) in CD18+ and B cell subpopulations. However, plasma IgG increased ( < 0.05) in the 10-mg treatment group by wk 6. Lymphoproliferation was stimulated ( < 0.05) in the 5-mg bixin treatment group by wk 16, and delayed-type hypersensitivity response increased after nonspecific antigenic challenge. Conversely, when a specific challenge of vaccine was assessed on wk 12 and 16, responsiveness decreased ( < 0

  12. DNA ALTERATIONS

    EPA Science Inventory

    The exposure of an organism to genotoxic chemicals may induce a cascade of genetic events. nitially, structural alterations to DNA are formed. ext, the DNA damage is processed and subsequently expressed in mutant gene products. inally, diseases result from the genetic damage. he ...

  13. Cell uptake survey of pegylated nanographene oxide

    NASA Astrophysics Data System (ADS)

    Vila, M.; Portolés, M. T.; Marques, P. A. A. P.; Feito, M. J.; Matesanz, M. C.; Ramírez-Santillán, C.; Gonçalves, G.; Cruz, S. M. A.; Nieto, A.; Vallet-Regi, M.

    2012-11-01

    Graphene and more specifically, nanographene oxide (GO) has been proposed as a highly efficient antitumoral therapy agent. Nevertheless, its cell uptake kinetics, its influence in different types of cells and the possibility of controlling cellular internalization timing, is still a field that remains unexplored. Herein, different cell types have been cultured in vitro for several incubation periods in the presence of 0.075 mg ml-1 pegylated GO solutions. GO uptake kinetics revealed differences in the agent’s uptake amount and speed as a function of the type of cell involved. Osteoblast-like cells GO uptake is higher and faster without resulting in greater cell membrane damage. Moreover, the dependence on the commonly used PEG nature (number of branches) also influences the viability and cell uptake speed. These facts play an important role in the future definition of timing parameters and selective cell uptake control in order to achieve an effective therapy.

  14. Spring Hydrology Determines Summer Net Carbon Uptake in Northern Ecosystems

    NASA Technical Reports Server (NTRS)

    Yi, Yonghong; Kimball, John; Reichle, Rolf H.

    2014-01-01

    Increased photosynthetic activity and enhanced sea